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1 Introduction troduces a third reason why compression of digital holo-

Many techniques for the optical encryption of image data 9r@ms differs from compression of digital images; a local

have been proposed and implemented in recent ye&s. change in a digital hologram will, in theory, affect the
Most perform encryption with a random phase mask posi- whole reconstructed object. Furthermore, when gauging the

tioned in the input, Fresnel, or Fraunhofer domain, or a errors intrqduced by Ioss_y compression, we are notgiirectly
combination of dc;mains i’hese invariably prodljce a interested in the defects in the hologram itself, only in how

complex-valued encrypted image. Digital holograph® compression noise affects the quality of reconstructions of

can be used to measure complex-valued wavefronts, and ittheT%omQrestsed B}Dthobject. . foll In Sec. 2. th

has been applied to the encryption of 2-D conventional € structure of the paper IS as Tollows. In Sec. 2, he
(real-valued images’~® Of these, the techniques based on hologram encryption procedure is outlined. In Sec. 3, we
phase-shift interferomet’r?r”'zo(i?SI) make good use of examine the amenability of encrypted digital holograms to
detector resources in that they capture on-axis encrypted©SSIESS compression using four well-known techniques,
digital hologram&® The PSI technique has also been ex- 2nd In Sec. 4 apply the lossy technique of quantization to
tended to the encryption of 3-D objedfs the real and imaginary components of each encrypted ho-

L : . lographic pixel. We combine quantization with lossless

e vanage, o dita techicues ove "olo0'SPIC compression n Sec. 5 1 ahiee far beter compressin
tive medid® is that the resulting encrypted hologram can performance than using either technique alone, and we con-
be easily stored electronically or transmitted over conven- clude in Sec. 6.
tional communication channels. This motivates the study of
how conventional compression techniques could be applied
to digital holog.rams..Hc_JIogram compression differs to im- 5 Digital Hologram Encryption
age compression principally because our holograms store
3-D information in complex-valued pixels, and secondly The encrypted complex-valued holograms are captured us-
because of the inherent speckle content, which gives the'Nd an optical setuggshown in Fig. 17baS(_ad on a Mach-
holograms a white-noise appearance. It is not straightfor- Z€hnder interferometer arch|tectu°16e2_. A linearly polar-
ward to remove the holographic speckle, because it actuallyized argon ion514.5 nm laser beam is divided into object
carries 3-D information. The noisy appearance of digital and reference beams_, both of vyhmh are spatially fllte_red
holograms causes lossless data compression techniques 8Nd expanded. The first beam illuminates the 3-D object
perform poorly on such inpufe. placed at a distanced;+d, from a 10-bit 2028

In this paper, we apply quantization directly to the >*2044-pixel Kodak Megaplus CCD camera. A random
complex-valued holographic pixels. Treatments of quanti- phase mask is placed a distantg from the 3-D object.
zation in holograms can be found in the literatt®é® and Due to free-space propagation, and under the Fresnel
compression of real-valuétand complex-valueéd?® digi- approximatiort°=%° the signal at the detector plane
tal holograms has received some attention to date. This in-Hg(X,y) is given by the superposition integral
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) . ) . ) Fig. 2 The bolt object (a), and an example of a random-phase mask
Fig. 1 Experimental setup for 3-D object encryption using phase- (b), used in the study.

shift digital holography: BE, beam expander; BS, beamsplitter; M,
mirror; RP, retardation plate; P, phase mask.

mask has dimensions 2048048 pixels, and in the en-
cryption experiments our digital holograms were enlarged
—i 2 * . . from 2028x 2044 pixels to these dimensions by padding
He(x,y)= )\—dzexp< TdZ)f f_m expi®(x",y")] with zeros. For our experiments, the mask was positioned
_ as shown in Fig. 1 so that the ratio of the distanded,
XAu(X",y"exdiow(x’,y")] was 35:65. In Fig. 3 we show the amplitude and phase of
o the bolt hologram before encryption and after encryption.
xexp i ——[(x—x")2+(y— ’)Z]]dx’d ’,
pr Ady Iy Y 3 Lossless Compression of Encrypted Digital
(1) Holograms

) The digital holograms were treated as binary data streams,
where Ay and ¢y are the amplitude and phase, respec- and compressed using the lossless data compression tech-
tively, of the signal in the plane of, but inmediately before, niques of Lempeland Ziv(LZ77), Lempel-Ziv-Welch
the random phase magk The integraHg(x,y) will have (LZW), Huffman, and Burrows-WheeléBW). The holo-
both its amplitude and phase modulated by the mask andgrams are stored in native MATLAB floating-point repre-
will have a dynamic range suitable for capture by a CCD sentation with 8 bytes of real information and 8 bytes of
camera. imaginary information for each pixel. The holograms

The reference beam passes through half-wave plaje RP
and quarter-wave plate RPThis linearly polarized beam
can be phase-modulated by rotating the two retardation
plates. Through permutation of the fast and slow axes of
the plates we can achieve phase shifts of-07/2, —,
and —3#/2. The reference beam combines with the light
diffracted from the object and forms an interference pattern
in the plane of the camera. At each of the four phase shifts
we record an interferogram. Using these four intensity im-
ages, the complex-valued camera-plane wavefront can be
approximated in a computer to good accuracy using PSI.

Digital holograms of five reasonably diffuse 3-D objects
were used in the experimerftsFigure 2a) shows one of
the objects. This bolt had approximate dimensions of
5mmx5mmx5mm, and was positionedd;+d,
=390 mm from the 2028 2044 pixel camera. The inten-
sity image in Fig. 2a) is reconstructed from a digital holo-
gram captured using a version of the apparatus shown in
Fig. 1 that did not contain a random phase m&sK These
reconstructions serve as ground truth data when quantifying
lossy compression errors later in the paper.

In our experiments we use digital holograms that have
been captured optically using the apparatus in Fig. 1 with-
out the phase mask;>” and we encrypt them on a com- e e
puter using simulated free-space propagationhe phase (© (d)

”.‘aSk used in the S|mulat|(_)ns IS.Shown In FIQ:))Z It con- Fig. 3 The bolt hologram before and after encryption: (a) amplitude
sists of values chosen with uniform probability from the g (b) phase of the original hologram, and (c) amplitude and (d)
range[0, 2m) using a pseudorandom number generator. The phase of the encrypted hologram.
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Table 1 Lossless compression of encrypted digital holograms.

Compression ratio

Hol. Size LZ77 LZW Huff. BW

no. (KB) (KB) (KB) (KB) (KB) LZ77  LZW  Huff.  BW
1 65536 62651 65536 62,529 63,869 105  1.00 105  1.03
2 65536 62,644 65536 62,519 63,83 105  1.00 105  1.03
3 65536 62,645 65536 62,515 63,823 105  1.00 105  1.03
4 65536 62,643 65536 62,515 63,825 105  1.00 105  1.03
5 65536 62,641 65536 62,513 63,825 105  1.00 105  1.03

Averages: 1.05 1.00 1.05 1.03

were first compressed without any encryption. Compress- and was applied to each pixet,§) in the encrypted holo-
ing separately the real and imaginary data streams achievegramH, where
compression ratios in the rangé.0, 6.64,%' where the

compression ratio is calculated from
o=max{|min[Im(H)],|mav{ Im(H)]1],

_ uncompressed .siz.e @) |min[Re(H)]|,|max Re(H)]|}, 4
compressed size

’

Next, each of the five holograms was encrypted with the and where=2"""—1. Here,b represents the number of
phase mask shown in Fig(8. The encrypted holograms bits per real or imaginary value, max(returns the maxi-
contained 20482048 pixels, and with 8-byte real and mum scalar in its argume(s}, and rounda) is defined as
imaginary values, this amounts to a file size of 65,536 KB, |a+0.5. After quantization, each real and imaginary value
where 1 KB=2 bytes. The four lossless compression will be in the rangdg —1,1].
techniques were applied to each hologr@esults shown in The procedure for quantifying reconstruction loss due to
Table 1—hologram 2 is the bolt guantization was as follows. An encrypted digital hologram
From Table 1, very little redundancy or structure could H(x,y) was quantized as$i’(x,y) according to Eq.(3).
be found in the encrypted hologram data. The random The hologram was decrypted, and the entire hologram re-
phase mask, combined with Fresnel propagation, is very constructed, both processes being simulated using a com-
effective at removing apparent structure from the hologram puter. The quality of the reconstructiah (x,y) was calcu-
data. For some encrypted holograms, with LZW in particu- |ated by a comparison with the reconstructibhy(x,y)
lar, the compressed sizes were even larger than the uncomfom an unencrypteand unquantizedversion of the digi-
pressed. In these cases the uncompressed encrypted filgy hologram. The two reconstructions were compared in

should be used, and a compression ratio of 1.0 is reportedterms of the normalized rméNRMS) difference of their
These results illustrate the urgent need to explore lossyintensities, defined as

compression techniques suitable for encrypted digital holo-
grams. One such lossy technique that has been successfully
applied to 3-D digital holograms is quantizatioh?>

16 T T
—8— no filtering
4 Quantization of Encrypted Digital Holograms 0-9r —o— (5 x5)-pixeImean filtering |1
0.8

The loss in reconstruction quality due to applying quanti-
zation to encrypted holograms was investigated. A com-
bined rescale and quantization step was employed. The en-
crypted holograms were rescaled linearly to the square
[—1-i,1+i] in the complex plane, and the real and imagi-
nary components of each holographic pixel were then quan-
tized.

We choose an odd number of quantization val(es
levely for each real and imaginary value: zero, and an
equal number of positive and negative levels. As a rebult,
bits encode 2—1 levels. For example, two bits encode 0.1}
levels {—1,0,1}, three bits encode level§—1,—2/3, 0 , a— & 5 &
—1/3,0,1/3,2/3,1, and so on. The combined rescale-and- 2 8 4 5 6 ’ 8 ° 10
quantization operation is defined for individual pixels as Number of bits of encrypted holographic data

Normalized RMS difference
o
[4,]

1 1 Fig. 4 NRMS intensity difference in decrypted and reconstructed
H’(x,y)=roundH(x,y)X o *XB]X B~ (€)] 3-D bolt object plotted against quantization level.
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Fig. 5 Decrypted and reconstructed bolt object (with 5X5 pixel mean filtering) from an encrypted
digital hologram with the following resolution in each real and imaginary value: (a) 4 bits, (b) 3 bits, (c)

2 bits.
Nyx—1 Ny—1 guantized real and imaginary value with the minimum
DU)=| > X [|Ug(mn)|2=|U’(m,n)|?]? whole number of bytes required to represerifithe value
=0 n=0 containsb bits, then it requiregb/8] bytes. In the second,
Ny—1 Ny—1 -1\ 12 the real and imaginary streams were concatenated together
x{ > > [|U0(m,n)|2]2] ) , (5 and processed by one of the lossless techniques outlined
m=0 n=0 earlier. Table 2 shows the results of this three-step compres-

. ) ) ) sion process for the bolt hologram.

where (m,n) are discrete spatial coordinates in the recon-  The PS| calculations contain trigonometric and division
struction plane, anly, andN, are the height and width of  gperations, which return values with theoretically infinite
the reconstructions, respectively. The slightest change to adecimal(and binary expansions that utilize completely the
digital hologram can result in an entirely different speckle g-byte resolution of the encrypted digital hologram's real
pattern in the reconstruction domain. It could be argued that and imaginary values(This is verified experimentally in
one should attempt to remove this somewhat quantization-Taple 1, where little redundancy could be found in the
invariant speckle effect before measuring the quantization g_pyte data. However, it could be argued that four 10-bit
error. Therefore we also present the results of applying aintensity interferograms cannot be combined to create a
mean filtering operation to both the original and com- gjgital hologram with more than 10 or 12 bits of meaning-
pressed intensities prior to calculating the NRMS. ful information in each value. The standard portable encod-

Figure 4 shows a plot of NRMS difference against num- jnq for a 10- or 12-bit value would be a 2-byte data type.
ber of bits per(real or imaginary datum value in the en-  Therefore, we also include in Table(l parentheseshe
crypted hologram of the bolt object, with and without mean  5icyations of the compression ratio where we assume that
filtering over a neighborhood of X85 pixels. Figure 5 the original encrypted hologram could be effectively repre-
shows decrypted and reconstructed object intensities for theganted with only 2 bytes per real or imaginary value.
bolt for selected quantization resolutions. To some degree, Compared to Table 1, Table 2 shows dramatic increases
the quantization noise is masked visually by the presence ofi, compression ratio for all quantizations, and across all
speckle; this would not be the case if incoherent images |nsgless compression algorithms. For example, with 3-bit

were encrypted and quantized. quantization, a compression ratio of 646, assuming
o o ) 2-byte original valueksis possible with LZW for reasonable
5 Combining Quantization with Lossless Data decryption and reconstruction quality.
Compression In order to quantify the gains made through lossless

We perform two lossless compression steps on the quan-compression after quantization, we compare the lossless al-
tized encrypted hologram data. In the first, we encode eachgorithms with the simple bit-packing technigreBit pack-

Table 2 Lossless compression applied to encrypted and quantized hologram 2.

Compression ratio

Size LZ77 LZW Hufl. BW
Bits (KB) (KB) (KB) (KB) (KB)  LZ77 LZW Huff. BW

65536 (16,384) 47 42 1027 32 1394 (349) 1560 (390) 64 (16) 2048 (512)
65,536 (16,384) 1138 1006 1317 1097 58 (14) 65 (16) 50 (12) 60 (15)
65,536 (16,384) 2120 1963 1991 2084 31 (7.7)  33(8.3) 33(82) 31(7.9)
65,536 (16,384) 3097 2969 3021 2985 21 (5.3) 22 (55) 22(5.4) 22 (5.5)
65,536 (16,384) 4003 4018 3923 3901 16 (4.1) 16 (41) 17 (42) 17 (4.2)
65,536 (16,384) 4732 5124 4784 4795 14 (3.5) 13(3.2) 14 (3.4) 14 (3.4)
65,536 (16,384) 5460 6236 5613 5659 12 (3.0) 11 (2.6) 12(2.9) 12(2.9)

o ~NOoO O WwN
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70 x x : - applied to good effect on the encrypted hologram data, and
i tix reductions to as few as 3 bits in each real and imaginary
80H —o— Huffman part have resulted in good decompressed and decrypted 3-D
—5— Burrows-Wheeler object reconstructions. Not only does quantization perform
50 _—7— bitpacking only significant compression itselieasured through the use of
2 a basic bit-packing algorithmbut it also reduces the num-
c 40 ber of symboldfor Huffman) and introduces structure into
2 the bitstream(for LZ77 and LZW) to allow them to per-
g form more effectively.
£
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