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Abstract

A method for the subtraction of a string’s oscillations from monophonic,

plucked- or hit-string tones is presented. The remainder of the subtrac-

tion is the response of the instrument’s body to the excitation, and poten-

tially other sources, such as faint vibrations of other strings, background

noises or recording artifacts. In some respects, this method is similar to a

stochastic-deterministic decomposition based on Sinusoidal Modeling Syn-

thesis [MQ86, IS87]. However, our method targets string partials expressly,

according to a physical model of the string’s vibrations described in this the-

sis. Also, the method sits on a Phase Vocoder scheme. This approach has

the essential advantage that the subtraction of the partials can take place

“instantly”, on a frame-by-frame basis, avoiding the necessity of tracking the

partials and therefore availing of the possibility of a real-time implementa-

tion. The subtraction takes place in the frequency domain, and a method

is presented whereby the computational cost of this process can be reduced

through the reduction of a partial’s frequency-domain data to its main lobe.

In each frame of the Phase Vocoder, the string is encoded as a set of par-

tials, completely described by four constants of frequency, phase, magnitude

and exponential decay. These parameters are obtained with a novel method,

the Complex Exponential Phase Magnitude Evolution (CSPME), which is

a generalisation of the CSPE [SG06] to signals with exponential envelopes

and which surpasses the finite resolution of the Discrete Fourier Transform.

The encoding obtained is an intuitive representation of the string, suitable

to musical processing.

III



Acknowledgments

Tout d’abord, je voudrais exprimer une reconnaissance profonde envers ma

mère et mon père, qui n’ont jamais cessé de me montrer et de me donner leur
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Foreword

The sensation of sound occurs when our tympanic membrane is set in a

vibrational motion of appropriate amplitude and frequency. The vibration

of our tympanic membrane is normally the effect of an analogue oscillation

in the ambient air pressure, and thereby it can be said that the medium of

sound is air. However, sound can also be experienced underwater, so water

can also be the medium of sound. In fact, even solids transmit sound: shake

a light bulb beside your ear, and even though it is hermetically enclosed in

glass, you will hear the filament shaking.

Sound has a number of media. In the 20th century, the domestication of

electricity as a medium for sound has revolutionised our experience of music.

Now sound can be stored, processed, and even generated. Electronic ma-

chines with keyboard interfaces use mathematical algorithms to create tones

previously unheard. In the second half of the past century, these synthesiz-

ers become so popular as to grow in a family of instruments of their own.

Most notably, the success of the Moog synthesizer, commercialised first in

the 1960s [PT04], is monumental. The Doors, the Beatles, Pink Floyd, to

name just a few, are all names this instrument contributed to the success of.

Technically speaking, the Moog uses a paradigm for the synthesis of mu-

sical signals called subtractive synthesis, whose elementary principle is to

generate a harmonic or near-harmonic waveform of rich spectral properties,

and filter it thereafter in inventive manners. Other paradigms used in the

60s, 70s and later include additive synthesis and FM (Frequency Modulation)

synthesis [Cho73]. During this time, computers become more powerful and
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affordable, and digital sound synthesis emerges. A remarkable development

of that time in sound synthesis is the birth of physical modeling, which aims

at emulating in a computer the physical mechanisms that lead to the produc-

tion of sound waves. Hiller and Ruiz take a Finite Difference (FD) approach

to approximate the solutions to the Partial Differential Equations (PDEs)

derived from the physical analysis of vibrating bodies [HR71a, HR71b]. In

the early 80s, Karplus and Strong introduce a digital system which, with

a simple delay line and averaging filter arranged in a feedback loop, pro-

duce tones whose resemblance with string tones is uncanny. The method

inspires Julius Smith to develop the theory of Digital Waveguide Synthesis

[III92], which models d’Alembert’s (1717-1783) solution to the wave equation

in delay lines, connected in a digital loop enriched with various types of fil-

ters to emulate the various phenomena undergone by the waves during their

propagation: frequency-dependent dissipation of energy, dispersion, and so

on.

The developments of this already successful sound synthesis paradigm

did nevertheless not stop here. In string tones, the instrument’s body was

problematic in the sense that it could not practically be modeled as a 3-

dimensional waveguide, meanwhile contributing – in some cases significantly

– to the timbre of the instrument. This problem was worked around with

the advent of Commuted Waveguide Synthesis (CWGS), which stores the

response of the body in a wavetable, and uses it as the input to the digi-

tal waveguide [KVJ93, Smi93]. The method shows a potential to producing

virtual instrumental parts hardly distinguishable from acoustic recordings,
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and this, in real time. Examples of the method can be found at the Web ad-

dress http://www.acoustics.hut.fi/~vpv/ (latest access: September 10th,

2011).

Commuted Waveguide Synthesis requires the indirect response of the in-

strument’s body to the excitation of the string. This response is obtained

through a preliminary process commonly known as excitation extraction. A

string instrument’s note is recorded, and all sinusoidal components that are

not part of the body’s response are canceled. The residual is a burst of

energy, very short in some cases, slightly longer when the body shows rever-

berant qualities, but rarely exceeding a second. In the cases where the string

is materially flexible enough to show negligible inharmonicity, when the har-

monics are not too numerous and when the body does not show prominent

resonances, using the inverse of a string model [KVJ93] or a simple Sinusoidal

Modeling approach [MQ86, IS87] can yield satisfying results. However, when

some or none of these conditions are met, an unwanted residual of the string’s

resonances threatens to remain. Moreover, the interpolative nature of Sinu-

soidal Modeling Synthesis prevents the real-time processing of the input.

The intent of this thesis was initially to devise an automated method for

excitation extraction. A Phase-Vocoder approach proved convenient, and in

addition brought the possibility of a real-time implementation within reach.

This possibility raised the question “What could real-time add to excitation

extraction?”. Live musical effects was the answer. But live conditions are

different to the studio conditions where tones suitable for subsequent use in

digital waveguides should be recorded. Thereout emerged the paradigm of
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string extraction.
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Chapter 0

Introduction

This thesis proposes a novel method to extract the oscillatory components

issued from a string’s vibration in monophonic, plucked or hit string tones.

The method operates within a Phase Vocoder time-frequency representation

of the input tone, where a vertical process is repeated on a frame-by-frame

basis, independently of the state of previous or following frames. This pro-

cess consists of three steps: the detection and identification of the string’s

partials; the measurement in frequency, phase, magnitude and exponential

envelope of these partials; and their frequency-domain re-synthesis and sub-

traction. Upon completion, the tone is decomposed in a “string” part, that

consists of a set of partials that are completely determined by the above-

mentioned parameters, and the rest of the tone, which includes stochastic

elements and often sinusoidal elements as well, such as resonances of the

instrument’s body or faint vibrations of other strings. Conceptually, this

process is reminiscent of excitation extraction [LDS07], but here the term
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string extraction is preferred, for reasons that are going to be developed in

the first section of this introductory chapter. Following this conceptual clar-

ification, we will delineate the range of tones that are suitable inputs to the

method, suggest applications of the method, and finally present the plan of

the main body of this thesis.

0.1 String extraction: conceptual definition

String extraction in a way can be regarded as some sort of sound source

separation, where there are two entities to separate, one simple, and one

complex. The simple entity is the “string” entity, and the complex entity

is “all the rest”. We cannot readily give a specific name to the latter, be-

cause itself may be decomposed into several sub-entities: the response of the

instrument’s body to the excitation, some vibrations of the other strings, a

recording noise floor, ambient noises, and so on. The reason why we nev-

ertheless group all these components into one entity is because our aim is

simply to extract the string, and it does not matter what this rest is – so

long as it is not so invasive that it compromises the working of our method,

which looks for a prominent time-frequency structure to the tone that it can

associate to a string model.

The signal processing paradigm closest to ours would presently be exci-

tation extraction. This paradigm was probably motivated by the advent of

Commuted Waveguide Synthesis (CWGS) [KVJ93, Smi93] in the early 90s,

although it is conceptually close to the decomposition of a signal into de-

terministic and stochastic parts, which stems back to the mid-80s [RPK86,
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MQ86, IS87]. CWGS is a sound synthesis method for plucked or hit string

instruments where the string is modeled as a system of filters and the re-

sponse of the instrument’s body is used to excite the model. It is thereby

that the response of the body to the excitation is itself seen, in CWGS,

as an excitation. “Body response” and “excitation” may therefore be used

interchangeably.

To obtain this excitation, a standard deterministic-stochastic decompo-

sition may be used. However, there is a potential risk in this approach that

resonances of the body are mistaken for string partials, and mistakenly taken

away from the instrument’s body response. To avoid this, a model of the

string can be used as a guide to deciding whether a partial belongs with the

string or not. But then another risk arises, that sympathetic vibrations of

other strings are seen as part of the response of the body, which they are not

either.1 In our opinion, so long as a method cannot distinguish between body

resonances and sympathetic vibrations, an automatic method for excitation

extraction cannot be devised unless the assumption is made that the other

strings of the instrument are muted. Even then, stochastic energy that is not

part of the body response, such as the noise floor of the recording or acci-

dental ambient noises, might remain in the excitation. Another assumption

therefore has to be made is that the recording is of such quality that any

sound components that are part of neither the excitation nor the targeted

string are inaudible.

1Unless muted, other strings are likely to respond indirectly to the excitation of the
target string and to vibrate sympathetically, because of the transmission of vibrations
through the bridge of the instrument.
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Such optimal constraints can only be satisfied in carefully arranged studio

conditions. These constraints are relaxed in the context of string extraction,

extending the range of applications of the paradigm. But before the po-

tential applications are discussed, a moment should be spent to determine

what types of input are suitable to string extraction, both conceptually and

technically.

0.2 Suitable inputs

Before we begin discussing what inputs are suitable inputs, the distinction

should be made between inputs that are suitable at a conceptual level – from

which it makes sense to remove the vibrations of one or more strings – and

those suitable at a technical level – from which is is technically possible to

remove the vibrations of the string(s). An example of an input suitable at

both levels would be a pluck of a guitar string isolated in time. An example

of input suitable at a conceptual level, but not at a technical level, could be

a piano piece, because it is polyphonic, and our method currently does not

support polyphonic input. The distinction between conceptual and technical

suitability is thereby easy to make: a input, even if conceptually suitable, will

only be technically suitable if the technical means are built into the method

to deal with its complexity. What is the condition for conceptual suitability,

on the other hand, is not evident, and should be briefly discussed here.

The rumble of a train, one would probably agree, is not suitable to string

extraction. But what about a bowed violin melody? Separating the string

from the indirect response of the body to the bow and any other sort of

4



non-string sounds (such as the breathing of the violinist) makes sense, and

surely could have numerous applications. However, we are going to draw the

line around discretely attacked string tones. If this line were not drawn, then

it could be argued that sung tones are also suitable, and speech tones, and

so on, which would then make the string extraction paradigm a reduction

of source-filter modeling. In a way, it is, but as the reader will see by the

reading of Chapter 1, it is also an “augmentation” of source-filter modeling,

because string extraction relies on a string’s physical model, and the time-

frequency data collected during the process is given meaning through its

association to this model. A plucking position, for example, can be inferred

from the notches found in a string’s comb-like spectrum [TI01], or a gain

spectrum can be derived from the measurement of the decay rates of the

partials [KVJ93, VHKJ96], which may turn out to be typical of a Spanish

guitar or a plucked double bass. These are all timbre attributes that make the

specificity of discretely-attacked string tones, to the point that, even played

in isolation of the body response, the sinusoidal structure of a string still very

much sounds like a string. Conceptually suitable inputs are therefore inputs

whose time-frequency characteristics are inherent to the physical model that

will be described in Chapter 1: plucked or hit string tones, simply.

So ideally, we would present in this thesis a method that is flexible enough

to be able to deal with polyphonic parts of plucked string instruments. How-

ever, the intent was initially to devise an automated method for excitation

extraction for subsequent use in digital waveguides, and as such, was only

meant for monophonic tones – the conceptual generalisation to string ex-
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traction only came at an advanced stage of the thesis’ genesis. As for all

sinusoidal analysis methods based on the FFT, the good resolution of the

partials is assumed in our method, and the difficulty of overlapping partials

may therefore require an entirely different approach, which is beyond the

scope of this thesis. Now the question must be asked as to what types of

inputs our method is technically capable of dealing with. Only after light

has been shed on this point can current applications can be discussed.

Chapter 4 tests the string extraction method described throughout this

thesis. All these tests were run upon monophonic string tones, each recording

featuring one note only. The time structure of the physical model developed

in this thesis is an approximation whereby the string’s vibrations are nil

until time t = 0, when they are instantly set into sinusoidal motion. In our

processing, this is viewed as a unit-step windowing of the sinusoidal motion of

the partials, which otherwise would have been vibrating ever since t = −∞.

The tone stops when all the vibrational energy is dissipated, when the string

is muted, or when the attack is renewed, either on a same note or a different

note. The muting of a note or its interruption by the plucking of an other note

can also be modeled by a product with a time-reversed unit-step function.

Our point here is that, even within a melodic phrase, a note can be taken

out of its context to reproduce the testing conditions of Chapter 4. The idea

is illustrated in Figure 1.2

Finally, some string instruments such as the piano, but also the dulcimer

2In this figure, the unit-step windowing looks like rectangular windowing, but in our
processing mindset, we look at tones at the time scale of a STFT window, where it is
unlikely that the analysed tone is both attacked and muted. In this case, a unit-step
windowing expression seems more appropriate.
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Figure 1: Isolating a note from a melody with unit-step windowing.

or the harpsichord feature courses of strings, arrangements of two or more

strings which vibrate together in the production of one same note. There

are several reasons for such facture, mainly a gain of loudness, but also an

increase of the “depth” of the sound, produced by strings that are very nearly,

but not exactly, tuned to unison. This is problematic for our method, which

has been devised in this thesis to deal with the pseudo-harmonic series of one

string only. In our collection of piano and harpsichord tones, the information

was not readily available whether tones were the contribution of a single

string or of courses of string. This consideration could therefore not be made

on a tone-by-tone basis, but it may account for some of the sense of pitch

that remained after string extraction in our least successful examples. With

regard to the extent of this thesis, we will consider that tones issued from

courses of strings are also eligible, only we will assume perfect unison tuning.

Without this assumption, a number of highly regarded instruments such as

the piano or the harpsichord would be excluded, while our method still gives

satisfying results for the greater part of their range.
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0.3 Applications of the present method for

string extraction

In summary of the previous section, the inputs suitable for our method

of string extraction are monophonic sequences of discretely-attacked string

tones. These sequences may reduce to one note only, or may be entire

melodies. Albeit restrained by the monophonic limitation, our method can

already be the starting point for a range of musical effects. In the view of

this type of application, the method has been developed as much as possible

to facilitate a real-time implementation. A Phase Vocoder approach – this

paradigm will be presented in detail in Chapter 3 – has therefore been pre-

ferred to a Sinusoidal Modeling Synthesis approach [MQ86, IS87], where a

real-time implementation is compromised by the fact that it uses interpola-

tion between measurement points to cancel the partials. This means that,

at frame a, it will have to wait for frame b – “much” later – to be processed

before interpolation and cancelation takes place. In our approach, the can-

celation takes place on a frame-by-frame basis. This does not reduce the

latency to zero, as the buffering of a few fundamental periods of the tone is

still required for the frequency-domain analysis and processing to take place,

but it reduces it substantially. How audible and inconvenient this minimal

latency is to the real-time effects made achievable by the method, and how

it can be worked around, is yet an open question.

The applications that gain from a real-time implementation are essen-

tially musical applications. The subtractive nature of our string extraction
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method, as well as the underlying physical model and the original techniques

employed, render many “traditional” effects very accessible, and also bring

about original, physics-based effects. For example, a pitch-shifter/harmoniser

the likes of which is found in [LD99], but readily benefitting from the detec-

tion and cancelation of the partials of the string extraction process, seems

now fairly straightforward to implement, with the added guarantee that po-

tential sympathetic vibrations or body resonances, themselves, remain at

their original pitch. In combination with a pitch-shifter could come an “inhar-

monicity modifier”: the frequency of a string partial is not only determined

by the fundamental frequency, but also by the Inharmonicity Coefficient (IC).

A method original to this thesis, the Median-Adjustive Trajectories (MAT),

integrates the estimation of this coefficient in the peak detection. Upon string

extraction, the IC can be modified, virtually altering the physicality of the

string.

Another effect that the various innovations of this thesis may offer is a

real-time “sustain stretcher”. In contrast with a standard time stretcher,

a sustain stretcher would modify the decay rates of the partials without

slowing down or accelerating the frequency glide of the partials typical of

tension-modulated tones [HTL10]. This is achievable in real time thanks to

the CSPME, a generalisation of the CSPE [SG06] to exponential-amplitude

signals. This novel method returns the decay rate of partials on the basis of

a single frame, allowing for a modification “on the spot” of the decay rate,

and hence of the sustain, of a string’s partials.

More advanced, ambitious effects can also be considered. For example,
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a quadratic model with a zeroth-order and a second-order coefficient that

dictate the frequency-dependent trend of decay rate of string partials is de-

veloped in [CA93]. Our fits of Section 1.2.3 show that the second-order

coefficient tends to be bigger for nylon strings than for steel strings. This

could inspire a morphing effect achieved by the interpolation of the coeffi-

cients, conferring progressively to an acoustic guitar a Spanish-guitar like

decay rate spectrum.

This listing of applications is, of course, not exhaustive. In fact, the

method’s range of applications extends to processing useful for analysis, typ-

ically done offline. For instance, it was already said that the character and

the fine detail of the response of the body only becomes audible after the

string has been extracted. For example, an electric guitar’s body response is

very short and dry, while a harpsichord’s is relatively long and reverberant.

Being able to proceed to such decomposition is therefore of interest to the

student and researcher acoustician alike, in that it offers a privileged insight

into the composition of string tones. Similarly, recording artifacts may only

become obvious post-processing, which makes of our method an interesting

tool for the quality assessment of a tone. It has been found, for instance, that

the string extraction process often exposed background noises in samples of

professional standard.

0.4 Organisation of the thesis

This thesis is articulated in four chapters. First, an analytical model for

the vibrations of the string will be developed. The role of this chapter will
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primarily be to answer the question: “What are we looking for?”. Where,

in frequency, are the string partials to be found, what kind of frequency-

dependent magnitude distribution is to be expected, how do string partials

evolve in time, etc., are all questions that can inspire appropriate detection,

measurement and cancelation methods. Another important aspect of this

chapter is the physics-based musical applications that it can inspire. In

this regard, the reader will find that some features of the physical model

developed in Chapter 1 are not found in the string extraction method per se.

The fundamental frequency and inharmonicity coefficient are, for example,

essential to the detection and identification of the partials, but the method

is ignorant of the attack-point-dependent comb-like shape of the spectrum,

to whose explanation Section 1.1.3 is dedicated altogether. The design of a

musical effect that consists of virtually displacing the position of the attack

along the string, however, would benefit of all there is to know about this

phenomenon.

The second chapter will deal with the low-level topic of physical analysis.

The first half of this chapter is dedicated to the topic of analysis windows.

Such an extensive development will be found justified a posteriori in the

description of our method, which relies heavily on the properties of these

windows, both in the time-domain (e.g. the constant-sum properties of cosine

windows, indispensable to a transparent Phase Vocoder scheme) and the

frequency-domain (e.g. the expansion of a partial’s spectrum from the four

parameters listed previously is only possible with an analytical expression

for the analysis window’s spectrum). Following this, a transition will be
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operated from the continuous-time domain (convenient for the development

of analytical expressions) to the discrete-time domain (where our method’s

processing will take place), with a discussion on the relevant specificities of

discrete signals. This second chapter will close with the selection of a method,

among the well-established and more original ones, for the estimation of the

parameters of the partials, all-important for their good cancelation.

The third chapter will give a description of the method. A short for-

mulation of the Phase Vocoder scheme will be given that is a reduction of

the general formulation [Por81] to a constant-rate scheme and whose nota-

tion has been made consistent with the notation of the rest of this thesis.

The focus will then be put on steady-state frames, and after that, on frames

that overlap with the onset of the sound. In both cases, a frequency-domain

method for the cancelation of the partials will be introduced. At that stage,

there will remain to approach and solve the problem of the detection of the

peaks, as well as their identification, in terms of partial number, but also

regarding whether they belong to a transverse series or a longitudinal series

of phantom partials.

Chapter 4 presents the results of the method as tested on a variety of

instruments of contrasting character. First, some successful results will be

used to support a discussion that helps pin-pointing the concept of string

extraction, this time with the help of visual and sonorous examples. Then

the various methods that altogether make up the method will be examined

for their individual contribution. This part of the thesis will be interesting

for the understanding of our method, its strengths and its limitations, but
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it will also give a listing of the various innovative techniques found in this

thesis which, albeit inspired by the string extraction problem at hand, may

find applications in other fields of sound and signal processing as well.

The conclusion to this thesis will give a recapitulation on its aim and

look back at the role of each chapter in reaching it. This conclusion will also

be an opportunity to outline the various contributions of this thesis to the

broader field of audio processing. Directions for future work, both short- and

long-term, will finally be given.
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Chapter 1

Development of a physical

model

Introduction

The goal of this chapter is to derive a time-frequency model of the vibrations

of the string. On the one hand, the reality that we attempt to describe is

of infinite complexity. On the other hand, our model must be finite. Hence

some guideline must first be established as to which aspects of the real string

must figure in our model, and which it is superfluous to include.

Ideally, this guideline should be perceptibility. Not all changes in atmo-

spheric pressure can be detected by the ear. This applies very well to the

atmospheric disturbance caused by the vibration of a nearby instrumental

string. As the application of string extraction is ultimately the modification

of the aural quality of the string – in other words, sound effects – it is super-
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fluous to manipulate any feature of the sonic structure at hand which, both

before and after processing, is imperceptible. Such feature could be an object

or a group of objects, like the highest partials of a piano string, or an aspect

of objects, like the glide in the fundamental frequency of a piano string, that

is inherent to the string’s decay in vibrations, but is indeed inaudible.

However, even the condition that everything that is audible should be

modeled is difficult to meet. To the best of our knowledge, and a much as

the scope of a doctoral thesis chapter allows, we will strive to satisfy this

condition. Yet at times, due to their complexity, some questions may remain

to be resolved, and ad hoc solutions may be used instead. At other times,

the disregard of some object of modest perceptible impact may bring great

simplifications in our model. Hence, suitable trade-offs may become apparent

towards the end of the chapter.

The development of the model will begin with the derivation of the well-

known Wave Equation. Fixed boundary conditions will then be introduced,

and stand as a supporting body. Optionally, plucking or hitting initial con-

ditions can be drawn to specify a time-zero state of the string. Then can we

start to refine the model, adding the phenomenon of damping, caused by air

friction and internal friction, and also, the element of stiffness to our string.

By this time we are in possession of a rigorous physical model, exclusively

derived from textbooks, and whose description resides in a solution that sat-

isfies a Partial Differential Equation (PDE). The augmentation of the model

with time-varying fundamental frequency and Inharmonicity Coefficient (IC),

partly realised through empirical formulations, will be the departing point
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Figure 1.1: Vertical forces onto string segment

from strict consistency in physical analysis. From there, the inclusion of

longitudinal partials will be considered, based on the most recent literature.

1.1 The Wave Equation for transverse vibra-

tions

1.1.1 Derivation

The following derivation was drawn selectively upon three reference text-

books: [FR91], [Rai00] and [Ste96]. We derive the wave equation upon the

sketch of a short segment of string, shown in Figure 1.1. The string as a

whole is looked upon as a function of space and time, s(u, t), u = [0, L],

where L is the length of the string.

As we are concerned here with transverse vibrations, we only consider the

16



vertical component of the force acting at either end of the segment. Then to

reach the wave equation in its partial differential form, we reduce the length

of the segment to something infinitesimally small.

The vertical component of the net force applied onto the string segment

is the sum of the vertical component of the tension T at either end of the

segment, T sinϑr +T sinϑl, as shown in Figure 1.1. This force can be equated

with the mass of the segment, µ(ur − ul), times its acceleration, grossly

denoted a for now. µ is the linear density of the string, in kilogram per

meter. To summarise,

T (sinϑr + sinϑl) = µ(ur − ul)a. (1.1)

Before the Wave Equation in its final form can be reached, an approxi-

mation needs to be made: sinϑ ≈ tanϑ, for small ϑ, which holds provided

that the vertical displacement of the string inclination is small [FR91, Rai00,

Ste96]. This approximation is important in that it allows us to reach a first-

order derivative, considering that tanϑ = ∂s/∂u. We thus rewrite (1.1) as

T

(
∂s

∂u

∣∣∣∣
ur

− ∂s

∂u

∣∣∣∣
ul

)
/µ(ur − ul) = a.

Now we can take the limit on each side as ur − ul → 0, to get

c2 ∂
2s

∂u2
=
∂2s

∂t2
, (1.2)

where c =
√
T/µ is the propagation speed of disturbances along the string,

in metres per second, and multiplies the string’s curvature, the term on the
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right-hand side of the equal sign being the vertical acceleration of the string.

(1.2) is the Wave Equation, found in various fields of physics. Associating

it with our string, it says that the curvature of the string is proportional to

its acceleration. Where the curvature is negative, the string has a concave,

∩-like shape, and in such place it makes sense for the acceleration to be

negative too - or downwards. Also, the acceleration is proportional to the

tension, which here is the only restoring force we are considering, and is

inversely proportional to the mass density of the string, which opposes its

inertia to acceleration.

1.1.2 Solution for strings fixed at both ends

The intent of this section is to find a general but explicit formulation for

s(u, t), that satisfies not only (1.2), but also two boundary conditions : that

the displacement remains nil where the string is attached, i.e. s(0, t) = 0 and

s(L, t) = 0.

We give here the general solution to the wave equation, attributed to

D’Alembert (1717-1783) [FR91]:

s(u, t) = f(ct− u) + g(ct+ u). (1.3)

The first boundary condition, s(0, t) = 0, implies that f(ct) + g(ct) = 0

and thus g(u) = −f(u). Substituting this result in (1.3), we get

s(u, t) = f(ct− u)− f(ct+ u). (1.4)
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From the boundary condition at the other end of the string, where u = L,

s(L, t) = 0 it can be deduced that f(ct+u) = f(ct+2L+u) = f(c(t+2L/c)+

u), and by extension, we get s(u, t) = s(u+2L, t) = s(u, t+2L/c). This says

that our function s is periodic in u in 2L, and in t in 2L/c.

The solution we are looking for is the product of two functions. The first

is periodic in 2L and remains 0 for both u = 0 and u = 2L, and this is

sin( π
L
u). The second is periodic in 2L/c; this is cos(ω0t+ φ), where

ω0 = πc/L (1.5)

and φ is an arbitrary phase constant. The solution can be further generalised

if we multiply it by an amplitude constant A. Altogether, we get:

s(u, t) = A sin
(π
L
u
)

cos(ω0t+ φ) (1.6)

(1.6) satisfies the wave equation, as can be verified by substitution into (1.2).

A couple of more steps are needed to reach the most general formulation.

First, multiplying the frequency of each component function by an integer

k ∈ N:

s(u, t) = A sin
(
k
π

L
u
)

cos(kω0t+ φ).

Finally, the sum of any number of such functions is also a valid solution:

s(u, t) =
∞∑

k=1

Ak sin
(
k
π

L
u
)

cos(kω0t+ φk). (1.7)

(1.7) is the most general solution to the wave equation for a string fixed at
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both ends. Although this model is too simplistic for convincing string sound

synthesis, it already shows the harmonic nature of string tones, because the

frequency kω0 of each component is an integer multiple of the fundamental

frequency ω0. Yet the amplitude Ak and initial phase φk of each component

remains undefined. The initial conditions, that is, the displacement and/or

velocity state of the string at time t = 0, allow those to be determined. This

is the purpose of the next section.

1.1.3 Plucked and hit strings

With regard to the problem of finding the harmonics in the spectra of acous-

tic tones, knowing the amplitude coefficient series Ak is useful, in ways that

are going to be obvious as soon as we reach explicit expressions for it. Yet

Ak is not the only unknown in the general solution to the wave equation of

(1.7). Notwithstanding the intellectual pleasure found in reaching the com-

plete mathematical expression of a theoretical string, the practical purpose

of finding φk, in the context of this thesis, really is to make the finding of Ak

possible.

The form of the series Ak and φk depend on the type of excitation. In-

struments whose strings are supposed to vibrate freely are mostly played

by plucking (guitar, harp, mandolin...) or hitting (piano, dulcimer, cym-

balom...) the strings. Consistently we are going to focus here on those two

forms of excitation, plucking and hitting.

In each case we will proceed as follows:

1. We express the string’s initial state (i.e. either the displacement or the
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velocity of the string at time t = 0) as a function of u, and derive the

corresponding Fourier series.

2. We equate s(u, 0) as found in (1.7) with the inverse Fourier series of

the aforementioned function.

3. We restore the time variable in the equation and find Ak and φk.

A general formulation for the Fourier series and its inverse are given in Ap-

pendix (A.3) and (A.4). However, the following developments can be greatly

simplified if we reduce (A.4) to a form that is closer to (1.7).

Let us consider z(u), interchangeably denoting the displacement or the

velocity of the string at time t = 0. z is periodic in 2L, and, according to

(A.4), can be expressed as

z(u) =
1

2L

∞∑

k=−∞

Z[k]ejkπu/L, (1.8)

where Z = FS{z}, the Fourier series of z.

We reduce (1.8) to a one-sided inverse Fourier series expression,

z(u) =
1

2L

∞∑

k=−∞

Z[k]ejkπu/L

=
1

2L

∞∑

k=1

R[k]ejkπu/L,

which is acceptable for the following reasons. First, and obviously, s(u, t) is

real, meaning that Z[−k] = Z∗[k], and hence that the negative-frequency side

is redundant. Also, s(u, t) is odd about zero, as can be inferred from (1.4)
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(see section 1.1.2): s(u, t) = f(ct−u)−f(ct+u) = −(f(ct+u)−f(ct−u)) =

−s(−u, t). This has the effect of annihilating the real part of Z[k], implying

that Z[−k] = −Z[k] and that Z[0] = 0.

This said, and if we get rid of the summation by focusing on one value of

the frequency index k only, we can write that

R[k]ejkπu/L = Z[k]ejkπu/L + Z[−k]e−jkπu/L,

and hence,

R[k]ejkπu/L = Z[k]
(
ejkπu/L − e−jkπu/L

)

= j2Z[k] sin
kπu

L
.

For the derivation of the Ak and φk series, we can now use the equality

z(u) = j
1

L

∞∑

k=1

Z[k] sin
kπu

L
. (1.9)

Plucked string

We introduce the plucking of the string as a displacement state of the string

at time t = 0. The displacement model here is simplistic, but the results

obtained with it are surprisingly faithful to reality, as will be seen by the end

of this section. More sophisticated models can be used for physical modeling-

based synthesis, but in our case, where we use our results as mere guides for

analysis, the added complexity would be superfluous.

At time 0, we give the string the triangle-like shape seen in Figure 1.2,
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where A is the displacement of the string at the point where it is plucked,

and up, the plucking point itself, along the length of the string. (It is here

necessary to the Fourier analysis to define the string over a complete period,

2L, which is the reason for the extension on the negative u side.)

−L

L

−u
p

u
p

 −A

A 

Figure 1.2: Simple model for pluck excitation

Mathematically formulated, the shape seen in (1.2) is

s(u, 0) =





A
up−L(u+ L) u ∈ [−L,−up]

A
up
u u ∈ [−up, up]

A
up−L(u− L) u ∈ [up, L]

, (1.10)

and the corresponding Fourier series,

Y [k] = j
A2L3

π2

1

(up − L)up

1

k2
sin

kupπ

L
. (1.11)
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We now substitute (1.11) into (1.9), and equate with s(u, 0):

s(u, 0) =
∞∑

k=1

Ak sin
kπu

L
cosφk = j

1

L

∞∑

k=1

Y [k] sin
kπu

L

Only one frequency term will be needed to find our unknowns, which we will

denote sk(u, t):

sk(u, 0) = Ak sin
kπu

L
cosφk = j

1

L
Y [k] sin

kπu

L
.

This result has to be valid for any u. Let us get rid of the sine terms by

setting u = L/2k:

sk(L/2k, 0) = Ak cosφk = j
1

L
Y [k].

We now need to restore the time variable to the middle term, and consistently,

multiply the right-hand side with a sinusoidal term of identical frequency kω0.

The only such term to be 1 at time t = 0 is a cosine term, so we write

sk(L/2k, t) = Ak cos(kω0t+ φk) = j
1

L
Y [k] cos kω0t.

As this has to hold for all t, it is necessary that φk = 0, and hence,

Ak = j
1

L
Y [k]. (1.12)

The result of this development is obtained by substitution of (1.11) into
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(1.12):

Ak = −A2L2

π2

1

(up − L)up

1

k2
sin

kupπ

L
. (1.13)

There is a lot to say about (1.13). The general trend of the amplitude of

the harmonics of a plucked string can be seen here to decay with the harmonic

index k, but in subtle ways: the energy distribution may look like that of a

sawtooth wave or a triangle wave, depending on the plucking position up.

To see this, consider Ak as the plucking position nears, say, the bridge

(i.e. where u = 0):

lim
up→0

Ak = A
2

π

1

k
. (1.14)

(1.14) is known to be the Fourier series of a sawtooth wave of amplitude A.

In that case, the amplitude of harmonics is inversely proportional to their

index.

Now if the string were plucked halfway (up = L/2), (1.13) would become

Ak = A
8

π2

1

k2
sin

kπ

2
, (1.15)

which is known to be the Fourier series of a triangle wave of amplitude A.

Here, the harmonics are inversely proportional to the square of their index.

Confronting the two cases of (1.14) and (1.15), we can infer that the closest

to one end the string is plucked, the greatest the harmonics’ amplitude in

the higher end of the spectrum, and the brightest the sound. Anyone with a

minimum of experience in playing the guitar shall find this statement reflec-

tive of reality.

Another important aspect of (1.13) is the phenomenon of nodes. In (1.15)
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for example, it is very clear that, due to the sin kπ
2

term, all harmonics of

even index k = 2, 4, ... are going to be missing. More generally, for a string

plucked an nth of its length from the bridge, every harmonic whose index is

a multiple of n is going to be missing. Figure (1.3) illustrates Ak for var-

ious plucking positions up, among others, those found in the triangle- and

sawtooth-like cases discussed above.

 u
p
 =  L/2

 k

 A
 k

 u
p
 =  L/3

 k

 A
 k

 u
p
 =  L/4

 k

 A
 k

 u
p
 = 0

 k

 A
 k

Figure 1.3: Coefficient series Ak for various plucking positions up

In relation to the problem of automatically finding the harmonics in the

spectrum of acoustic tones, our result shows that, beyond a certain index,

harmonics will become too faint to emerge from the noise floor inherent to

any recording. Also, its is important to design an algorithm that accounts

for nodes, i.e. places in the spectrum where a partial goes missing or is

extremely small, in a frequency band otherwise featuring healthy harmonics.

A more refined plucking model may account for the non-zero length of

the string segment which makes contact with the plectrum or the finger,

smoothening the triangular shape of the string at time t = 0., and hence
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low-pass filtering the amplitude series of (1.11) [TI01]. Indeed, it is known of

guitar players that plucking the string with the meat of the finger produces

a more mellow sound than with the nail. Because this physical fact has some

perceptual bearing, it should be accounted for in synthesis models. However,

the amplitude trend described in this section is sufficiently refined for the

piece of processing proposed in this thesis.

Hit string

We picture our string again, this time, hit by a hammer at the instant t = 0.

The displacement of the string at that time is nil, and so is its velocity, except

for the hitting point uh, where the velocity equals that of the hammer, vh.

Remember however that our string function is odd about zero, so its velocity

at −uh = −vh. Those pieces of information together yield the construct

v(u, 0) = (δ(u− uh)− δ(u+ uh)) vh, (1.16)

illustrated in Figure 1.4.

The Fourier series V of (1.16) is easily found to be

V [k] = −j2Lvh sin
kπuh

L
. (1.17)

v(u, t) is the time derivative of (1.7), i.e.

v(u, t) = −kω0Ak sin
kπu

L
sin(kω0t+ φk).
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Figure 1.4: Simple model for hit excitation

As we did for the plucked-string case, we consider the kth component of the

velocity at u = L/2k and t = 0, and we equate it with V [k] to get the

following:

vk(L/2k, 0) = −kω0Ak sinφk = j
1

L
V [k].

We bring in the time variable, restoring t on the left-hand side, and on the

right, multiplying by the only sinusoidal function of frequency kω0 that is 1

when its argument is 0:

vk(L/2k, t) = −kω0Ak sin(kω0t+ φk) = j
1

L
V [k] cos kω0t,

which makes it obvious that

φk = π/2
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and −kω0Ak = jV [k]/L, or

Ak = −vh
2L

πc

1

k
sin

kπuh

L
. (1.18)

(1.18) tells us that the amplitude of the harmonics series is proportional

to the velocity of the hammer. Individually, each harmonic’s amplitude is

inversely proportional to its index. Hit string tones are, on this basis, gen-

erally brighter than plucked string tones, whose harmonics’ amplitude may

be inversely proportional to the square of their index, for tones plucked near

the middle of the string. Perceptually, this is a loss of 6 decibels per oc-

tave for hit strings, and between 6 and 12 decibels per octave for plucked

strings, depending on the plucking position. Finally, (1.18) shows that hit-

string amplitude coefficients have a sine-like behaviour, with nodes every

L/uh harmonics, which is identical to that found in plucked tones.

Yet again, the excitation model presented here is simplistic, albeit suffi-

cient for our purpose. Refinements may include the non-zero width of the

hammer and the string-hammer interaction beyond time 0. For an introduc-

tory discussion and further references, see [FR91].

1.2 Refinement of the model

The solution to the Wave Equation (equation (1.7) page 19) is for now too

simplistic, and does not account for the time-dependent magnitude behavior

of the harmonics witnessed in the analyses of recorded string tones. Espe-

cially, the energy of the solution waveform stays constant over time, never
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decays; this is because damping is yet absent from our model. In reality, the

harmonics of freely-vibrating string tones feature a decay whose trend can

be approximated with an exponential function.

Also, our series of partials is at the moment perfectly harmonic, as the

frequency of the kth harmonic component strictly equals k times the funda-

mental frequency ω0. For most string tones, especially where the string is

made of stiff material such as steel, the frequency deviation in the harmonics

as the harmonic index increases tends to be such that our present model

cannot even be used for such tasks as automated partial detection.

Until now we have been deriving our differential equations using graphical

representations of the state of the string, working out the forces acting on its

parts and later invoking Newton’s Second Law to derive a partial differential

equation. In contrast, we are now going to refine the basic wave equation

by adding terms based on reasonable assumptions. References to literature,

reasonable solutions and verification by analysis of recorded tones should be

found to validate those initial assumptions.

1.2.1 Air friction

The first step taken here in the refinement of our physical model is to ac-

count for air friction. To do so, we equate the total acceleration of the string

∂2s/∂t2 not only with the wave propagation speed times the string’s curva-

ture, c2∂2s/∂u2, but also with an air resistance acceleration term. This term

is assumed to be proportional to the velocity of the string by an unknown
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constant α, and opposite to the direction of the displacement:

∂2s

∂t2
= c2 ∂

2s

∂u2
− α∂s

∂t
. (1.19)

Our guess is that this air friction term is going to provoke an exponential-like

decay of the harmonics, as witnessed in the analyses of recorded tones. We

therefore multiply each harmonic with the term eγkt, where γk is the decay

rate of the kth component. To simplify the writing, we consider one harmonic

only sk(u, t) of the whole series s(u, t),

sk(u, t) = Ak sin
kπu

L
cos(ωkt+ φk)e

γkt, (1.20)

where the angular frequency ωk of the kth mode of vibration is yet to be

derived.

After derivation of the derivatives found in (1.19) for (1.20) and their

substitution, we obtain the equality

(
γ2
k − ω2

k + αγk + k2ω2
0

)
cos(ωkt+ φk) = ωk(α + 2γk) sin(ωkt+ φk),

ω0 still being equal to cπ/L. This can only be true if each side equals zero,

and hence α = −2γ 1 and

ωk =
√
k2ω2

0 − γ2, k = 1, 2, 3, ... (1.21)

1This is consistent with the model of transverse motion of a piano string found in
[CA93]
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(consistently with the results in [FR91, p. 10], where the frequency of oscilla-

tion of a simple mass-spring system accounting for air friction is derived). α,

like all partial differential equation coefficients in linear models, is necessarily

a constant, and hence the same goes for γ, turning out to be independent on

frequency (hence the disappearance of the subscript k).

Our wave equation becomes

∂2s

∂t2
= c2 ∂

2s

∂u2
+ 2γ

∂s

∂t
, (1.22)

and our solution,

s(u, t) = e+γt

∞∑

k=1

Ak sin
kπu

L
cos
((
k2ω2

0 − γ2
) 1

2 t+ φk

)
. (1.23)

Measurements on actual tones that verify the results obtained here are per-

formed at the end of section 1.2.2.

1.2.2 Internal damping

The fact that the decay introduced by the air damping term is independent

on frequency is not satisfying enough. In reality, higher harmonics tend to

decay significantly quicker. To account for this phenomenon it is necessary to

introduce an additional term to the acceleration equation, which emulates the

viscoelasticity of the string’s material [TR03, p. 45]. This additional term is

proportional to the time derivative of the curvature of the string, i.e. this is a

term which opposes to changes in curvature. With regard to the solution, we

assume that this additional damping is going to cause the already decaying
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partials to be multiplied by yet another exponential, e−b3,kt, resulting each

partial to have the decaying envelope eγkt, where γk = −b1− b3,k. (From now

on b1 will replace the γ found in (1.22) and (1.23), for convenience in the

following development and for consistency with the literature [CA93].)

We thus express the acceleration of the string as

∂2s

∂t2
= c2 ∂

2s

∂u2
− 2b1

∂s

∂t
+ α

∂3s

∂t∂u2
, (1.24)

and the vibrational model, as

sk(u, t) = Ak sin
kπu

L
cos(ωkt+ φk)e

γkt. (1.25)

We repeat the process of the previous section, finding the derivatives for

(1.25), substituting them in (1.24) and equating the cosine with the sine term

to obtain that b3,k = k2b3, with b3 = απ2/2L2, and ωk =
(
k2ω2

0 − (b1 + b3k
2)

2
) 1

2
.

The differential equation becomes

∂2s

∂t2
= c2 ∂

2s

∂u2
− 2b1

∂s

∂t
+

2L2

π2
b3

∂3s

∂t∂u2
,

and the solution,

s(u, t) =
∞∑

k=1

Ak sin
kπu

L
cos
((
k2ω2

0 − γ2
k

) 1
2 t+ φk

)
eγkt, (1.26)

where

γk = −b1 − b3k
2. (1.27)

33



The decay rate associated with the internal damping is now shown to be

proportional to the square of the harmonic index, which seems consistent

with reality a priori. Also, it is interesting to notice here that the frequency

deviation is dependent on the decay rate, whether this decay rate is the effect

of air damping, internal damping, or both.

1.2.3 Evaluation of the damping model

According to our model, the decay rate series of the harmonics of a given

tone is a quadratic polynomial in k. We therefore experimented on tones

issued from a Spanish and an acoustic guitar2 to find b1 and b3 for a best fit

in the least-square sense3. The interest in the experiment is to find whether

this quadratic decay rate model is suitable in reality, as well as to get an

impression for the order of magnitude of b1 and b3, and hence evaluate the

importance of the inharmonicity due to damping.

The measurements and fits on an open E4 string tone (treble E ) for the

(nylon-string) Spanish and (steel-string) acoustic guitars are shown in figures

1.5 and 1.6, respectively. We observe that the internal damping coefficient b3

is about four times greater for the Spanish guitar’s nylon strings than for the

acoustic guitar’s steel strings, which is reminiscent of the statement found in

[FR91, p. 51], and would explain why acoustic guitar tones sound brighter.

2These are professional quality recordings, obtained from Yellow Tools’ sampler In-
dependence (instruments: Acoustic Guitar Spanish; Ovation Piezo Guitar). http:

//www.yellowtools.com/ (latest access: October 20th, 2011)
3To obtain the decay rate series, the partials of the tones were tracked and their decay

times were estimated with the usual technique which consists of taking the logarithm of
the magnitude envelope, fitting therein a first-order polynomial in a least-square sense,
and deriving the decay rate from the polynomial coefficients thus obtained.
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However, the air-damping coefficient is greater for the acoustic guitar than

for the Spanish guitar, while acoustic guitar treble E strings seem to have

lesser radii and thus offer less surface for air resistance to occur. This feature

is thus counter-intuitive, and no valid interpretation for this phenomenon

can be found here.

On the other hand, it can be seen that the inharmonicity due to the

introduction of the γk term in (1.26) is largely negligible, with a deviation

of the order of the millionth of semitones in both cases, while informal tests

run by the author on a musically educated audience seemed to indicate that

pitch changes of less than a 40th of a semitone in a 1kHz pure tone were

completely indiscernible. Consistently, this type of inharmonicity is rarely

taken into account in the harmonic series models of string tones, only the

inharmonicity due to string stiffness [FBS62, RLV07, HTL10].

1.2.4 Stiffness

The relative stiffness of strings is not responsible for a decay, but for a mod-

ification of the frequency series ωk which, for metal strings, is known not

to be negligible [FBS62]. Stiffness brings an additional contribution to the

acceleration of the string that is proportional to the fourth space derivative:

∂2s

∂t2
= c2 ∂

2s

∂u2
− 2b1

∂s

∂t
+

2L2

π2
b3

∂3s

∂t∂u2
− π

4

r4E

µ

∂4s

∂u4
, (1.28)

where r is the radius of the circle that describes the cross-section of the

string, and E, the Young modulus of the string’s material (a measure of

stiffness, in newtons per unit area). The complex physical analysis leading
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Figure 1.5: Harmonic-index-dependent decay rate (upper plot) and frequency
deviation (lower plot) in semitones due to damping on a Spanish guitar open
E4

to the obtention of this additional term can be found in [FR91] and [Rai00]4.

Based on a model for the kth vibrational mode identical to (1.25) (Section

1.2.2), we substitute its derivatives into (1.31) and solve for ωk, yielding

ωk =
√
k2ω2

0 (1 + βk2)− γ2
k, (1.29)

4Considering that our object of study is strings exclusively, whose cross-section is well
approximated with a circle, we replaced the radius of gyration κ found in [FR91] and
[Rai00] with r/2.

36



0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

k

d
ec

ay
 r

at
e 

(s
−

1
)

b
1
 = 2.6847, b

3
 = 0.0091388

0 5 10 15 20 25 30 35 40 45 50

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
x 10

−5

k

d
ev

ia
ti

o
n

 (
se

m
it

o
n

es
)

σ
k
 (measurements)

b
1
+b

3
k

2
 (model)

12log
2
(ω

k
/kω

0
)

Figure 1.6: Harmonic-index-dependent decay rate (upper plot) and frequency
deviation (lower plot) in semitones due to damping on an acoustic guitar open
E4

where

β =
π2

4

r4E

TL2
(1.30)

and is known as the inharmonicity coefficient of the string. This coefficient

can significantly affect the harmonic series ωk, and for this reason pervades

the literature [FBS62, Leh08, HTL10, FR91]. We might therefore like to see

it appear in the acceleration equation,

∂2s

∂t2
= c2 ∂

2s

∂u2
− 2b1

∂s

∂t
+

2L2

π2
b3

∂3s

∂t∂u2
− c2L2 β

π2

∂4s

∂u4
. (1.31)
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The frequency series of (1.29) satisfies our physical model, with

s(u, t) =
∞∑

k=1

Ak sin
kπu

L
cos

(√
k2ω2

0 (1 + βk2)− γ2
kt+ φk

)
e−(b1+b3k2)t

(1.32)

for solution. However, the decay rate γk term is, as seen in the section 1.2.3,

of negligible impact on the series. Hence the referential series that will be

made use of in the rest of this thesis is a simpler model,

ωk = kω0

√
1 + βk2, k = 1, 2, 3, ... (1.33)

When inharmonicity is negligible and β ≈ 0, the series reduces to a harmonic

model ωk = kω0, in which case the frequency of the first harmonic equals the

fundamental frequency, i.e. ω1 = ω0 – this is mathematically correct because

our series only applies to values of k greater than 0, and ω0 is not the “zeroth

harmonic”.

The frequency deviation in semitones of the frequency values given by

(1.33) from a purely harmonic series ωk = kω0 is measured in Figure 1.7, for

the Spanish and acoustic guitar treble E tones whose partials’ decay rates

were measured in Figures 1.5 and 1.6, as well as for an open bass E of the

same acoustic guitar.

An interesting question with regard to stiffness inharmonicity is whether

it is audible or not. This depends on the degree of inharmonicity itself, of

course, but also on the decay time of the partials affected by this inharmonic-

ity; some may deviate by an interval that is largely audible, but may not last

long enough to make an impression of “height” on the listener. Also, it is
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Figure 1.7: Frequency deviation in semitones due to stiffness on Spanish and
acoustic guitar tones. The deviation of the partials, clearly measurable and
visible, is well approximated with the inharmonic-series expression (1.33)
(solid curve). Note : the musical interval in semitones between two frequen-
cies f2 and f1 is calculated as 12 log2 f1/f2, hence the 12 log2 terms in the
legend.

stated in [Moo04] that the sense of pitch was lost on subjects for pure tones

of frequency greater than 5kHz, although differences in frequency were still

recognised. In the case of the piano, the instrument showing the greatest

degree of string-stiffness-related inharmonicity, it is well known that inhar-

monicity is a constituent part of the timbre. In [FBS62], the 16th partial

of an upright piano’s A0 (the lowest note on the keyboard, of fundamental

frequency 27.5Hz) deviates by one semitone, which would bring it to a fre-
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quency of 466Hz instead of 440Hz. In general, the inharmonicity is reported

to be audible and to give a characteristic “warmth” to the sound.

In the case of such instrument as the Spanish guitar, where the strings

are made of nylon or plastic, either plain (three treble strings) or wound

with bronze or copper wire (three bass strings), the inharmonicity seems

to be inaudible. A synthetic model using digital waveguides, presented in

[LEVK01], was implemented according to a harmonic model, and yields very

satisfying results – examples can be accessed on the Internet following http:

//www.acoustics.hut.fi/demos/dafx2000-synth/ (last access: February

12th, 2011).

No perceptual tests are known of the author regarding the audibility of

the inharmonicity of acoustic guitar tones. However, the measurements made

and stored in Table 1.1 should help clarify this question. In this table each

line corresponds to a selected harmonic, for which is specified the instrument

and note it was measured from, its harmonic number, its frequency (in hertz),

its deviation (in semitones), and its decay time (i.e. the time interval over

which the partial loses 60 decibels). Those measurements include the 10th

and 35th partials of E4 and E2 tones, respectively, in Spanish guitar, acoustic

guitar and Steinway grand piano tones5. Those specific partials were chosen

because, across all instruments: they showed sufficient sustain to be detected

and measured; at such indexes inharmonicity has a potential effect; and the

frequency of those all fall within or near the 3-4kHz region, which equal-

loudness contours show to be the region where the human ear is most sensitive

5The piano tones were downloaded from http://theremin.music.uiowa.edu/MIS.

piano.html (last access: Frbruary 13th, 2011).
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to [FM33].

Instr. Note Har. No. Freq. (Hz) Dev. (semitones) 60dB Dec. Time (s)

Sp. guitar
E4 10 3,290 0.03 1.29

E2 35 2,906 0.20 0.62

Ac. guitar
E4 10 3,320 0.09 2.12

E2 35 3,104 1.13 1.30

Grd Piano
E4 10 3,384 0.4 4.91

E2 35 3,080 1.12 5.71

Table 1.1: Measurements regarding the audibility of inharmonicity in three
instruments

Consistently with our statements above, inharmonicity in the Spanish

guitar can be assumed to be inaudible (in spite of the 0.2 semitone deviation

seen in the 35th partial of the open E2), while the opposite is true for the

grand piano. It should be noticed that, in the case of the 35th harmonic in

the acoustic guitar’s E2, the deviation caused by inharmonicity is equivalent

to that of the grand piano in the corresponding tone and harmonic – a large

1.12 semitones. The only difference between them is in the decay time, which

is much greater for the piano’s partial (5.71 seconds) than for the acoustic

guitar’s (1.30 seconds). However, the decay time of the latter seems long

enough for the frequency of this partial to be well perceived.

Regarding the treble E, in the acoustic guitar the deviation of the 10th

partial is of less than a tenth of a semitone. For such a small deviation,

we suspect that the inharmonicity will have greater perceptual bearing in

contributing to the fluctuations of the wave shape (perfectly harmonic sounds

show a static waveform, which comes with an auditory sensation of “inertia”)
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than in making the series sound sharper. Although more tests should be run,

it is believed here that a physical model for the higher strings of an acoustic

guitar might achieve convincing results with a simple harmonic model such as

that of [LEVK01]. However, the inharmonicity of the lower strings was shown

here to be comparable to that of the piano on equivalent tones, and hence,

is believed to be audible. Where synthesis is concerned, these observations

raise the question of a mixed model, including the inharmonicity in the lower

strings for realism, and using a perfectly harmonic (or near perfect) model

for the upper strings, for computational efficiency.

The subject of this thesis – the sonic extraction of a string from its in-

strumental environment – offers a means of making experiments regarding

the question of inharmonicity audibility. The PDE (1.31), on page 37, shows

that the IC is a coefficient of the stiffness-related term, and that it can be

modified independently of the rest. In other words, no other aspect of the

wave is changed by a modification of β except the frequency of each mode.

Upon close examination, we observe that the one physical parameter upon

which the IC alone depends is the string’s elasticity modulus E, while the

tension T , the length L and the radius r – determining the string’s mass

density, and hence the wave propagation speed – are shared with the funda-

mental frequency parameter. This is to say that modification of the IC alone

is equivalent to modifying the elasticity of the string alone, too.

The string extraction process proposed in this thesis includes the esti-

mate of the IC – in fact, it relies on it to find the partials to extract. Hence,

upon extraction of the string’s components, it is a simple process to modify
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the IC and shift the partials in frequency accordingly. In accordance with

our physical model, lesser or greater radii and elasticity moduli affect no

other aspect of the standing wave, only the frequency of the components

– even their decay rate is left untouched. On this basis, we argue that an

IC-processed output truly corresponds to the tone of a string identical in

all aspects but stiffness. The only nuance that should be brought in this

argument is that an instrumental body is not included in this model (the ex-

tremities are here assumed to be perfectly rigid). On the one hand, a sound

wave emanates from a string instrument mainly from the resonating body,

the strings themselves offering too little surface to set a sufficient number of

molecules of air in motion [FR91, Ste96]. On the other hand, each instru-

ment has its own frequency-dependent radiation spectrum [FR91], which has

the effect of amplifying the string vibrations to a different degree depending

on their frequency. Hence, to virtually modify a string’s stiffness without

modifying the resonant characteristics of the instrument, correction of the

components’ magnitude based on prior evaluation of the instrument’s res-

onating properties might be an option. However, this might be unnecessary

if the frequency shift of the partials caused by the modification of the IC

is too little to cause partials to move from one resonant region of the body

to another. Indeed, the resonances of an instrument’s body are generally a

smooth function of frequency, similarly to the formants observed in the spec-

trum of human-produced vowels [Moo04, FR91]. Hence, the modification of

the IC in the series prior to resynthesis of the string’s partials, followed by the

re-mixing of the “processed string” with the body, might be a perceptually
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valid way of simulating the modification of the stiffness of an instrument’s

string. In [FBS62], such perceptual tests were made for the piano, compar-

ing synthetic to recorded tones as a means of judging the quality of piano

tones, and as part of that, of the audibility of inharmonicity. Because such

aspects of the original tones as the sound of the piano hammer hitting the

string and the dampening pedal could not be synthesised, the sound files were

cropped so that they were removed. The extraction, independent processing

and re-mixing of the string such as proposed in this thesis offers a sensible

alternative to this problem.

1.2.5 Time-varying Fundamental Frequency and Inhar-

monicity Coefficient

At rest, the string is a straight line between the two support points. A line

being the shortest path between two points, the length of the string is then

at its shortest. Any displacement in the string, any motion, and it has to

depart from the “line state”, and thereby, increase in length – provided that

the supports are immobile, at least in the x direction, which we consider

them to be.

Up until now, we have been neglecting this increase in length. In the

derivation of the Wave Equation at its most basic, we have already approxi-

mated sin s with tan s, which works for a small s, small displacement. This

constant-length assumption is synonymous of constant pitch, as the string’s

fundamental frequency depends, among other things, on its length. However,

there are times when the pitch can be heard not to be constant: aggressive
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play on the lower strings of an electric guitar, or even acoustic guitar, can

produce this effect. At other times, this pitch glide may not be audible,

but visible in fine fundamental frequency measurements. In these situations,

what happens is, the transverse displacement imparted by the excitation

becomes too large for the increase in string length to be neglected.

String elongation also causes an increase in tension, and the latter is also

involved in the physical expression of the fundamental frequency,

ω0 =
πc

L
=
π

L

√
T

µ
. (1.34)

Hence, it seems logical to investigate the phenomenon of string length and

tension increase in order to explain that of pitch glide. Yet, the coefficient of

inharmonicity also depends directly on these physical parameters, as shown

in its physical expression, that is, equation (1.30) on page 37. Conclusions

similar to those drawn for the fundamental frequency will hence be drawn

for the inharmonicity coefficient as well.

In the literature, the phenomenon of pitch glide is referred to as that of

tension modulation, the term that we may use henceforth. Our task now is

to derive an expression for the length of the string in terms of our physical

model,

s(u, t) =
∞∑

k=1

Ak cos(ωkt+ φk)e
γkt sin

kπu

L
. (1.35)

The coming derivation is based on the findings of Legge and Fletcher in

[LF84], detailed more recently by Bank in [Ban09].
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Derivation of string length and tension

The length of the string can be obtained by use of the Pythagoras theorem

within calculus,

L′(t) =

∫ L

0

√
1 +

(
∂s

∂u

)2

du

≈ L+
1

2

∫ L

0

(
∂s

∂u

)2

du, (1.36)

(1.36) being the integration of a Taylor series 4th-order approximation about

zero of the square root term.

By substitution of (1.35) into (1.36) and use of the trigonometric identity

cos2(ωkt + φk) = (1 + cos(2ωkt + 2φk))/2, the time-dependent length L′ of

the string can be expressed as

L′(t) = L+
π2

8L

∞∑

k=1

k2A2
k(1 + cos(2ωkt+ 2φk))e

2γkt. (1.37)

This can be split in two expressions: one with the sum of cosine terms that

are twice the frequency of the corresponding modes of vibration, and a quasi-

static term [Ban09],

Lqs(t) = L+
π2

8L

∞∑

k=1

k2A2
ke

2γkt. (1.38)

(1.38) is the sum of the length of the string at rest, L, and the summation

of decaying exponentials. Each kth exponential’s decay rate is found to be

twice that of the corresponding kth mode of vibration of the string.
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In turn, this expression depends on its length according to

T ′(t) = T +
πr2E

L
(L′(t)− L), (1.39)

By substitution of (1.37) into (1.39), we get

Tqs(t) = T +
π3r2E

8L2

∞∑

k=1

k2A2
ke

2γkt, (1.40)

provided that, again, only the quasi-static term is preserved. Similarly to

what is stated in (1.39), the quasi-static and time-varying tension and length

are simply related:

Tqs(t) = T +
πr2E

L
(Lqs(t)− L) .

Fundamental Frequency and Inharmonicity Coefficient models

All this considered, we can now gather the time-varying expression of the

fundamental frequency

ω0(t) =
π√
µ

√
T + αΣ(t)

L+ Σ(t)
(1.41)

and inharmonicity coefficient

β(t) =
π2r4E

4 (T + αΣ(t)) (L+ Σ(t))2 , (1.42)
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where

Σ(t) =
π2

8L

∞∑

k=1

k2A2
ke

2γkt (1.43)

and

α =
πr2E

L
. (1.44)

Notice that the inverse of the time-varying IC is a cubic polynomial in

Σ(t),

β−1(t) = a3Σ3(t) + a2Σ2(t) + a1Σ(t) + a0, (1.45)

where

a0 =
4TL2

π2r4E
=

1

β
,

β being the inharmonicity coefficient constant already seen in Equation

(1.30), which, consistently with (1.45), had been derived in a string model

where the length of the string was approximated as constant.

As will be shown in coming figures, the truncation of the polynomial

(1.45) to its zeroth- and first-order terms gives a satisfying approximation.

The first-order term a1 can be found as

a1 =
1

β

(
2L+

α

T

)
,

and so the inverse of the truncated polynomial can be written as

β(t) ≈ β

1 + (2L+ α/T ) Σ(t)
. (1.46)

Knowing that Σ(t) is a sum of exponentials which all decay towards zero,
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β(t) is to be read as a function whose value increases in time, at a lesser and

lesser rate, converging towards the constant β. This time-increase trend is

clearly visible in the lower plot of Figure 1.8.
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Figure 1.8: Fundamental Frequency & Inharmonicity Coefficient measure-
ments in an Ovation acoustic guitar open bass string.

Where the time-varying FF is concerned, Equation (1.41) is completely

non-linear in Σ(t). Yet the upper plot of Figure (1.8) is clearly reminiscent

of an exponential-plus constant function, which leads us to think that a first-

order Taylor series in Σ(t) might yield a good approximation [Rab12]. We
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re-arrange (1.41) and express it in terms of a Taylor series,

√
µ

π
ω0(t) =

√
T + αΣ(t)

L+ Σ(t)

= f(Σ(t))

≈ f ′(0)Σ(t) + f(0),

which, after mathematical development, yields the approximation

ω0(t) ≈ π2r2E − 2πT

2L2
√
µT

Σ(t) + ω0. (1.47)

The constant term, ω0, yet again proves to be the fundamental frequency

constant derived earlier and presented in Equation (1.5), in the context of

the assumption of a constant string length.

If the approximation that Σ(t) ≈ ξeγt held, for some appropriate con-

stants ξ and γ, we could express equations (1.46) as an exponential-plus-

constant function and (1.47) as the inverse of an exponential-plus-constant

function, respectively. The number of unknowns would then reduce to three

for either of these functions, and some non-linear fitting approach could be

taken to model these time-varying trajectories. Let us therefore re-formulate

(1.47) as

ω0(t) = ω∆e
γωt + ω∞, (1.48)

and (1.46), as

β(t) =
β∞ (β∞ + β∆)

eγβt (β∞ + β∆)− β∞
, (1.49)

the idea being that : ω∞ and β∞ are the values towards which ω0(t) and β(t)
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tend as t tends towards infinity ; ω∆ and β∆ are the difference between the

respective values of these functions at time t = 0 and t → ∞ ; and γω and

γβ are the decay rate of their respective exponential component. (These are

the symbols that were used in the paper where the author first introduced

this theory, [HTL10].)

We are now in position to try and fit these parameters in actual mea-

surements, which we are hoping will validate our exponential-plus constant

modeling of the time-varying fundamental frequency and inharmonicity co-

efficient.

1.2.6 Exponential-plus-constant curve fitting

Fitting an exponential-plus-constant curve into data points, especially when

the points are so few, is a delicate task in itself. This problem is met in other

areas of science as well, and it would seem that most generally, Non-Linear

Least Squares are used [NKS04, HWS87, Hag03]. The popularity of this

method can be explained by the fact that it is generic to non-linear fitting

problems, which spares the need to learn new statistical skills for each new

type of problem found. However, one downside to this method is that it

requires initial estimates that are sometimes difficult to guess. Also, due to

its least-squares nature, it is sensitive to data outliers. Last, but not least,

its convergence time is variable, and in some cases may not converge at all

– the IC data shown in Figure 1.8, where the points are few and the noise is

strong, could well become one of these cases.

Another idea that might cross one’s mind is to use differentiation and
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logarithmic transformation. Indeed, it is straightforward that the logarithm

of the derivative of our exponential-plus-constant ω0(t) is a function linear

in t – formally,

log

(
dω0

dt

)
= log(γωω∆) + γωt.

Thereafter, linear least squares can be used to isolate and work out γω. ω0(t)

then becomes a function linear in eγωt, and linear least squares can be used

once more to find ω∆ and ω0. The issue with this approach is that it is

sensitive to noise in places where the derivative dω0/dt is small in relation to

the measurement error. Here follows a short formulation of the phenomenon.

To begin with, let us consider a length-U time vector of evenly-spaced

sampling instants

t = [t0, t0 + Ts, t0 + 2Ts, ..., t0 + (U − 1)Ts]
T ,

where t0 is the time value of the first sample, and Ts , the sampling time

interval. We now express the measurements of the fundamental frequency in

vector form, as the sum of an uncorrupted exponential-plus-constant vector

and a measurement error vector

ε =
[
ε0, ε1, ..., εU−1

]T
,

.i.e.

ω0 = ω0(t) + ε.
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Now we look at the values issued from the Finite Difference of the ω0 and ε,

ω̇n0 = ω0 (t0 + (n+ 1)Ts)− ω0(t0 + nTs)

and

ε̇n = εn+1 − εn,

for n = 0, 1, ..., U − 2. It can be derived that a measurement error difference

ε̇n in the domain of origin becomes, after logarithmic transformation,

ε̇nlog = log

(
1− ε̇n

ω̇n0

)
.

The presence of the finite difference of ω0 in the denominator is problematic,

fundamental frequency measurements are common where little or no decay

trend can be seen, hence augmenting dramatically the error after differenti-

ation.

The author presented in [Hod11] a fast and robust method for the fitting

of exponential-plus-constant curves to measurements. The method was in-

spired by the realisation that the exponent’s coefficient could easily be found

through the Fourier series of the function, when considered over a finite in-

terval of its domain. In practice, the DFT was substituted for the Fourier

series to evaluate the coefficient, but before that, so as to reduce the bias

introduced by aliasing, the data was modulated by one period of a sinusoid,

in the manner of standard windowing. Again, the other two linear coeffi-

cients could thereafter be estimated through standard linear least squares.
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A Matlab function was encoded, using the syntax

(γω, ω∆, ω∞) = fepcf (t,ω0) ,

fepcf standing for Fourier-based Exponential Plus Constant Fit. The func-

tion takes in two equal-length vectors, t and ω0, and outputs the three

coefficients looked for, γω, ω∆ and ω∞.

Figure 1.9 demonstrates at once the validity of the exponential-plus-

constant based models for fundamental frequency and inharmonicity coeffi-

cient. In the lower panel, it also shows the overall robustness of the Fourier-

based approach. Robustness is here greatly desirable, as inharmonicity co-

efficient estimates are often very sensitive to noise. Nevertheless, the trend

can be seen outlined by our fitted model.

Being in possession of a model and fitting technique for time-varying fun-

damental frequencies is valuable, for analysis as well as synthesis purposes.

However, in the case of the inharmonicity coefficient, this is much less obvi-

ous. At reasonable harmonic indices, change in the IC has negligible impact

in comparison with the glide in fundamental frequency. However, there may

come a harmonic index where the upward trend in inharmonicity tempers

the fundamental frequency glide. Figure 1.10 shows the spectrogram of the

data already used to extract the information presented in figures 1.8 and 1.9.

The partial tracks

ωk(t) = kω0(t)
√

1 + β(t)k2 (1.50)

are represented with the dashed lines. To emphasize the effect of inhar-
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Figure 1.9: FF and IC models (dashed lines) fitted in previously presented
measurements (circles), using the Fourier-based method.

monicity time-variance, tracks were also drawn in dash-dotted lines using

β(0) as constant inharmonicity coefficient. The latter are seen to glide down

more rapidly than they should, soon departing from the actual partial tracks,

clearly visible in lighter shade. By contrast, the model based on (1.50) faith-

fully follows the partials, and seem to reveal their path even after their trend

is stabilised to a constant.

There is a potential for synthesis and processing in the model derived

in this section. Such reliable extrapolation of the partial frequencies avails

of the possibility of extending the lifetime of the partials, thereby creating

an effect of “sustain increase” – it should be realised that this differs from

55



Figure 1.10: Model of partial tracks based on time-varying (solid lines) and
fixed (dashed lines) Inharmonicity Coefficient, on top of the Ovation E2
spectrogram. The focus is here on partials 53 to 55.

standard time stretching of the partials tracks, where the decay time of the

fundamental frequency and inharmonicity coefficient glides are also stretched.

For surrealistic effects, it might also be considered to exploit the fact that

the model defines the partial tracks for all values of time, even negative

ones, virtually before the excitation actually takes place. However, it must

be realised that this also implies a model for the magnitude envelopes of

the partials. Where frequency is concerned, however, model (1.50) is in this

thesis considered complete.
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Before closing, it is important to note that, because of the approximations

necessary to obtain the reasonably simple models for fundamental frequency

and inharmonicity coefficients, we have departed at the start of section 1.2.5

from a rigorous physical analysis scheme. Neither ω0(t) nor β(t) as expressed

in (1.48) and (1.49) can be substituted into the string displacement expres-

sion issued from this chapter’s analysis and synthesised in (1.35) and satisfy

the Partial Differential Equation (1.31) at the same time. However, these ap-

proximations have been proven to be worthwhile by the fitting of the resulting

model to actual data, and furthermore, no refinement in the description of

the string’s vibrations is to be developed on top of these approximations

before the chapter on physical analysis is over. These approximations shall

thereby have bearings on no other but themselves.

1.2.7 Longitudinal vibrations, phantom partials

For now we have only been considering the transverse vibrations of the string,

those perpendicular to the direction of the wave propagation. There exists

two more categories of vibrations: torsional, and longitudinal vibrations.

Torsional vibrations are negligible contributors to the sound output of

plucked and hit string instruments. Even in bowed instruments, they are

not involved directly in the radiation of the sound, only in the interactions

between bow and string [TR03, MSW83].

Longitudinal vibrations, on the other hand, are commonly found in string

spectra. It has been known for a long time that they contribute to the timbre

of piano tones [Kno44], and they were also found in the output of other instru-
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ments, such as the acoustic guitar [HAC99], or, more recently, the kantele, a

Finnish 5-string instrument [EKHV02]. Figure 1.11 illustrates the reality of

longitudinal partials, with examples taken from a Spanish guitar (top) and

acoustic guitar (bottom). It can be seen here that transverse partials are
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Figure 1.11: Presence of longitudinal partials in Spanish (top) and acoustic
(bottom) guitar spectra. Both are open bass E tones.

still largely predominant, even in these selected regions of the spectra where

a “longitudinal series” arises. Longitudinal partials may therefore get masked

[Moo04] by the transverse partials towering in their vicinity, and become in-

audible. While the question of their audibility is fully relevant to synthesis,

in the context of this thesis it is much less the case. Our aim is the cancela-

tion of all audible partials issued from the string. Given the levels measured
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in Figure 1.11, with longitudinal partials at times reaching -40dBFS
6 for a

normalised input waveform, it is evident that, once the transverse partials

canceled, the remaining longitudinal partials must be, on their own, clearly

audible. This statement is supported by informal perceptual experiments.

Free and driven longitudinal vibrations

In this thesis we distinguish two types of longitudinal vibrations: free vibra-

tions, and driven vibrations. Free vibrations are found at the longitudinal

resonant frequencies of the string, a harmonic series whose fundamental can

be derived by physical analysis to

ωL
0 =

πr

L

√
Eπ

µ
, (1.51)

in radians per second [FR91, Rai00]. This frequency is independent on ten-

sion, and hence, on the fundamental frequency of the transverse series. For

instance, the first partial of a longitudinal series was found in a 500–3,000Hz

interval in piano tones whose (transverse) fundamental frequency lay in a

30–100Hz interval [Kno44].

Having a higher fundamental frequency lessens the density of normal

longitudinal partials. Moreover, when they are detectable, they only appear

in the “precursive sound”, given a very strong decay rate, in the order of

100dB per second [PL87]. On this basis, and to keep complexity down to

a reasonable level, normal longitudinal partials will be ignored in the string

6dBFS, or Full-Scale decibels, are used in the context of digital audio, where the refer-
ence amplitude level is 1, or 0dBFS
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extraction process. Their perceptual impact is not neglected, but, where

present, we shall consider them as part of the excitation.

The longitudinal vibrations measured in Figure 1.11 are in fact of the sec-

ond type, driven longitudinal vibrations. These result from the modulation

in length and tension of the string as it vibrates; as such, they are directly

related to the phenomenon of pitch glide detailed in the previous section.

Because of their audibility, they cannot be excluded from the list of partials

to extract in the string extraction process. As a matter of fact, their inclusion

in this thesis demands relatively little additional content, as their frequency

and decay time parameters are aligned with those of the transverse series, as

we are going to see of now.

Derivation of longitudinal vibration parameters

Driven longitudinal vibrations are a nonlinear function of transverse ampli-

tude [GK96]. A PDE for the longitudinal motion based on the standard

wave equation and augmented with a term for the influence of the transverse

vibrations is developed in [MI86], and simplified in [BS03] as

µ
∂2ξ

∂t2
= Eπr2 ∂

2ξ

∂u2
+

1

2
Eπr2∂

(
∂s
∂u

)2

∂u
. (1.52)

The nonlinearity stems from the squaring of the transverse vibrations.

The displacement s is the sum of an infinite number of terms, as per our

model, expressed in equation (1.35), section 1.2.5. However, as ∂s/∂u is

raised to the power of two, it is sufficient to consider the nonlinear effect on
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the sum of two components only [BS03], of indices, say, k and l:

sk,l(u, t) = sk(u)eγkt cos (ωkt+ φk) + sl(u)eγlt cos (ωlt+ φk) . (1.53)

Our purpose allows that we keep the focus on frequency, decay time and

initial phase only. Hence, the spatial distribution does not need to be made

explicit, and may for each components k and l be concisely expressed as some

undefined function of u, sk(u) and sl(u).

Differentiation, squaring and differentiation again of (1.53) yields

∂
(
∂sk,l
∂u

)2

∂u
=

1

2
e2γkt (1 + cos (2ωkt+ 2φk))

∂
(
∂sk
∂u

)2

∂u

+
1

2
e2γlt (1 + cos (2ωlt+ 2φl))

∂
(
∂sl
∂u

)2

∂u

+e(γk+γl)t (cos [(ωk + ωl) t+ φk + φl] + cos [(ωk − ωl) t+ φk − φl])

×∂
(
∂sk
∂u

∂sl
∂u

)

∂u
. (1.54)

Transverse partials are shown in (1.54) to generate two types of longitudi-

nal vibrations, even, e2γk cos 2ωkt, and odd, e(γk+γl)t cos [(ωk + ωl) t] [HAC97].

Even partials are issued from a single component, with twice its frequency,

decay time and phase. An odd partial depends on the combination of two dis-

tinct transverse partials, inheriting the sum of their frequencies, decay times

and phases as its own. These longitudinal partials driven by transverse mo-

tion probably account for most of the phantom partials often alluded to in the

literature [HAC97, BS03, Smi11]. We may thereby use “phantom partials”

as a shorthand for “driven longitudinal vibrations” henceforth.
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According to (1.52), K2 longitudinal partials should be generated due to

the presence of K transverse partials. However, Conklin finds in [HAC97]

that “odd” partials come predominantly from adjacent transverse partials, a

phenomenon that Bank et al. attempt an explanation for in [BS03], based on

the consideration of space orthogonality of the transverse and correspond-

ing longitudinal partials. Be that as it may, this fact allows for a simple

arrangement of the phantom partials into a pseudo-harmonic series,

ωL
k =




ω(k−1)/2 + ω(k+1)/2 k odd,

2ωk/2 k even.

(1.55)

It is important to note here that, for perfectly harmonic transverse series,

i.e. when ωk = kω0, the transverse and longitudinal series coincide. Hence,

phantom partials driven from transverse vibrations cannot expect to be found

in inharmonicity-free string tones. Only when ωk = kω0

√
1 + βk2 (1.33) may

this be the case.

The expression of the longitudinal series can be simplified one step fur-

ther. On the one hand, substitution of (1.33) into (1.55) simplifies, for the

even case, to ωL
k = kω0

√
1 + 1/4βk2. On the other hand, it can be verified

that, within reasonable inharmonicity coefficient values and partial indices,

the odd frequencies differ negligibly from the even frequencies, i.e.

kω0

√
1 +

1

4
βk2 ≈ k − 1

2
ω0

√
1 + β

(
k − 1

2

)2

+
k + 1

2
ω0

√
1 + β

(
k + 1

2

)2

.
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Hence we can finalise the phantom frequency series to be

ωL
k = kω0

√
1 + 1/4βk2. (1.56)

It is very convenient to have a frequency series for our longitudinal par-

tials that is modeled directly upon the transverse frequency series. For both,

the frequencies of the partials are entirely defined by the fundamental fre-

quency ω0 and inharmonicity coefficient β. Also, the decay rate parameters

of the phantom series can be derived from those of the transverse series with

equivalent ease. Let us recall that the decay rate γk of the kth partial is,

according to our model, to be expressed as γk = b1 − b3k
2 (equation (1.27)).

Similarly to frequency, the decay rate of even phantom partials is twice that

of the parent transverse partial, and that of odd partials, the sum of the

decay rates of its parents. This yields

γL
k ≈ −2b1 −

1

2
b3k

2. (1.57)

Equations (1.56) and (1.57) present the longitudinal partials as a series

in its own right, a quarter the inharmonicity of the main series, twice its air

resistance, and half its internal damping.

Considerations on the longitudinal distribution

Unfortunately, the longitudinal model cannot be completed with a time-zero

distribution, as we had in the Ak transverse coefficients, which were specified

for plucked and hit strings in section 1.1.3. These could be made explicit in
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(1.53), but that would be of little use so long as the longitudinal response

of the string is not taken into account. Here, the string in its longitudinal

polarisation can be seen as a resonator for the transverse vibrations. At

natural longitudinal frequencies of the string only can the transverse-driven

longitudinal vibrations be expected to be well amplified. Proximity of the

even and odd frequencies seen in (1.54) with longitudinal normal frequencies

is, in this regard, pointed in [BS03] as a condition for efficient coupling.

To test this hypothesis, Figure 1.12 highlights the transverse (circles) and

longitudinal (crosses) series on the short-time spectrum of a Steinway grand

piano E2 (82.4Hz). It was hoped that a trend of longitudinal partial emer-
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Figure 1.12: Transverse series and transverse-driven longitudinal series in
a Steinway E2 piano tone. Transverse-longitudinal conflicting partials are
marked with crossed circles.
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gence at intervals of the (unknown) longitudinal fundamental frequency could

be observed. The reading of the spectrum is in this regard inconclusive, as

such trend is invisible. This could be due, in part, to the complex reality of

piano tones, far more difficult to fit into templates than other string instru-

ments. More importantly, the phantom partial frequencies regularly coincide

with the transverse partial frequencies, in which case it is difficult to decide

whether the observed peak is the result of a transverse, a longitudinal, or

both partials – in general, preference is given to the transverse choice, due

to the overall predominance of the transverse series. On the plot, such con-

flicting peaks are denoted with crossed circles (except for all partials up to

frequency 1,200Hz, for clarity).

Upon appreciation of this complexity, the task of determining a model

for the frequency distribution of longitudinal partials is here left aside. It

is acknowledged that such a model would be desirable for the synthesis of

string tones. Yet, as far as processing is concerned, longitudinal partial

magnitudes are obtained from measurement, and it seems sufficient to leave

them intact during pitch and inharmonicity coefficient manipulations. This is

discarding the frequency-dependent longitudinal responsiveness of the string,

but it seems reasonable to think that it compromises little the realism of such

a sound effect.

1.3 Recapitulation

In this section, we are going to make the string model developed throughout

this thesis more concise and ready for use in subsequent chapters.
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First of all, the space variable u can be discarded. During this devel-

opment it was indispensable to the derivation of the PDEs, and also to the

expression of the initial amplitude coefficients of the transverse series. The

space variable would also be relevant to synthesis, to construct a model where

the plucking position parameter is accessible, but the rest of this thesis is go-

ing to focus on the string extraction, which essentially is a processing task.

Therefore, the sin kπu
L

spatial distribution term, seen as early as section 1.1.2

and throughout the rest of the chapter, will be discarded. Formally, this is

simplifying s(u, t) down to s(t).

Our string model s(t) turns out to be the sum of a transverse and a

longitudinal polarisation,

s(t) = sT(t) + sL(t).

These sub-models are detailed, level by level, in Table 1.2.

transverse vibrations longitudinal vibrations section

sT(t) =
∑
k Ake

γkt cos
(∫ t

0 ωk(t)dt+ φk

)
sL(t) =

∑
k A

L
ke
γL
k t cos

(∫ t
0 ω

L
k (t)dt+ φL

k

)
1

Ak =

{
− 2vh
ω0

1
k

sin kπuh
L

hit

−A2L2

π2
1

(up−L)up

1
k2 sin

kupπ

L
pluck

AL
k undefined 1.1.3

φk =

{
0 pluck
π
2

hit
φL
k =

{
0 pluck

π hit
1.1.3

γk = −b1 − b3k2 γL
k = −2b1 − 1

2
b23 1.2

ωk(t) = kω0(t)
√

1 + β(t)k2 ωL
k (t) = kω0(t)

√
1 + 1

4
β(t)k2 1.2.5

ω0(t) = ω∆e
γωt + ω∞ and β(t) =

β∞(β∞+β∆)

e
γβt(β∞+β∆)−β∞

1.2.6

Table 1.2: String model developed in this chapter.

66



The end-unknowns, e.g. ω∆, γβ, b1, or uh/L, may be evaluated from

appropriate fitting techniques for the purpose of physically meaningful sound

effects, or for the very purpose of this thesis, string extraction.

Conclusion

Our string model is now in its final form. This conclusion gives the oppor-

tunity for us to reflect upon this model.

The model was initiated by the derivation of the Wave Equation. This

Partial Differential Equation was obtained by the equation of the forces act-

ing upon infinitesimally small segments of the string, and these forces were

deduced from a schematic representation of the string, where the physical

parameters of interest – length, tension, mass density – were present. As a

result, these very parameters ended up in the basic model. This is also true

for the string’s stiffness term, whose derivation can be found in the textbooks

[FR91, Rai00].

This schematic physical analysis approach is especially attractive for

sound synthesis and processing, as the very physicality of the instrument

can virtually be manipulated. However, albeit attractive, it also demands

very advanced knowledge and skills in acoustics and mechanical physics, and

we were unfortunately bound to step down a little as soon as the question of

damping arose. There, the appropriate terms were brought in the PDE on

the basis of good sense, e.g. the force opposed to the motion of the string

due to air resistance being proportional and opposite to its velocity. This re-

sulted in the appearance of anonymous coefficients (such as b1, to retain the

67



example of air friction), whose physical identity can only be guessed. Yet, it

should be pointed out that, for the purpose of this thesis, being able to relate

coefficients to physical parameters of the instrument is not necessarily useful,

as our string extraction process is blind to the type of string instrument at

the origin of the input digital wave. For instance, the constant amplitude

term Ak as specified for plucked strings, seen in Table 1.2, depends on both

the distance of the plucking point from the string’s rest axis and its length.

Obviously, initial amplitude estimates in our processing unit will end up with

a single coefficient for these two parameters.

The PDE can be seen as some safety guideline, the respect of which is

the guarantee of a valid model. It was therefore wise and desirable to follow

it faithfully as far as possible into the model. However, on the occasion of

the inclusion of the phenomenon of pitch and inharmonicity glide, and of the

longitudinal series, more practical approaches had to be taken. Such a breach

to our guideline was there tolerated for its practicality, and because it occurs

at the end of the development, sitting on top of a physically consistent model.

In any case, it permitted the obtention of an Exponential-Plus-Constant

(EPC) model for the fundamental frequency and inharmonicity coefficient.

Albeit questionable in its physical validity, the EPC model was shown in

Figure 1.10 to trace with precision the evolution of entire sets of harmonics

in tension-modulated tones.
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Chapter 2

Frequency-domain component

estimation

Introduction

Chapter 1 was dedicated to the derivation of an analytical model for the

vibrations of the string. This was the starting point to the aim of this thesis,

namely, the virtual extraction of the string, through the cancelation of all

the partials, transverse and phantom.

In this thesis, we propose to cancel these partials in the context of a Phase

Vocoder scheme. There, the input is decomposed in short-time segments, or

grains, and the cancelation is operated at such time scale. The extraction

process is common to all grains, and to guarantee that this process is success-

ful at the level of a grain is thereby to guarantee that the string extraction

process is successful at the level of the entire input.
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All the details on the cancelation of the partials at the time scale of a

grain will be given in Chapter 3, but in short, it consists of measuring the

relevant parameters of the partials of the string so as to generate synthetic

copies, and thereafter to subtract these copies from the grain. To achieve

good results at an optimal computational cost, the set of parameters of the

string partials that are taken into account in the synthetic model must include

neither more, nor less than the parameters that are relevant at such small

time scale. Taking into account some unnecessary parameter would make

the method more complicated and costly than necessary. Inversely, omitting

a parameter that turns out not to be of importance would lead to inefficient

cancelation.

In this regard, we will see in Section 2.4 that the parameters of the partials

that need, at the time scale of a grain, to be taken into account, are the fre-

quency, magnitude and phase, but also the exponential magnitude envelope.

Other methods will be evoked, but it will be explained how the Complex

Spectral Phase-Magnitude Evolution (CSPME) method allows the evalua-

tion of frequency and exponential magnitude. The CSPME is an original

method, a generalisation of the Complex Spectral Phase Evolution (CSPE)

[SG06] to exponential-amplitude signals. It will also be explained how the

knowledge of the frequency and magnitude envelope of the partials can be

used to, thereafter, obtain the remaining two parameters of constant magni-

tude and phase.

However, measurement of partial parameters in the frequency domain

is inevitably exposed to cross-interference between partials, a consequence
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of spectral leakage [AW03]. Spectral leakage can nevertheless be minimised

by the use of some appropriate window. This chapter therefore includes,

in Section 2.2, a development on the theory of windowing, which will lead

to the choice of the most appropriate window or class of windows, among

the many that can be found in the literature [Har78, Nut81]. However,

before this development is initiated, a short introduction on the notation

used throughout this chapter shall spare on the reader tedious inferences.

2.1 Notation guidelines

The string extraction method introduced in this thesis relies heavily on the

frequency-domain properties of windowed sinusoids. The aim of the devel-

opment that is found in Section 2.2 and following is to bring understanding

upon these properties.

2.1.1 Time-to-frequency transforms

Although our application is digital and works in the discrete time domain,

time-to-frequency-domain transformations are often more meaningful when

stated in the continuous-time domain because integration then replaces sum-

mation, and integration is more propitious to the finding of explicit solutions.

Helpful approximations will hence follow between spectra issued from con-

tinuous and discrete time, but the downside is an increased complexity in

the notation, which has to account for these two types of spectra.

Furthermore, it is useful to regard the short-time Fourier analyses of
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signals as the infinite-time analyses of the product of sinusoids with short-

time windows. Short-time and infinite-time spectra are therefore also both

going to be involved, whether in the continuous or discrete time domain,

and need notational distinction as well. To summarise, time-to-frequency-

domain transformations will be achieved with the four types of transforma-

tions : the Fourier Transform (FT, infinite-continuous-time) ; the Fourier

Series (FS, short-continuous-time) ; the Discrete-Time Fourier Transform

(DTFT, infinite-discrete-time) ; and the Discrete Fourier Transform (DFT,

short-discrete-time). Our convention to distinguish the four is twofold :

• Continuous-time transforms use rounded capital letters, and discrete-

time transforms, standard italic capital letters.

• Short-time transforms without a subscript are infinite-time transforms,

and transforms that use a subscript N denote transforms taken over

an interval (discrete or continuous) [0, N).

For example, X would be the infinite-time transform of x in continuous-time,

and X, in discrete-time, while XN would be the short-time transform of x in

continuous time, and XN , in discrete-time.

2.1.2 Arguments

Also, for reasons that will become evident when the explicit definitions of

these transforms are given, the units of the arguments in infinite- and short-

time transforms differ. For infinite-time transforms, the argument (usually

denoted with ω) is in radians per time unit, while for short-time transforms,
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the argument (usually denoted with b, for bins) denotes the number of periods

of the basis function e−jb2π/N per interval [0, N [. For instance, in XN(ξ), ξ

would be in radians per time unit, while in X(ξ), it would be in periods per N

time units. Although it seems complicating, it actually facilitates indexation

into DFT and FS spectra.

Finally, another notational distinction that was found useful and that

is often used as a convention in articles and textbooks, is the use of round

brackets for continuous arguments, and square brackets, for discrete argu-

ments. Hence, from such expression as x(n), the reader should infer that

n ∈ R, while for x[n], that n ∈ Z.

2.2 Windowing

For the sake of clarity, we assume for now that our input were continuous-

time. Spectra inherited from discrete inputs will be considered in due time.

Let us consider some input x(n), of which we want to get the spectrum.

Among the Fourier analysis tools at our disposal, we pick the Fourier series,

as our recording is continuous and of finite length. The [0, N ]-interval Fourier

series is

XN [b] =

∫ N

0

x(n)e−jb2πn/Ndn. (2.1)

Single-component input

We saw in Chapter 1 that a string tone was a sum of sinusoids, whose am-

plitude and frequency could be considered static over some reasonably short

interval of time. In the frequency domain, each time-domain sinusoid trans-
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forms to two peaks, as the basis function of the Fourier transform is a complex

exponential, ejb2π/N , and a real sinusoids splits in two complex exponentials,

as per Euler’s formula,

cos θ =
1

2

(
ejθ + e−jθ

)
.

To begin at the simplest, our signal x(n), to start off, is thus

x(n) = Aejφejr2πn/N , (2.2)

a single component of specific parameters: a magnitude A, initial phase φ,1

and frequency r2π/N . Here, the frequency is written in such a way that it

depends on r, so as to say that there are r periods of the signal in the Fourier

series interval [0, N ], or in other words, that the frequency of x is r times the

fundamental frequency of the analysis.

The Fourier series of x as as defined in (2.2) is

XN [b] = Aejφ
∫ N

0

e−j(r−b)2πn/Ndn (2.3)

= j
AejφN

(r − b)2π
(
e−j(r−b)2π − 1

)
.

In the simple case where there is an integer number of periods of x in the

1A could be negative, but the negative sign might as well be included in the phase
information, as a π phase shift is equivalent to a reverse of sign, i.e. ejπ = −1.
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analysis interval, or r ∈ Z, then

XN [b] =




AejφN r = b,

0 r 6= b.

(2.4)

This results in a very tidy magnitude spectrum, easy to read, as there is only

one peak, whose height is A, scaled by the length of the analysis N . Such a

spectrum is presented in the upper plot of Figure 2.1.
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Figure 2.1: Discrete spectra of single complex exponential, synchronised (top)
and out-of-sync (bottom) in the Fourier analysis period.

In general, however, the components of the input signal cannot be ex-

pected to be integer multiples in frequency of the fundamental frequency of
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the analysis. We must therefore consider the more general case where r ∈ R,

which yields the spectrum

XN [b] = NAejφe−jbπsinc(r − b), (2.5)

where sinc(x) = sin(πx)/πx. An example of a Fourier series magnitude for

some non-integer r is shown in the lower plot of Figure 2.1.

It is evident, both from (2.5) and the lower plot in Figure 2.1, that the

main lobe of the interpolated spectrum culminates above r, the frequency

index of the analysed component. Hence, given some appropriate method

of interpolation, the frequency of the component can be found through the

finding of r, and thereafter the magnitude, A = |X̃N(r)|/N , and phase,

φ = ∠
(
ejrπX̃N(r)

)
, where X̃N(.) denotes the interpolation of the Fourier

series XN [.].

Multi-component input

The fact that the analysed signal is multi-component complicates the matter.

To see how, let x be not a single complex exponential, but the sum of K of

them, each with their own frequency, magnitude and phase,

x(n) =
K∑

k=1

Ake
jφkejrk2πn/N . (2.6)
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The corresponding Fourier series is the sum of the Fourier series of each

individual component,

XN [b] = e−jbπ
K∑

k=1

Ake
jφkNsinc(rk − b). (2.7)

Then, the (interpolated) spectrum above rk is not the result of the kth com-

ponent alone anymore, or XN (rk) 6= Ake
j(φk+rkπ)N . This tells us that the

direct reading of the spectrum of a multi-component signal cannot yield ex-

actly the parameters of its individual components. Either some processing

of the spectrum must be done beforehand, or some approximation threshold

be set. The latter option is considered now.

The sinc(b) function features an asymptotic trend of a 1/b decay as its

argument is further from 0. In decibels, this is a −20 log10 b decay, or ap-

proximately six decibels per octave. On this basis, the threshold below which

any spectral value is negligible can be set, and a corresponding interval B

defined, such that

XN(b) ≈ 0, |r − b| > B/2,

in the case of a single-component spectrum of frequency index r. Then, for

some multi-component spectrum, it can be considered that the parameters

of the components are readily available in the spectrum, as

XN (rk) ≈ Ake
jφkNsinc(rk − b), (2.8)
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so long as a minimal distance B is respected between every partial frequency,

i.e.

|rk − rl| > B, ∀ k, l ∈ [1, K]. (2.9)

The idea is illustrated in Figure 2.2. In the upper plot, condition (2.9) is

0

b
r
1

r
2

threshold B B

0

b

 

 

r
1

r
2

threshold B B

trend

magnitude spectrum

Figure 2.2: Multi-component spectra, with negligible (top) and prejudicial
(bottom) overlap.

respected, and it can be seen that the main lobe of each component is faithful

to that of a single sinc function. In the lower plot, however, it is not, and the

lobes are distorted. Then, the frequency index underneath a given magnitude

maximum cannot be trusted to represent correctly that of the corresponding
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component anymore. Also, the figure shows that the magnitude value at

these maxima is affected, here, dramatically. The same goes for the phase,

which is not represented on the figure.

We can now say that as long as some distance between the center frequen-

cies is respected, the parameters of the partials can be faithfully obtained.

The decay trend of a component’s spectral representation does not have to

be that of a sinc function, though. The latter is indeed rather slow. For

example, the threshold under which some spectral energy can be considered

negligible may be set to -60 decibels. For the decay trend of the sinc function,

this gives the equation −20 log10(B) = −60, which implies a distance B of

one thousand frequency index units between adjacent partials. Considering

that in this thesis, we are dealing with harmonic signals, with components

evenly spaced in frequency, it would imply that at least a thousand periods

of the recorded wave is taken into one analysis frame. Yet our string output,

with its partials decaying exponentially and some potential frequency glide,

can only be considered to be static over a much shorter period of time. It

is therefore desirable to find a means of accelerating the decay of the sinc’s

trend. This is the object of the next section.

2.2.1 Rectangular window

Some great insight into the spectral curves seen in the previous section can

be achieved when, for a start, it is realised that the Fourier series of the

complex exponential (2.3) is equal to the Fourier transform of the product
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of this same signal with a rectangular window, i.e.

XN [b] =

∫ N

0

x(n)e−jb2πn/Ndn

=

∫ ∞

−∞
x(n)

r
wς (n)e−jb2πn/Ndn, (2.10)

where

r
wς (n) =





1 n ∈ [0, N)

0 n /∈ [0, N).

The notation of our rectangular window
r
wς may seem overly complicated,

but it will be seen further down this development how it fits in a broader

picture. The stacked r, on top of the w, stands for rectangular – other types

of windows with different properties will be seen later, and it is useful to

make the difference in their notation. As for the prescript ς, we ask the

reader to ignore it for now : its meaning and use will be shown in due time

during the course of this development.

As demonstrated in Appendix C.2, the Fourier transformation of the

product of two signals equals the convolution of their spectra, divided by

the period interval of the basis function, here, N .2 So we write

FT
{
x(n) · r

wς (n)
}

=
1

N

(
X ∗

r

Wς N

)
(ω), (2.11)

2In the appendix, this is 2π, as the independent frequency variable is then in radians.
See Equation (C.11), page 256
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where we have substituted ω for b2π/N , and used the definition,

FT{x(n)} ∆
= X ,

X being the Fourier transform of x.

Let us therefore examine the Fourier Transform of the single-component

x of Equation (2.2) on its own:

X (b2π/N) = Aejφ
∫ ∞

−∞
e−j(b−r)2πn/Ndn

= AejφNδ(b− r). (2.12)

By substitution of (2.12) into (2.11), it can be found that

FT
{
x(n) · r

wς (n)
}

= Aejφ
r

Wς N

(
(b− r)2π

N

)

= Aejφ
r

Wς N(b− r),

where, we recall the user,
r

Wς N(b − r) is, as indicated by the subscript N ,

the Fourier series of
r
wς , but with a continuous-frequency argument b− r, as

indicated by the round brackets.

This sheds light on the Fourier series of the single-component complex

exponential (2.5): we now see that the Fourier series of Aejφejr2πn/N over the

interval [0, N ] really is the spectrum of the rectangular window
r

Wς , only

scaled by A, phase-shifted by φ radians, and frequency-shifted by r frequency

bins.

The rectangular window, albeit the simplest of all, is nevertheless a win-
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dow. To make them symmetric about 0, and hence ensure that their spectrum

is real – which is convenient – windows are conventionally centered around

n = 0 [Har78, Nut81]. For clarity, we have been using
r
wς , which in fact is

the zero-centered rectangular window
r
w, delayed by half its length, i.e.

r
wς (n) =

r
w

(
n− N

2

)
. (2.13)

By the time-shift property of the Fourier transform (see Appendix C.1), the

spectrum of
r
wς results in being that of

r
w, frequency-modulated by e−jbπ,

i.e.
r

Wς N(b) = e−jbπ
r

WN (b). (2.14)

We can now conclude this section with the derivation of the rectangular

window spectrum proper, free of frequency modulation:

r

WN (b) =

∫ N/2

−N/2
e−jb2πn/Ndn

= Nsinc(b),

a simple N -scaled sinc function.

2.2.2 The Hann window

Let us recall that the motivation of this development is to accelerate the decay

trend of the sinc spectrum, which we now know to be that of the rectangular

window. The question is therefore to find a window with faster-decaying side

lobes.
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We can think in terms of “brightness”, or richness in high-frequency com-

ponents. The fact that the side lobes of the spectrum of the rectangular win-

dow decay slowly with frequency is a one-way relationship with the brightness

of the rectangular window. In its original domain, the rectangular window is

a sudden jump from 0 to 1, and a subsequent drop back to 0, An illustration

is provided in the upper plot of Figure 2.3, in solid line. These infinitely

sharp corners are responsible for strong high-frequency components. To re-

duce these components, and thereby accelerate the decay rate of our window’s

trend, one can consider picking a smoother window.
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Figure 2.3: Rectangular and Hann windows, in time (top) and frequency
(bottom) domains.
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A good window to start with is the Hann window,

h
w (n) =





1 + cos 2πn
N

−N
2
≤ n ≤ N

2

0 |n| ≥ N
2
,

(2.15)

seen alongside the rectangular window in the upper plot of Figure 2.3. Not

only is it visibly smooth, but also, its spectrum has a relatively simple ana-

lytical expression. Indeed, with the help of Euler’s formula, we see that the

window is the sum of three complex exponentials, of frequencies −2π/N , 0,

and 2π/N , and respective magnitude 1/2, 1, and 1/2. Hence, by the convolu-

tion theorem, we can foresee that the Fourier transform of the Hann window

is the sum of three sinc functions, scaled and shifted accordingly. This sum

simplifies to
h

WN (b) =
N

π

sin bπ

b3 − b,

which, in accordance with our speculation, is a spectrum with a faster decay

rate, of −60 log10(b), or 18 decibels per octave, thrice as much as the rectan-

gular window’s. Now, in the presence of a harmonic signal to analyse, and

to achieve a -60 decibel attenuation between the center frequency of each

partials, a minimum of ten periods is required. This is already much more

practical than the thousand mentioned before, in the case of the rectangular

window.

In fact, the Hann window, and even the rectangular window, belong to

an entire family of windows, made up of cosine waves. The next section

is dedicated to the description of these windows, which we may call cosine
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windows.

2.2.3 Cosine windows

In [Nut81], Nuttall explains that the 1/b decay trend of the rectangular

window spectrum is due to the discontinuity of the window at the boundaries

of its non-zero interval [−N/2, N/2]. Consistently, the Hann window at these

points is zero,
h
w

(
±N

2

)
= 0,

and its decay is faster than 1/b.

More generally, it is said in [Nut81] that the discontinuities of a window

at its boundaries in its derivatives dictate the asymptotic behaviour of its

spectrum – the higher the derivative order of continuity, the faster the decay.

Regarding the Hann window, we observe that it is also continuous in its first

derivative,

d
h
w

dn

∣∣∣∣∣
±N

2

= −2π

N
sinπ

= 0

but not in its second. However, it is possible to satisfy

dqwP

dnq

∣∣∣∣
±N

2

= 0 (2.16)

for some differentiation order q ≤ 2P , given the presence of the first P +

85



1 cosine harmonics (including zero-frequency) in the non-zero part of the

window. The expression for cosine windows thus generalises to

wP (n) =
P∑

p=0

ap cos
p2πn

N
, |n| ≤ N

2
, (2.17)

where the P + 1-length coefficient vector a = [a0, a1, ..., aP ]T remains to be

found.

The problem of finding a can be reduced to solving a system of linear

equations. First, it should be realised that every odd-order derivative of a

cosine window is made of sin(p2πn/N) components, which are all zero at

n = ±N/2, making the window’s derivative continuous at its boundaries.

Odd-order derivatives therefore need not to be worried about. Hence, the P

first even-order derivatives can be equated to zero by adjustment of the P +1

coefficients of the window. For example, for a third-order cosine window,

there are four coefficients, and these can be used in a linear system to make

the 0th, 2nd and 4th derivatives of the window continuous for all n.

But this is P + 1 coefficients for P equations – an underdetermined sys-

tem, with an infinity of solutions. The missing equation shows up with the

fact that a complex exponential of magnitude 1 should come out in the mag-

nitude spectrum as a peak of height N , for some N -length analysis. This

is equivalent to saying that the transform of the window should be N at

frequency 0, or ∫ ∞

−∞
wP (n)dn = N. (2.18)

The cosine components of wP are periodic in N , and for this reason, their
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integration is going to yield 0. The constant part of the window is thus the

only contributor at frequency 0, and so we are left with a0

∫ N/2
−N/2 dn = N , or

a0 = 1. With the first coefficient of the vector forced to be 1, P coefficients

remain to be determined. In matrix notation, this can be written as




d0
1 d0

2 · · · d0
P

d2
1 d2

2 · · · d2
P

d4
1 d4

2 · · · d4
P

...
...

. . .
...

d
2(P−1)
1 d

2(P−1)
2 · · · d

2(P−1)
P







a1

a2

a3

...

aP




=




0

0

0
...

0




, (2.19)

where

dqp =
dq

dnq
cos

p2πn

N

∣∣∣∣
N
2

.

Continuous windows and Minimal windows

Cosine windows whose coefficients are derived as per (2.19) may be called

continuous windows. Figure 2.4 shows the spectra of the first four such win-

dows. The decay trend for continuous windows can seemingly be generalised

as (2P + 1)6 decibels per octave, for a large frequency index (see minimal

window trends in Figure 2.5). This is partly explained by the generalised

spectrum WP
N of a cosine window or order P ,

WP
N(b) = N

sin bπ

π

(
1

b
+ b

P∑

p=1

ap(−1)p

b2 − p2

)
,
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Figure 2.4: Magnitude spectra of first four continuous windows.

for which the addition of the numerators requires the multiplication of the

denominators, a process during which the powers of b add up. However,

other cosine windows, with discontinuous derivatives, share the same spectral

expression, and yet have slower decays.

Instead of finding the coefficients with the sole purpose of the accelera-

tion of the decay trend, the reduction of the highest sidelobes can be set as a

priority. We may call these minimal sidelobe windows, or minimal windows

for shorthand. The simplest example of such a window is the Hamming win-

dow, a first-order cosine window, discontinuous at its boundaries, but whose

largest sidelobe is −43.19 decibels, as opposed to −31.47 for the Hann win-
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dow. The coefficients for this minimal sidelobe window are given in [Nut81],

but no explanation is given there as to how they were obtained, neither for

the Hamming window, nor for higher-order windows with minimal sidelobes.

Figure 2.5 shows the spectral trend of the first- (upper plot), second- (middle

plot) and third-order (lower plot) continuous and minimal sidelobe windows,

and Table 2.1 lists the properties and coefficients of these windows.
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Figure 2.5: Trend in spectra of 1st-, 2nd- and 3rd-order continuous (solid lines)
and minimal (dashed lines) windows.

Here, the coefficients of the minimal sidelobe windows were read from

[Nut81]3. This article shows a wider variety of windows. For instance, win-

3Some names found in the table were adapted from the original article to the context of
this thesis. For example, the ”Continuous third derivative of weighting” window became
here the ”2nd-order continuous window”, as all odd-order derivatives were shown to be
zero at the boundaries anyway.
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order name coefficients decay sidelobe

0 rectangular 1 -6 -13.26

1
Hann [1, 1] -18 -31.47

Hamming
[
1, 349

407

]
-6 -43.19

2
2nd continuous

[
1, 4

3
, 1

3

]
-30 -46.74

”Minimum” 3-term
[
1, 1152

983
, 515

2792

]
-6 -71.48

3

4th continuous
[
1, 15

10
, 6

10
, 1

10

]
-42 -60.95

”Minimum” 4-term
[
1, 1667

1239
, 866

2305
, 161

5501

]
-6 -98.17

Table 2.1: 0th, 1st-, 2nd- and 3rd-order continuous and minimal windows.

dows need not be continuous or minimal sidelobe – they can be a bit of both.

Some high-order window can be designed in such a way that its first deriva-

tive (or higher) is continuous, thereby guaranteeing some 18dB (or more) per

octave decay rate, but the remaining degrees of freedom are used to minimise

the side lobes, instead of further accelerating the decay trend. We dwelled

here on the extreme cases to emphasize the contrast in properties there can

be between cosine windows, even of the same order. Also, Table 2.1 offers

already plenty to choose from and to discuss.

First of all, it is pertinent to state that the width of the main lobe depends

on the order of the window, i.e.

B = 2(P + 1). (2.20)
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This is well illustrated in Figure 2.4. A rule of thumb to follow in spectral

analysis is to avoid the overlap of adjacent main lobes [IS87], which requires

the inclusion in the analysis of at least 2(P + 1) fundamental periods of

the harmonic sound. Hence, higher-order windows require longer analysis

periods. This would not be a problem if the analysed sound were truly

static, but it is not the case: string components feature an exponential decay,

and their frequency, sometimes a downward glide. Projection of some time-

varying frequency components onto some static complex exponentials during

the Fourier transformation may introduce unpredictable bias. Care must

therefore be taken not to stretch the length of the analysis too much.

If avoiding overlapping of adjacent main lobes is the only requisite, then

minimal sidelobe windows must be favoured. However, the maximum side-

lobe level of a window may not provide sufficient attenuation – recall that, in

the previous section, we were considering some -60 decibels attenuation. For

such constraint, the Hamming window would prove less convenient than the

Hann window, 1st-order as well. In fact, the upper plot in Figure 2.5 shows

that only over a spectral region of about one frequency unit, immediately

outside the main lobe, is the outline of the Hamming window lesser than

that of the Hann window. Some similar comment could be given on the next

two subplots as well, comparing the trends of 2nd- and 3rd-order continuous

and ”minimal” window spectra. Yet, the -70.83dB minimal attenuation of

the Minimum 3-term may be found sufficient, in which case the second-order

minimal window is preferable to the second-order continuous window, due to

the steeper decay near the main lobe4.

4Terminology here may be confusing. A P th-order window has P + 1 terms, or coeffi-

91



One final point regarding the choice between a continuous window or

a minimal sidelobe window may regards the appearance of the spectrum.

Minimal windows have the visual advantage over continuous windows of a

very flat floor of side lobes (which may be considered a noise floor). Figure
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Figure 2.6: Acoustic guitar spectra derived with 2nd-order continuous (top)
and minimal (bottom) windows. Notice the steady noise floor in the lower
plot.

2.6 gives an illustration of this tendency, which is due to the greater drop in

energy immediately on either side of the main lobe, and to the more flat decay

trend. Spectra obtained with minimal windows may therefore look more like

the ideal spectrum, featuring peaks where there are frequency components,

and a flat floor elsewhere. This might also be useful for discerning main lobes

cients. Hence, the Minimum 3-term is a fourth-order window.
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from sidelobes, which, in automated peak detection, can at times be found

difficult.

Constant-sum property of cosine windows

Before we have a look at windows other than cosine windows, an important

property of these should be evoked. Cosine windows are such that, when

they are duplicated, spaced by some regular time interval, and optionally

raised to some power, they can add up to some constant. This property is

formalised in the equation below,

∞∑

u=−∞

(
wP
(
n− uN

PQ+ i

))Q
= α, (2.21)

where Q and i are positive integers, i greater than 0, and α is a constant real

number. In (2.21), the ratio N/(PQ + i) is the number of time units sepa-

rating each window, and is known as the hop size in the literature around

the Short-Time Fourier Transform (STFT) [Por81, Cro80, Ser89, Z0̈2].5 Al-

ternatively, we can evoke the overlap of the windows, which is sometimes

expressed as a percentage [IS87], or a factor

O = PQ+ i. (2.22)

This property is illustrated in Figure 2.7, where only a finite number

of window overlap, to outline the phenomenon. There, the window order

5In discrete time, these time units are samples, and then the window length has to be
an integer multiple of PQ+ i.
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Figure 2.7: Constant-power-sum property of Cosine windows. In the upper
plot, the minimal overlap required is short of one, the condition of equation
(2.21) that i > 0 not being respected. The lower plot respects this condition:
see how the sum suddenly stabilises over the interval where PQ+ i windows
overlap. The coefficients of the cosine window were chosen randomly, to
emphasize the phenomenon.

P is set to 2 (i.e. three-terms cosine), the power Q, to 2. In the upper

plot, the overlap O is one short of the minimum for the windows to add up

to a constant. In the lower plot, the minimal overlap required is satisfied.

The sum of the windows then clearly stabilises to α. The coefficients of the

window were chosen randomly, so as to emphasize the phenomenon.

We now set to give an explanation for this property. To simplify the rest

of the development, we begin by noting that when the time shift index in

(2.21) reaches the number of overlapping windows, i.e. u = PQ + i, the

time shift becomes equal to one window interval. Instead of an infinity of
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windows, we can thereby do as if the windows were non-zero over infinity (as

opposed to [−N/2, N/2] only) and replace the left-hand side term in (2.21)

with a sum of PQ+ i of them, i.e.

PQ+i−1∑

u=0

(
P∑

p=0

ap cos

[
p

2π

N

(
n− uN

PQ+ i

)])Q

= α.

We know that a cosine window of order P contains P + 1 cosine terms, of

respective frequencies p2π/N for p = 0, 1, ..., P . Raised to the power Q, the

window now features all frequencies p2π/N for p = 0, 1, ..., PQ, and each pth

frequency term is then scaled by a new factor, let us call it cp. On this basis,

we re-express the Qth power of our cosine window as

(
wP (n)

)Q
=

PQ∑

p=0

cp cos p
2πn

N
, |n| ≤ N/2. (2.23)

Now it is possible to express (2.21) as a linear equation,

PQ∑

p=0

cp

PQ+i−1∑

u=0

cos

(
2πp

u

PQ+ i
− 2πp

n

N

)
= α. (2.24)

For the left-hand side term in 2.24 to be constant, the components of

non-zero frequency must cancel out. It turns out that the sum of samples of

a cosine wave, taken over p periods at a rate of (p+ i)/p samples per periods,
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is invariably nil. For us, this translates as

PQ+i−1∑

u=0

cos

[
p

(
2π

u

PQ+ i
+ φ

)]
=





0 p 6= 0,

PQ+ i p = 0,

meaning that only the zero-frequency components are to survive the summa-

tion. Hence we get

α = c0(PQ+ i) = c0O,

c0 being the factor of the cosine terms of frequency zero after the window is

raised to the power Q.

Property (2.21) is useful for transparent analysis/processing/resynthesis

using the Short-Time Fourier Transform. The FFT-based Phase Vocoder,

for instance, processes a signal in the frequency domain. In general, win-

dowing is then necessary both going from time domain to frequency domain

and from frequency domain to time domain. The interest of the time-to-

frequency windowing really is to reduce the cross-interference of partials in

the frequency domain, while frequency-to-time windowing is to ensure that

the grain smoothly tends to zero at its edges to avoid audible clicks. Tech-

nically, windowing a signal segment Q times in succession with the same

window is equivalent to windowing the signal once with the window raised to

the power of Q. Going to and coming from the frequency domain therefore

requires a window and overlap that sums up to a constant when raised to
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the power of two. In this regard, it can be found that

α2 =
O

2

(
a2

0 +
P∑

p=0

a2
p

)
, (2.25)

denoting by αQ the constant to which cosine windows raised to the power

of Q and overlap-added by a factor of O stabilise. However, it was realised

during the course of our research that in the context of frequency-domain

partial cancelation, frequency-to-time domain windowing is superfluous, for

reasons that will be pointed out in due time. If windowing takes place only

once, the summing constant is then simply

α1 = Oa0. (2.26)

2.2.4 Other windows

Windows need not be made of cosine components. A window, after all, is

only a composite mathematical function that is non-zero over a given interval,

and zero elsewhere, i.e.

w(n)




6= 0 |n| ≤ N

2
,

= 0 |n| > N
2
.

(2.27)

A wide variety of windows exists, an extensive list of which is given and

described in [Har78, Nut81]. The most popular seem to be the cosine win-

dows, but some other windows are regularly found in the literature as well,

notably the Kaiser-Bessel window, and the Gaussian window.
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Kaiser-Bessel window

The Kaiser-Bessel window (or simply Kaiser window) is defined as

k
w (n) =





I0

(
απ
√

1−
(

2n
N

)2
)
|n| ≤ N

2

0 |n| ≥ N
2

,

where I0(x) is the 0th-order modified Bessel function of the first kind, i.e.

I0(x) =
∞∑

k=0

[(
x
2

)k

k!

]2

.

The spectrum of this window can be expressed as [Nut81]

k

WN (b) = N
sin
(
π
√
b2 − α2

)

π
√
b2 − α2

, (2.28)

from which it is very visible that, for α = 0, the Kaiser-Bessel window reduces

to a rectangular window.

It is visible in (2.28) that the parameter α can be used to set the first

zero-crossing index b0 of the spectrum, and consequently the width of the

main lobe, satisfying the equality

α =
√
b2

0 − 1, |b0| > 1. (2.29)

Figure 2.8 shows the Kaiser window and window spectrum for two different

settings of b0. It is evident from both the figure and (2.29) that the zero first

crossing does not need to be at an integer frequency index, which is one at-
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Figure 2.8: Kaiser-Bessel window and window spectrum (normalised), for
two different zero-crossing settings.

tractive feature for a window. On the other hand, the roll-off of the sidelobes

is bound to 6 decibels per octave. The level of the sidelobes diminishes as

the main lobe widens. More specifically, it is found in [Nut81] that, when

the main lobe of the Kaiser window is adjusted to be the same width as that

of the 1st-, 2nd- or 3rd-order cosine windows, the Kaiser spectrum obtained

is very similar to that of the corresponding-order minimal-sidelobe window,

with the highest sidelobe greater only by a few decibels.
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Gaussian window

The gaussian function has a relatively simple time-domain expression,

g
w (n) =

1

γg

√
2π

exp

(
− n2

2γ2
g

)
, (2.30)

which is normalised by the constant γg

√
2π so that its total area is one, i.e.

∫ ∞

−∞

g
w (n)dn = 1.

One of the many specificities of this function is that its Fourier transform

is also a gaussian,
g

WN (b) = exp
(
−b22π2γ2

g/N
2
)
.

An example of a gaussian is given in solid line in Figure 2.9, with the

time-domain waveform in the upper panel, and the decibel spectrum in the

lower panel.6 It should be noted that, as opposed to the sinc-like spectra of

the other windows, the gaussian spectrum has no zero-crossings, and conse-

quently no sidelobes. Some other criterion should therefore be set for the

width of the lobe. We choose a decibel attenuation criterion, equating the

decibel spectrum at some frequency index b0 to some attenuation α, i.e.

20 log10

g

WN (b0) = − 40b2π2γ2
g

N2 log 10
= α (2.31)

6Notice that, after logarithmic transformation, the gaussian function becomes a
quadratic function. Hence, quadratic interpolation in discrete points of the log of a
gaussian is exact. This may become of interest when the problem of partial frequency
estimation is raised, in a later section of this chapter.
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Figure 2.9: Gaussian infinite (solid lines) and truncated (dashed lines) win-
dow (linear scale) and spectrum (decibel scale). The frequency-domain ap-
proximation by the dashed line is only satisfying when the time-domain lobe
is narrow in relation to the analysis interval.

The width of the lobe of the gaussian function is controlled with γg, which

we can now define using (2.31) in terms of the desired attenuation α at the

desired frequency index b0,

γg =
N

2πb0

√
−α log 10

10
. (2.32)

The idea is illustrated in the lower plot of Figure 2.9, with the marking of

some b0 and α coordinates.
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It has been assumed so far that the time-domain interval of analysis was

infinite, but this is of course not the case in practice. For practical use,

the time-domain gaussian must be truncated, or, equivalently, be multiplied

by a rectangular window, here of length N . The value βg of the truncated

gaussian at its boundaries can be obtained by substitution of γg as defined in

(2.32) into the time domain expression of the gaussian (2.30), and evaluation

for n = ±N/2, yielding

βg = exp

(
5π2b2

0

α log 10

)
.

The truncated gaussian window and its spectrum are shown in dashed lines

in Figure 2.9. Here, the truncation is largely exaggerated, so as to make the

discrepancy between the finite and infinite gaussians visible. This effect was

obtained by the setting of a large attenuation α at a small frequency index

b0. It is clear in Figure 2.9 that lowering α and/or getting b0 closer to 0

would make the lobe narrower. But the gaussian window is subject to the

uncertainty principle [Har98] like all other windows, and the width of its lobe

in the one domain is inversely proportional to that in the other domain.

The time-domain multiplication of the gaussian window with a rectangu-

lar window results in a spectrum that is the convolution of a gaussian with

a sinc function. A rectangular window width N that is wide in comparison

to the lobe width factor γg of the gaussian will make the frequency-domain

sinc function narrow, impulse-like, with little effect on the gaussian lobe. In

the opposite case, i.e. a large sinc lobe for an impulse-like gaussian lobe, the

spectrum would be closer to that of a rectangular window. In the lower plot
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of Figure 2.9, the spectrum of the truncated gaussian features the side lobes

reminiscent of the spectrum of the rectangular window. To reduce these,

either the attenuation factor α should be made lesser in magnitude (higher

on the plot), or the attenuation frequency index b0 greater, or both.

Now knowing the limits of the gaussian window, we compare its capa-

bilities with those of some minimal sidelobe windows. In Figure 2.10, the
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Figure 2.10: Confrontation of truncated gaussian window with the minimum
two- (upper plot) and three-terms (lower plot) cosine windows. Cosine win-
dows here show narrower main lobes.

solid lines show the spectra of truncated gaussians, and the dashed lines, the

spectra of the Hamming (upper plot) and Minimum 3-term [Nut81] (lower

plot) windows. The attenuation α of each gaussian window was set to the

level of the highest sidelobe of the corresponding cosine window, and the
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attenuation index, adjusted manually so as to get sidelobes of similar levels.

With such a sidelobe constraint, the main lobe of the truncated gaussian

window is slightly wider than that of the Hamming window, and wider by

almost 50% than the Minimum 3-term.

2.2.5 Discussion

A Window is characterised by a main lobe width and a sidelobe level. In turn,

a sidelobe level is characterised by a highest-sidelobe level, and a frequency-

dependent decay.

In a way, the main lobe of a window may be seen as a shrine to the

parameters of a frequency component, and as such is to remain uncorrupted.

Such corruption can be due to the overlapping of another main lobe, or the

intrusion of sidelobes from some other component. Regarding main lobe

overlapping, it must be avoided by ensuring some minimal frequency index

spacing between adjacent components. This spacing, although proportional

to the length of the analysis N , is restricted by the available length of the

analysed signal on the one hand, and by the assumption that the analysed

signal is made of static frequency components on a short interval of time

on the other hand. The spacing between the components can therefore not

be arbitrarily large. The spacing being restricted, the alternative way of

avoiding main-lobe overlap is to use some window with narrow main lobe.

However, a narrow main lobe is synonymous with high sidelobes. Side-

lobes are susceptible of intruding into the main lobes of other components,

and hence are an important factor to the choice of a window. As sidelobes
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extend to infinity and are common to all types of windows, some partial is

bound to corrupt and be corrupted by other partials in the analysis of multi-

component signals. Yet below a certain level, sidelobes can be considered

negligible. The analysis can thus be made practical via the acceptance of

some sidelobe threshold.

In all three types of windows seen, the width of the main lobe is ad-

justable, one way or another. For the Kaiser window, it can be adjusted

smoothly and continuously, the sidelobe level going down as the lobe goes

wide, and vice-versa. The width of the truncated gaussian window main lobe

is also controllable continuously, but the behaviour of the sidelobes near the

main lobe has been seen to be erratic. Finally, the main lobe width for co-

sine windows is necessarily an integer multiple of the analysis’ fundamental

frequency, in other words, an integer frequency index multiple.

For all windows, the sidelobe level depends on the width of the main lobe.

For cosine windows however, its trend is also adjustable, in terms of decay

rate and highest sidelobe level, with high decay rates for high sidelobe levels

near the main lobe, or low decay rate but minimal highest sidelobe. Some

compromise between these two extrema can also be achieved, by satisfying,

in the design of the window, of the derivative constraint up to some lower

order than the order of the window would allow, and using the remaining

degrees of freedom to minimise the highest sidelobe [Nut81]. Depending

on the situation, command over sidelobe decay rate may be useful. Also,

measurements in Section 2.2 have shown that the minimal-sidelobe cosine

windows performed better than the Kaiser-Bessel and gaussian windows.
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Convenience of use can also be a criterion in the choice of a window.

Cosine windows are very accessible due to the simplicity of their expres-

sions, and their spectrum is easily derived. In this regard, gaussian windows

are easy and even more convenient, inasmuch as their time- and frequency-

domain expressions are essentially identical. Yet care must be taken that the

approximation due to time-domain truncation does not bias the frequency-

domain representation significantly. As for the Kaiser-Bessel window, the

frequency-domain expression is very simple, but the infinite sum in its time-

domain expression is computationally costly and can only be approximated.

Finally, the constant-sum property of cosine windows may come as an

major argument for their use in the context of FFT-based analysis / pro-

cessing / resynthesis systems. In discrete time, a hop size of one sample is in

general required for overlapping windows to sum up to a constant [IS87]. In

this regard, cosine windows stand out, as the minimal hop size for a length-N

window of order P raised to the power of Q is N/(PQ+1) samples. In terms

of data sample density [All77], i.e. the number of frequency-domain samples

for each time-domain sample, this is a minimum of PQ+ 1 only, as opposed

to N in general.

Based on this discussion, an attempt at summarising the advantages and

disadvantages of the windows seen in this thesis is given in Table 2.2.
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Pros Cons

Cosine · Simplicity of expressions
· Unequaled performances
· Constant power sum
· Control over sidelobe de-
cay

· Each cosine window is a
different set of coefficients
that need be stored.

Kaiser · Main lobe first zero ad-
justable to non-integer in-
dex
· Results close to minimal
windows

· 6dB/octave decay
· Costly time-domain syn-
thesis

Truncated gaussian · Log is quadratic · 6dB/octave decay
· Poor lobe width / sidelobe
level trade off

Table 2.2: Recapitulated advantages and disadvantages of windows seen in
this thesis.

2.3 Discrete signals

To facilitate the development in Section 2.2, the time independent variable n

was considered continuous. Mainly, this allowed the use of the Fourier series

as opposed to the Discrete Fourier Transform (DFT), and thereby to deal

with integrals as opposed to summations, which is generally easier. However,

the application proposed in this thesis is computerised, and works in discrete

time. Discrete time signals and signal transforms have a few particularities ;

those which matter to our purpose are being examined in this section.
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2.3.1 Band-limitedness

First and foremost, it should be said that, inherently, a signal sampled at a

rate of fs samples per second cannot contain frequency components higher

than fs/2Hz. This is another wording of the Sampling Theorem, which, in

its paper of origin, states that [Sha49]

If a function f(t) contains no frequencies higher that fs/2Hz, it is

completely determined by giving its ordinates at a series of points

spaced 1/fs seconds apart.

To prove this, we begin with establishing the distinction between a con-

tinuous signal and its discrete counterpart,

x[n] = x (n/fs) , n ∈ Z.

A continuous-time signal can be constructed from the discrete signal with

the following convolution [Sha49]:

x′(t) =
∞∑

n=−∞

x[n]sinc (tfs − n) . (2.33)

Taking the Fourier transform of (2.33),

X ′(2πf) =

∫ ∞

−∞
x′(t)e−j2πftdt,
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Figure 2.11: Fourier transform (solid line) and DTFT (dashed line) of a
discrete-time signal. In continuous time, the discrete signal is expressed as
a sum of sinc functions, which induces the rectangular windowing seen in
the frequency domain, responsible for the absence of components beyond
|fs/2|Hz.

yields the spectrum

X ′(2πf) =
1

fs

r
wfs (f)

∞∑

n=−∞

x[n]e−jn2πf/fs

=
1

fs

r
wfs (f)X

(
2πf

fs

)
, (2.34)

where
r
wfs is a rectangular window of value 1 in the interval [−fs/2, fs/2], 0

elsewhere, and X is the Discrete-Time Fourier Transform (DTFT) of x[n],

X(ω)
∆
=

∞∑

n=−∞

x[n]e−jωn. (2.35)

Equation (2.34) and Figure 2.11 show that the Fourier transform of x′(t)

is, due to the frequency-domain rectangular windowing, zero for |f | > fs/2,

meaning that the frequency components of x′(t) can only be in the interval
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[−fs/2, fs/2], and nowhere else. As per the sampling theorem, if the orig-

inal signal x(t) features no component outside this interval either, then its

reconstruction from discrete time is identical, i.e. x′(t) = x(t).

So what happens when a continuous-time signal having components of

frequencies beyond ±fs/2 is sampled? The answer lies in the phenomenon

of aliasing.

2.3.2 Aliasing

Aliasing is well covered in textbooks, where it is said to occur upon the

sampling of a signal which contains frequencies higher than half the sampling

rate, called the Nyquist frequency [Z0̈2, Har98, Bou00, Ste96]. The key to

understanding aliasing is to realise that discrete-time signals are periodic in

frequency. First, to relate the sampling frequency to the system of notation

used through Section 2.2, let us state openly the relation

b

N
=
f

fs
,

saying that the sampling frequency corresponds to frequency index N , and

the frequency unit b = 1 is fs/N Hz wide.

Now let us consider the single-component complex exponential already

seen in (2.2), except now with the independent variable being an integer,

x[n] = Aejφe−jr2πn/N . (2.36)

This is a signal of angular frequency r2π/N . Yet, now that n ∈ Z, it is
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indistinguishable from a signal of identical magnitude A and phase φ, but of

frequency (r + lN)2π/N , for any integer l. Formally,

x[n] = Aejφe−jr2πn/N

= Aejφe−j(r+lN)2πn/N , l ∈ Z. (2.37)

In the frequency domain, the situation is consistent with this, the spec-

trum of a discrete signal being periodic in N , i.e.

X

(
2π

b

N

)
=

∞∑

n=−∞

x[n]e−jb2πn/N

= X

(
2π
b+ lN

N

)
, l ∈ Z.

Figure 2.12 gives an illustration of these two phenomena: on its upper panel,

a magnitude spectrum of x[n] as defined in (2.36), is presented over a few

frequency periods N . There, we have delineated a frequency band spanning

N frequency units, an interval by which the frequency shift of the spectrum

is futile, as it yields an identical spectrum. Consistently with the Sampling

theorem, this band is chosen to be centered on frequency 0, and hence spans

the interval [−N/2, N/2]. This band might be called the “useful band”.

Yet, recorded signals are real signals, which can be seen, as per Euler’s

formula, as the sum of two complex exponentials, complex conjugates of one
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Figure 2.12: Periodicity of the DFT for complex (upper plot) and real (lower
plot) signals.

another. For example,

x[n] = A cos (r2πn/N + φ)

= A cos ((r + lN)2πn/N + φ)

=
A

2

(
ej((r+lN)2πn/N+φ) + e−j((r+lN)2πn/N+φ)

)
. (2.38)

In the spectrum of such signal, a peak will be found every r+ lN and lN − r
bins. Such a spectrum is given in the lower plot in Figure 2.12. There, it

is visible that, for real signals, the useful frequency band is fs/2 frequency

units wide. One might consider that the frequencies found in a real signal

are only positive (in reality, they are both positive and negative, as per

Euler’s formula), and then set the boundaries of the useful frequency band

to [0, fs/2].

In discrete time, a frequency component of frequency fHz is going to
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be the cause for the presence an alias every f + lfsHz. If some continu-

ous component of frequency f outside the [−fs/2, fs/2] interval is sampled,

this component will be folded back in the aforementioned interval at fre-

quency fs/2 + mod (f − fs/2, fs/2). Upon continuous-time reconstruction,

the folded-back component will survive, but due to the rectangular window-

ing of the spectrum, the original component is going to vanish. It is such

frequency-folding artifact that, due to its nature, is commonly called aliasing.

2.3.3 Dealing with aliasing

In the design of Analogue-to-Digital Converters (ADC), aliasing is seen as

an artifact, and is avoided by the elimination of any continuous-time com-

ponent of frequency greater than half the sampling rate, ideally without any

perceptual reduction the analogue signal’s quality. This is achieved through

low-pass filtering in the continuous domain, with the alignment of the Nyquist

frequency and the filter’s cut-off frequency and stop-band on some frequency

threshold, often the threshold of audibility of humans. Aliasing in ADC is not

of concern here, however, as we are dealing with signals exclusively in discrete

time, whether originally issued from some ADC, or obtained directly from

synthesis. The only care to give so as to avoid foldback is not to synthesise

frequencies or to shift existing components outside the useful band.

In digital signal analysis and processing, aliasing is of a different concern.

Mainly, it augments the sidelobe density in a signal’s spectrum, as sidelobes

extend to infinity, and there is a copy of each peak every ±N,±2N,±3N...

frequency units, ad infinitum. The “sidelobe floor” is therefore the combined
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effect of an infinity of virtual components, even if one component only orig-

inally figures in the signal. However, we have seen that the spectral decay

trend of windows asymptotically converges towards zero, which allows the

setting of a window-dependent width B, beyond which the level of sidelobes

can be considered negligible. While remote aliases can therefore be consid-

ered not to interfere, the nearest aliases, situated beyond the limits of the

useful frequency band [−N/2, N/2], are clearly susceptible of interfering with

original partials, just as original partials may interfere between themselves.

Not only original components, but original components and aliases, must

thereby all be spaced by B frequency units. Aliases and negative-frequency

halves of real components altogether considered, this spacing is guaranteed if

condition (2.9) is respected (Section 2.2), and, for all component of frequency

rk ∈ [0, N/2],

rk >
B

2
,

and

N/2− rk >
B

2
.

This second condition is intended to keep both “insiders” – original compo-

nents – and “outsiders” – aliases – at a distance of B/2 bins away from the

limits of the useful band, thereby ensuring the required B-spacing.

2.3.4 The Fast Fourier Transform

Due to the sampled nature of digital signals, we are, in discrete time, to use

summation-based (as opposed to integration-based) Fourier analysis tools.
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These are the Discrete-Time Fourier Transform (DTFT), already introduced

in (2.35), and the Discrete Fourier Transform (DFT),

XN [b]
∆
=

N−1∑

n=0

x[n]e−jb2πn/N . (2.39)

The DTFT cannot be computed due to the infinite-index summation,

although it can be useful at an analytical level. Of the four essential Fourier

transforms, the only left for us to analyse input discrete signals is therefore

the DFT. This section is going to discuss the computational load inherent

to the DFT, introduce an efficient algorithm to its calculation, and explore

applications of this algorithm beyond the mere computation of DFTs.

As seen in (2.39), the DFT requires, for each spectral sample, the calcu-

lation of x[n]e−jb2πn/N for N distinct time indices. The inverse DFT,

DFT−1 {XN} ∆
=

N−1∑

b=0

XN [b]ejb2πn/N , (2.40)

in turn requires N spectral samples for the reconstruction of the original

sequence. Hence, the computational complexity for the complete frequency-

domain description of some N -length discrete-time segment is, in big-oh no-

tation, O (N2) 7. In spite of the constant improvement in processing power of

computers, real-time applications can suffer from such computational load.

Yet there exists an algorithm, or class of algorithms [OSB99], essentially

based on a divide-and-conquer approach [Ste96], which can compute the N

7Big-oh notation is covered in Computational Complexity in standard third-level Com-
puter Science curriculums. The textbook [Sip06] gives a comprehensive introduction on
the subject.
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Figure 2.13: N -length DFT (circles) and FFT (crosses) big-oh computational
complexity.

spectral samples of the DFT in O(N logN) time, provided that N is a power

of two. This algorithm is the Fast Fourier Transform (FFT). Figure 2.13

gives an impression of the computational savings obtained through the use

of the FFT. There, the computational cost of the DFT computed straightfor-

wardly is seen to grow in the manner of a parabola, besides which the N logN

growth seems almost linear. And yet, for the figure to be visually meaning-

ful, N was limited to 30, while analyses of several thousand of samples are

commonplace.

Using the convolution theorem (Appendix C.2), the FFT can also be used

to compute discrete-domain circular convolutions and cross-correlations at

lesser cost. Convolution is especially useful in the theory of Linear Time-

Invariant (LTI) digital systems, where the output of a filter can be obtained

from the convolution of the system’s impulse response with the input 8.

Cross-correlation, in turn, is of interest for us as auto-correlation (i.e. the

cross-correlation of a signal with itself) can be used to estimate the pitch of

8The theory surrounding this statement is well covered in Digital Signal Processing
textbooks, e.g. [Ste96, OSB99].
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harmonic signals.

Let us first establish the definitions required to make our point. We define

the N -length FFT operation onto some signal x as

FFTN {x} ∆
= XN ,

The inverse transform FFT−1
N is such that

FFT−1
N {FFTN {x}} = x,

and is of equal computational load to the FFT, i.e. O
(
FFT−1

N

)
= O(N logN).

The N -length circular convolution and cross-correlation of signals x and

w span the interval [0, N − 1] and are defined as

(x~ w)N [n]
∆
=

N−1∑

m=0

x[m]w[mod(n−m,N)] (2.41)

and

(x ? w)N [n]
∆
=

N−1∑

m=0

x∗[m]w[mod(n−m,N)], (2.42)

respectively.9

The convolution theorem states that the Fourier transform of the convo-

lution/product of two signals equals the (scaled) product/convolution of the

Fourier transform of each signal. This theorem is transposable to all four

9The asterisk seen in (2.42) is the complex conjugation operator, i.e.
(
ejφ
)∗

= e−jφ.
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Fourier transforms, and in the present case implies that

(x~ w)N =
1

N
FFT−1

N {FFTN{x} · FFTN{w}} , (2.43)

and, applied to cross-correlation, that

(x ? w)N =
1

N
FFT−1

N {FFT∗N{x} · FFTN{w}} 10. (2.44)

In terms of cost, the direct computation of some N -length convolution

(2.41) or cross-correlation (2.42) takes, similarly to the DFT case, O (N2)

time. However, each of the FFT-based equivalents, (2.43) and (2.44), takes

O

(
1

N
FFT−1

N {FFTN · FFTN}
)

= O(N + 3N logN)

= O(N logN)

time only, following the conventions of big-oh notation [Sip06]. The gain in

time is shown here to be of the same order of magnitude as that seen in

Figure 2.13.

Using the FFT is, in a variety of contexts, a substantial gain of time. Yet

at first glance, the constraint of setting the analysis length N to some power

of two may seem inconvenient. Indeed, to keep the quality of near-stationary

and/or finite-length signal analysis at an optimum, it is essential to have

complete command over analysis length. To combine both arbitrary analysis

length and FFT efficiency, the solution is to use zero-padding.

10Formal statement and proof of the convolution theorem and its extensions can be
found in Appendix C.
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2.3.5 Zero-padding

The purpose of this section is to examine the effect of zero-padding a signal on

the signal’s DFT. In DSP terminology, zero-padding a discrete signal means

concatenating a finite-length sequence of zeros to the tail of the signal. Zero-

padding can be emulated with the use in the DFT of a length-N rectangular

window, and setting the DFT length to some power-of-two greater than N ,

M = 2i, i ∈ Z, M ≥ N . The M -length FFT of xN then becomes

XM
N [b] =

M−1∑

n=0

x[n]
r
wς (n)e−jb2πn/M

=
N−1∑

n=0

x[n]e−jb2πn/M . (2.45)

These equalities show that the M -length DFT (or FFT) of a signal of length

N padded with M−N zeros is similar to a straightforward N -length DFT, to

the difference that it is evaluated at frequency multiples of 2π/M instead of

2π/N , the “natural frequency” of the analysis. A important consequence is

that, while the number of discrete frequency indices increases from N to M ,

the width of “frequency events” increases proportionally. Concretely, what

this means is that the width of the spectral lobe of a window increases by

a factor of M/N , as does the number of samples per frequency period. For

instance, consider Wς
M
N , the length-M DFT spectrum of a window wς of

regular length N . It follows from Equation (2.45) that

Wς
M
N

[
b
M

N

]
= Wς N [b].

119



For instance, say Wς N has its first zero-crossing at bin b0, and hence has

a main lobe 2b0 bins wide. In the spectrum Wς
M
N of the zero-padded win-

dow, the first zero is going to be found at index b0M/N , as Wς N [b0] =

Wς
M
N [b0M/N ]. Whether in the original spectrum or the “zero-padded spec-

trum”, the ratio useful band/lobe width thereby remains the same, i.e. N/2b0.

In the light of this discussion, we see that the setting of the length of

an FFT to M does not modify the spectrum’s attributes stemming from the

length N of the window. In our spectral notation, e.g. XM
N , we can say that

the subscript denotes the periodicity of the frequency-domain signal, while

the superscript is a direct indicator of the “analysis resolution”. Considering

the meaning we give to this term, it is therefore more appropriate to see the

effect of zero-padding as a reading of the spectrum between the multiples

of the analysis frequency 2π/N , in other words, as a means of interpolation

[IS87], rather than an increase in resolution.

This type of interpolation is nevertheless particularly good, as it is faith-

ful to the actual continuous-frequency contour yielded by the correspond-

ing DTFT. To increase the interpolation even more, M may be derived as

2dlog2Ne+i, for some non-zero integer i, instead of merely satisfying the power-

of-two constraint by setting the FFT length to M = 2dlog2 Ne. In Section 2.4,

where the problem of “extracting” the parameters of a partial from its spec-

tral lobe is approached, this might be found to be quite useful.
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2.4 Determination of a sinusoidal model suit-

able for short-time partial cancelation

A wide variety of signals consist of sinusoids, with slow-changing parameters,

mixed up with some level of noise. Estimating the frequency, phase and

amplitude parameters of the sinusoids making up such signals is the basis to

a wide variety of applications, among which, the very purpose of this thesis:

string extraction.

Because of its special status, the literature on the subject of sinusoidal

analysis is voluminous. Among the varied approaches therein proposed, we

are to pick that which is best suited to our purpose. Let us recall that

we are favouring a phase-vocoder-based approach to string extraction. This

implies a Fourier-based approach to sinusoidal analysis. Surveys of such

methods for signals that can be assumed stationary – constant-amplitude

and constant-frequency components – are given in [KM02, HM03]. Of the

solutions proposed, the most popular is probably the quadratic-fit method,

because it is very intuitive, simple to implement, and has the potential of

yielding readily accurate frequency, magnitude and phase estimates [AI04].

Another is the phase difference method, a little bit less straightforward to

implement, but yet a simple way of surpassing the time/frequency resolution

trade-off inherent to Fourier analysis [Z0̈2, p. 337]. There, the phase evolution

between successive spectra is kept record of and used to refine the rounded

frequency corresponding to a local magnitude peak in the spectrum. In

this sense, it is not so far off from the Complex Spectral Phase Evolution
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method, which, although quoted less often in the literature, is arguably a

simpler, more accurate and secure way of exploiting the evolution of phase

over time [SG06]. Another method worthwhile mentioning is the method

that uses the spectrum of the time derivative of the signal along with the

traditional spectrum to refine the frequency estimate [Mar98]. Although the

improvement in frequency estimate there is real, the method is, in practice,

relatively complex and computationally costly to implement.

All these techniques, as designed originally, assume that the frequency and

amplitude of the sinusoids making up the signal is approximately constant

over the analysis period. Much research has been put in recent years for the

generalisation of such techniques to the evaluation of non-stationary signals.

In our choice for a technique, it is an important question to consider whether

string signals, over the period of the analysis, can indeed be considered static,

and if not, in which aspects – frequency, amplitude, or both? The purpose

of this section is to answer this question. To do so, we are going, in Section

2.4.1, to simulate the use of a constant-amplitude model for the cancelation

of an exponential-amplitude partial – which is indeed the nature of our string

partials, as seen in Chapter 1. Likewise, a constant-frequency model is going

to be used against a linear-frequency model in Section 2.4.2. (We saw in

Section 1.2.6 that, in the presence of tension modulation, the frequency of the

partials followed the non-linear model of Equation (1.50). Yet it is deemed

that a first-order polynomial approximation, at the time scale of an analysis

window, is in any case largely exact.) The conclusion to these simulations will

tell us what parameters it matters to estimate, and thereby help us choose
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an appropriate analysis method.

2.4.1 Canceling exponential-amplitude partials with si-

nusoids of constant amplitude

The standard partial cancelation process consists of synthesising a sinusoid

identical to the target sinusoid, and subtracting it thereafter. In this section,

the focus is on amplitude, and the complexity of the mathematical notation

can be reduced if we assume that the target sinusoid is perfectly measured in

phase, frequency and amplitude at the sample index of the analysis, only the

synthesised tone has constant amplitude, while the actual measured tone has

exponential amplitude. We therefore omit the phase and frequency terms in

our expressions, to concentrate on levels.

We have seen in Chapter 1 that the decay rate of the harmonic series,

γk, was a second-order polynomial in k (1.27). At higher harmonic indices,

the decay rate is therefore much greater, and the cancelation of partials with

some constant-amplitude wave, worse. Yet, it must be realised that higher

partials are initially lesser in amplitude, and thereby require to be attenuated

less before becoming inaudible. We have seen in our physical analysis that, for

hit strings, the level of a harmonic was inversely proportional to its number

(1.18), and for plucked strings, it was at best inversely proportional to its

number (1.13). In a normalised digital tone, the maximum amplitude of a

partial is 1, corresponding to a Full-Scale decibel (dBFS) level of 0. On the

basis of all this, we can say that the optimal level of a string’s kth harmonic
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is

κ(t) =
1

k
e−γkt.

To simplify the expressions to come, we consider that κ is well approxi-

mated with a first-order polynomial for a short period of time. Approximated

around t = tu, the level thus becomes

κ(t) ≈ −γk
k
e−γktu(t− tu) +

1

k
e−γktu , for small |t− tu|.

Say we evaluate the amplitude of the partial at time tu exactly, and cancel

around this time index the component with a constant-amplitude wave. The

level of the canceled wave, λ(t), comes out as

λ(t) = −γk
k
e−γktu(t− tu).

Next: set λ to some fixed value corresponding to a minimal tolerated

attenuation in decibels, λ = 10λdB/20 ; substitute tdB, the time it takes from

the analysis time tu to reach λ, in place of t − tu ; and solve for tdB. This

yields

tdB =
k

γk
10λdB/20+γktu/ log 10. (2.46)

Three comments can be made on Equation (2.46):

• The time it takes for the cancelation to degrade beyond what can be

tolerated is an exponential function in the decibel attenuation thresh-

old λdB. Roughly speaking, this means that, if we raised the level of

tolerance, the cancelation process will be satisfying over a longer pe-
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riod of time. Lower levels of tolerance, consistently, induce shorter “full

cancelation times”.

• tdB is also exponential in tu, the place where the cancelation occurs.

Indeed, the gradient of the exponential curve is visibly smaller later

into the sound. Short-term stationary-amplitude cancelations might

therefore not be satisfying near the excitation time, but improve as

time passes by, later into the tone.

• Finally, the relation between tdB and the partial index k is more com-

plex. At time 0, it would be proportional to k/(b1 + b3k
2), and so we

could say that, for large k, it is inversely proportional to the harmonic

index. However, as glimpsed in figures 1.6 and 1.5, the 2nd-order co-

efficient b3 is generally around a hundred times smaller than b1, which

implies that this trend will not be visible until some elevated harmonic

number is reached.

The time it takes for the cancelation to become less than acceptable is

not meaningful on its own. It must be put in relation to some indicator of the

period over which the cancelation is going to take place. In our phase vocoder

setup, this period is going to be the analysis window length N , itself adjusted

in accordance with the fundamental period of the analysed tone. Using some

P th-order cosine window, this length is going to be at least 2(P + 1)T0, for

the minimal requirement that spectral main lobes from adjacent harmonics

do not leak one into another. As the analysis time index is at the center of

the window, tdB only needs to be equal to, or greater than, half this length

for the cancelation to be considered successful. The order of the window
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P being chosen independently of the note being played, we can express the

condition for successful cancelation as

tdB/T0 ≥ P + 1. (2.47)

Before we proceed on to the evaluation of constant-amplitude cancelation

effectiveness in string tones, some sensible maximal level of inaudibility λdB

and cancelation time index tu must be chosen. A reasonable decibel level

of tolerance for the canceled partials is -60dBFS, a referential attenuation

level in other audio engineering contexts, that corresponds to a linear level

of one thousandth. It may be argued that −60dBFS sinusoidal components

are still slightly audible when they occur in some frequency band where the

human hearing is the most sensitive. However, we have been rather harsh in

other places, which leaves us a bit of headroom here. For instance, we have

neglected, for the sake of simple expressions, the attenuation due to the win-

dow, important near the edges of the analysis. Also, an initial optimal level

for the harmonics of 1/k at time 0 is really optimal: the harmonics add up

together, and for the final waveform not to clip the harmonics must generally

be scaled down. Finally, we choose for simplicity to set the analysis time tu

to zero, which is the time when the gradient of the amplitude envelopes is the

greatest, making it harder for constant-amplitude cancelation. In addition,

it is also the time when the partials are the greatest in amplitude, and hence

when the attenuation constraint is the most severe. All things considered,

we can confidently say that the respect of condition (2.47) at the onset of the

sound and for a required post-cancelation wave level λdB of −60dBFS guaran-

126



tees a successful cancelation process. Now whether string tones satisfy this

condition or not remains to be seen.

In spite of setting tu and λdB to some fixed value, the level time tdB

still depends on the decay rate of each harmonic, in each note, for each

instrument. It was tried to resort to the γk model of equation (1.27), but

the fitting of this model does not yield satisfying b1 and b3 coefficients across

all tones of all instruments. It was therefore chosen to use the measured

decay time of each harmonic individually. Then tdB could be evaluated as

k
γk

10−3, which is Equation (2.46), after substitution of 0 for tu, and of -60

for λdB. Finally, tdB had to be divided by the fundamental period T0 of

the corresponding tone to evaluate if the condition for successful cancelation

(2.47) is met.

The experiment was run over four string instruments of contrasting char-

acter: an American Fender Stratocaster electric guitar, a grand piano, a

double bass plucked in jazz style, and a harpsichord.11 For each instrument,

several notes were chosen, evenly spaced across the instrument’s range. For

each harmonic, the decay rate was measured, and tdB thereby derived. The

measurements are shown in Figure 2.14. These values, except for some out-

siders and local trends, are seen to be relatively homogenous across each

instrument’s plane. The median value, highlighted with a black stem, can

thereby be considered as a meaningful indicator of whether a stationary-

amplitude model is sufficient for the string extraction on a given instrument.

The median values are listed in Table 2.3.

These results can be clearly put in relation to the “brightness” of the

11The samples were issue from Yamaha sample CDs, A5000 Professional Studio Library
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Figure 2.14: “Full-cancelation time”, tdB, over the note’s fundamental pe-
riod, T0, measured for each harmonic (“Har. num.” axis) of a number of
notes (“MIDI note” axis) and four instruments, from top to bottom: electric
guitar, grand piano, double bass (plucked) and harpsichord. The rule for
successful cancelation of a partial with exponential envelope approximated
with a constant-amplitude sinusoid is that tdB/T0 > P +1, P being the order
of the window used. The median values tdB/T0 for each instrument, in black,
are shown in Table 2.3.

instruments. Bright instruments are instruments where the partials decay

slowly, and hence where cancelation based on static-amplitude synthetic

tones is most effective. The grand piano is indeed the instrument whose
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Stratocaster Steinway Double Bass Harpsichord
median(tdB/T0) 1.1393 5.4936 0.3132 2.0219

Table 2.3: Median values of the ratio tdB/T0 across all harmonics of all notes,
for four instruments of contrasting character.

tones, over most of its range, exhibit the greatest sustain. The harpsichord

is also a relatively bright instrument, as well as the electric guitar. The dou-

ble bass, on the other hand, is known for its heavily dampened, “round” and

muted character, with very short-lived tones. The table is consistent with

this. It indicates that canceling the partials of a grand piano can be done

with a constant-amplitude sinusoid using an analysis window of large order,

up to 4 if we put the median value in relation to the condition of successful

cancelation, (2.47). It also says that constant-amplitude cancelation can be

used for a harpsichord if the window is of order 1, i.e. a Hann or Hamming

window. However, only a rectangular window seems to be admissible for the

Stratocaster, and we know that this is not an option due to the high sidelobe

level of this window. As for the double bass, the decay rate of partials is

such that the cancelation must be done with synthetic sinusoids of linear, or,

better, exponential amplitude.

According to these readings, a constant-amplitude sinusoidal analysis

technique is sufficient for the string extraction of the brightest string in-

struments. However, our ambition is to devise a string extraction technique

applicable to all plucked- and hit-string instruments, ambition for which tak-

ing the exponential decay of the partials into account is necessary. Also, the

minimal length N to resolve adjacent harmonics can be found to be insuffi-
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cient, especially for tones which feature distinct phantom partials, the likes

of which we saw previously in figures 1.11 and 1.12. The conclusions drawn

from this section therefore orientate us toward a sinusoidal analysis that

accounts for amplitude changes in the components.

2.4.2 Canceling linear-frequency partials with constant-

frequency sinusoids

The process of evaluating the need or not for a linear-frequency model in the

cancelation of the partials is similar to that in the constant-amplitude case.

First we express the kth harmonic xk with an optimal amplitude level of 1/k,

disregarding, for simplicity, the dependence of amplitude on time:

xk(t) =
1

k
exp

[
j

(∫ t

0

ωk(u)du+ φ

)]
. (2.48)

The frequency ωk(t) is, according to our string model, k (ω∆e
−γωt + ω∞)

(Equation (1.48), Section 1.2.5), if we neglect the contribution of the time-

varying inharmonicity coefficient. This is still a relatively complex expression,

and to allow for a simple, readable outcome to this development, we approx-

imate the frequency with a first-order polynomial, as we did for amplitude.

To be short, we readily choose this approximation to be made about time 0,

where the glide is the steepest, to get

ωk(t) ≈ −kγωω∆t+ kω∞ for small t. (2.49)
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Substitution of (2.49) into (2.48) yields

xk(t) =
1

k
exp

[
j

(
−1

2
kγωω∆t

2 + kω∞t+ φ

)]
. (2.50)

Again, we assume that, at the time of the analysis, the constant-frequency

term kω∞ and the phase φ are evaluated perfectly, and are used synthesize

a signal

x′k(t) =
1

k
exp (jωkt+ jφk)

for the cancelation of xk. We denote again the level of the wave after cance-

lation with λ(t), which is the magnitude of the difference of the two waves,

i.e. λ(t)
∆
= |xk(t)− x′k(t)|, reducing to

λ(t) =
2

k
sin

(
k

4
γωω∆t

2

)

≈ 2 sin

(
1

4
γωω∆t

2

)
,

where we used the approximation sin(kt)/k ≈ sin(t), valid for small t.

Setting λ(t) to some fixed value λ corresponding, again, to the maximum

level acceptable for the canceled wave to remain inaudible, and solving for

the corresponding time tdB, we get

tdB =

√
4

γωω∆

sin−1 λ

2
.

We see here that the time lapse tdB before the level of the output wave

becomes greater than λ is inversely proportional to the square root of both the
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decay rate of the non-stationary part γω of the frequency ω∆, and ω∆ itself.

For most string tones, these are negligible, and there tdB can be considered to

be infinitely large. The tones where the frequency glide was found to be the

most conspicuous were the Ovation acoustic guitar fortissimo tones, whose

measurements were shown in the upper plot of Figure 1.9. In Table 2.4, we

show the decay rate and time-varying part of the fundamental frequency over

a range of notes of our Ovation guitar samples, alongside the tdB/T0 ratio.

MIDI note γω ω∆ tdB/T0

40 2.1272 0.5208 3.5015
44 3.9312 0.4857 3.3604
48 4.3385 0.4313 4.2768
52 1.8438 0.6241 6.8710
64 4.3999 1.6048 5.5476
68 2.3838 1.6135 9.4703

Table 2.4: The decay rate γω and magnitude ω∆ of the non-constant part of
the fundamental frequency of string tones can be used to estimate the ratio
tdB/T0. The measurements shown here are from fortissimo tones of an Ova-
tion acoustic guitar, spanning two octaves and a major third. The evaluation
of tdB/T0 indicates here that, in the worst case, a second-order cosine window
can be used in a cancelation process using a constant-frequency model, and
yet ensure an output wave of less than -60dBFS.

It can readily be concluded from the reading of this table that string

tones can be canceled with frequency-stationary signals over a period of time

that is at least over six times the fundamental period of the corresponding

tones. It is acknowledged that some electric guitar tones can exhibit stronger

pitch glides than those seen and heard in acoustic guitar tones. However,

notwithstanding that the attenuation of the window itself is omitted here,
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this concerns a very small minority of tones, for which the added complication

and computational load of using sinusoidal analysis techniques for signals of

linear frequency is probably not worthwhile.

Section 2.4 has shown that it is necessary to account for the exponential

envelope of the plucked- and hit-string partials, even though the time inter-

val over which cancelation takes place is, in our Phase Vocoder approach,

no longer than a few times the string’s fundamental period. However, a

generalisation of the model to first-order frequency was shown unnecessary.

It was said that the various options in terms of choice of sinusoidal analy-

sis methods that met this requirement should, at this stage, be examined.

Generalisations of the quadratic fit method and the derivative method were

respectively introduced in [AS05] and [MD08], but it was found that the

Complex Spectral Phase Evolution (CSPE) method introduced in [SG06],

simpler than the previous two, could be generalised to returning the decay

rate of sinusoidal signals as easily as their frequency. In acknowledgment to

the original method, we have named this method the Complex Exponential

Phase and Magnitude Evolution (CSPME) method. Because of its simplicity

and its accuracy, it can be said in anticipation that this is the method we

are going to choose. It is introduced in Section 2.5.1, and how the frequency

and exponential amplitude estimates that it returns can be used to estimate

the phase and amplitude constants will be shown in Section 2.5.2.
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2.5 Parametric estimation of our short-time

sinusoidal model

The short-time sinusoidal model we have argued for in Section 2.4 is recapit-

ulated in Figure 2.15. These parameters are ωr, γ, φ and A.

0

0

n

 

 

Aej φ

A

2π

ωr

Aeγ n

Aeγ n+j (φ +ωrn)

Figure 2.15: The four parameters of our short-time sinusoidal model: fre-
quency (ωr), growth rate (γ), initial phase (φ) and amplitude (A).

As said previously, the CSPME method will yield ωr and γ, the frequency

and exponential amplitude constants. It will be shown thereafter how these

are key to the evaluation of the phase and amplitude constants.
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2.5.1 The Complex Exponential Phase Magnitude Evo-

lution method.

Throughout Section 2.2, we have been referring to the signal x(n) as a

constant-amplitude and frequency complex exponential (c.f. Equation (2.2)).

To keep the mathematical symbols simple, we now denote such signal with

x′, as in

x′[n] = Aejφejr2πn/N , (2.51)

and x is generalised to an exponential-amplitude signal,

x[n] = Aejφejr2πn/Neγn.

The two signals are related as follows,

x[n] = x′[n]eγn.

Now let the signal y be the signal x forward one sample, i.e. y(n) =

x(n+ 1). We see that it can also be related to x by

y[n] = eγejr2π/Nx[n]. (2.52)

Similarly, if we take the DFT of y, we realise that we get that of x, except

multiplied by exp(γ + jr2π/N), i.e.

YN [b] = eγejr2π/NXN [b].
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Notice that the quotient of X and Y can be used to get to γ and r. We

define

ZN [b]
∆
= log

YN [b]

XN [b]
, (2.53)

get γ as

γ = real{ZN [b]}, (2.54)

and r,

r =
N

2π
imag{ZN [b]}. (2.55)

An equation similar to (2.55) can be found in the paper that introduced

the CSPE method [SG06]. The finding of the exponential amplitude coeffi-

cient through (2.54) is, on the other hand, the result of our generalisation

of the method. As such, this augmented method shall be called Complex

Spectral Phase-Magnitude Evolution (CSPME).

It can be seen that, with the CSPME, it is very straightforward to obtain

the first-order coefficients of phase and exponential amplitude. Evaluating

the corresponding zeroth-order coefficients, however, infers a lengthier devel-

opment and more elaborate theory.

2.5.2 Amplitude and phase constants

In [SG06], it was shown that the exact frequency of a component could be

used to evaluate its exact amplitude as well, with a method equivalent to

that already seen in the phase difference method [Z0̈2] and the derivative

method [Mar98]. In short, the method consists of “raising”, or normalising,

the magnitude values of the spectrum to the sought amplitude constant,
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by dividing the signal’s spectrum at the bin nearest to the component’s

frequency with the spectrum of the analysis window, shifted in frequency by

the frequency of the component. Here we propose a generalisation of this

approach to the exponential-amplitude case.

It was found that the simplest way to visualise the DFT of x was as the

DTFT of the product of three signals: x′, which is the same as x but without

the exponential amplitude envelope; v, any length-N window (cf. (2.27)),

but delayed to the interval [0, N), and periodicised in N , repeating itself

ad infinitum; and g, an “exponential decay window” of length N . Written

formally, this is

XN [b] =
∑

n

(x′ · g · v)[n]e−jb2πn/N (2.56)

where

g[n] =




eγn n ∈ [0, N)

0 n /∈ [0, N − 1]

(2.57)

and

v[n] = wς [mod(n,N)].

Now that we have broken down x into such entities, the convolution

theorem enables us to express the transform of this product as the circular

convolution of the transform of each of these entities, i.e.

XN [b] =
1

N2
(X ′ ~G~ V ) (ωb). (2.58)

The sinusoidal parameters A and φ are easy to retrieve from Equation (2.58).
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First, examine the DTFT of x′,

X ′(ωb) = Aejφ
∑

n

ej(r−b)2πn/N

= NAejφδ(b− r),

then make the definition

GV (ωb)
∆
=

1

N
(G~ V )(ωb), (2.59)

derive the convolution of X ′ and GV ,

(X ′ ~GV )(ωb) = NAejφGV (ωb − ωr), (2.60)

substitute (2.59) and (2.60) into (2.58) and get Aejφ:

logA+ jφ = log
XN [b]

GV (ωb − ωr)
. (2.61)

In the right-hand side of equation (2.61), we have, in order of appearance,

a Discrete Fourier Transform term and a Discrete-Time Fourier transform

term. Because v[n] is only non-zero over the interval [0, N), it turns out that

the DTFT of the product of s and v is equal to its DFT, i.e.

GV (ωb) = GVN(b).

In the DFT, however, the argument is an integer, which is not the case

for b − r. The way to “delay” the DFT by a fractional number of bins r is
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to introduce in the transform a modulation signal

ξ(n)
∆
= ejr2πn/N . (2.62)

The CSPME formulae (2.55) and (2.54) provide us with r and the exponential

amplitude coefficient γ, respectively. For an arbitrary window v, we can now

synthesize (ξ · g · v)[n], and hence get the desired spectrum

GVN(b− r) = DFT {(ξ · g · v)[n]} . (2.63)

Without the presence of noise or other partials, and ignoring the digital

round-off errors, this procedure yields the exact values of A and φ. However,

it requires the synthesis of N samples as well as their DFT – or FFT. A

computationally cheaper alternative is to approximate the DTFT of (g ·v)[n],

GV , with the continuous-time Fourier transform of (g·v)(n), GV , establishing

GV (ωb) ≈ GV(ωb),

which is true if N , the length of the window, is sufficiently large, and for small

b. Similarly to the discrete-time case (2.59), the Fourier transform spectrum

GV is here the convolution of the transform of g, G, with that of v, V . The

former is relatively simple,

G(ωb) =
N

Nγ − jb2π
(
eNγ−jb2π − 1

)
. (2.64)

An analytic expression for V is easily obtained if we use in our analysis a
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cosine window. Then, v becomes

v[n] =
P∑

p=0

(−1)pap cos(p2πn/N), (2.65)

its spectrum,

1

N
V(ωb) = a0δ(b) +

1

2

P∑

p=1

ap(−1)p [δ(b− p) + δ(b+ p)] . (2.66)

and the scaled convolution of G with V ,

GV(ωb) = a0G(ωb) +
1

2

P∑

p=1

ap(−1)p [G(ωb − ωp) + G(ωb + ωp)] , (2.67)

where ωp = p2π/N . Now the amplitude and phase can be obtained with

replacement in (2.61) of GV with GV , with the condition that |ωb − ωr| is

small, and so that b, the integer frequency index used for the estimate, is close

to r. To satisfy this condition, let b0 be the bin closest to r, i.e. b0 = bre.
Then

Aejφ ≈ XN [b0]

GV(2πb0/N − ωr)
. (2.68)

Equation (2.68) shows that the estimation of the amplitude and phase

constants of our target sinusoid requires GV to be evaluated for one value of

its argument only. This is obviously more efficient than having to compute

an FFT and store its entire set of M values, even temporarily. As will be seen

in Section 3.2.1, GV can also be used for the frequency-domain cancelation

of partials, but then it has to be evaluated for as many bins as there are in
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the main lobe of the partial. The analytical approach yet remains computa-

tionally cheaper than the FFT approach, so long as care is taken to evaluate

all these values of GV in an efficient manner. A computationally efficient

approach to the computation of the entire main lobe of GV was therefore

elaborated, and so as to keep these mathematics in one same place, it was

decided to present this approach now rather than later.

2.5.3 Computationally optimal calculation of the ex-

ponential window spectrum

In our analytical approach to frequency-domain cancelation, GV has to be

evaluated for all bins of the main lobe. To do so efficiently, a matrix Ω must

be created at initialisation time,

Ω = −j2π
(

1

M
bJ1,|p| +

1

N
J|b|,1p

)
,

where b is the vector of the zero-centered frequency-domain indices that

cover the main lobe of the analytical cosine window of order P ,

b =

[
−
⌈

(P + 1)
M

N

⌉
,

⌈
(P + 1)

M

N

⌉]T
,

p is a row-vector of the indices of the spectral components of the cosine

window,

p = [−P, P ],
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|.| denotes the cardinality (i.e. the length) of its argument vector, and Jm,n

is a matrix of ones, with m rows and n columns.

Another matrix should be created at initialisation time, whose role is

going to scale the values of Ω with the coefficients of the cosine window.

This matrix is

A = J|b|,1a,

where a is the following arrangement of the weighted window coefficients

found in (2.59),

a =
1

2

[
(−1)PaP (−1)P−1aP−1 . . . −a1 2a0 −a1 . . . (−1)P−1aP−1 (−1)PaP

]
.

The run-time operations follow the initialisation-time preliminary steps.

For each peak during the cancelation process, upon the detection of the peak

bin b0 and the obtention of the frequency and amplitude modulation CSPME

estimates ωr and γ, the entries of the column vector GV can be obtained as

GV =
[
A ·
(
eN(Ω+ζ) − 1

)
÷ (Ω + ζ)

]
J|p|,1,

where ζ = γ + j(ωr − b02π/M), and · and ÷ are used to denote pointwise

multiplication and division operations.

Recapitulation and additional comments

A summary of the method for the evaluation of all four parameters of our

sinusoidal model is given in Figure 2.16. There, the abbreviation “p.d.”

stands for “peak-detection”, and r̂ = ω̂r
M
2π

, where M is the FFT length,
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x[n]w[n] FFTM() XM
N XM

N [b0]

abs() p.d. b0 ÷ exp(γ + jωr)

y[n]w[n] FFTM() Y M
N r̂ Y M

N [b0] GV
(
b0

2π
M
− ωr

)

÷ Aejφ

Figure 2.16: Summary of our parametric estimation of first-order amplitude
and phase complex exponential. The notation XM

N denotes an FFT of length
M using a cosine window of length N . “p.d” stands for “peak detection”.

and ω̂r is an a priori, rough estimate of the frequency of the target partial.

The use of this estimate is to find the bin b0, corresponding to the closest

magnitude maximum. As for the cosine window, w[n], its coefficients can be

picked from Table 2.1, and should be kept for the evaluation of the expression

GV
(
b0

2π
M
− ωr

)
, in reference to equations (2.66) and (2.67). The possibility

of using the FFT spectrum GV M
N is, of course, also a possibility, with the

inconvenience of greater computational cost, and the advantage of enlarging

to the window choice to any type of window, not only the cosine windows

whose exponential-modulated spectra we have derived.

The core of the CSPME method resides in the obtention of exp(γ + jωr)

through the quotient of the DFTs of a signal and a delayed copy of that

signal. The resulting equations (2.61) and(2.68) of the subsequent develop-

ment are similar to equation (9) in [Mar98] and equation (40) in [SG06],

except that now, the complex coefficient(s) of the denominator accounts for

the exponential amplitude modulation.
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In comparison to the quadratic fit method, the CSPE, and by extension,

the CSPME, also has other advantages. Where computation is concerned,

zero-padding is unnecessary to the CSPE, while the accuracy of the quadratic

fit estimate depends directly on this means of “natural interpolation”. The

CSPME requires the FFT of two segments, but the zero-padded segment used

for the quadratic fit method can be 2, 4 or 8 times longer than the segment

used in the CSPME case. Given the O(N logN) computational complexity

of the FFT, the CSPME remains, in this regard, computationally cheaper.

In terms of convenience of use, also, the CSPME, as opposed to the

quadratic fit, does not require the constraints of zero-phase analysis for the

unbiased estimate of φ. These constraints include the need for a window

that is symmetric about its central sample, and the need for circular shifting

subsequent to zero-padding [IS87]. This freedom comes from the fact that

all the side effects of windowing and exponential amplitude modulation on

phase, inherent to XN , are annihilated by the spectrum of the amplitude-

and frequency-modulated window in the denominator in (2.61) and (2.68).

Although the zero-phase spectra constraints are computationally negligible

if approached correctly, the CSPME here allows thereby for a more efficient

software encoding.

Most importantly, the CSPME responds to our needs, inasmuch as we saw

in sections 2.4.1 and 2.4.2 that zeroth- and first-order exponential amplitude

and frequency coefficients, no more, no less, were necessary to the successful

frame-by-frame cancelation of string partials in a Phase Vocoder setup.
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Conclusion

There cannot be successful string extraction without successful sinusoidal

analysis, whose study was the topic of this chapter. We began, in Section 2.2,

on the topic of windowing, as the good choice of a window and adjustment

of the length of the analysis is an important preliminary step, especially for

signals that are not truly stationary, and where several frequency components

can be found. We put a focus on cosine windows, which in the next chapters

are going to be our windows of choice, due to their competitive frequency-

domain properties, and also their contant-sum property, very desirable in a

Phase Vocoder system.

In Section 2.2, the independent variable of time was considered continu-

ous. Section 2.3 extended the discussion to discrete-time signals, explaining

the frequency-domain periodicity of DFT spectra and aliasing, introducing

the Fast Fourier Transform, formulating the effects of zero-padding. These

basics established, the discussion proceeded to Section 2.4 and to the choice

of a method for sinusoidal analysis. This choice was to be made according

to the aspects of the string partials that needed to be accounted for, which

were shown to be, as in “classical” sinusoidal analysis, constant amplitude,

constant and linear phase, but also, decay rate. It was deemed that the most

suitable method was therefore the the Complex Spectral Phase-Magnitude

Evolution method, generalisation of the Complex Spectral Phase Evolution

method.
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Chapter 3

A Phase-Vocoder approach to

string extraction

In Chapter 1, we determined a string model that enlightened us as to what

should be looked for and canceled for a successful string extraction. In Chap-

ter 2, we saw how the use of analytical windows in Fourier analysis could help

reduce spectral leakage, we studied the resulting frequency-domain represen-

tation of the partials, and, on the basis of our knowledge of the string model,

we picked an existing measurement method, the Complex Spectral Phase

Evolution method, that we generalised to exponential-amplitude signals to

suit the string model exactly.

In this new chapter, we are ready to approach the higher-level structure

of the string extraction process. In Section 3.1, we are going to study the

temporal structure of the process, which is to conciliate the constraints of

analysis length, window type, and process transparency, a concept explained
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in Section 3.1.2. The essential part of this first section will therefore be the

presentation of the Phase Vocoder (PV) scheme, simplified from the general

formulation [Por81] to constant analysis-synthesis rate, and with a syntax in

accordance with the rest of this thesis. This presentation will nevertheless be

preceded by the description of a simple, common pitch detection algorithm

based on autocorrelation. This preliminary step is necessary to adjust the

window length of the Phase Vocoder. Also, this section on the time-domain

structure of the string extraction process will conclude on a “user guide” sub-

section, where the “granulation” step of the Phase Vocoder (also introduced

in Section 3.1.2) is described for finite-length inputs in a pragmatic way.

Thereafter, we will leave the time-scale of the whole signal to examine

how the string partials can be canceled at the level of a single analysis frame.

We will first see how to cancel string partials, and second, how to detect

all the partials of the string present in the spectrum. Once all partials are

detected and canceled, the inverse Fourier transform of the spectrum can

be carried out, and the following frame can be dealt with. Once all frames

are treated as such, they can be summed back together to produce the final

output.

3.1 Temporal structure of the String extrac-

tion process

The adjustment of the length of the Fourier analysis window is subject to the

well-known time-frequency trade-off [Har98]. As usual in the analysis of har-
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monic tones, it is necessary, as we saw in Chapter 2, that the window length

is at least twice the fundamental period for the partials to be resolved, in the

case of rectangular windows, and longer for higher-order cosine windows.

The minimal length of the analysis thereby depends on the fundamental

frequency of the tone under analysis. Windows that are longer than the min-

imal length required have the advantage of reducing the sidelobe interference

between partials, and also, in the case of inharmonic string tones, of increas-

ing the potential of the analysis to resolve the near-parallel transverse and

phantom partial series. However, it is desirable to keep the window length

to a minimum for the following reasons:

First, the model assumed in our Fourier analyses is that of sinusoids

with exponential amplitude and constant frequency, which should work well

on a long-time scale for the majority of string tones, but which may be

inaccurate for tones that undergo tension modulation, e.g. electric guitar

tones with strong dynamics. There, the constant-frequency approximation

was estimated, in Section 2.4.2, Table 2.4, to be valid over a period spanning

between 5 and 10 times the fundamental period.

The second reason regards the onset of the tone. As will be seen in Section

3.2.2, spectral leakage in the analysis frames that overlap with the attack

of the tone can worsen dramatically, making the estimation of the string

partial parameters less accurate and the subsequent cancelation process less

effective. This can be perceptually acceptable if the duration of the time

segment where there are windows overlapping with the onset is short enough,

so that a minimum of fundamental periods “escape” the cancelation process.
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Given these circumstances, it is important to have some preliminary

knowledge of the tone’s fundamental frequency so as to set the window length

optimally.

3.1.1 Preliminary estimate of the Fundamental Fre-

quency

A variety of techniques have been developed over the years, for the estima-

tion of the pitch of a signal, an overview of which is given in [Ger03]. There

exists both time- and frequency-domain methods. At first one might think

that, given the necessity that we have to go to the frequency domain for

the measurement and cancelation of the string partials anyway, some time

could be saved by opting for a frequency-domain technique, and running this

technique directly on one of the many spectra of our Phase Vocoder sliding

analysis. However, because we do not know the fundamental frequency be-

forehand, there is no guarantee that the arbitrary DFT length used for the

pitch estimation will be the optimal window length. Hence, the pitch esti-

mate method should be chosen according to its robustness and computational

efficiency only, notwithstanding whether it is a time- or frequency-domain

technique.

In the time domain, the autocorrelation of a harmonic signal is such

that the fundamental period of the signal can easily be estimated. This is

especially true for string tones, as they are relatively well-behaved. A famous

algorithm, which uses both autocorrelation and the difference method, is the

YIN algorithm [dCK02]. In the frequency domain, an intuitive approach
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consists of using the ratios of the measured frequency components: for each

pair of partials, the lowest integer ratio is found, and this is carried for a

number of combinations of two partials. The fundamental frequency can

thereafter be inferred [PG79]. We would probably opt for this approach,

carried directly onto the PV frames, if the window length we unimportant,

but it is. Instead, a simple autocorrelation-based design is possible, even

simpler than the complete YIN algorithm, given that string tones are more

steady than the majority of otherwise pitched sounds.

Autocorrelation is a special case of cross-correlation. In (2.42), Section

2.3.4, we already defined circular cross-correlation. We re-express this defi-

nition here, except cross-correlating the signal x with itself, i.e.

xxN [n]
∆
=

N−1∑

m=0

x∗[m]x[mod(n−m,N)], (3.1)

x∗ being the complex conjugate of x. Similarly to the convolution theorem,

xx can be obtained from the inverse Fourier transform of the product of the

spectrum of x with its complex conjugate – in other words,

xx =
1

N
FFT−1

{
|XN |2

}
. (3.2)

Now let us see how this can be used for the estimation of the FF. It turns

out that the cross-correlation signal xx shows a trend of decay towards the

center of the analysis, as outlined in Figure 3.1. For well-conditioned cases,

there is a correlation index NFF, between a minimal period index nmin and

the centre of the analysis, where the correlation is positive and maximal.

150



This index coincides with the fundamental period of the input. For this

phenomenon to emerge, the length of the input must be at least twice its

fundamental period. This can be explained by the fact that |XN |2 is real, and

its inverse DFT is symmetric about N/2. NFF must thereby be lesser than

N/2, or N > 2NFF. On top of that, it is possible to zero-pad the input, so as

to attain a power-of-two length, and benefit from the computational efficiency

of the FFT. Figure 3.1 shows a well-conditioned case of autocorrelation, with

zero-padding.
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Figure 3.1: Zero-padded signal (upper plot) and its autocorrelation (lower
plot). In the upper plot, the periodicity of the waveform is highlighted with
the time-shift, in dashed line, of the original waveform by one period. This
time shift corresponds to the autocorrelation peak at index NFF.
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The power-of-two length can also be achieved by truncating the signal.

Complete string tones normally feature many more than two fundamental pe-

riods. To keep the computational cost to a minimum, and more importantly,

to minimise the time lag of the analysis, it is important that the rough FF

estimate is as reactive as possible. Although this thesis strives to facilitate a

real-time application, more work is needed here to find a way of adjusting the

autocorrelation length to a minimum without preliminary knowledge of the

FF. In the meantime, we can set the autocorrelation in accordance with the

maximal period length that is susceptible of being found, that of the grand

piano’s lowest note, an A0 (27.5Hz). Also, the minimal period length nmin is

used to prevent the algorithm from returning some unreasonably high pitch,

and could be aligned with the period of the highest tone on the grand piano,

a C8 (4,186Hz). The grand piano’s extreme keys are lower and higher than

any other note of any other string instrument ; it is therefore convenient to

set our pitch detection interval to its range.

Overcoming the frequency quantisation

In general, the index NFF is only a rounding of the “exact” period, which may

be expressed as NFF + dN , were dN ∈ R. Estimating dN is usually achieved

by fitting a quadratic polynomial in the data points xxN [NFF−1], xxN [NFF]

and xxN [NFF+1] [dCK02].1 A second-order polynomial q(n) = q2n
2+q1n+q0

is thereby obtained, whose derivative is equated to 0 so as to obtain the

fractional index NFF+dN of the quadratic function’s maximum. This process

1This is nothing more than the polynomial fit technique, mentioned repeatedly in
Section 2.4, here used in another context.
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is illustrated in Figure 3.2.

Correlation index  n

 

 

xxN [n ]

xxN [NF F + (− 1 : 1)]

q (NF F + dN )

q (n )

Figure 3.2: Peak index refinement with quadratic fit

Here, the substitution of a quadratic function as a simulation of the con-

tinuous shape of the peak seems reasonable. This fractional index refinement

improves the period estimate, and hence the fundamental frequency estimate,

for a modest computational cost.

From the aproximation of the fundamental period as NFF + dN , a fun-

damental frequency estimate ωAC, in radians per second, can be obtained

as

ωAC =
2πfs

NFF + dN
,

where fs is the sampling rate of the time-domain waveform. Such an estimate

is deemed reliable enough to be used in the derivation of the parameters of

the Phase Vocoder setup.
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3.1.2 Constant-rate Phase Vocoder: a formulation

The aim of this section is to describe the Phase Vocoder scheme in an in-

tuitive manner, and at the same time to give a proof of the potential for

the “transparency” of the process. The Phase Vocoder is a dynamic audio

processing unit, which takes short windowed segments, or grains of sound,

transforms them one after the other from the time to the frequency domain,

to process them there, and bring them back to the time domain afterwards.

A transparent Phase Vocoder setup is a setup which, if we omit the pro-

cessing, should return an output identical to the input, even after the gran-

ulation, the frequency-domain forward and inverse transformations and the

de-granulation processes. This proof shall be the conclusion of this section.

In Figure 3.3, we illustrate this process with a flowchart. It is easy here

to see the symmetry of the process, and it gives an idea of the type of syntax

that we are going to use to describe the signal at the various stages of the

scheme. It can be seen that the processing, at the U-turning point, is the only

place where some changes in the output might come from. If XM
N and Y M

N

were equal, then so would x and y. At this processing step of the procedure

lies the detection and cancelation of the string partials, which results, at the

level of the whole tone, in the virtual extraction of the string. Following the

flowchart of Figure 3.3, we arrange the formal description of the process on

the input x[n] in seven steps, the fourth being the processing step.2

2Please bear in mind that, in the de-granulation step, it is generally desirable to
apply windowing a second time, to avoid discontinuities at the boundaries of the window
caused by frequency-domain processing. In the context of string extraction, this additional
windowing is superfluous, for a reason that will be made clear soon, and so this additional
windowing is left out of the demonstration. The same demonstration of transparency
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x[n] x[n, u] x[n, u]uR XN [b, u]

granulation time shift FFT processing

y[n] yN [n, u] yN [n, u]uR YN [b, u]

Figure 3.3: Phase-Vocoder process: from the signal at its original time in-
dices, to the frequency domain, and back.

1. Granulation: This term, borrowed from Granular Synthesis [Z0̈2, Roa96],

is an metaphor for the process of splitting the input signal in a number

of short, windowed “grains” of sound, each of which is, in this context,

going to be transformed to the frequency domain and processed there.

Let us denote the window index with the integer u, and the hop size

in samples, between one window and the next, with R. Then we can

express the uth grain as

x[n, u] = x[n] wς [n− uR], (3.3)

where wς [n] is an arbitrary window, non-zero over the interval [0, N−1].

2. Time-shifting: We are going to make use of the Fast Fourier Transform,

whose summation is conventionally operated on the sample interval

[0,M−1], for an M -length transform. Our grain x[n, u] must therefore

be time-shifted so as to make the first non-zero sample of the window,

wς [0], coincide with the start of the analysis. We thus bring the uth

could nevertheless be given with this second round of windowing, too.
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grain forward by uR samples, i.e.

xuR [n, u] = x[n+ uR, u]. (3.4)

3. FFT: At this stage, the grain is ready to be transformed to the fre-

quency domain, through fast Fourier transformation

XM
N [b, u] =

M−1∑

n=0

xuR [n, u]e−jb2πn/M , b = 0, 1, ...,M − 1. (3.5)

4. Processing: The processing is left as a black box here, taking in XM
N ,

and returning Y M
N :

Y M
N [b, u] = processing

{
XM
N [b, u]

}
(3.6)

5. IFFT: The time-domain output grains are obtained from the inverse-

FFT of the processed spectrum,

yuR M
N [n, u] =

1

M

M−1∑

b=0

Y M
N [b, u]ejb2πn/M . (3.7)

6. Time-shifting: The output grain is shifted back to where the input

grain originally was:

yMN [n, u] = yuR M
N [n− uR, u] (3.8)

7. De-granulation: Finally, the grains are scaled and summed together, to
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yield the final output,

y[n] =
1

α

∑

u

yMN [n, u], (3.9)

where α is a scaling constant.

Now we set to prove that, if no processing takes place in step 4, then the

output y equals the input x, or, formally, that Y M
N = XM

N ⇐⇒ y = x. To

do so, we begin by replacing Y M
N , in (3.7), by the unprocessed input, XM

N :

yuR M
N [n, u] =

1

M

M−1∑

b=0

XM
N [b, u]ejb2πn/M

=
1

M

M−1∑

b=0

M−1∑

m=0

xuR [m,u]ejb2π(n−m)/M

=
1

M

M−1∑

m=0

xuR [m,u]
M−1∑

b=0

ejb2π(n−m)/M .

The summation
∑M−1

b=0 ejb2π(n−m)/N is zero except when n = m, where it

equals M . So it is easy to get

yuR
N [n, u] = xuR [n, u],

and, without time shift,

yN [n, u] = x[n, u].
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We can therefore write that

y[n] =
1

α

∑

u

x[n, u]

= x[n]
1

α

∑

u

wς [n− uR]. (3.10)

The equality (3.10) only holds if the sum of the square of all the windows

equals the constant α, i.e. y[n] = x[n] ⇐⇒ ∑
u wς [n − uR] = α. Cosine

windows, as stated in (2.21), Section 2.2.3, have such a potential of summing

up to a constant.3 In that same section, we saw that this coefficient, α, could

be found as per (2.26), if R were set to P + i, P being the cosine window

order, and i, some positive non-zero integer.

As a complement to these explanations and the above formulation, Figure

3.4 pictures the granulation and time-alignment processes. Here, our input

signal is only non-zero over a finite interval, as occurs in practice. The

point of this illustration is also to realise that, in normal circumstances, only

a finite number U of windows is necessary, as any window that does not

overlap at all with the non-zero interval of the input shall contribute nothing

to the output. However, it also is visible that zero-padding before and after

the signal is necessary. To facilitate the implementation of the scheme, we

dedicate the next section to the condensed formulation and derivation of the

various parameters of the scheme: window length, hop size, window scalar,

but also the amount of zero-padding to the left and right.

3Even after being raised to some power, had a second round of windowing taken place
in the de-granulation process.
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Figure 3.4: Granulation process: the original signal is first zero-padded (top
plot) before being granulated (lower plots, c.f. Equation (3.3)), time-aligned
to zero (Equation (3.4)) and DFT-analysed (Equation (3.5)).

3.1.3 Preparation of time-domain data

The overlap factor O can be defined in terms of the window order P alone.

However, adjusting the window length N and hop size R such that N is

O times R, and yet keeping reasonable control over the window length to

optimise the time-frequency resolution, is a little bit more delicate. Here we

propose a step-by-step description of these derivations.

1. Choose P , the order of the window. Usually, this is 1, 2, or maybe, 3.

2. The minimal overlap to satisfy the constant-sum condition is O = 2P+

1. Any integer greater than this works as well.
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3. We call the width of the main lobe of the window B, and this width

can be derived from P as B = 2(P + 1).

4. Now let us call i the number of main lobes that hold in the frequency

band separating each harmonic in the spectrum. For example, if i

is one, then the series of lobes of the harmonics will just touch one

another, with no spacing between. It was found that a spacing of

two or three main lobes between each harmonic generally made the

cancelation process easier. The drawback of i larger than 1 is, however,

greater time lag, and poorer time resolution to deal with the attack of

the tone.

5. The window length could not be set to iBNFF, because it has to be an

integer multiple of the overlap. We therefore begin by defining the hop

size as R = biBNFF/Oe.

6. Now, we can give the window length its final value, N = OR.

7. Finally, calculate the window scalar as α = 1
2
O(a2

0 +
∑P

p=0 a
2
p), where

ap is the pth coefficient of the chosen cosine window (see Table 2.1).

Now there remains to derive the time index of the start of each grain, as

well as the amount of zero-padding needed on either side of the input. The

rule of thumb to follow is, for the transparency condition to be respected,

that for all sample indices of the input, there are O windows overlapping. In

relation to lower plot of Figure 2.7, seen in Section 2.2.3, the totality of the

input should lie within the interval where the sum of the windows steadies
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to the constant α. First of all, we should specify the number U of windows

needed for the O-overlap interval to cover the entire input. This is found as

U =

⌈
Nin

R

⌉
+O − 1,

where Nin is the length, in samples, of the input. The time indices mu of the

start of each window are therefore obtained as

mu = (u−O + 1)R, u = 0, 1, ..., U − 1.

In computer applications, the input comes in as a vector of length Nin, un-

defined for any sample index n outside the interval [0, Nin − 1]. To avoid

out-of-bound referencing when windowing the input with windows reaching

outside this interval, the practical approach is to zero-pad the input to the

left and right, with Zl and Zr zeros, respectively. These two values can be

computed as

Zl = (O − 1)R, and

Zr =

(
O +

⌊
Nin

R

⌋)
R−Nin.

An illustration of the overall process is given in Figure 3.5.

We have, in Section 3.1.1, obtained a rough estimate of the fundamental

frequency of the sound with an autocorrelation method, and in this section,

defined all the parameters of our Phase Vocoder scheme, in such a way that

we can now go to the frequency domain, find well-conditioned spectral data,
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Figure 3.5: Phase Vocoder setup for a finite-length input. A finite number
of windows is necessary (here, 5) depending on the window length and over-
lap. Zero-padding the signal on either end to accommodate windows outside
the original interval is a practical approach to the granulation process in
computer applications.

and go back to the time domain, transparently if we wish to do so. But to

virtually extract the string from the input, some processing must take place:

the cancelation of all audible string partials. This is the subject of the rest

of this chapter.

3.2 Frame-level partial cancelation

The virtual extraction of the string is, in this thesis, a subtractive process.

The idea is to measure the string partials, synthesize them, and subtract this

synthesis from the original tone. In a Phase Vocoder setup, this is done at a

frame’s level, grain after grain.

We look upon the overall string tone, the input x, as the sum of the string,

s, and the rest of the instrument, ε, (which includes the response of the body

to the attack, possibly short-lived resonances, faint sympathetic vibrations
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of unmuted strings, and environmental noise,)

x = s+ ε. (3.11)

Let us momentarily disregard the phantom partials, for convenience, and

express the string s as the sum of K partials sk,

s =
K∑

k=1

sk. (3.12)

We saw, in Chapter 2, that the string partials could very well, at the time

scale of an analysis frame, be approximated as complex exponentials of con-

stant frequency, with an exponential magnitude envelope,

sk[n] = exp [logAk + φk + j (2πrk/N + γk)n] . (3.13)

In Section 2.5, we gave the mathematical basis to the measurement of the four

parameters Ak, φk, rk and γk of such a partial, allowing its resynthesis, and

by extension, the resynthesis of the whole string s. Subtracting this synthetic

version of the string from the original tone isolates ε, as per Equation (3.11).

The synthesis of the string and its subtraction can be done in the time

domain, but we are going to see that, equivalently, it can be done in the

frequency domain. This approach turns out to be more straightforward and

computationally economical.
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3.2.1 Frequency-domain cancelation and its advantages

The Discrete Fourier Transformation of the input x is, as per Equation (3.11),

equal to the DFT of the sum of the string and the instrument,

DFT {x} = DFT {s+ ε} . (3.14)

On the basis of the linearity of the Fourier transform, and by substitution

of (3.12) into (3.14), we see that it actually is equal to the DFT of the

instrument, plus the DFTs of each string partial,

DFT {x} =
K∑

k=1

DFT {sk}+ DFT {ε} ,

or

X =
K∑

k=1

Sk + E.

Logically, and as seen in Section 2.5, the frequency-domain expression

Sk depends on the of the same parameters as the time-domain expression

sk. These parameters can be obtained from the CSPME estimates, and it is

therefore just as easy to synthesize Sk, and subtract it from X. Hence we can

get ε from the inverse transform of the input’s spectrum, X, less the string’s

spectrum,

ε = DFT−1 {X − S} .

This is the principle of frequency-domain string extraction. Figure 3.6 shows

a snapshot of the frequency-domain cancelation process: a peak detection

progresses upwards in frequency, and each string partial is canceled, one
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after the other. We took advantage of this opportunity here to compare the

cancelation processes when the exponential amplitude envelope is accounted

for (top) and when it is not (bottom). The generalisation of the CSPE

method to exponential-amplitude components is shown here to improve the

cancelation of the harmonics significantly, especially at high indices, where

the exponential decay is strong.
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Figure 3.6: Snapshot of the frequency-domain string cancelation process,
with the CSPME method introduced in Section 2.5.1 (top), and with the
CSPE method as originally introduced in [SG06] (bottom). The partial index
k of the peak standing at the centre of the figure is 52.

Time- and frequency-domain cancelation as described here are strictly

equivalent. Doing it in the frequency domain, however, is more straight-
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forward and a computationally cheaper approach, especially when phantom

partials must be accounted for.

Before we study the process in more detail, we would like to justify here

why, in the context of frequency-domain partial cancelation, windowing is

only necessary in the granulation step of the Phase Vocoder scheme, and not

in the de-granulation step. The synthetic lobes that are subtracted from the

original spectrum are the spectra of synthetic partials that are windowed.

Upon inverse Fourier transformation, the waveforms of these partials will

therefore, like the window used for their modeling, tend smoothly towards

zero near their left and right ends. The processed grain being the original,

smoothened grain minus a sum of these inherently smooth synthetic sig-

nals, the usual risk of discontinuities is absent. Hence the frequency-to-time

domain additional windowing only results in bringing unnecessary complica-

tions and computational load. Indeed, the minimal overlap required when

windowing happens once only is P +1, against 2P +1 when it happens twice,

P being the order of the cosine window.

Main-lobe-only subtraction

An important saving can take place thanks to the frequency domain energy

distribution of windows, which, as we saw in Section 2.2, is concentrated in

the main lobe – this is especially true for high-order cosine windows, which

have a larger main lobe and lower sidelobes. In mathematical terms, we can

write that

Sk[b] ≈ 0, b /∈
(
rk −

B

2

M

N
, rk +

B

2

M

N

)
,
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where B is the width, in frequency bins, of the main lobe, as seen already in

(2.20), Section (2.2). On this basis, the cancelation of the frequency-domain

samples within the main lobe only are necessary to completely cancel the

corresponding partial. Figures 3.7 and 3.8 support this statement, with, in

the former, and illustration of the main-lobe-only cancelation, and in the

latter, the corresponding waveform, before and after cancelation. The
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Figure 3.7: Spectrum before (dashed lines) and after (solid lines) cancelation,
for minimal-sidelobe cosine window of order 2. Zero-padding was used here
for visual purposes, but is normally unnecessary.

reader can see that the highest non-zero time sample, after cancelation, is

less than -40dB, and is situated, not coincidentally, at the edge of the analysis

segment. In the Phase Vocoder scheme, a second windowing occurs after the
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Figure 3.8: Time-domain segment before (top) and after (bottom) frequency-
domain cancelation of the main lobe. In the lower plot, the dashed line is
the time-domain segment after cancelation and windowing.

inverse transformation, to smoothen the edges of the grains post-processing.

This additional windowing is not taken into account here, but if it were, the

highest non-zero sample of the canceled string partial would be found near

the middle of the segment, and be around -80dB.

The window used for this experiment was a minimal-sidelobe window of

order two. In terms of computational savings, for a window length N and an

FFT length M , the number of samples to synthesise reduces from N down

to bBM/Nc. In a typical case, this is a reduction by two to three orders of

magnitude.

Dealing with overlapped partials

In strings with non-negligible inharmonicity, the phantom partial – longitu-

dinal vibrations driven by the transverse vibrations – do not coincide with
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the normal partials throughout the entire series. In general, they are indis-

cernible below harmonic index 10, and largely discernible, and well-resolved,

beyond index 30. In between, however, there is, inevitably, some indices

where phantom and transverse partials overlap. In all our frequency analy-

ses so far, we assumed that partials were well resolved enough for cross-partial

interferences to be negligible. Now, in places, the overlap may be such that

the lowest of the overlapping partials may not appear as a peak anymore, but

as a mere protuberance, or bulge, which makes the finding of such partials

even more delicate.

Informal tests taken by the author showed that so long as a partial, in

spite of the interference of another partial, remained a peak and did not sub-

side as a bulge, the CSPME measurements obtained from the frequency data

of the main lobe were accurate enough for the cancelation process to work

appreciably well. However, no such guarantee can be taken for mere bulges.

In the case where two partials overlap, one shows as a peak and the other as

a bulge, our solution is to measure the greatest peak and subtract it from the

spectrum, and then, measure the lowest – which after the subtraction of the

dominating peak has become a bulge – and subtract it in turn. We illustrate

the process in Figure 3.9.

In terms of computation, it is evident that it is cheaper to subtract the

partials directly in the frequency domain than in the time domain, where the

waveform would need to be Fast-Fourier-Transformed after the subtraction

of the dominating partial, requiring an extra N logN operations. It is also

worthwhile mentioning that the frequency-domain process is more straight-

169



1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
−100

−90

−80

−70

−60

−50

−40

−30

Frequency (bins)

M
ag

n
it

u
d

e 
(d

B
)

 

 

Original

After peak cancelation

After bulge cancelation

Figure 3.9: Frequency-domain cancelation of overlapping partials. The dom-
inating peak (dotted line) is measured and canceled first. Previously mere
bulge, the dominated partial has now become a peak (dashed line), and can
be, in turn, measured and canceled.

forward to encode.

We have, in this section, described how the partials were canceled, and

the advantages of doing so in the frequency domain as opposed to the time

domain. In our spectra, the partials were mostly well resolved, and some-

times, due to the near-parallelism between the main transverse series and

the phantom series, overlapped. In both cases, the partials analysed were

cosine-windowed components of constant frequency and exponential ampli-

tude, and the corresponding frequency-domain representation was given in
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Section 2.5.2. The band-pass filtering properties of the cosine windows made

the frequency-domain interference negligible, or at least, in the case of some

transverse-phantom overlap, manageable. Yet, we have not been considering

so far the “ends” of the input, where the string is attacked, and where it is

muted. At these points, the string partial model (3.13) is broken. In the

next section, we see what kind of model must now be assumed, and what its

frequency-domain properties are.

3.2.2 Dealing with the “ends” of the input

The string partial model sk = exp[logAk + φk + j(ωk + γk)n] is the steady-

state of the model. In reality, such model does not extend indefinitely, but

is initiated at the moment of the attack, before which the string vibrations

can be assumed to be nil, and is stopped when the string is muted. The

moment when the string is excited is more important to us : first, the string’s

energy decays in an exponential manner, becoming less and less audible,

rendering imperfections in the string extraction process synchronously less

and less audible too. Second, and most importantly, the response of the

instrument’s body decays much more rapidly than the string vibrations. So

as to appreciate the body response fully, it is therefore critical to cancel the

string as early as possible into the sound. For these reasons, and to simplify

the discussion, we are, in the following, going to focus on the attack of the

string.
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Unit-step windowing

Let us say that the string is attacked – plucked or hit – at sample index ν.

The input x, generalised so as to account for the time before the attack, is

now

x[n] = s[n] hν [n] + ε[n],

where the prefix before h denotes a time delay,

hν [n]
∆
= h[n− ν],

and h, the unit step function (also known as the heaviside function, explaining

the use of the letter h), is 0 when its argument is lesser than 0, and 1 when

its argument is equal to or greater than 0, i.e.

h[n] =





0 n < 0

1 n ≥ 0.

All the partials sk making up the string s undergo, of course, the same

product. We illustrate one of them in Figure 3.10.

In terms of frequency analysis, the situation is not much complicated,

and a development very similar to that used in Section 2.5 can be followed

to demonstrate how the four parameters of our model (A, γ, φ and r) can

be derived.

Let us recall that the estimation of these parameters follows two steps :

first, the estimation of the first-order amplitude and phase terms γ and r
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Figure 3.10: Unit-step-windowed string partial, modeling the attack of the
tone.

with the CSMPE method, and subsequently, the estimation of the zeroth

order terms A and φ. To avoid confusions, it must be made very clear that

the signal under analysis is looked upon in different ways in each of these

two steps. As a starting point to this clarification, let us express the signal

to be Fourier-transformed as

x[n] = x′[n]g[n] hν [n] wς [n], (3.15)

product of the constant-amplitude, constant-frequency sinusoid already seen

in (2.51),

x′[n] = Aejφejr2πn/N ,

the exponential-amplitude envelope

g[n] = eγn, (3.16)
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a cosine window wς [n] and the ν-delayed unit-step window hν [n].

First-order terms

For the purpose of evaluating the parameters first-order amplitude and phase

coefficients γ and r, we “group” the terms in (3.15) as follows,

x[n] = s[n]hw[n], (3.17)

with s[n]
∆
= exp[logA+ jφ+ (γ + jω)n] being our steady-state string model,

and hw[n]
∆
= hν [n] wς [n], a “unit-stepped” cosine window.

Thereon we define

y[n]
∆
=s[n− 1]hw[n] (3.18)

and state the relation

y[n] = x[n]e−γ−jr2π/N ,

property already seen in (2.52), and which allows, in the frequency domain,

the obtention of γ and r with a CSPME approach. It is important to note

the consequence of lumping the unit-step function with the window. The

one-sample delayed signal y only involves a delay of the steady-state string

vibrations s, not of the attack-modeling function h or the window. As a

result, even if a “natural” unit-step windowing is already featured in the

original sound at the moment of the attack, a synthetic unit-step windowing

will have to be forced upon the signal, and slid by one sample to get y, just

like the window wς [n] itself has to be slid.
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Zeroth-order terms

Contrastingly, the estimation of the zeroth-order amplitude and phase terms,

A and φ, requires that the signal x is grouped otherwise,

x[n] = x′[n]gh[n]v[n], (3.19)

where v[n], as in Section 2.5.2, is the unbounded window seen in Equation

(2.65),

v[n] =
P∑

p=0

(−1)pap cos(p2πn/N),

and the function gh[n] combines in a product the exponential-amplitude

rectangular window of Equation (2.57) with the unit-step, i.e.

gh[n] =




eγn, n ∈ [ν,N),

0, n /∈ [ν,N).

(3.20)

Lumping the unit-step function with the exponential-amplitude rectangular

window makes easy the formulation of the Fourier transform of x, X (ω).

Indeed the spectrum GH is hardly more complicated than the spectrum G,

seen in Equation (2.64), of the exponential-amplitude rectangular window

alone :

GV(ω) =
1

γ − jω
(
eN(γ−jω) − eν(γ−jω)

)
. (3.21)
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Then the convolution of GV and the Fourier transform of v, V (c.f. Equation

(2.66)), which we may denote as GHV , is, similarly to (2.67), quite simply

GHV(ω) =
1

2

P∑

p=0

ap(−1)p
[
GV
(
ω − p2π

N

)
+ GV

(
ω + p

2π

N

)]
, (3.22)

and thereon, following the same reasoning as in Section 2.5.2, we find that

Aejφ =
XN [b0]

GHV(2πb0/N − ωr)
, (3.23)

where b0 is the integer closest to the frequency coefficient r, and ωr = r2π/N .

Following the ideas of equations (2.62) and (2.63), an FFT-computed

spectrumGHVN can be used instead of GHV . However, for the lobe ofGHVN

to be frequency-aligned with the targeted lobe, the time-domain synthesis of

an N -length complex exponential of frequency r is needed. Furthermore, the

FFT is generally implemented in libraries in such a way that it is not possible

to be returned a specific frequency-domain sample only. Rather, it returns

the entire set of M samples, while we have shown in the development above

that one such sample only is necessary for the estimation of the constants A

and φ. Our analytical approach is thereby not only cheaper processing-wise,

but also in terms of memory.

Now regarding the cancelation of the partial, it was pointed out in Section

2.5.2 that b2(P + 1)M/Nc frequency-domain samples only, centered on the

frequency bin b0, needed to be synthesized for the cancelation of the mea-

sured partial. This was on the basis that frequency-domain energy beyond

this interval was negligible. Unfortunately, as can be seen in Figure 3.11,
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the property that the non-negligible part of the energy is concentrated in

the main lobe is lost on attack-overlapping spectra. A greater number of
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Figure 3.11: Unit-stepped hamming window. The dotted-line, standard win-
dow exhibits the expected spectrum, with its minimal, well-dented sidelobes.
As the window goes unit-stepped, however (dashed line, solid line), it looses
its optimal spectral properties, with much higher sidelobes.

frequency bins should therefore be synthesized for subtraction, and it may

then become preferable, because computationally cheaper, to resort to the

FFT approach.

The greatest problem regarding this widening of the main lobes never-

theless remains the cross-interference that it causes in the spectrum. The

assumption that the energy of a spectral peak at the frequency correspond-

ing to a magnitude local maximum is that of the targeted partial alone can be

compromised, and the measurements, biased. Let us note, however, that this

bias directly affects the frequency and amplitude modulation measurements

only. If these were estimated correctly, and independently on how impor-
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tant the spectral leakage is, the spectrum GHV would still be synthesized

correctly, exact estimates of the amplitude and phase constants ensue, and

the partial cancelation would be successful. In future work, efforts should

therefore concentrate on improving the exactness of the parameters γ and r.

Identifying the “attack sample”

Another problem that comes with the unit-step model of the attack of the

tone is the finding of the first non-zero sample. The unit-step model is a

simplification of the attack, which in some cases is fairly faithful, but in

others, less so. In Figure 3.12, we show two examples. In the upper plot, an

acoustic guitar is plucked with a plectrum, and in a lower plot, we have the

example of a viola pizzicato. In the case of the acoustic guitar, we identified
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Figure 3.12: Top: Acoustic guitar E2 (MIDI note 40). Bottom: Viola (pizzi-
cato) G5 (MIDI note 79).

the attack sample ν manually. The vibrations following this index seem,
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indeed, to be steady-state. In the case of the viola, however, we observe a

finite-length attack time, during which the energy builds up. Such a build

up is not accounted for in our physical analysis, and we do not possess a

model for this part of the sound. It is possible to “force” the input to the

unit step model, by setting ν to some sample where the build-up phase

is over. The inconvenience here is that, even during the build-up, some

periodicity appears. Hence, setting ν too far into the sound would result in

discarding a non-negligible segment of the string’s vibrations, which would

escape the cancelation process, and remain into the part of the sound that is

considered to be the instrument’s response to the attack. On the other hand,

setting ν too early would mean analysing a signal that is, to some extent, in

contradiction with the analytical model, thus impairing the exactness of the

measurements and the effectiveness of the cancelation.

The research for an algorithm to decide on the attack sample ν is here

left for future work. We are just going to mention that, to be transparent,

such algorithm should return the first non-zero sample if fed with a synthetic,

unit-stepped input, the likes of which was shown in Figure 3.10.

The cancelation of the partials in the frequency domain has been described,

its advantages listed, and the difficulties inherent to a Phase Vocoder ap-

proach, outlined and discussed. Before being canceled, however, a partial

must be found. Also, not all partials must be canceled, but only those per-

taining to the string. The detection and identification of the partials of the

string within the spectrum of a grain is the object of the next section.
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3.3 Detection of string partials

Mainly, it is transverse partials that ought to be found, as they contain

the very largest part of the string’s energy. The phantom partials can nev-

ertheless not be neglected. Often, the transverse partials, being the most

significant, render the phantom partials inaudible, due to the masking effect

[Moo04]. However, once the main series is canceled, the phantom partials

may, left on their own, become audible.

The difficulty in the detection of phantom partials is that they are so

small that they can hardly be identified, unless it is known where to find

them. We saw, in Chapter 1, that their frequencies could be arranged in a

pseudo-harmonic series, of identical fundamental frequency ω0 to the main

series, only with a quarter of the inharmonicity coefficient β. Only these two

parameters are therefore needed to find the phantom partials. However, a

precise estimate of these parameters can in practice only be obtained via the

measurement of the transverse partials, which are much more conspicuous.

We will therefore keep the focus on the main series, suggesting ways of eval-

uating the Fundamental Frequency and Inharmonicity Coefficient along the

way. Then, once these estimates are available, we will be able, by the end of

this section, to find the phantom partials.

Let us recall here the expression for the frequency series of the normal

partials, already seen in Equation (1.33), Section 1.33:

ωk = kω0

√
1 + βk2.
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The partials of the transverse series are large and very recognisable early in

the series. Yet, it is convenient to know where to look for some kth partial

right away, without having to infer, one way or another, its harmonic number.

In this regard, we already have, on the one hand, some estimate ωAC of the

fundamental frequency, obtained with the autocorrelation algorithm (Section

3.1.1). On the other hand, the effect of inharmonicity is, in the lowest region

of the spectrum, negligible, given that the order of magnitude of β is around

10−4. Therefore,

ωk ≈ kωAC for small k. (3.24)

The first few partials, in general up to the tenth, can therefore easily be

picked. For higher indices, the approximation (3.24) does not hold anymore;

there, partials may deviate, under the “inharmonicity stretch”, by several

multiples of the fundamental frequency [HWTL09, HTL10]. Then, more

than ever, it can be difficult, once a transverse partial is found, to tell what

harmonic number it may be.

3.3.1 Median-Adjustive Trajectories

If the IC were known beforehand, finding the partials would be much easier.

Estimating the IC without having to resort to a peak detection is actually

a possibility. Galembo and Askenfelt developed several such methods. In

[GA94], methods relying on the cepstrum and the Inharmonic Product Spec-

trum of the string tone are proposed, and in a later paper [GA99], a method

using an inharmonic comb filter [GA99] is developed. These methods, how-

ever, are relatively expensive computationally, and it has been shown in more
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recent years that methods based on the measurement of the partials yields

more accurate estimates, at lesser computational costs [RLV07, HWTL09].

The author contributed to this problem with an approach based on an ana-

lytical expression for the parameters ω0 and β in terms of a pair of partial fre-

quencies and their harmonic numbers. This method, called Median-Adjustive

Trajectories (MAT), is explained now.

In the inharmonic series expression (1.33), we see that the frequency of

the kth harmonic depends on the number k and two unknowns, ω0 and β.

Two partials are therefore necessary to solve (1.33) for ω0 and β, as well as

their harmonic numbers:

ω0 =

√
l4ω2

k − k4ω2
l

l4k2 − k4l2
, (3.25)

and

β = − l
2ω2

k − k2ω2
l

l4ω2
k − k4ω2

l

. (3.26)

Given the negligible effect of inharmonicity on the first few partials, the MAT

method can pick the first two partials based on such an approximation for

ωk seen in (3.24), using for example an autocorrelation-based fundamental

frequency estimate. Thereon, a first estimate of the parameters is possible,

and can be used for the detection of the third partial. After the third partial

is found and measured, there are now three potential combinations of peaks,

for three estimates. The median of these collected estimates can be used to

progress upwards in frequency.4 The process is repeated over and over again,

4The median is preferred to the average because it is much less sensitive to outliers
[HWTL09].
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until the last detectable partials, at the higher end of the series, are found.

This is a very robust and secure way of finding the partials of the series,

and returns estimates that are extremely close to the true fundamental fre-

quency and inharmonicity coefficient values. The downside of this method

is its computational cost. Generally, for K partials found, (K2−K)/2 com-

binations are possible, and calculating the series’ parameters for all of them

is a process of computational complexity O(K2), notwithstanding the cost

relative to the finding of the median value, which requires the sorting of the

estimates.

Here, we propose a way of reducing the cost of this approach, by trying

to select the combination of partials for which the estimate of the parameters

is the least sensitive to error in the estimates of the partial frequencies. For

the analysis of this error, it is more convenient to work with the square of

the frequency,

Ω
∆
= ω2.

We denote estimates with a hat, and equate them with their true values plus

an error ε. As such, the partial frequency estimates become

Ω̂k = Ωk + εk,

and the fundamental frequency and inharmonicity coefficient estimates,

Ω̂0 = Ω0 + ε0
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and

β̂ = β + εβ.

Doing all the necessary substitutions, the errors in fundamental frequency

and inharmonicity coefficient estimates can be expressed as

ε0 =
l4εk − k4εl
l4k2 − k4l2

(3.27)

and

εβ = − l
4βεk + l2εk − k4βεl − k2εl
l4(ω2

k + εk)− k4(ω2
l + εl)

. (3.28)

Both errors (3.27) and (3.28) consist of ratios of fourth-order polynomials

in k and l. It is not straightforward to find for what combinations of these

indices the errors are the least, all the more that ε cannot be known a pri-

ori. Yet a few clues can be taken by observing the limits of these ratios of

polynomials. For one thing, it seems unwise to use a combination of partials

that are close together, as

lim
k→l

ε0 = lim
k→l

εβ =∞, (3.29)

if we consider that limk→l εk = εl. On the other hand, the effect of εk becomes

negligible if k is very large, as

lim
k→∞

ε0 =
εl
l2
, (3.30)
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and

lim
k→∞

εβ = − βεl
l4ω2

0β + l2ω0 + εl
. (3.31)

(3.30) tells us that the error in the fundamental frequency estimate is in-

versely proportional to the index of the other partial, l2. It is true that the

frequency measurement of partials is more subject to error as the partial

number increases, especially because partials of higher indices are lesser in

magnitude, and hence more exposed to noise. But this increase in sensitiv-

ity is at best linear, which leaves the fundamental frequency estimate error

ε0 still inversely proportional to the partial index l. Regarding the error

in the inharmonicity coefficient estimate, εβ, this decay trend is inversely

proportional to l4, which is a very fast decay.

Considering this statement, it would be tempting to pick the largest pos-

sible partial number l too. But then, condition (3.29) also has to be remem-

bered. It therefore seems wisest to pick the largest k possible, but thereafter,

to choose l somewhere halfway, for example by choosing l = dk/2e.
An economical reduction of the MAT method is available here. Each new

partial estimate avails of one new estimate for both ω0 and β. To keep the

algorithm robust, the estimates are to be collected, and for the detection of

the next partial, the median of all available estimates should be used. Now

the computational complexity of the peak detection, fundamental frequency

and inharmonicity coefficient estimate is linear in K, the number of partials

found.
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3.3.2 Local linear approximation and Linear Least Squares

In this section, we present yet another method for the detection of the peaks

and the evaluation of the fundamental frequency and inharmonicity coeffi-

cient. This method relies on the fact that, over a frequency interval of a few

peaks only, the partial frequencies can be approximated as a linear function.

The Linear Least Square (LLS) fit of a line can therefore be performed in

partial frequencies over this restrained interval, and be used to predict the

frequency of the next partial. Also, we will show that the coefficients of this

linear function can thereafter be used to estimate the actual fundamental

frequency and inharmonicity coefficient. The detail of this method follows.

In [FR91], a cubic polynomial was already used to approximate the entire

inharmonic series. Here, we reduce this approximation to a first-order Taylor

series approximation, valid over an interval of a few partials,

ω(k) ≈ ω′(k0)(k − k0) + ω(k0), for small |k − k0|. (3.32)

Let us call Kfit the number of partials to use in the linear fit. These

partials are partials that are already measured and identified, and should be

as close as possible one to the other – adjacent whenever possible – to reduce

the interval of the linear approximation. Then, a partial number k0, around

which the Taylor approximation takes place, should be chosen among the
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selected partials. Now the matrix K can be constructed,

K =




k1 − k0 1

k2 − k0 1
...

...

kKq − k0 1



,

as well as the vector ωk of corresponding measured frequencies, where

k = [k1, k2, ..., kKfit
]T .

The vector containing the polynomial coefficients of (3.32) can now be ob-

tained with a least-square fit,

ω =


 ω′(k0)

ω(k0)


 =

(
KTK

)−1
KTωk. (3.33)

It is rather simple to incorporate this fit into a peak detection. Again,

the first Kfit partials, at the bottom of the series, can be found with the help

of the autocorrelation fundamental frequency estimate. Then, the linear

function (3.32) is fitted, and is used to find the next partial. This partial as

well as the previous Kfit− 1 is, in turn, used in the linear fit, to get updated

ω coefficients. The process can be repeated until it is estimated that the

higher end of the series has been reached.

This method is intuitive, and, provided that the pseudo-harmonic series

is well behaved, works well. However it was found that often the harmonic
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series, even for string tones issued from professional instruments and recorded

in optimal conditions, could locally behave in unexpected ways. In Figure

3.13, for example, we use a linear fit over five partials (circled peaks). In
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Figure 3.13: Detecting the transverse partials in an inharmonic spectrum
with a local linear approximation. The frequencies of the circled peaks are
used in a Linear Least Square fit. In the upper plot, the series behaves as
expected, nearly harmonically. In the lower plot, however, an unexpected
behaviour is visible, rendering the linear approximation (dashed lines) un-
suitable.

the upper plot, the series is well behaved. The frequencies predicted by the

linear fit, shown in vertical dotted lines, are consistent with the series over a

certain number of partials, and then, on either side of the fit, a discrepancy

progressively appears. The lower plot, in turn, is a typical illustration of a

188



place in the spectrum where the linear-fit detection might fail. The three

partials after the five circled peaks are suddenly and unexpectedly high.

Thereafter, the series seems to regain a normal behaviour, but because the

linear approximation is only valid about few partials, they are beyond reach,

the discrepancy being already too large. A quadratic fit has been tried, to

widen the interval of good approximation, but this approach fails even more

easily if an outlying partial is confused for a transverse partial, or even when

such unexpected behaviour as seen in Figure 3.13 makes the partials deviate

dramatically.

For now, the MAT approach is far more reliable than the LLS approach,

for the reason that the MAT approach is based on the model ωk = kω0

√
1 + βk2,

which applies to the entire series. Thence, the median statistics gathered

throughout the entire search are relevant to any place in the spectrum, and

local deviation from the expected behavior has practically no effect on the

ω0 and β estimates. In this regard, though, the LLS fit can be used in a

spirit equivalent to the MAT approach, as these FF and IC estimates can

also be obtained from the coefficients of the fit, could therefore be collected

just the same, and the median of all these estimates could be used to estimate

the frequency of the partials yet to be found. Indeed, the derivative for the

pseudo-harmonic series at the index k0 is

ω′ (k0) = ω0
1 + 2βk2

0√
1 + βk2

0

,

of which the first coefficient of the vector ω offers a good estimate. The

second coefficient of this vector is ω̂(k0), which is an approximation of the
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value of the series at index k0, ω(k0) = k0ω0

√
1 + βk2

0. From the value of the

series at a given index and the derivative of the series at this same index, the

fundamental frequency and inharmonicity coefficient can be evaluated, with

ω0 =
1

k

√
ω(k) (2ω(k)− kω′(k)) (3.34)

and

β =
kω′(k)− ω(k)

k2(2ω(k)− kω′(k))
, (3.35)

for all k. The coefficients of the linear fit, ω̂′(k0) and ω̂(k0), can thus be

substituted into (3.34) and (3.35) to get the required estimates. These are,

theoretically, as valid as the estimates based on pairs of partial frequencies

shown for the MAT approach in equations (3.25) and (3.26), except that here,

there is no question as to which combination of partials should be picked.

Yet, an unexpected trend emerged in the implementation of this approach:

the inharmonicity coefficient estimate tended to get bigger when partials of

higher order were used in the fit. This could be due to the increasing rate of

change in the derivative of the series,

ω′′(k) = ω0βk
3 + 2βk2

(1 + βk2)3/2
,

affecting the linear approximation. Whichever the reason, such a trend ren-

ders the use of statistics for the estimation of the series’ constants futile.

In contrast, the MAT approach as described in Section 3.3.1 works fine, is

cheaper computationally, and is easier to implement. It was nevertheless

deemed that the LLS approach should be discussed here, at once because it
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is an intuitive approach that one might think of and because is emphasizes,

by comparison, the appropriateness of the MAT method.

3.3.3 Accounting for phantom partials

We finally address the problem of accounting for the phantom partials in the

string cancelation process at the time scale of a frame. Following the physical

analysis of Chapter 1, we know that these partials are ordered in frequency

according to the series

ωL
k = kω0

√
1 + 1/4β,

already seen in Equation (1.56).

A typical feature of phantom partials is that they are generally of lesser

amplitude than the transverse partials, and are at times so low, that they

are invisible, drowned in the surrounding noise. This phenomenon can be

witnessed in the Spanish guitar and grand piano spectra of figures 1.11 and

1.12. When they are so low, it becomes superfluous to try and cancel the

partials. Augmenting the string cancelation process with an estimator that

decides when a partial should be treated or not, depending maybe on its

magnitude, or its audibility, could help improve the computational efficiency

of the string extraction process.

Not to waste computational resources, a more important aspect of the

cancelation is the sequence according to which transverse and phantom par-

tials must be canceled. We already suggested, in Section 3.2.1, a way to

overcome the problem of cross-interference in the case of overlapped trans-

verse and phantom partials. It was proposed there to measure and cancel
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the dominating peak first, and the dominated partial, second. If phantom

partials were always of lesser amplitude than the neighbouring transverse

partials, then a first detection-cancelation pass could be run to clear the

spectrum of the transverse partials, and then a second pass, to clear the

phantom partials. But it can happen that some phantom partial might be

greater and actually dominate a transverse partial. Because, in a situation

of overlap, the greatest partial must be canceled first, this uncertainty makes

the cancelation process more delicate. A brute-force approach would be: in

a first pass, to see which transverse partials are dominating and which are

being dominated, and cancel all the dominating partials ; in a second pass, to

move on to the phantom partials, which at that stage must all be dominating

and can therefore all be canceled ; and in a third and final pass, to eliminate

the last few transverse partials. Instead, we propose here an algorithm which

guarantees the cancelation of all peaks in one pass only. Before we present

this algorithm, an introduction to the concepts of peaks, bulges and caves is

necessary.

A peak is, in a magnitude spectrum, any local maximum, that is, a sample

on either side of which the magnitude is lesser. A bulge, in turn, is a positive

local minimum in the curvature of the magnitude spectrum. It should be

noted that a peak is necessarily a bulge, but that a bulge is not necessarily

a peak. Rather, we should say that a peak is necessarily associated with a

bulge ; this nuance is important because the sample of minimal curvature

does not necessarily exactly coincide with the place of maximal magnitude. In

Figure 3.14, for example, it is visible that the peak is to be associated, in this
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case, with the curvature minimum that is closest in frequency. On the other
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Figure 3.14: Peaks, bulges and caves : three concepts necessary to decide
securely which of the two overlapping partials should be canceled first. Even
when they are the effect of one same partial, a curvature minimum (bulge)
does not always coincide exactly with a magnitude maximum (peak).

hand, the other bulge, clearly the effect of an overlapping partial of lesser

magnitude, should not be associated with any peak. The problem addressed

now is how to make the distinction between the bulges that are peaks and

those that are not. After various experiments, it was found that the most

reliable way of doing so was to check whether, between the examined bulge

and the nearest peak “on the way up” in magnitude, there was a cave or not.

In mathematical terms, a cave is a positive local maximum in curvature. The
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algorithm should scan the magnitude spectrum, starting from the bulge that

is being examined, following the direction where the magnitude goes up, and

declare that it is a peak if a peak is found first, or only a bulge if a cave is

found first. Note that it is not impossible, in the definition laid above, that a

peak is also a cave, counter-intuitive as it may seem. In such case, of course,

it should be considered to be a peak.

This basis laid, we can now introduce the detection-cancelation algorithm.

Basically, the search goes from the lowest to the highest harmonic index

for the transverse and phantom series at once, trying all harmonic indices.

Peaks are canceled as soon as they are found, and transverse/phantom bulges

which are dominated by phantom/transverse peaks wait for the latter to be

canceled, and are thereafter canceled in turn. The algorithm is as follows:

1. Set k and l, the harmonic indices of the transverse and phantom series,

to 1. Allocate two boolean values, transverse and phantom, which

will become useful later on. Initialise the fundamental frequency with

such an estimate as that returned by the autocorrelation method, and

set the inharmonicity coefficient to zero.

2. Repeat the following steps until all string partials have been detected

and canceled.

3. Find the bulge closest to ωk and ωL
l , referring to equations (1.33) and

(1.56), respectively, with the current fundamental frequency and inhar-

monicity coefficient estimates.

4. For each detected transverse and phantom bulges, find out whether
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they are peaks or not, according to the method described above.

5. If the transverse and/or the phantom peaks/peak are/is marked as

canceled, increment k and/or l by 1 and return to step 3.

6. Now it must be determined whether it is a transverse or a phantom

peak that is going to be canceled, if any. This depends on the result to

the previous step, of which four cases are possible:

• Both the transverse and phantom partials are peaks, and they are

distinct peaks. In this case, select the peak of least frequency for

measurement and cancelation. Set transverse and phantom to

true or false accordingly.

• Both are peaks, but they turn out to be the same, which should be

what happens for the first few partials. Select this peak for mea-

surement and cancelation, and set both transverse and phantom

to true.

• Only one of the two is a peak. Select that which is a peak for

measurement and cancelation, and set transverse and phantom

to true or false accordingly.

• None of the two bulges is a peak. There is no need to select a

peak, because no measurement and cancelation will take place.

Set both transverse and phantom to false.

7. If either or both transverse and phantom are true, proceed to the

measurement-cancelation part of the selected peak.
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8. If transverse is true, use the frequency measurement and current

transverse harmonic number to refine the fundamental frequency and

inharmonicity coefficient estimates.

9. Now the harmonic numbers k and l must be incremented appropriately:

• If transverse/phantom is true and phantom/transverse is false,

increment k/l, and if the transverse/phantom peak is higher in

frequency than the peak that dominates the phantom/transverse

bulge, increment l/k. This last step ensures that the phantom/-

transverse bulge is not left behind, waiting unnecessarily to be-

come a peak.

• If neither or both transverse and phantom are true, increment

both k and l.

These steps should be repeated until all partials that should be can-

celed are canceled. For the purpose of deciding when to stop, it is useful to

set a frequency threshold. One way to do so is to detect all the peaks, or

local maxima, of the magnitude spectrum before the detection-cancelation

process is started, and set the threshold to the highest (in terms of fre-

quency) peak above a magnitude threshold. This magnitude threshold can

be -96dB, which is the Signal-to-Noise Ratio of a 16-bits Analogue-to-Digital

Conversion [OSB99], or greater, for noisy recordings. Alternatively, Fletcher-

Munson equal-loudness contours [FM33] may be used to estimate which peak

is the last to be audible. Of course, the frequency threshold should not go

beyond the Nyquist frequency, half the sampling rate, where the magnitude
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spectrum is mirrored. Ultimately, this can be set as a frequency threshold,

but most often the frequency-domain decay rate of the magnitude of the

string partials is such that any measurable energy vanishes well before this

frequency.

Conclusion

This chapter proposed a Phase Vocoder process for the virtual extraction

of a string in monophonic, plucked or hit string tones. The Phase Vocoder

scheme is based on a Short-Time Fourier Transform (STFT) time-frequency

representation of the signal, where the input is first decomposed into a suc-

cession of overlapping grains. It was therefore logical to begin, in Section

3.1, with a complete formulation of this granulation process, which was to

satisfy two conditions: first, that the scheme is transparent, and second, that

the window used in the granulation process shows optimal frequency-domain

properties for the reduction of the cross-interference during the estimation

of the parameters of the string partials.

Once the time-domain arrangements were described, the discussion could

move on to the short-time spectra obtained from the Fast-Fourier Trans-

formation of the grains, where the detection and cancelation of the string

partials take place. It was chosen to describe the cancelation of the partials

first, in Section 3.2. The linearity of the cancelation process and the Fourier

transform makes it equivalent that the cancelation takes place in the time

or frequency domain. It was nevertheless shown that a frequency-domain

approach has significant advantages, essentially regarding the computational
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savings that it offers. This section was also the appropriate place where to

mention the difficulties of such cancelation process, independently of whether

it is done in the time or frequency domain, when it comes to dealing with

the attack of the tone and overlapping transverse and phantom partials.

Finally, the problem of detecting the string partials was approached, in

Section 3.3. From the presence of phantom partials were shown to arise

situations of strong overlap, where the smallest of the two partials cannot

emerge as a peak, but is still discernible by the bulge it causes in the dominat-

ing partial. To account for this phenomenon, an algorithm was introduced,

where, in situation of overlap, the largest partial was canceled first, clearing

the second partial which, in turn, could become a peak, be measured and

canceled. The algorithm was designed so as to require one “pass” only, and

it makes use of the linearity of the frequency-domain subtractive cancelation

process that this thesis has introduced. Regarding the detection and identi-

fication of the partials, the method that was found the most secure was the

method of Median-Adjustive Trajectories (MAT), introduced by the author

in [HWTL09]. Yet new material since the introduction of the method was

presented in Section 3.3, showing how the square complexity of the MAT

could be reduced to a linear complexity. Also, an alternative, intuitive ap-

proach of locally approximating the pseudo-harmonic series with a linear

series was explored. But such approach does not feature such robustness as

the MAT does, and the reasons why were identified.
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Chapter 4

Tests, experiments and results

In this chapter, we test the string extraction method described throughout

this thesis onto a variety of string instruments of contrasting character, both

professional and custom recordings. A list of the featured instruments fol-

lows:

• Steel-string acoustic guitar

• Nylon-string acoustic guitar

• Spanish guitar

• Martin acoustic guitar, recorded in the NUI Maynooth Music Technol-

ogy Laboratory by the author

• Stratocaster electric guitar

• Harpsichord

• Grand piano

• Double-bass (plucked Jazz-style)
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• Viola (pizzicati)

All samples, except for the Martin and Spanish guitar samples, are professional-

quality Yamaha samples [A5000 Professional Studio Library]. The exact

brand of the instruments involved is unknown, except for the Fender Strato-

caster electric guitar, of which it can be expected that it is American-built.

Likewise, it is probable that the grand piano is a Steinway, the reference

brand. The Spanish guitar samples were obtained through the use of Yel-

low Tools’ Independence software sampler http://www.yellowtools.com/

(latest access: October 20th, 2011).

Evaluation criteria

The string extraction examples are evaluated after two general criteria: aural

quality and computational efficiency. Having said that, it will become obvi-

ous to the reader that our main focus will be aural quality. Although our

approach to the problem of string extraction has been striving to facilitate

real-time implementation, the method could still be found to have some uses

even if, at the end of the day, it could not run in real-time (for example, as

a pre-processing unit for samplers). On the contrary, a real-time application

that does not produce results of respectable aural quality would probably

not be of much use.

Another point that makes us give priority on quality over performance is

the impracticality of testing the actual computation time in a non-optimal

implementation. Our method is currently implemented as a Matlab pro-

totype, while ultimately, a real-time music application should be written
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in C++. Matlab code is far more concise and straightforward than C++

code, making prototyping and experimentation convenient, but it is also

much slower, and does not support real-time input or output. Within the

scope of this thesis, we therefore cannot test comprehensively how well the

method can run in real-time. This possibility aside, encoding efficiency was

mostly disregarded for the benefit of code conciseness readability. The only

sort of computational efficiency testing that we could include in this thesis

is comparative testing, such as in Section 4.3, where the cancelation of a

partial through Fourier-series approximation of its main lobe is compared

with an FFT approach. Only then was the effort made to write some code

that requires the least possible computation time, so as to compete with the

computation power of the FFT.

Aural and visual quality evaluation

Coming back to quality, the means in our possession in this thesis to evaluate

the success of string extraction are aural and visual. Whether an input that

has undergone string extraction “sounds good” or not is certainly the test

that matters most, as eventually all the efforts put in this thesis are intended

to be useful in musical applications. A thesis document can nevertheless only

support writing and graphics, but the sound examples alluded to in this chap-

ter can be found on the Compact Disc accompanying this document, as well

as on the Web page http://www.cs.may.ie/~matthewh/ThesisExamples.

html. Each example in this chapter was given a unique number which will

be used as reference.
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An acute human ear is the best judge of the quality of a tone, but in

our case the spectrogram and waveform of the input and output can convey

useful information. The examination of a waveform after extraction might

indicate whether an instrument’s body response is very reverberant or not,

or if some sinusoidal energy remains, or else if there are traces of background

noise(s). A spectrogram, in turn, says a lot about the cancelation process.

For example, it can happen, in complex spectra such as a grand piano’s,

where a lot of overlapping between transverse and phantom partials occur,

that our method cancels a given peak in a given frame, and spares it in the

following frame, to cancel it again the frame after. This phenomenon, referred

to as burbling in [IS87], is very visible in the spectrogram of the tone after

cancelation but before re-synthesis. This is another interesting point, that

due to the overlapping of the analysis frames in the Phase Vocoder scheme,

the spectrogram of the waveform after re-synthesis will not be the exact same

as that of the input after frequency-domain string extraction. We illustrate

this phenomenon in Figure 4.1. Here is visible that the spectral energy of

each frame is smeared upon re-synthesis, both horizontally and vertically.

The overlap factor used in this figure is 5, which means that a given window

will reach into the two windows before it and the two after. In accordance,

the energy in frame of index 0, in the upper spectrogram, can be seen in the

lower spectrogram to leak into the two frames before, where the energy was

originally nil.

As a recapitulation of the various means of assessing the quality of the

extraction process, let us examine the string extraction example of a harpi-

202



Figure 4.1: Frequency-domain synthesized string spectrogram (top) and
spectrogram after time-domain re-synthesis (bottom). Due to the overlap
(here, 5) of the analysis frames, these are not equal. Notice the smearing,
both horizontal and vertical, of the spectral energy.

chord A4 (MIDI note 69). The waveform before (lighter shade) and after

(darker shade) processing are superposed in Figure 4.2. In a similar arrange-

ment, the spectrogram of the harpsichord tone before processing is seen in

the upper panel of Figure 4.3, and after processing, in the lower panel of the

same figure. Finally, the corresponding audio waveforms (here, 03.wav and

04.wav) can be downloaded from the webpage mentioned earlier. A burst of

energy is visible in the processed waveform, and the processed spectrogram

indicates that this burst of energy is broadband. The processed waveform
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Figure 4.2: Harpsichord A4 (MIDI note 69) before (lighter shade) and after
(darker shade) string extraction.

Figure 4.3: Harpsichord A4 (MIDI note 69) before (top) and after (bottom)
string extraction.
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also features some residual, low-frequency energy, which is difficult to lo-

cate in the processed spectrogram. However, the partials can be seen there

to have been canceled correctly, which suggests that this residual is due to

some body resonance. But this hypothesis, however, will really be confirmed

or rejected upon comparative listening of the sound file before processing, to

identify the pitch of the original tone, and after processing, to see whether

this resonance can be part of the extracted string’s original series or not.

These are the kind of commentaries that our graphics and sound files may

inspire.

Organisation of this chapter

The string extraction method we developed throughout this thesis is inno-

vative in some essential respects: the use of Median-Adjustive Trajectories

to detect partials, the frequency-domain cancelation of partials through sub-

traction and the resulting subtractive approach to the handling of overlap-

ping transverse and phantom partials, as well as the unit-step model for

the analysis of Phase Vocoder time segments that overlap with the on-

set of the tone. First, general examples will be given, where the overall

method, including all the above-mentioned features, will be tested. The

aim there is to convince the reader of the potential of the method, and

also to give the opportunity to pinpoint the concept of string extraction

(as opposed to excitation extraction) advanced in this thesis. Not to over-

load this document, the examples there will be relatively few, but of strate-

gic importance to nourish the discussion. More examples can be found at
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Thereafter, we will move on to testing the respective contributions of the

techniques original to this thesis to the overall quality of the method. We

choose, rather arbitrarily, to approach them in their order of appearance

in the body of this work: the Complex Spectral Phase Magnitude Evolution

(CSPME); the approximation of the partials’ main lobes with the amplitude-

modulated cosine window spectrum; the modeling of the tones’ onsets with

the product by a unit-step window; and the handling of phantom partials.

Limitations of the method in its present state will arise in the various contexts

of this discussion, and will be acknowledged in due time.

4.1 Testing the method overall

The process of string extraction, defined in the introduction to this thesis,

is the process of “removing”, virtually, all vibrational component from the

input that a direct transduction of the object string’s vibrations (i.e. the

string that the process aims at extracting). Indirectly, the instrument’s body

is going to respond to the excitation of the string. This is the part of the

sound that remains after string extraction that is commonly referred to as

the excitation [LDS07]. However, unless the input sound was very carefully

recorded, and where the noise floor is negligibly low, this is not the only

remainder. Open strings of the instruments that are not carefully muted

are also responsive, although in a damped manner, to the excitation of the

processed string, which is transmitted through the bridge of the instrument.

Also, the recording might comprise other accidental sound sources, such as
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the breathing of the performer, or the buzz of an electric guitar’s amplifier.

The cancelation process is not going to account for these, which, as a result,

are still going to be present in the output. In such cases, the term excitation

extraction, i.e. the isolation of the response of the body from all the rest, is

deemed inappropriate. Rather, it is the string which is isolated from all the

rest, hence our preference for the term of string extraction.

There are nevertheless cases where the extraction of the string is equiva-

lent to the extraction of the excitation, that is, in the cases where only the

string’s energy and the energy of the body response are non-negligible. This

is the case of the viola pizzicato example, in Figure 4.4. Listening to the
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Figure 4.4: Viola G5 (MIDI note 79), played pizzicato.

corresponding sound files (01 (input) and 02 (output), one realises that the

residual waveform visible in the figure is the response of the body alone, as

no trace can be heard of sympathetic vibrations from other strings or ambi-

ent noise. This is not the case, however, of the Stratocaster example seen in

Figure 4.5 (sound files 11 and 12). There, the response of the body is much

shorter-lived (which is not surprising, given that an electric guitar amplifica-

207



tion system does not rely on an acoustic, resonant body), but it is visible that

the waveform then settles to a steady noise, the electric buzz of the amplifier.

A similar comment can be made about the Martin E5 example of Figure 4.6
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Figure 4.5: Stratocaster D3 (MIDI note 50): example of noise which is neither
string nor excitation

(sound files 13 and 14), where the waveform shows a noise floor of about -60

decibels (which, as a way of comparison, is approximately the noise floor of

analog audio tapes [Ear03], common before the advent of the CD in the early

1990s). The variations in the shape of this noisy waveform (after the body

response has faded out) are revealed to be frictions caused by movements of

the performer in the recording room (certainly not a professional!). Finally,

another typical situation where the remainder of a successful cancelation pro-

cess may not be the response of the body alone is exemplified in Figure 4.7

(sound files 09 and 10), where an acoustic guitar open D3 (MIDI note 50) is

processed. There the other open strings were not carefully muted, and their

ringing can be distinctly heard after the extraction of the object string.

In the Stratocaster, the Martin and the acoustic guitar examples above,

one cannot talk of excitation extraction as such. For actual excitation ex-
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Figure 4.6: Martin E5 (MIDI note 76) after string extraction. The “events”
in the noise floor are movements of the performer during recording, only
audible after string extraction.
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Figure 4.7: Acoustic guitar open D (MIDI note 50). In this example, the
sympathetic vibrations of the other open strings are clearly audible in the
processed sound.

traction, for such use as in Commuted Waveguide Synthesis [KVJ93, Smi93],

the method would have to take into account the potential sympathetic vi-

brations of other strings, as well as potential background noise. Else, for our

method to be useful to excitation extraction, there should be the require-

ment on the input that no sympathetic vibration or noise be present, or in

negligible quantities. But this goes contrary to the orientation of this thesis’
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work, which aims at facilitating real-time implementation, for real-time mu-

sical situations. Such constraint, on the contrary, really can only be met in

carefully arranged, studio conditions.

The results presented so far have, in addition of demonstrating the poten-

tial of the method, inspired a discussion which helped refining the definition

of this thesis’ work. This done, we can now evaluate the respective contribu-

tion of the various methods found in this thesis.

4.2 The CSPME exponential-amplitude gene-

realisation and its contribution to the can-

celation process

The CSPME method, introduced in Section 2.5.1 of this thesis, returns

the amplitude modulation and frequency information of an exponentially-

decaying sinusoidal component. These measurements can be used to syn-

thesize a cosine window’s spectral lobe as modified by such time-domain

modulation, and cancel efficiently the analysed partial. This method was

deemed most suitable for our purpose in Section 2.4.1, where we took an

informed guess as to whether a constant-amplitude model was good enough,

over the short period of time of a windowed grain, to cancel string partials

satisfactorily. There, we compared the constant-amplitude model with a

linear-amplitude model, which was deemed to be a good approximation of

the actual exponential model over such a short period of time. The gradient

of the linear-amplitude model was derived from magnitude measurements of
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partials taken throughout the overall tone. The results, summarised in Table

2.3, led us to the conclusion that bright instruments (such as the piano or the

harpsichord) had so slow decay times that a constant-amplitude approxima-

tion could be enough, but that duller instruments (such as the double-bass),

with their far more rapidly decaying partials, seemed to require a CSPME

approach.

For this reason, the contribution of the exponential-amplitude generali-

sation in the measurement and cancelation processes was first tested upon

some double-bass samples. Surprisingly, the output was found to be of iden-

tical quality whether the amplitude modulation information returned by the

CSPME was used in the cancelation or simply disregarded. The difference

between the waveform rose to -60 decibels, so the outputs were at least not

identical, but neither aurally nor visually could a distinction be made. This

example is given in Figure 4.8 (sound files 24 and 25), but only for the case

where amplitude modulation was taken into account, to avoid redundant

graphics.

On the other hand, it was equally surprising to find that, for the lower

partials in the lower range of much brighter instruments, it really did not

make a difference whether the amplitude modulation was accounted for or

not. With slower-varying amplitude envelopes, our conclusion of Section

2.4.1 was that a constant-amplitude approach might have yielded results of

satisfactory quality. Figure 4.9 shows, however, that a trace of the partials

remains when a constant-amplitude model is used, while the cancelation is

visibly more successful when the exponential-amplitude constant returned by
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Figure 4.8: Double Bass A2 (MIDI note 45) before (lighter shade) and after
(darker shade) string extraction: a constant-amplitude model, for this heavily
damped tone, yields a result of equivalent quality.

the CSPME is taken into account. The difference is as much audible in the

waveforms (sound files 15 and 16) as it is visible in the spectrograms. In the

constant-amplitude case, for instance, the pitch of the original sound is still

clearly recognisable, while hardly audible in the CSPME case.

4.3 Fourier-series approximation of a partial’s

main lobe for synthesis and cancelation

Following the introduction, in Section 2.5.1, of the CSPME for the obtention

of the frequency and amplitude modulation constants r and γ of the mea-

sured partial, a complementary method to the subsequent obtention of the

amplitude and phase constants A and φ was described. This method is equiv-

alent to those found in [SG06, Z0̈2], but generalised to amplitude-modulated

spectra. In short, r and γ serve to derive an “intermediary spectrum”, whose

values can be used to divide the corresponding values of the analysed spec-
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Figure 4.9: Nylon-string acoustic guitar D3 (MIDI note 50) with CSPME
(top) and a contant-amplitude (bottom) models for cancelation.

trum. From this quotient can then be extracted the amplitude and phase

constants. In our subtractive partial cancelation method, these constants are

then used to scale and phase-increment the intermediary spectrum, which

then becomes a faithful copy of the original spectrum.

This intermediary spectrum therefore has two roles: the estimation of the

amplitude and phase constants, and the cancelation of a partial through its

frequency-domain synthesis and subtraction. For the former task, only one

spectral sample of the intermediary spectrum is necessary – preferably, that

of maximal magnitude, because it is generally the least exposed to the cross-
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interference from other partials. For the purpose of subtractive cancelation,

all spectral samples that are not negligibly small should be synthesized. For

a cosine window, where the essence of the energy is concentrated in the

main lobe, this may be the spectral samples of the main lobe only, which

in general amount to about 10. The question then is: how to synthesize

these samples? The easy option is to take the Fast Fourier Transform of the

product of a complex exponential whose frequency is r, decay rate γ, and the

window used in the analysis. This problem has the drawback of generating M

samples (for a length-M analysis) while only about 10 of these are necessary,

and also the necessity of synthesizing N samples of a windowed complex-

exponential is still present. Instead, could the synthesis of the useful samples

using the analytical expression of the intermediary spectrum (2.67) be more

economical? This is what we aim at testing in this section, along with the

assumption that the sidelobes of a partial can be spared in the cancelation

without compromise of quality.1

Two versions of the string extraction method that differed only in the

means of evaluating the above-mentioned spectral samples were implemented:

in the first, the analytical approach was used, in the second, the FFT ap-

proach. Time counters were introduced before and after the lines of code

where these methods are implemented to compare the computation times.

1It should be pointed out, however, that even if the tests were satisfactory, that the
analytical approach to synthesis has the drawback of requiring an analytical expression
for the spectra of our partials. (2.67) is for steady-state, cosine-windowed partials. For
windows overlapping with the onset of the tone, an analytical expression for the spectrum
of the product of the signal, the window and the unit-step function could not be found.
If this method were opted for, it could therefore apply to steady-state windows only, and
if onset-overlapping windows were to be treated in the same subtractive way, a switching
from FFT synthesis to analytical synthesis should be included in the implementation.
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The analytical approach, on average, requires around 20% of the time re-

quired for the FFT approach. In the worst cases, it still takes less than 50%

of the FFT time, and in the best cases, less than 5%. It is yet unclear,

however, why these percentages can show such variations.

The quality of the outputs (which might differ because, in the analytical

approach, a Fourier-series approximation is used and only the main lobe

is subtracted) was also compared, by the examination of the spectrograms

and the waveforms, visually and aurally. The tests were first run using a

second-order, continuous cosine window (see Section 2.2.3 and Figure 2.4 in

Section 2.2). In some cases (for example, in the double-base case), the output

was of identical quality whether the entire set of FFT samples was used for

subtraction or only the main lobe of the analytically-synthesized spectrum.

In further tests, on instruments of brighter spectrum, an audible, low-pitched

buzz could be discerned with the analytical approach case, that was not in

the FFT case. The reason for this potential artifact is that the spectral

energy of the sidelobes of a second-order continuous cosine window is, against

our assumptions of Section 2.5.2, not completely negligible, and actually may

contribute to some audible extent to the re-synthesized waveform. To remedy

to this problem, the nearest side-lobes can be taken into account in the re-

synthesis, but this is not very elegant. Else, the order P of the window can be

increased to 3. Then, a yet greater proportion of the spectral energy would

gather in the main lobe (i.e. compare the bottom left and right subplots of

Figure 2.4, Section 2.2), and now the main-lobe only approximation might be

enough. Comfortingly, the tests then gave entirely satisfactory results. The
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use of a greater window order, however, is a computational drawback: the

main lobe is now wider and thus comprises more spectral samples, and the

synthesis of each sample is also more costly, given the convolution with more

cosine window components in (2.59). Yet, the computation cost comparison

with the FFT still returned a similar gain of time in favour of the analytical

approach.

4.4 Behaviour of the cancelation process in

onset-overlapping frames

Throughout an input of regular length (i.e. at least a few tens of a second),

most of the Phase Vocoder frames are fully into the signal. Over such periods

of time, the signal can be said to be steady-state. However, there are a few

frames (their number depends on the overlap factor) which overlap with the

onset (e.g. the moment of release of a plucked string) of the tones, before

which the waveform can be considered to be nil, and after which it is non-

zero. We call such frames onset-overlapping frames.

Essentially, the problem encountered in onset-overlapping frames is the

impaired resolution of the partials. Cross-interference might then become

too big for the assumption that a magnitude local maximum is the effect

of one harmonic only to be valid. In this section, we will check whether the

cross-interference in overlapping frames is too big, or if the CSPME estimates

could still be accurate enough for the cancelation in such frames to have some

positive effect. Indeed, tests were occured where anomalies due to excessive
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cross-interfence were observed. Figure 4.10 illustrates such anomaly. In the
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Figure 4.10: Acoustic Guitar E2 (MIDI note 40): Spectrum after subtraction
(upper plot, solid line) should be lesser than before (dashed line). CSPME
measurement of leftmost circled peak largely erroneous, responsible for added
energy. In time-domain output (lower plot), results in outstanding sinusoidal
grain.

upper plot, a magnitude spectrum of an onset-overlapping frame is shown.

The dashed line represents the state of the spectrum before cancelation, and

the solid line, after. The circles denote the places of maximal magnitude that

were identified, during the peak detection process, as harmonics to cancel.

The vertical dotted lines, in turn, indicate the CSPME frequency estimate

of each of these harmonics. The reader should observe that the two closest
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circles to the left of the legend’s box are each very near a vertical dotted

line, which means that the the CSPME frequency measurement is at least

reasonably exact. However, the leftmost vertical dotted line is much higher

in frequency than the peak it was supposed to indicate the frequency of –

the dashed peak where the leftmost circle sits onto. The CSPME frequency

measurement there was excessively biased. Notwithstanding this, the mea-

surement was automatically used for the synthesis of a main lobe, but upon

subtraction, instead of canceling the targeted peak, it therefore added a lobe

that was not present originally. This is responsible, in the time-domain wave-

form resulting from the (mis-)processed spectrum, for the appearance of a

short burst of unexpected sinusoidal energy (outlined by a rectangle on the

figure). At times, such bursts can be very audible.

The amount of cross-interference in the measurement of a partial depends

on the “health” of this partial in the frequency domain (i.e. notice that the

peak that was not measured correctly is smaller than the peaks that were)

and on the amount of overlap of the analysis window with the onset in the

time domain (as shown previously in Figure 3.11, Section 3.2.2), along with

the order of the cosine window, because a cosine window of higher order has

its energy concentrated nearer to its center (see Figure 4.11).

It can also be expected that windows which do not overlap too much

with the onset might still be suitable candidates to the cancelation process.

The numerous tests run confirmed in this hypothesis, although in some cases

some sinusoidal bursts could occur. To present these results in an informative

manner, an indication of the amount of overlap must be given.
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Figure 4.11: How cosine windows of higher order gather their energy closer
to their center.

The window used by default in these tests is a second-order cosine window

(solid line in Figure 4.11), and the Phase Vocoder process was set to use a

minimal overlap, which, for a cosine window of order P = 2 is 5 (see Section

2.2.3). The time sample deemed closest to the moment of the attack, ν

(Section 3.2.2), was determined manually, and the granulation of the input

was synchronised to ν, so that the first sample of the first window not to

overlap with the onset was ν. (The idea is illustrated in Figure 4.12.) The

number of windows overlapping with the onset that are used for cancelation

may be denoted along with the overlap factor by a fraction, such as 2/6 if

the last two windows are used in a situation where the overlap is 6.

It was found that for high-pitched tones, an onset overlap of 0 (i.e. only

beginning the cancelation process in the frames fully into the sound) is suf-

ficient to yield aurally satisfying results, but that lower tones require some

overlap, without which some sense of pitch persists at the moment of the

attack, dissimulating, or at least altering, the true character of the response
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Figure 4.12: For testing, the windowing was synchronised with the attack
sample, ν. The shape (triangular) an line style (solid and dashed) of the
windows are for visual purpose only.

of the body. In general, even for the lowest-pitched tones, an onset overlap

of 1/5 yields satisfactory results, although it must be said that increasing the

onset overlap to 2/5 contributes to yielding body responses of exciting qual-

ity – provided, of course, that the cross-interference then was not so big as

to get erroneous CSPME measurements and cause audible sinusoidal bursts.

We give an example of this statement in Figure 4.13 (sound files 17, 18 and

19), where an acoustic guitar open bass E is processed. In the uppermost

panel, the onset overlap is 0/5, and the sinusoidal energy remaining early in

the early part of the processed wave (darker shade) gives a sense of the pitch

of the original wave (lighter shade), even if slightly. In the middle plot, the

onset overlap is augmented to 1/5, and it can be said that the sense of the

original pitch, upon audition of the processed wave, has disappeared. How-

ever, the bottom-most example, where the onset overlap is pushed to 2/5,

gives a very clear impression of the sharp response of the body to the string’s

sudden release.
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Figure 4.13: Acoustic Guitar E2 (MIDI note 40) with onset overlap 0/5 (top),
1/5 (middle) and 2/5 (bottom)

The benefit of dealing with onset-overlapping frames is thereby clear, but

more research is needed to make the cancelation process then less susceptible

of adding energy rather than taking some away. We succintly propose here

a few ideas that could lead to more permanent solutions, but this list should

not be considered exhaustive. To begin with, a brute-force approach is to

evaluate the total spectral energy of the spectrum before the cancelation,

and re-evaluate it after. It should be lesser, but if it were not, then the

cancelation process could, by its linear nature, easily be undone.

Another idea can be inspired from the observation, on Figure 4.10, that

the discrepancy between the frequency of the peak and the measured fre-
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quency is unreasonably large. Some threshold, decided heuristically, might

therefore be useful in deciding whether a partial was measured properly or

not. This method, however, along with the brute-force method mentioned

above, has the inconvenience that some partial that should be canceled might

be spared only on the basis that it could not be measured properly. An

approach that does not have this inconvenience would be to resort to a

quadratic-fit-based estimation of frequency, which, logically, cannot give an

error that is greater than half the frequency resolution of the analysis if a

magnitude peak is symmetrical about the frequency of the underlying partial.

The inconvenience then is mainly the necessity to switch methods depending

on whether there is onset overlapping or not. Also, the exponential-amplitude

constant cannot be evaluated with a quadratic fit approach or, consequently,

used in the cancelation process.

Time-domain implications of the unit-step model

Before the end of this section is reached, it should be pointed that the model-

ing of the region of the attack with unit-step windowing has another distinct

benefit, that of avoiding any form of pre-echo. This phenomenon is mentioned

in [LDS07], where a Phase-Vocoder-based method is described for excitation

extraction. In our case, the original spectrum is that of a unit-stepped win-

dowed waveform (refer to Section 3.2.2), and the synthesized spectrum that

is subtracted from the original spectrum is also unit-stepped, which guar-

antees that all samples before ν are, indeed, going to be zero. It should be

mentioned, however, that care must then be taken to avoid a discontinuity
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in the waveform between samples ν and ν − 1, if, in the input waveform,

the samples before ν were not really zero – which is generally the case. A

simple cross-fade can then be operated, starting at ν and for a few tens of

samples thereafter. Figure 4.14 gives an illustration of how cross-fading the

input and output prevent the click of a unit-stepped attack.
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Figure 4.14: To avoid the discontinuity inherent to the unit-step modeling
of the attack, the output should be cross-faded with the input over a few
samples after ν.

4.5 Phantom partials: the issue of overlap-

ping partials; their cancelation.

In this last section on the evaluation of the string extraction method, we

compare the approach that accounts for the phantom partials by the means of

the algorithm introduced in Section 3.3.3, with a standard Median-Adjustive

Trajectory (MAT) peak-picking approach. We recall that the MAT is a

bottom-up peak detection approach for string tones showing non-negligible
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inharmonicity. As the detection progresses upwards in frequency, the number

of measured peaks increases, and thereby the number of estimates of the

Inharmonicity Coefficient (IC) and Fundamental Frequency (FF) that can

be made. After each partial measurement, the sets of IC and FF estimates

is augmented, and the median of each sets is updated and used to direct the

search for the next peak – hence the name of the method.

Overall, the results in this section will show that our method handles well

phantom partials that are sufficiently resolved. These tests were nevertheless

useful in pointing out, however, that not all situations of overlap had been

foreseen in our algorithmic design. Our algorithm looks for the bulge caused

by the presence of a partial, as opposed to looking for a peak. This allows

the detection of a partial even when, in a situation of overlap, it is dominated

by another partial of greater magnitude and for this reason cannot emerge

as a peak. However, there are situations where partials are even closer, and

a bulge appears for the dominated partial only periodically, in a pattern

that repeats every two frames or more. An example of this is given in the

upper left spectrogram of Figure 4.15, spectrogram of a Spanish guitar bass

E after spectral processing. It can be seen that a couple of overlapping

partials have been alternately recognised as the one same partial (in the

frames where two sidelobes can be seen) or two distinct partials (in the

frames where cancelation is successful). The reason for this alternating shape

of the magnitude “mound” formed by the two overlapping partials is their

phase difference from one frame to the next, which, given their closeness in

frequency, is slowly incremented. Figure 4.16 demonstrates this phenomenon.
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Figure 4.15: Spanish guitar open bass E (MIDI note 40). Left column: both
transverse and phantom partials are sought and canceled; right column: only
transverse partials are canceled. Upper row: the window length is set to the
minimal length; lower row: the window length is thrice the minimal length.
The “burbling” in the upper row is a confusion of our algorithm, caused by
a misleading situation of overlap.

Here, two partials were synthesized, one (the leftmost) half the amplitude of

the other. The difference of their frequencies is only a quarter of the minimal

required for good resolution (c.f. Section 2.2). Their sum is windowed and

Fourier-transformed eight times (panels numbered from 1 to 8), and each

time their phase difference (at the time sample corresponding to the centre

of the analysis) is incremented by π/2, beginning with a phase difference of
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Figure 4.16: “Burbling”, caused by the slowly-incrementing phase difference
in the sliding analysis of overlapping partials, of frequencies ω1 and ω2. In
subplots 1 and 5, the phase of the two partials is equal at the centre of the
analysis, and in 3 and 7, is is opposite.

0 (frame 1). This figure gives an impression for the difficulty introduced by

overlapping partials in our FFT-based detection and cancelation of partials.

In the frames where the phase difference is nil, the two partials merge so well

that it is even impossible to detect a bulge for the partial of lesser amplitude.

This bulge emerges when the phase difference is of π/2, and then becomes a

peak when the partials are opposite in phase. Periodically, our analysis will

therefore alternate between modeling this magnitude mound as one or two
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partials, causing the burbling seen in the topmost plots of Figure 4.15. Also,

notice the oscillation in frequency of the magnitude peaks about the actual

frequencies ω1 and ω2, illustrative of how unreliable frequency measurements

might become.

Back to the broader picture of actual spectrograms, we have tried to use a

peak detection and cancelation process that, contrastingly, seeks transverse

partials only, thinking that a simpler approach might prove more robust

in such delicate situations. The comparative spectrogram is found in the

upper right panel. The reader will notice that the burbling is identical for

the uppermost partial in either spectrogram, which shows that this problem

affects straightforward peak detections in the same way, only it is more visible

in the case of our algorithm because the cancelation of two partials is involved.

In our opinion, the reason for the persistence of such difficulties is that we

have been transposing a one-partial approach to detection and cancelation

onto a situation where two overlapping partials make up the spectral data.

A generalisation of the detection model to two overlapping partials might

be a wiser idea than trying to fix some method that is, from the start, not

completely appropriate. This idea is not novel, as research has recently

emerged in this direction [Fab10].

The bottom two spectrograms of Figure 4.15 repeat the experiment, but

with an increment of the window length to three times the minimal length

(which is 2(P + 1) times the fundamental period of the tone). The overlap-

ping situation here has disappeared, and the burbling with it. Augmenting

the window length nevertheless has the inconvenience that, for a same onset
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overlap ratio (here, 1/5), the pitch of the tone might become more audible

at the instant of the attack (which will be a problem so long as the onset

overlap problem explained in Section 4.4 is not solved in a manner that is sat-

isfying in all quality and robustness respects), which is what happens in this

example; the reader will find the sound files 27, 28, 29 and 30, corresponding

to the upper left, upper right, bottom left and bottom right spectrograms,

respectively. It should be noticed, however, that the string extraction is more

thorough when phantom partials are accounted for, even in this Spanish gui-

tar example, where the phantom partials are relatively scarce and faint. The

guitar tone used for these spectrograms was in fact the same as that already

used in Figure 1.11, Section 1.2.7. In that figure, the reader can see that

phantom partials in acoustic guitar tones are yet stronger and more numer-

ous. As a means of illustration, an example of the string extraction process

with and without accounting for the phantom partials is given in figures 4.17

and 4.18, corresponding to sound files 20 (transverse and phantom cance-

lation) and 21 (only transverse cancelation). Finally, piano tones present

yet a greater density of phantom partials, in their lower region as well as

their mid-range, fact illustrated in figures 4.19 and 4.20 (sound files 22 and

23). Both spectrograms and waveform show that string extraction should,

indeed, account for phantom partials. Without accounting for them, phan-

tom partials visibly stand out in the output spectrograms, and the output

waveforms still show significantly more sinusoidal energy than they should.

The difference is also clearly audible in the sound files.

This chapter’s first aim was to test the method of string extraction intro-
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Figure 4.17: Acoustic guitar E2 (MIDI note 40) string extraction spectro-
grams omitting (top) and accounting for (bottom) the phantom partials.
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Figure 4.18: Acoustic guitar E2 (MIDI note 40) string extraction waveform,
omitting (lighter shade) and accounting for (darker shade) the phantom par-
tials.
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Figure 4.19: Grand piano F#4 (MIDI note 54) string extraction spectrograms
omitting (top) and accounting for (bottom) the phantom partials.
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Figure 4.20: Grand piano F#4 (MIDI note 54) string extraction waveform,
omitting (lighter shade) and accounting for (darker shade) the phantom par-
tials.
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duced and described in this thesis. Its potential was shown through successful

examples, where no artifacts, trace of the original pitch or ringing of the ob-

ject string could be heard in the output, and this, for instruments of contrast-

ing character (viola pizzicato, electric and acoustic guitars, double bass, harp-

sichord). Another aim of this chapter was to show separately the contribution

of the different original ideas spanning this work: the exponential-amplitude

generalisation of the CSPE; the complete cancelation of a partial through

the synthesis of only a few frequency-domain samples, possible thanks to

the formulation of an analytical model; the modeling of the string’s attack

with a unit-step product; and the detection and cancelation of phantom par-

tials, along with the main series of transverse partials, possible thanks to

Median-Adjustive Trajectories.

Imperfections of the method were also highlighted and discussed, and

the reader will observe that these all arise because of cross-interference of

partials. This cross-interference can be due to excessive spectral leakage

in onset-overlapping frames, or to phantom partials overlapping with the

normal transverse partials. These issues are not trivial, and could not be

solved within the scope of this thesis, although some ideas were suggested

that might be explored more in depth in future work.
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Chapter 5

Conclusion

This conclusion is the opportunity to give a recapitulation of the aims, or-

ganisation and contributions of this thesis, as well as indicating future work

in the continuation of this thesis.

5.1 Aims

This thesis proposes a Phase-Vocoder, subtractive approach to monophonic

string extraction.

String extraction is the sound processing paradigm that consists of de-

composing the waveform produced by a plucked- or hit-string instrument

into the resonances of its strings on the one hand, and all other sound com-

ponents – stochastic and deterministic together – otherwise produced. These

include the indirect responses of the instrument’s body to the excitation of

the strings, which in turn consist of bursts of energy, and potentially reso-

nances of the body as well. Components other than the resonances of the
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string may also include environmental noises, such as the noise floor of the

recording, the buzz of an electric guitar amplifier, or accidental noises.

The paradigm stated here is the string extraction paradigm in the poly-

phonic sense. The initial aim of this thesis was to propose an automated

method for the excitation extraction of monophonic string tones for sub-

sequent use in Commuted Waveguide Synthesis (CWGS) [KVJ93, Smi93,

LDS07]. The contemplation of a real-time approach, progressively brought

within reach by the achievements made throughout this thesis, eventually

stimulated the formulation of the concept of string extraction. The FFT

nature of this thesis’ approach to monophonic string extraction, however,

appears futile in the context of polyphonic string extraction, where it cannot

be assumed that the partials are well resolved. Resorting to higher-resolution

methods such as ESPRIT [RPK86, DBR06] seems not to be an appropriate

response inasmuch, given the “blindness” with which the method models the

sinusoidal structure of the input, preventing the use of our string’s time-

frequency model for extraction and for physics-based musical effects. In this

regard, string extraction comes across as a paradigm whose monophonic re-

duction alone can be tackled with presently existing means. This much was

shown in this thesis.

5.2 Organisation

The main body of this thesis was organised in five chapters. In Chapter

1, an analytical model of a string’s vibrations was developed from physical

analysis and empirical observations and modeling. The result of this model
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is summarised in Table 1.2. This model is indicative of the time-frequency

sinusoidal structure of a string. The vertical aspect of this model is helpful

in inspiring methods for the location and identification of partials in a short-

time magnitude spectrum. The horizontal aspect, in turn, can be used to

distinguish what aspects of a string’s sinusoids it is necessary to take into

account in short-time measurements and modeling.

The method for string extraction advanced in this thesis is based on a

Phase Vocoder scheme, which uses a Short-Time Fourier Transform represen-

tation of the signal as an environment for analysis and processing. The sinu-

soids are identified, measured and subtracted in the frequency domain, where

their properties are intrinsically dependent on the properties of the analyti-

cal window used during the granulation process. For this reason, Chapter 2

opened with an extensive discussion on windows, on their frequency-domain

properties, and also on their time-domain properties. To complete the de-

scription of the frequency-domain image that the FFT was going to provide

us with, the spectral properties inherent to discrete signals were also dis-

cussed. At that stage, a sinusoidal model for the string’s resonances had

been formulated, and the spectral representation of such a model had been

described. The chapter could thereon close with the design of a novel, ap-

propriated method for the sinusoidal analysis of string partials: the Complex

Spectral Phase Magnitude Evolution (CSPME) method.

Following the low-level discussion of Chapter 2, Chapter 3 could initi-

ate a higher-level description of the proposed string-extraction method. The

Phase Vocoder scheme was described in its time-domain organisation. The
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idea of resorting to frequency-domain subtraction for the cancelation of par-

tials could be introduced, and the novel possibilities that came with it: the

frequency-domain approximation of an entire partial with the synthesis of

the few bins of its main lobe with an analytical model, and the clearance

of a phantom partial’s lobe from a dominating, overlapping transverse par-

tial. For the detection and identification of the partials, a linear-complexity

simplification of the Median-Adjustive Trajectories method was given, and

shown to be more robust than the intuitive approach of local-linearisation

of an inharmonic series. Finally, the problem of frames overlapping with

the attack of the tone was proposed a solution for with the modeling of the

attack as a product of the string’s steady-state with a unit-step function.

Chapter 4 was a discussion articulated around tests of various nature.

General testing was first used to demonstrate the overall success of the

method, and examples were also used as a means of discerning the subtle

difference between string extraction and excitation extraction. The various

lower-level ideas used in the overall string extraction method were tried sep-

arately, and all were shown to contribute in significant ways to its success,

qualitatively or computationally: the exponential-amplitude generalisation

of the CSPME, the Fourier-series approximation of the partials’ spectra, the

unit-step modeling of the attack, and the detection and cancelation of the

phantom series.
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5.3 Contributions

These sub-methods were inspired for the purpose of this very thesis. How-

ever, their applications range beyond the scope of string extraction. Median-

Adjustive Trajectories return fundamental frequency and inharmonicity coef-

ficient estimates of unprecedented accuracy [HWTL09], and throughout the

numerous tests of this thesis have proven their reliability for the detection

and identification of partials, both phantom and transverse, in inharmonic

spectra. It therefore represents a valuable tool for such analyses of the in-

harmonicity of string tones as those carried in [FBS62]. In fact, the use

for a method of such accuracy has been demonstrated within this very the-

sis, where it permitted to outline trends in the inharmonicity coefficient of

tension-modulated tones that had not been accounted for to date. This then

led to the development of semi-empirical, semi-physics-based exponential-

plus-constant models for the time-evolution of fundamental frequency and

inharmonicity coefficients [HTL10].

In the context of sinusoidal analysis, the CSPME, generalisation of the

Complex Spectral Phase Evolution (CSPE) method [SG06], is a novel means

of estimating the frequency and exponential amplitude of a sinusoid accu-

rately which contrasts, by its simplicity, with other exponential-amplitude

generalisations [AS05, MD08]. The decay-rate profile of a spectrum can

thereby easily be obtained, and save a lot of computation and effort for the

estimation of “gain spectra” for the calibration of digital waveguides [KVJ93].

These are the innovations of this thesis whose benefit to the audio signal

processing community is evident. Beside such contributions, it is hoped that
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this thesis will be appreciated for the pedagogical concern which governed its

writing. The essential of the material was learned and discovered by the au-

thor during the genesis of this thesis. The reader was therefore considered like

a companion in this learning process. Developments were initiated from first

principles which led to the various rules and formulae, mostly known in the

literature but whose origin often remains buried in the literature, sometimes

to the point that they can hardly be retrieved. For example, this approach

allowed the unified formulation of the series of damped, stiff strings (1.29), of

which it could be seen that the inharmonic-series expression generally seen

(1.33) is an approximation. Elsewhere, the constant-sum property of power-

raised cosine window was proven, and the basis for this proof yielded the

minimum-overlap factor rule in terms of the order of the window and the

power it is raised to. Likewise, an example could be made of the Fourier-

series approximation of the string partials used for computationally-efficient

cancelation, whose base stems from the extensive development of Chapter 2

on windowing.

5.4 Future Work

The implementation of the method in a programming language supporting

real-time input, output and or real-time processing capabilities should prob-

ably come first in the list of priorities for future work. C++ seems like the

most suitable language, all the more that it is the language the VST (Virtual

Studio Technology) Application Programming Interface is written with. VST

applications (plugins) can be imported in most Digital Audio Workstations
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to work in real time as virtual instruments or sound effects. To run in real-

time, our method should be augmented with an onset-detection algorithm

[BDA+05, GLT11], and possibly a silence-detection algorithm as well. Also,

an appropriate pitch estimator should be devised or chosen. The principle of

autocorrelation-based pitch estimation was shown in Section 3.1.1, but nu-

merous other approaches might be considered [Ger03]. The estimate does not

have to be very accurate, as its sole purpose is to determine what minimal

length the analysis window should be. However, so as to keep the latency of

our string extraction method to a low, it should be reactive. Furthermore,

so as to avoid combining the latency of the pitch detection and of the FFT

analysis, a bank of Phase-Vocoder engines of different window lengths could

be set in parallel, and upon the estimation of the input’s pitch, the string

extraction process could be assigned to the sliding analysis that turns out

to have the most appropriate length. Say, to take a simple example, that

the expected pitch range of the processed instrument went from 100Hz to

800Hz, sliding analyses a, b and c could run in parallel, with respective win-

dow lengths 1/100, 1/200 and 1/400 seconds. Then, the string extraction

of a note which turns out to be of frequency 240Hz would be assigned to

sliding analysis b, and that of a note of 700Hz, to sliding analysis c, and so

on. How finely the pitch range of the instrument should be divided should

take into account the computational cost of the string extraction process, the

capabilities of the host machine, and the extent to which our method can

successfully extract strings as the length of the window exceeds the minimal

length required.
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Roughing out excitation extraction, this thesis’ work has uncovered, between

deterministic-stochastic decomposition and physical modeling, the paradigm

of string extraction. Its approach to undertaking monophonic string ex-

traction was tailored to the problem’s profile. The delineated arrangement

of monophonic spectra, however, shall be disrupted in a magma of peaks,

bulges and mounds when string extraction goes polyphonic, and all assump-

tions this thesis was building on shall crumble. From this thesis, indeed, has

risen a paradigm which the most recent advances seem insufficient to tackle.
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Appendix A

Four Essential Transforms

Fourier analysis tools are used extensively throughout this thesis in many

situations and for many purposes. A unified syntax across all four transforms

outlines their similarity. Essentially, the same idea of the projection of a

function onto complex exponential basis vectors is applied to four categories

of signals : continuous and infinite, continuous and periodic, discrete and

infinite, and discrete and periodic. (We oppose infinite and periodic.) It

is interesting to note that a signal that is of continuous/discrete domain

transforms to a signal that is of infinite/periodic domain.

A.1 Fourier Transform

The Fourier transform takes a signal that is continuous and extends infinitely

in time, to output a signal that is continuous and extends infinitely in fre-
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quency :

FT{f(t)} =

∫ ∞

−∞
f(t)e−jωtdt = F (ω) (A.1)

FT−1{F (ω)} =
1

2π

∫ ∞

−∞
F (ω)ejωt dω = f(t) (A.2)

t is in seconds, and ω, in radians per second.

FT : C → C. When f(t) ∈ R, the Fourier transform is also susceptible

of yielding a complex spectrum, however, with one specificity : the negative-

frequency half is the complex conjugate of the positive-frequency half, i.e.

F (−ω) = F ∗(ω). This is easily proven considering that (f(t))∗ = f(t) ⇐⇒
f(t) ∈ R, which implies that

F (−ω) =

∫ ∞

−∞
(f(t))∗

(
e−jωt

)∗
dt

=

(∫ ∞

−∞
f(t)e−jωtdt

)∗

= F ∗(ω).

This property is found in the three following transforms as well.

A.2 Fourier Series

The Fourier series looks at signal that is continuous in time and periodic in

T seconds (i.e. f(t) = f(mod(t, T ))).

FS{f(t)} =

∫ T
2

−T
2

f(t)e−jk2πt/Tdt = F [k] (A.3)
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FS−1{F [k]} =
1

T

∞∑

k=−∞

F [k]ejk2πt/T = f(t) (A.4)

Its output is discrete in frequency, but of infinite extent (i.e. range(k)= Z).

k is the frequency bin index (unit-less) and t the time-variable, in seconds.

A times it is useful to look at the Fourier series of a segment of a function

f(t) which is not periodic in T . However, within the context of this transform,

f(t) somehow becomes periodic. To prove this point, let us express this last

term side in terms of its inverse Fourier series :

f(mod(t, T )) = f(t− T bt/T c)

=
∞∑

k=−∞

F [k]ejk2π(t−T bt/T c)/T

=
∞∑

k=−∞

F [k]ejk2πt/T ejk2πbt/T c

=
∞∑

k=−∞

F [k]ejk2πt/T

= f(t).

As can be seen here, this phenomenon is related to the process of summation

over the integer k, as kbt/T c is necessarily an integer and thus ejk2πbt/T c = 1.

Anytime, in the context of Fourier analysis, summation is used to transit

from one domain to the other, the result is going to be periodic - this is

true for the forward Discrete-Time Fourier Transform (DTFT) and both the

forward and inverse Discrete Fourier Transform (DFT) as well.
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A.3 Discrete-Time Fourier Transform

The Discrete-Time Fourier Transform (DTFT) takes in a signal that is dis-

crete in time and of infinite extent, to output a signal that is continuous in

frequency and periodic in 2π, i.e. F (ω) = F (mod(ω, 2π)).

Z{f [n]} =
∞∑

n=−∞

f [n]e−jωn = F (ω) (A.5)

Z−1{F (ω)} =
1

2π

∫ π

−π
F (ω)ejωndω = f [n] (A.6)

Now our time index, n ∈ Z, is in samples. As the argument to the complex

exponential must be in radians, ω is now in radians per sample.

Like the Fourier transform, the DTFT is symmetric in frequency about

0 when the analysed signal is real. This, combined with periodicity, makes

F (ω) = F ∗(− mod (ω, 2π)) (for f [n] ∈ R)). We set to prove this here :

F (− mod (ω, 2π)) = F (−ω + 2πbω/2πc)

=
∞∑

n=−∞

f [n]ejωne−j2πbω/2πcn

=
∞∑

n=−∞

f [n]ejωn.

Now we follow the same idea as in section A.1 : if f [n] ∈ R, then (f [n])∗ =
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f [n], and

F (− mod (ω, 2π)) =
∞∑

n=−∞

(f [n])∗
(
e−jωn

)∗

=

(
∞∑

n=−∞

f [n]e−jωn

)∗

= F ∗(ω).

This also applies to the DFT.

The DTFT is equivalent to the Z -transform, F (ω) = 1
2π

∑∞
n=−∞ f [n]z−n,

when ejω is substituted in place of z. In this thesis, unless specified otherwise,

we will always look at z as ejω and thus use A.5 for the Z -transform in place

of the more general formulation.

A.4 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) produces, from a signal that is dis-

crete and time and periodic in N samples, a signal that, likewise, is discrete

in frequency and periodic in N bins.

DFT{f [n]} =
N−1∑

n=0

f [n]e−jk2πn/N = F [k] (A.7)

DFT−1{F [k]} =
1

N

N−1∑

k=0

F [k]ejk2πn/N = f [n] (A.8)

Here, k is the frequency bin index (unit-less), and n, the sample number

(in samples).
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We may use DFT{.} to denote the DFT.

A.5 Transforms of delta function, complex

exponentials and real signals

The table found in this section is a recapitulation of the various facts stated

above. We also take advantage of this place and time to list two transforms

recurrent in this thesis : those of the delta function and the complex expo-

nential.

FT FS

f(t) F (ω) f(t) F [k]

δ(t− t0) e−jωt0 δ(mod(t− t0, T )) e−jk2πt0/T

ejω0t 2πδ(ω − ω0) ej2πpt/T Tδ[k − p]

N.A. N.A. f(t) = f(mod(t, T )) N.A.

∈ R F (ω) = F ∗(−ω) ∈ R F [k] = F ∗[−k]

DTFT DFT

f [n] F (ω) f [n] F [k]

δ[n−m] e−jωm δ[mod(n−m,N)] e−jk2πn/N

ejω0n 2πδ(ω − ω0) ej2πpn/N Nδ[k − p]

N.A. F (ω) = F (mod(ω, 2π)) f [n] = f [mod(n,N)] F [k] = F [mod(k,N)]

∈ R F (ω) = F ∗(− mod (ω, 2π)) ∈ R F [k] = F ∗[− mod (k,N)]

Table A.1: Important transforms and transform properties
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Appendix B

Convolution

Convolution is an operation whereby a signal f is issued from the manipu-

lation of two other signals, g and h. f inherits properties of both signals, as

will be seen later in the equivalence between time-domain convolution and

frequency-domain pointwise multiplication.

Four different cases of convolution are described here : continuous-time,

standard ; continuous-time, circular ; discrete-time, standard ; and discrete-

time, circular. Whether discrete or continuous, standard convolution between

g and h may be denoted g ∗ h, and circular convolution, g ~ h.

B.1 Continuous-time

(g ∗ h)(t) =

∫ ∞

−∞
g(u)h(t− u)du (B.1)

(g ~ h)(t) =

∫ t

0

g(u)h(t− u)du+

∫ T

t

g(u)h(t+ T − u)du (B.2)
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B.2 Discrete-time

The following cases of convolution are the direct adaptation of the previous

two to discrete-time. The standard convolution of discrete signals g[n] and

h[n], n ∈ Z, is

g[n] ∗ h[n] =
∞∑

m=−∞

g[m]h[n−m]. (B.3)

The circular convolution of g[n] and h[n] over the interval Z ∩ [0, N − 1]

is

g[n] ~ h[n] =
n∑

m=0

g[m]h[n−m] +
N−1∑

m=n+1

g[m]h[n+N −m]. (B.4)

The reader may have found an alternative way of writing discrete circular

convolution, as in
∑N−1

m=0 g[m]h[n − m]. B.4 is preferred given that, in the

case where g and h are digital arrays of length N , it avoids out-of-bound

referencing.

B.3 Algebraic Properties

Three algebraic properties of convolution which are not necessarily obvious

are those of commutativity, distributivity and associativity. Next we state

those properties in turn, and for each give a proof. The proofs are all given for

continuous-time, standard convolution, but hold for all cases of convolution

seen above.
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B.3.1 Commutativity

To prove that

f ∗ g = g ∗ f, (B.5)

we proceed as follows :

(f ∗ g)(t) =

∫ ∞

−∞
f(u)g(t− u)du

= (g ∗ f)(t) =

∫ ∞

−∞
g(u)f(t− u)du

Let v = t− u, and therefore, u = t− v, dv = −du, u→ −∞ ⇒ v →∞.

The substitution makes it obvious that the equality holds.

B.3.2 Distributivity

To prove that

f ∗ (g + h) = f ∗ g + f ∗ h, (B.6)

let x(t) = g(t) + h(t). Then,

(f ∗ x)(t) =

∫ ∞

−∞
f(u)x(t− u)du

=

∫ ∞

−∞
f(u)(g(t− u) + h(t− u))du

=

∫ ∞

−∞
f(u)g(t− u)du+

∫ ∞

−∞
f(u)h(t− u)du

= f ∗ g + f ∗ h,
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consistently with B.6.

B.3.3 Associativity

(f ∗ g) ∗ h = f ∗ (g ∗ h) (B.7)

(f ∗ g) ∗ h =

∫ ∞

−∞
(f ∗ g)(u)h(t− u)du

=

∫ ∞

−∞

(∫ ∞

−∞
f(v)g(u− v)dv

)
h(t− u)du

=

∫ ∞

−∞

∫ ∞

−∞
f(v)g(u− v)h(t− u)dvdu

Looking at f(v)g(u−v)h(t−u) = x(u, v), we use Fubini’s theorem, which

states that
∫ b
a

∫ d
c
x(u, v)dudv =

∫ d
c

∫ b
a
x(u, v)dvdu, and write

(f ∗ g) ∗ h =

∫ ∞

−∞
f(v)

∫ ∞

−∞
g(u− v)h(t− u)dudv

On the other hand, we have

f ∗ (f ∗ h) =

∫ ∞

−∞
f(v)(g ∗ h)(t− v)dv,

which, equated with (f ∗ g) ∗ h, implies that
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(g ∗ h)(t− v) =

∫ ∞

−∞
g(w)h(t− v − w)dw

=

∫ ∞

−∞
g(u− v)h(t− u)du.

Let w = u− v, and it it becomes obvious that the identity holds.
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Appendix C

Time-Frequency Domain

Operation Equivalences

C.1 Time and Frequency Shifts

In this section we examine the effect of time-shifting a signal onto its spec-

trum, and, conversely, the effect of frequency-shifting signal’s spectrum onto

its time-domain representation. The mathematical development is given in

detail in the first case (that of the Fourier transform), but is spared to the

reader for the other transforms, as the method is identical.

C.1.1 On the Fourier Transform

Let

G(ω) =

∫ ∞

−∞
f(t+ τ)e−jωtdt
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be the Fourier Transform of the signal f(t) time-shifted by τ seconds. We

want to express G(ω) in function of FT{f(t)} = F (ω), to see what effect

time-shifting has on the spectrum.

Let u = t+ τ , and equivalently du = dt, to get

G(ω) =

∫ ∞

−∞
f(u)e−jω(u−τ)du

= ejτω
∫ ∞

−∞
f(u)e−jωudu

= ejτωF (ω)

A time shift τ on the signal is hereby recognised to carry a frequency-

dependent phase shift τω in its frequency-domain representation. More con-

cisely, we write

FT{f(t+ τ)} = ejτωF (ω). (C.1)

We proceed similarly to observe the effect of frequency-shifting the spectrum

on the time-domain signal. Let

g(t) =

∫ ∞

−∞
F (ω + θ)ejωtdω,

the time-domain representation of the spectrum F (ω) frequency-shifted by θ

radians per second. We want to express g(t) in terms of FT−1{F (ω)} = f(t),

to see what effect shifting in the frequency domain has on the time-domain.
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Let φ = ω + θ. This substitution yields

g(t) =

∫ ∞

−∞
F (φ)ej(φ−θ)tdφ

= e−jθt
∫ ∞

−∞
F (φ)ejφtdφ

= e−jθtf(t).

Frequency-shifting a spectrum by θ radians per second has the effect of

phase-modulating the time-domain signal by −θt radians. More concisely,

we write that

FT−1{F (ω + θ)} = e−jθtf(t). (C.2)

When f(t) is a real-valued signal, g(t) becomes complex-valued. This can be

understood when looking at real signals like at complex signals whose phase

constantly equals zero.

C.1.2 On the other transforms

Applying the same technique of substitution on the Fourier series, Z-transform

and DFT, we get the following results :

FS{f(t+ τ)} = ejk2πτ/TF [k], (C.3)

FS−1{F [k + l]} = e−jl2πt/Tf(t), (C.4)
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Z{f [n+m]} = ejωmF (ω), (C.5)

Z−1{F (ω + θ)} = e−jθnf [n], (C.6)

DFT{f [n+m]} = ejk2πm/NF [k] (C.7)

and

DFT−1{F [k + l]} = e−jl2πn/Nf [n]. (C.8)

C.2 Convolution Theorem

The convolution theorem states that the frequency transform of the convo-

lution of two signals equals the product of the frequency transforms of each

signal. Conversely, it also states that the frequency transforms of the product

of two signals equals a constant times the convolution between the frequency

transforms of each signal. In the latter case, the constant stems from the

scaling present in the inverse frequency transform.

More concisely, if F = F{f}, and G = F{g}, (where F{.} is any of the

transforms described in A,) we write that

F{f ∗ g} = FG, (C.9)

and that
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F{fg} =
1

c
F ∗G. (C.10)

A proof will be given explicitly here for the Fourier Transform. Following

the same steps, the convolution theorem can easily be proven for the other

transforms as well, and to avoid redundancy, the equivalences will be then

given directly.

C.2.1 Proofs

In the following proofs, we use the short-hand writing
∫∞
−∞ dt

.
=
∫
dt.

Consider two continuous signals f(t) and g(t) integrable over R. The

Fourier Transform of their convolution is introduced and developed as follows

:

FT{f(t) ∗ g(t)} =

∫ ∫
f(u)g(t− u)due−jωtdt

=

∫ ∫
f(u)g(t− u)e−jωtdudt

=

∫
f(u)

∫
g(t− u)e−jωtdtdu,

the last form obtained using Fubini’s theorem. Now we proceed to the

substitution v = t− u, yielding
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FT{f(t) ∗ g(t)} =

∫
f(u)

∫
g(v)e−jωve−jωudvdu

=

∫
f(u)e−jωudu

∫
g(v)e−jωvdv

= F (ω)G(ω),

which proves C.9, at least in the case of the Fourier transform.

Now we set to prove C.10 :

FT−1{F (ω) ∗G(ω)} =
1

2π

∫ ∫
F (ϑ)G(ω − ϑ)dϑejωtdω

=
1

2π

∫ ∫
F (ϑ)G(ω − ϑ)ejωtdϑdω

=
1

2π

∫
F (ϑ)

∫
G(ω − ϑ)ejωtdωdϑ,

Letting φ = ω − ϑ yields

FT−1{F (ω) ∗G(ω)} =
1

2π

∫
F (ϑ)

∫
G(φ)ejϑtejφtdφdϑ

=
1

2π

∫
F (ϑ)ejϑtdϑ

∫
G(φ)ejφtdφ

= 2πf(t)g(t),

which implies that

FT{f(t)g(t)} =
1

2π
F (ω) ∗G(ω). (C.11)
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C.10 for the Fourier transform is proven, with c = 2π.

C.2.2 Transform-specific equivalences

FT{f(t) ∗ g(t)} = F (ω)G(ω), (C.12)

FT{f(t)g(t)} =
1

2π
F (ω) ∗G(ω), (C.13)

FS{f(t) ~ g(t)} = F [k]G[k], (C.14)

FS{f(t)g(t)} =
1

T
F [k] ∗G[k], (C.15)

Z{f [n] ∗ g[n]} = F (ω)G(ω), (C.16)

Z{f [n]g[n]} =
1

2π
F (ω) ~G(ω), (C.17)

and

DFT{f [n] ~ g[n]} = F [k]G[k], (C.18)

DFT{f [n]g[n]} =
1

N
F [k] ~G[k]. (C.19)
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