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Abstract 

A major turning point in the study of metazoan evolution was the recognition of the 

existence of the Ecdysozoa in 1997.  This is a group of eight animal phyla (Nematoda, 

Nematomorpha, Loricifera, Kinorhyncha, Priapulida, Tardigrada, Onychophora and 

Arthropoda). Ecdysozoa is the most specious clade of animals to ever exist and the 

relationships among its eight phyla are still heatedly debated. Similarly also the 

relationships among the three sub-phyla (Chelicerata, Pancrustacea and Myriapoda) 

within the most important ecdysozoan phylum (the Arthropoda) are still debated. 

Indeed, the two major problems in ecdysozoan phylogeny refer to the relationships of 

Myriapoda within Arthropoda, and of Tardigrada within Ecdysozoa. Difficulties in 

ecdysozoan relationships resides in lineages characterized by rapid, deep divergences 

and subsequently long periods of divergent evolution.  Phylogenetic signal to resolve 

the relationships of these lineages is diluted, increasing the likelihood of recovery of 

phylogenetic artifacts. 

In an attempt to resolve the relationships within Ecdysozoa, consilience of three 

independent phylogenetic data sets was investigated. EST and rRNA and microRNA 

(miRNA) data were sampled across all major ecdysozoan phyla.  In particular, a 

major contribution of this thesis is the first time sequencing of miRNAs for all the 

panarthropod phyla. MicroRNAs are genome regulatory elements that recently 

emerged as a source of useful phylogenetic data (Sempere et al. 2006) because of 

their low homoplasy levels. 

The considered data sets were analysed under phylogenetic methods and models, 

implemented to minimize the occurrence of phylogenetic reconstruction artifacts to 

understand the evolution of Ecdysozoa. Analyses of independent data types recovered 

well supported and corroborating evidence for the monophyly of Panarthropoda 

(Arthropoda, Onychophora and Tardigrada), a sister group relationships between 

Myriapoda and Pancrustacea within Arthropoda, and the paraphyly of Cycloneuralia 

(Nematoda, Nematomorpha, Loricifera, Kinorhyncha and Priapulida). !
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Chapter 1   

Introduction 

 

1.1 The phylum Arthropoda: The long road behind us  

1.1.1 Significance of the arthropod expansion 

The phylum Arthropoda is one of the most successful and diverse groups of animals 

to ever exist, not also in sheer numbers of species but also in terms of ecological niche 

filling, spanning the globe across marine, tropical, temperate, arid and polar regions. 

To gain perspective on species diversity within this phylum, let us consider that there 

is an estimated 1.9 million species of eukaryotes described presently, and that 

approximately half (~1.1 million) of these species are thought to be arthropods; 

predominately insects (Chapman, 2009).   

Attempts have been made to try to estimate a precise figure for the number of 

arthropod species worldwide, controversial estimates initially ranged from 30 to 100 

million species (Erwin, 1982; Erwin, 1988). Recently as more data have been 

acquired and better statistical analyses performed, revised estimates have been 

generated suggesting the actual figure might be much lower at between 2.5 to 4.8 

million (see Hamilton, 2010; Ødegaard, 2000). Although the revised estimate of 

species richness now seems to be much lower than initially thought; this is not yet 
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cause for celebration, as gaps remain in the study arthropod taxonomy with currently 

less than 40% of all crustacean and 20% of all insect species described and 

documented (Hawksworth and Kalin-Arroyo, 1995).  

When one considers the enormity of the arthropod radiation, which unfolded over 

~600 million years (Erwin et al. 2011) unsurprisingly questions arise such as, why are 

arthropods so successful? What mechanisms prompted arthropods to diversify on 

such a scale? How are all the different arthropod groups related to one another?  It 

seems with well over a century of debate on arthropod evolution (Siebold, 1848; 

Snodgrass 1938; Tiegs, 1947; Manton, 1973; Friedrich and Tautz, 1995; Pisani et al. 

2004; Rota-Stabelli et al. 2011), some of these questions are now becoming resolved.   

Within the phylum Arthropoda, there exists a diverse array of body plans and size 

variation that has allowed arthropods to fill all kinds of important ecological niches. 

Emergence of some of the major arthropod Bauplaene (Woodger, 1945) has allowed 

the group to diversify to a degree unmatched anywhere else in the metazoan tree of 

life. One of the most abundant groups of arthropods, Crustacea, which include 

planktonic forms, make up the vast majority of biomass in our marine environments. 

These planktonic crustaceans that feed on phytoplankton and zooplankton, are 

responsible for injecting large amounts of nutrients into the food web and sustain 

many of the higher trophic level interactions in marine ecosystems. Not only are 

arthropods important ecologically, they appear to be pivotal to economic 

sustainability and growth when we look for instance at the role in crop pollination of 

arthropod groups like the honeybee, bumblebee and butterfly (Aizen & Harder, 2009). 

Data have emerged showing that the numbers of such pollinator groups are on the 

decline (Gross, 2008; Oldroyd, 2007), sparking much attention to a potential 

“pollination crisis” affecting the global production and sale of crops. 
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1.1.2 The demise of Coelomata and the monophyly of Arthropoda 

Traditionally, studies on the interrelationships of major metazoan groups such as the 

bilaterian arthropods, molluscs, nematodes and chordates have been based upon 

morphological data. In light of the evidence taken from comparative anatomy, 

embryology and development, many hypotheses were proposed to describe the 

evolution of the Bilateria  (Jenner and Schram, 1999), with the most prominent being 

the Coelomata hypothesis (sensu Hyman, 1940). According to this model, bilaterian 

relationships should be considered on the basis of a coelom (a fluid filled cavity, 

which grows from the mesoderm and is present only in triploblast animals). The 

relationships of Bilateria are then graded on the degree of its presence or absence, 

resulting in three defined groups: Acoelomata (Platyhelminthes and Nemertinea), 

Pseudocoelomata (Nematoida, Priapulids, Kinorhyncha and Rotifera), and the 

Coelomata (remaining Bilateria e.g. Arthropoda, Annelida, Mollusca and Vertebrata).  

Morphological evidence has prompted many studies to conclude arthropods are the 

closely related sister phyla of other segmented protostome groups, particularly the 

annelid worms (sensu Hyman, 1940; Hyman, 1951). The grouping of segmented 

protostomes i.e. molluscs, annelids along with panarthropods (Arthropoda, 

Onychophora and Tardigrada) became referred to as the Articulata hypothesis 

(Anderson 1973; Wheeler et al. 1993; Schmidt-Rhaesa, 1998; Wägele and Misof, 

2001; Scholtz, 2002). The first major study to refute the Coelomata grade 

organisation of Bilateria and in effect, the Articulata hypothesis was by Aguinaldo et 

al. (1997). In this study bilaterian evolution was investigated using 18S rRNA. The 

findings presented by Aguinaldo et al. suggested that Bilateria was in fact composed 

of Protostomes and Deuterostomes, with the Protostomes being further sub divided 
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into Lophotrocozoa and Ecdysozoa. Within Ecdysozoa, the arthropods were allied to 

metazoan phyla, such as Nematoda, Nematomorpha, Tardigrada, Onychophora, 

Priapulida, Kinorhyncha and Loricifera. All groups share a common feature of 

exoskeletal growth through a process of repeated moulting or “ecdysis”. Since its 

proposal, multiple studies using a range of different markers and methods e.g. 

complete genomes, development, EST’s and Supertrees (Eernisse et al. 1992; Ruiz-

Trillo et al. 2002; de Rosa et al. 1999; Haase et al. 2001; Philippe et al. 2005b; Dunn 

et al. 2008; Holton and Pisani 2010; Rota-Stabelli et al. 2011) have upheld the 

Ecdysozoa hypothesis to where it is now widely accepted (Kumar et al. 2011). We 

see then, that caution needs to be taken when viewing animal evolution on the basis of 

irreversible change of body form, as it seems clear now that secondary simplification 

of organisation can occur, which in some cases can lead to misinterpretation of 

evolutionary relationships (Philippe et al. 2011a). 

The study of arthropod phylogeny traces its roots back to before the turn of the 20th 

century. Since early classical studies there has been significant headway made in the 

study of arthropod evolution, particularly in the last few years with important insights 

stemming from molecular biology, developmental biology, improved phylogenetic 

methods and the onset of the genomic era. Arthropods represent a very enigmatic and 

exciting group to study. Charles Darwin spent time refining his theory of Natural 

selection while studying bees and their ability to construct intricate hexagonal nectar 

preserving honeycombs (Darwin, 1859). Early discussions of arthropod phylogeny based 

on hard structures of external morphology suggested that Arthropoda evolved from a 

single common ancestor, uniting all the major sub groups (sub phyla) i.e. Trilobites 

(extinct), chelicerates, myriapods, crustaceans and insects (Snodgrass, 1938). Monophyly 

of Arthropoda is now widely accepted (Turbeville et al. 1991; Ballard et al. 1992; Wills 
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et al. 1995; Giribet et al. 2001; Telford et al. 2008; Budd and Telford 2009; Regier et al. 

2010; Rota-Stabelli et al. 2011).  However, the concept of a monophyletic Arthropoda 

has long been contentious.  In particular, Sidney Manton and others championed 

arthropod polyphyly in the 70’s (Manton, 1973; Anderson, 1973; Anderson, 1979). 

Proponents of a paraphyletic or polyphyletic origin of arthropods suggested that attributes 

commonly used to unite Arthropoda be considered convergences due to similarities of 

lifestyle. Tiegs (1947) proposed a group comprising Myriapoda + Hexapoda + 

Onychophora (Uniramia) which was sister to a group containing Trilobita + Chelicerata + 

Crustacea (TCC: Cisne, 1974).  According to Tiegs and Manton these groups where 

independently derived from annelid-like ancestors. However, phylogenetic signal within 

morphological data sets was weak and relied on interpretation of characters, which is 

always, to some extent, subjective. The utilization of molecular sequence data for 

phylogenetic analyses in the 1980’s ushered a new era in arthropod systematics, allowing 

previously debated hypotheses to be tested independently, for instance, the monophyly of 

Arthropoda began to receive high support via the analysis of ribosomal DNA e.g. 18S 

rDNA (Turbeville et al. 1991; Wheeler et al. 1993; Giribet et al. 1996; Spears and Abele, 

1997). 

 

1.1.3 Arthropoda and the new animal Phylogeny 

The Phylum Arthropoda comprises one extinct sub phylum Trilobita (which however 

is a now known to be a polyphyletic assemblage) and 4 extant sub phyla: Crustacea 

(e.g. crabs and barnacles), Hexapoda (e.g. insects and springtails), Myriapoda (e.g. 

millipedes and centipedes) and Chelicerata (e.g. horseshoe crabs and arachnids) see 

Figure 1.1. Arthropods have long been treated as a single group; Linnaeus referred to 
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this group as Insecta in Systema Naturae (1758). The term “Arthropoda” was not 

coined until the 19th century (Siebold, 1848), deriving its name from the Greek 

translation of “árthros” meaning jointed, and “podós” meaning foot; which constitutes 

their most obvious morphological feature: the presence of jointed appendages. 

 

Figure 1.1: The Four Sub-Phyla of the Arthropoda. Tree shown as an unrooted network. Taxa shown 

represent example species for each of the four sub-phyla. Note the relationships of the Pancrustacea 

(Crustacea + Hexapoda) are still debated. In this figure for clarity, I represented the Crustacea as 

monophyletic, but a likely scenario is that the Crustacea are paraphyletic with respect to insects. Closest 

living sister phyla (Onychophora and Tardigrada) are not shown. 

Arthropods have a number of unique synapomorphies (shared features uniting two or 

more taxa with their most recent common ancestor): a hard external segmented 

exoskeleton composed of !-chitin, intrinsic musculature between joints, segments 

bearing appendages with claws, a mixocoel with metanephridia, an ostiate heart, and 

in most cases a cephalon made up of multiple fused segments (Nielsen, 2001). 

Although there exists strong evidence in favour of a monophyletic origin of 

Myriapoda

ChelicerataCrustacea

Hexapoda



! "!

arthropods, relationships between the different sub phyla of Arthropoda and the 

arthropods closest living relatives remain the source of debate and controversy (see 

Figure 1.1). 

Considering early traditional morphological evidence, Arthropoda is generally 

regarded as the closest phylum to two other ecdysozoan phyla, namely the soft-bodied 

Onychophora (Velvet worm) and the miniscule Tardigrada (Water bears), collectively 

referred to as the Panarthropoda (Nielsen, 2001). Despite some compelling evidence in 

support of Panarthropoda i.e. shared apomorphies of a cuticle composed of !-chitin, 

lateral-walking appendages on each segment, ostiate heart (absent in the miniature 

tardigrades) and lack of protonephridia, a consensus has yet to be reached regarding 

the relationships of the panarthropod phyla. Lack of phylogenetic resolution resides 

not only within Panarthropoda but also in relation to the remaining soft-bodied 

ecdysozoan phyla (Telford et al. 2008; Edgecombe, 2009). Accordingly, one of the 

main questions in panarthropod evolution is in the branching order of the three phyla, 

which is important to understand the processes and steps involved in the emergence of 

true “arthropodization”, and furthermore the emergence of the ancestral ecdysozoan 

groundplan.  

There are many morphological features, along with fossil evidence and countless 

phylogenetic studies that have provided compelling evidence in favour of placing 

onychophorans as the sister group to the Arthropoda (Ballard et al. 1992; Nielsen, 

2001; Dunn et al. 2008; Budd and Telford, 2009; Braband et al. 2010; Mayer et al. 

2010; Meusemann et al. 2010; Rota-Stabelli et al. 2010; Whitington and Mayer, 2011; 

Campbell et al. 2011), a clade referred to as Lobopodia (Snodgrass, 1938). However, 

the sister group position of Onychophora has not been universally accepted, due to 

numerous other analyses recovering Tardigrada as the closest living ancestral phyla to 
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the arthropods (Giribet et al. 1996; Zrzav! et al. 1998; Edgecombe et al. 2000; 

Nielsen, 2001; Budd, 2001; Schmidt-Rhaesa 2001). The unresolved position of both 

Onychophora and Tardigrada in relation to arthropods leaves some open questions, not 

least when attempting to reconstruct the basic panarthropod groundplan. For example 

were ancestral panarthropods large, coelomate animals with a true blood vascular 

system? Questions such as this will be left open to misinterpretation and speculation if 

not addressed with a solid phylogenetic framework, as instances of convergencies or 

synapomorphies can be overlooked.  

Following on from the unresolved placement of Onychophora and Tardigrada, the 

problem of phylogenetic and ancestral reconstruction within Panarthropoda and 

Ecdysozoa is further compounded by the number of recent molecular phylogenetic 

studies that resolve Tardigrada outside of Panarthropoda and group them within 

cycloneuralian ecdysozoans such as Nematoda and Priapulida (Philippe et al. 2005b; 

Sørensen et al. 2008; Roeding et al. 2007, Lartillot and Philippe, 2008; Roeding et al. 

2009; Andrew, 2011). A tardigrade - nematode affinity raises the question; did 

segmentation seen in Arthropoda and Tardigrada evolve convergently, or was 

primitive segmentation present in the ecdysozoan ancestor subsequently lost in the 

remaining cycloneuralian phyla? In order to understand the origin of not only 

Arthropoda, but also Panarthropoda and Ecdysozoa, it is important to elucidate the 

true phylogenetic history of these groups in relation to their most recent common 

ancestors. 
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1.1.4 When Molecules and Morphology clash 

Within the arthropods, it was once thought that the Insecta and Myriapoda sub phyla 

were closely related to one another (the Atelocerata, Antennata or Tracheata 

hypothesis) with both insects and myriapods breathing by way of a tracheal system. 

Support for the Atelocerata hypothesis was bolstered when it was proposed that this 

group should also include the Onychophora (the Uniramia Hypothesis, Tiegs 1947). 

Although looking back this is not unexpected as all three groups are terrestrial, breathe 

via tracheae, and have uniramous un-branched appendages and a single pair of 

antennae. This view on arthropod evolution can be seen in the context of increasing 

organisation, moving from a segmented annelid like ancestor, towards a lobopod like 

Onychophora and then eventually culminating in the “arthropodization” of Atelocerata 

and Crustacea plus Chelicerata (Schizoramia; sensu: Cisne, 1974) independently.  

Early molecular phylogenetic analyses such as Field et al. (1988), and Lake (1990) set 

the scene for future reappraisals of some long standing established hypotheses on the 

evolution of arthropods and other metazoan groups (Halanych, 2004). However, early 

studies such as the one of Field et al. (1988) were hindered by poor phylogenetic 

reconstruction methods, sparse taxon sampling across the major metazoan lineages 

while also being heavily reliant upon a limited number of molecular sequences (e.g., 

18S DNA, 28S DNA, Elongation Factor 1-!) (see Brusca, 2000). Still, later studies 

began to display overwhelming convergence of evidence for the monophyly of 

arthropods (Giribet et al. 2001; Pisani, 2004; Budd and Telford, 2009; Regier et al. 

2010). Another interesting aspect elucidated from molecular phylogenetic analyses of 

Arthropoda was that the long held Atelocerata hypothesis (Hexapoda + Myriapoda) 

was not recovered in the vast majority of analyses. It should be noted that Atelocerata 
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has a firm morphological basis, with shared features such as postantennal organs, 

Malpighian tubules, tentorial endoskeleton and a limbless intercalary segment (Klass 

and Kristensen, 2001, Bitsch and Bitsch, 2004). Molecular data has rejected 

Atelocerata, which should be viewed as a “Morphology-only” hypothesis 

(Edgecombe, 2010). Uniting synapomorphies of ‘Atelocerata’ should then be 

interpreted as convergences related to terrestrial habitats in both myriapods and 

hexapods (Averof and Akam, 1995) and indeed a variety of morphological 

apomorphies favouring a crustacean affinity for the insects have been described 

(mostly from the nervous system and the eye – see also Rota-Stabelli et al. 2011 and 

the below). 

One of the accepted groupings within Arthropoda is that composed by crustaceans 

and insects. Since the onset of molecular systematics in the study of arthropod 

evolution, practically all analyses recover Crustacea + Insecta (Wheeler et al. 1993; 

Fredrich and Tautz, 1995; Giribet and Wheeler, 1999; Giribet et al. 2001; Nardi et al. 

2003; Regier et al. 2005; Dunn et al. 2008; von Reumont et al. 2011; Regier et al. 

2010) in combination with a mounting body of morphological evidence in favour of 

this group. The most striking morphological synapomorphy in support of this group, 

referred to as Pancrustacea (Zrzav! and "tys, 1997) or more specifically Tetraconata 

(Dohle, 2001) based on the tetrapartite crystalline cones of the ommatidia in their 

compound eyes (Dohle, 1997; Dohle, 2001; Harzsch, 2004). Further support for 

Tetraconata was found by independent studies of eye development (Harzsch and 

Hafner, 2006) neurogenesis (Ungerer and Scholtz, 2008) Engrailed expression in 

segmental mesoderm (Zrzav! and "tys, 1997) and mitochondrial gene order data 

(Boore et al. 1995; Boore et al. 1998). Although there is a sizable amount of evidence 

in support of Tetraconata, multiple placements of Hexapoda in relation to in-group 
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Crustaceans remains a particular problem, further compounded by the possibility of 

the joint paraphyly of both Crustacea and Hexapoda supported by some molecular 

data analyses (Regier and Shultz, 1997; Nardi et al. 2003; Cook et al. 2005; Giribet et 

al. 2005; Regier et al. 2010). 

 

1.1.5 The question of myriapod affinity 

Despite mounting evidence in support of Tetraconata, setting aside their exact 

relationships; a more prominent problem that has been the source of much debate and 

controversy over the past decade, is the position of myriapods within Arthropoda. 

Traditionally, arthropod groups united by the presence of a post-tritocerebral segmental 

appendage, which forms a jaw or ‘mandible’, has provided the basis to group crustaceans 

and hexapods together with myriapods into a clade known as Mandibulata (Nielsen, 2001). 

This group has long been recognised, as far back as the early work of Crampton (1921) and 

Snodgrass (1938); which united the three groups by way of homology of the Mandibles. 

Early phylogenetic studies in support of Mandibulata ranged from analyses of 18S rDNA 

(Giribet and Ribera, 1998) Elongation Factor-1! + RNA polymerase II (Regier and Shultz, 

1997) combined histone H3 and U2 snRNA (Edgecombe et al. 2000) to combined nuclear 

and mitochondrial loci (Bourlat et al. 2008). At the same time, morphological evidence has 

mounted in support of Mandibulata, with features such as: the brain having a conserved 

midline neuropil, stomatogastric and labral nerves being connected to the tritocerebrum 

and not the deutocerebrum (Scholtz and Edgecombe, 2006) and sternal anlagen on the 

posterior stomodaeal region (Wolf and Scholtz, 2006). Furthermore, patterns of gene 

expression of the genes Distal-less (Scholtz et al. 1998) and Dachshund (Prpic et al. 2003) 
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suggests a serial homology between the mandible, the coxal parts of the maxilla, labium, 

and the coxa of the legs (Edgecombe, 2004).  

Taking the amassed morphological data in support of Mandibulata into consideration, it is 

surprising that the majority of molecular phylogenetic analyses do not support the 

Mandibulate affinity for myriapods. Instead of recovering Myriapoda with the tetraconatan 

arthropods, molecular data analyses have shown considerable support for a sister group 

relationship with chelicerates; in a clade referred to as Myriochelata (Pisani et al. 2004) or 

Paradoxopoda (Mallatt et al.  2004) this latter name referred to the seeming lack of 

morphological evidence supporting this clade. 

Support for Myriochelata was first obtained via 18S rDNA analyses in the mid 1990’s 

(Friedrich and Tautz, 1995; Giribet et al. 1996; Spears and Abele, 1997) further support 

was also found via mitochondrial genome analyses (Hwang et al.  2001; Nardi et al. 2003; 

Negrisolo et al. 2004; Hassanin, 2006) combined mitochondrial and nuclear genes (Pisani 

et al. 2004) combined 18S and 28S sequences (Mallatt et al. 2004; Mallatt and Giribet 

2006; Gai et al. 2006) and HOX genes (Cook et al.  2001). Although Mandibulata is the 

more traditional of the two hypotheses in terms of morphology, a sparse number of uniting 

synapomorphies have been cited in support of Myriochelata. One proposed morphological 

character in support of Myriochelata derives from the developmental mechanism of                  

neurogenesis (Dove and Stollewerk, 2003; Kandar and Stollewerk, 2004). In both insects 

(e.g. Drosophila and Tribolium) and some malacostracan crustaceans it has been shown 

that neurogenesis gives rise to both epidermal and neural cells; in contrast to chelicerates 

and myriapods in which there is no decision of epidermal or neural fate (see Stollewerk 

and Chipman, 2006 for a review) in the central neuroectoderm. A second proposed 

autapomorphy of Myriochelata is that both myriapods and chelicerates possess neural 

precursor groups as opposed to neuroblasts as seen in Tetraconata (Stollewerk and 
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Chipman, 2006). Although characters such as these may provide compelling evidence, 

polarizing the Euarthropod tree with these characters has proven difficult in the absence of 

similar studies in relevant outgroups, such as Onychophora or Tardigrada. 

 In a recent study of velvet worm development (Mayer and Whitington, 2010) it has been 

shown that the pattern of neurogenesis in velvet worms is more similar to that of hexapods 

and crustaceans than to that of myriapods and chelicerates, as Onychophora do not display 

post-mitotic cell clusters or segmental invaginations of the neuroectoderm. Mayer and 

Whittington (2010) cite another synapomorphy in favour of Myriochelata, the presence of 

a ‘cumulus’, a group of mesenchymal cells that act to initiate the breakdown of radial 

symmetry, leading to the dorsal split of the embryonic germ disc. The cumulus has been 

observed in both myriapods and chelicerates, while it has not been shown to be present 

within any Tetraconatan species. Considering the implications of such evidence supporting 

Myriochelata, one should conclude that either the uniting features of the Mandibulate head 

assemblage, such as the mandibles, evolved convergently in both Tetraconata and 

Myriapoda, or alternatively Mandibles are truly homologous representing a plesiomorphic 

character for Arthropoda. If we assume Myriochelata is correct, then presence of 

mandibles is a character that in chelicerates may have reverted from a biting mouthpart 

back into an ancestral biramous walking limb.  

Resolving the position of myriapods within the Arthropoda when faced with the 

incongruences of independent analyses has proven difficult. Although the majority of 

molecular analyses support Myriochelata, studies that have combined all of the available 

evidence (Kluge, 1989) found support for Mandibulata (Zrzav! et al. 1998; Giribet et al. 

2001; Giribet et al. 2005). However, studies that utilize sparse gene sampling, such as 

rDNA sequences (Zrzav! et al. 1998) combined rDNA, elongation factors, histone 

components, and mitochondrial Cytochrome C oxidase 1 (Giribet et al. 2001; Giribet et al. 
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2005) are becoming increasingly rare as modern phylogenetic studies tend to utilize vast 

amounts of genomic data; such as large scale sequencing of EST’s (expressed sequence 

tags). Such studies have recovered highly supported topologies for many of the major 

metazoan clades, yet there still remains a lack of consensus regarding the placement of 

Myriapoda. In one of the largest phylogenomic studies conducted to date (Dunn et al. 

2008), in which the authors analyzed a matrix of 150 genes for 77 species across the 

metazoa, support was found for Myriochelata with a relatively high bootstrap support of 

90%. Since then, separate studies using large gene sets (>100 genes) have also recovered 

support for Myriochelata (Philippe et al. 2009; Hejnol et al. 2009; Pick et al. 2010). 

However all of the aforementioned phylogenomic studies suffered from poor taxonomic 

sampling for in-group arthropods, especially within Myriapoda and Chelicerata. Recently, 

the problem of myriapod affinity has been tackled by two independent phylogenomic 

analyses, (Regier et al. 2010; Rota-Stabelli et al. 2011) with both analyses attempting to 

expand the number of ingroup myriapod species in order to provide better phylogenetic 

signal for the placement of myriapods. Both analyses strongly supported the inclusion of 

Myriapoda within Mandibulata; with the study of Rota-Stabelli et al. (2011) supporting 

this hypothesis by way of three independent lines of evidence; phylogenomics, 

morphology and a new class of phylogenetic markers known as microRNAs.  The 

microRNA analyses published in Rota-Stabelli et al. (2011) where obtained as part of the 

work presented in this thesis and will be presented in Chapter 4.  
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1.2 Molecular phylogenetics: Founding methods and modern 

approaches 

The field of molecular phylogenetics dates back to the groundbreaking ideas of 

Zukerkandl and Pauling (Zukerkandl and Pauling, 1962) “We may ask the questions 

where in the now living systems the greatest amount of their past history has survived and 

how it can be extracted”.  From a methodological point of view, modern molecular 

phylogenetics arose from the pragmatic mingling of ideas from the cladistic (Hennig, 

1950; 1965) and the phenetic (Sokal and Sneath, 1963) schools; and championed by 

authors of the calibre of Joseph Felsenstein (see Felsenstein, 2004).  Both the traditional 

cladistic and phenetic schools developed in the mid fifties, before powerful computer 

resources became available to phylogeneticists and before the large genomic databases 

we are familiar today were available.  Looking back, the modern era of molecular 

phylogenetics has clearly come along way from these early times. Today for example we 

have relatively complex models of evolution that can take into account the heterogeneity 

of the substitution process across sites (Lartillot and Philippe, 2004) and also vastly 

increased computational power allowing the enormous number of calculations required 

for the currently widely used Maximum Likelihood and Bayesian methods.  For example 

it is now possible to perform complete analyses of increasingly large phylogenomic data 

sets (Dunn et al. 2008; Hejnol et al. 2009; Campbell et al. 2011) under sophisticated 

models that are beginning to accommodate the complex processes of evolution we now 

know to occur. However no matter how sophisticated current models of evolution are, 

phylogenetic analyses are still prone to reconstruction artifacts, the most famous of which 

being long branch attraction – Felsenstein (1978). In this section I will discuss some of 

the earliest methods of modelling molecular evolution, the problems inherent in these 

methods and the advancements that lead to the current state of molecular phylogenetics. 
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1.2.1  Maximum Parsimony 

 Originally, pioneering algorithms developed to generate phylogenetic relationships were 

not focused on complex models of evolution. Models that attempt to account for inherent 

biases associated with many molecular data sets e.g. (among site rate variation, 

compositional heterogeneity and heterotachy) are recent innovations. Older, more 

simplistic methods such as parsimony – are based on the idea of “the minimum net 

amount of evolutionary change” Edwards and Cavalli-Sforza (1963; 1964). One of the 

first publications to use “clustering” methods for biological classification was a paper by 

Michener and Sokal (1957), which analysed morphological characters to classify bees. 

Around the same time as these early analyses, the first molecular sequence data were 

being generated in the form of protein sequences. Soon after sequence data began to be 

more commonly utilized, it was realised that molecular sequences could provide 

information in which to generate phylogenies. The famous paper by Zuckerlandl and 

Pauling (1962) is an example of such a leading innovation into the field of molecular 

phylogenetics in which they first proposed their hypothesis of the universal “Molecular 

clock” via the analysis of amino acid differences in haemoglobin sequences; which they 

showed changed roughly linearly with time.  

The earliest computational approaches to generate phylogenetic relationships focused on 

methods such as parsimony (first applied to phylogeny reconstruction by Edwards and 

Cavalli-Sforza, 1964). The study presented by Edwards and Cavalli-Sforza (1964) 

focused on human gene frequency polymorphisms. This work was remarkable in the fact 

that they not only introduced the parsimony and likelihood method but also the use of 

statistical inferences to generate phylogenies more broadly. Parsimony is based on the 

concept of identifying the tree that minimises the number of character state 
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transformations across all sites of the alignment, thereby finding the most “parsimonious 

tree”. Although Edwards and Cavalli introduced parsimony, it was not used in terms of 

character-based phylogeny until the publication of Camin and Sokal (1965). Importantly, 

phylogenetic reconstruction methods that focus on the “minimum net amount of 

evolution” like parsimony do not consider branch lengths when selecting between 

alternative topologies. Due to inherent properties of parsimony, this method of phylogeny 

reconstruction was subsequently shown to have a number of problems. In particular 

Felsenstein (1978) showed parsimony to be inconsistent under certain conditions. That is 

when there is disproportionate rate heterogeneity in neighbouring branches of a topology, 

such conditions became referred to as the “Felsenstein zone” or more commonly by the 

manifestation of the reconstruction artifact - long branch attraction (LBA: See 

section1.3.3.4). As such Maximum parsimony is often criticised as being irrelevant to 

phylogenetics as evolution is rarely parsimonious. 

 

1.2.2 Distance Matrix Methods 

Another set of methods known as Distance matrix methods (DMM) has been in existence 

for a long time.  In DMM, branch lengths represent expected amounts of evolution.  This 

is a length of time, more precisely, branch lengths (BL) in phylogenetics is generally 

represented as the rate (!) of substitution multiplied by the time (the duration of the 

branch) hence BL = ! * t. DMM methods calculate the distance between each pair of 

sequences in a multiple sequence alignment and generate a distance matrix of pairwise 

distances, this matrix is then used to determine the tree that reflects those distances more 

accurately (Felsenstein, 2004). Although the DMM do take into account the length of 

branches as a function of evolutionary distance, they are only simple fractions of 
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observed amino acids differing between sequences and do not capture the reality of 

underlying evolutionary process. Distance matrix methods fail to fully take into account 

the intrinsic underlying process of evolution; processes such as biased substitutions 

patterns i.e. transitions vs. transversions, and unobserved multiple replacements due to 

high rates of substitution.  

Although there has been number of different phylogenetic methods developed over the 

years, some of these, like Parsimony and DMM have now become essentially out-dated. 

Over the years improved phylogenetic reconstruction methods that allow for more 

accurate accounts of reality have began to replace those early methods. Specifically, 

Bayesian and Maximum likelihood methods, which employ more complex models of 

sequence evolution, have become increasingly utilized in their place. Accordingly, the 

work presented in this thesis features these improved methods extensively, and so I will 

not discuss further methods of phylogenetic reconstruction that are now viewed as being 

inadequate for modern phylogeny reconstruction.  

 

1.2.3 Modelling Amino acid and protein evolution 

It became apparent that the probability of one amino acid changing to anyone of the 

remaining nineteen amino acids was not equivalent for each pair of amino acids. Dayhoff 

and Eck (1968) introduced the use of empirical models of amino acid change; the first of 

these models was called the PAM (probability of accepted mutation) model. The first 

PAM substitution matrix was PAM 001. The PAM 001 model corresponds to the 

probability of any one of the 20 amino acids changing to any other of the 19 amino acids 

along a branch short enough that only 1% of the alignment positions is expected to 

change.  A threshold of 1% allowed the assumption that the sequences were similar 
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enough that no multiple substitutions had occurred, so for instance the likelihood of a 

particular mutation (e.g. F ! W) being the result of the hidden substitutions (F ! x ! y 

!W) is low. Many more PAM matrices (e.g. PAM 100 and PAM 250) have been 

derived since then using matrix multiplication.  These correspond to probabilities of 

changes among alternative amino acids along branches where greater evolutionary 

change has occurred. Currently Dayhoff matrices are no longer used for their original 

purpose, with Dayhoff matrices substituted by empirical derived matrices (like WAG –

Whelan and Goldman, 2001) generated under a maximum likelihood framework. In any 

case, PAM matrices are sill sometimes used in BLAST-based database searches to access 

the significance of proposed matches between target and database sequences. 

As additional data became available, the same methods used to derive the original PAM 

matrices were applied to larger datasets. Similar models of protein evolution were soon 

introduced, based again on empirical estimations of amino acid change. Jones, Taylor and 

Thornton (1992) described the empirical JTT matrix of amino acid replacement, while 

Whelan and Goldman (2001) then improved upon the JTT model by applying a 

likelihood framework to generate the WAG matrix. Models such as JTT and WAG 

ameliorated the assumption of Maximum Parsimony that any given site in an alignment 

only changes once along any single branch in a tree.  

Models like the aforementioned WAG and JTT models are based on empirically derived 

replacement rates, and on the principle of time reversibility of the substitution process 

(i.e. GTR). That is, in a GTR model (mechanistic model) the probability of replacement 

for any amino acid is the same in both directions. Time reversibility negates the need of 

using a rooted topology (i.e. trees are inferred as unrooted topologies) and makes the 

calculation of the replacement matrix easier.  As the probability of moving from amino 
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acid J to K is the same of moving from K to J. GTR matrices are symmetrical therefore 

halving the number of parameters that need to be inferred.  

Although mechanistic models mentioned previously like WAG and JTT improve the 

ability to estimate the underlying substitution process, thus improving the overall ability 

to correctly identify masked substitutions; a problem still remains in their use for 

phylogenetic reconstruction. The main problem inherent in all of the aforementioned 

models is that they all assume homogeneity of the replacement process. When the 

underlying assumptions of a given model are violated this usually results in generation of 

phylogenetic artifacts. Across site rate heterogeneity of the replacement process is a 

characteristic inherent in proteins. Amino acids are subject to heterogeneous replacement 

rates due to differential underlying physical properties of their amino acids, for instance 

globular proteins have some amino acid residues that are exposed to solution or 

alternatively buried in the protein core. The usual way in which among site rate 

heterogeneity is accounted for in homogeneous models is by way of a Gamma 

distribution of rates across sites (Yang, 1996). A Gamma distribution allows partial 

relaxation of the assumption of identical distribution of rates across sites, and has been 

shown to improve statistical adequacy over a uniform rate model (Yang, 1996). However 

most models of evolution still assume homogeneity of the replacement process, (i.e. 

equilibrium frequencies and rates of substitution across nucleotides and amino acids are 

the same across all sites) thereby promoting model violations and the occurrence of 

systematic errors and phylogenetic artifacts.  

Attempts have been made recently to account for the problem of across site rate 

heterogeneity, most notably with the site heterogeneous mixture model CAT (Lartillot 

and Philippe, 2004). The CAT model also shares the feature of using gamma-distributed 

rates across sites, however CAT further relaxes the assumption of rate homogeneity 
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across sites. This is achieved is via the clustering of columns of the alignment into a 

number of biochemically specific categories (K), each described by its own amino acid 

profile and equilibrium frequencies of the 20 amino acids (or 4 nucleotides). Columns of 

the alignment are assigned a category under which its substitutional history is to be 

described. The number of specific categories can be constrained to 1 (as in the standard 

matrix model i.e. WAG, JTT or GTR) or selected under a Dirichlet process prior on the 

number of equilibrium frequencies to let the value of K be a free parameter. CAT has 

been shown to be much more effective at modelling data sets that have experienced 

substantial degrees of substitutional saturation (Lartillot et al. 2007). CAT outperforms 

homogeneous models like WAG and the most general site homogeneous time reversible 

GTR model, lessening the problem of model violation and therefore generating more 

reliable phylogenies. The CAT model will feature extensively throughout this thesis.  

 

1.2.4 Maximum likelihood 

Maximum likelihood (ML) was first introduced back in the early 20th century by R. A. 

Fisher (1912; 1921; 1922). The concept of likelihood refers to the situation in which 

given some source of data D, a decision must be made about an adequate explanation of 

the data.  It wasn’t until the early 1960’s that ML was first applied to phylogeny by 

Edwards and Cavalli-Sforza (1964) when they applied ML to the analysis of gene 

frequency data. Although the implementation of ML for biological data had already been 

demonstrated, it was Joseph Felsenstein in 1981 that first showed using his pioneering 

“pruning algorithm” how to apply ML practically to realistic numbers of sequences. 

Under a ML approach, a specific model and a hypothesis are formulated such that the 

model itself is not under question, but the data the model attempts to describe are. In 
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phylogenetics, the model employed under ML assumes that sequences actually evolve 

according to a tree topology, and so, if point mutations or substitution events occur by 

chance, in principle one can calculate the probability of finding a mutation along a branch 

in a phylogenetic tree.  

The main idea behind phylogenetic inference using ML is to determine the tree topology, 

branch lengths, and parameters of the evolutionary model (e.g. substitution model, base 

frequencies, rate variation among sites) that maximize the probability of observing the 

sequences under investigation. Typically the ML implementation in phylogeny 

reconstruction focuses around molecular sequence data such as DNA or Amino Acids 

(usually fixed) and a tree (part of a given “hypothesis”, which is free to change). Another 

way to view the likelihood function is that it is the conditional probability of the data (i.e. 

sequence data) given a hypothesis (i.e. model of substitution with a set of parameters ! 

and the tree ", including branch lengths). 

 

 

 

One of the major advantages when using ML over other methods like Neighbour-joining 

(NJ) is that ML has been shown to impart robustness to systematic error and model 

misspecification which can affect parsimony and NJ (Hasegawa et al. 1991; Huelsenbeck 

1995).  Another advantage of ML inference is that it allows proper model selection. 

Currently a number of different statistical strategies exist to facilitate selection of the best 

fitting evolutionary model, such as information criteria, Bayesian or performance-based 
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approaches. Probably one of the most popular methods is the likelihood ratio test (LRT). 

A Likelihood ratio test is a standard way of comparing the fit of two (or more) models of 

evolution by contrasting the maximised log-likelihoods of the null l0 and the alternative 

models l1 (Posada and Crandall, 1998). 

It has been shown that use of methods to select a best fitting evolutionary model (such as 

the LRT) increases the likelihood of reconstructing more accurate phylogenetic 

relationships (Keane et al. 2006).  It can be said that in order to best describe the 

underlying evolutionary process, you should always try to avoid applying both an overly 

simplistic or overly parametric model of evolution. In the case of overly simplistic 

models it has been shown that underestimating multiple substitutions can result in 

statistical inconsistency during phylogeny estimation in certain situations (‘Felsenstein 

zone’) and can lead to systematic artifacts such as Long-branch attraction (Felsenstein, 

1978a). Conversely, analysing small alignments (e.g. single gene data sets) with 

parameter rich models of evolution such as CAT (Lartillot and Philippe, 2004) and GTR 

can lead to overparameterisation.  In such cases, finding the best tree might become 

impossible as all trees will have very similar likelihood  (the likelihood surface will be 

flat) as there is not enough data to estimate all parameters in the model.  

 In conclusion, phylogenetic inference under a ML framework is a well-established and 

popular method of inference when constructing phylogenetic relationships. Specifically, 

ML has been shown to be largely robust to model violations and systematic errors, and so 

is viewed as being a substantial improvement over other less complex methods (e.g. 

Parsimony) (Huelsenbeck, 1995; Whelan et al. 2001). Indeed ML has a number of 

beneficial properties that promote its use as a phylogenetic reconstruction method. 

However, ML has not been utilized extensively in this thesis and so I will not discuss its 

properties any further. 
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1.2.5 Bayesian Inference 

Bayesian inference can be viewed as being similar to likelihood methods; however, 

one main difference exists between the two. Bayesian inference differs by its use of a 

prior distribution on the entity being inferred (generally the trees) (Felsenstein, 2004). 

Bayesian inference has only recently become popular as a phylogenetic inference 

method despite its long history in statistics. This could be attributed to the effective 

implementation of Bayes’ theorem via MCMC (Markov Chain Monte Carlo) 

algorithms (Rannala and Yang, 1996; Yang and Rannala, 1997; Mau et al. 1999; 

Larget and Simon, 1999). The attractiveness of Bayesian phylogenetic inference is the 

way in which it reflects our own “human” decision making process. In effect 

Bayesian inference is nothing more than a probability analysis that is updated as new 

information is added; thus mimicking our own rational decision making behaviour 

when presented with new information (Huelsenbeck and Bollback, 2001; Lemey et al. 

2009).   

Bayesian inference in phylogenetics is based upon the posterior probability of a tree. 

The posterior probability distribution or ‘posterior’ can be derived using Bayes’ 

theorem: 

 

 

The posterior probability distribution (Pr[H|D]) is derived by calculating the 

probability of a hypothesis “H” given some data “D” (i.e. an alignment of sequences 

for n taxa). Here, the hypothesis H denotes a vector of model parameters that typically 
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includes a topology, branch lengths and a substitution model for all alternative 

hypotheses (i.e. all trees possible for n taxa). Usually, the Prior (Pr[H]) for all trees is 

considered equally probable, a condition known as a vague or uninformative prior. In 

this equation the denominator (Pr[D]) is viewed as the normalizing constant, in which 

the denominator is the sum of the numerators ([Pr H and D]) over all possible 

hypotheses (H). This ensures that the posterior probability distribution integrates to 1, 

a basic requirement of a proper probability distribution. No matter how simple the 

model being implemented when deriving posterior probabilities, it is near impossible 

to calculate the denominator. To do so requires summing over all likelihood values 

for each hypothesis, i.e. trees; an intractable problem when viewed in terms of 

numbers of trees possible if n becomes large (Felsenstein, 1978b; Yang and Rannala, 

1997; Lemey et al. 2009).  

In a real world phylogenetic problem, calculating the posterior probability distribution 

analytically is impossible (Huelsenbeck and Bollback, 2001), this problem stems from 

the inability to estimate posteriors by drawing random samples from it (usually the 

posterior probability is concentrated in a small part of the parameter space). This 

problem can be overcome surprisingly easily by the use of MCMC (Markov chain 

Monte Carlo) algorithms, which allows a valid sample to be drawn from the posterior 

distribution (Huelsenbeck et al. 2001). An important property of MCMC chains is 

that they usually tend to converge towards an equilibrium state regardless of the 

starting point (i.e. a random tree) (Lemey et al. 2009). 

The most common and flexible implementation of MCMC is via the use of the 

Metropolis algorithm, more specifically a variant referred to as Metropolis-Hastings 

algorithm (Metropolis et al. 1953; Hastings, 1970). The central premise of 

Metropolis-Hastings algorithm is to make small random changes to some current 
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parameter value(s) then accept or reject those changes according to the appropriate 

probabilities. It is performed by following these steps: (1): Select a random starting 

state (i.e. a tree) with its associated posterior probability (!). (2): Make a small 

random move by selecting a new state (!*) from the proposal distribution. (3): Using 

the Metropolis-Hastings algorithm a decision is made to select or reject the new state, 

which is obtained by calculating the height ratio (r) of the posterior probabilities of 

the two states. There are two outcomes, either the new state is selected and becomes 

the starting point of the next proposal in the chain, or the current state is retained with 

a probability that is proportional to the height ratio (r) of the two states. On occasion a 

new state (!*) with a lower probability than the current state (!) is selected; which 

ensures the ratio of rejecting or accepting states is relative to the ratio of their 

posterior probabilities. In other words, the amount of time spent sampling from within 

a particular parameter value (i.e. a topology), is proportional to the posterior 

probability of that value i.e. the better the likelihood the more likely it is to be 

accepted.  

The cycle of proposal/acceptance in a MCMC chain is repeated ad infinitum. Usually 

MCMC chains are not ran singularly, but more usually as a number of ‘independent 

MCMC chains’. As chains usually start at a random state (i.e. tree) the initial posterior 

probability is generally quite low (burn-in phase) as chains sample from very 

different regions of tree space. As the chains progresses to regions of the posterior 

with high ‘probability mass’ we observe the likelihood increasing rapidly and the 

chains enter stationarity. Under what is known as convergence (i.e. chains in regions 

of tree space with similar probability distribution) of independent chains, allow you to 

evaluate the state of progression and cease the MCMC algorithm. The work presented 

in this thesis features the use of Bayesian inference extensively.  
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1.2.6 Posterior probability 

The measure of support used in Bayesian inference is known as the Posterior 

probability (PP). The PP of a node within a tree is the probability that that node is 

correct (conditional on the model, the priors, and the data) (Huelsenbeck and Rannala, 

2004). One of the benefits of PP assessment of support is that inference of PP is direct 

and does not require, for example repeated sampling and reanalysis, as is the case 

with Bootstrapping and Jack-knifing. However, mixed interpretations of support 

inferred from PP exist. According to some authors PP tends to be an overestimate of 

the real support values  (Douady et al. 2003; Erixon et al. 2003). Bayesian analysis 

has the property that parameters are treated as random variables, and can be directly 

assigned probabilities thus conferring a natural way to access uncertainty in a 

phylogeny. This allows Bayesian inference to incorporate the use of models with 

greater dimensionality (Lartillot and Philippe, 2004) thereby conferring a better 

approximation of the true underlying evolutionary processes. This is however met 

with a caveat, in that it was shown that PP are more sensitive to model 

underspecification (Huelsenbeck and Rannala, 2004).  

 

In conclusion BI is a powerful method of phylogenetic inference with a number of unique 

and intuitively positive properties; with currently a number of software implementations 

including MrBayes (Huelsenbeck and Ronquist, 2001)) and Phylobayes (Lartillot and 

Philippe, 2004). Bayesian analysis will be a widely used tool in this thesis. 
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Chapter 2 

Considerations for phylogeny 

reconstruction: Data types, Phylogenetic 

error and Consilience 

 

 

2.1 Introduction 

The simplest definition of a phylogeny can be stated as follows: a phylogeny is a 

branching diagram depicting the genealogy or pattern of evolution for a group of 

operational units (typically: species, populations, single genes). Synonyms such as 

phylogenetic tree or evolutionary tree are usually used more commonly in place of 

phylogeny due to the similarity of the branching pattern to that of a tree; for instance 

different parts of a phylogeny are referred to accordingly (i.e. root, branch, leaf). 

Although one of the first evolutionary trees to appear in literature was in the 

publication “Elementary geology” by Edward Hitchcock in 1840, which depicted the 

relationships of plants and animals against a geological background; it wasn’t until 

the theory of Natural selection was published in “On the Origin of Species”  (Darwin, 

1859) that popularized representing evolutionary common ancestry with the aid of a 

branching tree (see Figure 2.1).  

When we think of a phylogeny, we will usually think of the branching tree (topology) 

leading to end points or terminal nodes (also referred to as Operational Taxonomic 
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Units; OTUs). OUT’s are the focus of investigation when constructing phylogenies, 

and are usually extant taxa but can also be fossil taxa or individual genes. It is the 

branching pattern of a phylogeny that defines the relatedness of a set of OTUs, and 

therefore can be thought of as a hypothesis, which explains the order of evolutionary 

events through time (e.g. speciation, extinction and gene duplications) that we assume 

to have occurred. 

 

 

Figure 2.1: Darwin’s “Tree of Life”. Charles Darwin’s only figure illustration from the book “On the 

origin of Species” (Darwin, 1859). 

 

It is true that a phylogeny will always depict the branching pattern of its OTUs, 

however there is no clear outline as to what information a tree ought to convey. For 
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instance a phylogeny may or may not display information about the phenotypes of its 

leaves, it may display branch lengths (Phylogram) or it may only display the over all 

branching pattern without any branch lengths (Cladogram). Finally the order of 

events of evolution may be directed (Rooted) i.e. indicate the direction of the 

evolutionary process, or directionality may not be given at all (Unrooted) (see Figure 

2.2 for a comparison between a rooted and unrooted phylogenetic network). An 

unrooted network is basically a summary of the possible interconnections between 

OTUs; conversely a rooted network is a depiction of evolutionary history.  

 

 

Figure 2.2: A Phylogenetic network depicted as both a rooted and unrooted cladogram.                   

Both networks show the same topology, but the direction of evolutionary change is only evident for the 

rooted tree. External leaf nodes (OTUs) labelled A-F, internal ancestral nodes labelled G-K. (a) Rooted 

network ingroup OTUs labelled A-E, outgroup labelled F, root node labelled K. (b) Unrooted network 

OTUs labelled A-F, the unrooted network does not have a root node (K); therefore there is no 

outgroup. 

 

The way in which we infer directionality or root a phylogeny is in terms of an 

outgroup, an outgroup is one of the OTUs that is included in the study.  This outgroup 
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has the property of being known (or it is believed anyway) to be the most distantly 

related to all remaining OTUs (ingroup taxa) then any of the ingroups are among 

themselves.  The root of a given topology is positioned along the branch connecting 

the outgroup with the ingroup. Correct rooting of a phylogeny is crucial and should 

not be overlooked as this could lead to downstream biases and topological errors (see 

section 2.3.4: LBA). Also, it should be stated that in order to convey non-trivial 

information a phylogenetic tree must contain at least four species one of which can be 

an outgroup (Telford and Copley, 2011).  

Concluding, the phylogenetic tree concept has firmly found its foothold in 

evolutionary thinking, effectively conveying concepts such as speciation, extinction 

and the over all tree like pattern of evolution we expect to be observed as a result of 

descent with modification from a common ancestor.  However, evolution is not 

always tree-like. For example prokaryote evolution has both a vertical and a 

horizontal component (gene exchange via horizontal gene transfer or (HGT; see 

Ragan et al. 2009). Yet, this thesis is only concerned with vertical evolutionary 

processes.  In this section I will continue by discussing some of the different data 

types currently used in phylogenetics, and comparing and contrasting their strengths 

and weaknesses. I will also discuss sources of phylogenetic biases associated with 

molecular sequence analyses. Finally, I will try and give insights into what we need to 

consider when drawing inferences from the data: is it best to combine all the evidence 

in search of a an hypothesis that best explain them all (i.e. “Total evidence”: Kluge, 

1989) or alternatively is there merit in examining multiple independent data types in 

the search for corroborating evidence to validate a particular hypothesis?  
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2.1.1 Homology and Multiple sequence alignment 

Before I discuss the common data types used in modern phylogenetics, I must first 

introduce the concepts on which we base our assumptions of shared evolutionary 

history, which influence our approach to phylogenetic reconstruction. Common 

practice when investigating phylogenetic relationships is to begin with a set of 

species, with each species scored for a number of observable characters (e.g. a 

morphological matrix, an alignment of molecular sequence data, or combination of 

the two). One requirement of such an approach is identification of a set of characters 

(e.g., morphological traits or genes) that are known to be present in the set of OTUs 

through descent via common ancestry. This necessity of descent through common 

ancestry for any observable character intended for phylogenetic analysis introduces 

the idea of homology. The concept of homology has been around since the mid 19th 

century and forms the basis for modern phylogenetics, introduced by Owen (1843); it 

is traditionally defined as a “special” case of historical continuity between characters, 

that have descended, typically with divergence via a shared common ancestry 

(Patterson, 1988; Wagner, 2007; Shubin et al. 2009).  

Classically homology was viewed in the context of shared morphological characters. 

For example a common instance of homology can been seen in tetrapod limb 

structure; with tetrapod limbs displaying stereotypical arrangement of bones 

regardless of necessitated function (e.g. walking, swimming, flight (Wagner, 2007)). 

This idea of homology between morphological characters can be extended beyond its 

traditional definition to molecular sequence data; two genes are homologous if they 

descended from the same gene in a common ancestor (regardless if they still retain the 

same function or the degree of similarity in the nucleotide sequence). When we 
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consider homologous entities (homologs) it is important to distinguish between a 

homologous character (e.g., protein coding gene) and a state for that character (e.g. a 

Proline amino acid at character position six); the reason being that homology resides 

not in the state but in the character under examination (Fitch, 2000).  

In molecular phylogenetics there exist three distinct subtypes of homology. Firstly, 

orthology is the relationship where two sequences diverge following a speciation 

event. Orthologs can then portray the “true” phylogeny of the organisms in which the 

orthologous genes were obtained, a property unique to orthologous sequences. A 

second case pertaining to homology is paralogy, where two sequences diverge 

following a duplication event. In this instance, paralogous sequences can diverge 

whilst remaining in the same organism and therefore cannot be utilized when 

inferring speciation. Lastly xenology is where homology arises due to interspecies 

transfer of genetic material (not of grave importance when investigating metazoan 

relationships; and so is not under consideration in this thesis). Thus when constructing 

phylogenetic relationships, for the reasons mentioned above, it is of central 

importance to know a priori if sequences under investigation are orthologous or 

paralogous (Lemey et al. 2009).   

An essential prerequisite to phylogenetic analysis for a sequence based phylogeny is 

the comparison of similarity of homologous sequences. This is achieved by 

constructing a sequence alignment, such that homologous sites form columns in the 

alignment; a process commonly referred to as a multiple sequence alignment (MSA). 

A MSA can be thought of as a hypothesis about the homology of residues in 

molecular sequences. This procedure can be easy when comparing sequences with a 

high similarity (total number of identical residues divided by the total length of the 

alignment) but becomes increasingly difficult when sequences have had more time to 
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diverge (i.e. accumulate more mutations relative to one another).  There exists a large 

number of different MSA software programs; e.g. clustalW, Muscle and Prank 

(Thompson et al. 1994; Edgar, 2004; Löytynoja and Goldman, 2005) which have 

differing algorithms designed to implement a MSA each with there own strengths and 

weaknesses. I will not compare and contrast different MSA software packages, for a 

review of currently used algorithms for MSA see (Edgar and Batzoglou, 2006; 

Notredame, 2007).  For the scope of this thesis it is enough to state that the goal, 

when constructing a MSA, is to identify hypotheses of homology for each residue in a 

set of sequences.  A multiple sequence alignment thus represents a collection of 

“positional homologies” that are then used as inputs for phylogenetic analyses.  

 

2.2 Data types of phylogeny reconstruction  

2.2.1 Role of morphology in modern phylogenetics 

Much of what we know about animal taxonomy and phylogeny today is based on 

classical studies of morphological data (e.g. Arthropods: Snodgrass, 1938; Chordates: 

Maisey, 1986; Vertebrates: Sillman, 1960).  However, in the current era of 

comparative genomics, researchers now have vast databases of molecular sequence 

data available to reconstruct phylogenetic relationships from across the three domains 

of life (Philippe et al. 2004; Ciccarelli et al. 2006; Cox et al. 2008; Dunn et al. 2008; 

Hejnol et al. 2009; Rota-Stabelli et al. 2011; Campbell et al. 2011; Brochier-Armanet 

et al. 2011).  This raises the question of morphological utility in modern 

phylogenetics. Indeed, some have begun to reappraise the role of morphology in 

today’s molecular sequence era (Scotland et al. 2003). According to Scotland et al. 

(2003) the utility of morphology in phylogeny should be limited, because of 
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drawbacks relating to ambiguous character definition, homology assignment and lack 

of useful new morphological characters. For all of these reasons they conclude: “We 

view any attempt to include more morphological data in phylogeny reconstruction as 

inherently problematic”. This viewpoint has been meet with strong criticism by a 

number of researchers as they consider the reappraisal and damning of morphology 

based phylogenetics as unfounded (Jenner, 2004; Wiens, 2004; Smith and Turner, 

2005). Cogently, Pisani et al. (2007) presented numerical results illustrating how the 

congruence / incongruence of molecular and morphological data is key to assess the 

likelihood that a given set of phylogenetic relationships might be correct or not. 

 

In relation to morphological data, sequence based analyses have a number of unique 

beneficial properties such as: efficient data sampling enabled by next generation 

sequencing, automated pipelines for analyzing data, larger data sets, relatively 

complex substitution models; there is one limitation to the use of molecular data - the 

inability to incorporate fossil taxa in phylogeny reconstruction. Over the course of life 

on earth, it is estimated that the vast majority (~99.9%) of species to ever evolve are 

now extinct (Novacek and Wheeler, 1992) and so to ignore fossils is comparable to 

ignoring over 99% of life. It is this aspect that morphological data becomes of 

essential importance, as fossil taxa comprise the vast majority of all the branches on 

the tree of life.  Morphology becomes extremely useful when elucidating phylogenies 

of extant taxa that are characterized by short radiations and deep divergences, such as 

that of the arthropods (Wheeler 1993; Budd 2001; Edgecombe 2010; Rota-Stabelli et 

al. 2011). Morphology helps to estimate the phylogenetic relationships of fossil and 

extant taxa by incorporating extinct species while at the same time increasing taxon 

sampling; potentially breaking up long branches that can occur in the absence of such 
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fossil taxa (Donoghue et al. 1989; Wills et al. 1998).  

 

Another important function of morphology and fossils concerns dating divergence 

time within a phylogeny. Although methods exists to date divergence times among 

living taxa using sequences and the molecular clock assumption (Zuckerkandl and 

Pauling, 1962, Kimura and Ohta 1971), or a relaxed molecular clock methods (e.g. 

Erwin et al. 2011) fossil data are still needed to calibrate dates of divergence, 

typically done by use of fossil calibration points setting an upper and/or lower bound 

for the emergence of a clade or species for example. It has been shown that incorrect 

calibration of molecular clock models due to for example incompleteness of the fossil 

record can lead to drastic divergence estimation errors (Rodríguez-Trelles et al. 2002; 

Blair Hedges and Kumar, 2004; Peterson et al. 2004; Peterson et al. 2008). 

 

Not only can morphology help when reconstructing and dating phylogenies, it also 

allows insight into the emergence of novel bauplaene, and stem group taxa. It could 

be argued that proper understanding of morphological innovations that characterize 

early clades to be of particularly noteworthy importance. How else do we bridge the 

morphological gap when looking at disparate living clades such as arthropods?  Some 

of the most famous fossil discoveries are related to stem groups of early Panarthropod 

ancestors, such as the iconic Cambrian predator Anomalocaris (Whitington and 

Briggs, 1985) currently thought to be an early arthropod stem group ancestor, or the 

armored lobopod Hallucigenia (Conway-Morris, 1977) now known to be the early 

ancestor of the extant terrestrial velvet worms. Specifically, it is this ability of fossil 

taxa to retain and highlight critical combinations of characters, highlighting cases of 

synapomorphy and plesiomorphy that can change the outcome of analyses based on 
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hypotheses misdirected by homoplasy.  

 

Aside from the primary role of morphology in phylogenetic reconstruction and 

understanding character evolution throughout the large time span of life on earth, 

morphology also plays an important role allowing for “reality checks”. This is 

important as we do not live in an age of infallible molecular phylogenies (Jenner, 

2004). These reality checks allow revaluating our findings when met with conflict and 

ambiguity in other data types such as molecular sequence data. Independent analyses 

of morphology and molecules facilitate a greater understanding of the underlying 

processes of divergence and character evolution. Combine this with new powerful 

methods of (re)analysing fossils currently being pioneered, such as phase-contrast X-

ray computer assisted tomography (Dunlop et al. 2011); which can now render 

exquisitely minute detail at scales never obtained before. It needs to be pointed out 

that one of the main goals of phylogeny reconstruction is in the understanding of the 

evolution of characters, typifying species, those fundamental units that natural 

selection acts upon.  In essence, morphology is as important today as it was during the 

earliest investigations of life on earth, long before the appearance of molecular 

sequence data. The continued utility of morphological understanding in modern 

phylogenetics therefore cannot and should not be dismissed now or in the foreseeable 

future. 
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2.2.2  Utilization of MicroRNAs for phylogeny 

In the previous section it was mentioned how much of our knowledge on metazoan 

interrelationships have been elucidated through our understanding of morphological 

similarity spanning the taxonomic hierarchy. Many of these relationships have been 

backed up and corroborated robustly following reanalyses conducted on molecular 

sequence data. Since early metazoan molecular phylogenetic analyses, most of the 

relationships have been investigated with a relatively few types of sequence data e.g. 

ribosomal, mitochondrial and nuclear protein coding genes (PCGs). Under this 

approach, orthologs are aligned and analysed under an array of available phylogenetic 

methods and evolutionary models; this has been and will continue to be the norm in 

molecular phylogenetics, however there are a number of problems usually 

encountered under this approach. Problems faced in molecular phylogenetics (across 

all levels of the organismal complexity) range from: differential rates of molecular 

evolution that can lead to systematic biases like LBA, incorrect identification of 

orthologs, erroneous sequence alignments, compositional bias of the replacement 

process, to cases in which divergence of deep nodes characterized by fast radiations 

result in absence or masking of genuine phylogenetic signal.  

During early efforts to resolve difficult nodes within Metazoa, originally it was hoped 

that by simply adding greater numbers of sequences to analyses would lead to 

increased phylogenetic resolution; however this approach alone is now known to be 

insufficient (Philippe et al. 2011b). Essentially, the problem of low phylogenetic 

resolution resides in the pervasiveness of homoplasy (similarity not caused by shared 

ancestry but convergent evolution) in current molecular phylogenetic data types, 

which cannot be fully accounted for by current models of evolution commonly 

applied to traditional molecular sequence data. Therefore identification of data sets 



! "#!

that minimise homoplasy as much as possible should provide the greatest hope for 

resolving intractable phylogenetic relationships (Sperling and Peterson, 2009), while 

also providing an additional data set to test hypotheses of metazoan evolution that 

may not be independently corroborated by both molecular and morphological data.   

One of the main aims of this thesis is the utilization of novel data, characterized by 

low levels of homoplasy, to investigate competing hypotheses of arthropod evolution. 

A data type that has shown promise in fulfilling the goal of low levels of homoplasy, 

also with the property of having characters that arise frequently enough to record 

divergences across most levels of the taxonomic hierarchy is that of the recently 

discovered class of translational regulatory elements.  These regulatory elements 

called microRNAs (miRNAs) are small ~22 nucleotide (nt) genomically encoded 

non-coding RNA genes that function as negative regulators of messenger RNA 

(mRNAs) expression by binding to regions of a mRNA 3’ untranslated region (UTR). 

MicroRNAs subject a mRNA to catalytic cleavage or translational inhibition 

(depending on the degree of complementary nucleotide binding). 

 

MicroRNAs were originally discovered through investigations of developmental 

timing in Caenorhabditis elegans, with the miRNA lin-4 found to negatively regulate 

the protein coding gene lin-14 (Lee et al. 1993). Following the initial discovery of 

miRNAs and their regulatory role in developmental timing, it soon also became clear 

that miRNAs held promise for their utilization as phylogenetic markers. In an early 

study into miRNA distribution across Bilateria, it was shown that the mature sequence 

of another early discovered miRNA, the miRNA let-7 (Reinhart et al. 2000) displayed 

a high degree of conservation between diverse organisms like nematodes, fruitflies 

and Humans, while also present within every Protostome and Deuterostome 
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investigated (Pasquinelli et al. 2000). Since initial investigations into miRNA 

distribution and conservation across Bilateria, many studies have further compounded 

the utility of miRNAs (Sempere et al. 2006; Sempere et al. 2007; Wheeler et al. 

2009) as genuinely valuable independent markers for phylogenetic reconstruction. It 

has now become evident that miRNAs have a number of unique properties that enable 

them to be used in tackling phylogenetic questions; difficult questions that otherwise 

are yet to be fully resolved with traditional molecular sequence data (Sperling and 

Peterson, 2009). I must note here that the utility of miRNAs in phylogenetic 

reconstruction is intimately linked to their mode of biogenesis, degree of sequence 

conservation, mode of translational inhibition and role of regulating gene expression 

throughout most of an organism’s life span. For details of miRNA biogenesis and 

mode of action please see section (4.1.1) of Chapter 4. 

 

From investigations into the evolution and conservation of miRNA families 

throughout Metazoa it has been shown that miRNAs have four unique properties that 

facilitate their use in phylogeny reconstruction (Sperling and Peterson, 2009; Tarver 

et al. 2012).  These properties are as follows; (i) miRNA families are continuously 

added to genomes throughout time, (ii) secondary loss is rare once acquired within a 

genome, (iii) Once acquired the mature (~22 nt effecter sequence) miRNA sequence 

accumulates mutations very slowly, and (iv) There is a massively low probability of 

independent convergent evolution of any particular miRNA. Due to these properties, 

miRNAs have beneficial qualities that can overcome some of the shortcomings of 

traditional data types of phylogeny reconstruction. 

 

One of the most utilized molecular markers for reconstructing deep divergence events 
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are ribosomal genes (e.g. 16s rRNA, 18s rRNA and 28s rRNA), due to their relatively 

slow rate of evolution imparted by their functional constraints (Fox, 2010).  

Ribosomal RNA genes have been heavily used to reconstruct relationships from 

virtually all branches of the tree of life (Woese et al. 1990), with metazoan phylogeny 

being no exception (Giribet et al. 1996; Giribet and Ribera, 2000; Telford et al. 2003; 

Halanych, 2004). As the rate of evolution in ribosomal genes is slow, real 

phylogenetic signal is usually maintained over longer periods of time. Wheeler et al. 

(2009) however showed that compared to the rate of substitution within the mature 

sequence of miRNAs, slowly evolving ribosomal genes actually accumulate 

mutations over twice as fast. This extremely slow rate of molecular evolution in 

miRNA families allows the identification of homologous miRNAs that evolved 

independently over long periods of time with much greater certainty, thus reducing 

the chance of misidentification of miRNAs due to homoplasy. Furthermore, it has 

been shown that miRNAs were some of the most conserved genetic elements in the 

genome, with most miRNAs shared between both flies and higher mammals showing 

no substitutions to the mature sequence (Sempere et al. 2006). 

 

Despite being shown how miRNAs are continuously added to genomes throughout 

time (Sempere et al. 2006; Sempere et al. 2007; Wheeler et al. 2009), instances of 

secondary loss of miRNA families can and do occur (Philippe et al. 2011a). However 

when regarding the phylogenetic utility of miRNAs we should consider the rate of 

loss compared to the rate of miRNA gain; as was demonstrated in the study of 139 

miRNA families distributed throughout the Metazoa (Sperling and Peterson, 2009) in 

which 132 miRNA gains were found in contrast to only 7 losses; thus again 

highlighting the degree of phylogenetic conservation and utility of miRNAs over 
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great evolutionary distances. The degree of homoplasy for any particular miRNA then 

rests on two possible factors, firstly as discussed previously cases of secondary loss or 

substitution within the mature nucleotide sequence, both of which inhibit our ability 

to trace a miRNAs true orthology, and secondly the independent evolution of the 

same miRNA in separate taxa. Luckily, independent evolution of the same miRNA 

seems highly unlikely, this low probability is due to the constraints imposed by the 

mode of miRNA biogenesis. The mode of miRNA biogenesis dictates that each 

precursor miRNA (~60-80 nt sequence containing the mature miRNA) must be able 

to fold with a free energy value of -20 kcal/mol into a stable hairpin loop. In addition 

the mature miRNA sequence must be located on one of the hairpin arms close enough 

to the hairpin loop so that the biogenesis machinery can process and cleave out the 

mature miRNA. Combining these constraints of miRNA biogenesis with the 

likelihood of any particular 22 nt sequence emerging by chance; estimated to be once 

per every 1.76 ! 1013 nucleotides or once every 5,864 human-genome-sized chunks of 

DNA (Sperling and Peterson, 2009), makes convergent evolution of any particular 

miRNA to be extremely unlikely.  

 

In summary, properties of miRNA evolution and conservation (applicability over a 

wide phylogenetic range, low rate of substitution to mature miRNA, and low 

probability of convergent evolution) allow miRNA phylogeny reconstruction to be 

conducted in a binary fashion; involving simply indentifying presence vs. absence of 

a particular miRNA within different organisms. Currently there already exists a 

number of studies that have embraced the use of miRNAs for phylogenetics to tackle 

a wide range of problematic nodes within the metazoan tree of life, e.g. sponges 

(Sperling et al. 2010), annelids (Sperling et al. 2009b), vertebrates (Heimberg et al. 
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2010), brachiopods (Sperling et al. 2011), and presented in this thesis; Arthropoda 

(Rota-Stabelli et al. 2011) and Panarthropoda (Campbell et al. 2011). Combining 

these unique properties with the ease of identification of miRNAs (Bioinformatic 

searching, complete genomes, Northern analysis, or next generation sequencing of 

small rRNA libraries) for virtually all Eumetazoa provides a Systematist with another 

independent and importantly homoplasy-low data set in which to test competing 

hypotheses of metazoan evolution.  

 

 

2.2.3 Phylogenomics and Gene concatenation 

The field of phylogenomics originally referred to by Eisen (1998) and O’Brien and 

Stanyon (1999) owes its very existence to the revolutionary change in the way in 

which we study genomes using genome sequencing. Since the very first genome to be 

sequenced was obtained nearly two decades ago via whole genome shotgun 

sequencing (Fleischmann et al. 1995) there have been major advancements in the 

field of DNA sequencing technology. It is now possible to sequence an organisms 

genome quickly and cost effectively via next-generation sequencing (NGS) 

technologies (Metzker, 2009), with the recent Ion torrent sequencing technology one 

of the latest leading innovations (Rothberg et al. 2011). The number of genomes 

available for species spanning the entire tree of life has now reached a level hardly 

imaginable when the very first complete genomes were sequenced. The term 

phylogenomics incorporates the interplay of genome wide evidence to study 

molecular biology and evolution; specifically phylogenomics has been utilized in 

investigating the mechanisms of molecular evolution and to a lesser degree for 

inferring phylogenetic relationships (Philippe et al. 2005a).  
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A shifting paradigm in phylogenetic investigation due to the onset of the 

phylogenomic era concerns the move from phylogenetic analyses of organisms using 

single gene sequences or limited numbers of gene sequences to data sets comprising 

multiple thousands of DNA or translated amino acid positions. The increase in the 

amount of sequence data available to study organismal relationships has largely 

alleviated the problem of sampling or stochastic error seen in many of the early 

molecular phylogenetic studies (Delsuc et al. 2005; Kelchner et al. 2007). It could be 

said that eliminating stochastic error is one of the major achievements of the 

phylogenomic approach; for instance phylogenomic analyses have lead to the 

confirmation of the monophyletic status of many of the higher metazoan clades such 

as Ecdysozoa, Lophotochozoa, Protostomia, and Deuterostomia (Telford and Copley, 

2011).  

There are two main ways in which phylogenomics is used. The first approach is 

genome structure analysis (e.g., gene order, intron location and/or presence vs. 

absence, protein domain structure) while the second is based on primary sequence 

level analysis (Philippe et al. 2005a). In this thesis, phylogenomic analysis of the 

latter type are presented, in the form of large concatenated sequence alignments also 

known as supermatrices, which have been applied to study the relationships of the 

Arthropoda and their closest relatives within Ecdysozoa.  

The supermatrix approach also referred to as ‘combined analysis’ or ‘simultaneous 

analysis’ involves combining all systematic characters into a single large phylogenetic 

matrix and then analysing all the characters for all taxa simultaneously (see de 

Queiroz and Gatesy, 2007). This method is similar to the approach of character 

analysis via ‘total evidence’ (also known as ‘character congruence’) as defined by 

Kluge (1989) in which he advocated the combined use of all available evidence  
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Figure 2.3: Gene concatenation pipeline.  Individual data sets, which can have non-overlapping 

taxon sets, are joined together into a single large supermatrix containing each data set. The supermatrix 

is then analysed using a single tree reconstruction method, resulting in a species phylogeny. 

 

 

(e.g. sequence alignments, morphological matrixes, behavioural data matrixes) into a 

single phylogenetic analysis. With gene concatenation, once all individual data 

matrixes are concatenated together, analyses are then conducted on the resulting 

concatenated sequence matrix under a single tree reconstruction method (see Figure 

2.3). This can be seen to be a better approximation of phylogenetic relationships as it 

uses character evidence more fully when estimating a phylogeny (de Queiroz and 
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Gatesy, 2007). In other words the combined data sets enable the phylogenetic signal 

to assert itself more strongly over the noise (assuming there is only one phylogenetic 

signal in the data).  

 

One of the advantages when using the gene concatenation approach is that there is no 

need to have completely overlapping sets of input taxa or sequences, i.e. the gene 

concatenation method allows for the presence of missing data (encoded in the form of 

gaps “-“ for characters, or ‘?’ for taxa); but see Sanderson et al. (2010). The effect of 

the amount of missing data has been a source of much debate, with some authors 

insisting that the numbers of missing characters is not as important as the quality of 

the numbers of characters present for any species (Wiens, 2006). However, the 

question still needs to be resolved, as we still do not really know whether adding large 

amounts of missing data can compromise phylogenetic reconstruction. Some have 

concluded that the effect of missing data in large phylogenomic sized data sets is 

limited as species for which sequence information is incomplete can be outweighed 

by the number of informative characters present in these phylogenomic data sets 

(Wiens, 2003; Philippe et al. 2004; Delsuc et al. 2005). However such conclusions 

were not made definitively, with others insisting this question remains to be tested 

thoroughly.  

 

An important benefit of using gene concatenation resides in the ability to use 

probabilistic tree reconstruction methods that incorporate parameter rich mixture 

models (Delsuc et al. 2005). However one of the major limitations is that analyses are 

conducted using one single method of phylogeny reconstruction. Evolutionary 

reconstruction methods assume a treelike structure to evolutionary history and further 
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assume the same branching history is common to all characters included in the 

analysis (Bull et al. 1993). This has implications when analysing multiple data sets 

(e.g. single genes) in combination, if these individual data sets violate the assumption 

of shared evolutionary histories (de Queiroz et al. 2007) as would be seen for some 

different gene trees. 

 

 

2.3 Sources of phylogenetic error 

The field of molecular phylogenetics is currently undergoing a renaissance, 

methodologies are continuously improving, now we have increasingly sophisticated 

models of evolution that for example explicitly take into consideration the biasing 

effect of compositional heterogeneity (Blanquart and Lartillot, 2008). Furthermore, 

powerful software implementations of phylogenetic inference methods like Bayesian 

and Maximum likelihood (Ronquist and Hulsenbeck, 2003; Stamatakis, 2006; 

Lartillot et al. 2009) allow us to analyse very large molecular data sets (e.g. Smith et 

al. 2011). Despite these advances in methodology and technology it is still clear that 

molecular phylogeny can be complicated by the presence of artifacts of tree 

reconstruction. There are two types of phylogenetic error that can affect molecular 

phylogenies; these are stochastic error and systematic error. Stochastic error continues 

to be a problem in modern phylogenetics, particularly in studies based on small 

numbers of genes. Stochastic (or sampling) error affects all methods of tree 

reconstruction, however the current “standard” of large phylogenomic sized data sets 

have greatly diminished its effect. Systematic error on the other hand is persistent and 

pervasive in current day molecular phylogenetics, and is not a source of error that can 

be alleviated by simply analysing huge data sets with large numbers of sampled genes 



! "#!

and taxa. Here I will discuss some of the most prevalent sources of phylogenetic 

error, whilst also detailing possible methods of alleviating those errors.  

 

2.3.1 Systematic error 

Systematic error occurs when phylogenetic reconstruction methods fail to be 

consistent; statistically speaking, a method is said to be consistent when you move 

towards the correct answer as more data are considered (Philippe et al. 2005a). All 

phylogenetic methods make assumptions about the processes of evolution affecting 

sequences as they evolve. It is here that a method can become inconsistent when the 

underlying assumptions fail to describe the data, usually due to violations of the 

underlying model employed (Delsuc et al. 2005). In most cases, model violations 

occur and will generate different degrees of phylogenetic noise (random phylogenetic 

signal) that competes with the phylogenetic signal. The degree of influence of the 

random phylogenetic noise will depend on the strength of the true inherent underlying 

phylogenetic signal. Predominately in cases of ancient divergence (e.g. Arthropoda, 

Nematoda, Mollusca) where historical phylogenetic signal may be weak due to short 

radiation times masked by subsequent within lineage substitutions diluting the 

historical signal, can lead to cases of phylogenetic error. This also increases the 

evolutionary rates of convergence and site reversals. The three most predominant 

sources of systematic inconsistency in molecular sequence data are as follows: 

Compositional bias, Long Branch Attraction and Heterotachy; which will be 

discussed in the following sections.  
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2.3.2 Compositional bias and Heterotachy 

Compositional bias occurs when sequences are erroneously clustered together due to 

non-historical similarities of the respective nucleotide or amino acid compositions, 

which can occur when the evolutionary models used assume homogeneity of the data 

(Foster, 2004; Nesnidal et al. 2010). Compositional heterogeneity first identified as a 

problem by Hasegawa et al. (1993) and Van Den Bussche et al. (1998) was thought 

largely to be restricted to nucleotide sequences (Loomis and Smith, 1990; Lockhart et 

al. 1992). However it has been shown that there exists a correlation between the 

AT/GC bias present in nucleotides and the content of AT- and GC- codons and their 

corresponding encoded amino acids (Foster et al. 1997; Foster and Hickey, 1999). 

Strand asymmetry, a phenomenon correlated with the origin and direction of mtDNA 

replication, has also been shown to be another source of compositional bias (Rota-

Stabelli and Telford, 2008). However this kind of compositional bias is limited to 

phylogenomic analysis of mitochondrial and bacterial data sets (Rota-Stabelli and 

Telford, 2008), which will not be addressed in this thesis. 

One of the main problems faced currently, is the analysis of phylogenomic sized data 

sets that include large numbers of compositionally heterogeneous sequences (Jermiin 

et al. 2004) which can be a major problem when reconstructing metazoan 

relationships as model assumptions can be violated substantially (Lartillot and 

Philippe, 2008; Rota-Stabelli and Telford, 2008). There have been a number of 

methods developed in an attempt to account for the biasing affects of compositional 

heterogeneity. For instance the use of a Log-Det transformation (Lockhart et al. 1994) 

has been said to deal affectively with compositional heterogeneity (Jermiin et al. 

2004). One of the most popular methods for dealing with compositional heterogeneity 
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is to employ general models of nucleotide (or amino acid) substitution that 

incorporate additional parameters that attempt to accommodate composition bias, 

such as the one introduced by Foster (2004) under a Bayesian framework.  

The relatively recent development of the heterogeneous model CAT represents an 

important step taken to combat phylogenetic artifacts due to compositional bias, 

achieved by the CAT model relaxing the assumption of homogeneity among sites. 

The CAT model empirically assumes the existence of distinct classes of amino acids 

that can then be assigned into categories (based on equilibrium frequencies of the 20 

amino acids) which best describes their rate of substitution (see also section 1.2.3 of 

preceding Chapter). Further to this a recent derivation of the CAT model has been 

developed, known as the CAT-BP (Blanquart and Lartillot, 2008) which has also been 

shown to be highly effective at accommodating composition bias between lineages by 

introducing ‘break points’ along the branches of a topology at which the composition 

is allowed to vary. Unfortunately there is a high computational burden when 

implementing models like the CAT-BP, with some analyses taking weeks or months 

to converge or sometimes not converging at all (Nesnidal et al. 2010). 

In addition to the problems faced when analysing data sets with sequences that are 

compositionally heterogeneous, is the problem of Heterotachy. Heterotachy, as 

defined by Philippe and Lopez (2001) pertains to the variable rate at which a site in a 

gene sequence evolves over time. Due to functional constraints on a protein it was 

soon realised that the rate of substitution along a sequence was not uniformly 

distributed. An early attempt to take this rate change among sites into account was via 

the use of a gamma (!) distribution (Uzzell and Corbin, 1971). However the use of a 

gamma-distribution, which is also seen as being a “homotachous” model (Lopez et al. 

2002) does not fully account for evolutionary processes in real data as functional 
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constraints not only impose different rates among sites, but also may change the rate 

of substitution within a given site over evolutionary time, a phenomenon known as 

heterotachy.  

The contribution of heterotachy towards generation of phylogenetic artifacts is 

undoubtably significant (Philippe et al. 2005a) so it is surprising to note that many of 

the current evolutionary models and phylogenetic reconstruction software 

implementing those models assume stationarity of the replacement rate. Accordingly, 

models have been developed that have somewhat addressed the problem of 

heterotachy, notably the covarion model (Fitch and Markowitz, 1970); in this model 

only a fraction of sites (“c” or “covarions”) are allowed to accept mutations. 

 The covarion model, and others like it (e.g. mixture of branch length (MBL) models 

Kolaczkowski and Thornton, 2004; Spencer et al. 2005) have marginally addressed 

the problem faced when trying to model heterotachy. However, realistically it is very 

computationally expensive to do, as the number of free parameters associated with 

modelling independent rates of substitution for each site across all taxa generally 

becomes very large. In the face of this computational burden, site independent 

approaches have been introduced which alleviate the problem to some degree. These 

models use variations of the gamma model that can account for the variability of site 

rates over time.  

 

Covarion-like models such as the hidden Markov model of Tuffley and Steel (1998) 

allows a site to be either variant or invariant, unlike the original covarion or MBL 

models Covarion-like has a particular beneficial property, in that it warrants the 

introduction of only two additional parameters (i.e. site rate switching from “on to 

off” and vice-versa). Yet it has been said that the covarion-like model of Tuffley and 
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Steel is limited by the assumption of rate shifts being site-independent (Zhou et al. 

2007); a property not expected when considering sudden selective pressure changes. 

 

2.3.3 Long Branch Attraction 

The most prevalent and important source of systematic artifacts in phylogeny 

reconstruction is undoubtedly Long-branch attraction (LBA).  LBA is a tree 

reconstruction error caused by undetected instances of convergent evolution (i.e. 

homoplasy). This results in clustering of branches regardless of the true evolutionary 

history. LBA can occur in cases where a species or subset of rapidly evolving species 

is present, or when one or more species are very evolutionarily distant from the 

remaining taxa (or a combination of both cases). LBA was first indentified as a 

problem in phylogenetics by Felsenstein (1978). Felsenstein demonstrated using a 

four-taxon tree that parsimony and compatibility methods could also become 

inconsistent (i.e. move towards a wrong answer with more certainty as more data are 

added) when evolutionary rates differ widely among branches. Expanding on the 

conditions in which parsimony can become inconsistent due to LBA, Hendy and 

Penny (1989) showed that not only unequal rates of evolution but differing branch 

lengths could also lead parsimony to fall victim to LBA. Furthermore unequal branch 

lengths could be caused by unequal rates or as a consequence of a non-symmetric 

tree. The shape of a topology and the occurrence of LBA were again demonstrated by 

Kim (1996), showing that even if branch lengths were equal LBA could still affect the 

resulting topology.  

 

With Long Branch attraction first described under maximum parsimony, it was 
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thought that the reduced occurrence of LBA would be achieved via the 

implementation of probabilistic methods like ML and Bayesian inference 

(Felsenstein, 1973; Yang, 1996). However, ML and Bayesian analysis are consistent 

if the underlying (assumed) substitution model is correct. However, ML and Bayesian 

analysis can also be affected by LBA, i.e. when the underlying model of evolution fits 

the data poorly and is widely underparameterized, therefore such a model would be a 

simplification of real (unknown) evolutionary processes (Philippe and Germot, 2000; 

Sullivan and Swofford, 2001; Inagaki et al. 2004). So since no real world sequence 

data can be expected to evolve via the oversimplified processes assumed under ML 

models, consistency alone does not warrant the selection of ML over parsimony. 

Although it has been demonstrated that ML and Bayesian inference are quite robust to 

violation of their assumptions (Gaut and Lewis, 1995; Sullivan and Swofford, 2001) 

(i.e., even when using models that do not fit the data well), ML and Bayesian analyses 

tend to outperform Parsimony. With this in mind it is not surprising that most 

phylogeneticists consider inferences made with probabilistic methods to be more 

robust to the effects of LBA (Bruno and Halpern, 1999; Swofford et al. 2001; Whelan 

et al. 2001; Philippe et al. 2005a). 

 

 Since the recognition of the prevalence of LBA in molecular phylogeny, many 

methods of reducing the artifactual effects of LBA have been developed. The most 

intuitive of approaches to reduce LBA is by the inclusion of additional taxa. The 

importance of taxon sampling for molecular phylogenetic inference was advocated 

early on (Lecointre et al. 1993) with the inclusion of additional taxa first applied to 

the problem of LBA by Hendy and Penny (1989). Increased taxon sampling was 

subsequently found to be an effective method of reducing LBA in many studies (e.g. 
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Swofford et al. 1996; Page and Holmes, 1998; Giribet and Ribera, 1998; Pollock et 

al. 2002; Dohrmann et al. 2006; Rota-Stabelli and Telford, 2008; Pick et al. 2010; 

Rota-Stabelli et al. 2010; Sperling et al. 2010). The importance of additional taxa 

when combating LBA is that additional taxa can have the effect of breaking up long 

branches (Hillis, 1998). Conversely, some studies have led some authors to suggest 

that the inclusion of additional taxa can be detrimental.  However, this is only when 

additional “long branched” taxa are added, resulting in the exacerbation of the 

problem of LBA (Poe and Swofford, 1999; Rannala et al. 1998). The potential benefit 

of additional taxa has also been viewed as less important when compared to 

increasing sequence length (Rossenberg and Kumar, 2001); however this view has 

been criticized strongly in favor of taxon sampling (Pollock et al. 2002; Holton and 

Pisani, 2010) while increased taxon sampling has also been shown to benefit genomic 

scale studies greatly (Holton and Pisani, 2010). Finally, methodologies for identifying 

branches that would benefit from increased taxon sampling have been developed 

(Goldman, 1998; Massingham and Goldman, 2000). 

 

 In addition to inclusion of extra taxa to break up long branches, another method to 

alleviate LBA is to optimize outgroup selection (Rota-Stabelli and Telford, 2008). It 

is now understood that analyses of data sets that include divergent outgroups can 

artifactually attract long branched ingroup species with higher rates of evolution 

(Philippe and Laurent, 1998). When including phylogenetically close but genetically 

distant outgroup species, problems can arise and result in artifacts being generated. 

These artifacts can be due to problems of difficulty in sequence alignment to 

outgroups with accelerated substitutions, loss of signal, compositional heterogeneity, 

and random attraction of fast evolving ingroup species towards the root of a 
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phylogeny (Foster and Hickey, 1999).  In effect, selection of a very distantly related 

or highly divergent outgroups is akin to selecting a randomized, fully saturated 

sequence (with respect to model selection) (Wheeler et al. 1990). Methods for 

selecting optimal outgroups (Sanderson and Shaffer, 2002) representing 

phylogenetically closely related species have had success when applied to difficult 

phylogenetic problems. For example it was shown that the choice of an outgroup 

closely related to Arthropoda had drastic effects when recovering topologies 

representing the two main competing hypotheses on internal arthropod phylogeny 

(Rota-Stabelli and Telford, 2008). Thus robust outgroup selection can be evaluated by 

adding different divergent outgroups to determine if the root placement changes the 

resulting ingroup topology.   

 

Aside from selecting optimal outgroup representatives; selective ingroup sampling is 

also a bona fide method to combat LBA. The way in which this is approached is to 

evaluate the evolutionary rate across the entire data set and then select taxon 

representatives that typify the slower more homogeneous evolutionary rate. This 

strategy is excellently demonstrated in the study of (Aguinaldo et al. 1997) in which 

the differential selection between a slow and fast evolving nematode species resulted 

in the definition of the clade Ecdysozoa, subsequently heralding the emergence of the 

new animal phylogeny. This method however is not always applicable, for instance 

when representative species with a slower evolutionary rate cannot be identified.   

 

Lastly, a method of reducing the biasing effects of LBA is by the exclusion of 

character positions from the data. For example it is common practice to remove third 

codon positions (e.g. Regier and Shultz, 2001; Cameron et al. 2004; Negrisolo et al. 
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2004; Regier et al. 2010) from nucleotide alignments.  This is because third positions 

are highly likely to be oversaturated as a consequence of the genetic code redundancy 

(Lemey et al. 2009). Removal of fast evolving sites has been approached using 

different methods. One of the most commonly used methods is based on parsimony. 

This approach, known as the slow-fast (SF) method (Brinkman and Philippe, 1999) 

identifies fast evolving sites according to a priori knowledge of monophyletic clades, 

these sites are then subsequently removed from the alignment. This method is 

particularly useful (Sperling et al. 2009a) when data sets have a limited taxon 

sampling, outgroup selection is not optimal or when species within the phylogeny are 

evolving at differential rates. The SF method is limited by analyses in which the 

monophyletic status of a clade is not known or is defined incorrectly. Furthermore use 

of methods like SF raises the question of when to stop removing sites, a subjective 

question that is difficult to answer, as there is no definitive cut-off. Instead monitoring 

the effect of progressive removal of sites and its effect on topology are required on a 

case-by-case basis. Alternatively the compatibility method of Pisani (2004) which 

uses binary character compatibility (Le Quesne, 1969) or a more recent method of 

Cummins and McInerney (2011) which scores sites and categorizes them according to 

their degree of similarity; alleviates the subjectivity and necessity of a priori based 

knowledge of topology as is inherent in the aforementioned SF method. 

 

2.4 Congruence as a proxy for accuracy 

Modern phylogenetics has access to a large array of different data types, all of which 

can be seen as having their own set of beneficial properties and uses for phylogeny 

reconstruction (Pisani et al. 2007). In regard to molecular sequence data, its utility no 
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doubt stems (at least in part) from the presence of vastly greater numbers of 

observable characters to analyze (Scotland et al. 2003).  It has been argued that 

morphological data types still have their utility and cannot be seen as being less 

important then molecular data (Jenner, 2004).  This was most forcibly confirmed by 

Pisani et al. (2007), which demonstrated that congruence of molecules and 

morphology is a better proxy of phylogenetic accuracy then the congruence of 

alternative sequence data. In one of the papers connected to this thesis (Rota-Stabelli 

et al. 2011) congruence of molecular and morphological data was partially 

investigated.  However, the work presented in this thesis is mostly concerned with the 

analysis of molecular datasets of genomic scale.  More precisely, a number of 

different data sources were investigated, specifically data from protein coding genes 

(assembled from ESTs), data sets of SSU and LSU rRNA (assembled with ribosomal 

secondary structure), and microRNAs (which represent a new class of genomic 

characters which will be introduced in Chapter 4).  Accuracy of our results was thus 

investigated through the congruence of the above mentioned data types.   

 

From a philosophical perspective, the approach of this thesis is based on the analysis 

of patterns of congruence and incongruence of trees inferred from the above-

mentioned data sets, an approach which can be seen as a form of “phylogenetic 

consilience”. William Whewell introduced the concept of consilience in his work The 

Philosophy of the Inductive Sciences (1840), in which he states “The Consilience of 

Inductions takes place when an induction, obtained from one class of facts, coincides 

with an induction obtained from another different class. Thus Consilience is a test of 

the truth of the Theory in which it occurs”. Consilience (see also Wilson, 1988) is 

born out of human condition; it is concerned with testing the truth of a theory via the 
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corroboration (or unification) of knowledge, thereby linking facts and fact-based 

theory across independent data sets to create a common groundwork of explanation. 

The overall opinion presented in this thesis is that in order to resolve any difficult 

phylogenetic problem, taking the evolution of Arthropods as a prime example, it is 

necessary to explain the mechanisms of evolution and the branching of a phylogeny in 

terms of multiple independent lines of evidence, thereby following the idea of 

consilience.  
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Chapter 3 

 

A phylogenomic approach to resolve 

ecdysozoan phylogeny 

 

3.1 Overview 

3.1.1 Ecdysozoa not Coelomata 

The clade known as Ecdysozoa, comprises a total of eight Phyla, these are: 

arthropods, onychophorans, tardigrades, priapulids, kinorhynchs, loriciferans, 

nematodes and nematomorphs. Ecdysozoa is the largest and most specious clade of 

animals to ever exist, with around ~1.5 million species described currently and a 

further 4.5 million living species estimated (Chapman, 2009). In a new series of 

annual reports (SOS: The State of Observed species; published by Arizona state 

university in 2011) into the diversity and cataloguing of old and newly discovered 

species, reports that arthropods and nematodes alone comprise in total 1,202,723 

species. This large number of species, which fill a diverse array of ecological niches, 

is surprising when considered in terms of overall bauplan diversity. Ecdysozoan 

bauplaene are rather conservative, being constrained either to a segmented appendage 

bearing (e.g. centipedes, decapods, insects) or more worm-like (e.g. nematodes, 

priapulids) with an anterior circumoesophageal nerve ring and a terminal mouth 

(Telford et al. 2008). A number of morphological synapomorphies unite Ecdysozoa; 
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these include a lack of locomotory cilia, lack of primary larva, terminal mouth, the 

HRP antigen in the nervous system and a conserved mitochondrial gene order 

(Schmidt-Rhaesa, 1998). However, occurrence of repetitive moulting and growth 

cycles or ‘ecdysis’ is the most characteristically cited synapomorphy (Schmidt-

Rhaesa, 1998), giving rise to the name Ecdysozoa.  

Before the Ecdysozoa hypothesis was first proposed, the major hypothesis for the 

relationships of protostome phyla like arthropods and annelid worms was based on 

recognition of segmentation in these groups, which became known as the Articulata 

hypothesis (Anderson 1979; Wheeler et al. 1993). The Articulata hypothesis describes 

the pattern of emergence of increasing complexity, and posits morphological 

complexity in bilaterian protostomes moves from a segmented worm like ancestor 

with a fluid filled cavity (as seen in molluscs and annelids for example) towards a 

more complex segmented body with articulated appendages characteristic of 

arthropods. The Articulata grade of organisation was based in terms of a larger 

assemblage of bilaterian metazoans that possessed (to some degree) a fluid filled 

cavity or ‘coelom’; this assemblage was referred to as the Ceolomata hypothesis 

(Hyman, 1940).  

Under the Coelomata hypothesis, bilaterian groups with an absence of a coelom 

(acoelomates) like the Platyhelminthes and Nemertinea are examples of the simplest 

grade of coelom organisation; representing some of the earliest bilaterian groups to 

emerge. From these acoelomate groups, phyla such as nematodes, kinorhynchs and 

priapulids that possess a partial coelomic cavity (pseudocoelomates) then evolved. 

Finally a true fluid filled coelomic cavity developed, as is present in phyla such as 

annelids, molluscs, cephalopods, and arthropods (coelomates).  



! "#!

Despite a long history of phylogenetic study of the Metazoa, the Ecdysozoa is a 

relatively recent clade first proposed after the study of 18s SSU rRNA (Aguinaldo et 

al. 1997). The study of Aguinaldo et al. was the first study to use molecular sequence 

data to refute the coelomate hypothesis. In their analysis selective taxon sampling 

allowed them to identify phylogenetic reconstruction artifacts in previous molecular 

analyses (e.g. Winnepenninckx et al. 1995). The particular phylogenetic artifact 

highlighted by Aguinaldo et al. was the problem of Long-Branch attraction (LBA) 

which they showed to be prevalent in previous molecular analyses that utilized fast 

evolving species of nematodes (e.g. C. elegans). The use of such fast species resulted 

in the placement of Nematoda (which lack a true coelom) towards the root of the 

Bilateria, thus supporting the Coelomate hypothesis. However, upon use of shorter 

branched slowly evolving nematodes (Trichinella sp.) the analysis of Aguinaldo et al. 

resulted in nematodes no longer positioning near the root of Bilateria, instead moving 

inside a clade along with phyla like Arthropods, Kinorhynchs and Priapulids. This 

grouping then placed pseudocoelomate nematodes in a close relationship with other 

phyla that possessed a true coelom (e.g. Arthropods) thereby rejecting the Coelomata 

hypothesis, which posits a simple linear stepwise rise in morphological complexity.  

Currently the grouping of ecdysozoan phyla has received much support from a broad 

range of evidence; ranging from morphology, development, phylogenomics and 

complete genomes and MicroRNAs (Eernisse et al. 1992; Schmidt-Rhaesa, 1998; de 

Rosa et al. 1999; Haase et al. 2001; Ruiz-Trillo et al. 2002; Philippe et al. 2005b; 

Sempere et al. 2007; Dunn et al. 2008; Holton and Pisani 2010; Campbell et al. 

2011). However, there are a sizable number of publications that have supported a 

view of metazoan evolution in accordance with the Coelomata hypothesis.  
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The question of Coelomata versus a monophyletic Ecdysozoa has been a very 

contentious issue over the past decade, with a handful of molecular analyses 

recovering Coelomata over the more recently proposed Ecdysozoa hypothesis. Much 

of the controversy between independent molecular analyses derives from large-scale 

genomic wide analyses that bolster the benefit of large-scale gene sampling (Blair et 

al. 2002; Copley et al. 2004; Wolf et al. 2004; Dopazo and Dopazo, 2005; Philippe et 

al. 2005b; Rogozin et al. 2007). For instance, the analyses by Wolf et al. (2004) in 

light of its extremely large gene sampling (~500 genes) found support for Coelomata. 

This may seem convincing, however the authors themselves noted that much of the 

support for Coelomata in their analyses derived from phylogenetic noise i.e. LBA; the 

exact same problem addressed in the seminal paper of Aguinaldo et al. (1997).  The 

problem inherent in many of these large scale gene sampling analyses that support 

Coelomata is the problem of limited taxon sampling, which when coupled with use of 

fast evolving species can exacerbate the systematic artifact LBA (Philippe et al. 

2005a, Sperling et al. 2009a). Indeed, recently Holton and Pisani (2010) showed the 

potential for LBA to alter the recovery of Coelomata over Ecdysozoa when 

phylogenomic data sets (~1,900 genes or greater) and complete genomes were 

analyzed with different distantly related outgroups (fungal outgroup vs. a cnidarian 

outgroup).  

It seems that the view of bilaterian evolution has now predominantly moved away 

from Coelomata, with support for Ecdysozoa reaching a turning point.  Although the 

monophyletic status of Ecdysozoa is now generally accepted (Kumar et al. 2011), 

many controversies still remain on the interrelationships of its constituent phyla 

(Giribet and Ribera, 1998; Peterson and Eernisse, 2001; Mallatt et al. 2004; Telford et 

al. 2008). The most prominent phylogenetic questions of the Ecdysozoa regard the 
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two major subdivisions (in terms of morphology at least) between its eight phyla; the 

Panarthropoda (Tardigrada, Onychophora and Arthropoda; Nielsen 2001) and the 

Cycloneuralia (Priapulida, Kinorhyncha, Loricifera, Nematomorpha and Nematoda; 

sensu Ahlrichs, 1995). Morphological support in favour of a monophyletic 

Panarthropoda (Nielsen, 2001), which on the face of it seems rather uncontentious, is 

furthermore supported by a number of molecular analyses (Zrzav! et al. 1998; Mallatt 

and Giribet, 2006; Dunn et al. 2008; Rota-Stabelli et al. 2010; Rota-Stabelli et al. 

2011). Despite the support mentioned previously, a vast majority of molecular 

phylogenetic analyses support a closer relationship between tardigrades and 

cycloneuralian ecdysozoans (Philippe et al. 2005b; Roeding et al. 2005; Lartillot and 

Philippe, 2008; Sørensen et al. 2008; Hejnol et al. 2009; Roeding et al. 2009; Pick et 

al. 2010; Meusemann et al. 2010; Andrew, 2011).  

These alternative hypotheses of tardigrade relationships have important consequences 

for our understanding of morphological evolution within Ecdysozoa. For example, if 

tardigrades are cycloneuralians, then the telescopic mouth cone and plated pharynx 

shared by tardigrades and cycloneuralians should be considered cycloneuralian 

apomorphies, whereas the important characteristics of segmentation and the 

possession of paired limbs must be homoplastic—they either evolved convergently in 

arthropods and tardigrades or were lost in nematodes (Edgecombe, 2010). Obviously, 

the opposite would be true if the tardigrades are panarthropods. Thus, accurately 

placing the tardigrades with respect to nematodes and arthropods is central to solving 

the interrelationships among the ecdysozoans and clarifying homologies within this 

group.  

Although the rapidly growing influx of molecular data has dramatically altered our 

understanding of the animal tree of life, no dataset is homoplasy-free. Phylogenies 
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derived from large, genomic- scale datasets of expressed sequence tags (ESTs) from 

many proteins minimize stochastic errors, yet they can exacerbate systematic errors 

(Jeffroy et al. 2006). This is because systematic errors, unlike stochastic ones, are 

positively misleading; the error increases with an increase in the amount of data in the 

analysis (Jeffroy et al. 2006). Although genomic-scale datasets are important for 

resolving difficult phylogenetic problems, suboptimal approaches to tree 

reconstruction, such as those using poorly fitting substitution models, can generate 

phylogenetic artifacts when applied to such datasets. Tools have been developed to 

ameliorate these problems, including comparing trees derived using differently fitting 

models (Rota-Stabelli et al. 2010; Rota-Stabelli et al. 2011; Philippe et al. 2011b), 

site-stripping (e.g. “slow-fast analysis”: Brinkmann and Philippe, 1999; see section 

2.3.3 of Chapter 2), signal dissection (Sperling et al. 2009a), and targeted taxon 

pruning (Holton and Pisani, 2010; Philippe et al. 2011a; Zwickl and Hillis, 2002). 

These tools mentioned above have been utilized in this Chapter in order to address the 

problem of phylogenetic affinity of Tardigrada within Ecdysozoa.  

 

3.1.2 A closer look at the ecdysozoan phyla  

Here I will discuss some of the morphological features of the major Ecdysozoan phyla 

and some of the evolutionary implications regarding their interrelationships. There are 

eight phyla that make up the Ecdysozoa (Arthropoda, Onychophora, Tardigrada, 

Priapulida, Nematoda, Nematomorpha, Kinorhyncha and Loricifera). The most easily 

recognised phylum within the Ecdysozoa must certainly be the arthropods (see Figure 

3.1a); this group can be subdivided up into four main extant subphyla (crustaceans, 

insects, myriapods and chelicerates). The arthropods are characterised by a number of 
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synapomorphies, most notably a hard external segmented exoskeleton (with differing 

degrees of tagmosis) with paired jointed appendages (Nielsen, 2001). This distinctive 

arthropod body plan can be broadened out more generally to include two additional 

ecdysozoan phyla, Tardigrada and Onychophora; which together have been grouped 

traditionally in a clade known as Panarthropoda (Nielsen, 2001). Morphological 

support in favour of Panarthropoda is conspicuous, characterized by a number of 

shared morphological features such as, a cuticle composed of !-chitin, paired 

segmentally repeated ventrolateral limbs with claws, paired leg nerves, lack of 

primary larvae, locomotory cilia and protonephridia. The grouping of these phyla into 

Panarthropoda has been further upheld by both embryological (Gabriel and Goldstein, 

2007) and developmental evidence (Zantke et al. 2008).  

Panarthropoda has received much support from fossil data obtained from a rich 

Cambrian fossil record; with Cambrian ‘lobopod’ type fossils displaying some 

variations of the arthropod body theme. Particular fossils have been crucial in allying 

Panarthropods into a monophyletic assemblage, for example the fossil taxon 

Aysheaia, was once thought to be an early annelid, but a more recent interpretation 

places it close to Onychophorans. Cambrian lobopods from the lower to middle 

Cambrian such as Aysheaia, and others like Hallucigenia and Kerygmachela; 

probably represent diverse stem groups (extinct lineages) from which the living 

panarthropod phyla originated and diversified (Nielsen, 2001; Budd, 2001).   

The phylum Onychophora (see Figure 3.1b) more commonly known as velvet worms, 

comprises around 200 species all of which are terrestrial. The characteristic body plan 

is a worm-like cylindrical body, one pair of long anterior antennae, oral papillae and a 

number of segments with a pair of unjointed trunk legs (‘lobopods’) terminated with  
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Figure 3.1: The eight phyla that comprise Ecdysozoa.           

(A) Arthropoda; left side- Insect (damselfly); Right side- Arachnid (Jumping spider) – Displaying 

some well developed eyes and articulated legs. Images courtesy of Derek Cluskey 

(http://www.flickr.com/photos/degserman200/).  (B) Onychophora (velvet worms) – Single pair of 

antennae, long worm like body with multiple pairs of lobopod legs. (C) Tardigrada (water bears), 

highlights the mixture of arthropod like and worm like features such as walking appendages and a 

terminal mouth cone. (D) Nematoda (roundworm) – displaying a transparent collagenous cuticle and 

terminal mouth. Image courtesy of the Tree of Life Web project (public domain). (E) Nematomorpha 

(Gordian worm) – Parasitic lifestyle, emerging from an arthropod host. Image courtesy of Crystal 

Ernest (www.crystalernst.wordpress.com). (F) Priapulida (Penis worm) – displaying an introvert with 

spines (scalids). Image courtesy of Herrmann, M. (2004). Macrozoobenthos communities of Svalbard. 

World Wide Web electronic publication. (http://www.macrozoobenthos.de). (G) Loricifera 

(Spinoloricus sp). Image courtesy of Cristina Gambi, Polytechnic University of Marche, Italy. (H) 

Kinorhyncha (Mud dragon) – Displaying trunk segments with locomotory spines. Specimen from kelp 

holdfast, Dale Fort, Wales. Collected and photographed by Ross Piper 

(http://scrubmuncher.wordpress.com) and identified by Martin V. Sørensen.  



! "#!

sclerotized terminal claws (Nielsen, 2001; Edgecombe, 2009) that gives Onychophora 

its name (literally translating to mean “claw-bearer”). Velvet worms can be found in 

warm temperate regions (e.g. Australia) but are predominantly located in tropical 

regions (e.g. South America) and usually inhabit environments with high humidity 

and dark shaded cover. They survive by predating on smaller animals like insects; 

catching them using a sticky slime produced in their oral papillae (modified glands). 

Many lower and middle Cambrian lobopods have been discovered which are believed 

to be early marine stem groups related to terrestrial velvet worms; like Hallucigenia, 

and the aforementioned Aysheaia. Evidence suggests that crown group velvet worms 

must have emerged terrestrially; as specialisations such as a tracheal system not being 

able to close fully makes them prone to desiccation in arid conditions. In addition, 

onychophoran nephridia are also of a structure found in many terrestrial groups 

(Nielsen, 2001).   

 

The phylum Tardigrada comprises minute (~500 µm to ~1000 µm) metazoans 

commonly known as “water bears”. Tardigrada (see Figure 3.1c) literally translating 

to “slow walker” a name linked to their reminiscent bear like gait, is now described to 

include more than one thousand species (Zhang, 2011) found ubiquitously in nature 

occurring in both marine and terrestrial habitats. Tardigrades are most famous for 

their incredible resilience to extremes of temperature (known to survive in between 

150C to -272.8C or absolute zero) and radiation (surviving up to 570,000 rads – 

contrast to humans where 500 is a lethal dose) by way of entering into a metabolic 

stasis period known as cryptobiosis.  

 

Tardigrade morphology is characteristic of a typical panarthropod Bauplan, as 
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tardigrades share synapomorphies with onychophorans and arthropods such as paired 

ventrolateral legs, and an external cuticle made of !-chitin. Indeed their morphology 

also hints at a possible non-arthropod nature, with features more reminiscent of that of 

a worm-like cycloneuralian ground plan (terminal mouth, protrusible mouth cone, 

triradiate pharynx, and a circumesophageal brain) (Schmidt-Rhaesa, 1998; Zantke et 

al. 2008; Edgecombe, 2010).  This mixture of both arthropod and cycloneuralian like 

morphology seen in Tardigrada hints at two possible evolutionary scenarios; either the 

arthropod like characters were lost in cycloneuralians or the cycloneuralian like 

characters were lost in the arthropods (assuming the cycloneuralian characters seen in 

tardigrades are homologous to that of cycloneuralians).  

 

The remaining ecdysozoan phyla (nematodes, nematomorphs, priapulids, kinorhynchs 

and loriciferans) make up the lesser-known group Cycloneuralia (Ahlrichs, 1995) or 

Introverta (Nielsen, 2001) characterized by a “worm-like” body plan. The name 

Cycloneuralia derives from the collar-shaped, cicum-oral brain present in all 

cycloneuralian phyla; further to this is the presence of an eversible anterior end or 

introvert seen in most taxa (deriving the alternate name Introverta), and the shared 

absence of a true coelom and walking appendages (Nielsen, 2001). Many of the 

relationships between the separate phyla remain to be resolved (Telford et al. 2008) 

this is most likely due to the difficulty working with some phyla which are extremely 

small and/or hard to collect in the field. However some relationships seem to be 

reasonably credible. The first relationship, that has received much support is the 

relationship between Nematoda and Nematomorpha (see Figure 3.1d and e) in a sister 

group relationship known as Nematoida (Schmidt-Rhaesa, 1998). Morphologically 

these two groups share features like a collagenous cuticle, the reduced circular 
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muscles in the body wall, and aflagellate sperm (Nielsen, 2001) supported further 

from analyses of molecular data sets including rRNA (Peterson and Eernisse, 2001; 

Mallatt et al. 2004; Mallatt and Giribet, 2006) and phylogenomics (Dunn et al. 2008). 

Another clade within Cycloneuralia known has Scalidophora (Ahlrichs, 1995) has 

received support from a combination of morphological and molecular analyses. Here, 

Scalidophora unites the three phyla Priapulida, Kinorhyncha and Loricifera (see 

Figure 3.1f, g and h) together on the basis of a shared possession of an introvert with 

scalids (spines) and the presence of two rings of retractor muscles on the introvert 

(Heiner and Kristensen, 2005; Telford et al. 2008). Importantly, molecular analyses 

including all three scalidophoran phyla are few and so a lack of consensus remains on 

their exact interrelationships.  

 

Despite the sparse number of molecular analyses including all relevant phyla, 18S and 

28S rRNA analysis and a phylogenomic analysis has placed Priapulida + 

Kinorhyncha in a sister group together (Garey et al. 2001; Mallatt and Giribet, 2006; 

Dunn et al. 2008). An expansion of the data presented in the Dunn et al. analysis 

recovered an alternative phylogeny instead grouping Kinorhyncha + Nematomorph 

(Hejnol et al. 2009). Conversely molecular phylogenetic analyses including data for 

Loricifera (smallest metazoan phylum known to science) have recovered a sister 

group relationship between Loricifera + Nematomorpha (Sørensen et al. 2008). 

Lastly, one of the other major questions regarding ecdysozoan evolution is the 

question of cycloneuralian monophyly versus paraphyly. Although Cycloneuralia is 

supported morphologically (Ahlrichs, 1995; Nielsen, 2001), some analyses have 

refuted this group (Zrzav! et al. 1998; Peterson and Eernisse 2001; Mallatt et al. 

2004). The biological implications regarding its mono- or paraphyletic status are 
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particularly important to the understanding of arthropod evolution and the 

reconstruction of the ancestral ecdysozoan ground plan. For example, monophyly of 

Cycloneuralia implies that characteristic features like segmentation and coeloms seen 

in morphologically complex protostome phyla like annelids and arthropods evolved 

convergently, or conversely parallel losses occurred in cycloneuralians.   

 

In this Chapter I will present phylogenetic analyses of ESTs to investigate the 

relationships of Tardigrada within the Ecdysozoa, and furthermore on the 

interrelationships of the other Ecdysozoan phyla. The results of the analyses presented 

in this Chapter address the question; do the alternative hypotheses for the position of 

Tardigrada within Ecdysozoa (arthropod vs. nematode affinity) obtained by previous 

phylogenomic analyses, represent tree-reconstruction artifacts? This work has been 

completed under a collaborative effort, and published in the peer-reviewed journal 

Proceedings of the National Academy of Sciences (Campbell et al. 2011). 

 

3.2 Materials and Methods 

3.2.1 EST Data set assembly  

For the analyses presented in this Chapter, I assembled a phylogenomic data set of 

255 genes spanning 49,023 amino acid positions, for 33 ecdysozoan species by 

merging genes from two previously published EST data sets (Dunn et al. 2008; Rota-

Stabelli et al. 2011). EST data set assembly was performed using a BLAST -based 

strategy, which was used to identify and eliminate redundant genes (i.e. genes present 

in both data sets). Single genes from (Dunn et al. 2008) were identified for the species 
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Daphnia pulex (D. pulex had the highest gene coverage in the Dunn data set: 99.5% 

total coverage). These single genes were then blasted against a local database made 

up of single genes (also from D. pulex which had a coverage of 99.4%; taken from 

(Rota-Stabelli et al. 2011). Overall, 13 orthologs from Dunn et al. were identified that 

did not have any hits in the alignment of Rota-Stabelli et al. Identified genes from 

Dunn et al. alignment were added to the initial 242 gene alignment of Rota-Stabelli et 

al. to generate the alignment used herein. The combined data set generated had an 

average of 36.4% missing data; see Table 3.1 for a list of species and their associated 

alignment coverage. A key difference between the alignment of Rota-Stabelli et al. 

2011 and that used in the present study is that Rota-Stabelli et al. did not include any 

nematomorph species. With reference to (Dunn et al. 2008), our dataset includes 12 

new taxa, including an onychophoran (Epiperipatus sp.) and several nematodes, 

including the relatively slowly evolving Trichuris muris. With reference to Rota-

Stabelli et al. (2011) our dataset includes an extra onychophoran (Epiperipatus sp.) an 

additional relatively slowly evolving nematode (T. muris) and most importantly the 

nematomorph Spinochordodes tellinii. There is ample evidence that the 

Nematomorpha constitute the sister group of Nematoda within Nematoida (Schmidt-

Rhaesa, 1996) and might be closely related to the Tardigrada (assuming that the latter 

are relatives of the Nematoda). For this study, including at the least a representative of 

the Nematomorpha is key, as the Nematomorpha might be useful to break the long 

branch leading to the Nematoda and thus help reduce LBA artifacts that could affect 

the position of the Tardigrada.  

To include a Nematomorpha I downloaded all available 2,208 trace files from the 

NCBI trace archives (http://www.ncbi.nlm.nih.gov/Traces/trace.cgi) for the 

nematomorph S. tellinii, blasted each of the genes against the genes in the alignment 
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of (Rota-Stabelli et al. 2011) and identified available Spinochordodes orthologs of 

these genes. Only 37 significant blast hits were identified. The corresponding trace 

files were assembled into 30 contigs using Sequencher (GeneCodes) and then added 

to the alignment. For the 13 genes in our alignment obtained from Dunn et al. (2008) 

we did not need to identify Spinochordodes tellinii orthologs because the 

Nematomorpha were represented in the dataset of (Dunn et al. 2008). Unfortunately, 

little data on the  

 

Table 3.1: Percent of missing data for EST datasets. Values shown for two EST datasets; excluding 

the onychophoran Peripatoides novaezealandiae, and including Peripatoides novaezealandiae.  



! "#!

Nematomorpha are available in public data repositories, and whereas the average 

amount of missing data in our dataset is ~36%, the amount of missing information for 

Spinochordodes is much higher (~94%; see Table 3.1). When Spinochordodes is not 

considered, the average amount of missing data in our dataset is ~34%. In the 

analyses presented in this Chapter (absent from original publication Campbell et al. 

2011) a third Onychophoran (Peripatoides novaezealandiae) was also added to the 

dataset (see section 3.2.5 for details). 

 

3.2.2 Phylogenetic analysis 

All phylogenetic analyses were conducted under a Bayesian framework using 

PhyloBayes 3.2e (Lartillot et al. 2009). I first compared the fit of alternative models 

of evolution to our EST dataset. I then used Bayesian cross-validation (Stone, 1974), 

as described in the PhyloBayes manual (Lartillot et al. 2009) to rank the fit of 

alternative substitution models to the data. The models compared were WAG+!, 

GTR+!, CAT+!, and CAT-GTR+!.  

Phylogenetic analyses of the EST dataset were performed under each model, and 

results were compared to evaluate whether different phylogenies were obtained when 

different-fitting models were used. For every PhyloBayes analysis two independent 

runs were executed. Convergence was tested using ‘bpcomp’ in the PhyloBayes 

package. Analyses were considered to have converged sufficiently when the 

maximum difference across bipartitions was <0.2 (see the PhyloBayes manual); 

thereby allowing both independent chains to sample from tree space with a similar 

probability distribution. For each analysis, the burn-in period was estimated 
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independently, and trees sampled before convergence were not considered when 

summarizing the results of the two runs. 

 

3.2.3 Site stripping and Signal Dissection analyses 

These analyses used the slow-fast method (Brinkmann and Philippe, 1999) to estimate 

the rate of substitution of the sites in our alignment. First, the parsimony score of each 

site in our alignment was calculated for each of four groups with constrained 

monophyly (Pancrustacea, Chelicerata, Nematoda, and Lophotrochozoa). The rate of 

each site in our alignment was then estimated as the sum of its parsimony scores 

across all considered monophyletic groups. All parsimony analyses were performed 

using PAUP4b10 (Swofford, 2002). Sites in our alignment were then ranked 

according to their substitution rates and partitioned into classes. Alignments were 

generated, according to the distribution of site rates, by systematically removing (i) 

approximately the fastest 10% of the sites, that is, all characters with a slow-fast–

estimated rate of six or more steps (total number of remaining sites, 45,292); (ii) the 

fastest ~20% of the sites, that is, all characters with a slow-fast estimated rate of five 

or more steps (total number of remaining sites, 43,316); and (iii) the fastest ~30% of 

the sites, that is, all characters with a slow-fast–estimated rate of three or more steps 

(total number of remaining sites, 37,150). However, the number of substitutions in the 

sites that remained after exclusion of the first 10% of characters at just five or fewer 

steps is already low. This implies that the proportion of fast evolving sites in our 

alignment is quite small. Accordingly, we did not create datasets excluding more than 

30% of the fastest sites. 

We also performed a signal-dissection analysis (Rota-Stabelli et al. 2011; Sperling et 
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al. 2009a) to compare the signal in the slow- and fast-evolving sites. Accordingly, 

two datasets were generated, containing approximately 10% (3,731 sites) and 30% 

(11,873 sites) of the fastest sites in our alignment. The five aligned datasets that 

resulted, namely the three sets composed of slow-evolving sites (approximately the 

slowest 70%, 80%, and 90%) and the two sets of fast-evolving sites (approximately 

the fastest 10% and 30%), were analyzed independently using PhyloBayes 3.2e to 

construct trees under the best-fitting model.   

 

3.2.4 Taxon pruning analyses  

It is well known that the number and nature of the taxa used can affect phylogenetic 

inference, and in particular can exacerbate or reduce LBA (Aguinaldo et al. 1997; 

Philippe et al. 2005a; Holton and Pisani et al. 2010). Thus I carried out three taxon 

pruning experiments to evaluate the robustness of the EST results. Data sets were 

generated that excluded (i) the tardigrade Richtersius coronifer and the onychophoran 

Epiperipatus sp., which resulted in uninterrupted branches for the tardigrades and the 

onychophorans; (ii) the nematomorph Spinochordodes tellinii and the tardigrade R. 

coronifer, which resulted in uninterrupted branches leading to the nematodes and the 

tardigrades; and (iii) the onychophoran Epiperipatus sp., the tardigrade R. coronifer, 

and the nematomorph S. tellinii, which resulted in uninterrupted branches leading to 

the onychophorans, tardigrades, and nematodes. In these experiments, the retained 

tardigrade was always Hypsibius dujardini because of its greater gene coverage. All 

datasets were analyzed under the best fitting model.  
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3.2.5 Increasing taxon sampling with Peripatoides novaezealandiae 

In a further set of analyses an additional panarthropod species, the onychophoran P. 

novaezealandiae was added to the data set, bringing the total number of 

onychophorans represented in the alignment to three. Increased taxon sampling has 

been noted to improve phylogenetic resolution (Hendy and Penny, 1989) with the 

potential to break long branches thus reducing LBA (Swofford et al. 1996; Pollock et 

al. 2002; Rota-Stabelli and Telford, 2008). The goal here was to compare the results 

of an increased taxon data set to that of the 33 taxon data set (Campbell et al. 2011; 

see methods section 3.2.1), in order to see what effects (if any) this additional 

onychophoran would make on the recovered topology. Amino acid sequences were 

obtained for the species Peripatoides novaezealandiae from a next generation 

sequence assembly. 658,698 contigs were assembled using the software Abyss 1.2.5 

(Birol et al. 2009) from an initial set of 34,928,782 paired end reads sequenced in P. 

novaezealandiae. Translation of the contigs was performed using Prot4EST 

(Wasmuth and Blaxter, 2004) that allows translation using a reference set of ESTs. A 

reference set of 12,380 EST’s was obtained from NCBI for the onychophoran species 

Peripatopsis sedgwicki. Upon completion, Prot4EST generated a set of 281,771 

translated protein sequences for P. novaezealandiae. A blast based strategy was then 

used; translated amino acid sequences for P. novaezealandiae were blasted against a 

database of the set of non-redundant genes combined in section 3.2.1 from (Dunn et 

al. 2008; Rota-Stabelli et al. 2011: Hereto referred to as Campbell et al. 2011). In 

total, 210 genes were found to have a hit with orthologs from Campbell et al. 2011. 

Individual orthologs identified within Campbell et al. were added to the original 

alignment. Inclusion of P. novaezealandiae brought the taxon sampling for the 

increased taxon data set to 34, with the new alignment spanning 49,655 positions. The 
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new alignment generated had an average of 37.69% missing data (see Table 3.1) 

increasing the total amount of missing data from the original alignment by 1.5%. 

Despite this, alignment coverage for Onychophora increased dramatically, with P. 

novaezealandiae having 18.52% missing data, compared to the species 

Euperipatoides kanangrensis and Epiperipatus sp., which had a total of 66.9% and 

86.8% missing data respectively.  

Site stripping and signal dissection analyses were performed on this data set again, as 

described in section 3.2.3. Alignments were generated according to the distribution of 

site rates, by systematically removing (i) approximately the fastest 10% of the sites 

(total number of remaining sites, 45,938); (ii) the fastest ~20% of the sites (total 

number of remaining sites, 41,312); and (iii) the fastest ~30% of the sites, (total 

number of remaining sites, 37,828). Finally signal dissection analyses to compare 

slow and fast evolving sites were also performed. Accordingly, two further data sets 

were generated, containing approximately 10% (3,713) and ~30% (11,827) of the 

fastest sites in the alignment. These data sets were again analysed using 

PhyloBayes3.2e under the best fitting model.  

 

3.2.6 Assessing support via bootstrap analysis 

In all our analyses support was assessed using Posterior probabilities.  However, in 

addition to the five analysis performed on this EST data set, I also used bootstrapping 

(Efron, 1979) first implemented in phylogenetics by Felsenstein (1985). 

Bootstrapping allows you to estimate the statistical error in situations where the 

underlying sampling distribution is unknown or difficult to derive. In bootstrapping 

the original alignment is used to generate multiple replicate data sets of the same size 

(pseudoreplicates) by randomly sampling alignment columns with replacement from 
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the original alignment and then reconstructing phylogenetic trees for each. Each 

resulting tree is then pooled to generate a single tree by way of a majority rule 

consensus method. As each pseudoreplicate is analyzed independently, the proportion 

of times a clade is found among all bootstrap replicates is considered as the measure 

of robustness for the monophyly of that particular taxon subset.  

 

It has been said that Posterior probabilities might be too permissive (Douady et al. 

2003; Erixon et al. 2003) whilst it is well known that the bootstrap has the opposite 

problem: being too conservative (Hillis and Bull, 1993).  Using both bootstrap and 

posterior probabilities, and their comparison I thus able to get a better feel for the real 

support of the relationships in the recovered trees.  

 

To generate the bootstrap data sets I used the program SEQBOOT which is part of the 

software package Phylip 3.0 (Felsenstein, 2004). 100 pseudoreplicate data sets were 

generated from the original alignment (see section 3.2.1). Bayesian analysis was 

performed on each resulting pseudoreplicate data set under the best-fitting model 

using the software Phylobayes 3.2 (Lartillot et al. 2009). Bayesian analyses were 

performed as in section (3.2.2). Individual consensus trees were pooled, and a final 

bootstrap consensus tree was generated using CONSENSE (see Phylip 3.0 manual).  

 

 

3.3 Results and discussion  

3.3.1 Identifying the best fitting evolutionary model 

In an effort to obtain a reliable phylogeny from our assembled data set, we wanted to 

ensure the best fitting evolutionary model was utilized to describe the data. Since the 
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change from employing small numbers of genes (e.g. LSU and SSU rRNA, EF-1a, 

RNA polymerase) to large scale multi-gene, EST and phylogenomic data is now 

commonplace in phylogenetics, it could be fair to immediately assume an increase in 

phylogenetic accuracy would follow. However, a distinction must be made here; it is 

true that analyses of large concatenated data sets typically reduces the problem of 

stochastic error (Lartillot and Philippe, 2008; Dunn et al. 2008; Hejnol et al. 2009; 

Regier et al. 2010; Rota-Stabelli et al. 2011) this does not however translate to an 

improved phylogenetic accuracy. As the “true tree” is unknowable, increasing the 

amount of data can only increase overall phylogenetic precision. Accordingly, 

evolutionary models still do not encompass the entirety of the evolutionary process 

and so systematic error instead of being reduced in large-scale EST and 

phylogenomic analyses actually becomes reinforced due to the property of statistical 

inconsistency (obtaining the wrong result as more and more data are added) (Philippe 

and Delsuc, 2005). Despite current evolutionary models taking into account, for 

example, compositional heterogeneity (Foster, 2004) and among site rate 

heterogeneity (Kolaczkowski and Thornton, 2004; Tuffley and Steel, 1998) all 

models of evolution still make assumptions about the data.  When those assumptions 

fail to describe the data accurately phylogenetic biases such as LBA can occur. These 

problems can be diminished by a number of methods, such as improvement of taxon 

sampling and selection of genes or sites that evolve slowly; however effective 

prevention of biases in the first place necessitates the use of efficient tree 

reconstruction methods and models of evolution that describe the data accurately.   

Because the use of poorly fitting models can generate phylogenetic artifacts, I first 

used Bayesian cross-validation (Stone, 1974) to rank substitution models according to 

their fit to the alignment. The substitution models tested in the analysis were a 
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combination of homogeneous empirical WAG+! and mechanistic GTR+! models, 

and the more sophisticated heterogeneous mixture models such as CAT+! and CAT-

GTR+!. The results of the model selection analysis are presented in Figure 3.2, and  

show a regular increase in the fit of the model to the data when moving from simple 

 

 

Figure 3.2: Bayesian cross-validation. Model selection test for the EST dataset, comparing models 

(a) WAG+!, (b) GTR+!, (c) CAT+!, and (d) CAT-GTR+!. " log-likelihoods and Standard deviations 

(SD) are shown. Positive values identify models that fit the data better than the reference model 

(WAG+!). Values at nodes are posterior probabilities (PP = 1 not shown except when they referred to 

the Tardigrada). Clades have been collapsed for clarity. The position of Tardigrada is indicated in 

green. 
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to more complex models, with the site-heterogeneous mixture model CAT-GTR+! 

having the best fit to our dataset. All models tested used a gamma distribution of rate 

variation across sites. According to the results of our model fit analysis we found it 

clear that the best fitting model to our data is CAT-GTR+!. 

 

 

3.3.2 EST based phylogenomic analysis support Panarthropoda and Lobopodia 

The results of our Bayesian analysis performed using the best fitting CAT-GTR+! 

model are shown in Figure 3.3. The majority of internal nodes have a posterior 

probability (PP) support value of 1. Tardigrada is recovered within Panarthropoda, 

sister group to Onychophora + Arthropoda, together called the Lobopodia (Snodgrass, 

1938) with a PP support of 1. Within the arthropods themselves, analyses recover the 

chelicerate affinity of the sea spiders and are consistent with the monophyly of 

Mandibulata (Myriapoda + Pancrustacea) as found in recent phylogenomic based 

analyses (Rota-Stabelli et al. 2011; Regier et al. 2010).  Our results do not support the 

monophyly of the Cycloneuralia, given that Nematoida (Nematoda + Nematomorpha) 

is recovered as the sister group of Panarthropoda, albeit with a low posterior 

probability (PP = 0.76) whereas Scalidophora (Priapulida + Kinorhyncha) is 

recovered as the sister group of all other ecdysozoans. Nematoida was recovered with 

PP = 1. Because Nematomorpha has the greatest amount of missing data in our EST 

dataset (see Table 3.1) the strong support found for Nematoida (an otherwise well-

accepted clade: Nielsen, 2001; Schmidt-Rhaesa, 1996, 1998) suggests that missing 

data for Nematomorpha does not have a drastically negative impact on the results 

obtained. 
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 Figure 3.3: EST based phylogeny of Ecdysozoa: Supports a sister group relationship between 

 arthropods and velvet worms inside a monophyletic Panarthropoda. Bayesian analysis of the EST data 

 under the best-fitting CAT-GTR+! model supports tardigrades as the sister group of Lobopodia 

 (Onychophora + Arthropoda) and the paraphyletic nature of Cycloneuralia, with Nematoida sister 

 group to Panarthropoda. Support values represent posterior probabilities. Asterisks indicate a PP value 

 of 1.0.  

 

3.3.3 Model selection and Signal dissection reveal the artifactual nature of   

Tardigrada + Nematoda 

To better understand the underlying phylogenetic signal present within our data set, I 

performed a number of analyses to test whether the grouping of Tardigrada + 

Nematoda obtained in previous molecular analyses (Philippe et al. 2005b; Roeding et 

al. 2005; Lartillot and Philippe, 2008; Sørensen et al. 2008; Hejnol et al. 2009; 

Roeding et al. 2009; Pick et al. 2010; Meusemann et al. 2010; Andrew, 2011) could  
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 Fig 3.4.1: Bayesian analysis of our EST alignment under the poor-fitting WAG+!  model. 

 Topology shown is a majority rule consensus tree. Node values are posterior probabilities. 

 Under the WAG+! model tardigrades cluster with the cycloneuralian group Nematoida. Clade 

 colours: red, Tardigrada; blue, Onychophora; green, Nematoda.  

 

 

 Fig 3.4.2: Bayesian analysis of our EST alignment under the poor-fitting GTR+!  model. 

 Topology shown is a majority rule consensus tree. Node values are posterior probabilities. 

 Under the GTR+! model tardigrades cluster with the cycloneuralian group Nematoida. Clade 

 colours: red, Tardigrada; blue, Onychophora; green, Nematoda.  
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 Fig 3.4.3: Bayesian analysis of our EST alignment under the better-fitting CAT+!  model. 

 Topology shown is a majority rule consensus tree. Node values are posterior probabilities. 

 The CAT+! model supports a monophyletic Panarthropoda, with Tardigrada sister group to 

 the Onychophora. Clade colours: red, Tardigrada; blue, Onychophora; green, Nematoda.  

 

 

 Fig 3.4.4: Bayesian analysis of our EST alignment under the best-fitting CAT-GTR+!  

 model. Topology shown is a majority rule consensus tree. Node values are posterior 

 probabilities. The CAT-GTR+! model supports a monophyletic Panarthropoda, with 

 Tardigrada sister group to Onychophora + Arthropoda (Lobopodia). Clade colours: red, 

 Tardigrada; blue,  Onychophora; green, Nematoda. 



! "#!

be the result of systematic error. To do this, Bayesian analyses were performed on our 

data set under a series of four evolutionary models (WAG+!, GTR+!, CAT+!, CAT-

GTR+!).  

When the analyses were performed under poor-fitting models (i.e. WAG+!, and 

GTR+!; see Figures 3.4.1, 3.4.2 and Figure 3.2a,b) Panarthropoda was not recovered, 

and instead the Tardigrada were resolved as the sister group to the Nematoida 

(Nematoda + Nematomorpha) with full PP support of 1. In contrast, the better fitting 

site-heterogeneous models (CAT+! and CAT-GTR+!; see Figures 3.4.3, 3.4.4 and 

Figure 3.2c,d) invariably found Tardigrada as a member of monophyletic 

Panarthropoda.    

 

I next performed a signal dissection analysis (Rota-Stabelli et al. 2010; Sperling et al. 

2009a) based on the slow-fast technique (Brinkmann and Philippe, 1999). Sites in 

alignment were partitioned according to their rate of evolution, and then 

independently analysed (see methods section 3.2.3). We hypothesized that if the 

artifactual nature of Tardigrada to position sister to Nematoda was due to LBA, then 

the support for this grouping would be maximized in the fast-evolving sites, while 

conversely it would be minimised in the partitions that excluded those fast-evolving 

sites. Results of these the slow-fast analyses were consistent with our hypothesis, 

supporting Tardigrada + Nematoda in the two fast evolving partitions, whereas 

partitions of the slowest-evolving sites recovered monophyletic Panarthropoda. The 

partition containing only the fastest 10% of sites had a PP support for Tardigrada + 

Nematoda of 0.88 (see Figure 3.5a) while in the partition containing the fastest 30% 

of sites PP support for this clade decreased to 0.5 (Figure 3.6a). Results of signal 

dissection analyses are summarized in Table 3.2. !
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!Figure 3.5: Signal dissection of EST data. Analyses were performed under CAT-GTR+!. Node 

values are posterior probabilities. The tardigrade branch is highlighted in red. A gold star indicates the 

node connecting tardigrades to the rest of the tree. (A) Analysis of the fastest 10% of the data recovers 

Tardigrada as the sister to Nematoda. (B) Analysis of the slowest 90% of sites recovers monophyletic 

Panarthropoda, with tardigrades as the sister of Lobopodia (Onychophora + Arthropoda). 

Monophyletic clades recovered by both the slow and fast positions are highlighted in blue. 

 

In contrast, the analysis of the slowest evolving 90% of sites, recovered a PP support 

of 0.84 (Figure 3.5b) for Tardigrada + Lobopodia. An unexpected topology was 

recovered for the analysis of the slowest evolving 70% of sites; in this topology 

Tardigrada were supported with a PP support of 1.0 as the sister group to Arthropoda 

(Figure 3.6b) however, the Onychophora were found positioned inside the Arthropoda 

as the sister group to Myriapoda with a PP support of 1. $%!&'!()%*+,-.,/!01,2,!32,!

no molecular phylogenetic studies that recover the group of Onychophora sister to 

Myriapoda. This suggests to me that this position for Onychophora must be due to a 

lack of phylogenetic signal in this data set. I feel this to be likely as the remaining 

sites after removal of more than 30% of fastest sites in this data set have a substitution 

rate that is very low (2 or less substitutions across all taxa).  

 

 

!

!

!

!
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Figure 3.6: Signal dissection of EST data a larger partition of fast evolving sites. Analyses were 

performed under CAT-GTR+!. Node values are posterior probabilities. The tardigrade branch is 

highlighted in red, and a gold star indicates the node where tardigrades attach to the rest of the tree. (A) 

Analysis of the fastest 30% of sites in the alignment recovers Tardigrada as the sister to Nematoda. (B) 

Analysis of the slowest 70% of sites in the alignment recovers monophyletic Panarthropoda, with 

tardigrades as the sister of non- monophyletic Arthropoda, blue asterisks highlights artifactual position 

of Onychophora.  

 

 

 

!
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3.3.4 Taxonomic pruning and the recovery of Panarthropoda 

To further test whether Tardigrada + Nematoda is an LBA artifact; a series of taxon 

pruning experiments was performed. These experiments were conducted by 

selectively removing taxa to generate uninterrupted long branches for Tardigrada, 

Onychophora and Nematoda (see Methods section 3.2.4). If Tardigrada + Nematoda 

is an LBA artifact; the results would be expected to systematically support this group 

(see Figure. 3.7). In summary, three different experiments designed to uncover 

potential sources of systematic bias in our EST alignment suggest that a nematode (or 

cycloneuralian) affinity for Tardigrada is most likely an LBA artifact. 
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Figure 3.7: Selective taxon pruning with the aim of exacerbating LBA.  

All analyses were performed under CAT-GTR+!. Node values are posterior probabilities. Groups with 

more than two taxa are collapsed for clarity. All three taxon-pruning experiments (Methods section 

3.2.4) recover Tardigrada as the sister to Nematoda. (A) One onychophoran (Epiperipatus sp.) and one 

tardigrade (Richtersius coronifer) excluded. (B) The nematomorph (Spinochordodes tellinii) and one 

tardigrade (R. coronifer) excluded. (C) One onychophoran (Epiperipatus sp.), one tardigrade (R. 

coronifer), and the nematomorph (S. tellinii) excluded. 
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3.3.5 The effect of including Peripatoides novaezealandiae 

Analyses of the alignment generated with P. novaezealandiae were conducted on the 

three best fitting models (GTR+!; CAT+!; CAT-GTR+!; see section 3.3.1 and 

Figure 3.2) to the exclusion of the least fitting model WAG+! (due to time 

constraints). As performed on the original alignment without the additional 

onychophoran species, when analyzed under the poorly fitting site homogeneous 

model GTR+!, we again observed the Tardigrada to be positioned outside 

Panarthropoda, instead, sister group to the Nematoida with a PP support of 0.7 (see 

Figure 3.8a). In addition, as the data were analysed using the better fitting site 

heterogeneous models CAT+! and CAT-GTR+!; PP support of 0.81 and 0.71 was 

recovered respectively, for Tardigrada within a monophyletic Panarthropoda (see 

Figure 3.8b,c). However, it must be noted here, that although support had decreased 

for the monophyly of Panarthropoda from full PP support of 1.0 under CAT-GTR+! 

in the original alignment to 0.71, PP support for monophyletic Mandibulata within the 

arthropods increased to near full PP support of 0.96. More importantly, was the 

recovery of Panarthropoda with Tardigrada sister group to Lobopodia with PP support 

of 0.99 under the less fitting model CAT+! model. Here, it seems that the inclusion 

of the single additional P. novaezealandiae was enough to break the sister group 

attraction of Onychophora with Tardigrada when analysed under CAT+!, a clade not 

recovered under the best fitting model CAT-GTR+!.  Lastly, high support was again 

recovered for the paraphyletic nature of Cycloneuralia under the better fitting models 

CAT+! and CAT-GTR+!.   
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The data set including the additional onychophoran was subjected to the same signal 

dissection (Rota-Stabelli et al. 2010; Sperling et al. 2009a) analyses as performed on 

the original alignment, using the slow-fast technique (Brinkmann and Philippe, 1999). 

Sites in this alignment were again ranked and partitioned according to their rate of 

evolution (see section 3.2.3) and then analyzed independently. Our hypothesis for the 

artifactual placement of Tardigrada sister to Nematoda, as found in previous 

molecular analyses, if due to artifactual signal manifesting as LBA, then this grouping 

should also be maximized in the partitions of fast evolving sites and minimized in the 

partitions containing the slowly evolving sites. Results of the slow-fast analyses were 

again consistent with our hypothesis, fast evolving partitions of the 10% and 30% 

fastest support a sister group association of Tardigrada with Nematoda (see Figure 

3.9a, c) with PP support of 0.96 and 0.62 respectively. Conversely, the majority of 

analyses for the slowly evolving site partitions recovered support for a monophyletic 

Panarthropoda. Not all partitions however recovered the monophyly of 

Panarthropoda; as in the analysis of the slowest 90% of sites (Figure 3.9b) supported 

with PP of 0.83 the sister group relationship of Tardigrada with a monophyletic 

Nematoida (Nematoda + Nematomorpha).  

 

Here I must draw attention to new onychophoran P. novaezealandiae, as its branch 

length was quite long relative to the remaining onychophoran species, most likely due 

to sequencing errors possibly interpreted as autapomorphies for P. novaezealandiae. 

Accordingly, removing only 10% of the fastest sites in the alignment was not enough 

to reduce P. novaezealandiae branch length sufficiently in order to avoid a LBA 

artifact with Tardigrada and Nematoda. However in the analyses of the 70% and 80% 

slowest evolving sites, we again found high support for the monophyletic origin of 
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Panarthropoda; in the partition of 70% slowest sites (Figure 3.9d) we recovered a PP 

support of 1.0 for the sister group relationship of Arthropoda to Tardigrada + 

Onychophora. This topology was recovered under our second best fitting model 

CAT+! on the initial 33 taxon data set, and by some previous Mitogenomics analyses 

(Rota-Stabelli et al. 2010). In contrast, the analysis of the slowest 80% of sites, we 

again recovered the highly supported topology for placement of Tardigrada as the 

sister group to Lobopodia (Onychophora + Arthropoda) (Figure 3.9e) with a PP 

support value of 1.0 across all nodes, except one node connecting Onychophora to 

Arthropoda with had PP support of 0.99.  
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!Figure 3.9: Signal dissection of EST data including the additional onychophoran P. 

novaezealandiae. Analyses were performed under the best fitting model CAT-GTR+!. Node values 

are posterior probabilities. The tardigrade branch is highlighted in red, and a gold star indicates the 

node where they attach to the rest of the tree. (a) Analysis of the fastest 10% of sites; recovers 

Tardigrada as the sister group to Nematoda. (b) Analysis of the slowest 90% of sites; recovers 

Tardigrada as the sister group of Nematoida. (c) Analysis of the fastest 30% of sites; recovers 

Tardigrada as the sister group of Nematoda. (d) Analysis of the slowest 70% of sites; recovers 

Tardigrada within a monophyletic Panarthropoda, sister group to the Onychophora. (e) Analysis of the 

slowest 80% of sites; recovers monophyletic Panarthropoda with Tardigrada sister group to Lobopodia 

(Onychophora + Arthropoda). 

 

3.3.6 Bootstrap analysis of EST data set supports monophyletic Panarthropoda 

In order to better understand the underlying phylogenetic signal in our EST data set, 

we tested how robust the highest supported topology (Figure 3.3) is under our best 

fitting CAT-GTR+! model using a 100 replicate bootstrap. Four replicates out of one 

hundred failed to reach convergence; however, generation of a bootstrap consensus 

tree including the 4 runs that failed to converge, had no effect on node support 

compared to the consensus tree generated with only the 96 runs that did fully 

converge. Consistent support for these two consensus trees was likely due to 

unconverged runs being affected by the unstable position of Nematomorpha.  

 

Results of the bootstrap analysis are shown in Figure 3.10. As in the original analysis 

under the best fitting model CAT-GTR+!, Tardigrada was maintained as the sister 

group to Lobopodia (Onychophora + Arthropoda) within a monophyletic 

Panarthropoda in the majority of BS replicates; with a BS support of 66%. Although 

the support is low for the inclusion of Tardigrada within the panarthropods, it should 

be considered that, bootstrap support is well known to be over conservative, and so 

here a relatively low support was to be expected, given the presence of two 
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conflicting phylogenetic signals in our data sets (as pinpointed by the signal 

dissection). Further to this, the relationships of Tardigrada have previously been 

shown to be difficult to disentangle, suggesting a general weakness of the signal with 

reference to this taxon. Similarly, relatively low support was found for Mandibulata 

within Arthropoda (BS = 64); a node that has also been shown to be affected by LBA 

and difficult to resolve (Regier et al. 2010; Rota-Stabelli et al. 2011) due to high 

levels of substitution on the short internal branch connecting Myriapoda to the  

 

Figure 3.10: Bootstrap analysis of EST data set with 100 replicates. Analysis supports the inclusion 

of Tardigrada inside a monophyletic Panarthropoda sister group to Lobopodia and the unstable nature 

of Nematomorpha. Analysis performed using the best fitting model CAT-GTR+!. Node values given 

as the percentage out of a total of 100 replicates. Clade names given in addition to highlighted shaded 

regions. Support values indicated: including S. tellinii / excluding S. tellinii. Branch for S. tellinii is 

dashed to highlight its unstable placement. * Indicates full PP = 1.0. Onychophora branch coloured 

blue; Tardigrada branch coloured red; and Nematoda branch coloured green.  
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Pancrustacea. Also for this node our signal dissection analyses identify the presence 

of two conflicting signals, which can explain the relatively low support. Similar low 

BS support can be found for the node connecting the Nematomorpha, plausibly due to 

the nematomorph S. tellinii moving position throughout the pseudoreplicate trees 

because of the high amount of missing data for this taxa (93.9% missing). Due to the 

indication that BS support was being affected by the unstable placement of 

Nematomorpha, I generated a reduced consensus of the 100 bootstrap replicates after 

removal of S. tellinii. This had the effect of dramatically increasing support across the 

tree, particularly for Panarthropoda, Lobopodia and Nematoda + Panarthropoda. In 

any case, from a statistical perspective, this BS analysis provides yet further support 

for the inclusion of Tardigrada within the Panarthropoda (as apposed to sister to 

Nematoda) and the paraphyletic nature of Cycloneuralia. 

 

3.4 Discussion 

3.4.1 Systematic artifacts and the necessity of phylogenetic scrutiny  

Since the advent of high throughput sequencing, molecular sequence databases now 

contain vast amounts of molecular sequence data; unsurprisingly ESTs are now 

becoming increasingly utilized to tackle a host of phylogenetic questions across the 

tree of life (Wolf et al. 2001; Bapteste et al. 2002; Philippe et al. 2004; Dunn et al. 

2008). The use of EST data for large phylogenomic studies has a number of benefits, 

increasing data coverage and allowing easy expansion of taxon sampling, likely both 

leading to increased phylogenetic resolution (Bapteste et al. 2002; Rokas et al. 2003). 

Indeed use of EST data has produced many highly resolved and well-supported 

topologies (Philippe et al. 2005b; Dunn et al. 2008; Pick et al. 2010; Regier et al. 

2010; Rota-Stabelli et al. 2011). However, EST based analyses do not represent the 
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ultimate panacea to phylogeny reconstruction. It is well known that the problem of 

sampling or ‘stochastic’ error evident in many early molecular phylogenetic studies 

that had sparse gene sampling, is one largely alleviated by EST based phylogenomic 

studies (Delsuc et al. 2005; Philippe et al. 2005a; Dunn et al. 2008; Campbell et al. 

2011).  

 

Aside from the reduction in stochastic error when analysing large alignments, there is 

a general tendency for the increased likelihood of encountering biases (such as LBA) 

introduced by systematic error (Campbell et al. 2011; Kumar et al. 2011) when 

analysing large data sets. Systematic error is a problem of statistical inconsistency 

(moving towards the wrong answer as you increase the amount of data); thereby 

increasing the likelihood of recovering incorrect phylogenies when analysing large 

EST based phylogenomic data sets. EST based phylogenomic studies that utilise large 

numbers of genes can produce highly resolved and supported topologies, yet remain 

largely incongruent with one another; see (Dunn et al. 2008) versus (Philippe et al. 

2009) on the phylogenetic position of the Ctenophora, or (Roeding et al. 2009) versus 

(Rota-Stabelli et al. 2011) on the affinity of Myriapoda within the arthropods. These 

incongruencies underline the ubiquitous nature of non-phylogenetic signal present in 

many EST datasets and suggest that analysing larger datasets is not in itself a 

guarantee of phylogenetic accuracy (Philippe et al. 2005a,b; Sperling et al. 2009a).   

 

When reconstructing phylogenetic relationships, it is of utmost importance to use a 

model of evolution that accurately describes the data. Reconstructing difficult 

phylogenetic relationships requires use of a model of evolution that can describe the 

data, such that the model adequately employs sufficient numbers of parameters 
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without under or over fitting the model to the data.  Cases in which the model used is 

a poor approximation of reality, can lead to inaccurate phylogenies due to absence of 

key parameters and the increase of systematic biases such as LBA (Kelchner and 

Thomas, 2011). Furthermore, Long Branch Attraction is occasionally due to model 

under-fitting (Yang et al. 1996) particularly when inadequate taxon sampling is 

coupled with faster rates of substitution in one or more lineages, a situation that is 

more likely to mislead an analysis when the model does not include a correction for 

e.g. among site rate heterogeneity or compositional biases.  

 

The focus of this study was to generate an accurate topology to describe the 

evolutionary relationships of Tardigrada within Ecdysozoa, while also identifying 

potential phylogenetic tree reconstruction artifacts that may explain why previous 

studies obtained conflicting hypotheses for the evolution of Tardigrada (Roeding et 

al. 2005; Meusemann et al. 2010; Andrew, 2011; Zrzav! et al. 1998; Mallatt and 

Giribet, 2006; Dunn et al. 2008; Rota-Stabelli et al. 2010; Rota-Stabelli et al. 2011). 

Using Bayesian crossvalidation (Stone, 1974) to rank the fit of evolutionary models to 

the data, I show how the choosing between different models results in the recovery of 

two highly supported alternate positions for Tardigrada within Ecdysozoa. Site-

homogeneous models (WAG+!, GTR+!) that inadequately account for multiple 

hidden substitutions consistently recover (Lartillot et al. 2007) with full support, the 

sister group position of tardigrades to nematodes. Conversely site-heterogeneous 

mixture models (CAT+!, CAT-GTR+!) that can account for the effects of across site 

rate heterogeneity and compositional bias (Lartillot and Philippe, 2004) while also 

having a sizable improvement of fit to our data, recover the tardigrades as members of 

a monophyletic Panarthropoda.  
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Potential biases associated with taxon sampling and differential rates of substitution 

among the sites of our alignment were also explored. Methods employed in these 

analyses to uncover phylogenetic biases again strongly favour a sister group 

relationship of Tardigrada to Lobopodia (Onychophora + Arthropoda). One of the 

main problems of phylogenetic reconstruction of ancient relationships (as is the case 

for Ecdysozoa) is how to uncover genuine phylogenetic signal amidst the large 

amount of phylogenetic noise (Brinkmann and Philippe, 1999), as genuine signal can 

be drastically erased by millions of years of hidden multiple substitutions. According 

to our signal dissection analyses, which were designed to increase the signal-to-noise 

ratio of the data set, showed that phylogenies generated using more reliable slowly 

evolving sites consistently recovered Tardigrada as a member of Panarthropoda as 

apposed to the sister group to Nematoda. Conversely, analyses conducted on less 

reliable fast evolving sites (increasing the noise to signal ratio) supported the 

nematode affinity of tardigrades.   

 

Furthermore, the effect of ingroup taxon sampling was investigated to uncover 

additional sources of systematic bias. It has been shown that the benefits of increased 

taxon sampling are highly advantageous in phylogeny reconstruction. Increased taxon 

sampling has the property of breaking up potential long branches by reducing the 

length of long internal nodes and in doing so reduce the incidence of systematic 

biases (Pollock et al. 2002; Zwickl and Hillis, 2002); the most common of which 

being LBA. The use of targeted taxonomic pruning (reducing species sampling for 

Onychophora, Tardigrada and the sister group to nematodes i.e. Nematomorpha) 

demonstrated that as specific taxa are removed thereby increasing internal branch 
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lengths, resulted in Tardigrada being recovered outside Panarthropoda sister to 

Nematoda.!The shifting position of Tardigrada towards the cycloneuralian Nematodes 

in these analyses was independent of the choice of evolutionary model, as even our 

best fitting CAT-GTR+! model recovered a nematode affinity for Tardigrada. 

Reanalysis including the additional onychophoran species (P. novaezealandiae) 

further demonstrated the substantial effect that taxon sampling had on the recovery of 

alternate hypotheses for tardigrade evolution. Support was bolstered for tardigrades as 

the sister group to Lobopodia, not only under our best fitting CAT-GTR+! model, but 

also under the poorer fitting CAT+! model, which supported a sister group 

relationship between Tardigrada and Onychophora (as in Rota-Stabelli et al. 2010 and 

Rota Stabelli et al. 2011) in analyses where P. novaezealandiae was not included.!

 

3.5 Conclusion 

To conclude, EST data support Tardigrada as a member of Panarthropoda.   Given the 

pervasiveness of systematic artifacts, care must then be taken when evaluating 

topologies derived from large alignments, particularly when multiple highly 

supported competing hypotheses have been proposed. This is the case with the 

tardigrades, where molecular homoplasy certainly exists, as demonstrated by the fact 

they are recovered by previous molecular analyses in two highly discordant positions 

within the Ecdysozoa (Roeding et al. 2007; Sørensen et al. 2008; Hejnol et al. 2009; 

Meusemann et al. 2010; Andrew, 2011; Zrzav! et al. 1998; Mallatt and Giribet, 2006; 

Dunn et al. 2008; Rota-Stabelli et al. 2010; Rota-Stabelli et al. 2011).  

 

Differently from most previous investigations, the results presented herein, were 

generated using methods designed to uncover systematic biases (LBA) in the data.  I 
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thus feel confident in concluding the affinity for tardigrades lies with the Arthropoda 

and Onychophora (i.e. Panarthropoda) and not with the cycloneuralian nematodes.  
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Chapter 4 

 

Phylogeny reconstruction using microRNAs: Testing 

competing hypotheses of arthropod and 

panarthropod evolution 

 

4.1 Introduction 

Since the emergence and proliferation of molecular sequence data due to next 

generation sequencing technology advancements (Metzker, 2009) many difficult 

phylogenetic questions in animal evolution have been resolved (Sperling et al. 2009a; 

Regier et al. 2010; Rota-Stabelli et al. 2011; Philippe et al. 2011b). For instance, the 

arrival of the ‘new animal phylogeny’ and the move away from the traditional 

‘Coelomata’ hypothesis was the result of the availability of new evidence, e.g. 

phylogenomics (see section 2.2.3 of Chapter 2) and developmental studies. However, 

despite the current availability of multiple different data types many questions still 

remain to be answered. There are numerous issues that can cause a phylogenetic 

problem to be particularly difficult (Philippe et al. 2005a; Philippe et al. 2011b), all of 

these could be placed under the heading of homoplasy (similarity due to convergent 

evolution).  For example, problems arising from the analysis of molecular sequences 
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under inadequate models (Tuffley and Steel, 1998; Lartillot and Philippe, 2004) 

presence of systematic biases like long-branch attraction, or use of ambiguous (i.e. 

evolved convergently) morphological characters (Scotland et al. 2003) (e.g. 

Atelocerata hypothesis: Klass and Kristensen 2001; Bitsch and Bitsch 2004; or 

Uniramia Hypothesis, Tiegs 1947), are all fundamentally caused by homoplasy. Since 

the true metazoan phylogeny is unknowable and given the pervasiveness of 

homoplasy in every type of data (Jenner, 2004), it is clear that in order to answer 

difficult phylogenetic questions we must look all available evidence in order to 

investigate pattern of congruence and incongruence among different data types (i.e. 

the concept of consilience).  As truth is impossible to be known with certainty, 

convergence of alternative, independent, lines of evidence subjected to different 

biases, is our best proxy for phylogenetic accuracy (Wilson, 1988; Campbell et al. 

2011). !

In this Chapter I will further introduce the use of a recently emerged source of novel 

phylogenetic data: the genomic regulatory elements called microRNAs (miRNA). I 

will use these new data to tackle the unresolved competing hypotheses of evolution 

among the four arthropod sub-phyla (Hexapoda, Crustacea, Myriapoda and 

Chelicerata), and to test alternative competing hypotheses for the phylogenetic 

relationships of the Phylum Tardigrada within Ecdysozoa.  In so doing, I will be 

introducing a new data type to address the problem of the evolution of the Ecdysozoa. 

My aim here is to identify whether miRNAs can corroborate/reject previous 

hypotheses derived using more traditional morphological and molecular sequence 

data.  

Two problems will be addressed. The first is the problem of the affinity of the 

Myriapoda.  Two major hypotheses have been proposed in the past (Mandibulata and 
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Myriochelata – see Nielsen, 2001 and Pisani et al. 2004).  Of these hypotheses 

Mandibulata (Snodgrass, 1938) is the more traditional as most morphological 

characters are easily explained on a tree topology displaying Mandibulata. 

Conversely, the second hypothesis Myriochelata, can only explain a small number of 

morphological characters; if the possibility of convergent evolution is not considered 

(Dove and Stollewerk, 2003; Kandar and Stollewerk, 2004; Stollewerk and Chipman, 

2006; Mayer and Whitington, 2010). Myriochelata has been recovered predominantly 

by molecular sequence analyses (Pisani et al. 2004; Mallatt, 2004; Lartillot and 

Philippe, 2008; Dunn et al. 2008; Hejnol et al. 2009).   

Carrying on from internal arthropod phylogeny, the second problem addressed here, is 

the study of the relationships of the Arthropoda, the Onychophora (velvet worms) and 

the Tardigrada (water-bears) within the context of the Ecdysozoa.  Onychophora, 

Tardigrada and Arthropoda, have long been recognised, on the grounds of 

morphology and developmental biology, as being close relatives.  This group was 

named Panarthropoda by Nielsen (2001) and possesses features such as paired 

ventrolateral walking appendages and engrailed expression (Gabriel and Goldstein, 

2007) in the posterior ectoderm of each articulated segment, representing the 

proposed panarthropod apomorphies. However, competing hypotheses on the 

placement of tardigrades have also seen them positioned outside Panarthropoda as the 

sister group to the phylum Nematoda. This grouping of Tardigrada + Nematoda is 

primarily based on a number molecular sequence analysis (Sørensen et al. 2008; 

Hejnol et al. 2009; Meusemann et al. 2010).  Unfortunately, morphology alone cannot 

help to resolve the position of Tardigrada. This is because this phylum shares 

characteristics not only with the Panarthropoda, but also in with the Cycloneuralia 

(Nielsen, 2001) the group to which the Nematoda are generally ascribed.  Putative 
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apomorphies of the Nematoda plus Tardigrada group include a circumesophageal 

brain, but also a telescopic mouth cone and plated pharynx (e.g. Schmidt-Rhaesa, 

1998; Campbell et al. 2011).  In addition, even studies that agree upon the general 

placement of the Tardigrada within Panarthropoda disagree on the precise 

relationships among the three panarthropodan taxa (Arthropoda, Tardigrada and 

Onychophora) (see Budd, 2001; Mallatt and Giribet, 2006; Dunn et al. 2008). Here, I 

will show the results of a phylogenetic analysis on the distribution of miRNA genes 

present throughout both Arthropoda, and more broadly across the Panarthropoda with 

regard to other ecdysozoan phyla; namely Nematoda and Priapulida. The results 

presented here have been published in the peer-reviewed journals; Proceedings of the 

Royal Society B: Biological sciences (Rota-Stabelli et al. 2011) and Proceedings of 

the National academy of Sciences (Campbell et al. 2011).  

 

4.1.1 MicroRNAs: Function and Biogenesis 

MicroRNAs (miRNAs) are single-stranded RNAs of ~19-25 nucleotides (nt) in length 

that are generated from endogenous hairpin-looped transcripts (Lee et al. 1993; Bartel 

2004), see Figure. 4.1 for a typical miRNA secondary structure. MicroRNAs were 

originally identified for their role in developmental timing in Caenorhabditis elegans 

(Lee et al. 1993), where the miRNA lin-4 was identified as the key regulator of the 

gene product lin-14 via the numerous complementary binding sites of lin-4 present 

within the lin-14 3’ untranslated region (3’ UTR). Following the discovery of lin-4 a 

second miRNA called let-7 was identified as a ~22 nt regulatory RNA (Reinhart et al. 

2000) again shown to regulate developmental timing in C. elegans. It was not clear at 

the time if these kinds of small regulatory RNAs were a peculiarity specific to 
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nematode worms or a feature more commonly seen across the Metazoa. This however 

was clarified, revealing the extent of conservation of this kind of RNA regulation 

upon identification of the miRNA let-7 in divergent bilaterian taxa (Pasquinelli et al. 

2000). At this stage these small regulatory RNAs were not called miRNAs, they were 

instead referred to as small temporal RNAs (stRNAs) due the shared role in 

developmental timing. It wasn’t until the cloning of sets of similar small regulatory 

RNAs in divergent model organisms such as humans, flies and nematodes (Lagos-

Quintana et al. 2001; Lau et al. 2001; Lee and Ambros, 2001) which had similar 

properties to lin-4 and let-7 (~22 nt in length, processed from one arm of the hairpin 

RNA) but differed in that they were not expressed in distinct developmental stages, 

which prompted the introduction of the name microRNA to classify these regulatory 

RNAs of unknown function.  

 

 

Figure 4.1: Typical microRNA secondary structure. Watson-Crick base paring shown between two 

arms of the pre-miRNA (green and brown) with a central miss-match bulge. 
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Since their discovery, miRNAs have now been shown to be crucial regulators in a 

multitude of different physiological processes such as developmental timing, neuronal 

patterning, cell proliferation, apoptosis, tissue differentiation and cell signalling 

(Bartel, 2004). MicroRNAs function as posttranscriptional repressors of their target 

genes when bound to the specific sites present in the 3’ UTR of the target messenger 

RNA (mRNA) (Berezikov 2011).  In Metazoa, miRNA mediated silencing of mRNAs 

is usually achieved by imperfect base paring to the 3’ UTR, thereby blocking the 

access of the target mRNA to the translational machinery (Lee et al. 1993). However 

depending on the degree of base complementarity, metazoan miRNAs can also direct 

catalytic cleavage (Bartel, 2009; Brodersen and Voinnet, 2009). Individual miRNAs 

may regulate up to hundreds of different loci, and it has been estimated that a majority 

of human genes are potential miRNA targets (Lim et al. 2005; Lewis et al. 2005). The 

diversity of the different physiological processes that miRNAs coordinate is evident, 

yet miRNA regulation follows a single strict pathway of biogenesis.  

Before moving forward to discussing the stages of miRNA biogenesis, I must clarify 

that miRNAs are biogenically defined.  In short, a nucleotidic sequence represents a 

miRNA gene if it produces an RNA with a secondary hairpin structure that is 

identifiable by the miRNA biogenesis machinery, which will transform it into a 

functional miRNA effecter complex (Kim, 2005). This statement is crucial as only 

these types of genes can be recognised and processed correctly into the miRNA 

effecter complex, therefore enabling translational repression.  

MicroRNAs are genomically encoded non-protein coding genes located in various 

regions within a genome. Early studies showed that many identified miRNA genes 

were located in distinct intergenic regions or with an antisense orientation to 

annotated genes, indicating that those miRNAs derive from independent transcription 



! ""#!

units (Lagos-Quintana et al. 2001; Lau et al. 2001; Lee and Ambros, 2001). However 

it is now known that a sizeable minority of miRNAs are located within intron regions 

of protein coding genes (PCGs) usually in the same sense orientation suggesting that 

those miRNAs are co-transcribed with their associated PCG (Rodriguez et al. 2004). 

In addition it is now understood that many miRNAs are also located in close 

proximity to one another, arranged and transcribed in a pattern suggesting that 

transcription occurs via a multi-cistronic primary transcript. As for all PCGs 

transcription of a miRNA is primarily mediated by RNA polymerase II (Lee et al. 

2004). However, occasionally miRNAs have been observed to be transcribed by RNA 

polymerase III (Lee et al. 2004; Borchert et al. 2006).  

The stages of miRNA biogenesis (described below; but see Figure. 4.2) begins with 

the transcription of a miRNA locus by RNA polymerase II, resulting in a long 

primary transcript or primary miRNA (pri-miRNA; Lee et al. 2002) that is usually 

several kilo bases long containing local hairpin structures. Primary miRNAs are also 

capped and polyadenylated in typical Pol II fashion. Pri-miRNAs fold into 

characteristic hairpin-like structures, providing the basis of recognition by the RNase 

III enzyme complex Drosha. Pri-miRNA transcription is followed by processing or 

‘cleavage’ by Drosha to liberate a shorter ~60-70 nt stem loop intermediate known as 

a precursor miRNA (pre-miRNA; Kim, 2005). Evidence suggests that the tertiary 

structure of the pri-miRNA allows the recognition by Drosha to cleave out the pre-

miRNA and subsequently a downstream functioning miRNA. 

  

Following the nuclear processing by Drosha the pre-miRNA is then exported from 

the nucleus into the cytoplasm by a nuclear pore complex mediated by the nuclear 

transport receptors exportin-5 (Kim, 2005). After the pre-miRNA enters into the 
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cytoplasm it is then acted upon by another RNase III enzyme called Dicer (Bartel, 

2004). Dicer cleaves the pre-miRNA by loping off the terminal base pairs and the 

stem loop; this generates a shorter ~20-24 nt mature miRNA duplex.  This Duplex 

contains the mature miRNA, which is associated with its reverse complement 

sequence known together as the miRNA:miRNA* duplex (“miRNA-miRNA Star”). 

The pre-miRNA duplex cleaved by Dicer contains a staggered cut typical of RNase 

III endonucleases, with the base of the pre-miRNA stem loop characterized by a 5’ 

phosphate and a 2 nt 3’ overhanging tail end (Filipowicz, 2008). 

 

It has been shown that the RNase III enzyme Dicer is associated with a number of 

different proteins which function not in the catalytic cleavage of pre-miRNAs but 

miRNA stability and effecter complex formation (Kim, 2005). One of the most 

important Dicer associated protein families is the Argonaute family, with the 

Argonaute protein Ago2 shown to function as the ‘slicer’ enzyme that cleaves target 

mRNA (Song et al. 2004). The role of Dicer in miRNA biogenesis is conserved 

across all animals (also in plant miRNA biogenesis) however recently it has been 

demonstrated for the first time that the miRNA miR-451 (present in mammals) is 

generated independent of Dicer activity, instead relying upon the endonuclease 

activity of Ago2 (Cheloufi et al. 2010; Bossé and Simard, 2010).  

Mature miRNAs are then incorporated into the effecter complex known as ‘miRNP’ 

(miRNA-containing ribonucleoprotein complex) or miRISC (miRNA-containing 

RNA-induced silencing complex). Once a miRNA:miRNA* duplex is formed by 

Dicer, strand selection occurs resulting in a single arm of the duplex being 

incorporated into the miRISC complex. Usually the duplex does not persist long in 

the cell, as one strand of the duplex (usually the miRNA*) will degrade 
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Figure 4.2: Typical metazoan miRNA biogenesis pathway. Figure taken from (Wienholds and 

Plasterk, 2005). See text for the details of the stages of miRNA biogenesis.   

 

(Filipowicz, 2008) whereas the other will be selected as the mature miRNA. 

MicroRNA Strand selection is not fully understood, but mounting evidence indicates 

that selection of a mature miRNA strand resides in the relative stability of the two 

ends of the miRNA:miRNA* duplex (Bartel et al. 2004; Kim, 2005).  The strand 

selected for the miRISC complex is usually the one whose 5’ end is less tightly paired 
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(for example, G:U pair vs. G:C pair; Khvorova et al. 2003; Schwarz et al. 2003). 

Interestingly, the miRNA* sequence which is essentially a palindrome of the mature 

miRNA has been shown on occasion to be incorporated into the miRISC complex 

also, with studies showing new miRNA loci can be generated via antisense 

transcription of existing miRNA genes (Berezikov, 2011). 

Once a mature miRNA is loaded into the miRISC complex, it can then be used to 

locate its target sequence(s). In Metazoa, miRNAs target mRNA transcripts by 

imperfect base-pairing to multiple sites within the target 3’ UTR regions. Specifically, 

there are two regions of a mature miRNA sequence that are crucial for effective target 

binding, these are the “seed” region (Lewis et al. 2003) located usually in nt positions 

2-8 on the 5’ arm, while the second region also shown to be important to target 

binding is located in nt positions 13-16 in the 3’ arm. Targeting of a miRNA to 

locations within a 3’ UTR was first observed in the earliest discovered miRNAs, lin-4 

and let-7. However it is now currently known that miRNA target sites, although 

usually located in 3’ UTRs, can also be found in other locations such as open reading 

frames (ORFs) as seen in Drosophila (Stark et al. 2007) and vertebrates (Forman et 

al. 2008); but this seems to be the exception rather than the rule (Filipowicz et al. 

2008). 

The degree of complementarity of Watson-Crick base paring between a miRNA and 

its target, specifically in regions such as the ‘seed’ and 3’ compensatory region, are 

fundamental to conferring regulation. Perfect complementarity between the seed 

region of a miRNA and its target have been shown to be sufficient to confer target 

regulation (Brennecke et al. 2005) however, compensatory pairing between the 3’ 

miRNA region (nt 13-16) is required when mismatches occur in the 5’ seed region. 

The importance of the Watson-Crick base pairing in these two regions has been 
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highlighted, with the seed and 3’ compensatory regions shown to be the most 

conserved nt positions in a miRNA (Wheeler et al. 2009); with the number of 

substitutions in these regions considerably lower compared to the remaining nt 

positions. In addition, documented instances of a modified seed region or ‘seed shifts’ 

have been made, seed region starting positions can be modified by moving them in a 

3’ or 5’ direction usually by insertion of 1 – 2 nt. Importantly though, seed shifts are 

conserved evolutionary events (Wheeler et al. 2009) highlighting the importance of 

seed regions in mRNA targeting.  Lastly, the mode of miRNA regulation has been 

correlated to the degree of base-pair complementarity. Plant miRNAs in contrast to 

animal miRNAs usually repress their targets by binding with near perfect 

complementarity, thereby inducing target cleavage; whereas this mode of target 

cleavage is rarely observed in animals (Filipowicz et al. 2008). It seems now that 

contrary to general belief, it is not the degree of base-complementarity per se, in 

animal miRNA targeting, but the presence of central base-pair mismatches in the 

miRNA-target interaction (Bordersen and Voinnnet, 2009). This prediction is 

consistent with structural models that suggest that the RNase active site in the 

miRISC complex is located ~ 10 nt from the beginning of the miRNA (Song et al. 

2004); therefore located between the 5’ seed or 3’ compensatory regions that have 

been shown to be crucial for miRNA target specificity in animals. 

 

4.1.2 MicroRNAs in phylogeny reconstruction  

Ever since their discovery, miRNAs have been scrutinized for their properties of gene 

regulation in a wide variety of physiological roles (Bartel, 2004).  However it is only 

recently that miRNAs have been seen as promising genomic markers for phylogeny 
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reconstruction. Today it is now widely accepted that the addition of new miRNAs to 

genomes has been commonplace since the emergence of the Metazoa (Hertel et al. 

2006; Sperling et al. 2010), but specifically the expansion of miRNA repertoires to 

eumetazoan (Grimson et al. 2008; Peterson et al. 2009) and bilaterian genomes 

(Christodoulou et al. 2010) has been more dramatic. The continual addition of 

miRNAs to genomes was apparent in early studies (Sempere et al. 2006) and since 

then has been confirmed in numerous investigations (Hertel et al. 2006; Wheeler et al. 

2009; Sperling et al. 2009b; Sperling et al. 2010; Heimberg, 2010; Philippe et al. 

2011a). The upshot of this is in terms of phylogeny reconstruction is that nearly every 

metazoan clade thus far investigated can be characterized by at least one new miRNA 

family acquisition, making these characters extremely useful for resolving 

phylogenetic relationships. However it is important to note that the rate of acquisition 

of families is not constant between taxa, with different lineages experiencing different 

rates of acquisition (Tarver et al. 2012). Furthermore, it is important to point out that 

contra to some initial claims, miRNA data sets, despite being homoplasy low, are not 

homoplasy free (e.g. Philippe et al. 2011a).  Yet, the rate of acquisition of new 

miRNA families substantially outweighs the rate of losses (Campbell et al. 2011). 

The major benefit for using miRNAs to recreate phylogenies is in regards to their 

mode of biogenesis, and the fact that the recognition of a miRNA for processing by 

the biogenesis machinery (i.e. RNase III enzymes Drosha & Dicer) relies upon the 

miRNA stem loop structure and not the primary miRNA sequence. This greatly 

increases the utility of miRNAs for phylogeny as it negates the need for a researcher 

to know any particular miRNA sequence prior to sequencing and analysis. Studies 

investigating the expansion and conservation of miRNAs and miRNA families 

throughout different groups of animals have led to the realization of a number of 
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evolutionary characteristics endowing miRNAs with a level of phylogenetic utility 

rivalling the most commonly used phylogenetic data. MicroRNAs have four 

characteristics that make them exceptional phylogenetic candidates to resolve 

conflicting hypotheses of evolution or even provide fresh hypotheses previously 

overlooked: (i) miRNA families are continuously added to genomes throughout time, 

(ii) secondary loss of a miRNA is rare once acquired within a genome, (iii) Once 

acquired the mature miRNA sequence accumulates mutations very slowly, and (iv) 

there is a massively low probability of independent convergent evolution of any 

particular miRNA in separate lineages. Due to the aforementioned properties of 

miRNA evolution (also see section 2.2.2 of Chapter 2) miRNAs are endowed with the 

potential ability to overcome pitfalls of using traditional data types of phylogeny 

reconstruction  (Sperling and Peterson, 2009), see Figure. 4.3 for a pipeline of the 

implementation of miRNAs in phylogenetic analysis. 

 

 

Figure 4.3: Flowchart pipeline of the typical stages involved in implementing miRNAs in 

phylogeny reconstruction.   
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Apart from continual lineage specific miRNA expansion, it has been shown that once 

a miRNA gene emerges and is incorporated into a specific lineage gene regulatory 

network, it is rarely secondarily lost in the descendent lineages (Sempere et al. 2007, 

Heimberg et al. 2008, Wheeler et al. 2009). However, lineage specific loss has been 

observed; with the absence of specific miRNA families (27 losses from 36 families) 

recently shown in the Acoela flatworms. This instance of major miRNA loss in the 

Acoel Symsagittifera roscoffensis can be met with a caveat, in that large-scale 

secondary simplification of this species (Philippe et al. 2011a) was not enough to 

completely lose all derived miRNAs. The acoel flatworm Symsagittifera roscoffensis 

and the species Xenoturbella were both found to posses the miRNA miR-103, a 

deuterostome specific miRNA suggesting the placement of Acoela resides within 

Deuterostomia (Philippe et al. 2011a), in contrast to previously posited competing 

hypotheses which placed Acoels as either a group or grade of basal bilaterians or 

associated them with the Platyhelminthes (Baguna and Riutort, 2004).  This 

deuterostome placement of Xenoturbella and the Acoel worms might seem 

counterintuitive, but it has been confirmed by the analyses of nuclear protein coding 

genes and mitogenomic datasets (Bourlat et al. 2006). 

Many studies have shown how miRNAs can regulate up to hundreds of different 

genes (Lim et al. 2005; Lewis et al. 2005) and so because miRNAs regulate so many 

different transcripts they must be able to retain the ability to interact with all 

transcripts 3’ UTRs. This necessity of sequence conservation therefore makes it 

difficult to lose a miRNA or change its primary sequence. Loss of miRNAs can occur 

as previously mentioned, however evidence suggests that loss of miRNAs is more 

likely for species that have undergone significant secondary morphological 

simplification such as seen in the case of Acoela. This suggests that the mosaic 
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pattern of miRNA loss is related to the reduced number of gene targets for those 

miRNAs (Sperling and Peterson, 2009). It is here that a critical distinction must be 

made when concerned with secondary loss of miRNAs: we must be able to clarify 

between genuine lineage specific secondary loss in contrast to the apparent loss as a 

consequence of searching for example an incomplete genome or small RNA library.  

By far the most effective way to detect miRNAs for a species is by using small RNA 

sequencing, such as NGS technologies like Illumina and 454. However depending on 

the developmental stage and or tissue sampled not all miRNAs may be expressed and 

thus identified; this is usually not a problem as the depth of sequencing with NGS 

technologies should ensure that even the most lowly expressed miRNAs are detected 

(Berezikov et al. 2006). Problems can be introduced however when searching (using 

BLAST) previously identified miRNAs against a known genome to identify 

orthologues. Tarver et al. (2012) have shown that the level of genome coverage is a 

major factor when identifying miRNA orthologues, with high coverage genomes 

(~7x) missing on average 5.16 miRNA families in contrast to low coverage genomes 

(~2x) missing on average 26 families. Thus presumed instances of secondary loss 

may in fact be false negatives i.e. failing to detect a miRNA due to the incomplete 

nature of some genomes.  

There is now mounting evidence on the different ways new miRNAs and miRNA 

families can arise, with the ease of RNA to form into a stable fold-back structure, 

indicating novel miRNA genes may actually be more likely to arise than a protein-

coding gene. MicroRNAs that contain significant sequence homology to each other in 

the mature region are grouped into families (Ambros et al. 2003), with new miRNAs 

and miRNA families arising via a number of evolutionary processes. One of the major 

sources of novel miRNAs is via gene duplication; these events are then usually 
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followed by sub- and neo-functionalization (Ruby et al. 2007) of the acquired 

miRNA. Yet this only increases the dimension of an existing family. Interestingly, as 

many miRNAs are located within intronic regions (Rodriguez et al. 2004) it is not 

surprising that miRNAs can arise via the acquisition a miRNA like hairpin in a intron 

sequence, a term called ‘intronic exaptation’ (Campo-Paysaa et al. 2011). In addition, 

new miRNAs have also been shown to arise via de novo acquisition, or acquisition of 

miRNA function from an antisense transcript of an existing miRNA (miRNA*).  

Because miRNA families arise independently, they can be treated as a discrete set of 

characters. In other words their presence versus absence in a taxon can be coded in 

the same manner as other discrete characters such as morphological characters. Thus 

miRNA phylogeny reconstruction is essentially performed via binary analysis i.e. the 

presence (1) vs. absence (0). Groups of taxa containing the greatest number of 

orthologous miRNAs can be inferred to be more closely related to one another then 

they are to groups of taxa with a smaller subset of orthologous miRNAs; (e.g. 

Human+Mouse will contain bilaterian, Deuterostome and mammalian specific 

miRNA genes, whilst Human+Nematoda will also share bilaterian specific miRNAs 

but Humans will not posses any protostome or ecdysozoan specific miRNAs present 

in Nematoda). Novel miRNA acquisitions represent the gain of a de novo trans-acting 

gene classes (Tarver et al. 2012). Here, the outgroup state can be determined with a 

high level of certainty (i.e. absence) coupled with rarity of secondary loss (special 

care needs to be taken to avoid false negatives), high conservation to the mature 

sequence and improbability of convergent evolution; with such properties 

demonstrated experimentally across the entire metazoan tree of life. MicroRNAs are 

thus excellent candidates for delineating the position of the root in a phylogenetic 
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tree, which is vital to understanding the emergence and evolution of groups of 

species.  

Many of the current competing hypotheses of animal evolution are not a disagreement 

of topology per se but instead a problem of root placement; for example the 

placement of the root in Arthropoda when changed can result in recovery of both of 

the main competing hypotheses of the four main arthropod classes (Rota-Stabelli and 

Telford, 2008); with the application of miRNA data resulting in the unambiguous 

support of the Mandibulata hypothesis of arthropod evolution (Rota-Stabelli et al. 

2011). Considering the properties mentioned above, miRNAs are an invaluable new 

phylogenetic marker for the goal of resolving some of the most intractable 

phylogenetic problems, across all levels of the animal hierarchy from species to 

phylum. Moreover, the continual reduction of NGS costs of sequencing small RNA 

libraries makes miRNAs a cost effective tool. In addition to cost, the ease of 

analysing miRNA data sets that are vastly smaller compared to large scale multi-gene 

analyses as seen in phylogenomics further promotes the increased use in the future of 

phylogenetic studies. 

 

4.1.3 Validating MicroRNAs 

Before conducting a phylogenetic analysis using miRNAs, sequence data (e.g. small 

RNA libraries) or miRNA orthologue sequences indentified from genomic searches 

(e.g. BLAST) must first be annotated in order to indentify and validate candidate 

miRNAs. Initially miRNA discovery relied upon conventional Sanger sequencing of 

size restricted (~22 nt) RNAs, but with the introduction of NGS technologies the task 

of small RNA sequencing has been greatly simplified. MicroRNA annotation can be 
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achieved using a set of guidelines based on the secondary structure and mode of 

biogenesis; these guidelines have been summarized (Ambros et al. 2003) providing a 

high level of scrutiny to miRNA discovery. Importantly, miRNAs and other 

regulatory RNAs (e.g. small interfering RNAs (siRNA)) can not be distinguished 

based on their functions; this is due to the differential preference of some miRNAs to 

act upon their target transcripts by repressing their translation while some miRNAs 

along with siRNAs direct cleavage of their target transcripts (Bantounas et al. 2004; 

Filipowicz et al. 2008).  

!

The characteristic features seen in actual miRNAs relate to the endogenous transcripts 

found in local hairpin structures, which ordinarily are processed such that a single 

mature miRNA sequence accumulates from only one arm of the hairpin precursor 

molecule (pre-miRNA). Moreover, if indeed it is a bona fide miRNA then it will also 

have the characteristic processing sites consistent with Drosha and Dicer biogenesis 

(Berezikov, 2011) i.e. staggered cleavage; producing phased small RNA reads with 

the most abundant RNA reads corresponding to the mature ~22nt miRNA sequence. 

Given the desire to distinguish between small RNAs like miRNAs and siRNA, 

miRNAs are identified from other small RNAs by their mode of biogenesis, which is 

intimately linked to a miRNAs secondary fold back structure as previously stated. The 

identification and annotation of a given miRNA is based on the following criteria, 

which can be categorized under two distinct headings; expression and biogenesis 

(Ambros et al. 2003).   

According to expression criteria, true identification of a miRNA should include the 

following criteria: A) Detection of a distinct ~22 nt RNA transcript by hybridization 

to a size fractioned RNA, usually achieved by the northern blotting method, B) 
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Identification of the ~22 nt sequence in a cDNA library made from size fractioned 

RNA, with these sequences precisely matching the genomic sequence of the organism 

they were cloned from.  In addition to expression criteria, validation of a bona fide 

miRNA must reside in two or more of the following biogenesis criteria: C) Predicting 

the potential fold back hairpin structure which contains the mature ~22 nt miRNA 

within one of the hairpin arms, this hairpin must be the folding alternative with the 

lowest free energy value (~ -20 kcal/mol) and this fold back structure must contain at 

least 16 base pairs (bp) derived from the ~22nt mature miRNA whilst also not 

containing any large internal loops or bulges (particularly asymmetric bulges); D) 

Phylogenetic conservation of the mature miRNA sequence and its associated fold 

back precursor (i.e. pre-miRNA), with the same minimal base pairing requirements as 

seen in criterion C; but need not meet the lowest free energy folding alternative; and 

E) Detection of increased pre-miRNA accumulation in organism with reduced Dicer 

function; however,  reduced Dicer function criterion alone is not strictly a 

characteristic of miRNA biogenesis, as Dicer is known to cleave dsRNA to generate 

siRNAs (Bantounas et al. 2004). 

Correct annotation of a miRNA relying on a single criterion based on either 

expression or biogenesis is not sufficient (Ambros et al. 2003). Ideally, the 

identification of a bona fide miRNA would meet all criteria but in practice variations 

are possible; with the very minimum criterion requirements being the expression of a 

~22 nt form and the presence of a hairpin precursor need to be verified to classify a 

small RNA as a miRNA (Berezikov et al. 2006). 
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4.2 Materials and Methods 

In this section I will describe the materials and methods used in order to generate 

small RNA libraries that we sequenced to identify miRNA genes for our selected 

taxa. The protocols described apply to the taxa presented in the two publications 

Rota-Stabelli et al (2011) and Campbell et al (2011). The protocols described in this 

section will differ in respect to selective species and the next generation sequencing 

method applied to sequence the small RNA library of that species. Next generation 

sequencing technologies used to generate the data presented in this thesis are 454 Life 

Sciences (Bradford, CT, USA) and Illumina (Yale sequencing center).  

 

4.2.1 RNA extraction 

I used standard RNA extraction methods that were outlined according to the 

InvitrogenTM TRIzol! Reagent protocol Catalogue No (15596-018). For all species in 

which we present miRNA data in this thesis the same RNA extraction protocol was 

performed.  

Depending on the size of the specimen, an initial tissue homogenization step was 

applied in order to fully breakdown the tissue before applying the TRIzol! reagent 

protocol. This was performed using Liquid nitrogen (LN2) and a pestle and mortar, 

which resulted in snap frozen tissue that was then ground down using a pestle and 

mortar. The resulting tissue was further homogenized using TRIzol! reagent, using 

1ml of TRIzol!per 5-100 mg of tissue.  Homogenized tissue was then incubated for 5 

minutes at 15 to 30°C to permit complete disassociation of nucleoprotein complexes. 

Then added 0.2 ml of chloroform per 1 ml of TRIzol! reagent used in the initial 
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homogenization. Tubes were then capped and shaken vigorously followed by an 

incubation period of 3 minutes at 15 to 30°C. Tissue samples were then centrifuged at 

12,000 x g for 15 minutes at 4°C. Following the centrifugation the mixture separated 

into three distinct phases, the lower red phenol-chloroform phase, an interphase, and 

an upper aqueous phase; this phase contained the RNA that was then transferred into 

a fresh Oakridge tube.  In order to precipitate the RNA we added in some isopropyl 

alcohol, in the amount of 0.5 ml of isopropyl alcohol per every 1ml of TRIzol! used 

initially. Samples were then capped, mixed and incubated for 10 minutes at 15 to 

30°C followed by a centrifugation cycle at 12,000 x g for 10 minutes at 4°C. This last 

step resulted in a final RNA pellet formed at the side and bottom of the Oakridge 

tube. The TRIzol! protocol next calls for an RNA wash in 75% ethanol, however this 

step was removed, as it would have resulted in loss of miRNAs from the RNA pellet. 

The pellet was allowed to dry by pouring off the remaining isopropyl alcohol and 

subjecting the pellet to a final centrifugation at 7,500 x g for 5 minutes at 4°C. The 

aqueous phase was then pipeted off, making sure not to disturb the pellet, which was 

then allowed to air dry for 10-15 minutes at 15 to 30°C. Finally the RNA pellet was 

resuspended in 200-500 µl of RNase free water; depending on the size of the pellet. 

 

4.2.2 Small RNA library generation 

RNA libraries generated for this thesis differed in the next generation sequencing 

technology used to produce the reads for each library. The initial sequencing method 

selected to generate our small RNA library reads was the large-scale parallel 

Pyrosequencing system developed by 454 Life Sciences. In order to generate our 

reads using the 454 platform required a lengthy protocol with steps in which RNA is 
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size fractioned, 3’ and 5’ adaptors, complementary DNA (cDNA) synthesis, vector 

cloning and unique barcode identifiers which are ligated in order to facilitate 

amplification and identification of species reads from a pooled sample of species 

sequences. However, some species small RNA libraries were sequenced using the 

Illumina platform. Sequencing using the Illumina platform did not require the same 

lengthy protocol; instead it just required a sample of extracted RNA (preformed as 

detailed in previous section) to be sent for sequencing.  

 

4.2.2.1 454 small RNA library protocol  

This protocol is purpose made to generate a miRNA library for sequencing and 

identification of novel miRNAs; for fully detailed protocol see Appendix 1 of 

Appendices. Small RNA libraries were constructed as described (Wheeler et al. 

2001). Small RNAs were isolated with fluorescein-labeled DNA oligonucleotides 

equivalent to 21 and 27 nucleotides (nt) in molecular weight were combined with 

200- 500 mg of total RNA and electrophoresed on a 15% urea-polyacrylamide gel. 

Following the 3’ linker ligation, 31 and 43 nt fluorescein markers were combined 

with the ligated RNA just before electrophoresis; these were used to guide the 

excision of the 3’ ligated RNAs (between 35 and 41 nt in size). Following the 5’ 

linker ligation a 51 nt fluorescein marker was used in the same manner. The gel was 

then excised above the marker to include the 5’ and 3’ ligated RNAs (between 52 and 

58 nt in size). Small RNA cDNA was then generated by way of reverse transcription 

of the 3’ and 5’ linker-ligated small RNAs. PCR amplification of the small RNA 

cDNA was performed next, under the following temperature conditions: an initial 

denaturation at 96°C for 1min; 33 cycles at 96°C (10 sec), 50°C (1min), and 72°C (15 
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sec); a final extension time of 5min; and then held indefinitely at 10°C. The PCR 

primers included a unique 4 nt barcode so that the source of the sequence could be 

identified after sequencing; and the 454 primers. The resultant PCR amplicons were 

then electrophoresed through a 3% agarose gel. After running out the gel, product 

bands that approximately migrated the same distance as the 100 nt ladder band were 

excised, gel extracted (Qiagen QIAquick Gel Extraction Kit; Qiagen, CA, USA). 

DNA concentrations were measured using a NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies, Wilmington, DE, USA). Libraries with different barcodes 

were pooled for a total of 100 ng and submitted to 454 Life Sciences (Branford, CT, 

USA) and the Yale Center for Genomics and Proteomics Sequencing Facility for 

sequencing. 

 

4.2.3 Identifying microRNAs using miRMiner 

The miRNA analyses presented in this thesis were conducted using software called 

miRMiner (Wheeler et al. 2009) that allows discovery of known and novel miRNAs 

in newly sequenced taxa, and identifies conserved miRNA complements from all taxa 

considered. The program miRMiner was designed to be implemented using sequence 

reads generated by 454 Pyrosequencing; therefore data generated by other sequencing 

methods (in this thesis Illumina was the alternate sequencing method) needed to be 

pre-processed in order to be compatible with miRMiner. The pre-processing of 

Illumina data was achieved by implementing a pipeline (developed specifically and 

coded in PERL and python) that mimicked the sequence read processing properties of 

miRMiner.  
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In order to identify miRNA reads, group them according to primary sequence, and 

finally identify novel or conserved miRNAs, miRMiner first processes raw 454 

sequence reads in the following manner. Firstly the 5’ and 3’ primers and taxon 

specific 454 barcode identifiers are removed by applying a 21nt cut off on either end 

of each sequence read. Resulting reads are then organised by taxon according to the 

barcode identifiers removed, while also enforcing a 17 – 25 nt cut-off limit. All reads 

that do not fall within the 17 – 25 nt cut off and/or do not have a matching 3’ and 5’ 

barcode are removed from the data. Within each species, duplicate reads are 

eliminated, and the number of duplicates annotated as the reads frequency count. In 

each resulting non-redundant set, reads that are identical to reads with a higher 

frequency count when ignoring differences on the 5’ and 3’ end and allowing a one 

gap or mismatch are grouped. Finally, sequences from each sub group with the 

highest frequency count are selected as representative sequences for further analysis, 

all remaining reads are not considered.  

Our pipeline developed to mimic miRMiner, processes Illumina SOLiD sequence 

reads according to the same criteria implemented in miRMiner. Sequence data 

generated by Illumina was output as a set of reads, one set per species. Our pipeline 

was developed to deal with one species per run. The first stage of the pipeline 

converts raw paired-end SOLiD FastQ data into the format FastA. FastA is the input 

format for downstream processing in the pipeline and miRMiner.  From the formatted 

sequence file, the SOLiD sequencing primer is then searched and removed from the 

3’ end (SOLiD primer used: CTGCTGTACGGCCAAGGCG). Primer removal is 

performed by searching each read for the full-length primer sequence and all possible 

sub words (441 words, including all palindromes) for that sequence. Reads are then 

grouped by removing all duplicate reads, again annotating the number of duplicates as 
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that reads frequency count. If required, reads could then be reduced to contain only 

sequences that had a length of between 20 – 25 nt; this limit differed from the cut off 

implemented by miRMiner. In each non-redundant set of reads, reads that are 

identical in length but differ only in the last 3 nt on the 3’ end were grouped together, 

with the number of reads annotated as the new frequency count. The pipeline 

culminates by formatting the sequence read fastA headers to be compatible with 

miRMiner.  

Annotation of known miRNAs was achieved by identifying homologous mature and 

miRNA* (miRNA star) sequences in miRBase (Griffith-Jones et al. 2007) release 

version 15, by way of a stand-alone BLAST search. The resulting list of candidate 

identities were then filtered according to three criteria on an ungapped global 

alignment of the read and the hit sequence, beginning at the 5’ end: (i) sequence 

lengths must match within 2 nt; (ii) positions 2-7 of the seed sequence must be 

identical; (iii) the remainder of the alignment may contain up to only 3 mismatches. 

Sequence reads matched to a known miRNA or miRNA* sequence within the above 

criteria were annotated and removed from the data set. Reads identified to not be of 

miRNA origin were found by comparison with NCBI’s nucleotide database (nt) using 

Standalone MEGABLAST (version 2.2.17). Reads matching a non-miRNA RNA 

(rRNA, tRNAs etc.) molecule with percent identity >95% were removed, and the 

remaining sequence reads were then investigated for phylogenetic conservation. 

Reads from all species were combined, and those that “matched” a read with a higher 

frequency count were grouped. Matches were determined using the three criteria used 

to identify known miRNAs given above (similar length, seed sequence identity, and 

non-seed sequence similarity). Reads conserved across multiple taxa were grouped; 

and ranked by the frequency count of the most frequently occurring sequence. Reads 
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not conserved across multiple taxa were divided by taxon and ranked by frequency 

count. This completed the automated analysis by miRMiner, resulting in a list of 

conserved reads across all taxa and lists of unique reads for each taxon. 

 

 

4.3 Results 

4.3.1 Results of Library generation 

4.3.1.1 Testing success of library generation via amplicon gel electrophoresis.  

The results presented in this section correspond to the final stages of the 454 RNA 

library generation protocol (Protocol in Appendix 1: Day 7 – Step 8). It should be 

noted, results served the purpose of indicating whether the PCR products generated 

was the correct ~103 bp sized DNA fragment length following initial size 

fractionation (of the extracted RNA), addition of 5’ and 3’ linker-ligated primers, 

generation of RNA cDNA and the final PCR product. Product bands for individual 

species seen to be just above the 100bp DNA ladder band indicated that the library 

generation protocol was performed successfully; see Figure 4.4 for a schematic 

representation of the expected result. 

 

 

Figure 4.4: Schematic view of ideal result of 3% agarose gel electrophoresis. Performed to isolate 

DNA fragments corresponding to amplified miRNA genes. Bars represent individual lanes of the gel, 

with colour-coded bars representing different DNA fragments types.  
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The gels shown (Figures 4.5.1 to 4.5.7) here all yielded sequences of the length 

required for the sequence to contain potential bona fide miRNA sequences. Resulting 

product bands for these gel runs were all processed according to the protocol (section 

4.2.2.1) and selected for sequencing. 

 

Figure 4.5.1: 3% agarose gel electrophoresis of Astacoidea sp. (crayfish). Four lanes shown from 

left to right, from left most to right lanes corresponding to the DNA ladder, 2 lanes of PCR 

product/dimmerized primers and lastly a reverse transcriptase control lane.  

 

Gel electrophoresis for the crayfish Astacoidea sp. (see Figure 4.5.1) was performed 

in triplicate. This was due to the first two gel runs yielding no visible ~103 bp product 

band, indicating that the PCR amplification for that species did not work. The third 

PCR amplification yielded a clear band just above the 100bp DNA ladder.  
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Figure 4.5.2: 3% agarose gel electrophoresis of Glomeris marginata (Pill millipede). Four lanes 

shown from left to right, from left most to right lanes corresponding to the DNA ladder, 2 lanes of PCR 

product/dimmerized primers and lastly a reverse transcriptase control lane. 

 

Gel electrophoresis for the pill millipede Glomeris marginata (see Figure 4.5.2) was 

ran as stated in the protocol of section 4.2.2.1, however the gel did not run smoothly 

and resulted in a band separation that was not straight. The bands seen for G. 

marginata were thick, which we believe to be the result of two individual bands 

migrating in close proximity to one another. Nonetheless each band was seen to have 

migrated above the 100bp ladder band indicating that those bands contained 

sequences of the correct DNA fragment length. 
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Figure 4.5.3: 3% agarose gel electrophoresis for Limulus polyphemus (Horseshoe crab). Four 

lanes shown from left to right, from left most to right lanes correspond to the DNA ladder, 2 lanes of 

PCR product/dimmerized primers and lastly a reverse transcriptase control lane. 

 

RNA library generation performed on the chelicerate Limulus polyphemus (see Figure 

4.5.3) resulted in a clear-cut and satisfactory migration of ~103 bp product bands 

above the 100bp DNA ladder band.  
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Figure 4.5.4: 3% agarose gel electrophoresis for Hadrurus sp. (Scorpion). Four lanes shown from 

left to right, from left most to right lanes correspond to the DNA ladder, 2 lanes of PCR product for a 

non Hadrurus species (not considered here) and lastly the PCR product for Hadrurus sp. The reverse 

transcriptase control lane is not visible. 

 

Gel electrophoresis for the scorpion Hadrurus sp. (see Figure 4.5.4) was performed as 

set out in the protocol (section 4.2.2.1), and resulted in a clearly defined ~103bp 

product band above the 100bp ladder band.  

 



! "#$!

 

 

 

Figure 4.5.5: 3% agarose gel electrophoresis for Scutigera coleoptrata (House centipede). Four 

lanes shown from left to right, from left most to right lanes correspond to the DNA ladder, 2 lanes of 

PCR product/dimmerized primers and lastly a reverse transcriptase control lane. 

 

Gel electrophoresis for the centipede Scutigera coleoptrata (see Figure 4.5.5) resulted 

in clearly defined bands above the 100bp ladder band. These bands had good 

migratory separation were seen to have a clear-cut size fraction of around ~103bp.  
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Figure 4.5.6: 3% agarose gel electrophoresis for Acanthoscurria chacoana (Tarantula). Four lanes 

shown from left to right, from the left most to right lane corresponds to: DNA ladder, 2 lanes of PCR 

product/dimmerized primers and lastly a reverse transcriptase control lane.  

 

Gel electrophoresis for the spider Acanthoscurria chacoana (see Figure 4.5.6) 

resulted in migration of faint product bands with good separation above the 100 bp 

DNA ladder band.  
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Figure 4.5.7: 3% agarose gel electrophoresis for Thermobia domestica (Firebrat). Four lanes 

shown from left to right, from left most to right lanes correspond to the DNA ladder, 2 lanes of PCR 

product/dimmerized primers and lastly a reverse transcriptase control lane. 

 

Gel electrophoresis for the firebrat Thermobia domestica (see Figure 4.5.7) was 

performed as stated in the protocol (section 4.2.2.1). Band migration and separation 

was not satisfactory due to a short migration period, and so was allowed time to 

migrate further. A longer migration time resulted in a clearer defined band separation 

with the product band located above the 100bp DNA ladder. 
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4.3.2 Arthropoda miRNA distribution supports Mandibulata not Myriochelata.  

MicroRNAs are an ideal source of data to tackle the issue of competing phylogenetic 

hypotheses, previously unresolved by conventional data; therefore providing an 

additional independent source of data (Sperling and Peterson, 2009). To tackle the 

problem of the competing Mandibulata and Myriochelata (see section 1.1.5 of 

Chapter 1) phylogenetic hypotheses, miRNA complements for key arthropod taxa 

were explored using a combination of genomic searches in addition to small RNA 

libraries which were sequenced and analysed for their miRNA reads. Consideration of 

the number of beneficial phylogenetic properties of miRNAs (Tarver et al. 2012; but 

see section 2.2.2 and 4.1.2), properties such as continual addition to genomes through 

time, high conservation of their primary sequence (~22 nt) allows miRNAs to be 

readily identifiable between descendant taxa of interest. Ease of identifying conserved 

and novel miRNAs between taxa coupled with the apparent rarity of secondary loss 

and low probability of convergent evolution of any miRNA ensures these regulatory 

elements are an invaluable class of phylogenetic characters.  

From the analyses of our miRNA libraries we found a variety of miRNA that can be 

used to characterise arthropod groups.  One miRNA, miR-965, had previously been 

found only in Pancrustacea and had been shown to be absent from the genome of the 

chelicerate Ixodes scapularis (Wheeler et al. 2009). Importantly, we found reads of 

the mature miR-965 in the small RNA libraries of both myriapods (Glomeris 

marginata and Scutigera coleoptata), and also in the genome of the centipede S. 

maritima (see Figure 4.6). Screening our miRNA libraries also showed that in 

addition to being absent from the genomic sequence of the tick (I. scapularis), miR-

965 could not be detected in the xiphosuran Limulus polyphemus nor in the arachnid 

Acanthoscurria chacoana.  This distribution supports miR-965 (see Figure 4.6 and  
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Figure 4.6: Phylogenetic distribution of miRNAs supports Mandibulata. The monophyly of 

Mandibulata is supported by the presence of miR-965 and miR-282, also discovered in the genome of 

the centipede Strigamia maritima, and in the small RNA libraries of the millipede Glomeris marginata 

and the house centipede Scutigera coleoptrata. miR-965 and miR-282 are not known from any 

chelicerate or non-arthropod. N.B. miR-282 was not found in the small RNA library of Glomeris*. In 

addition a novel chelicerate miRNA (miR-3931) is present only in chelicerates, but in none of the 

mandibulates considered. A novel myriapod miRNA (miR-3930) is found only in myriapods. Major 

clades highlighted with colour coded nodes (miRNA gains) and bars (delineate clades).  

 

4.7) as a putative genomic apomorphy (a rare genomic change) of the Mandibulata. 

This same distribution is true of a second miRNA miR-282 that we have found only in 

insects, crustaceans and the centipedes Strigamia and Scutigera. miR-282 was not 

found in the Glomeris small RNA library (Figure 4.6 and Figure 4.7). Absence of 

miR-282 is most likely a result of the low expression of miR-282 across all 
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Mandibulata sampled here, while also the total number of reads and sequencing depth 

was relatively low in the Glomeris miRNA library (* - see Figure 4.6).  

 

 

Figure 4.7: Stem-loop structures of Mandibulata, Chelicerata and Myriapoda specific miRNAs. 

Fold-back RNAs shown are precursor miRNAs (pre-miRNA). The folded miRNAs miR-965 and miR-

282 shown are taken from stem-loop hairpins for Strigamia maritima (Sma). Shaded regions in each 

pre-miRNA highlight the mature miRNA.  

 

In addition, upon screening the L. polyphemus and A. chacoana small-RNA libraries, 

we identified a novel chelicerate miRNA (miR-3931) that is not present in the 

Mandibulata, but is present in the genome of the tick I. scapularis (see Figure 4.6 and 

Figure 4.7), and we thus suggest this miRNA to be a new genomic apomorphy for the 

Euchelicerata (Xiphosura and Arachnida). We have also identified a novel myriapod-

specific miRNA (miR-3930) in the small-RNA libraries of G. marginata and S. 

coleoptrata, and in the genome of S. maritima, but not in the libraries or genomes of 

any other non-myriapod taxon analysed. Genome sequences for the myriapod S. 
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maritima were obtained from the sequenced cDNA library of S. maritima, provided 

freely by the Baylor college of Medicine Human Genome Sequencing Center 

(http://www.hgsc.bcm.tmc.edu/collaborations/insects/dros_modencode/GAsm/centepede/).  Further 

Myriapod-specific molecular synapomorphies have recently been described (Janssen 

and Budd, 2010). Results presented in this section have been published in the peer-

reviewed journal Philosophical Transactions of the Royal Society B (Rota-Stabelli et 

al. 2011).  

 

4.3.3 MicroRNAs suggest velvet worms as the arthropod sister group within a       

monophyletic Panarthropoda  

In a second miRNA phylogenetic analysis, to investigate the complement of miRNAs 

that appeared in the two closest living panarthropod (Nielsen, 2001) sister phyla to 

Arthropoda, small RNA libraries were sequenced for the tardigrade Paramacrobiotus 

cf. richtersi and the onychophoran Peripatoides novaezelandiae. MicroRNA 

complements were obtained from sequenced small RNA libraries for the tardigrade 

and onychophoran and analysed in conjunction with previously identified myriapod 

and chelicerate specific miRNA data, described in the previous section (Rota-Stabelli 

et al. 2011). MicroRNA complements for the ecdysozoan phyla Nematoda, Priapulida 

and the arthropod species Drosophila melanogaster and Daphnia pulex were obtained 

from an on line miRNA database miRBase. According to the analysis of Rota-Stabelli 

et al. (2011), the four arthropod specific miRNAs described (iab-4, miR-275, miR-

276, miR-305) have previously never been identified in any other non-arthropod 

ecdysozoans.  Here, the aim was to investigate whether or not the panarthropod phyla 

Tardigrada and Onychophora shared any miRNAs that were previously only 
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identified within Arthropoda. Furthermore, previous molecular sequence analyses 

(Philippe et al. 2005b; Sørensen et al. 2008; Roeding et al. 2007, Lartillot and 

Philippe, 2008; Roeding et al. 2009; Andrew, 2011) that positioned Tardigrada to lie 

outside Panarthropoda and as sister group to Nematoda were scrutinized by 

investigating whether or not miRNA complements could be identified to be unique to 

just Tardigrada and Nematoda.  

 

 Figure 4.8: MicroRNA distribution supports a sister group relationship between velvet worms 

 and Arthropoda within a monophyletic Panarthropoda. Single grey/black bars represent miRNA 

 gains. Clades are colour coded for clarity, higher level clades depicted with black vertical bars.   

 

There are four miRNAs that are conserved between the nematode genera 

Caenorhabditis and Pristionchus (de Wit et al. 2009): miR-54, -63, -86, and -239 
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(Figure 4.8). From the analysis of our tardigrade small RNA library, we could not 

detect any nematode specific miRNAs shared also in Tardigrada. Similarly, no 

potential miRNAs were found shared exclusively between the tardigrade and 

onychophoran. Instead, in both the tardigrade and onychophoran libraries we found a 

single miRNA, miR-276, that formerly had been identified only in arthropods (Rota-

Stabelli et al. 2011). Furthermore, in the onychophoran library, but not in the 

tardigrade library, we found a second miRNA, miR-305, which is also considered 

arthropod specific (Figure 4.8). 

According to the results of the miRNA distribution found within Panarthropoda a 

number of hypotheses can be made. The miRNA miR-276 was found to be present 

within only all three panarthropod phyla; therefore I infer that the gain of miR-276 

represents a single genomic apomorphy supporting the monophyly of Panarthropoda 

(Tardigrada + Lobopodia). Further to this, the miRNA miR-305, found to be present 

only within Onychophora and Arthropoda, suggests that this miRNA gain represents a 

genomic apomorphy supporting Lobopodia (Onychophora + Arthropoda). Lastly, 

building upon the previous analysis of arthropod specific miRNAs (Rota-Stabelli et 

al. 2011) I hereto hypothesize that the miRNA gains of iab-4 and miR-275 are 

apomorphies of Arthropoda. Results presented in this section have been published in 

the peer-reviewed journal Proceedings of the National Academy of Sciences 

(Campbell et al. 2011).  
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4.4 Discussion 

4.4.1 Phylogenetic uncertainty and the need for microRNAs  

Looking back, the early days of phylogeny reconstruction were concerned with 

analyses of small data sets of morphological or molecular characters, using simplistic 

methods of phylogenetic inference. It is clear now that modern phylogenetics has 

come a long way; to the stage were it is commonplace for analyses to be performed 

on expansive data sets (Regier et al. 2008; Hejnol et al. 2009; Holton and Pisani, 

2010; Rota-Stabelli et al. 2011; Smith et al. 2011) under increasingly sophisticated 

models of evolution (Tuffley and Steel, 1998; Lartillot and Philippe, 2004; Foster, 

2004; Blanquart and Lartillot, 2008) (not to mention the vastly improved 

computational resources). This being said, in spite of the vast amounts of available 

data and improved methods of inference, numerous open questions remain in modern 

day systematics. One of the most obvious problems existent in the study of animal 

evolution regards peculiar and obscure phyla, for example Placozoa, Rotifera, 

Acanthocephala, and Chaetognatha; yet to be reliably resolved within the metazoan 

tree of life (Telford, 2006). Much of the complication can be attributed to homoplasy; 

for instance obscure or strange morphology (as seen in Trichoplax) complicated by 

sparse numbers of useful morphological characters; to cases in which molecular data 

is exceedingly rapidly evolving making some groups phylogenetically unstable and 

predisposed to reconstruction artifacts such as LBA (Friedrich and Tautz, 1995; 

Hwang et al. 2001; Pisani et al. 2004; Lartillot and Philippe, 2008; Andrew, 2011). 

This would certainly be the case in Tardigrada, as it has been shown that this group 

suffers particularly from lack of phylogenetic resolution brought about by rapid 

molecular evolution (see molecular phylogenetic studies of Campbell et al. 2011 vs. 
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Meusemann et al. 2010) and difficulty in interpreting its morphology (i.e. having 

mixtures of panarthropod and cycloneuralian features; see Telford et al. 2008; 

Edgecombe, 2009; Campbell et al. 2011). 

Inherent biases in obscure or fast evolving taxa are not the sole reason why so many 

open questions remain in systematics. One of the biggest hurdles to improving 

phylogenetic resolution resides in the methods used to investigate those relationships, 

methods based on models of evolution that currently are not able to (fully) account for 

the real underlying evolutionary processes encountered in everyday phylogenetic data 

sets (Lartillot and Philippe, 2004; Foster, 2004; Kelchner, 2007). This notion is made 

even more apparent by the use of large scale data sets including hundreds of genes; as 

these data sets can introduce considerable non-phylogenetic signal due to model 

violations brought about by systematic error (Deulsc et al. 2005; Philippe et al. 

2005a; Nesnidal et al. 2010). Furthermore, inclusion of greater amounts of data does 

not diminish the overall magnitude of the problem of model violation, as it is now 

well known that although increasing the amount of data in a phylogenetic analysis can 

overcome problems of sampling error (i.e. stochastic error), the degree to which 

model violations occur (systematic bias) has been shown to increase according to the 

amount of data added (Delsuc et al. 2005; Kelchner et al. 2011).  

Many of the metazoan relationships have been proposed on grounds of morphology, 

with many of these groups now corroborated by molecular data; while others are 

refuted, such as Coelomata (Hyman, 1951), to Arthropoda and the Articulata 

hypothesis (Aguinaldo et al. 1997; Ruiz-Trillo et al. 2002; Philippe et al. 2005b; 

Sempere et al. 2007; Dunn et al. 2008; Holton and Pisani 2010). However, as already 

stated many areas of the metazoan tree lack substantial phylogenetic resolution, with 

persistent competing hypotheses of evolution recovered with high statistical support. 
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Lack of phylogenetic resolution for some of the major nodes on the tree of life likely 

stems from a handful of causes, for instance problems of differential rates of 

molecular evolution or long internodes caused by a recent origin of the crown group, 

and fast, deep radiations (Philippe and Laurent, 2005; Pisani et al. 2011). The build 

up of phylogenetic evidence over the years has made it apparent that the 

aforementioned problems typify particular metazoan lineages more than others; prime 

examples being the dual phylogenetic affinity for groups like Myriapoda 

(Mandibulata vs. Myriochelata) and Tardigrada (Panarthropoda vs. Cycloneuralia). 

Ultimately, the problems related to resolving evolutionary relationships like those 

seen in Arthropods and Ecdysozoa, resides in homoplasy – (similarity in different 

species brought about by convergent evolution) and how readily we can identify and 

deal with phylogenetic problems hindered by high levels of homoplasy.  

 

It has been said before that the best way in which to deal with the problems faced in 

modern day phylogenetics is to use a data source that minimizes homoplasy (Sperling 

and Peterson, 2009; Campbell et al. 2011). One such data set, with low levels of 

homoplasy is that of the recently discovered class of regulatory elements i.e. miRNAs 

(Lee et al. 1993). However, being homoplasy low is not the only prerequisite for a 

particular data type to resolve the intractable nodes in the metazoan tree. In addition, 

for miRNAs to be truly useful, they need to arise quickly enough as to characterize 

the divergences in question. Providentially miRNAs meet the above criteria, as they 

not only have beneficial properties that make them excellent phylogenetic markers 

(see section 4.1.2; Sperling and Peterson, 2009; Campbell et al. 2011, Tarver et al. 

2012), but they have been shown to arise rapidly enough to characterize most of the 

major metazoan lineages (Hertel et al. 2006; Sempere et al 2006; Heimberg et al. 
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2009; Wheeler et al. 2009; Sperling et al. 2010; Campo-Paysaa et al. 2011; but see 

Pisani et al. 2011). 

 

Since their relatively recent discovery, miRNAs have been scrutinized for the role in 

regulating the expression of genes (Bartel, 2004) but only over the last decade or so 

have they received notable attention for their phylogenetic utility. In the time since, 

miRNA complements have been investigated for some of the more problematic nodes 

of the animal tree of life, for example Annelida (Sperling et al. 2009b), Brachiopods 

(Sperling et al. 2011), Deuterostomia (Campo-Paysaa, 2011), Vertebrata (Heimberg 

et al. 2010), Porifera (Sperling et al. 2010) and the obscure Acoelomorpha (Philippe 

et al. 2011a). The success of miRNAs in phylogeny reconstruction is already clear, 

with some of the seemingly obvious phylogenetic relationships not finding support, 

leading to critical reappraisals of important evolutionary groups (e.g. Acoelomorpha 

and Xenoturbella now considered deuterostomes and not early bilaterians; Philippe et 

al. 2011a) to other cases in which support is recovered to corroborate longstanding 

classically studied phylogenetic relationships. Accordingly, in this thesis, miRNAs 

have been further demonstrated as a truly useful phylogenetic data type in which to 

investigate groups of related species, as for the first time, complements of miRNAs 

have been described throughout the four major groups of Arthropods (Rota-Stabelli et 

al. 2011) and also the arthropod sister phyla: Onychophora and Tardigrada (Campbell 

et al. 2011).  

 

Complications introduced by homoplasy, from instances of high level sequence 

saturation and LBA, to cases in which morphology can not provide adequate 

polarizing characters in which to resolve the position of a group, should, I think 
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encourage the phylogenetic community to seek phylogenetic precession elsewhere. 

Indeed, this has already begun, as there has been a large increase in the number of 

studies published presenting miRNA complements for metazoan groups. In essence, 

miRNAs provide a way in which to contribute to modern phylogenetic study, by 

introducing additional sources of phylogenetic data in which to test alternate 

competing hypotheses of evolutionary relationships. Although miRNAs do not 

provide the ultimate “fix all” solution to phylogeny reconstruction, as they do not 

represent a data set completely free of homoplasy (i.e. cases of secondary loss due to 

simplification; see Philippe et al. 2011a) they do represent an excellent platform in 

which to reappraise already established hypotheses based on traditional phylogenetic 

data types.  

 

4.4.2 Evaluating the strength of miRNA evidence: A case in Arthropoda  

In this chapter, I have already described the different strengths (i.e. continual addition, 

absence of convergent evolution, minimal loss and high conservation) and weakness 

(difficulty in demonstrating true absence) associated with the use of miRNAs for 

phylogeny reconstruction. However, I would like to draw attention to how a particular 

hypothesis, one corroborated by miRNA distribution, can be evaluated on the basis of 

additional evidence from new sources of genomic data.  

 

The first complete genome of a chelicerate species; the spider mite Tetranychus 

urticae was recently published (Grbic et al. 2011). This genome provided additional 

genomic data with which to test the robustness of miRNA results in support of the 

mandibulate affinity of the myriapod arthropods and the monophyletic status of 

Chelicerata. According to the distribution of arthropod miRNAs, the division of the 
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four main sub phyla is characterized by miRNA complements shared exclusively 

between Myriapoda (autapomorphy of miR-3930) and Pancrustacea: together referred 

to as Mandibulata (miR-282, miR-965); and Chelicerata (autapomorphy of miR-3931). 

No doubt the best way to ensure one obtains the clearest picture of miRNA 

distribution to polarize a group of taxa is by deep sequencing of small RNA libraries 

for all taxa concerned; however in the absence of these libraries the next best option is 

to mine complete genomes of related species.  

 

The recently published genome for T. urticae is the first fully complete and annotated 

genome for Chelicerata. This provides an excellent resource to facilitate the testing of 

the distribution of arthropod clade specific miRNAs, thereby allowing me to more 

precisely infer their validity. T. urticae is a plant pest and represents a particularly 

rapidly adaptive species, with one of the highest incidences of resistance to pesticides 

(Grbic et al. 2011). In addition to this species being highly adaptive to pesticides, T. 

urticae is particularly interesting as it has so far been shown to have the smallest 

known arthropod genome, estimated at 90Mb (Grbic et al. 2011). This is in stark 

contrast to its closest sequenced relative the acariform tick species Ixodes scapularis 

(with an uncompleted genome estimated at 2,100Mb). Presence of the proposed 

chelicerate specific miRNA miR-3931 in the reduced genome of T. urticae would 

provide additional strong evidence in favour of miR-3931 being a true genomic 

apomorphy of Chelicerata, but not a certainty, as complete genomes and small RNA 

libraries are still absent for many of the chelicerate lineages.  

 

In order to test the validity of the arthropod relationships supported by the distribution 

of clade specific miRNAs, I blasted the mature sequences (most conserved region of a 
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miRNA) of the panarthropod, arthropod, mandibulate, myriapod and chelicerate 

specific miRNAs against the complete genome of T. urticae. The only non-chelicerate 

specific miRNA for which we got significant blast hits were the two non-arthropod 

specific miRNAs, i.e. miR-276 and miR-305 that are present in Panarthropoda and 

Lobopodia respectively. Absence of the two arthropod specific miRNAs (miR-257, 

iab-4) is surprising, as these miRNAs have been recovered in all arthropod species 

analyzed in this thesis; while also being present in the closely related chelicerate 

species I. scapularis. None of the Mandibulate miRNAs were found in T. urticae, 

including the myriapod (miR-3930) and pancrustacean (mir-286) specific. The lack of 

Mandibulate specific miRNAs provides additional support in favour of the 

Mandibulata hypothesis, with miR-282 and miR-956 being true genomic apomorphies 

of mandibulates.  

 

Differently, and as expected, the chelicerate specific miRNA (miR-3931) from I. 

scapularis was found to be present in the genome of T. urticae. The T. urticae 

homolog of miR-3931 had a near complete identity (mismatch of 1 nucleotide at the 

3’ end). This sequence was then extracted with 100 bp flanking regions, and was 

subjected to RNA folding using the online folding software mFold (Zuker, 2003). It 

was then confirmed that the T. urticae sequence found to hit miR-3931, produced a 

canonical miRNA hairpin structure, with a minimal free folding energy value of -

19.10 Kcal/mol; see Figure 4.9. The fact that the blast hit sequence for T. urticae folds 

into a bona fide miRNA structure is convincing evidence to support the presence of 

miR-3931 in the genome of T. urticae. Presence of this miRNA allows me to infer 

with greater certainty that miR-3931 is a valid genomic apomorphy for Chelicerata. 
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Figure 4.9: pre-miRNA structure for chelicerate specific miR-3931 found in T. urticae. Free 

folding energy for T. urticae miR-3931 was found to be below the threshold of -20 kcal/mol (Ambros 

et al. 2003).  

 

 

The investigation of conserved, arthropod clade specific miRNAs against the first 

fully sequenced and annotated chelicerate genome, bolsters results of miRNA 

distributions in support of Mandibulata and the monophyly of Chelicerata  (Rota-

Stabelli et al. 2011). The absence of arthropod specific miRNAs (miR-275 and iab-4) 

is an unexpected result, but goes to further demonstrate that secondary loss of 

miRNAs can and does occur; particularly in species that are seen as rapidly evolving 

or that have significant genome size reductions (Sperling and Peterson, 2009; Philippe 

et al. 2011a). Conversely, the presence of the proposed chelicerate specific miRNA 

(miR-3931) is cogent evidence to support the true monophyletic status of Chelicerata, 

as miR-3931 is retained in a genome that had significant amounts of genome 

reduction in the course of its evolution.  

 

 

4.5 Conclusion 

Considering the evidence presented in this Chapter, a number of statements can be 

made about the evolution of one of the oldest and most diverse group of animals to 



! "#"!

ever exist. In conclusion, the results of investigations into the distribution of highly 

conserved, and tightly controlled genome regulatory elements or miRNAs, supports 

many of the classically defined phylogenetic hypotheses for arthropods and their two 

closest relatives, the onychophorans and tardigrades.  

 

From the analyses of the miRNAs within the arthropods themselves, I have found 

evidence to support Mandibulata, a classical hypotheses grouping Pancrustacea and 

Myriapoda; with all groups possessing biting mouthparts or mandibles (Nielsen, 

2001). In light of miRNA corroboration, previous analyses of traditional molecular 

sequence data in support of Chelicerata + Myriapoda (Friedrich and Tautz, 1995; 

Hwang et al. 2001; Cook et al. 2001; Pisani et al. 2004; Mallatt and Giribet 2006), 

must on the face of mounting evidence be due to phylogenetic reconstruction artifacts 

(Rota-Stabelli et al. 2011), made even more likely by the sparsity of morphological 

evidence for Myriochelata.    

 

Lastly, the investigation of miRNAs in the closest living relatives to Arthropoda, 

supports the monophyletic status of Panarthropoda to include Tardigrada as the 

earliest branching phylum sister group to a clade composed of Onychophora plus 

Arthropoda (Lobopodia). Reflecting on previous molecular support for the inclusion 

of Tardigrada within the Cycloneuralia sister to nematodes (Sørensen et al. 2008; 

Roeding et al. 2009; Meusemann et al. 2010; Andrew, 2011) I must here infer that the 

most likely explanation for this grouping is again down to a case of artifactual LBA, 

between the fast evolving tardigrades and nematodes (Campbell et al. 2011).  
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Contrary to substantial evidence in support of alternate placements of myriapods and 

tardigrades within Arthropoda and Ecdysozoa, considering the strength of miRNA 

evidence due to their unique and beneficial properties for phylogeny reconstruction; I 

must conclude with confidence: that Arthropoda is composed of Mandibulata sister to 

group to chelicerates, with Panarthropoda composed of Tardigrada sister group to 

Lobopodia. The work presented here, I feel, will provide substantial phylogenetic 

resolution to questions of evolutionary relations that currently are still hotly debated 

despite the long history of phylogenetic investigations into these fascinating animals. 
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Chapter 5 

“Classical” molecular data & the 

within-Ecdysozoa phylogeny    

 

5.1 Overview 

The study of the evolutionary relationships between the major metazoan groups, from 

the level of Phyla down to the level of genus and species, has traditionally relied 

heavily upon large matrices of morphological characters (Pisani et al. 2007) analysed 

using simplistic phylogenetic reconstruction methods such as Maximum Parsimony 

(MP). Previous studies focusing on these characters and methods often yielded highly 

unresolved phylogenies or incompatible sets of relationships, possibly due to 

widespread problems with character coding and homology assessment (e.g. Scotland 

et al. 2003).  From this point of view molecular data is generally viewed as being less 

ambiguous than morphological data, even though homology assessment is not 

straightforward also with reference to molecular data.  However, as pointed out by 

Scotland et al. (2003) certainly molecular data has the advantage of providing a 

greater number of observable characters. Furthermore, molecular data can be 

subjected to better phylogenetic analyses as model development for morphological 

data in a likelihood or Bayesian framework has lagged behind, with the Lewis model 

(Lewis, 2001) which is equivalent to a Jukes and Cantor model for nucleotidic data 

(Jukes and Cantor 1969) being still the only available option.  
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Phylogenetic analyses utilizing molecular sequence data started to emerge during the 

eighties.  Following Carl Woese seminal work on the tree of life (Woese et al. 1990) 

the most commonly used molecule in early phylogenetic studies became the Small 

Subunit rRNA (SSU rRNA – that in Metazoa is the 18S rRNA).  Indeed, the earliest 

molecular phylogeny of the Metazoa was also based on the study of an 18S SSU 

rRNA data set (Field et al. 1988).   

Since then also the 28S rRNA (Large Subunit – LSU) has been widely used often in 

combination with the 18S rRNA.  The legacy of these studies is that the SSU rRNA is 

the taxonomically better sampled gene in the NCBI database.  Indeed, one can say 

that the use of ribosomal sequences, primarily 18S (SSU) and 28S (LSU) rRNA, 

typify the “classical” period in metazoan molecular phylogenetics.  SSU and LSU 

rRNA have indeed many interesting features for the study of animal phylogenetics, as 

they can be applied over large evolutionary distances (Field et al. 1988; Philippe and 

Germot, 2000; Peterson and Eernisse, 2001).  In addition, because they have a stem-

loop based three-dimensional structure they contain regions that evolve at very 

different rates.  Thus, careful site selection from the same rRNA alignment allows 

investigation of problems at different phylogenetic depth (Mallatt and Giribet, 2006).  

 Despite the SSU being the best sampled RNA molecule in NCBI today, many early 

classical molecular phylogenetic studies suffered from sparse taxonomic sampling 

(Giribet et al. 1996; Garey et al. 1996; Moon and Kim, 1996; Garey et al. 1999).  In 

addition, because of a lack of adequate methods and models, they often failed to 

account for unequal rates of nucleotide substitution in the different taxa (Ballard et al. 

1992; Winnepenninckx et al. 1995; Aguinaldo et al. 1997; Felsenstein, 2004) as well 

as compositional biases leading to phylogenetic artifacts and low statistical support 

for important nodes (Hillis et al. 1993).  
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More recently, studies of animal evolution that use rRNA had a much wider taxon 

sampling (Spears and Abele, 1997; Zrzav! et al. 1998; Giribet and Ribera, 2000; 

Peterson and Eernisse, 2001; Mallatt and Giribet, 2006) while also taking measures to 

counteract the detrimental effects of including species that have high substitutional 

saturation, unequal rates of substitution and compositionally biased sequences. 

An obvious success of rRNA data in animal phylogenetics was the recovery (by 

Aguinaldo et al. 1997) of Ecdysozoa.  This study refuted both the Coelomata 

(Hyman, 1951) and the Articulata (Anderson, 1973) hypothesis, which were at that 

time considered fairly well supported clades (but see Eernisse et al. 1992 for a 

different opinion). Ecdysozoa has since received much support from subsequent 

analyses of other rRNA data sets (Giribet and Ribera, 1998; Giribet et al. 2000; 

Peterson et al. 2001; Mallatt et al. 2004; Mallatt and Giribet, 2006; Telford et al. 

2008), large scale phylogenomic analyses (Philippe et al. 2005b; Hejnol et al. 2009; 

Holton and Pisani, 2010; Rota-Stabelli et al. 2011; Campbell et al. 2011) and other 

molecular data sources, for e.g. mitochondria (Bourlat et al. 1999; Rota-Stabelli et al. 

2010). 

Morphological analyses in support of ecdysozoan relationships (Eernisse et al. 1992; 

Schmidt-Rhaesa, 1998) generally recognise the subdivision of Ecdysozoa into 

Panarthropoda (Arthropoda, Onychophora, Tardigrada; sensu Nielsen, 2001) and 

Cycloneuralia (Nematoida, Priapulida, Kinorhyncha, Loricifera; sensu Ahlrichs, 

1995); However, despite the increase of molecular phylogenetic studies of Ecdysozoa, 

competing hypotheses for the relationships among the ecdysozoan constituent phyla 

remain to be resolved; both from a molecular and morphological point of view 

(Telford et al. 2008; Campbell et al. 2011).  
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Within the Ecdysozoa, for e.g. the group Nematoida (Nematoda + Nematomorpha) 

which has strong morphological support (Schmidt-Rhaesa, 1996) has been recovered 

as a monophyletic group using rRNA (Zrzav! et al. 1998; Garey et al. 2001; Giribet 

et al. 2000; Mallatt et al. 2004; and Mallatt and Giribet, 2006); whilst the studies of 

Giribet et al. (2000) and Peterson and Eernisse (2001) which utilized the same data 

type did not recover any support for monophyly of Nematoida. Similarly, rRNAs 

have yet to resolve the interrelationships of the panarthropod phyla.  Although it is 

now generally accepted that Onychophora are the most likely sister group to 

Arthropoda (Edgecombe, 2010), early analyses supported the inclusion of 

Onychophora within the Arthropoda (Ballard et al. 1992).  Further to this, subsequent 

analyses recovered multiple competing hypotheses for the placement of Tardigrada 

within Ecdysozoa. The earliest analyses of 18S rRNA supported a sister group 

relationship between water bears and arthropods (Garey et al. 1996; Giribet et al. 

1996; Garey et al. 1999) while later analyses suggested either a sister group 

relationship with Onychophora (Garey et al. 2001; Mallatt et al. 2004; Mallatt and 

Giribet, 2006), Lobopodia (Giribet et al. 2000; Garey et al. 2001) or alternatively a 

placement of Tardigrada within the Cycloneuralia as the sister group to Nematoda 

(Giribet and Ribera, 1998; Giribet and Wheeler, 1999; Park et al. 2006; Sørensen et 

al. 2008). !

The remaining ecdysozoan phyla, which make up the Scalidophora (Priapulida, 

Kinorhyncha, and Loricifera; sensu Schmidt-Rhaesa, 1998) are equally problematic to 

resolve. The main issue for these phyla is their lack of sufficient taxon sampling in 

previously published phylogenetic analyses (Halanych, 2004). Support has been 

recovered for a number of competing phylogenetic hypotheses regarding 

Scalidophora; ranging from: Priapulida + Kinorhyncha (Garey et al. 2001; Mallatt 
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and Giribet, 2006; Campbell et al. 2011), Kinorhyncha + Nematomorpha (Hejnol et 

al. 2009) or Priapulida + Kinorhyncha + Nematoda (Dunn et al. 2008). However, 

these analyses all lack sufficient taxon sampling to be able to posit scalidophoran 

relationships with any substantial level of phylogenetic precision. This is particularly 

true of the Loricifera.  Loricifera is one of the most recently discovered metazoan 

phyla (Kristensen, 1983) and so it is one of the least explored in terms of its 

evolutionary relationships (Park et al. 2006; Sørensen et al. 2008). To compound the 

lack of data and lack of inclusion in previous analyses, the study of Park et al. (2006) 

failed to find any significant support for placement of Loricifera within Ecdysozoa.  

This leaves us with only one relevant study, that of Sørensen et al. (2008) which 

included two loriciferan species and tentatively supported a relationship of this 

phylum with the Nematomorpha.  

In this Chapter, given the abundance of SSU and LSU sequences in NCBI, I will 

investigate the evolutionary relationships of Ecdysozoa using these classic molecular 

markers.  The aims of the analyses presented here are two.  The first is to evaluate the 

extent to which the results we obtained using ESTs and miRNA are confirmed by the 

classic ribosomal markers.  The second is to exploit the good taxonomic sampling 

available for this marker in order to attempt drafting a complete (i.e. including 

representative of all phyla) ecdysozoan phylogeny. 
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5.2 Materials and Methods 

5.2.1 Alignment assembly  

Two alignments were generated for the analyses presented in this Chapter. The main 

base-alignment (referred to here as alignment A) comprises a 50 taxon nuclear SSU 

and LSU rRNA gene dataset based on the alignment of Mallatt and Giribet (2006), 

and the second (referred to here as alignment B) is based on the same 50 taxon data 

set, but includes additional sequences for two species of Loricifera (Nanaloricus. sp. 

and Pliciloricus sp.). The starting alignment of Mallatt and Giribet was chosen for its 

quality (it was originally aligned using ribosomal secondary structure information, 

and only positions from easily aligned conserved regions were retained). However, 

differently from Mallatt and Giribet (2006) possible pseudogenes (e.g. for 

Hanseniella and Sphaerotheriidae – c.f. Mallatt and Giribet 2006) were not 

considered. The original alignment properties were kept, with the alignment length 

retained at 3,853 nucleotides as in the original Mallatt and Giribet dataset. The taxon 

sampling of Mallatt and Giribet was altered by deleting some of the taxa they used 

(41 ingroup arthropods) while also adding in complete or nearly complete SSU and 

partial LSU sequences for five tardigrades, five onychophorans and two loriciferans.  

The new sequences were obtained by blasting the NCBI database with Peripatoides 

and Milnesium SSU and LSU sequences. In addition, in order to reduce the 

computational burden, I reduced the sampling of over represented taxa such as 

Pancrustacea in the arthropods, keeping mostly moderately evolving taxa, also 

removing the two very fast evolving nematodes Meloidogyne and Caenorhabditis and 

the most fastest evolving of the Onychophora - Peripatus sp. The resulting rRNA 

alignments averaged 13.1% and 15.8% missing data for alignment A and B 
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respectively (see Table 5.1), and comprised in total 23 Arthropoda, 6 Onychophora, 6 

Tardigrada, 3 Nematoda, 2 Nematomorpha, 5 Scalidophora and 7 outgroups to the 

Ecdysozoa. 

!

5.2.2 Phylogenetic analysis 

All phylogenetic analyses were conducted under a Bayesian framework using 

PhyloBayes 3.2e (Lartillot et al. 2009). We first compared the fit of alternative 

models of evolution to our rRNA dataset excluding species for Loricifera. This was 

performed using Bayesian cross-validation (Stone, 1974) to rank the fit of alternative 

substitution models to the data. The models compared in this analysis were GTR+!, 

CAT+!, and CAT-GTR+!. Phylogenetic analyses of the rRNA datasets were 

performed under each model, and results were compared to evaluate whether different 

phylogenies were obtained when different-fitting models were used. Full details of 

how phylogenetic analyses were performed for these analyses see section 4.2.2 of 

Chapter 4.!!

!

!
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!

Table 5.1: Percent of missing data for all 52 ecdysozoan taxa. Asterisks (*) indicate species absent 

from Mallatt and Giribet (2006) that were added as part of these analyses (see section 5.2.1).  
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5.2.3 Generating site stripping and signal dissection data sets 

Site stripping analyses were performed using the Slow-fast method of (Brinkmann 

and Philippe, 1999) to estimate the rate of substitution of the sites in both alignments 

A and B. Parsimony scores for every site in each of the alignments were calculated 

for groups in our taxon set had constrained monophyly: these groups are as follows; 

alignment A: - (Pancrustacea, Myriapoda, Chelicerata, Tardigrada, Onychophora, 

Nematoda), alignment B: - (Pancrustacea, Myriapoda, Chelicerata, Tardigrada, 

Onychophora, Nematoda, Scalidophora). The rate of each site, in both alignments, 

was then independently estimated as the sum of their parsimony scores across all 

considered monophyletic groups. All parsimony analyses were performed using 

PAUP4b10 (Swofford, 2002). Sites in both alignments were then ranked according to 

their substitution rate and partitioned into classes. Both alignments had near identical 

rate distributions (max parsimony steps of 14 vs. 11) but differed in the number of 

sites found to be in a particular rate class, this is due to the alignment B including 

Loricifera (3,883 nucleotides) which had a larger fraction of fast evolving sites with 

reference to the remaining species we retained from Mallatt and Giribet (2006).  

Partitioned alignments were then generated according to the distribution of site rates, 

by systematically removing (i) approximately the fastest 5% of the sites, that is, all 

characters with a slow-fast–estimated rate of five or more steps (total number of sites 

remaining in alignment A: 3,580; alignment B: 3,619; (ii) approximately the fastest 

10% of the sites, that is, all characters with a slow-fast–estimated rate of four or more 

steps (total number of sites remaining in alignment A: 3,439; alignment B: 3,449); 

(iii) approximately the fastest 15% of the sites, that is, all characters with a slow-fast–

estimated rate of three or more steps (total number of sites remaining in alignment A: 

3,220; alignment B: 3,224). No additional data sets were created after removal of the 
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fastest 15% of sites, as the rate of the remaining sites was extremely low; at a rate of 2 

parsimony steps or less. However, a signal dissection analysis (Sperling et al. 2009a) 

was also performed, this was to examine the phylogenetic signal present in the data 

set containing only the fastest 10% of sites (414 nucleotides). This data set was then 

independently analysed in conjunction with the slow-fast partitioned data sets 

excluding the fastest 5%, 10% and 15% of sites. 

 

5.2.4 Taxon pruning analyses  

%&!'()!*+,)!,+&&)-!+*!./-!'()!012!+&+34*)*5!'()!-678!9+'+!*)'*!:)-)!+&+34;)9!<&!

/-9)-! '/! )=+,<&)! '()! )..)>'! /.! '+=/&! *+,?3<&@! /&! '()! -)>/A)-4! /.! +3')-&+')!

?(43/@)&)'<>!(4?/'()*)*!:<'(<&!0>94*/;/+B! It is well known that the number and 

nature of the taxa used can affect phylogenetic inference and, in particular, can 

exacerbate or reduce LBA (Aguinaldo et al. 1997; Philippe et al. 2005b; Holton and 

Pisani et al. 2010). Therefore I carried out two taxon-pruning experiments to evaluate 

the robustness of the RNA results.  In the first, all slowly evolving ecdysozoan 

outgroups were excluded: the nematomorphs Chordodes morgani and Gordius 

aquaticus, and the scalidophorans Halicryptus spinulosus, Priapulus caudatus and 

Pycnophyes sp.  This left the Nematoda as the sole, long branched outgroup. In the 

second experiment the onychophorans Euperipatoides leuckarti, Metaperipatus inae, 

Opisthopatus cinctipes, Peripatopsis sedgwicki, Ooperipatellus sp. and the 

tardigrades Ramazzottius oberhauseri, Richtersius coronifer, Dactylobius octavi, 

Halobiotus crispae, Bertolanius sp. were excluded.  This left both the Onychophora 

and the Tardigrada represented by a single uninterrupted branch. Taxon pruning 

experiments were performed on alignment A solely, this was because the branch 
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leading to Loricifera was the longest within my data set, indicating this group were 

the most unstable within our data set; therefore the species Nanaloricus. sp. and 

Pliciloricus sp. were excluded to avoid unwanted LBA artifacts.  

 

5.3 Results 

5.3.1 Deep divergences require site-heterogeneous models 

Prior to conducting phylogenetic analysis of the RNA data sets, I ranked the fit of 

alternate substitution models to the data; with the aim of avoiding encountering 

systematic errors and the generation of tree biased by phylogenetic reconstruction 

artifacts. I first performed Bayesian crossvalidation (Stone, 1974) to rank substitution 

models according to their fit to the alignment. The substitution models tested in these 

analyses were the mechanistic GTR+! model, and the more complex heterogeneous 

mixture models CAT+!, and CAT-GTR+!. The results of the crossvalidation 

analyses are presented in Figure 5.1, in which they show the GTR+! (Figure 5.1a) 

model fits the dataset significantly less well than either the site-heterogeneous 

CAT+! (Figure 5.1b) or CAT-GTR+! (Figure 5.1c) model. It is apparent that the 

model GTR+! fits the data least, however results of these analyses do not clearly 

indicate which of site-heterogeneous models fits the data better. Despite CAT-GTR+! 

having a marginally better fit to the data, it is difficult to discriminate statistically 

between the two site-heterogeneous models for this data set, thus preventing me from 

drawing precise phylogenetic conclusions on the base of model fit alone. In addition 

to the three models discussed above, I also expanded model selection to include the 

Q-Matrix mixture model (QMM); this model employs multiple Q-Matrices each with 
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!  Figure 5.1: Bayesian crossvalidation and Phylogenetic analysis support monophyletic 

Panarthropoda and the paraphyletic nature of Cycloneuralia. Compared models: GTR+!, CAT+! 

and CAT-GTR+!. (a) Tree obtained under GTR+! (i.e. under the reference model). (b) Tree obtained 

under CAT+!. (c) Tree obtained under CAT-GTR+!. The affinity of Tardigrada to Onychophora is 

model dependent. " log-likelihoods and standard deviations are shown for each model. The reference 

model is GTR+! and positive "-likelihood values identify a model with better fit than the reference 

model. Clades coloured for clarity, Onychophora (blue), Tardigrada (red), Nematoda (green); Node 

connecting Tardigrada highlighted by gold star.  

 

their own distinct set of exchange rates and equilibrium frequencies. The !-likelihood 

value obtained in the crossvalidation analysis for the QMM model was exactly equal 

to that of CAT-GTR+". Analyses under QMM are considerably more 

computationally expensive as QMM in essence uses multiple GTR matrixes; therefore 

this model was not considered in subsequent analyses.  

 

5.3.2 rRNA supports the inclusion of Tardigrada within Panarthropoda and           

the paraphyletic nature of Cycloneuralia 

Results of analyses under all considered models support Panarthropoda ((Posterior 

probability (PP) = 0.72, 0.99 and 1.0 for GTR, CAT and CAT-GTR respectively; see 

Figure 5.1)), while also supporting the paraphyletic origin of Cycloneuralia. However, 

exact topological relationships of the Tardigrada and Onychophora were model 

dependent. More precisely, the CAT model supports Tardigrada as the sister group of 

Lobopodia (PP=0.73; Figure 5.1b) while GTR and CAT-GTR support a sister group 

relationship between Onychophora and Tardigrada (PP = 1.0 and 0.59 for GTR and 

CAT-GTR; Figure 5.1a,c). Similar topological disagreement between the CAT model 

and the models GTR and CAT-GTR were observed in regard to the mono- vs 

paraphyletic nature of Nematoida (Nematoda + Nematomorpha); CAT was the only 

model found to support the monophyletic origin of Nematoida (PP=0.78). In a change 
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of support, some agreement between models was obtained as all models corroborated 

the paraphyletic origin of Cycloneuralia, with GTR, CAT and CAT-GTR supporting 

this topology with a PP = 0.99, 0.92, 0.96 respectively.  Finally, the topological 

relationships for the remaining ecdysozoan taxa are in broad agreement with one 

another across all models, with one exception; GTR was the only model found to 

recover Myriapoda as the sister group to Chelicerata (PP = 0.99; i.e. Myriochelata 

hypothesis) in contrast to CAT and CAT-GTR which both supported the 

monophyletic origin of Mandibulata (PP = 0.32 and 0.85). 

 

5.3.3 Methods to uncover phylogenetic biases further support artifactual nature 

of Tardigrada plus Nematoda 

In the analysis I present in this section, my aim is to understand the potential for 

phylogenetic artifacts as a result of model misspecification, presence of over saturated 

sites and the effect of reduced taxon sampling on the recovery of the different 

phylogenetic hypotheses supported in previous molecular studies of Ecdysozoa. 

Similarly to the rationale of experimental design presented in the EST Chapter of this 

thesis, I hypothesised that the suspected artifactual nature of Tardigrada sister group 

to Nematoda, obtained in previous analyses (e.g. Sørensen et al. 2008) being the 

result of LBA, should find support for this grouping to be highest in the data sets 

containing the largest proportion of fast evolving sites. Correspondingly, the opposite 

trend should be expected, in that support for the inclusion of Tardigrada within 

Panarthropoda would be maximised in the data sets excluding those fast evolving 

sites. 
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Results obtained from the series of slow-fast analyses (Brinkmann and Philippe, 

1999) of the site rate partitioned data sets (generated for alignment A, see section 

5.2.1) are again consistent with my hypothesis, in that all analyses conducted on the 

slowest evolving site partitions uniformly recover a monophyletic origin of 

Panarthropoda, while none of these analyses support the inclusion of Tardigrada 

within Cycloneuralia. Results of these analyses are summarized in Figure 5.2 and 

Table 5.2. Unsurprisingly, the most evident finding from these analyses is that no  

 

Figure 5.2: Summary of 18s + 28s rRNA site stripping analyses with 15% cut-off.                       
Analyses under all three (GTR+ !, CAT+ !, CAT-GTR+ !) considered models support the inclusion 
of Tardigrada within a monophyletic Panarthropoda under all considered site-stripping cut-offs (5%, 
10% and 15% of the fastest sites – see Methods and Table. 5.2). Elimination of the fastest 15% of sites 
for the GTR+! and CAT-GTR+! results in trees converging on Lobopodia.  Support for Lobopodia 
peak in CAT+ ! analyses when the fastest 15% of the sites are excluded (see Table 5.2) but at cut-offs 
of 10 and 15% Onychophora is found to nest within Arthropoda. Support values shown are Posterior 
probabilities (PP), (n/a) = not supported. Data set used in these analyses was alignment A (see 
Methods). * Indicates artifactual position of Pycnogonida sister group to the myriapods. 
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matter the degree to which fast evolving sites are removed (5%, 10% or 15%) support 

is never diminished for the monophyletic origin of Panarthropoda; in fact, we observe 

an overall increase in support for Panarthropoda across all models (GTR, CAT, CAT-

GTR); particularly across all slow-fast data sets analysed under GTR (PP = 1.0). In 

addition, when 15% of the fastest sites were removed, I observed a switch in topology 

for both GTR and CAT-GTR in regards to the monophyly of Nematoida, to where all 

models (including CAT) now supported this group with near full PP support (see 

Figure 5.2).  

Interestingly in the signal dissection analysis of the fastest evolving 10% of sites in 

the alignment (see Table. 5.2) all considered models (GTR, CAT, CAT-GTR) 

obtained weak PP support for topologies that were biologically implausible, with 

groups like Panarthropoda, and Lobopodia never recovered. Instead, spurious groups 

of taxa were recovered across all models, for instance Onychophora was found as the 

sister group to a clade composed of arthropods, tardigrades, nematodes and 

nematomorphs.  Minor support was obtained for a Tardigrada – Nematode affinity, 

however the longest branched nematode (Trichinella sp.) was the only nematode to be 

recovered in such a position. The results of these signal dissection analyses clearly 

indicate that the data set containing only the 10% of fastest site is one that contains a 

high noise-to-signal ratio; accordingly these results have little phylogenetic utility on 

deciphering the relationships of Ecdysozoa.  Signal dissection, albeit irrelevant here 

when trying to better understand the phylogenetic relationships among the Ecdysozoa, 

did confirm that the exclusion of the 10% fastest evolving sites from our data set 

could not have caused a loss of important phylogenetic signal. 
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Table 5.2: Support summary for all Slow-fast analyses performed on alignment A. In all of the 

SF analyses, nearly full support was recovered for the monophyletic origin of Panarthropoda, yet 

support for the relationships of Tardigrada and Onychophora were model dependent. The details of 

support values are given at the bottom of the table.   

In a final test, taxon-pruning experiments were conducted to evaluate further the 

robustness of my RNA results. This was done by selectively removing taxa (see 

section 5.2.4) to generate uninterrupted long branches for Tardigrada, Onychophora, 

and Nematoda. Results of these analyses are presented in Figure 5.3; and show that 

the affect of removing specific taxa to exacerbate LBA had no effect on the position 

of Tardigrada. One apparent trend observed in these taxon pruning experiments was 

the overall loss of support for Lobopodia, with some analyses supporting unlikely 

affinities for Onychophora (see Figure 5.3c). Accordingly, interpretation of these 

experiments suggest that this new rRNA data set, when analyzed using complex 

models of evolution like CAT+! and CAT-GTR+! (which fit the data markedly 

better), or alternatively even poor fitting site-homogeneous models (GTR+!) is robust 

against the recovery of artifactual topologies brought about by LBA.  

 

Concluding, it is clear that adequate phylogenetic signal is present within this data set, 

phylogenetic signal that undoubtedly supports the panarthropodan affinities of the 

Tardigrada. However, according to the results of SSU/LSU rRNA analyses presented  
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here (which are model dependent) validation of Lobopodia warrants further 

investigation as this group is only partially supported in these analyses.  

 

 

5.3.4 Maintaining support for Panarthropoda and the weak phylogenetic signal 

for the placement of Loricifera  

Following from initial phylogenetic analyses using rRNA, I wanted investigate the 

phylogenetic placement of Loricifera within the Ecdysozoa. Currently, there are scant 

numbers of molecular phylogenetic studies that deal with the placement of Loricifera 

(Park et al. 2006; Sørensen et al. 2008). In the most recent analyses including data for 

this phylum, there is some evidence to suggest the placement of Loricifera resides 

with the parasitic horsehair worms (Nematomorpha) (Sørensen et al. 2008). However, 

this position disagrees with established morphological support in favour of a 

monophyletic sister group relationship between Nematoda and Nematomorpha 

(Nematoida; Schmidt-Rhaesa, 1998; Nielsen, 2001). In addition to this unlikely 

position for Loricifera, Sørensen et al. (2008) also recover a sister group position of 

Tardigrada + Nematoda.  

Preliminary analyses of the rRNA data set that includes full and partial SSU (18S) 

sequences for two species of Loricifera was carried out using the models (GTR, CAT, 

and CAT-GTR) on the full length alignment (see section 5.2.1). The results of these 

analyses are shown in Figure 5.4a,b; which support the sister group relationship 

between Loricifera and Onychophora, a position recovered across all evolutionary 

models considered (PP = 0.64, 0.53, 0.55 for GTR, CAT and CAT-GTR 

respectively). However, this position is highly likely to be artifactual, as neither 
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morphological nor molecular sequence data has been found previously to support 

such a relationship. 

 

 

Figure 5.4: Unresolved position of Loricifera due to weak phylogenetic signal.                          

Phylogenetic analysis of rRNA data set including two species for Loricifera. Analyses performed under 

all models (GTR+!, CAT+!, CAT-GTR+!) on the full alignment, recover the same artifactual 

position of Loricifera as the sister group to Onychophora. (a) Consensus topology of all three 

considered models supports Loricifera as sister to Onychophora. (b) Radial tree of same topology 

highlighting the extremely long branch for Loricifera.  

 

Furthermore, the amount of missing data within this data set is greatest for these two 

phyla, averaging 57.2% for Onychophora and 67.0% for Loricifera. The long branch 

connecting the Loricifera to the rest of the tree is obvious from Fig. 5.4b, and 

confirms the unlikely nature of this result.  The large amount of missing data in these 

species could have caused problem with ancestral character state optimisation (under 

ML and Bayesian analyses gapped sites are inferred as those maximising the 
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likelihood for the considered site).  In any case it seems likely that genuine 

phylogenetic signal is low for these two groups, which would increase the ratio 

between noise and phylogenetic signal. Unsurprisingly, inclusion of data for 

Loricifera had the effect of dramatically reducing the support for a monophyletic 

origin of Panarthropoda, likely due to the unstable placement of Loricifera.   

 

 

Table 5.3: Support summary for all Slow-fast analyses performed on alignment B.                  

Results of the SF analyses highlight unstable nature of Loricifera, as multiple placements are 

recovered; either within Panarthropoda, sister group to Nematomorpha, or within a monophyletic 

Scalidophora. Support was however maintained for the monophyly of Panarthropoda, but again the 

relationships of Tardigrada and Onychophora were model dependent. The details of support values are 

given at the bottom of the table. 

 

In a final attempt to uncover genuine phylogenetic signal, I performed another series 

of site-stripping experiments using the slow-fast technique (Brinkmann and Philippe, 

1999). To do this I progressively removed sites from the alignment, resulting in three 

additional data sets excluding the fastest evolving 5%, 10% and 15% of sites from the 

alignment (section 5.2.3) and then analysed these using the two best fitting models 

(CAT+!, CAT-GTR+!) identified from the crossvalidation analysis (section 5.3.1). 

Analyses performed on these more rate homogeneous data sets, with the analysis of 

the slowest 95% of sites shown in figure 5.5 (also summarized in Table 5.3) resulted 



! "#$!

in a number of topological changes compared to results found from the original full-

length data set. Most notably was the now lack of support for a sister group position 

of Loricifera and Onychophora, Loricifera was instead recovered as the earliest 

branching phylum within a monophyletic Scalidophora, a position recovered under 

both models (CAT+!: PP = 0.74 and CAT-GTR+!: PP = 0.62) when analyses were 

performed on the most site-homogeneous data set (15% cut-off). This position was 

also found under CAT+! for the less stringent cut-offs (5% and 10%), however  

 

 

Figure 5.5: Site stripping analysis including sequences for Loricifera. Topology generated by 

analyzing the dataset (alignment B) with 5% of the fastest sites removed. Analyses performed under 

both CAT+! and CAT-GTR+!. Moderate PP support is recovered for the inclusion of Loricifera 

within a monophyletic Scalidophora (under CAT-!), while CAT-GTR-! supports Loricifera + 

Nematomorpha with weak PP support. Alternate position of Loricifera and Tardigrada recovered under 

CAT-GTR+! indicated by dashed branches. Asterisks indicate artifactual position for Pycnogonida.   
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support was reduced in both cases (see Figure 5.5); while CAT-GTR+! weakly 

supported either a branching position of Loricifera between the remaining 

scalidophorans and the other Ecdysozoan taxa, or alternatively as the sister group to 

Nematomorpha (weak PP of 0.29; see Figure 5.5). As a consequence of the recovery 

of Loricifera within Cycloneuralia, high support was again recovered for the 

monophyly of Panarthropoda, peaking under both CAT+! (PP = 0.99) and CAT-

GTR+! (PP = 0.97) when analysing the data set with 15% of the fastest sites removed 

(see Table 5.3). However, within Panarthropoda, the recovery of Lobopodia versus a 

sister group relationship of Tardigrada + Onychophora was again model dependent, 

with CAT+! weakly supporting Lobopodia for all three site-stripped data sets (See 

Table 5.3). Conversely, support for Lobopodia was only recovered under CAT-

GTR+! for the most site-homogeneous data set (15%), yet CAT-GTR+! and CAT+! 

both recovered Onychophora to be within a partially unresolved Arthropoda under 

this most stringent of the site-stripped data sets. 

 

 

5.4 Concluding remarks 

Since the earliest days of molecular phylogenetics, the phylogenetic utility of rRNA 

molecules has been recognised (e.g. Woese et al. 1990).  With reference to Metazoa, 

the work of Aguinaldo et al (1997) was the first to introduce the now well-accepted 

‘new animal phylogeny’. Following from this classic study, many of the now well-

accepted hypotheses of relationships among the major metazoan groups were 

proposed from the analyses of rRNA data e.g. Arthropoda: (Giribet and Ribera, 

1998); Annelida: (Rousset et al. 2004).  
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With reference to the Ecdysozoa, different studies based on rRNA data obtained 

multiple well supported competing hypotheses e.g. Giribet et al. (1996) and Garey et 

al. (1999) versus Garey et al. (2001) and Mallatt and Giribet (2006) with reference to 

the position of the Tardigrada.  Accordingly, given also that only rRNA data are 

available for all phyla within Ecdysozoa, I attempted to establish a reliable rRNA-

based ecdysozoan phylogeny.  To do so I modified the well curated 18S + 28S rRNA 

dataset of Mallatt and Giribet (2006) to which I added sequences for underrepresented 

lineages (Tardigrada, Onychophora, Loricifera) while also removing some of the most 

rapidly evolving and over represented taxa. This dataset was subjected to model 

selection, taxon pruning and site-stripping experiments, and allowed generation of yet 

another independently acquired set of phylogenies to describe the evolution of 

Ecdysozoa.  It has been noted, and widely discussed in this thesis, that one of the best 

proxies for phylogenetic accuracy is the congruence of independent data sets (Pisani 

et al. 2007; Campbell et al. 2011). In relation to the work presented in the preceding 

Chapters of this thesis, here, a further line of evidence to test the ecdysozoan 

phylogeny has been presented.  

The results of the rRNA analyses found further support for clades found by our EST 

and miRNA analyses e.g. Panarthropoda (Nielsen, 2001). Cycloneuralia (Ahlrichs, 

1995) is supported by our rRNA analyses and this is also congruent with the results of 

our miRNA and EST analyses.  Considering previous morphological support, in the 

recent publication of Telford et al. (2008), the authors were in favour of the 

paraphyletic origin of Cycloneuralia. Scalidophora is supported as a monophyletic 

group in these rRNA analyses.  According to this study the Loricifera might also be 

true scalidophorans, a position highly supported by morphology (Nielsen, 2012; but 

see Nielsen, 2001 for ref).  This result is interesting because it has not been previously 
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obtained from the analyses of rRNA or other types of molecular data.  However, there 

is morphological evidence that could support it as the Loricifera share with the other 

scalidophorans the possession of an introvert with scalids and the presence of two 

rings of retractor muscles on the introvert (Heiner and Kristensen, 2005; Telford et al. 

2008).  An association of the Loricifera to the scalidophorans is thus expected 

(morphologically speaking) but needs further confirmation as support was low in 

these molecular analyses, additionally the high amount of missing data in the 

loriciferan sequences is potentially problematic (see above).  

 

Within Panarthropoda, our rRNA analyses provide further support for a sister group 

relationship of Tardigrada + Lobopodia (Onychophora + Arthropoda).  This result, 

which contradict previous finding by Mallatt and Giribet (2006) is in agreement with 

my miRNA and EST analyses.  Dissimilarly to the results of my EST data sets, the 

rRNA analyses did not find any robust evidence that could possibly support a sister 

group relationship between Tardigrada and Nematoda. This finding further increases 

the likelihood that previous molecular support for Tardigrada + Nematoda (Giribet 

and Ribera, 1998; Giribet and Wheeler, 1999; Park et al. 2006; Philippe et al. 2005b; 

Roeding et al. 2005; Lartillot and Philippe, 2008; Sørensen et al. 2008; Pick et al. 

2010; Andrew, 2011) could have been caused by uncorrected systematic biases. 

Substantial support was also recovered in favour of a monophyletic Nematoida 

(Nematoda + Nematomorpha) as analyses under the two best fitting models both 

supported this topology. This was not unexpected, as many previous studies also 

supported this group (Peterson and Eernisse, 2001; Mallatt et al. 2004; Mallatt and 

Giribet, 2006; Dunn et al. 2008); in addition to the strong morphological support for 

Nematoida (Schmidt-Rhaesa, 1998; Nielsen, 2001). 
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In conclusion, the phylogeny of the Ecdysozoa has received much attention since the 

onset of the molecular era (Field et al. 1988; Giribet et al. 1996; Aguinaldo et al. 

1997; Telford et al. 2003; Philippe et al. 2005b; Dunn et al. 2008; Hejnol et al. 2009; 

Rota-Stabelli et al. 2010; Campbell et al. 2011) despite this, a consensus has yet to be 

reached on the exact topological relationships of its constituent phyla (Telford et al. 

2008; Edgecombe, 2009; Campbell et al. 2011; Nielsen, 2012). Following on from 

the results presented in this Chapter, the most credible hypothesis for the evolutionary 

relationships among the Ecdysozoa are reported in Figure 5.2.  Ecdysozoa can be 

partitioned into a monophyletic Panarthropoda (Tardigrada + Lobopodia) the sister 

group of which is represented by the Nematoida.  The name “Ambulavermia” is 

proposed for this, currently unnamed group.  Finally, the sister group of the 

ambulavermians is represented by the Scalidophora to which the Loricifera also seem 

to belong.  
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Chapter 6 

Discussion and Perspectives 

 
“No naturalist can avoid being fascinated by the diversity of the animal kingdom, and by the 

sometimes quite bizarre specializations that have made it possible for the innumerable species to 

inhabit almost all conceivable ecological niches” 

-Claus Nielsen 

 

6.1 Making sense of Cryptic divergences with phylogenomics 

There is no doubt that we live in a world that has seen tremendous transformation 

over its extensive geological history; yet as a species, humans have been absent for 

the vast majority of this time. Our relatively momentary existence is in stark contrast 

to the immense age of the deepest branches of the animal tree of life, some of which 

have flourished for well over 700 million years (Peterson et al. 2008; Erwin et al. 

2011). The notion of expansive geological history coupled with an ever-increasing 

diversity of animal life is even more profound when we consider for instance current 

estimates of extant species numbers compared to those that are long extinct. 

Ecdysozoa alone comprises ~1.5 million species (Chapman, 2009) yet despite being 

one of the most specious groups of animals to exist today, pales in insignificance 

when all living species are estimated to only represent a meager fraction (~0.1%) of 

the total number of species that ever existed (Raup, 1981; Novacek and Wheeler, 

1992).  

Since the first molecular phylogeny was published in support of Ecdysozoa 

(Aguinaldo et al. 1997), It is now generally accepted that Ecdysozoa is monophyletic 
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(Kumar et al. 2011).  This group is generally assumed to comprise two distinct clades, 

Panarthropoda with segmental bodies with limbs and paired ganglia (the monophyly 

of which was confirmed in this thesis) and Cycloneuralia without limbs and with a 

collar shaped brain (Nielsen, 2001; Edgecombe et al. 2011) the monophyly of which 

was rejected in this thesis.  We have shown that despite the “cycloneuralians” and the 

Panarthropoda are for the most part morphologically well delineated, the positions of 

the tardigrades has long been unstable in both morphological and molecular analyses 

(Edgecombe, 2009).  In Chapter 3, I presented phylogenomic analyses of a 255 gene 

(49,023 amino acids) concatenated alignment, to investigate the major Ecdysozoan 

relationships, paying particular heed to the affinity of Tardigrada. Results of these 

analyses support the inclusion of Tardigrada within Panarthropoda, but they also 

demonstrate the unstable nature of Tardigrada in phylogenomic analyses, highlighting 

the importance of taxon sampling, and the presence of conflicting phylogenetic signal 

for Tardigrada.  In addition, these results rejected the monophyly of the 

cycloneuralians.  This is important, given that we found Tardigrada to be 

monophyletic, as it concurs with support of the plesiomorphic nature of the 

cycloneuralian morphological characters present in tardigrades.  That is, paraphyly of 

cycloneuralians suggests that the characters shared by the Scalidophora, the 

Nematoida and Tardigrada represent retained plesiomorphies that presumably 

characterised the last common ecdysozoan ancestor.  With reference to taxonomic 

sampling, inclusion of a representative species for Nematomorpha was of particular 

importance, as the sister group relationship between Nematoda and Nematomorpha 

(to form Nematoida) seems unquestionable, supported by the majority of 

morphological and molecular analyses (Nielsen, 2001; Kristensen, 2003; Mallatt and 

Giribet, 2006; Dunn et al. 2008). 
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 Its clear that in recent years we have witnessed a marked move from small scale 

studies of limited numbers of genes, commonplace in ‘classical’ molecular phylogeny 

(e.g. SSU and LSU rRNA) towards large scale analyses of greater numbers of genes 

characteristic of EST (i.e. phylogenomics) based studies. Yet there exist limitations to 

the phylogenomic approach.  For instance the study of Hejnol et al. (2009) generated 

an encompassing data set of 1,487 genes for 97 taxa, however this study and others 

like it require extremely powerful computational resources, not readily available 

within the phylogenetic community.  Furthermore, one of the major limitations to 

phylogenomic scale analysis under the supermatrix paradigm is the use of 

evolutionary models that are required to describe the evolution of multiple genes that 

have undergone radically different evolutionary trajectories (de Queiroz et al. 2007; 

Philippe et al. 2011b; Philippe and Roure, 2011).  

In much of this thesis I have highlighted problems in current models of evolution and 

their propensity to misinterpret or their failure to detect multiple substitutions, leading 

to what we collectively refer to as “non-phylogenetic signal” (Philippe et al. 2011b).  

In such cases, evident in the majority of phylogenetic analyses of ancient groups of 

taxa such as tardigrades and the arthropod sub phyla (e.g. Myriapoda and Chelicerata 

(Pisani et al. 2004; Pick et al. 2010; Rota-Stabelli et al. 2011; Campbell et al. 2011)) 

there is an inherent absence of natural phylogenetic signal to the point where 

sophisticated models of evolution often fail to unambiguously solve these problematic 

nodes. Lack of genuine phylogenetic signal and occurrence of systematic bias was 

forcefully addressed in Chapter 3, where I showed how the use of alternate models of 

evolution resulted in generation of radically different tree topologies (Figure 3.2). 

Failure of current models to capture inherent evolutionary process, for example the 

misconception of particular models to assume homogeneity of the replacement 
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process, is one of the major hurdles of current evolutionary models used in the 

phylogenomic study of organismal relationships (Philippe and Roure, 2011).  

 

The inability to fully account for unequal rates of evolution in current models and the 

difficulty in resolving deep nodes characterized by rapid divergence and multiple 

hidden substitutions was demonstrated in Chapter 3, and again in Chapter 5 were I 

presented a classical molecular phylogeny for Ecdysozoa using SSU/LSU rRNA. In 

both Chapters I performed site-striping and signal dissection analyses with the aim of 

generating data sets with more homogeneous rates of evolution, and then compare and 

contrast results of their analysis against results generated from heterogeneous-fast 

evolving site alignments. The artifactual nature of Tardigrada was clearly shown in 

Chapter 3, as analyses generated under the more rate homogeneous data sets 

(therefore less likely to have diluted phylogenetic signal) compared to those of the 

faster evolving data sets, unequivocally demonstrated the recovery of two highly 

supported but conflicting tree topologies. According to my results in Chapter 3, there 

is clearly need for caution when investigating problematic nodes like those of 

Tardigrada and Myriapoda when using a phylogenomic approach. Nodes such as 

these are characterized by short internal branches, rapid divergences, and high rate of 

substitution in extant lineages making them prone to errors of tree reconstruction 

introduced by systematic bias (i.e. LBA) and problems of taxon sampling leading to 

the recovery of highly supported yet equally contradictory phylogenies.    

 

Dissimilarly to the non-phylogenetic signal shown to be pervasive for Tardigrada in 

Chapter 3, analyses of rRNA showed a seemingly clear-cut phylogenetic signal for 

their placement within a monophyletic Panarthropoda. Drawing conclusions on the 
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contrasting phylogenetic signal strength of the rRNA data compared to that of the 

EST data set I suspect is due to various factors. Firstly, experimental design in 

Chapter 5 focused on generating a robust phylogeny for Ecdysozoa by utilizing 

sequence data for all ecdysozoan phyla. Secondly, taxonomic sampling within focal 

groups such as Onychophora and Tardigrada was considerably improved in our 

analyses compared to previous rRNA data sets (e.g. Mallatt and Giribet, 2006), 

promoting substantial reduction of stem branches for both groups. And lastly, the 

sequence alignment was based on proportions of sites taken from the most conserved 

ribosomal regions. Combining thorough taxon sampling with a compact data set of 

highly conserved SSU/LSU regions, then performing analyses with sophisticated 

models of sequence evolution should as it has already been noted (Lartillot and 

Philippe, 2008; Pisani et al. 2011; Philippe et al. 2011b) dramatically improve the 

ratio of phylogenetic signal to noise, and lead to well resolved and supported taxon 

placement.  

 

In Chapter 3, and elsewhere throughout this thesis I have reiterated that certain 

phylogenetic relationships are heavily dependent upon the methods used e.g. model 

fitting, signal dissection (Sperling et al. 2009a; Pisani et al. 2009), and the importance 

of targeted taxon sampling (Rota-Stabelli and Telford, 2008). But how does one 

ascertain satisfactory confidence in the results obtained from different methods of 

analysis when faced with multiple conflicting and highly supported hypotheses? In 

accordance with the overwhelming trend I have witnessed from the analyses 

presented in this thesis, the most promising way to achieve robust confidence in a 

particular phylogenetic hypotheses is by critical dissection of the underlying 

phylogenetic signal(s) present in the data.  
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I must point out that it is not sufficient enough to merely present phylogenies obtained 

under the most ‘optimal’ methodological settings or via the criterion of it’s the ‘best 

fitting’ model, as although the model may be suitable enough it may not be the best 

available. While the aforementioned properties provide initial phylogenetic 

confidence, to achieve a high level of confidence you must adhere to comparing and 

evaluating phylogenies obtained over different methods, to best identify cases of 

systematic or stochastic error. Comparing results over different methods, if found to 

be consistent, can indicate whether or not the resulting phylogeny is robust. For 

instance it can be useful to compare phylogenies generated under conditions that 

minimise potential sources of error against those that are generated under settings that 

maximise sources of phylogenetic error. Comparisons of trees generated under such 

different methodological settings was shown in both Chapters 3 and 5, for instance 

trees generated under different models (e.g. Figure 3.2), selective taxon pruning (3.7, 

5.3) or in data sets generated to increase the level of rate homogeneity (e.g. Figure 

3.5, 5.2). Comparisons of trees generated under these different analytical settings 

provided the opportunity to indentify what affects these settings had the recovery of 

alternate topologies. The presence of conflicting phylogenetic signals and non-

phylogenetic signal has been demonstrated throughout this thesis, however, 

experimental approaches based on taxon sampling and signal dissections allowed 

distinguishing the most robust signal, one likely to represent the real phylogeny i.e. 

monophyletic Panarthropoda.  

 

A major focal point in this thesis is the first use of miRNA evidence to polarise the 

phylogenetic placement the major Arthropod sub-phyla, and arthropod sister phyla 
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Onychophora and Tardigrada. In the preceding paragraphs, and elsewhere throughout 

this thesis I have discussed the problems inherent in, and the limitations of, analysis 

of large phylogenomic data sets, which I advocate are problems related to homoplasy. 

Chapter 4 sees a move away from use of classical mainstream molecular and 

morphological data types to investigate animal evolution, towards use of a relatively 

novel source of phylogenetic data (miRNAs) recently shown to be invaluable for 

testing alternate hypotheses of evolution (Pisani et al. 2011; Philippe et al. 2011a; 

Tarver et al. 2012).  Accordingly, one of the major goals of this work is to test the 

alternate, conflicting hypotheses of within-ecdysozoan evolution by utilizing inherent 

properties of miRNA evolution (discussed at length in sections 2.2.2 & 4.1.2), 

properties that make them a homoplasy-low source of phylogenetic data (Sperling and 

Peterson, 2009; Tarver et al. 2012).  

In Chapter 4, I presented two separate miRNA analyses that were performed in order 

to resolve competing hypotheses of evolution for Myriapoda (Mandibulata vs. 

Myriochelata) and the panarthropod phyla Onychophora and Tardigrada (mono- vs. 

paraphyletic Panarthropoda). According to results of investigations into shared 

miRNA complements for all considered taxa, I have recovered unequivocal support 

for some long held traditional hypotheses, these being monophyletic Mandibulata (see 

Figure 4.6; Snodgrass, 1938) and Panarthropoda comprised of tardigrades as the sister 

group to Onychophora plus Arthropoda (see Figure 4.8: Lobopodia; Snodgrass, 

1938).   

In conclusion, I advocate the thorough and detailed investigation of phylogenetic 

signal, when faced with resolving difficult problematic nodes characterized by high 

levels of homoplasy and the recovery of highly supported yet conflicting hypotheses. 

This can be achieved by indentifying potential sources of change in phylogenetic 
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signal and the support of alternate topologies, by examining factors (for example 

taxon sampling shown as a key factor throughout this thesis) that can potentially lead 

to occurrences of stochastic/systematic error (e.g. unequal rates of evolution in both 

sites and taxa). There are many publications that follow this principle of detailed 

phylogenetic scrutiny (Lartillot and Philippe, 2008; Sperling et al. 2009a; Pisani et al. 

2011; Rota-Stabelli et al. 2011) and indeed these already have provided some well-

supported and robust phylogenies. I would also like to reiterate here, following on 

from what has already been advocated throughout this thesis, is the crucial importance 

of evaluating the robustness of a particular tree (hypothesis) with corroboration of 

multiple lines of independent evidence. This is the principle of consilience (see 

Wilson, 1998) and it is one in which I adhered to in this thesis. Accordingly, 

phylogenetic results supported in this thesis are those supported by the multiple lines 

of evidence used (ESTs, miRNAs, and rRNA).  These lines of evidence provided 

robust evidence to support previously proposed relationships within Ecdysozoa, 

specifically monophyly of Panarthropoda comprised of Tardigrada + Lobopodia, and 

the sister group relationship of Myriapoda to Pancrustacea; robust evidence provided 

from the corroboration of not only phylogenomics (Chapter 3), classical rRNA 

(Chapter 5) and the recently emerged miRNAs (Chapter 4).   

 

6.2 Resurrecting ancestral bauplaene within Ecdysozoa based on 

current evidence 

In the past 15 years since the proposal of Ecdysozoa (Aguinaldo et al. 1997) the 

debate over whether or not Ecdysozoa is monophyletic (contra to Articulata; discussed 

in section 3.1.1) has largely been put to rest from analyses of molecular data 
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(Edgecombe et al. 2011; Kumar et al. 2011). Some ecdysozoan apomorphies have 

been evident since the inception of the group, relating to moulting of the external 

cuticle, mediated in all ecdysozoan phyla by ecdysteroids (Garey et al. 2001; but see 

Pilato et al. 2005 for a different opinion); while all phyla further lack locomotory cilia 

(Nielsen, 2001). These characteristics are some of the more striking features of 

Ecdysozoa, but to provide the most robust reconstruction of the ecdysozoan ancestor it 

is crucial to understand whether or not the worm like phyla comprising Cycloneuralia 

are a monophyletic or paraphyletic assemblage.  

According to the majority of well-supported analyses presented in this thesis, from 

phylogenomics (Figure 3.3) and rRNA (Figure 5.2, 5.5), the paraphyletic origin of 

“Cycloneuralia” made up of Nematoida (Nematoda + Nematomorpha) sister to 

Panarthropoda (Nielsen, 2001), and Scalidophora (Priapulida, Kinorhyncha and 

Loricifera; sensu Schmidt-Rhaesa, 1996) as the sister group of nematoids plus 

Arthropoda is strongly supported.  miRNAs are mute about this issue, but what is 

certain is that no miRNA characterising a monophyletic Cycloneuralia were found.  

Cycloneuralia has traditionally been regarded as a monophyletic group on the grounds 

of morphology (Ahlrichs, 1995) with all members sharing possession of collar-shaped 

circumesophageal brain (Nielsen, 2001). Similarly to the findings presented in this 

thesis, the recovery of paraphyletic Cycloneuralia is also recovered in some previous 

rRNA analyses (Garey et al. 2001 and Mallatt and Giribet, 2006). Importantly the 

analyses of Garey et al. (2001) and Mallatt and Giribet (2006) did not include data for 

Loricifera; which upon inclusion in analyses presented in Chapter 5 further where 

found to be member of the Scalidophora within the context of a paraphyletic 

“Cycloneuralia”.  In contrast to the paraphyletic origin supported in this thesis and by 

rRNA analyses mentioned above, the recent phylogenomic study of Dunn et al. (2008) 
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supported a monophyletic origin of Cycloneuralia. This is an interesting contradiction, 

as the phylogenomic analyses presented in Chapter 3 in support of paraphyly of 

Cycloneuralia are based on a sub sampling of genes from Dunn et al. (2008) while 

also having a larger taxon sampling for Tardigrada and Nematoda. 

Accordingly, I conjecture that monophyletic Cycloneuralia in Dunn et al. (2008) 

might have been a tree reconstruction artifact perhaps resulting from low taxonomic 

sampling or the inclusion of fast evolving genes (many fast evolving genes from Dunn 

et al. 2008 where not included here). The overwhelming support provided in this 

thesis for the paraphyletic origin of the cycloneuralians, suggests that the ecdysozoan 

ancestor was cycloneuralian-like, with a collar shaped brain. Additionally, this 

organism could have possessed an introvert, as this is characteristic of all the 

Scalidophoran taxa. Considering the paraphyletic nature of Cycloneuralia, with 

Nematoida as the sister group to Panarthropoda, I suggest the name  “Ambulavermia” 

for the still unnamed Nematoida plus Panarthropoda clade, a name that literally 

translates to “walking worm”.   With reference to the last common ecdysozoan 

ancestor, it has been suggested based on evidence from living and fossil ecdysozoans, 

that the predicted ancestral (plesiomorphic) characters of the Ecdysozoa are 

remarkably similar to those of extant Priapulida (Webster et al. 2006). Specifically 

ancestral characters such as an annulated, worm-like body, with a terminal mouth, 

proboscis, direct development, of macrofaunal body size, growth via ecdysis and 

finally a collar-shaped circumesophageal brain (Schmidt-Rhaesa, 1998; Budd, 2001). 

This depiction of the ecdysozoan ancestor is parsimonious when we consider the likely 

derived small size of the meiofaunal phyla Kinorhyncha and Loricifera in addition to 

the fact that priapulids are the only ecdysozoan phylum to have radial embryonic 

cleavage (Aguinaldo et al. 1997). In any case it is noted that Priapulids retain the 
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largest proportion of plesiomorphic characters for Ecdysozoa compared to all other 

Introverta (Webster et al. 2006).  It will be interesting to evaluate, once the priapulid 

genome is released, whether the priapulid worms are living fossils.  

In a recent 2012 edition of the book “Animal evolution: Interrelationships of the living 

phyla”, by Claus Nielsen, paraphyly of Cycloneuralia is not supported; instead the 

monophyletic origin is supported by the shared morphological feature of Nematoida + 

Scalidophora having a collar shaped brain with anterior and posterior rings of soma 

(neuron terminal cell body) separated by a ring of neuropile. According to our 

analyses, these results presented by Nielsen (2012) should be rejected.  Within the 

Scalidophora, Nielsen suggests that the large priapulid worms are sister group to 

Kinorhyncha + Loricifera. This position for Priapulida is in disagreement with the 

basal branching position for Loricifera supported by the rRNA analyses in Chapter 5, 

and with previous rRNA analyses (Mallatt and Giribet, 2006; Sørensen et al. 2008) 

and phylogenomic analyses (Dunn et al. 2008; Hejnol et al. 2009) which support a 

sister group relationship of Priapulida + Kinorhyncha. However taxon sampling within 

Scalidophora in our and other studies is inadequate, leaving some doubts on the 

correct relationships among the Scalidophora. Indeed, the lack of resolution both 

within and between different molecular and morphological analyses has left the 

Scalidophora essentially as an unresolved trichotomy (Nielsen, 2012; but reference 

Nielsen, 2001). This trichotomy in Scalidophora calls for closer examination, with the 

potential of resolving these phyla residing in molecular analyses conducted with a 

much richer taxon sampling for Scalidophora; and eventually sequenced miRNA 

complements. This approach, one that I have advocated in this thesis is crucial to 

resolve problematic groups like Scalidophora; but is one that is met with a caveat, in 
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that it is well known that small meiofaunal animals are difficult to obtain in the field, 

e.g. Loricifera being found in permanently anoxic conditions (Danovaro et al. 2010).  

 

6.3 The nature of Panarthropoda and the rise of Lobopodia  

Paraphyly of the Cycloneuralia, in relation to the last common ancestor of Ecdysozoa 

implies that this animal was an annulated, proboscis-bearing worm like organism with 

a collar-shaped brain.  This has important implications for the evolution of the 

Panarthropoda. It is not surprising to note that the panarthropods thus represent the 

morphologically most divergent assemblage within Ecdysozoa, which must have 

evolved from a worm-like ancestor with a collar-shaped brain. Evolution from such an 

ancestor is supported by analysis of Eriksson and Budd (2000) in which they 

suggested that the onychophoran brain evolved from a circumesophageal ring by 

extending dorsal portions of the collar-shaped brain. 

With respect to morphology, tardigrades have a melange of arthropod and 

cycloneuralian characters, suggesting that either the arthropod-like characters were 

lost in the cycloneuralians, or conversely the cycloneuralian-like characters were lost 

in the arthropods.  According to the analyses presented in this thesis, which I consider 

to be robust corroborating evidence to support Tardigrada + Lobopodia, the arthropod-

like features of tardigrades, such as the paired ventrolateral appendages with 

segmental leg nerves and Engrailed expression in the posterior ectoderm of each 

segment (Gabriel and Goldstein, 2007; Edgecombe, 2009) appear to be panarthropod 

apomorphies that are not present in Cycloneuralia.  
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I would like to draw attention to the small level of uncertainty for the placement of 

tardigrades, which stems from some analyses presented in this thesis supporting a 

tardigrade + onychophoran clade.  This uncertainty can be diminished when we 

consider the results supporting this relationship were dependent on choice of model in 

both EST and rRNA (Figure 3.4.3; Figure 5.1) analyses, while also being reliant on 

taxon sampling (Figure 5.3) and so for the most part support was obtained from 

analyses that might have exacerbated phylogenetic artifacts. Overall, results in this 

thesis favour a clade composed of Tardigrada + Lobopodia, a finding bolstered greatly 

by the distribution of homoplasy-low miRNAs in Panarthropoda (Figure 4.8) 

providing accountability for the uniquely shared features of Onychophora + 

Arthropoda; features like an open hemocoelic circulatory system, dorsal heart with 

segmented ostia, nephridia forming from segmented mesoderm, without having to 

posit loss their secondary loss in Tardigrada due to miniaturization. Although 

Tardigrada + Onychophora has been recovered in previous molecular analyses of 

rRNA (Garey et al. 2001; Mallatt et al. 2004; Mallatt and Giribet, 2006) and multi-

gene data sets (Rota-Stabelli et al. 2010) there are yet no commonly accepted 

morphological synapomorphies linking these taxa. 

Contra to the large amount of molecular support for the monophyly of Onychophora + 

Arthropoda presented herein, previous morphological studies have suggested a sister 

group relationship of Tardigrada + Arthropoda.  In these studies, this group was 

supported by shared features such as sclerotized cuticle, reduced numbers of nephridia 

(Wills et al. 1998) and segmental ganglia in the nerve cord – contrast to the 

unganglionated nerve cord in Onychophora (Whittington and Mayer, 2011). 

Interpreting these features in the face of significant support for Tardigrada + 

Lobopodia indicates that either convergent gain of segmental ganglia occurred in 
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tardigrades and arthropods, or onychophorans developed a secondarily unsegmented 

nerve cord.  The analyses presented in this thesis never found support for a sister 

group relationship of Tardigrada + Arthropoda (“Tactopoda”; sensu Budd, 2001), thus 

I fully reject this relationship in favour of Tardigrada + Lobopodia.  

 The findings presented in this thesis suggest that characters shared by tardigrades and 

cycloneuralians, such as a terminal mouth, protrusible mouth cone, triradiate pharynx, 

and a circumesophageal brain (Zantke et al. 2008; Edgecombe, 2010; Schmidt-

Rhaesa, 1998) are most likely ecdysozoan plesiomorphies. This hypothesis is also 

consistent with the fossil record of arthropods, in that taxa in the arthropod stem group 

such as armoured lobopodians and anomalocaridids, show a melange of arthropod-like 

and cycloneuralian-like features, the latter (e.g. radially arranged mouthparts) then lost 

in the arthropod crown group (Edgecombe, 2010, Budd, 2001). Furthermore, my 

results suggest that paired limbs and a shared mode of segment patterning (Gabriel and 

Goldstein, 2007) are apomorphic for Panarthropoda. Regardless of the exact 

interrelationships of the three Panarthropod phyla, I have presented robust evidence 

throughout this thesis to support the monophyly of Panarthropoda. Carrying on from 

analyses of genomic data sets (ESTs, miRNAs, rRNA) morphology further provides 

unavoidable support for their monophyly, as all lineages have uniquely derived 

synapomorphies such as lateral walking appendages, segmented mesoderm, ventral 

nerve cords and a tripartite brain.  

 

6.4 Potential role of miRNAs in the emergence of arthropod Bauplaene 

In this thesis I have discussed the properties of, and presented the results of miRNA 

complements within arthropods and their close relatives to elucidate their phylogenetic 
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relationships. However, the most prominent utilization of miRNAs is in the study of 

developmental regulation, prompting many to investigate their possible role of 

developmental canalization throughout metazoan evolution. Canalization refers to the 

process by which phenotypes are stabilized within species (Hornstein and Shomron, 

2006). It is well known that arthropods are an incredibly diverse and specious group, 

but the degree of morphological disparity is one that is sometimes overlooked. One of 

the major questions in arthropod evolution regards the evolutionary developmental 

processes that led to what we refer to as “Arthropodization” and the endowment in 

arthropods of phenomenal environmental adaptability and diverse solutions to 

survival.  

It was long thought that the rise in morphological complexity was one that was tightly 

correlated to that of an organism’s repertoire of protein coding genes, but upon 

sequencing of complete genomes for model organisms like C. elegans, this was soon 

falsified, with morphologically simple roundworms having roughly the same number 

of PCGs as morphologically complex organisms (e.g. Homo sapien). So what other 

factors contributed to rising morphological complexity?  Apart from the role of gene 

regulation, miRNAs are now beginning to be recognised for their dual role of 

developmental canalization over evolutionary time (Wu et al. 2009). miRNAs are 

crucial in gene regulatory networks, working in conjunction with typical regulatory 

network elements such as transcription factors. Yet, miRNAs also have specific 

attributes that allow them to not only regulate transcription, but also to reduce the 

overall ‘genetic noise’ in gene regulatory networks imparted by the stochasticity of 

transcription factors in the translational process (Hornstein and Shomron, 2006).  

MicroRNAs are being continuously added to, and conserved within genomes 

throughout evolutionary time, a fact that is largely unique with respect to transcription 
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factors. When considering metazoan development, it is important to note that all 

metazoan transcription factors are present and conserved throughout all Metazoa 

(Wheeler et al. 2009). This is in contrast to miRNAs, which have been shown to be 

largely lineage specific, for instance the Bilateria and Deuterostomia had a massive 

burst of miRNA expansion compared to that of early branching metazoans (Sempere 

et al. 2007; Campo-Paysaa et al. 2011). Similarly to expansion of miRNAs through 

time, it is now recognised that morphological complexity is intimately linked to 

expansion of novel cell types (Valentine et al. 1994) with miRNAs known to play a 

key role in cell regulation and differentiation (Ambros, 2004). This suggests that 

miRNAs must be intimately tied to the evolution of novel cell types and therefore 

morphological complexity (Heimberg et al. 2008; Wheeler et al. 2009).  

Although questions regarding the appearance of lineage specific miRNAs and their 

correlation with the rise in morphological complexity are ones outside the scope of 

this thesis, I would like to briefly consider the emergence of arthropod specific 

miRNAs (Figure 4.8) and their potential role in the emergence of the many diverse 

arthropod Bauplaene. From results of analyses into panarthropod miRNAs, I showed 

that there are two miRNAs (miR-275 and iab-4) conserved throughout Arthropoda.  

Iab-4 as an interesting example, as this miRNA has been shown to be intimately 

linked to the regulation of developmentally important HOX transcription factors 

(Abd-A, Ubx and Antp; Enright et al. 2004; Miura et al. 2012). In the recent study of 

Miura et al. (2012), the miRNA iab-4 is shown to have an incredibly high 

conservation of its seed region throughout the ~400 MYA evolutionary period since 

the last common ancestor of Drosophila and Daphnia. Interestingly, the number of 

target sites for iab-4 in the HOX genes Abd-A, Ubx and Antp varied considerably 

across the Arthropoda (see Miura et al. 2012; Table 1).  
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Given that HOX genes are particularly important in the developmental process, 

differential expression of these genes brought about by acquisitions or changes in the 

number of iab-4 target sites across Arthropoda, may have to some degree driven 

changes in morphological evolution. Evidence then at least suggests that the 

emergence of arthropod specific iab-4 could have been pivotal in the canalization of 

developmental segmentation, and might have played a role in the evolution of the 

complex appendages (e.g. walking legs) observed in Arthropoda but not found in 

Onychophora and Tardigrada which have much simpler walking appendages.  This 

conclusion is of course speculative and well outside the scope of this work, but at 

least hints at the possible role of novel arthropod specific miRNAs (already known to 

be key players in canalization) and the emergence of and construction of the most 

successful of all animal body plans, that of the arthropods. 

 

 
6.5 Closing remarks 

The arthropods and to a lesser extent their closest living relatives the Onychophora 

and the Tardigrada, are an excellent example of the emergence of a group of animals 

that have come to dominate animal diversity. There is no doubt that the arthropods 

alone represent the phylum with the greatest number of living species, yet these 

species only represent the surviving branches of a long history of diverse extinct 

forms. Notwithstanding the evidence presented in this thesis in relation to the 

interrelationships of Arthropoda and the remaining panarthropods, it is clear that the 

diversity of species leading to the panarthropod groups began deep in geological 

history. Recent estimates on the emergence of stem lineages leading to extant forms of 
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Arthropods and their relatives Onychophora dates the timing of origin to be between 

~593 and 534 million years ago (Erwin et al. 2011). A period commonly referred to as 

the ‘Cambrian explosion’ falls within this interval, and is an era of animal evolution 

marked by explosive and abrupt appearances of taxa and subsequent rapid 

diversification. Consequently, much of the evolutionary information has been eroded 

by millions of years of mutational saturation, exquisitely highlighted in Tardigrada 

with their long branches. Yet despite this, in the past 20 years or so, the availability of 

ever larger molecular data sets to analyse using phylogenetics, and the development of 

sophisticated models of evolution has lead, in recent years, to significant insights into 

the evolution of this diverse group of animals.   

In chapter 2 (page 35) of the book ‘Arthropod fossils and phylogeny’ (Edgecombe, 

1998) which was published relatively recently, a list of six “principle issues in 

arthropod evolution” were outlined to promote further investigations in elucidating the 

evolution of arthropods and their relatives. I will not recall all of these, as some are not 

relatable to the work presented in this thesis. Outstanding questions at the time: (1) 

Whether the crustaceans and tracheates (Hexapoda + Myriapoda) form a clade 

(Mandibulata); (2) Where the Onychophora and Tardigrada lie with respect to the 

tracheates and the rest of the euarthropods in general; (3) Whether the euarthropods 

arose once from a single soft-bodied ancestor that was itself an arthropod, or whether 

two or more events occurred; and (4) Whether the tracheates are monophyletic, or the 

myriapods branched off lower in the phylogeny.  

The work presented in this thesis (summarized in Figure 6.1) I feel has significantly 

improved the overall resolution of arthropod/panarthropod evolution, specifically 

addressing these questions with corroborating evidence of phylogenomics, miRNA 

distributions and classical rRNA molecular data. According to my results, 
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Mandibulata is a true clade composed of Pancrustacea + Myriapoda, sister group to 

Chelicerata; all arising within a single monophyletic origin of Arthropoda, or 

‘Euarthropoda’ from within Panarthropoda “Arthropoda” in Edgecombe (1998) 

terminology. Further more, according to all data types considered in the analyses here 

presented, supports the monophyly of Panarthropoda, with arthropods being the sister 

group to Onychophora, and Tardigrada sister group to Lobopodia. 

 

Figure 6.1: Summary of major hypotheses addressed in this thesis. Ecdysozoa composed of a 

paraphyletic Cycloneuralia (green oval) and monophyletic Panarthropoda (blue circle). Scalidophora 

(light blue circle) is sister to a clade (here named “Ambulavermia” (pink circle)) of Nematoida (purple 

circle) plus Panarthropoda. Within the Panarthropoda, Tardigrada is sister group to Lobopodia (red 

circle), while Arthropoda is made up of Chelicerata sister group to Mandibulata (yellow circle).  
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Lastly, and in addition to the points presented by Edgecombe (1998) the results here 

presented suggest that the Cycloneuralia are a paraphyletic assemblage, with 

Panarthropods evolving from a cycloneuralian, worm-like ancestor. However, the 

hypotheses of cycloneuralian monophyly vs. paraphyly are ones that necessitate 

further investigation; particularly from increased taxon sampling of crucial 

scalidophoran phyla such as Kinorhyncha and Loricifera. I would like to state here that 

the findings related to monophyly of Mandibulata, Lobopodia and Panarthropoda 

should be considered robust, specifically in light of the experiments performed 

throughout this thesis to uncover instances of systematic bias (e.g. Tardigrada + 

Nematoda, Myriochelata) in addition to striking morphological synapomorphies and 

the recovery of clade specific miRNAs characterized by low levels of homoplasy.  

I would like to conclude by saying, I sincerely hope the phylogenetic methods and 

hypotheses presented in this thesis, will improve the understanding of arthropod, 

ecdysozoan and animal evolution more broadly.   
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Appendix 1 

This protocol is purpose made to generate a miRNA library for sequencing and 

identification of novel miRNAs. 

 

Materials!"

RNA isolated at a minimum concentration of 1.3 mg/ml in 150 µl (need a 
minimum of 200 µg in 150 µl) 

 Trizol Reagent - Invitrogen Catalogue no. (15596-018) 

Dry ice and liquid nitrogen 

 Large mortar and pestle 

50 ml polypropylene copolymer  

Chloroform 

Isopropanol alcohol 

Ethanol alcohol 

RNase Free Water (DEPC treated or otherwise prepared) 

 

National Diagnostics RNA gel reagents: 

  Gel concentrate EC-830 

  Gel diluent EC-840 

  Gel buffer EC-835 

 1X TBE Running Buffer (diluted from 10X stock) - National 
 Diagnostics Catalogue no. EC-860) 

  2X sample loading buffer 8M Urea, 0.5 mM EDTA, Bromo Blue (dry 
  chemicals) 

  18, 28, 40, and 50 nucleotide fitc labeled markers (Integrated DNA 
  Tech.) 

  1 mg/ml glycogen 

 

3’ Ligation: 

2 µl 5x Ligation Buffer 
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2 µl 100 mM App 17.91x 

1 µl T4 RNA Ligase 

28 and 40 fitc nucleotide markers 

  

 5’ Ligation: 

2 µl 5x Ligation Buffer 

2 µl 200 µM 17.93R 

1 µl 4 mM ATP 

1 µl T4 RNA Ligase 

50 fitc nucleotide marker 

 

cDNA: 

1 µl 100 µM 15.22 

10 µl dH20 

  6 µl 5X first strand buffer 

  7 µl 10X dNTP’s 

  3 µl 100 mM DTT 

  1 µl Superscript III reverse transcriptase  

  1 µl RNase H  

  

 Library Amplification: 

10 µl 10X PCR Buffer 

10 µl 10X dNTPs (1X = 0.2 mM of each dNTP) 

1 µl 100 µM Barcoded forward primer  

1 µl 100 µM Barcoded reverse primer 

72 µl dH20 

1 µl of Taq Polymerase 

 

 100 % Ethanol 
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 0.3 M NaCl 

 RNase Free Water 

 10 bp or 100bp DNA ladder 

 Phenol 

 Chloroform 

 pGEM T-easy vector (Promega #A1360) 

 SOC or LB broth 

 LB +Amp/Xgal/IPTG bacterial agar plates 

 Magnificent broth (MacConnell Research Catalogue no. MR2001) 

 Qiagen miniprep kit 

 Qiagen QIAquick Gel Extraction Kit (Qiagen, CA, USA) 

 Siliconized eppendorf tubes (1.5 ml) 

  Ethidium Bromide 

  Razor Blades 

  Agarose 

  TAE solution 

 

Equipment: 

BioRad minigel apparatus. Catalogue no. (165-8003) 

Casting Tray (including clamps, 10 well comb, short plates, 1.0 mm spacer 
 plates) 

Power Source capable of running at a constant 2 Watts 

 Hot Block capable of reaching 80°C 

 PCR Thermocycler 

Rotator in 4°C environment (i.e. a cold room) 

Ultraviolet box for gel visualization 

 Camera for gel pictures (GEL DOC) 

 Microcentrifuge 

 NanoDrop ND-1000 spectrophotometer 
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Solutions: 

 LB Amp/Xgal/IPTG 

 0.3 M NaCl 

2X Urea Loading Buffer 

Ligation Buffer (For 5 ml-aliquot into 1ml) 

  250 mM Hepes pH 8.3 1.25 ml of 1M Hepes pH 8.3 

  50 mM MgCl2   250 µl of 1M MgCl2 

  16.5 mM DTT   82.5 µl of 1M DTT (made in dH2O) 

  50 µg/ml BSA   5 µl of 50 µg/ml BSA 

  41.5% glycerol  2.075 ml of 100% glycerol 

 

Protocol Procedure: 

 

DAY 1 - (Size fractioning of RNA)  

1. Pour 15% 1.5 mm denaturing polyacrylamide gel using bio-rad mini gel 
apparatus.  Use 10 well comb. 

Volumes for 2 Gels: 

 9.0 ml Concentrate 

 4.5 ml Diluent 

 1.5 ml Buffer 

 150 µl 10 % APS (ammonium persulfate made in water) 

 7.5 µl Temed 

2. Prepare an aliquot of total RNA (200-500 µg) with an equal volume of 8 
M + 0.5 mM EDTA loading dye in a total volume of 300 µl or less (this 
means that you need a minimum of 150 µl of RNA at 1.3 mg/ml to start 
each library).   

3. Add 1 µl of each 28 fitc and 18 fitc nucleotide molecular markers (10 µM 
stocks) per lane going to load (i.e. add 10µl of loading into 10 lanes) 

4. Heat samples to 80 °C for 5 min. 
5. Flush wells using a pipette to push out the dense urea. 
6. Fill Chamber with 500 ml 1X TBE made in RNase free water. 
7. Load sample into flushed wells using as many wells as possible 

(~30µl/well).   
8. Run gel at 2 watts for 1-2 hours until the lower dye-front is approx 1 cm 

from the bottom. 
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9. Remove gel, open glass plates, and wrap gel in plastic wrap (keeping note 
of the orientation). 

10. Take a picture of the gel (using UV gel doc system) to document 
placement of the markers. 

11. Then, over a UV light box, draw a rectangle around the area including the 
two molecular markers. 

12. Use the rectangle as a guide where to cut the gel. 
a. Using a new blade cut along the rectangle and place the small gel 

piece into a clean (pre-weighed) eppendorf tube. 
b. Weigh the eppendorf tube + gel piece and calculate the weight of 

the gel piece alone. 
13. Crush the gel pieces then and add 3 times the volume (of the gel piece) of 

0.3 M NaCl. 
14. Let rotate at 4 °C overnight. 
15. Stain the remaining gel with Ethidium Bromide for approximately 10 

minutes. 
 

DAY 2 – (Precipitation)  

1. Remove samples from 4 °C. 
2. Transfer as much as possible of the liquid portion (containing NaCl and 

RNA) to a clean eppendorf tube. 
3. Spin briefly to pellet small pieces of acrylamide gel and again transfer the 

supernatant to a clean eppendorf tube. 
4. Add 2 times the volume of 100% ethanol to the supernatant. 
5. Add 1 µg/ml glycogen (using ~1µl of 1mg/ml stock stored in an eppendorf 

at -20). 
6. Mix by inverting 2-3 times. 
7. Store at -20 °C minimum of overnight. 

 

DAY 3 (3’ linker ligation) 

1. Remove samples from -20 °C freezer.  
2. Spin tubes at 13,000 x g for 30 min at 4 °C. 
3. Remove supernatant and allow pellet to air dry for approximately 10 

minutes in a fume hood. 
4. Resuspend pellets (of the same organism) in a total of 10 µl RNase free 

water (i.e. if you have multiple tubes repeat this serially with same 10 µl). 
5. Set up 3’ adaptor ligation reaction (all reagents stored at -20 °C) 

2 µl 5x Ligation Buffer 

2 µl 100 mM App 17.91x 

1 µl T4 RNA Ligase 

5 µl purified small RNAs (from the 10 µl resuspension step 4) 

Store remaining 5µl of small RNAs at -20°C 

6. Let incubate at 15 - 30°C for 2 hours. 
7. During 2 hour incubation prepare 15% denaturing polyacrylamide gel. 
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8. Stop reaction with 15 µl 2X Urea Loading Dye (8 M Urea 0.5 M EDTA). 
9. Add 2 µl each of 40 fitc and 28 fitc nucleotide molecular marker. 
10. Heat samples for 5 min at 80 °C. 
11. Load samples in 2-4 lanes (use more than one lane to prevent overloading 

and to dilute the salt in the reaction). 
12. Run gel at 2 watts until good separation between the BB and XC dyes (~3 

inches). 
13. Take picture of gel as before and mark a rectangle within each lane above 

the 28 nt marker (don’t include) and above 40 nt marker (include). Cut out 
the fragment. 

14. Place gel pieces in eppendorf tube and elute overnight (follow Day 1, step 
12). 

 

DAY 4 – (Precipitation) 

15. Precipitate RNA with glycogen (follow Day 2).  Store at -20°C. 
 

DAY 5 – (5’ linker ligation) 

1. Remove samples from -20°C freezer. 
2. Spin tubes at 13,000 x g for 30 min at 4 °C. 
3. Remove supernatant and allow pellet to air dry for approximately 10 

minutes in a fume hood. 
4. Resuspend pellets (of the same organism) in a total of 10 µl RNase free 

water. 
5. Set up 5’ adaptor ligation reaction (All reagents stored at -20 °C) 

2 µl 5x Ligation Buffer 

2 µl 200 µM 17.93R 

1 µl 4 mM ATP 

1 µl T4 RNA Ligase 

5 µl small RNAs (from the 10 µl resuspension in step 4) 

6. Allow reaction to sit at room temperature (15-30°C) for 6 hours. 
7. During 6 hour incubation pour 15 % polyacrylamide gels with 10 well 

comb. 
8. Stop reaction with 13 µl 2X Urea loading dye. 
9. Add 2 µl of 50 nt fitc molecular marker. 
10. Heat to 80 °C for 5 minutes. 
11. Remove comb and flush wells thoroughly. 
12. Load sample into 2-4 wells. 
13. Run gel at 2 Watts for 1-2 hours. 
14. Cut out gel pieces above the 50 nt marker and elute overnight at 4°C with 

0.3 M NaCl. 
 

DAY 6 – (Precipitation)  
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1. Precipitate RNA with 2X volume of ethanol and 1µg/ml glycogen 
overnight (same as Day 2). 

 

DAY 7 – (cDNA synthesis) 

1. Remove samples from -20°C. 
2. Spin tubes at 13,000 x g for 30 min at 4 °C. 
3. Remove supernatant and allow pellet to air dry for approx 10 minutes in a 

fume hood. 
4. Resuspend pellets (of the same organism) in a total of 10 µl RNase free 

water. 
5. Set up RT-PCR of small RNAs with Adaptors to synthesize cDNA (all 

reagents stored at -20°C). 
5 µl of ligated RNAs 

1 µl 100 µM 15.22 

10 µl dH20 

HEAT to 80°C for 2 min 

SPIN down to cool 

   

  Add  

  6 µl 5X first strand buffer 

  7 µl 10X dNTP’s 

  3 µl 100 mM DTT 

  HEAT to 48°C for 2 min 

  REMOVE 3µl to a new tube (for –RT control) 

 

  Add 1 µl Superscript III reverse transcriptase (NOT to –RT control 
  tube) 

  HEAT to 48°C for 1 hour. 

 

  Add 1 µl RNase H (to + and – controls) 

  HEAT to 37°C for 30 minutes. 

  Store at -20°C or continue with amplification. 

 PCR amplification: 

6. Set up 100 µl reactions for + and – reverse transcriptase (RT) samples. 
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7. Combine the following (all reagents stored at -20°C). 
5 µl of cDNA 

10 µl 10X PCR Buffer 

10 µl 10X dNTPs (1X = 0.2 mM of each dNTP) 

1 µl 100 µM 17.92 (or barcoded primer A) 

1 µl 100 µM 17.93D (or barcoded primer B) 

72 µl dH20 

 

HEAT to 96 °C for 5 min  

or add 1 µl of Taq and use continue with program 454amp on 

thermocycler if using barcodes. 

REDUCE heat to 80°C 

Add 1 µl of Taq Polymerase 

 

Barcoded PCR conditions: 

Let cycle 33 times 

96°C 1 min 

 96°C 10 sec 

 50°C 1 min 

 72°C 15 sec 

 

17.92/17.93 PCR conditions: 

After add Taq at 80°C let cycle 25 times 

 

 94°C   30 sec 

 50°C   30 sec 

 72°C   30 sec 

 

8. Check reaction by running 5µl (+ equal volume of sample buffer) on an 
acrylamide gel with a 10 bp ladder and staining with SYBR gold (or run 
on a 3% agarose gel with a 100bp ladder if using barcodes) 
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a. Should see a smear around 100 nt (this is the ligated RNA) and some 
sharper bands of primers 

9. If a smear is visible then continue, otherwise the library didn’t work and 
you must start over from the beginning. 

10. Gel purify positive band using Qiagen QIAquick Gel Extraction Kit. 
11. Ligate into vector overnight. 

a. To ligate into pGEM combine 3µl of ppt product, one frozen aliquot of 
vector + buffer (5 µl of 2X buffer and 1 µl of vector), and 1µl of 
enzyme.  Incubate at 16°C overnight. 

 
 Day 8 – (Vector ligation) 

 

12. Combine ligation (may want to ethanol ppt ligation first) with 5 µl 
electocompetent cells. 
a. To ethanol ppt combine 2.5X volume of 100 % ethanol and 0.1X 

volume of sodium acetate.  Let sit at -20°C for 1 hr  
b. Spin for 20 minutes at 14,000 x g at 4°C. 
c. Remove the supernatant then add 70 µl of 75% ethanol. 
d. Spin for a further 5 minutes then remove the supernatant.  
e. Allow pellet to air dry, then resuspend in 5 µl of RNase free water.  

13. Electroporate at 1.8. 
14. Immediately add 500 µl LB and transfer everything (500 µl LB + 10 µl of 

vector+product+E. coli) to 15 ml snap-cap tube. 
15. Let incubate in shaker at 37°C for 45 min 
16. Meanwhile pre warm 4 LB amp/Xgal/IPTG plates to 37°C 
17. After 45 minutes streak 4 plates with ~200 µl of cells each and let incubate 

at 37°C overnight. 
 

 

DAY 9 – (Colony Picking) 

 

1. Pick one colony (using sterile toothpicks) per 3 ml of LB in a snap-cap 15 
ml tube or, if you have lots of colonies, pick enough to fill a 96-1ml plate 
(for automated mini-prep). 

2. Shake colonies overnight at 37°C (if using 96 well plate use special 
incubator). 

 

DAY 10  

 

1. Miniprep each sample. 
2. NanoDrop spec some samples to check for approximate concentration. 
3. Combine 500 ng DNA and 3.2 pMoles T7 or SP6 primer in 20 µl total 

volume with water for each sample. 
4. Send for sequencing. 
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While a unique origin of the euarthropods is well established, relationships between the four euarthropod
classes—chelicerates, myriapods, crustaceans and hexapods—are less clear. Unsolved questions include
the position of myriapods, the monophyletic origin of chelicerates, and the validity of the close relation-
ship of euarthropods to tardigrades and onychophorans. Morphology predicts that myriapods, insects
and crustaceans form a monophyletic group, the Mandibulata, which has been contradicted by many
molecular studies that support an alternative Myriochelata hypothesis (Myriapoda plus Chelicerata).
Because of the conflicting insights from published molecular datasets, evidence from nuclear-coding
genes needs corroboration from independent data to define the relationships among major nodes in
the euarthropod tree. Here, we address this issue by analysing two independent molecular datasets: a
phylogenomic dataset of 198 protein-coding genes including new sequences for myriapods, and novel
microRNA complements sampled from all major arthropod lineages. Our phylogenomic analyses
strongly support Mandibulata, and show that Myriochelata is a tree-reconstruction artefact caused by
saturation and long-branch attraction. The analysis of the microRNA dataset corroborates the
Mandibulata, showing that the microRNAs miR-965 and miR-282 are present and expressed in all
mandibulate species sampled, but not in the chelicerates. Mandibulata is further supported by the phy-
logenetic analysis of a comprehensive morphological dataset covering living and fossil arthropods, and
including recently proposed, putative apomorphies of Myriochelata. Our phylogenomic analyses also
provide strong support for the inclusion of pycnogonids in a monophyletic Chelicerata, a paraphyletic
Cycloneuralia, and a common origin of Arthropoda (tardigrades, onychophorans and arthropods),
suggesting that previous phylogenies grouping tardigrades and nematodes may also have been subject
to tree-reconstruction artefacts.

Keywords: arthropod; phylogeny; Mandibulata; microRNA

1. INTRODUCTION
With over 1 million living species described and a rich
520 Myr fossil record, arthropods are the most species-
rich clade of animals on Earth, accounting for nearly
80 per cent of animal biodiversity [1]. Four main euar-
thropod sub-phyla are recognized: Hexapoda (including
insects); Crustacea (lobsters, water fleas and others);
Myriapoda (e.g. millipedes and centipedes); and
Chelicerata (including arachnids, horseshoe crabs and

possibly sea spiders). After many years of debate, a
consensus has emerged that these four classes (or
sub-phyla) form a monophyletic group called the
Euarthropoda [2,3]. The relationships between the four
euarthropod groups remain disputed, however, as is the
validity of their close relationship to tardigrades (water
bears) and onychophorans (velvet worms) in a more
inclusive clade called Arthropoda (named Panarthropoda
by Nielsen [4]).

Within the Euarthropoda, the main point of disagree-
ment concerns the position of the myriapods, which were
long thought to be most closely related to the hexapods
[5]. Myriapods and hexapods notably share a distinctive
head composed of five segments distinguished by
their unique appendages—the antennal, intercalary
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(appendage-less), mandibular, and usually two pairs of
maxillae (the second being the insect labium). Molecular
data, however, have shown crustaceans, which differ in
having a second antennal rather than an intercalary seg-
ment, to be the closest sister group of hexapods in a
clade named Pancrustacea or Tetraconata [6,7]. When
compared with chelicerates, the detailed similarities of
the arrangement of head segments and associated appen-
dages in Pancrustacea and myriapods strongly support
their sister group relationship within a wider clade that
has been named the Mandibulata in recognition of the
similarity of their biting mouthparts (see the electronic
supplementary material). Considering the complex
shared features of myriapod and pancrustacean head
morphology, it is surprising that the majority of published
molecular phylogenetic analyses do not support the
Mandibulata, instead placing the myriapods as the sister
group of the chelicerates in an assemblage that has been
named the Myriochelata or Paradoxopoda [8,9]. Molecu-
lar support for Myriochelata was initially obtained using
large and small subunit rRNAs [10] and later Hox
genes [8], mitochondrial protein-coding sequences [11]
and combined datasets of both nuclear and mitochondrial
genes [9]. Myriochelata was also supported by several
phylogenomic analyses [12–15]. However, recently, a
dataset of 62 nuclear protein-coding genes found support
for Mandibulata [16]. Regier et al. [16] did not identify
the factors underpinning the difference between their
new results and those of previously published phylogenies
that supported Myriochelata. Consequently, and in light
of the varying results from these molecular samples, the
Mandibulata versus Myriochelata controversy remains
an open question.

Uncertainty in deep arthropod phylogeny has recently
been reinforced as Mayer & Whitington [17] proposed
various putative synapomorphies of the Myriochelata,
including a revised character polarity for the well-studied
neuro-developmental pattern [18], and the mechanism of
dorsoventral patterning. Here, debate surrounds the
ancestral conditions, specifically whether nervous tissue
forms from immigration of single or clusters of cells,
and whether or not the neuroectoderm invaginates in
each developing segment.

In a similar conflict between molecules and morphology,
arthropods share features including segmentation and
appendages with tardigrades and onychophorans [1], yet
a close relationship between these three phyla has not
been clearly supported by molecular analyses. A close
relationship between onychophorans and euarthropods
is widely accepted, but affinities of tardigrades are
less clear, to the extent that they have been linked with
nematodes in several phylogenomic studies [13–15].
Recently, a mitogenomic study of the Ecdysozoa sup-
ported a monophyletic origin of these three groups,
although support is model-dependent [19].

There are two explanations for the discrepancies
between different molecular datasets and between
molecules and morphology. First, morphology may
mislead—mandibles might have evolved independently
in pancrustaceans and myriapods or been lost in chelice-
rates; similarly, segmentation and legs may have appeared
separately in arthropods, onychophorans and tardigrades.
The second explanation is that some molecular data may
be affected by errors—either stochastic (unlikely with

phylogenomic scale datasets) or systematic such as
compositional bias or long-branch attraction (LBA)
[20–22]. The possibility of systematic error is suggested
by some datasets being equivocal regarding myriapod
[7,9,19,23,24] or tardigrade affinities [12,19].

To resolve the phylogenetic relationships of the arthro-
pods and their ecdysozoan outgroups, we present analyses
of three independent datasets. The first is a phylogenomic
dataset of 198 protein-coding genes, which includes new
data from the pivotal myriapods. The second is a novel
set of arthropod microRNAs (miRNAs), small non-
coding regulatory genes implicated in the control of cellular
differentiation and homeostasis. The third is a comprehen-
sive dataset of 393 morphological characters, including
the recently proposed morphological homologies of
Myriochelata [17] and recent gene expression data [25]
alongside new and traditional characters supporting
the Mandibulata.

In addition, we have explored the nature of the conflict
between molecular datasets supporting alternative arthro-
pod phylogenies by assaying the potential effects of
systematic error on our phylogenomic dataset using an
experimental approach coupling targeted taxon-sampling,
the use of alternative models of molecular evolution, and
the analyses of subsets of slowly evolving sites extracted
from our full dataset.

2. MATERIAL AND METHODS
Detailed description of methods used to generate novel

expressed sequence tags and, miRNA datasets, to assemble

and align sets of orthologous genes, and for phylogenetic

analyses of phylogenomic and morphological datasets, are

available in the electronic supplementary material.

3. RESULTS
(a) Phylogenomic analyses support Mandibulata

To elucidate the phylogenetic position of myriapods and
the discrepancy between recent analyses [12,16], we
first analysed a phylogenomic dataset of 198 genes (cor-
responding to 40 100 reliably aligned amino acid
positions) from 30 taxa (see figure 1). The dataset
contains new sequences from the centipede Strigamia
maritima. Bayesian analysis using the CAT þ G model in
the software package PHYLOBAYES [26] supports mono-
phyly of Mandibulata with a posterior probability (PP)
of 0.92 and a non-parametric bootstrap support (BS)
value of 79 per cent. A Bayesian analysis using an even
larger sampling of 59 taxa and the mixed CAT-general
time reversible (GTR) þ Gmodel corroborates these find-
ings (see the electronic supplementary material, figures
S1 and S2). Furthermore, our analysis supports the
monophyly of Chelicerata (Pycnogonida plus Arachnida),
a close relationship between Branchiopoda and
Hexapoda, monophyly of Arthropoda (Eurthropoda,
Tardigrada and Onychophora), and a paraphyletic
origin of the Cycloneuralia (Nematoda more closely
related to Arthropoda than to Scalidophora). These
relationships are further addressed in §3e.

(b) Myriochelata is the result of a LBA artefact

Our results are in accordance with those of Regier et al.
[16], but in contradiction of other phylogenomic studies
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[12,13,15]. We therefore explored whether systematic
errors, in particular LBA, could have caused the discre-
pancy between our results and those of studies
supporting Myriochelata. In this context, one notable
aspect of the tree in figure 1 is the different branch lengths
seen in various taxonomic groups. Pancrustacea have long
branches in comparison to Myriapoda and Chelicerata,
suggesting that in previous studies the fast evolving
Pancrustacea could have been attracted towards the
distant outgroup, resulting in the clustering of slowly
evolving Myriapoda and Chelicerata owing to LBA.
Because systematic errors, particularly LBA, become
more apparent when the substitution model is unable to
handle multiple substitutions correctly [14], we first
asked how models such as Whelan and Goldman
(WAG) þ F þ G and GTR þ G—which assume homogen-
eity of the substitution process—fit our data. We find that
WAG þ F þ G and GTR þ G fit the data significantly less
well than the heterogeneous CAT þ G model (see the
electronic supplementary material), and that this reduced

fit is matched by reduction in support for Mandibulata
over Myriochelata (figure 2a and electronic supplementary
material, figure S3a).

We next explored the possible effects of LBA using a
strategy of different taxon sampling. Logically, if Myrio-
chelata is the result of an LBA artefact, exaggerating
this source of error by using long-branched or evolutiona-
rily distant outgroups will result in more support for this
artefactual clade. Conversely, the use of the shortest
branched outgroups should reduce the effects of LBA
and result in lower support for Myriochelata. Both of
these predictions are supported; when we used either
the most phylogenetically distant outgroup (Lophotro-
chozoa, figure 2b and electronic supplementary
material, figure S3b) or the fastest evolving ecdysozoan
outgroup (Nematoda, figure 2c and electronic sup-
plementary material, S3c), support decreases for
Mandibulata and the artefactual group of slow evolving
Myriapoda and Chelicerata (Myriochelata, in grey)
increases. Equally, removal of these distant outgroups

NematodaEcdysozoa

Chelicerata

Priapulida

Lophotrochozoa

Myriapoda

Hypsibius dujardini

Scutigera coleoptrata
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Petrolisthes cinctipes

Ixodes scapularis

Artemia franciscana

Helobdella robusta

Euperipatoides kanangrensis

Gryllus bimaculatus

Anoplodactylus eroticus

Nasonia vitripennis

Aplysia californica

Richtersius coronifer

Crassostrea gigas

Litopenaeus vannamei

Echinoderes horni

Daphnia pulex

Onychiurus arcticus

Acanthoscurria gomesiana

Tribolium castaneum

Capitella sp. 

Folsomia candida

Onychophora

Priapulus caudatus

Brugia malayi

Ascaris suum

Xiphinema index

Mandibulata

Panarthropoda

Kinorhyncha

0.84 79

0.92 79 (90)

1.00 98 (100)

1.00 100 (100)

1.00 98 (94)

1.00 99

1.00 95

1.00 100 (99)

0.1

Pancrustacea

Mollusca

Annelida
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Trichinella spiralis
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Pycnogonida

Arachnida

1.00
100
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Branchiopoda

Malacostraca

Paraphyletic
Cycloneuralia

C. elegans

Figure 1. Phylogenomic analyses support Mandibulata, Arthropoda, Chelicerata and paraphyletic Cycloneuralia. Bayesian ana-
lyses using the CAT þ G model. Values at nodes correspond to posterior probabilities (PP) (in italics) and bootstrap support
(BS) from 100 pseudo-replicates (in bold); values in brackets are the BS for the same dataset reanalysed without the long
branched Nematoda and Tardigrada lineages. Analyses support a monophyletic group of Mandibulata (Myriapoda, Hexapoda
and Crustacea), a monophyletic group of Arthropoda (Eurthropoda, Tardigrada and Onychophora), monophyly of Chelicerata
(Pycnogonida plus Euchelicerata) and a paraphyletic origin of the Cycloneuralia (Nematoda sister group of the Arthropoda).
Where not shown, support values correspond to a PP of 1.00 and BS of 100 per cent. Images have been modified from http://
commons.wikimedia.org.
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and their replacement with shorter branched taxa (e.g.
Onychophora and Priapulida [27]) results in increased
support for Mandibulata over Myriochelata (figure 2d
and electronic supplementary material, figure S3d).
We also performed a bootstrap analysis (under CAT þ
G ) excluding the fast evolving nematodes and tardigrades,
which found 90 per cent support for Mandibulata.
Notably, both Lophotrochozoa and Nematoda contain
species with divergent amino acid composition (see
the electronic supplementary material, table S1), sup-
porting our inference that they represent less suitable
outgroups [19].

Using our phylogenomic dataset, we have shown that
conditions which reduce LBA result in the highest sup-
port for Mandibulata, whereas conditions that increase
LBA result in increased support for Myriochelata, imply-
ing the artefactual nature of the latter. We replicated these
findings using the set of 150 genes of Dunn et al. [12],

hereafter ‘Dunn’. Reanalysis of a dataset using their orig-
inal taxon sampling (of 16 ecdysozoans) resulted in strong
support for Myriochelata (figure 3a and electronic sup-
plementary material, figure S4a) in accordance with
their original analysis. To test if the difference between
our phylogeny (which supports Mandibulata) and that
of Dunn (which favoured Myriochelata) is owing to taxo-
nomic sampling we expanded their taxonomic
representation to include all of our 30 taxa. Under these
conditions, modest support for Mandibulata is obtained
using the CAT þ G model while support for Myriochelata
decreased under WAG þ F þ G and GTR þ G (figure 3b
and electronic supplementary material, figure S4b).
However, when we remove fast evolving outgroups the
support for Mandibulata increases significantly
(figure 3c and electronic supplementary material,
figure S4c). Removal of fast evolving characters (see the
electronic supplementary material, figure S5a) also

Onychophora

Priapulida +
Kinorhyncha 

Chelicerata

Myriapoda
0.96 60  78

Pancrustacea

Onychophora

Priapulida + Kinorhyncha

Chelicerata

Myriapoda

(a) (b)

(c) (d)

Nematoda

Tardigrada

Lophotrochozoa

79 40 54 Mandibulata
Pancrustacea

Supports: CAT + Γ (BS or PP) WAG + F + Γ (BS) GTR + Γ (BS)

increased
support for
Mandibulata

Chelicerata

Myriapoda

Lophotrochozoa

0.04 58 46 Myriochelata

0.1

Chelicerata

Myriapoda

Nematoda

0.27 96 92 Myriochelata

Pancrustacea

Pancrustacea

Figure 2. Taxon sampling and the artefactual nature of Myriochelata. Phylogenetic analyses of our 198 gene dataset using
different taxon samples and both Bayesian and maximum likelihood inference. (a) Use of the less well fitting WAG þ F þ G
and GTR þ G homogeneous models results in lower support for Mandibulata (black node and lineages) compared to the
best fitting CAT þ G model (figure 1). The tree depicted is from the Bayesian CAT þ G analyses. (b) Phylogenetically distant
Lophotrochozoa and (c) fast evolving Nematoda outgroups exert an LBA with the fast evolving Tetraconata lineage, thereby
regrouping slow evolving Myriapoda and Chelicerata (Myriochelata) (d) When using slowly evolving and phylogenetically
close ecdysozoan outgroups, the support for Mandibulata increases. Trees b, c and d are the WAG þ F þ Gmaximum likelihood
trees. Note that support for Mandibulata is high regardless of which outgroup is used when the dataset is analysed using best
fitting model CAT þ G, but significantly varies when using the less well fitting WAG þ F þ G and GTR þ G models. Values
at nodes are PPs from the Bayesian analyses using CAT þ G model (PP in italics) BS from 100 replicates using the WAG þ
F þ G (BS plain text) and GTR þ G (BS in bold text) models. When not shown, the support is PP 1.00 and BS 100 per
cent. Lineages have been collapsed for clarity with the length of triangles equal to the longest terminal branch in the collapsed
lineage and stems are equal to the original length. Original trees with full support values are indicated in the electronic sup-
plementary material, figure S3.
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results in support for Mandibulata instead of Myrioche-
lata. Notably, even with identical taxonomic sampling
our 198 gene set provides more support for Mandibulata
than do the 150 genes of Dunn et al. (compare figures 2c
and 3c). The difference may be partly explained by our
dataset being larger and more complete (40 100 positions,
69% complete versus 18 829 positions, 61% complete),
but also by the lower substitutional saturation of
our genes (see the electronic supplementary material,
figure S5b).

(c) miRNAs corroborate Mandibulata,

Euchelicerata and Myriapoda

A useful way to test between the competing Mandibulata
and Myriochelata phylogenetic hypotheses is to use an
independent data source. We therefore explored the
miRNA complements of key arthropod taxa using a com-
bination of genomic sequence searches coupled with the
generation and analysis of multiple small-RNA libraries.
Novel miRNAs appear to have accumulated in animal
genomes through time, and, although short, they show a
level of sequence conservation exceeding that of riboso-
mal DNA [28], making it relatively easy to identify
these novel miRNAs in descendant taxa. The apparent
rarity of loss of miRNAs within evolutionary lineages
coupled with the low likelihood of convergent evolution
[29] makes miRNAs a valuable class of rare genomic
characters in phylogenetics.

One miRNA, miR-965, had previously been found
only in Pancrustacea and had been shown to be absent
from the genome of the chelicerate Ixodes scapularis
[28]. Importantly, we found reads of the mature miR-
965 in the small RNA libraries of both myriapods
(Glomeris marginata and Scutigera coleoptata), and also in
the genome of the centipede S. maritima (figure 4).
Screening our miRNA libraries also showed that in
addition to being absent from the genomic sequence of

the tick (I. scapularis), miR-965 could not be detected
in the xiphosuran Limulus polyphemus or in the arachnid
Acanthoscurria chacoana. Consequently, this distribution
supports miR-965 as a genomic apomorphy (a rare geno-
mic change) of the Mandibulata (figure 4). This same
distribution is true of a second miRNA miR-282 that
we have found only in insects, crustaceans and the
centipedes Strigamia and Scutigera. miR-282 was not
found in the Glomeris small RNA library and this may
be because miR-282 is expressed at low levels in all
Mandibulata sampled and the total number of reads
and sequencing depth was relatively low in the Glomeris
miRNA library.

In addition, upon screening the L. polyphemus and
A. chacoana small-RNA libraries, we identified a novel
chelicerate miRNA (Arthropod-Novel-1) that is not pre-
sent in the Mandibulata, but is present in the genome
of the tick I. scapularis (figure 4), and we thus suggest
this miRNA to be a new genomic apomorphy for the
Euchelicerata (Xiphosura and Arachnida). We have
also identified a novel myriapod-specific miRNA
(Arthropod-Novel-2) in the small-RNA libraries of
G. marginata and S. coleoptrata, and in the genome of
S. maritima, but not in the libraries or genomes of any
other non-myriapod taxon analysed (figure 4). Further
Myriapod-specific molecular synapomorphies have
recently been described [30].

(d) Updated morphological analyses support

Mandibulata

We assembled a large matrix of morphological data,
which provides a third independent line of evidence in
support of Mandibulata. While a number of possible mor-
phological apomorphies of Myriochelata have recently
been identified [17], inclusion of these characters in a cla-
distic analysis of 393 morphological characters still results
in overall support for Mandibulata (Bremer support ¼ 5)
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Onychophora

Priapulida
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Figure 3. Support for Mandibulata from the gene set of Dunn et al. [12]. Bayesian and maximum likelihood analyses of
the dataset of Dunn et al. [12]. (a) Using their original set of genes and taxa, Myriochelata is recovered with high support.
(b) Using our taxon sampling (with the key addition of additional myriapod data) support for Myriochelata decreases and
limited support for Mandibulata is recovered. (c) Support for Mandibulata increases when fast evolving or distant outgroups
are excluded. Tree topologies correspond to the whole dataset Bayesian CAT þ G trees. Values at nodes are PPs from the
Bayesian analyses using CAT þ G model (in italics and underscored) BS from 100 replicates using the WAG þ F þ G (plain
text) and GTR þ G (bold text) models. When not shown, the support is PP 1.00 and BS 100 per cent. Lineages have been
collapsed for clarity with the length of triangles equal to the longest terminal branch in the collapsed lineage and stems are
equal to the original length. Original trees with full support values are shown in the electronic supplementary material,
figure S4.
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rather than Myriochelata, with or without the inclusion
of fossil taxa (see figure 5 and electronic supplementary
material). The Palaeozoic fossil taxa Tanazios,
Martinssonia, and Trilobita (Olenoides) are resolved pro-
gressively more stemward relative to the mandibulate
crown group. Although support values for the deep
nodes in the mandibulate stem- and crown groups are
weak when the fossils are included (Bremer values
mostly 1 and jackknife frequencies mostly less than
50%), support for the mandibulate crown-group is

increased when the analysis is confined to extant taxa
because support is concentrated at a single node rather
than broken up at series of nodes along the stem lineage.

Morphological support for Mandibulata includes com-
plex similarities of head structure [31] and specifically of
their mandibles, arrangements of midline neuropils in the
brain, correspondences in cell numbers and specialized
cell types in the ommatidia, similar sternal buds in
the stomodeal region, and specific arrangements of
serotonin-reactive neurons in the nerve cord (see the

miR-286(a)

(b)

Drosophila melanogastor

Daphnia pulex

Scutigera coleoptrata

Glomeris marginata*

Ixodes scapularis

Acanthoscurria chacoana

Limulus polyphemus

Priapulus caudatus

Caenorhabditis elegans

miR-282

miR-275
iab-4

miR-276
miR-305

Arthropod-Novel-2

Pancrustacea

Myriapoda

M
andibulata

A
rthropoda

Chelicerata

Arthropod-Novel-1

Arthropod-Novel-1

Ixodes

Acanthoscurria

Drosophila
Daphnia
Scutigera
Strigamia
Glomeris

Drosophila
Daphnia
Scutigera
Strigamia
Glomeris

Sma-miR-965 Sma-miR-282

Limulus
Scutigera

Glomeris
Strigamia

Arthropod-Novel-2

miR-965

Figure 4. miRNAs corroborate the monophyly of Mandibulata. (a) The monophyly of Mandibulata is supported by the pres-
ence of miR-965 and miR-282, also discovered in the genome of the centipede Strigamia maritima, and in the small RNA
libraries of the millipede Glomeris marginata and the house centipede Scutigera coleoptrata. miR-965 and miR-282 are not
known from any chelicerate or non-arthropod. N.B. miR-282 was not found in the small RNA library of Glomeris. (b) In
addition a novel chelicerate miRNA (Arthropod-Novel-1) is present only in chelicerates, but in none of the mandibulates con-
sidered, and a novel myriapod miRNA (Arthropod-Novel-2) is found only in myriapods. Shaded residues highlight the mature
miRNA sequence within the folded pre-miRNAs.
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electronic supplementary material for a detailed com-
pilation of morphological and developmental genetic
characters).

(e) Phylogenomic analyses support monophyletic

Arthropoda, Chelicerata and Paraphyletic

Cycloneuralia

Most of our phylogenomic analyses support the mono-
phyly of Arthropoda (euarthropods, tardigrades,
onychophorans), either using our gene sampling
(figure 1) or that of Dunn (figure 3b). The position of
tardigrades is more unstable, varying from being sister
to the onychophorans (figure 1 using CAT þ G model)
to being sister to a group of arthropods plus onychophor-
ans (see the electronic supplementary material, figure S2
using the CAT þ GTR model). Whereas the CAT þ G
model supports Arthropoda consistently, site-homo-
geneous WAG þ F þ G and GTR þ G models tend to
group tardigrades with nematodes (dotted arrows in the
electronic supplementary material, figures S3 and S4).
Our interpretation is that site-homogeneous models,
which fit our data less well than the CAT model (see
§2), are unable to overcome the effect of systematic
errors responsible for the grouping of fast evolving nema-
todes and tardigrades.

All our phylogenomic analyses support a monophyletic
origin of the chelicerates in which pycnogonids are sister
to a group of arachnids plus Xiphosura. This finding is
significant in light of recent debates over the position of
the Pycnogonida, which some studies find to be the sister
group to all other arthropods, a hypothesis known as

Cormogonida [23,32,33]. The possibility that systematic/
stochastic errors were affecting the affinity of pycnogonids
in previous studies is highlighted by their position being
parameter-dependent in other studies [16,24,34].

Finally, all our phylogenomic analyses support a para-
phyletic origin of the Cycloneuralia, with the
Scalidophora (priapulids and kinorhynchs) sister to a
group of nematodes plus arthropods. This is in accord-
ance with ribosomal markers [23], but in contrast to
previous phylogenomic studies [12,13], which instead
supported monophyly of Cycloneuralia (Nematodoida þ
Scalidophora). Notably, when updating the gene selection
of Dunn et al. [12] to our larger taxon sampling, a
paraphyletic origin of the Cycloneuralia is recovered. Ulti-
mately, the relationships of Nematodoida, Scalidophora
and Arthropoda remain uncertain.

4. DISCUSSION
Arguably the strongest evidence of phylogenetic accuracy
is the congruence of independent lines of evidence
supporting the same tree topology [22,35]. In order to
test current hypotheses of arthropod evolution, we have
analysed three independent lines of evidence: a phyloge-
nomic dataset of 198 genes, a new miRNA dataset
and a large morphological dataset. All three datasets
unambiguously support the monophyly of Mandibulata.

We have examined the possibility that previous mol-
ecular phylogenies supporting Myriochelata might have
been affected by systematic error and the robustness of
the result from our phylogenomic dataset is supported
by experiments designed to reduce the effects of
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Figure 5. Morphology supports monophyly of crown Mandibulata. Summary cladogram of crown group euarthropod relation-
ships based on morphological data (393 characters listed in the electronic supplementary material). Clades shown here are a
strict consensus of shortest cladograms computed by TNT and PAUP*. Numbers to left of branches are Bremer support
values; for extant taxa, values for analyses with (left) and without fossils (right) are separated by a slash. Numbers to right
of branches are bootstrap (top) and jackknife (bottom) frequencies (indicated by a dash if less than 50%); values for analysis
with and without fossils are separated by a slash. The fossils Tanazios, Martinssonia, and trilobites (Olenoides) are resolved pro-
gressively more stemward relative to the mandibulate crown group.
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systematic errors. Increased taxon sampling, exclusion of
outgroups with the longest branches, removal of the fast-
est evolving positions and the use of better evolutionary
models systematically increase support for Mandibulata
over Myriochelata.

The presence of miR-965 and miR-282 in Pancrustacea
and in two groups of Myriapoda also represents compelling
evidence in support of Mandibulata. These two miRNA
are absent from both arachnids and horseshoe crabs as
well as from all other Ecdysozoans for which the miRNA
complement is known (nematodes and priapulids
worms). As it is implausible for this miRNA to have
been independently acquired in the different mandibulate
lineages [29], we conclude that it constitutes a rare
genomic change supporting Mandibulata. In light of con-
gruence of these novel miRNA autapomorphies with
other lines of evidence presented here (phylogenomics
and morphology) and with the complementary findings
of Regier et al. [16], we conclude that the most tenable
position of the Myriapoda is as the sister group of the
Pancrustacea within a monophyletic Mandibulata.

Our phylogenomic analyses suggest that studies which
have grouped tardigrades with nematodes may have been
similarly affected by LBA. When analysed using the CAT
model, which has been shown to help in overcoming sys-
tematic errors [14], both our dataset and that of Dunn
et al. [12] group Tardigrada with Euarthropoda and Ony-
chophora in a monophyletic Arthropoda clade.
Tardigrada are a sister group of the Onychophora in
these trees, a topology which finds no support from a
morphological point of view, but is in accordance with
mitochondrial markers [36]. Furthermore, if the paraphy-
letic nature of the Cycloneuralia is correct, as supported
by our phylogenomic analyses, this would suggest that
the ancestral Ecdysozoa was cycloneuralian-like,
possessing a circumpharyngeal brain and an introvert [37].

The Mandibulata, which includes insects, is by far the
largest clade of animals on Earth, but the origin of this
successful bodyplan in terms of the evolution of its devel-
opment remains obscure. The picture from palaeontology
is, however, somewhat clearer. Cambrian fossils that have
been identified as a grade of stem-group mandibulates
[38] indicate a crustacean-like habitus for basal members
of the Mandibulata and may shed light on how the mand-
ible common to these groups evolved. The limb on the
third cephalic segment (the mandible homologue) in
Cambrian stem-group mandibulates such as Martinssonia
displays a stronger development of a movable, setose pro-
cess at the limb base (‘proximal endite’; [39]) than that on
the adjacent limbs [40]. The more elaborated proximal
endite used for food manipulation is viewed as a precursor
to the fully differentiated coxal chewing surface in the
mandibulate crown group [40]. Further studies of fossils
and embryos in the light of what we suggest is a reliable
phylogeny of arthropod classes should clarify the
evolution of the mandibulate bodyplan [41], and con-
sequently how anatomical novelties may have promoted
their hugely successful radiation.
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Morphological data traditionally group Tardigrada (water bears),
Onychophora (velvet worms), and Arthropoda (e.g., spiders,
insects, and their allies) into a monophyletic group of inverte-
brates with walking appendages known as the Panarthropoda.
However, molecular data generally do not support the inclusion of
tardigrades within the Panarthropoda, but instead place them
closer to Nematoda (roundworms). Here we present results from
the analyses of two independent genomic datasets, expressed
sequence tags (ESTs) and microRNAs (miRNAs), which congruently
resolve the phylogenetic relationships of Tardigrada. Our EST
analyses, based on 49,023 amino acid sites from 255 proteins,
significantly support a monophyletic Panarthropoda including
Tardigrada and suggest a sister group relationship between
Arthropoda and Onychophora. Using careful experimental manip-
ulations—comparisons of model fit, signal dissection, and taxo-
nomic pruning—we show that support for a Tardigrada +
Nematoda group derives from the phylogenetic artifact of long-
branch attraction. Our small RNA libraries fully support our EST
results; no miRNAs were found to link Tardigrada and Nematoda,
whereas all panarthropods were found to share one unique
miRNA (miR-276). In addition, Onychophora and Arthropoda were
found to share a second miRNA (miR-305). Our study confirms the
monophyly of the legged ecdysozoans, shows that past support
for a Tardigrada + Nematoda group was due to long-branch at-
traction, and suggests that the velvet worms are the sister group
to the arthropods.

Ecdysozoa | cycloneuralia | Lobopodia | Tactopoda

Ecdysozoa (1) is the clade of molting invertebrates that in-
cludes two of the ecologically most important and evolu-

tionarily most successful animal phyla—the arthropods and the
nematodes—as well as several other, less diversified taxa, in-
cluding the tardigrades (water bears), the onychophorans (velvet
worms), and the priapulids (penis worms). Although the mono-
phyly of Ecdysozoa is now well established (2, 3), the phylogenetic
relationships within this group have proven difficult to resolve (4–
7). Morphological and embryological evidence suggests a close
affinity among Arthropoda, Onychophora, and Tardigrada (the
Panarthropoda) (8, 9), although the interrelationships among
these three taxa are uncertain. Despite the concordance between
these morphological studies and a few molecular analyses (10–
14), most molecular studies instead support a close relationship
between the water bears and the cycloneuralian ecdysozoans
(nematodes, priapulids, and their close relatives), particularly the
nematodes (2, 15–22). These alternative hypotheses of tardigrade
relationships have important consequences for our understanding
of morphological evolution within Ecdysozoa. For example, if
tardigrades are cycloneuralians, then the telescopic mouth cone
and plated pharynx shared by tardigrades and cycloneuralians
should be considered cycloneuralian apomorphies, whereas the

important characteristics of segmentation and the possession of
paired limbs must be homoplastic—they either evolved con-
vergently in arthropods and tardigrades or were lost in nematodes
(23). Obviously, the opposite would be true if the tardigrades are
panarthropods. Thus, accurately placing the tardigrades with re-
spect to nematodes and arthropods is central to solving the
interrelationships among the ecdysozoans and clarifying homol-
ogies within this group.
Although the rapidly growing influx of molecular data has

radically altered our understanding of the animal tree of life, no
dataset is homoplasy-free. Phylogenies derived from large, ge-
nomic-scale datasets of expressed sequence tags (ESTs) from
many proteins minimize stochastic errors; however, they can
exacerbate systematic errors (24), such as the well-known long-
branch attraction (LBA) artifact (25). This is because systematic
errors, unlike stochastic ones, are positively misleading; the error
increases with an increase in the amount of data in the analysis
(24). Although genomic-scale datasets are important for re-
solving difficult phylogenetic problems, suboptimal approaches
to tree reconstruction, such as those using poorly fitting sub-
stitution models, can generate phylogenetic artifacts when ap-
plied to such datasets. Tools have been developed to ameliorate
these problems, including comparing trees derived using differ-
ently fitting models (13, 14, 26), site-stripping (e.g., “slow-fast”
analyses; ref. 27), signal dissection (28), and targeted taxon
pruning (3, 26, 29). These tools have recently been applied to
address, for example, the position of the Myriapoda (centipedes
and their relatives) within Arthropoda (12, 14, 20, 30) and the
position of the Ctenophora (comb jellies) among the non-
bilaterian animals (12, 26, 31, 32).
Given the inherent difficulties and potential biases associated

with the analyses of genome-scale datasets, the use of a single
type of data might not be sufficient to solve a particularly difficult
phylogenetic problem (33). We have contended that consilience
(34)—the congruence of multiple lines of evidence—is a partic-
ularly cogent indicator of phylogenetic accuracy (14, 35, 36). A
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class of molecules whose utility for phylogenetic reconstruction
has recently been recognized is the microRNAs (miRNAs),
genomically encoded nonprotein coding RNAs of approximately
22 nucleotides in length that are found in many eukaryotes, in-
cluding the metazoans (37, 38). MiRNAs are important post-
transcriptional regulators (39), but it is their use as phylogenetic
markers that is of interest here. MiRNAs have four properties
that make them reliable indicators of phylogenetic relationships:
(i) New miRNA families are continually added through time to
evolving metazoan genomes; (ii) once a new miRNA is acquired,
its mature sequence accumulates mutations only very slowly; (iii)
the rate of miRNA acquisition outweighs the rate of miRNA
losses in most metazoan taxa; and (iv) there is a low probability
of convergent evolution of an miRNA gene (38, 40). Indeed, the
use of miRNAs has already provided important insights into the
interrelationships among annelids (41), sponges (42), arthropods
(14) vertebrates (43), and brachiopods (44), and has helped
place enigmatic taxa, such as acoel flatworms, into the animal
tree of life (36).
In the present study, we investigated the phylogenetic rela-

tionships of the Tardigrada within Ecdysozoa by studying the
consilience of two independent genomic datasets, ESTs and
miRNAs. We first present our EST results and use these to ask
whether alternative hypotheses of tardigrade relationships (ar-
thropod vs. nematode affinity), as found in previous phyloge-
nomic analyses, could be tree-reconstruction artifacts. We then
assembled the miRNAs complements of a tardigrade and an
onychophoran, and compare these with the miRNA comple-
ments of all other known metazoans. Finally, we compare the
results of our EST and miRNA analyses to evaluate the extent to
which these genomic markers corroborate or, alternatively, dis-
agree with each other. These lines of evidence support the
monophyly of Panarthropoda including Tardigrada. We show

that support from previous studies for a nematode+tardigrade
group is the result of an LBA artifact, and provide evidence that
Onychophora is the sister group of Arthropoda. These results
imply that panarthropod limbs and segmentation are homologous,
and that characters shared by tardigrades, nematodes, and other
cycloneuralians are ecdysozoan plesiomorphies.

Results
EST-Based Phylogenomic Analyses Support Panarthropoda and
Lobopodia. To address the phylogenetic position of tardigrades,
we assembled a dataset of 255 genes (49,023 reliably aligned
amino acid positions) from all of the ecdysozoan phyla except the
Loricifera. Because the use of poor-fitting models can cause the
recovery of artifactual phylogenies, we first used Bayesian cross-
validation (45) to rank substitution models according to their fit
to our alignment. Results of our cross-validation analysis (Fig.
S1) show a regular increase in the fit of the model to the data
when moving from simple to more complex models, with the site-
heterogeneous mixture model CAT-GTR+Γ having the best fit
to our dataset. (All models tested used a gamma distribution to
account for rate variation among sites.) Results of the Bayesian
analyses performed using the CAT-GTR+Γ model are shown in
Fig. 1A. The majority of internal nodes have a posterior proba-
bility (PP) = 1. Tardigrada is recovered within Panarthropoda as
the sister group of Onychophora + Arthropoda, together called
the Lobopodia (46), with PP = 1. Within Arthropoda, our ana-
lyses confirm the chelicerate affinity of the sea spiders and are
consistent with the monophyly of Mandibulata (Myriapoda +
Pancrustacea) (14, 30).
Our results do not support the monophyly of the Cyclo-

neuralia, given that Nematoida (Nematoda + Nematomorpha)
is recovered as the sister group of Panarthropoda, albeit with
a low posterior probability (PP = 0.76), whereas Scalidophora

Fig. 1. Phylogenomics and miRNAs suggest velvets worm are the sister group to the arthropods within a monophyletic Panarthropoda. (A) Phylogenetic tree
derived using Bayesian analysis of the EST data under the best-fitting CAT-GTR+Γmodel supports tardigrades as the sister group of Lobopodia (Onychophora +
Arthropoda). Support values represent posterior probabilities. Asterisks indicate a PP value of 1.0. Note that for Nematoda alone, the branch lengths are not
shown to scale. (B) MiRNA distribution is consistent with the results obtained from the phylogenomic analysis. Single gray/black rectangles represent a miRNA
gain. Clades are color-coded to highlight congruence between ESTs and miRNAs (see text for more details).
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(Priapulida + Kinorhyncha) is recovered as the sister group of
all other ecdysozoans. Nematoida was recovered with PP = 1.
Because Nematomorpha is the taxon with the greatest amount of
missing data in our EST dataset (Table S1), the strong support
found for Nematoida (an otherwise well-accepted clade) sug-
gests that missing data for Nematomorpha do not have a nega-
tive impact on our results.

Model Selection, Signal Dissection, and Targeted Taxonomic Pruning
Highlight the Artifactual Nature of Tardigrada + Nematoda. To
better understand the nature of the signal in our EST dataset, we
performed three experiments to test whether the Tardigrada +
Nematoda group recovered in previous analyses (2, 15–22) could
result from a systematic error. First, Bayesian analyses were
performed under a series of alternative models (Figs. S1 and S2).
When the data were analyzed under poor-fitting site-homoge-
nous models (i.e., WAG+Γ and GTR+Γ) (Fig. 2A and Figs. S1 A
and B and S2 A and B), Panarthropoda was not recovered, and
instead Tardigrada was found as the sister group of Nematoida
(PP = 1 with both models). In contrast, analyses using the better-
fitting site-heterogeneous CAT+Γ and CAT-GTR+Γ invariably
identified Tardigrada as a member of Panarthropoda (Fig. 1A
and Figs. S1 C and D and S2 C and D).
We next performed a signal-dissection analysis (13, 28), based

on the slow-fast technique (27). We partitioned sites into subsets
according to their rate of evolution, and independently analyzed
these partitions. We hypothesized that if Tardigrada + Nem-
atoda were an LBA artifact, then support for this group would be
favored by the partitions of fast-evolving sites, whereas it would
be minimized in partitions that exclude these sites (Methods).
Consistent with our hypothesis, analyses of the fast-evolving sites
show Nematoda + Tardigrada with PP = 0.88, whereas analyses
of the slow-evolving sites show Tardigrada + Lobopodia with
PP = 0.84 (Fig. 2 B and C, Fig. S3, and Table S2).
To further test whether Tardigrada + Nematoda is an LBA

artifact, we performed a series of taxon pruning experiments.
We selectively removed taxa to generate uninterrupted long-
branches for Tardigrada, Onychophora, and Nematoda (Meth-
ods). As expected if Tardigrada + Nematoda is an LBA artifact,
the results systematically support this group (Fig. 2D and Fig. S4).

In summary, three different experiments designed to uncover
potential sources of systematic bias in our EST alignment suggest
that a nematode (or cycloneuralian) affinity for Tardigrada is
most likely an LBA artifact.

MiRNAs Corroborate the EST-Based Phylogenomic Analyses, and
Confirm the Monophyly of Panarthropoda and Lobopodia. Our sec-
ond dataset derives from the newly sequenced small RNA
complements of the tardigrade Paramacrobiotus cf. richtersi and
the onychophoran Peripatoides novaezelandiae, and character-
ization of their respective miRNA complements. Rota-Stabelli
et al. (14) identified four miRNAs that characterize arthropods
and had not yet been found in other ecdysozoans: miR-275, -276,
-305, and -iab-4. There are also four miRNAs that are conserved
between the nematode genera Caenorhabditis and Pristionchus
(47): miR-54, -63, -86, and -239 (Fig. 1B). Consistent with our
EST results, we did not find any nematode miRNAs in our tar-
digrade small-RNA library. Similarly, we did not find any poten-
tial miRNAs shared exclusively between the tardigrade and the
onychophoran. Instead, in both the tardigrade and onychophoran
libraries we found a single miRNA, miR-276, that formerly had
been identified only in arthropods (14). In addition, in the ony-
chophoran library, but not in the tardigrade library, we found
a second miRNA, miR-305, which is also considered arthropod-
specific (Fig. 1B). Based on these discoveries, we hypothesize that
miR-276 is an apomorphy of Panarthropoda (Tardigrada +
Lobopodia) and miR-305 is an apomorphy of Lobopodia (Ony-
chophora+Arthropoda). Finally, our results suggest that miR-275
and miR-iab-4 are apomorphies of Arthropoda (Fig. 1B).

Discussion
Given the pervasiveness of systematic artifacts, care must be
taken when evaluating topologies derived from large alignments,
especially when well-supported competing hypotheses have been
proposed. In the case of the tardigrades, molecular homoplasy
certainly exists, as demonstrated by the fact some molecular
studies support a nematode affinity of tardigrades, whereas
others support an arthropod affinity. With respect to morphol-
ogy, tardigrades have a melange of arthropod and cycloneuralian
characters, suggesting that either the arthropod-like characters
were lost in cycloneuralians or cycloneuralian-like characters

Fig. 2. Model selection, signal dissection and taxon pruning experiments show LBA explains previous support for a tardigrade/nematode clade. As in Fig. 1,
these are trees from the EST data; node values represent posterior probabilities, and asterisks indicate a PP of 1.0. The node where the Tardigrada join the
tree is identified by a circle. Clades have been collapsed for clarity. (A) Tardigrades are recovered as the sister group of Nematoida under the poorly fitting
GTR+Γmodel of sequence evolution (for Δ-likelihoods and SDs; Fig. S1 and Methods). (B) Tree recovered from the analysis of the slowest-evolving 90% of the
sites in our dataset (Fig. S3A). The PP values are reported in italics, whereas support values obtained from the analysis of the complete dataset are in roman
type (Fig. 1A). (C) Topology recovered from the 10% fastest evolving sites in our dataset, under CAT-GTR+Γ. The fast-evolving sites support Tardigrada as the
sister group of Nematoda. (D) Phylogeny generated under a reduced-taxon set (one onychophoran, one tardigrade, and no nematomorph) designed to
exacerbate LBA artifact.
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were lost in arthropods (assuming that cycloneuralian and tar-
digrade characters are homologous). Consilience between our
EST and miRNA analyses, as well as the experiments performed
to identify LBA artifacts, congruently suggest that the closest
affinity of tardigrades is with the Arthropoda and the Onycho-
phora (i.e., Panarthropoda), not with the cycloneuralian ecdy-
sozoans (nematodes). These results supersede our previous
mitogenomic analyses (13), which could not reject a nematode
affinity of Tardigrada because of the extremely high evolutionary
rate of nematode mitochondrial genomes. The arthropod-like
features of tardigrades, such as the paired ventrolateral appen-
dages with segmental leg nerves and Engrailed expression in the
posterior ectoderm of each segment (23, 48), appear to be pan-
arthropod apomorphies that are not present in Cycloneuralia.
The position of tardigrades within the panarthropods is less

certain. Overall, our results favor a sister group relationship
between the Tardigrada and the Lobopodia. This relationship is
favored because our EST and miRNA data both suggest a sister
group relationship between onychophorans and arthropods and
account for the uniquely shared features of onychophorans and
arthropods (e.g., an open, hemocoelic circulatory system, a dor-
sal heart with segmental ostia, nephridia forming from seg-
mented mesoderm), without the need to force their secondary
loss in tardigrades as the result of miniaturization. Nonetheless,
arthropods and tardigrades do share segmental ganglia in the
nerve cord, in contrast to the unganglionated nerve cord in
onychophorans (49), in which the commissures are not in seg-
mental register. Our best tree, however, implies either conver-
gent gain of segmental ganglia in tardigrades and arthropods or
a secondarily unsegmented nerve cord in onychophorans, given
that tardigrades share no miRNAs with arthropods to the ex-
clusion of onychophorans and were not recovered as sister taxa
in any of our EST analyses (Figs. 1 and 2 and Figs. S1 and S2).
Analyses performed using the CAT+Γ model, similar to pre-
vious mitogenomic analyses (13), still pointed toward a Tardi-
grada + Onychophora group within Panarthropoda (Fig. S2C).
CAT+Γ is not the overall best-fitting model for our dataset,
however. When the overall best-fitting model (CAT-GTR+Γ) is
used, our dataset support Lobopodia (Fig. 1), whereas mitoge-
nomic data are known to be not very reliable markers for re-
solving deep divergences. In addition, no morphological evi-
dence has been shown to support such a grouping, and no
miRNA has been found to be shared exclusively between these
two taxa. We conclude that by fully rejecting “Arthropoda +
Tardigrada” (i.e., Tactopoda: ref. 50), which was never recovered
in our analyses, and by favoring Lobopodia over Onychophora +
Tardigrada, our results significantly reduce uncertainty regarding
the placement of Tardigrada within Panarthropoda.
Our findings suggest that characters shared by tardigrades

and cycloneuralians, such as a terminal mouth, protrusible mouth
cone, triradiate pharynx, and a circumesophageal brain (9, 23, 51),
are most likely ecdysozoan plesiomorphies. This is consistent
with the fact that in our proposed phylogeny (Fig. 1A), even if
the Tardigrada are excluded, the remaining cycloneuralian taxa
do not form a monophyletic group (14). Instead, they are
arranged as a paraphyletic grade at the base of Ecdysozoa (Fig.
1A). This hypothesis is also consistent with the fossil record of
arthropods, in that taxa in the arthropod stem group, such as
armoured lobopodians and anomalocaridids, show a melange of
arthropod-like and cycloneuralian-like features, the latter (e.g.,
radially arranged mouthparts) then lost in the arthropod crown
group (23, 50). Our phylogeny suggests that paired limbs and
a shared mode of segment patterning (48) are apomorphic for
Panarthropoda. Thus Tardigrades, as a living taxon with a mix-
ture of cycloneuralian and arthropod characters, are placed
center stage in our pursuit of understanding of the mechanisms
underlying the construction of the most successful of all animal
body plans, that of the arthropods.

Methods
EST Dataset Assembly. We assembled a 255-gene phylogenomic dataset of
49,023 amino acid positions from 33 ecdysozoan species by merging genes
from two previous EST datasets (12, 14) (available on request). By merging
these two datasets, we were able to improve taxonomic sampling with
reference to (14) and particularly to (12). In addition, we were able to in-
vestigate the effect of including genes unique to (12) to the initial gene sets
that we analyzed in (14) to address the problem of the relationships within
Arthropoda. Improving taxonomic sampling is a key to alleviating LBA, and
by merging the two datasets we were able to add data for one nem-
atomorph, a second onychophoran, and an additional, relatively slowly
evolving nematode. More details on dataset assembly, taxonomic sampling,
and ortholog identification are provided in SI Methods. The average amount
of missing data in our superalignment is ∼36% (Table S1).

MiRNA Library Generation. Specimens of a velvet worm Peripatoides novae-
zealandiae were obtained commercially and identified by S.J.L.. A small-RNA
library was constructed according to established protocols (38) and se-
quenced at 454 Life Sciences. The total RNA preparation of the tardigrade
Paramacrobiotus cf. richtersi (∼4,400 pooled individuals) was sequenced
using Illumina technology at the Yale Center for Genome Analysis. Tardi-
grades were cultured by L.R. and T.M. and stored in RNAlater. MiRNA data
for the arthropod subclasses Myriapoda and Chelicerata were obtained from
previously described miRNA complements (14), and those for Drosophila
melanogaster, Daphnia pulex, Priapulus caudatus, and Caenorhabditis ele-
gans were obtained from miRBase (52). Sequences from the tardigrade and
onychophoran small-RNA libraries were processed using PERL scripts written
by L.I.C. and D.P. (available on request) and analyzed using miRMiner as
described previously (14, 38).

Phylogenetic Analyses. All phylogenetic analyses were conducted under
a Bayesian framework using PhyloBayes 3.2e (53). We first compared the fit
of alternative models of evolution to our EST dataset. We used Bayesian
cross-validation (45), as described in the PhyloBayes manual (53), to rank the
fit of alternative substitution models to the data. The models compared
were WAG+Γ, GTR+Γ, CAT+Γ, and CAT-GTR+Γ.

Phylogenetic analyses of the EST dataset were performed under each
model, and results were compared to evaluatewhether different phylogenies
were obtained when different-fitting models were used. For every Phylo-
Bayes analysis, two independent runs were executed. Convergence was
tested using “bpcomp” in the PhyloBayes package. Analyses were consid-
ered to have converged when the maximum difference across bipartitions
was <0.2 (see the PhyloBayes manual). For each analysis, the burn-in period
was estimated independently, and trees sampled before convergence were
not considered when summarizing the results of the two runs.

Site Stripping and Signal Dissection Analyses. These analyses used the slow-
fast method (27) to estimate the rate of substitution of the sites in our
alignment. First, the parsimony score of each site in our alignment was
calculated for each of four groups with constrained monophyly (Pan-
crustacea, Chelicerata, Nematoda, and Lophotrochozoa). The rate of each
site in our alignment was then estimated as the sum of its parsimony scores
across all considered monophyletic groups. All parsimony analyses were
performed using PAUP4b10 (54). Sites in our alignment were then ranked
according to their substitution rates and partitioned into classes. Alignments
were generated, according to the distribution of site rates, by systematically
removing (i) approximately the fastest 10% of the sites, that is, all characters
with a slow-fast–estimated rate of six or more steps (total number of
remaining sites, 45,292); (ii) the fastest ∼20% of the sites, that is, all char-
acters with a slow-fast estimated rate of five or more steps (total number of
remaining sites, 43,316); and (iii) the fastest ∼30% of the sites, that is, all
characters with a slow-fast–estimated rate of three or more steps (total
number of remaining sites, 37,150). However, the number of substitutions in
the sites that remained after exclusion of the first 10% of characters at just
five or fewer steps is already low. This implies that the proportion of fast-
evolving sites in our alignment is quite small. Accordingly, we did not create
datasets excluding more than 30% of the fastest sites.

We also performed a signal-dissection analysis (14, 28) to compare the
signal in the slow- and fast-evolving sites. Accordingly, two datasets were
generated, containing approximately 10% (3,731 sites) and 30% (11,873
sites) of the fastest sites in our alignment. The five aligned datasets that
resulted, namely the three sets composed of slow-evolving sites (approxi-
mately the slowest 70%, 80%, and 90%) and the two sets of fast-evolving
sites (approximately the fastest 10% and 30%), were analyzed independ-
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ently using PhyloBayes 3.2e to construct trees under the best-fitting model
(i.e., the site-heterogeneous mixture model CAT-GTR+Γ).

Taxonomic Pruning Experiment. It is well known that the number and nature
of the taxa used can affect phylogenetic inference and, in particular, can
exacerbate or reduce LBA (2, 3). Thus, we carried out three taxon pruning
experiments to evaluate the robustness of our EST results. We generated
datasets that excluded (i) the tardigrade Richtersius coronifer and the ony-
chophoran Epiperipatus sp., which resulted in uninterrupted branches for
the tardigrades and the onychophorans; (ii) the nematomorph Spi-
nochordodes tellinii and the tardigrade R. coronifer, which resulted in un-
interrupted branches leading to the nematodes and the tardigrades; and
(iii) the onychophoran Epiperipatus sp., the tardigrade R. coronifer, and the
nematomorph S. tellinii, which resulted in uninterrupted branches leading to
the onychophorans, tardigrades, and nematodes. In these experiments, the

retained tardigrade was always Hypsibius dujardini because of its greater
gene coverage. All of these datasets were analyzed under CAT-GTR+Γ.
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