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Abstract— The ability to automatically detect the location
of an elder within their own home is a significant enabler
of remote elder supervision and interaction applications. This
location information is typically generated via a myriad of
sensors throughout the home environment. Even with high
sensor redundancy, there are still situations where traditional
elder monitoring systems are unable to resolve the location
of the elder. This work develops a minimal infrastructure
radio-frequency localisation system for long-term elder location
tracking. An RFID room-labelling technique is employed and
with it, the localisation system developed in this work is shown
to exhibit superior performance to more traditional localisation
systems in realistic long-term deployments.

I. INTRODUCTION

Aging at-home has been highlighted as an efficient solu-

tion to the issue of population aging [1]. This means that

the increasing financial and human resource requirements

related to the growing elder proportion of the population

can be alleviated by enabling elders to reside in their own

homes instead of care homes for as long as possible. Since

the population age-shift means there are relatively fewer

people of a suitable age to care for these elders (referred to

as the Potential Support Ratio), assistive technologies must

be employed to reduce the direct contact and supervision

hours necessary for an elder at home. Hence, this work

develops a room localisation technique specifically for long-

term reliability in typically encountered home situations with

minimal installation costs.

Many home monitoring and interaction applications rely

heavily on location information and would benefit from

cheaper and more reliable location predictions. Examples

of such applications include monitoring of activity patterns

[2], provision of activities to keep the elder proactive [3],

detection of safety critical conditions such as falls [4] and

medication adherence promotion [5]. A significant proportion

of home monitoring research uses non-identifiable sensors

such as Passive Infra-Red (PIR) sensors, pressure mats and

reed switches on doors to detect the location of the elder.

These sensors are referred to as non-identifiable since they

cannot discern between different people activating the sensor.

Hence, systems which rely on these sensors to predict

location experience severe performance degradation when
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there is more than one person present in the environment,

due to visitors or pets for example. As a result, a reliable

long-term solution must be able to identify the user.

For this reason, the precursor to this paper [6] relied

on the identifiable Radio Frequency (RF) signals emanating

from Intel’s Sensing Health with Intelligence, Modularity,

Mobility, and Experimental Reusability (SHIMMER) health

sensing platform. This ensured the system would continue

to function when the occupancy of the home environment is

higher than one. However, when the elder does not require

the assistance of such a health monitoring platform, there

is little incentive for the elder to carry the mobile device.

For this reason, the localisation technique is now considered

on a more general platform; a Bluetooth mobile phone. A

mobile phone was chosen for three reasons; (1) a device with

alternative functionality such as a communication device

gives the elder more incentive to carry the device, (2) a

device with a screen allows the provision of, and response

to, queries about the state of the elder and (3) combinations

of Bluetooth phones and body sensors are already used for

home health monitoring [7], hence such devices may already

be present in home monitoring scenarios. Accordingly, this

platform is envisaged to enable reliable location predictions

to be obtained with little extra hardware necessary.

This paper presents the theory of operation and the long-

term accuracy of the localisation system as follows; Section

II motivates the hardware and techniques used to validate

the accuracy of the proposed localisation system over long

periods of time. A brief illustration of the performance

of prior localisation techniques is also presented. Section

III outlines the general trial environment considered, the

hardware utilised and the techniques employed to resolve

room-level location. Section IV demonstrates the perfor-

mance possible with the system and considers approaches

to minimising deployment effort and cost.

II. HOME LOCALISATION EFFICACY

The most significant factor in the design and deployment

of any localisation system is the accuracy of location pre-

dictions. The majority of prior localisation systems, both

indoors and outdoors, focus on generating location estimates

at the coordinate level, which represents a person’s location

in metres relative to some point of reference. Coordinate

level predictions, however, are not as human-understandable

and relevant as room-level predictions. Hence, previously

employed localisation accuracy measures are not relevant

to indoor environments where a prediction error as small
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(a) Ground Floor (b) First Floor

Fig. 1. Experimental home environment. Dots indicate PIR locations and triangles indicate Bluetooth access point/beacon locations.

as a metre, for example, could equate to an incorrect room

prediction.

Furthermore, almost all previous localisation work has

only focused on the localisation accuracy for short periods

of time due to the high effort involved in providing location

labels for data over long periods of time, such as days or

even weeks. Accuracy over such short periods of time cannot

be assumed to reliably predict the long-term performance

of the system. These issues are addressed in this work

by employing alternate localisation technologies to generate

accurate room-level location labels automatically.

A. Location Sensor Redundancy

PIR is a technology commonly employed in elder home

monitoring systems (e.g. [5] and [8]) since it does not have

the inconvenience of requiring the elder to carry a mobile

device. It simply approximates the location of the elder to be

the last room in which a PIR sensor detected motion. This

has the obvious implication that when there is more than

one person in the environment the identity of each person

in each room cannot be resolved, hence, individual location

predictions will be unreliable.

For the long-term experiments in this paper, a PIR locali-

sation system is deployed to allow a comparison of the accu-

racy of typically utilised elder-monitoring technology and the

Bluetooth localisation system which will be presented in this

paper. To determine true location, an RFID room labelling

technique is also employed whereby the user scans an RFID

tag on a doorway every time they transition between rooms.

B. Long-Term Prediction Accuracy Metrics

Since room-level location prediction in a home environ-

ment has not been the focus of previous localisation work,

it is necessary to explore an accuracy metric more appro-

priate to the room-level localisation problem. Coordinate

localisation accuracy measures are not relevant to room-

level localisation systems since a large error distance in a

large room may not be as incorrect as a large error in a

small room. Conversely, a small error distance near a wall

may translate to an incorrect room prediction; an effect not

highlighted in prior localisation work. Hence, we develop an

accuracy measure which will indicate the ability of a system

to correctly detect the room-level location of the user over

extended periods of time.

To understand the movement patterns of an individual

in their home environment, the localisation system was

deployed in a private home environment, illustrated in Figure

1. There are 13 rooms in the environment and the figure

indicates the number labels each room is given. Seven

consecutive days of movement data was acquired for a

resident of the house between the hours of 10am and 8pm.

This represents a significant period of time over which to

evaluate the system’s performance. It should be noted that the

phone was always carried by the experimenter during these

tests. In a realistic deployment, the phone’s accelerometers

can be employed to detect if the phone has been left down.

If equal time was spent in each room over the experiment

period then the overall accuracy would be the unweighted

mean of the recognition rates of each room. However, upon

considering the relative frequency of room occupation over

the period of a week (Figure 2) it is apparent that there is

an uneven distribution of time spent in each room. Hence,

the overall accuracy is approximated by the weighted mean

of individual room recognition rates as follows;

â =

K∑

k=1

ak.wk, (1)

where k is the room number, ak is the recognition rate for

room k and wk is the corresponding weighting, derived from

the relative frequency of occupation. This accuracy measure,
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Fig. 2. Relative frequency of occupation of rooms in Figure 1.

TABLE I

THEORETICAL MINIMUM ACCURACY AND PRACTICALLY DETERMINED

ACCURACY FOR PIR LOCALISATION IN BOTH SINGLE AND MULTIPLE

OCCUPANCY SCENARIOS.

Theoretical Actual

Single Occupancy 100% 78%
Multiple Occupancy 45% 53%

which shall be referred to as Empirical Accuracy (EA), al-

lows an estimate of the frequency of correct room predictions

over the period of a week based on the recognition rates of

the individual rooms.

Before this accuracy measure is applied to PIR localisation

in a realistic deployment, the theoretical PIR accuracy should

be considered. During the tests in this home environment

the occupancy levels varied between one, two and three

people. In a single occupancy scenario the location prediction

accuracy of the PIR should, in theory, be 100%. When two

people are present, the ability to correctly predict the location

of the person of interest can be as low as 50% and when three

people are present the tracking accuracy could be as low as

33% due to multiple sensors firing in different rooms. Based

on the fact that multiple occupancy occurs with 2 people

68% of the time and with 3 people 32% of the time, Table I

summarises the theoretical accuracy for the PIR localisation

system in both single and multiple occupancy scenarios.

To determine the actual PIR accuracy, PIR sensors are

installed in the locations indicated by the dots in Figure 1

and PIR data was collected while room labels were obtained

using the RFID technique. It can be observed from Table

I that the single occupancy PIR performance is perfect in

theory and acceptable in practice. The lower accuracy in

practice is mainly due to the effects of interference from

moving curtains and doors after the user leaves the room.

The multiple occupancy accuracy, both in theory and in

practice, is significantly lower than the single occupancy

accuracy. This confirms that PIR is not suitable for elder

localisation when there is a likelihood of occupants besides

the monitored elder present. Since PIR localisation suffers

from such poor performance, the RFID labelling technique

is necessary to generate significant periods of labelled motion

data to validate the long-term performance of the Bluetooth

BTAP1

Basestation

Computer

Tasks:

  - Calculate BTAP1 RSSI & LQ

  - Retrieve all phone data

  - Perform Location Predictions

  - Provide Location-Sensitive Prompts

Bluetooth

Phone

Tasks:

  - get network data (CID & CRSSI)

  - buffer BT RFID data

  - get remote BTAPs RSSI & LQ

  - send phone data to main BTAP

  - relay prompts and responses between

    the user and Basestation computer

BTAP2

Bluetooth

RFID Reader

(a) Basestation

(b) Subject

BTAP3

BTAP4

Tasks:

  - Calculate BTAP4 RSSI & LQ

Tasks:

  - Calculate BTAP3 RSSI & LQ

Tasks:

  - Calculate BTAP2 RSSI & LQ

Fig. 3. The connection topology for the BMMS system. Each arrow
represents a Bluetooth connection. The start of each arrow indicates the
connection master and the end of each arrow represents the slave.

Movement Monitoring System (BMMS) developed in this

work.

III. BLUETOOTH MOVEMENT MONITORING SYSTEM

A. Deployed Hardware Platform

To overcome the fundamental limitations of non-

identifiable signal localisation techniques such as PIR, an RF

localisation technique is utilised. To increase the convenience

of the mobile device, making it a more attractive device

to the user, a Bluetooth mobile phone was chosen as the

mobile device. A Nokia N95 was chosen due to its high

levels of functionality and programmability. A number of

Blueradios BR-SC30N Bluetooth Access Points (APs) are

used to generate the location indicative signals. Figure 3

illustrates the novel configuration of the Bluetooth Movement

Monitoring System (BMMS). Arrows indicate Bluetooth

connections.

The main components in Figure 3 are (a) the Basestation

computer and (b) the subject. The Bluetooth computer is

responsible for collecting the location indicative signals,

predicting elder location and producing location-sensitive

prompts, interactions and services. The subject carries a

Bluetooth phone and a connected Bluetooth RFID reader.

In a realistic deployment the RFID reader is not necessary;

it is only used to acquire room labels for these experiments.

The Basestation computer must acquire the location in-

dicative signals; Received Signal Strength Intensity (RSSI)

and (Link Quality) for every connection in the system. The

relatively inexpensive Bluetooth chips employed in mobile

phones are generally unable to provide these readings for

connected devices. Instead it is necessary for the phone

to connect to the Bluetooth APs in the environment and

remotely query their RSSI and LQ readings. It then relays

these readings back to the Basestation computer. This is an

inexpensive technique of generating several location indica-

tive signals at one Basestation computer since the APs do

not require a Basestation computer or wired network to the

main computer, as is necessary in prior RF localisation work.
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This leads to a relatively cheap but accurate solution to

localisation in environments with multiple occupants since

fewer APs are necessary than PIR sensors. The use of a

mobile phone also allows the acquisition of cellular signal

strength (CRSSI) and cellular Basestation ID (CID) signals

which have also previously been shown to vary as a function

of location [9].

B. Location Prediction Algorithms

Since we are interested in generating room-level location

predictions from the available location indicative signals, a

number of classifiers can be employed by using the available

signals as location dependent input features. As with any

classification problem a training phase is necessary where

classification models for each class, or room, are generated.

Then in the online classification phase, these models are used

to generate room predictions. The 5 classifiers considered

here are:

1) k-Nearest Neighbour (kNN)

2) Naive Bayes Classifier (NBC)

3) Linear Discriminant Analysis (LDA)

4) Quadratic Discriminant Analysis (QDA)

5) Gaussian Mixture Models (GMMs)

kNN is a non-parametric classifier which predicts the

class based on a majority vote of the classes of the k

most similar training samples. As such, it is flexible but

prohibitively computationally intensive. The remaining clas-

sifiers are efficient maximum probability classifiers. NBC

treats each RF signal input feature independently, leading

to the most efficient location computations. LDA and QDA

model the input features as covariate features, producing

linear and quadratic discriminant borders respectively. GMM

approximates the features as a mixture of Gaussians, leading

to the most flexible feature representation. More information

on these classifiers and their tradeoffs can be found in [10].

IV. LOCALISATION PERFORMANCE

To assess the long-term performance of the localisation

system, the RFID labelling technique was used to obtain

two days of labelled movement data. The first day was used

for training of the classifiers and the second was used for

testing. Then the second day was used for training and the

first for testing. Then the mean of both experiments was

noted. The first column in Table II shows the mean EA

for each location classification technique outlined above. It

can be seen that the highest accuracy is the result of the

kNN algorithm. Since kNN is a non-parametric classifier,

it takes a significant length of time to calculate the Eu-

clidean distance between every training sample and every

test sample. Hence, the probabilistic classifiers are favoured

for efficient execution. It can be observed that LDA and

QDA both achieve the highest levels of accuracy amongst

the probabilistic classifiers, closely followed by GMM. NBC

has relatively poor localisation performance. It is important

to note that these accuracies were achieved with realistically

varying occupancy levels, yet are still higher than the single

occupancy PIR localisation accuracy in Table I.

TABLE II

MEAN EA FOR LOCALISATION WITH ALL AVAILABLE SIGNALS,

BLUETOOTH RSSI AND BLUETOOTH LQ ONLY.

All Signals RSSI Only LQ Only

kNN 0.85 0.62 0.78
NBC 0.66 0.57 0.57
LDA 0.80 0.51 0.58
QDA 0.80 0.61 0.69
GMM 0.78 0.78 0.73
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Fig. 4. The effect of the subset of available APs on the EA.

A. Signal Redundancy

Prior RF localisation work only utilises either RSSI or

LQ readings from each access point, assuming that the other

available signals do not provide any extra information. We,

however, utilise all available Bluetooth readings along with

the cellular signals available on the phone to predict location.

Columns 2 and 3 in Table II indicate that lower accuracies

are the result of adopting the previously accepted approach

of using one available signal. Hence, the BMMS achieves

improved localisation performance by using these secondary

signals.

B. Bluetooth AP Redundancy

Intuitively, larger numbers of installed APs leads to higher

EA due to higher location dependent signal diversity for

each location. There is, however, increased system deploy-

ment effort for this increased performance. For this reason

an investigation is conducted of which subset of available

APs results in the best localisation performance. Figure 4

illustrates the EA for all classifiers for all combinations of

APs. Each combination of APs is denoted by the binary

string corresponding to [AP1 AP2 AP3 AP4], where a ‘1’

represents available, and a ‘0’ represents not available. AP1

is always available since it is the Basestation computer AP.

As expected, the highest accuracy is possible when all

APs are utilised. However, when AP3 is not included in the

location predictions, the accuracy is approximately similar

to when all APs are available for the kNN, LDA, QDA

and NBC classifiers. Surprisingly, GMM accuracy is slightly

higher with less APs, which can be attributed to shifts in

clusters of data between days, leading to certain mixtures

accidentally specialising on classification regions which are

more important. However, when AP4 is unavailable instead
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Fig. 5. EA as a function of training dataset size.

of AP3, the location predictions are lower for all classifiers.

This indicates that EA is highly dependent on which subset

of AP locations are used. It is difficult to predict which

deployment locations are important to long-term accuracy

since AP3 is in a commonly inhabited location and would be

assumed to significantly contribute to localisation accuracy.

Hence, the only way to select the relevant AP locations is

to empirically evaluate each AP’s contribution. However, by

that stage the deployment effort has already been expended

and there is little point in removing the relatively cheap APs.

C. Training Dataset Size

The results presented thus far are achieved using a day of

training data. If the automatic RFID room labelling technique

is not available, a day of training data would be prohibitively

difficult to obtain. Hence, it is necessary to explore if similar

levels of accuracy are possible with fewer training samples

available for each room. The BMMS hardware can produce

signal samples at a rate of 0.5Hz. Depending on the length

of time spent in each room during a day, some rooms only

have 100 training samples available from these experiments.

A limit on the number of training samples available in

each room is imposed and the EA for each classifier as a

function of the maximum permitted training samples in each

room is recorded. Figure 5 illustrates that the EA for all

classifiers is highly sensitive to the maximum quantity of

available training data. In fact there needs to be a maximum

of at least 103 samples permitted per location for acceptable

localisation performance.

Highest localisation performance occurs with the most

available training data. At high levels of available training

samples, there is significant imbalance in the quantity of

samples per location, with a high proportion of samples

available from more commonly inhabited rooms. Hence,

using a quantity of training data representative of the pro-

portion of time a person spends in each location, leads to

the highest long-term localisation accuracy by exploiting

classifier bias towards more commonly inhabited rooms.

Accordingly, using an automatic room labelling technique is

imperative to the acquisition of sufficient levels of training

data and, as a result, achieving highly accurate movement

detection.

V. CONCLUSIONS

This paper has presented work on an affordable and long-

term reliable home monitoring technology for the elderly.

It has been demonstrated that higher accuracy is possible

by assuming the user is carrying a device which emits

identifiable signals, such as a mobile phone. The perceived

inconvenience of the system is reduced by ensuring the

device has alternative functionality such as a mobile phone

and a user prompting device, rather than a passive monitoring

device. This technique has been shown to enable improved

localisation performance over the PIR localisation technique

typically employed in previous elder monitoring research.

Previous RF localisation work has been unable to demon-

strate long-term localisation accuracy because sufficient lo-

cation sensor redundancy has not been available. By using

an RFID labelling technique, the importance of RF signal

redundancy, RF AP redundancy and training dataset size on

long-term localisation performance has been demonstrated.

Future work seeks to validate these results over significantly

longer periods of time and investigate the effect of location-

sensitive interactions with the elder on the elder’s behaviour

and movement patterns.
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