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Chapter 1

Introduction

An optical instrument can be thought of as determining an operator that acts upon

the direct sum of the Hilbert spaces of all input and output electromagnetic fields.

The operator describes what happens to the fields: the reflection, scattering and

transformation of the fields that are variously transmitted or scattered back to the

function spaces from which they originated. The operator, the Hilbert spaces, and

the vectors in those spaces that describe the input, constitute the model of the

system. To analyse the system for performance prediction it is essential to have a

good model – a good approximation to that operator – and a way of calculating the

transformations that the fields undergo (the action of the operator on its domain)

reliably and in a reasonable time, and with appropriate indicators of the accuracy

of the result. The systems of particular concern here are horns and waveguides used

in the millimetre and sub-millimetre regions of the spectrum, principally for cosmic

microwave background studies. The work was driven by the need to understand the

properties of the Planck multi-mode horns and the Planck telescope, and to provide

the Planck High Frequency Instrument (HFI) team with accurate predictions of the

broad band beam pattern on the celestial sphere formed by the four 545GHz and

four 857GHz pixels. The High Frequency Instrument on the Planck telescope has

been designed to measure the anisotropies in the Cosmic Microwave Background

using single mode horns at 100GHz, 143GHz, 217GHz and 353GHz while simulta-

neously observing the astronomical foreground using multi-mode horns at 545GHz

1
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and 857GHz. The ability to simultaneously observe both the CMB and the fore-

grounds is unique to Planck among CMB experiments and was implemented to give

improved foreground subtraction, and hence better CMB maps.

To derive the relative positions of the patterns on the sky required an accurate

system model that included a model of the telescope with reflector shapes and posi-

tions as they are at L2, a correctly positioned focal plane assembly, and broad band

predictions of the beam patterns of all thirty six pixels in the HFI focal plane assem-

bly. The development of the software for the modelling of the horns, the derivation

of the telescope construction parameters from the metrology and calibration data,

and the findings of the study are the subject matter of this work.

To understand and to describe the instrument requires that the operators of the

component parts be found. This process of constructing the operators is the build-

ing of the system model – an abstract mathematical model. The model describes

the action of the instrument on the electromagnetic fields, and the process of ab-

straction throws into relief the assumptions made about the physical instrument and

processes. Abstraction also clarifies the extent of applicability of the model process:

if assumptions about the physical process are required to build the model (to render

tractable the mathematics) then it is evident that the model is not applicable to

any situation in which those physical assumptions do not hold at least very closely.

The concern of this thesis is applied engineering, primarily the analytical meth-

ods used to model the scattering of electromagnetic fields in corrugated waveguides

and the transmission of the fields through optical systems. The background the-

ory has been known for a long time; most of the theoretical development of the

waveguide scattering analysis was worked out between the 1930’s and the 1950’s

(see the extensive biography in [38]). The early work was analytic and the aim

was to describe the optical properties of the guide and the scattering in terms of

delay lines, notably in the work of Schwinger (see [42] and the references therein).

When computers became accessible to university and industrial research groups,

numerical methods of analysing scattering and propagation began to be developed

– numerical solutions to differential and integral equations, and moment methods
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and mode matching. Within this work only mode matching and integral methods

will be used. These methods have a long pedigree and the emphasis here is upon

mathematical rigour and the reformulation of the equations into forms that can be

computed quickly and accurately with reliable run-time estimates of the accuracy

and validity of the results. Speed and precision have proven to be essential for the

detailed analysis of the Planck multi-mode horns and to the study of the sensitivity

of radiated field structure to manufacturing tolerances in any corrugated waveguide.

The second subject is the building of the Planck telescope models required for

deriving accurate beam pattern predictions on the sky. These are not models of

idealised telescopes, but attempts to build as precise a model of the telescope, as

it is in operation at L2, as is possible given the data available at the time that the

work was undertaken. The scientific context of the instruments is the concern of the

cosmologists, not of the engineer, and has not been discussed.

Chapter 2 presents a short introduction to mode matching and the modelling of

horns and waveguides. It then proceeds to look at the results that the numerical

models gave for the far field beam patterns of the telescope for the multi-mode

channels. Extensive numerical modelling, supported by measurements of the power

transmission of the Planck pixels by Cardiff University, show that the design of the

horn assemblies renders them very sensitive to manufacturing tolerances, and that

matter is examined.

Chapter 3 presents the theoretical background for the formalism of mode match-

ing and prepares the approach taken to the coding of the scattering equations for

numerical simulation of waveguides, then goes on to discuss some of the consequences

of the formalism.

Chapter 4 develops the scattering formalism for circular and rectangular waveg-

uides and ends with an examination of the problem of predicting performance when

assemblies of circular waveguides are not perfectly aligned. The misaligned case is

analytically complex and leads to numerically intractable equations, so approxima-

tions and an approach to their solution are sought.
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Chapter 5 gives an account of the scattering software developed for modelling

the Planck multi-mode horns, software that was used for all of the simulations of

waveguides and horns presented in this thesis and delivered to ESTEC and the HFI

consortium.

Chapter 6 takes the process of abstraction of the field models further. The pri-

mary aim was to produce the most concise description of the fields in the horn

aperture that is possible: a set of vectors of minimal size consistent with accurate

modelling. There follows a further abstraction to look at model perturbations by in-

finitesimal group actions on the output of the models. This gives a way of simulating

manufacturing errors in the horns.

In chapter 7 the thermo-elastic deformations of the Planck reflectors is taken

into account in the preparation of the engineering model of the telescope, work that

was done under contract for ESTEC.

Chapter 8 gives an account of the work done on building a ‘reverse engineered’

model of the telescope as it is at L2 in the light of the (then very limited) data from

the preliminary in-flight calibration of the HFI. This work was also undertaken for

ESTEC under contract.

There follows an appendix containing some basic mathematical definitions and

equations, some comments on Fourier spectra, and the connection between the eigen-

functions of the Fourier transforms on L2(R) and Gaussian beam modes.



Chapter 2

Models of horn assemblies

Corrugated horn assemblies are the most common structures used to feed bolometer

cavities for power detection in cosmic microwave background experiments. They

have been used in ClOVER [2], WMAP and Planck [40, 44, 65], and they were

used to couple the image of the sky formed by the telescope onto the detectors for

the Herschel Heterodyne Interferometer for the Far-Infrared spectrometer at fre-

quencies in the range 480GHz to 1120GHz, [49]. Traditionally horns have been

single-mode (meaning the radiated field in the horn aperture is described by a sin-

gle, frequency dependent, function) whether polarised or unpolarised, with a main

beam profile that is approximately a Gaussian power distribution. single-mode cor-

rugated horns have long been in common use for millimetre wavelength applications,

are now routinely manufactured for sub-millimetre wavelengths, and are being de-

veloped by groups such as the Rutherford Appleton Laboratory for applications at

a few Terahertz. When there is no requirement to know the polarisation state of

the electromagnetic field, greater throughput can be obtained by designing a horn

structure that supports the propagation of more than one mode: few-mode or multi-

mode horns in which each additional mode can be thought of, very loosely, as an

additional unit of power received. The additional modes give rise to a departure of

the beam pattern from Gaussian, and the simulation of these assemblies becomes

ever more computationally intensive as more and more modes are included. The

computational cost of simulation can be further exacerbated by the design of the

5
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assemblies and by poor programing.

In this chapter a concise conceptual overview of the simulation of electromag-

netic field propagation and scattering and corrugated horns is given: the method of

mode matching, the theory and numerical implementation of which will be the dom-

inant theme for chapters 3, 4, 5 and 6. Thereafter follow sections on the results of

modelling the Planck 100GHz single-mode horn assemblies and the ultra-Gaussian

150GHz ClOVER horns with a comparison of the evolution of phase and beam

shape within the two horns. Section 2.4 presents results from the modelling of the

Planck multi-mode horn beam patterns and, where available, comparison with the

preliminary beam pattern measurements derived from the planet scans from L2. All

of the Planck horns exhibit resonance due to their structure. That resonance leads

to extreme sensitivity to manufacturing tolerances, issues that are discussed in sec-

tions 2.5 and 2.6 in which it is shown how performance prediction requires attention

to manufacturing tolerances as well as to system design. The chapter ends with

conclusions addressing the modelling of horns, with particular emphasis on Planck.

2.1 An overview of mode matching

The numerical simulation of corrugated horns by the method of mode matching has

been in common use at least since an outline of the method, as applied to single-

mode horns and waveguides, was published in [47] building upon earlier work in

[13]. The methodology was developed at NUI Maynooth by Murphy for the analysis

of multi-mode horns, and mode matching code written and applied to the design of

both single and multi-mode horns for CMB applications, in particular for Planck [45]

[14] [25] and QUaD [46].

Before proceeding something needs to be said about the general mathematical

framework into which the method of mode-matching fits. All necessary mathemat-

ical definitions are given in appendix A on page 227. The mathematical setting is

functional analysis, specifically Hilbert space theory, and concerns linear spaces of

functions or spaces of operators on those functions. The spaces of functions are
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always those functions describing the electromagnetic fields within a waveguide, the

appropriate function space being determined by the waveguide geometry and the

boundary conditions. The operators describe the scattering and propagation within

a function space or between pairs of spaces, or they are operators acting on a space

formed from a pair of function spaces. In all cases the structure of the function

spaces allows for the operators to be represented as infinite by infinite matrices that

decompose naturally into sub-blocks. Each sub-block is itself an infinite by infinite

matrix. Because this thesis only addresses single input, single output situations the

structure of the operators can be summarised as follows: The operator is a linear

mapping on the direct sum of the input and output spaces; it decomposes into four

blocks, each of which is an operator that is a linear contraction on either input or

output space, or a linear contraction between input and output, or vice verca. Each

of those sub-operators is further decomposed into sub-operator blocks that map

the electric field components to electric field components, magnetic to magnetic, or

between electric and magnetic. In all cases the structure of the operator follows

naturally from the structure of the function spaces, and the structure of the func-

tion spaces follows naturally form the electromagnetics. The formalism extends to

N input, M output systems, but that will not be addressed here as it is not relevant

to the applications that have driven this work.

Conceptually the method of mode-matching is simple: Physics enters the picture

in the form of wave propagation along the guide axis, described by Helmholtz equa-

tion, waveguide impedances, the requirement that power be finite and conserved,

and in the conductivity at the waveguide walls that determines boundary conditions;

the rest is Sturm-Liouville theory and general Fourier analysis and is geometric in

character. The boundary conditions and Sturm-Liouville theory imply the existence

of denumerable orthonormal bases for the function space over the waveguide cross-

section and, in any such basis, any electromagnetic field satisfying the boundary

conditions can be described. The function space will be complete with norm deter-

mined by an inner product, and therefore the spaces will be Hilbert with complete

basis. All such bases are related by unitary transformations of the Hilbert space.

In any such basis the transverse electromagnetic field can be expanded, each basis
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function, or mode, describing an elementary field particular to the basis.

At a junction in the waveguide the elementary fields are partially reflected (atten-

uated and changed in phase but not scattered into other modes) and partially scat-

tered into the fields in the next section of the guide with the total power, measured

by the L2-norm (see Appendix A for definitions) of the reflected and scattered field,

being conserved. The impedance of each elementary orthogonal electric-magnetic

field pair determines the phase shift of that field pair as it propagates a unit distance

along a parallel section of the waveguide, and it is the changing relative phase of

these basis elements that describes the evolution of the total field as it propagates.

The impedance change across the junction for each elementary field determines the

reflection amplitude while description of the scattering process across a junction is

a purely geometric matter described entirely by the geometry and an appropriate

generalised Fourier analysis. As in all Fourier analyses the Fourier coefficients are

given by the inner product for the function space, and a mode on one side of a

junction is expanded in terms of (the pull-back of) the modes on the other side of

the junction with the expansion coefficients interpreted as scattering amplitudes.

If the waveguide cross-section at either side of the junction has the same shape,

then the function spaces can be taken to be the same but with different domains of

definition and normalisation factors, but are trivially isomorphic; if the waveguide

cross-sections are different (for example the scattering from a rectangular to a circu-

lar guide) then the function spaces are necessarily different, but whatever the basis

sets or function spaces may be the mathematical formalism describing the physical

process remains the same.

For a single-mode horn there is a single, denumerable, basis for the space of

transverse fields in each section of the horn. For a multi-mode system there is a

denumerable set of denumerable bases. Since each basis is denumerable the reflection

and scattering processes within that basis can be simply described by a matrix

representation of the operators. Strictly speaking these operator matrices describing

the scattering of modes within a basis are infinite by infinite complex arrays, and

every basis element on one side of the junction scatters some power into every basis
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element on the other side. Conservation of power means that essentially all of the

power is contained in a finite subset of such modes. Mathematically this means

that a judicious choice of a finite dimensional subspace of the function spaces can

be made which, from a practical point of view, will give an adequate model of

the process with finite matrices as operators. This is simple to describe: let the

L2-norm of the field a be ‖a ‖2 and its coordinate representation in the basis be

a = (a1, a2, . . . , an, an+1, . . . ). Define a sequence {ak}k∈N by a1 = (a1, 0, 0, . . . ),

a2 = (a1, a2, 0, 0, . . . ), an = (a1, a2, . . . , an, 0, 0, . . . ). Then ak → a as k → ∞
and the difference in power is given by ‖a ‖2

2 − ‖ak ‖2
2 =

∑∞
j=k+1 a

2
j , which tends

to zero. Thus, for any chosen ε > 0 there is some Kε ∈ N for which ‖a ‖2
2 −

‖ak ‖2
2 < ε for all k ≥ Kε. This number Kε is the minimum dimension of the

model space required to account for a fraction of at least 1 − ε of the power at

the junction in the chosen basis, and for given ε different Kε may be required at

different junctions in the same waveguide. But it has to be noted that however

large the model space, some power will be scattered out of it at every junction and

information lost. Nevertheless, with care and the comparison of the results from

different sized models, a suitable dimension for a reliable model can be found. The

mathematical description of the conservation of power is, for input vector aI in space

(HA, ‖ · ‖A) reflected at, and scattered across, a junction into space (HB, ‖ · ‖B),

we must have ‖aI ‖2
A = ‖aR ‖2

A + ‖aS ‖2
B, where the norms are 2-norms. The finite

dimensional numerical model will give ‖aR ‖2
A + ‖aS ‖2

B + ε = ‖aI ‖2
A, but there

can be no physical or mathematical justification for forcing conservation of power

in the model by rescaling; ε just has to be kept within reasonable bounds. In the

particular construction used for the Planck horns the convergence of the model, and

hence the reliability of the predictions, required particular attention.

Details will be given in the following chapters, but to summarise: at the junction

between two waveguide sections the electromagnetic fields to the left and right of

the junction are described by a pair of vectors in a pair of (usually isomorphic)

Hilbert spaces, HL and HR, both separable with complete, denumerable bases. Each

of these two Hilbert spaces is naturally decomposed into the (orthogonal) direct

sum (see A.1.5, page 228) of two isomorphic spaces – the space containing the
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electric component of the fields and the space containing the magnetic component:

H = E ⊕M. For a single-mode system that is the end of the decomposition, but for

a multi-mode system each of these spaces is itself a direct sum of Hilbert spaces.

From a practical point of view this decomposition is finite giving

H = (E1 ⊕ · · · ⊕ En) ⊕ (M1 ⊕ · · · ⊕Mn) = (E1 ⊕M1) ⊕ · · · ⊕ (En⊕Mn) (2.1.1)

for some n ∈ N.

The reflection at the junction is determined by an operator determined by the

vector of waveguide impedances of the basis elements, while the scattering across

the junction is described by an operator mapping between the Hilbert spaces on

either side of the junction, and these combine to form a matrix operator that is

an endomorphism, S, of the direct sum of the two spaces HL⊕HR, each of which

has the structure given in equation (2.1.1). Because of this structure the operator

S decomposes: for each pair E i⊕Mi on the left and Ej ⊕Mj on the right, there

is a component Sij of S mapping (E i⊕Mi) ⊕ (Ej ⊕Mj) onto itself. For perfectly

aligned waveguide sections meeting at a junction this will always be a zero operator

unless i = j, in which case we can write Si = Sii and S as the direct sum of all

Si. Whether the sections be aligned or not, because of this structure of the Hilbert

spaces, S decomposes into matrix blocks. This structure will be described in detail

in later chapters.

The entries in the operator matrix S are the scattering amplitudes, determined

by enforcing conservation of total power across the junction and given by integrals

over the waveguide cross-section of the type

∑

ν∈N

(
Āν − B̄ν

)
∫

S

(

eLµ ×h̄
L
ν

)

· dS =
∑

κ∈N

(
D̄κ − C̄κ

)
∫

S

(

eLµ ×h̄
R
κ

)

· dS (2.1.2-A)

∑

µ∈N

(Aµ +Bµ)

∫

S

(

eLµ ×h̄
R
κ

)

· dS =
∑

ν∈N

(Dν + Cν)

∫

S

(

eRν ×h̄Rκ
)

· dS (2.1.2-B)

for all µ ∈ N and κ ∈ N respectively with appropriate complex coefficients A, B,

C and D, the bar over a symbol denoting complex conjugation, and e and h are

elements of a basis for the electric and magnetic fields, respectively. Details are

given in equations (3.2.5) and (3.2.6) of section 3.2. It is this matching of power
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across junctions to determine the scattering coefficients that gives rise to the name

“mode matching”.

Propagation between junctions is described by a diagonal phase slippage operator

matrix, V , that is simply an endomorphism on the space of fields in the waveguide

section through which they are propagating. It, too, is a scattering operator, but

of a particularly simple form. If S1 and S2 are any two scattering operators for

any two adjoining sections or sub-units of the guide, with S1 ∈ End (HA⊕HB)

and S2 ∈ End (HB ⊕HC), then the total scattering between the two ends of the

concatenated sections is described by a “scattering product” between the operators,

S2⊙S1 ∈ End (HA⊕HC), the details of which are given in equation (3.2.13) on page

64. Since the Hilbert spaces naturally embed in the operator spaces, the field at the

output can be read from the columns of the “system operator” that is the product

of all scattering and phase slippage of the component operators. Thus, labelling the

space of fields in the input guide by H1, the space of fields in the second section

H2, etc. and the scattering operator Sj,j+1 : Hj ⊕Hj+1 → Hj ⊕Hj+1, the entire

electromagnetic field scattering process for the system of N sections is a matrix

operator

SN1 = VN ⊙ SN,N−1 ⊙ VN−1 ⊙ · · · ⊙ V2 ⊙ S21 ⊙ V1. (2.1.3)

Thus, the operator for the total system describes the scattering between the direct

sum of the spaces of all possible input and output fields and its detail (the numerical

values of the operator matrix entries) are determined by the entire scattering and

phase slippage process through the whole structure. The development of this view of

the process and the efficient and accurate numerical computation of the component

operators and their products is the main theme of this work.

Consider the system illustrated in figure 2.1 overleaf, the analysis of which is

presented in section 2.2. The scattering product is associative; consequently, the

system can be described by a product of operators, each of which describes a section

of the system that it is computationally or conceptually convenient to treat as a unit,

giving a total system operator of the following type:
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Figure 2.1: Profile of the Planck 545GHz horn. All of the Planck HFI horns have

essentially this same profile, whether they be single or multi-mode. The presence

of the cavity-like section gives rise to resonances that considerably complicate the

modelling, and greatly increases the computation time required. The thick blue lines

are the corrugated sections, not resolved in the plot of the horn assembly, but shown

in the detail of the transition to the aperture flare. The scales are millimetres.

S = T5 ⊙W4 ⊙ T4
︸ ︷︷ ︸

radiating horn

⊙
back horn

︷ ︸︸ ︷

W3 ⊙ T3 ⊙WR
2 ⊙F ⊙

bolometer feed horn
︷ ︸︸ ︷

W2 ⊙ T2 ⊙W1 ⊙ T1
︸ ︷︷ ︸

feed section forming weakly resonating cavity

(2.1.4)

Here each of the operators S, W , T and F are operators of the type in equation

(2.1.3) for a section of the horn assembly: W is a section of smooth walled or parallel

sided corrugated waveguide, T any tapered section or section of varying radius and

F a filter, free space or lens section. WR
2 means the component is identical to a part

of W2, but reversed. The operator S is to be read with T1 corresponding to the short

input (profiled) taper section at the left hand side of figure 2.1 where the horn joins

the bolometer cavity, and so on through to the radiating aperture on the output

side of the flare, T5, at the right hand side of the figure. This is quite a common

construction and is similar to the construction of the Planck horns [39]. The model

space for the feed to the horn assembly from the bolometer cavity is the domain of

of the operator T1, and the output of fields that radiate to the sky is the codomain
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of T5; in between, the domain of each operator is the codomain of the operator to

its right. Advantage can be taken of the symmetries in the scattering operators:

within the waveguide sections the symmetry across pairs of junctions is exploited to

reduce the determination of W to the calculation of powers of a single symmetric

waveguide-junction-waveguide-junction-waveguide operator for which the scattering

matrix

S =




S11 S12

S21 S22



 : H1 ⊕H2 → H1 ⊕H2

has sub-matrix components S21 = S12 and S11 = S22. The work done in calculating

the matrix and in forming the scattering product powers of such matrices is thereby

halved; this is discussed in detail in section 3.6. The codomain of T2 is the same as the

domain of T3, and therefore W2 and WR
2 are powers of the same symmetric operator.

Exploitation of such symmetries can greatly reduce the overall computational burden

in the analysis of the system. When simulating manufacturing tolerances as outlined

in section 2.6 these symmetries cannot be exploited.

The presence of a cavity-like section results in trapped power and significant

contributions to the field from evanescent modes. This significantly increases the

size of the operator matrices required to give an adequate model of the section

W3 ⊙ T2 ⊙ WR
2 ⊙ F ⊙ W2 ⊙ T2 ⊙ W1 ⊙ T1, or any cavity-like section. It is not

necessary to maintain the same model dimension throughout the assembly but, as

discussed in section 6.4 on the perturbing of models, it can be advantageous to do

so.

2.2 Numerical implementation of mode matching

The details of the numerical scheme adopted for the implementation of mode match-

ing will be described in detail in chapter 5, and the efficient representation of fields

in the radiating aperture for Physical Optics propagation through the telescope in

chapter 6; here only a brief introduction will be given so that the statements made

about the relative ease or difficulty of modelling various horn configurations, made
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later in this chapter, will be comprehensible.

The horn is a described by the scattering product of the operators for all junc-

tions and waveguide sections. Because of the boundary conditions in the guide

the function spaces in which the fields are expanded have denumerable bases, and

therefore the operators are representable as operator matrices. These, being infinite

square matrices that describe linear mappings between two function spaces, must

be approximated for numerical work by finite dimensional complex matrices that

describe the linear mappings between two finite dimensional complex vector spaces.

With the approximation made, the matrices may be handled using the conventional

methods of numerical linear algebra. In general these matrices will be rectangular

if the field structure in the waveguide to the right and left of a junction are ade-

quately described by complex vector spaces of different dimensions, but for the sake

of simplicity it will hereafter be assumed that the spaces are of the same dimension

and the matrices therefore square.

There are two inextricable issues that are critical to the reduction of the in-

finite operator matrices to finite complex matrices: the adequate accounting for

power scattered across a junction and the size of matrices that leaves a numerical

problem that is solvable in a reasonable amount of time with the computing re-

sources available. It will be seen below that for a relatively simple horn such as

the ClOVER horns the size of the operators that give rise to a stable (fully con-

verged) numerical model of the horn is modest and allows for reliable and accurate

modelling. The same applies to the back-to-back section of all of the Planck HFI

horns (see figure 2.1 on page 12) that had previously been modelled by Murphy,

Gleeson, Colgan and co-workers at the band centre and at a couple of frequencies

either side of centre, [25] [14]. However, the Planck horns are not used with just the

back-to-back section; the back-to-back section is coupled to the bolometer cavity

by a second horn. This arrangement, in which the bolometer horn faces the back

horn, forms a resonant ‘cavity’ that traps power and gives rise to changes in the

beam pattern of the horn that are not predicted by modelling any subsection of the

horn assembly. Trapped power is accounted for by evanescent modes (section 3.1.1)
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and, in the models of the full Planck horn assemblies, leads to very large numerical

models.

With the code developed for this work and described in chapter 5, the models

of any of the complete single-mode Planck HFI horns can be run on a conventional

PC to give a fully converged model across the operating band within a few minutes.

For the multi-mode horns the models, supported by measurements made at Cardiff,

suggest that the horns exhibit strong resonances minutely influenced by the manu-

facturing tolerances. This behaviour means that the models can only give a reliable

prediction of performance over a band of frequencies, and the power transmission

and beam profile at a single frequency should not be taken as an accurate predic-

tion of what would be measured from a real horn made to the design that has been

modelled. This is not a practical handicap because the horns are only used broad

band, but it does lead to problems with size of the model and consequent run times.

The key to the tractability of mode matching as a numerical modelling method is

an efficient and accurate implementation of the scattering product given in equation

(3.2.13) on page 64. Chapter 5 gives the general form and method used in this work,

particular attention being given to the case of aligned circular cross-section waveg-

uides applicable to Planck. A small gain in overall numerical efficiency, but great

gains in stability and accuracy, is obtained by the careful coding of the scattering

amplitude equations; that is covered for the circular case in chapters 4 and 5. In

section 4.4 the equations for rectangular waveguides are given in a form equivalent

to, but different from, those in the literature, along with comments on the coding.

2.3 The Cl OVER and Planck single-mode horns

The comparison of ClOVER ultra-Gaussian and Planck single-mode horns is inter-

esting, both at the field level and at operator matrix level, and is discussed quali-

tatively here. These two high performance single mode horns are discussed here to

introduce some of the basic concepts used in the evaluation of horn performance.

They will be returned to later when, in chapter 5, the numerical implementation
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of mode-matching is discussed. There it will be shown that the shape of the beam

is seen in the purity of the mode structure as represented in the sparsity of the

scattering operator matrix that describes the scattering from the bolometer cavity

to the radiating aperture (see figure 5.1 on page 141); here the evolution of the

phase front and Gaussian coupling efficiency as the field propagates towards the

aperture is presented – results obtained from the numerical models run using the

code described in 5.

The ClOVER horns are designed to give highly Gaussian aperture field distri-

butions in the co-polar component of the field [2]. The desired field distribution is

attained by generating HE11 and HE12 hybrid modes in a cosine-squared profile

horn and bringing the two modes into phase at the horn aperture in a long parallel

section of corrugated waveguide. This was a development due to Graham Smith

of St. Andrew’s University, Scotland, that post dates the design and development

of the Planck single-mode horns. It utilises the mode dependence of the waveg-

uide impedance to achieve the phasing. When the Planck horns were designed a

very similar Gaussian field distribution was achieved in a more complex horn pro-

file. Although the aperture fields of the two horns are similar in that they both

have high coupling efficiencies to a Gaussian across a 30% band, the evolution of

the propagating field as the beam propagates towards the aperture is noticeably

different.
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Figure 2.2: ClOVER 150GHz horn transmission vs. frequency. Modelled in SKIT-

TER with 40 TE and 40 TM modes and with 80 TE and 80 TM modes. The

greater accuracy is seen only in the fine detail the cut-on region, not in the overall

performance. The increase in computational time – a factor of four – is not an issue

given the speed of the code, but the beam shape predicted by the two models is not

discernibly changed. (Compare with [2].)

A radiating horn is fed from a bolometer or some other power detector such

as a waveguide probe (the details of which will not be discussed in this work) via

a waveguide structure of some kind. The field that radiates from the aperture of

the horn to illuminate the telescope or the sky is, in the aperture itself, a coherent

superposition or a family of coherent superpositions of waveguide ‘modes’ or basis

function for the space of solutions the Sturm-Liouville problem in the aperture. For

a single-mode horn there is only one such superposition which, generally speaking,

is desired to have a power distribution as close to a Gaussian distribution as possible

with a phase front as flat as possible at the waist of the horn, the waist being the

plane in which the phase front is flattest.

Anything in the design or manufacture of the horn assembly that alters the struc-

ture (the relative phase or amplitude) of the modes as they feed into the radiating

horn will alter the aperture field and therefore the radiation pattern of the horn in

a completely deterministic way. From the mathematical perspective the operator

that describes the radiating horn is acting on a different vector or set of vectors in
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its domain and, since the operator is linear, the output field is different. This effect

can be used constructively such as to tune the input field to the ClOVER horns, [2],

or it can have a deleterious effect, and this becomes a recurring theme throughout

the discussion of the Planck horns.

The physically meaningful measure of the capacity of the horn to absorb power

from the electromagnetic field incident upon the aperture is the power coupling

efficiency. The power coupling efficiency between two beams is described by the

square of the L2-inner product of the two field functions, each field having been

normalised to unity over the domain: given two complex functions ψ and ϕ on a

domain A, the coupling efficiency is given by

Power coupling efficiency: εP =
〈

ψ̂|ϕ̂
〉2

=

∣
∣
∣
∣

∫

A

ψϕ∗ dA

∣
∣
∣
∣

2

∫

A

|ψ|2 dA

∫

A

|ϕ|2 dA
(2.3.1)

in which ϕ̂ = ϕ ·
[∫

A
ϕϕ∗ dA

]− 1
2 is the function normalised to have unit total power

in A. The power coupling efficiency of the function to itself takes the value 1 and

approaches 0 for fields that exchange essentially no power; thus 0 ≤ εP ≤ 1. Since

the integrals are linear functionals, so is εP , and if the waveguide spectrum (or

whatever spectrum is appropriate) for the two fields are known, then εP is known:

in the case of a waveguide the boundary renders the spectrum discrete and εP is

simply the sum of the products of the individual mode amplitudes.

The profile of a Gaussian beam with propagation axis z, at a distance R from

its waist of radius w0, is given by the equation (see [26])

ϕ(r, z, w0) =

√
2√

πw(z)
e−r

2/w(z)2e−j(2πz/λ+πr2/λR(z)−ϕ0(z)), (2.3.2)

in which the phase radius of curvature, R(z, w0), and phase shift, ϕ0(z) are given by

Rz = z

(

1 +

(
w2

0π

zλ

)2
)

, and ϕ0(z, w0) = arctan

(
zλ

w2
0π

)

respectively. When fitting a Gaussian beam profile to the horn the Gaussian param-

eters are varied (the waist radius w0, the waist position (x0, y0, z0) measured relative
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to the beam data plane, and the angle, (α, β), between the Gaussian beam prop-

agation direction and the aperture plane) to maximise εP . (Note that in equation

(2.3.2) the propagation distance, z, to any point (x, y, z) in the plane of the data

ϕ is the distance from the waist centre (x0, y0, z0) to the plane through (x, y, z) at

angle (α, β). Thus, r =
√

x2 + y2 is the length of the perpendicular dropped to the

Gaussian beam axis.)
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(b) Planck 100GHz horn.

Figure 2.3: Gaussian coupling efficiency (%) as a function of frequency, weighted

by the frequency dependent transmission of the horn, of (a) the ClOVER 150GHz

horn and (b) the Planck 100GHz horn as a function of frequency.

The far field semi-divergence angle is given by θ0 = arctan (λ/w0π) ∼ λ/w0π, and

the confocal distance by zc = w2
0π/λ. These are all frequency dependent parameters

and the viable bandwidth of the horn, coupling to a Gaussian source, is determined

by the variation in εP (λ) and w0(λ).
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Figure 2.4: Gaussian coupling efficiency for the evolving field determined by fitting a

complex fundamental Gaussian mode to the co-polar component of the electric field:

(a) ClOVER 150GHz at segment 323 and in steps of 10 segments out to the aperture

at junction 383, and (b) Planck 100GHz at segment 245 to the aperture at segment

339 in steps of 14 segments. Evolution of the horn characteristic parameters: z0 –

the distance from the horn aperture to the beam waist; w0 – the beam waist radius

determined by the best fit Gaussian; and FWHM – the full width of the beam

measured to the half power level at the waist: (c) ClOVER 150GHz horn, and (d)

Planck 100GHz horn. Note: whereas the ClOVER horn is parallel sided waveguide

over the section modelled here, the Planck horn is gently tapered, but the taper does

not account for the increasing value of w0 and FWHM as the aperture is approached.

For an essentially Gaussian beam profile the quality of the beam is assessed by

computing the Gaussian coupling efficiency and thus the waist radius, and from that

the full width half maximum (FWHM) and the far field semi-divergence angle. Fig-
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Figure 2.5: ClOVER 150GHz and Planck 100GHz horn profiles. The lengths of x

axes in figures (a) and (b) are 100 mm and 70 mm respectively; in both plots the

y-axis range is ±8mm.

ure 2.4 above shows how these parameters evolve as the field propagates in the final

section of the ClOVER 150GHz and Planck 100GHz horns illustrated in figure 2.5.

For the coupling to a telescope or other optical system the ψ(λ) in equation

2.3.1 is the complex electric field distribution in the horn aperture plane due to the

instrument, while ϕ(λ) is the horn aperture field with the aperture as the integration

domain for all three integrals. (Strictly, it is the horn radiation field at the aperture

that is used, thus accounting for reflection at the aperture, but in a horn of aperture

diameter 5λ or larger the impedance step to free space is negligible). There is no

computational or mathematical difficulty in fitting a spherical or conic phase front

to the phase distribution over the aperture (see [49] for the method). Phase fitting

gives a true measure of the phase curvature, but it does not account for the power

distribution: it gives equal weights to all points in the field and is therefore not a

useful measure of the viable band width of the horn. Modelling the horn aperture

field at the centre of the band and at regular wavelength intervals either side of

the centre, then calculating the optimal εP (λ) for each model, gives a variation in

Gaussian coupling for the horn design. These are plotted for the ClOVER 150GHz

horn and the Planck 100GHz horn in figure 2.3 above where the εP for each modelled

frequency is weighted by the throughput of the horn predicted by the mode matching

model. If a measured or modelled bolometer cavity coupling was available, along
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Figure 2.6: Evolution of the beam shape in the ClOVER 150GHz horn and the

Planck 100GHz horn at the band centre. Unlike the ClOVER horn, the Plank horn

is tapered, which accounts for the significant change in beam width. Both plots are

E-plane cuts.

with filter transmissions and other ‘efficiencies’, these, too, would be included in the

bandwidth assessment. These should be compared with the phase distribution cross

sections in figure 2.8 on page 24.

For a well designed single-mode horn the fundamental mode Gaussian beam for-

malism gives a very useful measure of the form of the beam on the sky because the

power distribution at the beam waist is essentially Gaussian and the Fourier trans-

form of the Gaussian beam waist field is again Gaussian. An optical system is, in

the first approximation, a linear system that acts as a position to angle transforming

device. Thus, a telescope transforms the Gaussian distribution of the beam waist

at its focus to a Gaussian angular distribution on the sky. (Ignoring the diffraction

effects of finite apertures, aberration, and so on, the telescope performs an optical

Fourier transform of the field distribution at its focus with the angle to length scale

being determined by the ‘plate scale’: 206265/(Focal length) arc seconds per mm).

For multi-mode systems the power coupling to a fundamental Gaussian is not a

good measure, though it does give a crude indication of the far-field beam pattern if

the fundamental mode dominates. The field in the aperture has a discrete Fourier-

Bessel series expansion because its domain is a closed disc, or other discrete Fourier
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series expansion for a rectangle or other closed subset of the plane; the free-space

field must have a continuous radial Fourier spectrum while retaining the discrete

azimuthal spectrum, continuous because the radial coordinate is [0,∞). In the

case of the disc, appropriate to the ClOVER and all of the Planck horns, the basis

functions for the Fourier expansion in the aperture are the discrete set indexed by

(n,m) ∈ Z≥0 ×N

Ψnm =
1√
Nnm

Jn(knmr)Φn(ϕ),

where the Nnm are normalisation factors appropriate to the field type and the Φn

are sines or cosines fitting n times onto the unit circle. Details will be given in

chapter 4. The Fourier transform of each mode is a continuous spectrum whether it is

calculated in polar or Cartesian coordinates. If the free space spectrum of each mode

is calculated, then the far field pattern can be reconstructed for each independent

aperture field from the sum of all spectra with their phases, and the total power

pattern is then the incoherent sum of all the independent field contributions. The

matter of Fourier transforms is relegated to section A.4 in the appendix, and in the

final three sections of the appendix the Fourier transform is related to the Gauss-

Hermite beam modes.
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(b) Evolution of the Planck 100GHz phase in
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Figure 2.7: Evolution of the phase front in the ClOVER 150GHz horn and the

Planck 100GHz back-back horn, both at the band centre. Unlike the ClOVER horn,

the Plank horn is tapered, which accounts for the significant change in beam width.
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(a) Frequency: 87% of band centre.

-0.785398

-0.392699

 0

 0.392699

 0.785398

-6 -4 -2  0  2  4  6

Ph
as

e c
en

tre
d a

t z
er

o

ClOVER E section
ClOVER H section

Planck E section
Planck H section

(b) Frequency: 90% of band centre.
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(c) Frequency: 93% of band centre.
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(d) Frequency: 97% of band centre.
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(e) Frequency: band centre.
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(f) Frequency: 103% of band centre.
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(g) Frequency: 107% of band centre.
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(h) Frequency: 110% of band centre.
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(i) Frequency: 113% of band centre.
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Figure 2.8: Comparison of the changing phase fronts in E and H planes in the

apertures of the ClOVER 150GHz and Planck 100GHz single mode horns. Red

and green curves: ClOVER ; blue and violet curves: Planck. The phase in each

plot has been offset to zero on the horn axis. At band centre, plot (e), it is seen that

the phase front of the ClOVER horn is flatter than for the Planck horn, but that

the Planck horn phase front shape is the less frequency dependent. Phase range in

all plots [−π/4 : π/4].
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2.4 The Planck multi-mode horns

There are eight multi-mode pixels on the Planck telescope, four at 545GHz and

four at 857GHz. The modelling of the Planck multi-mode pixel assemblies was

undertaken on behalf of the HFI core team in the year prior to the launch of Planck

and Herschel. The intention was to arrive at reliable predictions for the broad-band

beams that would be observed on the sky by each pixel when observing. Prior to

this only spot frequency models of the beams that would have resulted from an

ideal version of the telescope (as designed rather than as built) illuminated by the

radiation pattern that would be emitted by a horn comprising only the back-to-back

sections of the horns, had been attempted. The propagation of the beam from the

horn aperture, through the telescope model to the sky, was to be performed using

the Physical Optics modelling package GRASP9 [56]. To undertake the broad band

modelling it was necessary to develop mode-matching code that could derive the

required aperture fields at many frequencies over the band accurately and in a short

time, and to write the aperture field information into files in a format for source

fields for the GRASP9 telescope models, and to run the many resulting cases in

batch mode. The telescope modelling process will be described in chapter 8; here

the discussion is restricted to the beam patterns derived and comparison with the

first attempt, by Brendon Crill at CalTech, to derive beam maps for the multi-mode

pixels form the preliminary calibrations scans of Jupiter. At the time of writing no

definitive beam maps were available with which to compare the models, but what

data was made available on beam widths is tabulated in chapter 8 along with the

model beams widths. It was found that, because of the resonant nature of the horn

assemblies, large numbers of waveguide modes were required to model the scattering.

Once the aperture fields had been derived and expressed in transverse waveguide

modes, a computationally efficient presentation of the aperture fields was needed.

It would have been computationally inefficient, though mathematically and physi-

cally correct, to propagate every individual aperture field derived by mode-matching

through the telescope and onto the sky, and there to assemble the individual mode

beam patterns into a total beam pattern. What was required was a way to find the
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subspace of the space of fields that was actually spanned by the aperture fields, to

express the aperture fields in a basis for that space, and to propagate the resulting

basis vectors to the sky. That subspace is frequency dependent and is peculiar to

the modal structure of the field (equivalently the components of the S21 scattering

operator) at that frequency. These operators are non-hermitian, and to find the

minimal subspace the concept of Schmidt vectors was taken from the mathematical

field of meromorphic approximation, a readable outline of which can be found in

[74]. These were adapted to give a “Schmidt field” representation of the scatter-

ing operator. These ideas are described in some detail in chapter 6, and all beam

patterns presented in this thesis were obtained form such field representations.
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(a) Pixel H-857-1 (b) Pixel H-857-2

(c) Pixel H-857-3 (d) Pixel H-857-4

Figure 2.9: Decibel plots of the broad-band modelled beam power patterns for

the Planck 857GHz beam on the sky, 730 – 990GHz in 52 frequency steps; data

normalised to a peak power of one. Plot area: 30′×30′; contours −3 dB to −69 dB in

−3 dB steps. The patterns exhibit the aberration characteristic the off-axis quasi-

Gregorian telescope configuration close to axis: 3rd order coma. This is the ‘as

built’ telescope model that includes the best available pre-launch information on

the reflector shapes and the construction of the telescope.
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(a) Planck H-857-1 pixel signal on Jupiter.

(b) Planck H-857-2 pixel signal on Jupiter.

Figure 2.10: Normalised signal vs. time in seconds plots for the Planck 857GHz

pixels H-857-1 and H-857-2. This is early-stage analysis of data taken during the first

calibration scan of Jupiter. Green line: broad band model convolved with estimated

transfer function, black dots: received signal. The received signal has saturated the

pixel above 0.74, so the data is missing. Data processed by Brendan Crill and the

Planck HIFI data processing team. Model: full pixel assembly, 52 frequencies over

730 – 990GHz, pre-launch ‘as built’ telescope. The dip in the curves below zero

energy indicates that the analysis techniques required further development.
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(a) Pixel H-545-1 (b) Pixel H-545-2

(c) Pixel H-545-3 (d) Pixel H-545-4

Figure 2.11: Decibel plots of the broad-band modelled beam power patterns for

the Planck 545GHz beam on the sky, 460 – 630GHz in 64 frequency steps; data

normalised to a peak power of one. Plot area: 30′× 30′; contours: −3 dB to −63 dB

in −3 dB steps. There is left-right asymmetry most noticeable between H-545-1

and H-545-4; it arises form slight imperfections in the reflectors and alignment of

the telescope, but is not optically significant. This asymmetry is more marked

than in the 857GHz beams because the pixels are further from the telescope axis.

The distance of the pixels from the axis is also responsible for the strongly evident

distortion with astigmatism dominating over coma, particularly in the outermost

pixels, 1 and 4.
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(a) Planck H-545-1 pixel signal on Jupiter.

(b) Planck H-545-2 pixel signal on Jupiter.

Figure 2.12: Normalised signal vs. time in seconds plots for the Planck 545GHz

pixels H-545-1 and H-545-2. This is early-stage analysis of data taken during the first

calibration scan of Jupiter. Green line: broad band model convolved with estimated

transfer function, black dots: received signal. Data processed by Brendan Crill and

the Planck HIFI data processing team. Model: full pixel assembly, 64 frequencies

over 460 – 630GHz, pre-launch ‘as built’ telescope. The dip in the curves below

zero energy indicates that the analysis techniques required further development.
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Figure 2.13: Pre-launch broad-band models of the beams on the sky for the Planck

multi-mode channels: 545GHz pixel beam patterns; orthogonal cuts through all

beams. The high ‘tails’ to the left of the main beam are the cuts running vertically

downward through the beams as illustrated in figure 2.11. All pixels exhibit marked

asymmetry due to optical aberration, particularly the outermost pair of pixels, H-

545-1 and H-545-4. Model: full pixel assembly, 64 frequencies over 460 – 630GHz.
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Figure 2.14: Pre-launch broad-band models of the beams on the sky for the Planck

multi-mode channels: 857GHz pixel beam patterns; orthogonal cuts through all

beams illustrated in figure 2.9. The outermost pair of pixels, H-857-1 and H-857-4,

exhibit marked asymmetry due to coma. Model: full pixel assembly, 52 frequencies

730 – 990GHz and the as built telescope.



CHAPTER 2. MODELS OF HORN ASSEMBLIES 32

Figure 2.15 (a) on the following page illustrates the frequency dependence of the

modal structure of the back-to-back 545GHz horn as it has been designed. Modes

of azimuthal order 2 contribute a constant power level across the band. The order

1 contribution doubles as additional modes cut in at mid band and the order 3

modes cut in at about 530GHz. The order 4 contribution is a leakage contribution

in the back-to-back horn that is not excited in the full pixel assembly. The sum

of all these transmitted power contributions gives the total transmission envelope

of a single polarisation for the back-to-back section of the horn that is the upper

black line in figure 2.15 (b). It forms an upper bound to the very irregular and

unpredictable total power transmission of the full pixel assembly, arising because of

resonances in the ‘cavity’ section of the assembly, and discussed further in section

2.5. The modelled power transmission of the as designed pixel, and three tolerance

models, are shown below the back-to-back transmission curve. None of these curves

are spectrally weighted to account for the presence of the filter stack.

The transmission curve of the ‘as designed’ full pixel assembly in figure 2.15

(b), when spectrally weighted by the filter stack transmission in figure 2.17 (b) on

page 35, gives the modelled transmission curve in figure 2.17 (a). The measured

transmission curves for four of the Planck 545GHz pre-flight corrugated horn as-

semblies are plotted along with the curve from the model. These Fourier Transform

Spectrometer measurements, of filter transmission and of pixel transmission, were

provided by P. Ade, G. Savini, B. Maffei and R. Sudiwala, School of Physics and

Astronomy, University of Cardiff.

The model assumes a perfect black-body response for the bolometer, no other

information being available. The measurements show a marked local maximum at

around 530GHz – close to where the azimuthal order 3 modes cut in, and just below

the local minimum of the filter transmission. The cut-in of this mode should not

contribute more power than
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(a) Excitation of individual azimuthal orders in the Back-to-Back horn model: Power contribution

to the radiated field from each azimuthal order vs frequency. The plot clearly shows cut-on of the
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(b) The modelled Back-to-Back horn total power transmission is plotted over the total power

transmission of the complete horn assembly models (the sum of all five curves in (a) above). It

provides a clear upper bound. The irregular transmission of the complete assembly models is due

to resonances in the section of the assembly between the bolometer feed horn and the backward

facing section of the Back-to-Back horn.

Figure 2.15: Modelled power transmission (a) trough the back-to-back section of the

Planck 545GHz pixels on an azimuthal order by order basis, and (b) the total power

transmission through the back-to-back and the trough the complete pixel assembly

model. The resonance effects between the cavity feed horn and the back-horn is a

clear impediment to free propagation at all frequencies.
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is suppressed by drop in filter transmission. (That is seen from the model curve

that is approximately flat on average over the cut on region from around 485GHz

to 545GHz.) This suggests that either the bolometer cavities have a strong peak in

responsivity in the region 520 – 540GHz, or that, being resonant systems coupling to

a resonant system, the resonances of the entire bolometer cavity plus horn assembly

give strong throughput in this range, or that the free-space transmission of the

filters is not an accurate representation of the transmission when mounted within

the cavity. It may also be a feature of the FTS setup. Whatever the case may be,

no two pixels, though nominally built to the same design, has the same spectral

response.

Figure 2.16 illustrates the broad band beam pattern of the 545GHz horn model

over the main beam superimposed upon the beam pattern at five spot frequencies

covering the full spectral band of the horn assembly. All beams are individually

normalised for comparison of beam shape. To reiterate: all broad-band multi-mode

systems show a changing beam pattern across the band due to the cutting in of

additional modes as the frequency increases across the band, but the resonant nature

of the horn assembly means that, while a reasonable broad and average beam can

be predicted, neither the level nor the exact shape can be predicted at any single

frequency.
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Figure 2.16: Simulated far field beam pattern derived from the aperture fields, model

as in figure 2.17. Five frequencies across the band and broad-band estimate based

upon 64 frequencies from 460GHz to 630GHz.
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Figure 2.17: (a) Comparison of measured power transmission for four Planck

545GHz horn assemblies and the SKITTER modelled horn with spectrally weighted

transmission using a composite model of the filter stack, plotted in (b), built from

the measured filter transmissions. There is a strong local maximum in the mea-

sured transmission at about 535GHz, close to the local minimum in the filter stack

transmission. This suggests that either (i) the bolometer is tuned to that frequency

rather than to the middle of the band, or (ii) that the filter response when mounted

within the waveguide is not accurately represented by its free space response, or

both of these. FTS measurement data courtesy of P. Ade, G. Savini, B. Maffei and

R. Sudiwala, School of Physics and Astronomy, University of Cardiff.
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2.5 The problem of resonances

With the mode matching code developed for this study of the Planck multi-mode

horns running at approximately sixty times the speed of the mode matching code

used for the earlier studies it became possible to make detailed studies of the fre-

quency dependence of the beam shape and power transmission of the Planck horns.

Critically, the code produces estimates of the lowest accuracy achieved in the calcu-

lation of any scattering product in the model as it is run. There are two run-time

indicators of the accuracy and reliability of the results: the minimum reciprocal pivot

growth factor (MRPGF) and the minimum reciprocal condition number (MRCN). If

the MRPGF is much less than 1 then the results are questionable while the MRCN

can be used to estimate the number of reliable decimal places in the calculation.

These matters are discussed in chapter 5, but are referred to here.

It has already been stated that the back-to-back sections of the Planck horns

exhibit no resonances; furthermore, modelling only that section reduces the number

of scattering operations by roughly one third. Consequently modelling them is

simple, fast, and the MRPGF and MRCN indicate that the results are reliable.

They are not, however, models of the HFI horn assemblies as they are in operation,

but are simplified idealisations. Once the bolometer horn is included in the model

the system starts to behave in a manner reflecting what has been measured at Cardiff

as illustrated in figure 2.17 (a) for, although it is still not a complete system model,

it does exhibit some of the qualitative performance characteristics of the real system.

The problems of modelling the resonant behaviour of three systems have been

studied in detail: the Planck 100GHz horn, the Planck 545GHz horn and W band

systems based upon a frequency scaled version of the Planck 857GHz horn.

2.5.1 The Planck 100 GHz model horn assembly

The 100GHz system is computationally tractable with reliable results obtained on a

single core of a PC in short time frames. For the multi-mode systems the problems
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are far greater and the results less reliable. This difference is accounted for by three

factors: the number of azimuthal orders (one or a few), the number of radial modes

required to obtain a fully converged model, and the number of scattering junctions.

Put simply, if you have 2000 scattering junctions and 5 azimuthal orders in your

model rather than 500 junctions and 1 azimuthal order, then at best you will get

less accurate results for the multi-mode system taking roughly 18 times as long for

models with the same sized scattering matrices. But it turns out that the situation

is far more complex than this.

The power transmission models of the full pixel assembly model of the Planck

100GHz horn are shown in figure 2.18 on the following page. In this assembly there

are only 490 scattering junctions. Models where run at 0.5GHz steps across the full

band with 40, 50, 100 and 150 radial orders (that is, the S11, S21 etc. matrices are

40×40 to 150×150 complex arrays) and the convergence of the models examined for

all frequencies. The lower frequencies converged for smaller numbers of radial modes.

All models showed stable numerical behaviour and high precision as indicated by

the worst case MRCN and MRPGF and, to within numerical differences of 0.02, the

100 and 150 mode models agreed across the entire band. Therefore, in modelling

the system, it would be acceptable to use 100× 100 arrays, and such a model takes

of the order 75 seconds to run, per frequency, with the single threaded SKITTER

code. If complete convergence of the model was required, then 150 modes would be

used, with a run time of 217 seconds per frequency. Consequently the horn aperture

fields and far field beam pattern predictions, and consequently the Planck beams on

the sky, can be considered reliable indicators of what would be measured, though

subject to the bolometer response being close to ideal and subject to the models of

the telescope being accurate representations of what was built.
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(b) Modelled frequency dependence of power transmission of the complete Planck 100GHz pixel

in 0.5GHz steps. The models show convergence with increasing numbers of radial modes. Solid

black curve: back-to-back section of the horn only (no ‘cavity’).

Figure 2.18: The influence of the ‘cavity’ section in the Planck 100GHz model

single-mode horn on total transmitted power. In (b) the solid black curve shows the

predicted power transmission for the back-to-back section of the horn in which there

are no resonance effects. The other curves show the convergence of the model as the

number of radial modes is increased. With only 20 radial modes (not shown) the

model is very erratic, at 100 modes the model has converged at frequencies almost

up to the band centre. At 150 modes and above the model has fully converged.

This illustrates firstly that modelling the back-to-back section of the horn for beam

pattern prediction is inadequate even in a single-mode horn, and secondly that it is

essential that sufficient modes be used in the model to adequately account for the

power in evanescent modes (see section 3.1.1, page 56).
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2.5.2 The Planck 545 GHz model pixel assembly

The next detailed study was of the resonant behaviour in the Planck 545GHz model.

These models have 1982 scattering junctions and, whereas the back-to-back model

of the horn will pass azimuthal orders 0 to 4 at the top end of the band, the full

assembly passes orders 0 to 3. For the beam pattern predictions on the sky models

with 64×64 arrays were used. This was done as a compromise between accuracy

and feasibility. The pixels are unpolarised and broad band, so it was assumed

that, though the point-wise power transmission of the assembly was not reliably

known, the broad-band beam pattern prediction would be reasonably reliable since,

provided sufficiently large numbers of beams across the frequency band were used

in the pattern prediction, the overall error in the broad band power pattern would

be small because the mean error would be close to zero.

Figure 2.19 overleaf shows the per-azimuthal order power transmission for the

back-to-back section of the horn and for the full pixel model. This particular model

uses 100×100 arrays and shows marked resonance in all azimuthal orders. The model

has not converged, but both run-time and convergence of the models are significant

numerical problems. The comparison the total power transmission of the measured

and model horns, plotted in figure 2.17, page 35, suggests that the models are at

least qualitatively reasonable. The measurements of the four nominally identical

pixels suggests that qualitative agreement is the best that can be hoped for.

Figures 2.20 on page 41 and 2.21 on page 42 plot the MRPGF and MRCN, the

run times and the transmitted power predictions for the azimuthal order 3 fields

for models with Sij array sizes of 40×40 to 380×380 at 597GHz. The run times

roughly follow the curve (N/14)2.87 seconds for Sij ∈ M(N,C). Since azimuthal

orders 1, 2 and 3 all have the same run times, and order 0 about one half, the full

model at N=380 would take about 11 hours 35 minutes per frequency. Therefore,

to model the source files at the 64 frequencies of the broad-band model would have

taken of the order thirty two days rather than the four and a half hours it actually

took. The real problem is not run time, but reliability of the result. It will be

shown in the next section that, even with a fully converged model, the system
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is so sensitive to manufacturing tolerances that a single frequency performance is

impossible to predict precisely, so only local average power transmissions and beam

profiles should be studied. Nevertheless, to derive those beams some indication of

the reliability of the stop frequency models is needed.
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(a) Plank 545GHz model back-to-back section of the horn assembly.
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(b) Plank 545GHz model of the complete horn assembly

Figure 2.19: Per-azimuthal order transmission through the Plank 545GHz horn

showing the influence of the ‘cavity’ section on the mode content. In (a) the model

uses 50 radial orders and the transmission is that of a simple corrugated horn ex-

hibiting smooth cut-on and no resonance. In (b) the model uses 100 radial orders

and the presence of resonant behaviour is clear for all azimuthal orders across the en-

tire band. Because the back-to-back section is free of resonance it is also numerically

stable and the output of the model can be taken to be an accurate representation of

the radiated field; with the ‘cavity’ section present the model is no-longer a reliable

indication, at any single frequency, of the radiated field.
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Figure 2.21 (b) overleaf shows that the power transmission model has not con-

verged even with 380×380 arrays. Critically, plots (a) and (b) in Figure 2.20 indicate

a reduction in confidence in the results and the number of reliable significant figures

when the model is run with arrays larger than 200×200. Approximately, the re-

duction in significant figures for the worst case solution to the scattering equations

is from 12 to 10 decimal places. Consequently, the results become less reliable for

very large arrays. Observations of the cash usage during the runs suggests that the

large arrays do more swapping of data in memory between different levels, and this

might account for the loss of precision. The way forward seems to be to write very

carefully constructed code to run on parallel processors, code that is highly tuned

for large array sizes on the particular architecture on which it is run.
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(b) Minimum reciprocal pivot growth factor vs.

number of radial modes.

Figure 2.20: Models of the Planck 545GHz horn assembly with increasing numbers

of radial modes, at 597GHz for the modes of azimuthal order 3. While the numer-

ical stability indicators (a) the minimum reciprocal condition number, and (b) the

minimum reciprocal pivot growth factor (see chapter 5) show that all models are

numerically stable, the predicted power transmitted varies substantially with the

number of radial orders used in the model. Plot (a) indicates that the results of the

scattering matrix calculations are accurate to approximately 12 decimal places at

worst at any junction for up to 200 modes; thereafter there is a loss of precision to

approximately 10 decimal places. Both the minimum reciprocal condition number

and the minimum reciprocal pivot growth factor indicate that the reliability of the

model falls off above 200 modes. Consequently, although the modelled transmitted

power in figure 2.21 (b) on the following page appears to converge towards about

0.95, these results are increasingly unreliable.
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Figure 2.21: Continuation of the results plotted in figure 2.20 above: Model run-

times follow the curve (N/12.4)2.72 to 200 modes and (N/14)2.87 generally but less

accurately. Note that the apparent convergence of the power transmission towards

about 0.95 i (b) is unreliable due to numerical precision issues.

2.6 The influence of manufacturing tolerances on

performance

Manufacturing tolerances result in the radii and lengths of all corrugations deviat-

ing randomly from the ideal with some statistical distribution determined by the

manufacturing process. As a result there can be no two identical components and

the system has to be treated as a whole. The many numerical simulations and mea-

surements that have been performed over the years have shown that a horn without

cavity-like sections is sufficiently tolerant of manufacturing errors that beam pat-

terns predicted by modelling the ideal horn conform closely to measurement. When

cavity-like sections are present in the system simulations show both throughput and

beam pattern varying unpredictably, variations that are attributable to trapped

power in the cavity-like sections. Beam pattern variation in a multi-mode horn is

due to variation in the distribution of power between the modes (see figure 2.19), and

in the power and phase in radial orders within a mode. In a single-mode horn there

is only one azimuthal order present and the redistribution of power by a cavity-like

section is only between modes of that order. single-mode horns therefore do not
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exhibit as marked a change in beam shape as multi-mode horns, nor such severe

frequency dependent variations in transmission, except possibly in the cut-on region

at the lower end of the band.

The results of all of the modelling of multi-mode horns conducted for this work

supports an approach to beam pattern prediction that is a stochastic modelling of

a number of horns with appropriate randomly assigned errors on corrugation radii

and lengths. The method is extremely simple.

2.6.1 Stochastic model generation

Given the ideal system model (the ‘as designed’ system) a choice is made for the

statistical distribution of manufacturing errors. This will take the form of a radial

offset error due to lathe set-up error plus corrugation-by-corrugation random radial

and width errors that are small on the scale of the corrugation dimensions. The

overall length error should be close to zero on a digitally encoded CNC lathe, and

that must be taken into account in the total distribution of corrugation width errors.

For the study presented here the error distribution was uniform.

With the radial offset, the corrugation radius error limit and the width limit

decided a probability distribution function is chosen. If N models are to be run

and there are M corrugations in the model, then the repetition length (the period

of the base pseudo-random number generator beneath the distribution, [37]) of the

algorithm should exceed N ×M . Typical base pseudo-random number generators

have periods exceeding 250, so repetition within a set of models ought to be no

problem regardless of the base generator used: for the Planck multi-mode horns with

of the order 2000 corrugations many millions of statistically independent random

models could be generated from one call to the random number generator. The

real issue is to vary the seed (to set the initial state of the base pseudo-random

number generator) so that if a new set of models is generated on another occasion,

they are statistically independent from the first set, unless the original models have

been lost and need to be regenerated. In that case the use of a base pseudo-random
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number generator allows the same sequence to be generated given the original seed;

consequently the models can be recovered provided the seed has been recorded.

Given a sequence of errors (the pseudo-random numbers of the chosen distribu-

tion centred on zero) the errors are added to the as designed model to generate the

simulation of the manufactured horn. The overall length of the perturbed model is

then scaled to bring the total length error to, or close to, zero. This is how all of

the randomised models presented in this work were generated.

In light of the model convergence problems discussed above and the numbers

of models to be run the issue of radial mode numbers needs to be addressed. The

contention held is that the models do not need to be very large: for the Planck multi-

mode horns array sizes of 64×64 are sufficient for broad-band pattern prediction,

and as shown in the next section, and as indicated by the Cardiff measurements in

figure 2.17, there is no point in trying to predict narrow band performance precisely

for this type of horn assembly.

2.6.2 Modelling results

Figure 2.22 on page 45 illustrates 15GHz moving averages in the variation in total

transmission of six models of the Planck 545GHz horn assembly with its cavity-

like section over a 170GHz band width centred on 545GHz. The broadband beam

patterns for all of these horn model were found to be smooth and predictable, all

models giving essentially the same total power pattern. That means that the beam

pattern prediction given in section 2.4 can be taken to be a reliable indication of what

would be measured. However, over narrow bands only beam shape is reasonably

predictable, not throughput, and over very narrow bands and at spot frequencies

neither beam shape nor power throughput can be reliably predicted because of the

unpredictable influence of the manufacturing errors on the mode content of the

fields. Simulations indicate that the pattern of ringing is sensitive to manufacturing

tolerances at the level of λ/1000, but this does not affect overall quality of the beam

pattern. If the bolometer cavity could be used to illuminate the radiating multi-mode
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horn directly the system does not exhibit this acute sensitivity to manufacturing

tolerances and beam pattern prediction over narrow bands would be a simple matter.

On the next page figure 2.23 shows the results of simulating the total power trans-

mission for the as designed and for five randomly perturbed models of the 545GHz

horn at 0.1GHz intervals over 535GHz to 555GHz. The errors are uniformly dis-

tributed in the range ±2.5µm. In this range all azimuthal orders contribute power.
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Figure 2.22: 15GHz moving averages of the power transmitted through the Planck

545GHz horn assembly, the form of the scattering operator for which is given in

equation (2.1.4). The ‘as designed’ curve is the simulated transmission through the

ideal system. The other curves represent simulations of the same system with ran-

dom manufacturing tolerances of the order ±2.5µm applied to the segment lengths

and radii. All of these models are without spectral weighting for the filters, so

the variation is purely due to the influence of these very small radial and length

tolerances on the resonances of the assembly. Observe that the models exhibit a

power transmission variation of approximately 12.5% at the mid-band cut-in of the

additional modes, and this variation is supported by the measured curves in figure

2.17 (a). This suggests that the design exhibits quite severe sensitivity to very small

manufacturing errors.
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(a) Modelled power transmission at 0.1GHz steps over the range 535 to 555GHz for the nominal

545GHz horn design and for five tolerance models with section length errors uniformly distributed

over the range ±2.5µm. The total length of the three model sub-assemblies (cavity feed horn, back

horn and radiating horn) are constrained to be exactly as designed to reflect cumulative machining

error. The section radii are as in the nominal system.
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(b) Modelled horns as in (a) but with the manufacturing error on the radii of the sections, the

section lengths being as in the nominal system.

Figure 2.23: Detailed models of the effects of section radius and length tolerances

on the resonances in the transition region where azimuthal orders 1 and 3 cut in.

The models exhibit great sensitivity to random uniformly distributed manufacturing

errors in the range ±2.5µm. The plots indicate that the qualitative effects of length

and radial tolerances are essentially the same, but the exact power transmission

of a horn cannot be predictable because the ‘cavity’ renders the horn assembly so

sensitive to manufacturing tolerances.
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In plot (a) the errors are on the length of the corrugations only, in (b) they are

on the radii only. The plots indicate that the effects of radial and of corrugation

length errors are qualitatively the same. The plots clearly show that, in so far as the

models can be taken as indicative of true behaviour, the spot frequency performance

of the Planck multi-mode horns could never be predicted.

2.7 Conclusions

The work presented in this chapter shows that, while a simple waveguide or corru-

gated horn such as the ClOVER single-mode horns, or the back-to-back section of

the Planck single-mode or multi-mode horns can be modelled easily and accurately

with a model that will run quickly, this is not true of the multi-mode systems when

the full pixel assembly is included. In that case the system becomes resonant due to

the cavity-like section formed by the bolometer horn facing the back horn, and the

model becomes acutely sensitive both to the exact waveguide section dimensions (to

the manufacturing errors) and to the size of the arrays used to model the scattering

processes. The model must include large numbers of evanescent modes to reasonably

account for trapped power in the ‘cavity’ section. The convergence of the models

becomes a critical issue because, though the current version of the SKITTER mode

matching code has been carefully constructed to give accurate results, the run-time

indicators of accuracy and reliability suggest that when the size of the arrays goes

beyond 200×200 the precision drops to give (at worst) 10 decimal places of accuracy

in the solutions to the systems of linear equations at the heart of the scattering prod-

uct calculations. For small systems such as the 100GHz horn assemblies such a level

of accuracy is more than sufficient, but the Planck multi-mode horns have of the

order 2000 scattering junctions, and the accumulation of rounding errors becomes

an important consideration.

The Planck multi-mode horns in particular are very sensitive to manufacturing

tolerances. Despite this sensitivity, multi-mode systems of the type considered here

are suited to broad-band use such as CMB observation and the broad-band beam



CHAPTER 2. MODELS OF HORN ASSEMBLIES 48

patterns presented here and delivered to the HFI consortium are reliable indicators

of telescope system performance. This is discussed further in chapter 8 on the

reverse engineering of the telescope. Two and a half years after the time that this

work was completed there were still reliability issues with the HFI calibration scans

of the planets, and ±10% swings in measured beam widths were being reported for

the multi-mode beams between scans. These swings are believed to be due to a

lack of understanding of the individual pixel responses. Once these data reduction

issues have been resolved beam maps will become available to the consortium with

which the models can be reliably compared. To date only the plots in figures 2.10

on page 28 and 2.12 on page 30 have been made available, in addition to the Cardiff

FTS measurements of the power transmission of the 545GHz and 857GHz horn

assemblies.

The modelling indicates that it should not be expected that precise broad-band

beam patterns can be predicted for the horns in the way that can easily be done

for traditional single-mode horns or for multi-mode horns not exhibiting resonant

behaviour. Over narrow bands beam pattern predictions should be considered in-

dicative only, and it would be advisable to produce several beam pattern predictions

from stochastically generated variations on the design, and thus arrive at an indica-

tion of the variation that is possible.

It has been found that to get a realistic performance prediction the broad band

beam on the sky must be simulated as the incoherent sum of beams at many frequen-

cies. The number of frequencies should be as large as possible so that the random

errors in the beam patterns, both mode content and total power transmission, can

reasonably be expected to average out. The matter of generating very large num-

bers of horn aperture fields very quickly is addressed in section 6.4 on page page

164. Though they have not been discussed here, the same methods of analysis and

conclusions apply to the much simpler case of single-mode horn assemblies.



Chapter 3

Scattering in waveguides

The fields in a tubular waveguide of simply connected cross section with perfectly

conducting walls are described by transverse electric and magnetic fields that de-

compose naturally into orthogonal ‘modes’ – the elements of an orthogonal basis for

the set of functions satisfying the boundary conditions determined by the physics.

In this chapter the waveguides of primary interest are the cylindrical waveguides,

the Planck horns being corrugated cylindrical horns. All of the Planck High Fre-

quency Instrument horns are electrically large; in the case of the two multi-mode

channels – 545GHz and 857GHz – the complete horn assemblies have of the or-

der 2000 scattering junctions and support from three to five azimuthal orders of

modes. The problem then became how to model the entire assemblies and arrive

at broad-band radiated field pattern predictions for the horns that could then be

used as inputs to the GRASP9 models of the telescope, and so arrive at realistic

beam pattern prediction for the telescope in operation at L2. Prior to the work

described here, models of the beam patterns were derived by modelling only the

back-to-back section of the horns at one to five frequencies across the band and

propagating then through idealised models of the telescope. The scattering software

that had previously been used to generate the horn patterns was the mode-matching

code SCATTER developed at Maynooth [43, 14, 25].

To study the frequency dependence of the radiated field pattern in the multi-

49
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mode horns demanded very fast, but reliable, code. To that end the algebraic

structure of the problem was studied in detail. That lead to the development of code

with significantly different, and more complex, structure than the SCATTER code.

The numerical implementation of the mode-matching method that was developed

will be presented in chapter 5; the beam pattern predictions derived with it have

been described in chapter 2. In this chapter it is the scattering theory in stepped

waveguides that will be developed. The basic assumptions will be that each section of

guide between junctions will be parallel sided, of simply connected cross-section, and

have perfectly conducting walls and be homogeneously filled. (Simple connectivity

is not a requirement of the theory, but it is all that is required for the horns of

interest here. Waveguide cross-sections of arbitrary connectivity are handled in the

same way, only the bases for the spaces of functions changes. For annular sections –

connectivity 1 – with perfectly conducting walls the function spaces are particularly

simple, for connectivity 2 and more the function spaces become complicated, though

conformal mapping could help.) In section 3.1 to 3.6 the development makes no

assumptions other than these: there is no reason to assume that adjoining sections

have the same cross-section. The presentation in sections 3.1 and 3.2 is expository

and the material well known, but the presentation is not entirely conventional. In

the next chapter section 4.1 develops the algebraic analysis of mode-matching for

waveguides of circular section waveguides in detail.

3.1 Fields in cylindrical waveguides

The fundamental assumption is that Maxwell’s equations describe the electromag-

netic field in the waveguide so that the field propagation for a pure frequency com-

ponent is described by Helmholtz equation. The particular form of the solution

is determined by the boundary conditions and the cross-sectional geometry of the

guide. Assume that the guide walls are perfectly conducting, then Dirichlet condi-

tions apply to the electric field and Neumann conditions to the magnetic field. The

general formalism outlined here is applicable to guides of any cross-section, but the

application will be restricted to guides of cylindrical section, cylindrical meaning
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of connected piece-wise differentiable boundary with contractible interior, but more

particularly, the waveguide section is conformal to a closed disc except possibly at

a finite set of discrete points on the boundary (a rectangle, for example).

Denote the cross-section of the guide by S and assume that S is contractible

and work in general curvilinear coordinates adapted to the guide: position vec-

tor r = r(u, v, z). Define the electric and magnetic Hertz potentials (polarisation

potentials) ΠE and ΠM by their relations to the more familiar vector and scalar po-

tentials by A = µ0 ∇×ΠM +µ∂ΠE/∂t and Φ = −∇ ·ΠE/ε, as in references [11][33].

Throughout this thesis the notation for electric and magnetic fields and potentials

will take the general form Xn
E , XE , X

n
M or XM , notation used consistently in the fol-

lowing sense: The superscript denotes the azimuthal order; for the axial potentials

or fields the subscripts E and M refer to the axial electric and magnetic potential or

field; for the transverse fields that the axial potentials induce the subscripts E and

M are shorthand for transverse electric and magnetic fields respectively. Thus, the

transverse fields EE and EM denote the transverse fields ETE and ETM respectively

and a scattering operator S, from EE to EM , would be denoted SME rather than

STM−TE.

In terms of axial Hertz potentials ΠM = ẑΠM and ΠE = ẑΠE , the transverse

electric and magnetic fields are given by [15]

EE = −jωµ0 ∇×ΠM , HE = ∇∇·ΠM + k2
0 ΠM , (3.1.1-A)

HM = jωε0 ∇×ΠE , EM = ∇∇·ΠE + k2
0 ΠE , (3.1.1-B)

respectively. By assumption these axial Hertz potentials satisfy Helmholtz equation,

and their axial and transverse coordinate dependence means they must both take

the general form ΠF (u, v, z) = ẑΨF (u, v)e±jγF z for some scalar function ΨF and

propagation constant γF , where F is one of the fields E or M , as appropriate. It is

important to observe that the function ΨF is simply a point in the function space

L2(S) – square integrable functions on the domain S that is the waveguide cross

section on which the (u, v)-coordinate system is defined. The physics determines the

boundary conditions that determines the subspace of L2(S) in which Ψ resides, as

well as γF . In describing the scattering of fields at a waveguide junction, and in the
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numerical implementation of the scattering, this split between a purely geometric

(function-analytic) aspect and a physical aspect of the representation of the fields

will be exploited.

Since axial ΠF satisfies Helmholtz equation, ΨF must satisfy the scalar Helmholtz

equation point-wise in the (u, v) plane. Thus ∇2
T ΨF +κ2

FΨF = 0, with κ2
F

def
= k2

0−γ2
F

and solving for the fields in terms of the potentials from equations (3.1.1) gives

HE = ± γM ∇T ΨMe
±jγMz, Hz =κ2

MΨMe
±jγMz, EE = ± ZEẑ ×HE , (3.1.2-A)

EM = ± γE ∇T ΨEe
±jγEz, Ez =κ2

EΨEe
±jγEz, HM = ∓ YM ẑ ×EM (3.1.2-B)

for the transverse electric and transverse magnetic field components and the axial

field components. The coefficients ZE = Z0k0/γM and YM = Y0k0/γE are the guide

impedance and admittance, respectively. The notation YM and ZE has been chosen

to agree with the subscript labelling of the transverse fields and ought not to cause

confusion since the γE and γM are associated with the axial fields which induce TM

and TE fields respectively.

From equations (3.1.2) it is immediate that the fields in the waveguide can be

completely and conveniently described by expanding the functions ΨE(u, v) and

ΨM(u, v) in terms of any appropriate basis functions for L2(S) that satisfy the

Dirichlet and Neumann boundary conditions, respectively. This is the analytical

framework for the mode-matching method for the description of the transverse fields

in a cylindrical guide in terms of ‘modes’ – basis functions spanning an infinite

dimensional, denumerable and separable complex Hilbert space. Scattering that

occurs at a waveguide junction is described by an operator matrix acting on the

direct sum of the two Hilbert spaces at either side of the junction. With identical

waveguide sections at either side of the junction the two Hilbert spaces are trivially

isomorphic, but there are three factors that give rise to the scattering operator: the

purely geometric effect of the step change in guide section, and the physical effects

of the step change in impedance and the enforcement of the boundary conditions on

the step flange. The idealised physical assumption of perfectly conducting waveguide

walls means that there is no tangential component to the electric field and no axial

component of the magnetic field on the radial flange at the step. Basis functions
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(modes) on either side of the junction have to be matched: the modes in the larger

section are expanded in terms of the modes in the smaller section. This gives rise to

a purely real operator matrix that describes the scattering across the junction. The

impedance depends upon the basis function and is real for a propagating mode and

pure imaginary for an evanescent mode. These impedances scale the components of

the real scattering operator giving rise to a generally complex operator.

Let Ψ =
∑

Ψk denote the expansion of either ΨE or ΨM in terms of modes {Ψk}
and let {γk} be the corresponding set of propagation constants. Helmholtz equation

gives

0 = (Ψi∇2
T Ψj + (k2

0 − γ2
j )ΨiΨj) = (Ψj ∇2

T Ψi + (k2
0 − γ2

i )ΨjΨi)

=⇒ (γ2
i − γ2

j )

∫

S

ΨiΨj dS =

∫

S

(
Ψi∇2

T Ψj − Ψj ∇2
T Ψi

)
dS

=

∫

∂S

(

Ψi
∂Ψj

∂n̂
− Ψj

∂Ψi

∂n̂

)

dl,

(3.1.3)

where the equality between the surface integral and the boundary integral is Green’s

second identity (A.3.2), and n̂ is the normal to the boundary. Since the Dirich-

let conditions imply that ΨE|∂S ≡ 0, and the Neumann conditions imply that

∂ΨM/∂n̂|∂S ≡ 0, the integrals in equation (3.1.3) are identically zero as long as

the non-degeneracy condition γi 6= γj holds. In all cases considered in this thesis

this condition will hold, but in general if γi1 = γi2 = · · · = γin holds, the familiar

Gram-Schmidt process of orthonomalisation can be applied to the set {Ψik}nk=1, n

possibly infinite. If the Ψik spans a subspace H ⊂ L2(S), then so too does the result-

ing orthonormalised set {Ψ̂k}nk=1, and the result will be a denumerable, orthonormal,

basis set for the space of axial Ez and Mz fields over S.

From equations (3.1.2-A and B) the transverse fields are expanded in terms

of the Laplacians of the basis functions Ψi as EM = ±
∑

i γE,i∇T ΨE,ie
jγE,iz, etc.

Orthogonality of the modes requires that the appropriate one of the three inner

products

〈∇T Ψi,∇T Ψj〉 , 〈ẑ ×∇T Ψi, ẑ ×∇T Ψj〉 , or 〈∇T Ψi, ẑ ×∇T Ψj〉

be zero. These inner products are defined as the integrals over the pointwise scalar

product of the two components over the guide cross section, S. Pointwise, (ẑ ×



CHAPTER 3. SCATTERING IN WAVEGUIDES 54

∇T Ψi) · (ẑ × ∇T Ψj) = ∇T Ψi · ∇T Ψj so that the first and second inner products

both become
∫

S

∇T Ψi · ∇T Ψj dS =

∫

∂S

Ψi
∂Ψj

∂n̂
dl −

∫

S

Ψi∇2
T Ψj dS

= k2
0

∫

S

ΨiΨj dS ∝ δij

(3.1.4)

by Green’s first identity (A.3.1), the application of the appropriate boundary con-

ditions to eliminate the boundary integral, using Helmholtz equation, and applying

the previous result. Thus, constituent modes for the field pairs of type (EE , EE),

(HE , HE) (EM , EM), (HM , HM), (EM , HM) and (EM , HE) are pairwise orthogonal

because the axial functions that determine them, up to mode dependent factors, are

orthogonal.

For the third inner product, which applies to (EE, EM) and (HE, HM) pairs only,

〈∇T ΨEi, ẑ ×∇T ΨMj〉 =

∫

S

∇T ΨEi · (ẑ ×∇T ΨMj) dS

= −
∫

S

∇T ·(ẑΨMj ×∇T ΨEi) dS

=

∫

∂S

ΨMj(ẑ ×∇T ΨEi) · n̂dl.

(3.1.5)

However the boundary conditions give (ẑ × ∇T ΨE,i) · n̂ ≡ 0, from which the or-

thogonality follows. Reversing the rôles of the ΨE and ΨM it is the ΨE|∂S ≡ 0 that

gives the orthogonality. The final cases are (EE , HE) and (EM , HM), but these two

have the same general form as for equations (3.1.5) giving the orthogonality of any

EE mode to any HE mode and any EM mode to any HM mode in the same section

of the guide. This will be used below for the decomposition of the spaces of TE and

of TM fields into direct sums of electric and magnetic components.

Denote the Hilbert space of transverse electric and transverse magnetic fields

over S by HE and HM respectively; then the completeness of the spaces and de-

numerability and orthogonality of the bases means that the spaces have complete,

orthonormal bases, upon normalisation with respect to the inner product. It is

in these bases, the modes of the waveguide section, that the fields and scattering

operators are to be expanded.
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Given two linearly independent solutions, E, H and E′, H ′ to Maxwell’s equa-

tions, 0 = −jµω(H ·H ′ −H ′ ·H) = H ′ ·(∇×E) −H ·(∇×E′) and

0 = −jεω(E ·E′ −E′ ·E) = E′ ·(∇×H) − E ·(∇×H ′), which, upon addition of

the right hand sides gives

0 = ∇ ·(E×H ′ −E′ ×H) = ∇T ·(E×H ′ −E′ ×H) + ẑ∂z · (E×H ′−E ′ ×H).

(3.1.6)

With the decomposition of the fields into transverse and axial components with axial

dependence of the form e−jγz this becomes

0 = ∇T ·(E×H ′ −E ′×H) − j(γ + γ′)ẑ · (ET ×H ′
T −E′

T ×HT ).

But then the integral of (3.1.6) over S is identically zero and, since the first term on

the right gives an integral around the boundary, under the assumption of a perfectly

conducting boundary 0 = n̂ · (E×H) = H ·(n̂×E)|∂S, it follows that

(γ + γ′)

∫

S

(ET ×H ′
T −E′

T ×HT ) · dS = 0. (3.1.7)

With the axial dependence e−jγz the transverse fields have the form

HT (u, v, z) = h(u, v)e−jγz =
∑

m

hm(u, v)e−jγmz,

ET (u, v, z) = e(u, v)e−jγz =
∑

n

en(u, v)e
−jγnz,

and equation (3.1.7) becomes

(γ + γ′)

∫

S

(e×h′ −e′ ×h) · dS = 0. (3.1.8)

The fields propagating in the reverse direction have z-dependence ejγz and give

(γ − γ′)

∫

S

(−e×h′ −e′ ×h) · dS = 0. (3.1.9)

Adding equation (3.1.8) to (3.1.9) and subtracting equation (3.1.9) form (3.1.8) gives

the required orthogonality of linearly independent modes:
∫

S

em×hn · dS =

∫

S

en×hm · dS ∝ δnm (3.1.10)

This is an inner product measuring power coupling, and by orthogonality of the

basis:

en · em = en ·(hm×ẑ)Zm = (en×hm) · n̂Zm = δnm.
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For n = m the inner product (3.1.10) is the integral of the Poynting vector over

the waveguide section. Physically, two fields (e1,h1), (e2,h2) in a waveguide are

orthogonal over a transverse section, S, if the net power, measured as the integral

over the plane of the axial components of e1 ×h2 = e2 ×h1 crossing the plane, is

zero at all times. In a lossless guide the real Poynting vector can be replaced with

the complex Poynting vector, e1 ×h∗
2, and that will be the case for the Planck horns

and all other waveguide structures considered hereafter, all being treated as having

perfectly conducting walls and no dielectric filling anywhere in the horn assembly.

3.1.1 Power flow

With the fields expanded in terms of orthonormal modes, the time-averaged power

flow across a section of the guide is given by the integral of the Poynting vector over

the guide section

P =
1

2
Re

∫

S

E×H∗ · dS =
1

2
Re

∫

S

ET ×H∗
T · dS

=
1

2

∞∑

n=0

AnRe

∫

S

en×h∗
n · dS. (3.1.11)

where the en and hn are now normalised over the guide section, the An are the

expansion coefficients, and the cross terms have been eliminated using equation

(3.1.10).

From equations (3.1.2) the general form of the transverse fields for both TE and

TM modes is F n = ±γ∇T Ψne
jγz, Gn = ±ζ ẑ × F n, where F and G stand for

the electric or magnetic field as appropriate, γ is the propagation constant, and ζ

the appropriate impedance or admittance. In either case, the integrand in equation

(3.1.11) takes the form

ζγ2ẑ · [(ẑ ×∇T Ψn) ×∇T Ψn] = −ζγ2 ∇T Ψn · ∇T Ψn + (ẑ · ∇T Ψn)
2

= −ζγ2 ∇T Ψn · ∇T Ψn.

The power in the n th propagating mode is then obtained from Green’s first identity
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as

Pn =
1

2
ζγ2

∫

S

∇T Ψn · ∇T Ψn dS = −1

2
ζγ2

∫

S

Ψn∇2
T Ψn dS +

1

2
ζγ2

∫

∂S

Ψn
∂Ψn

∂n̂
dl

=
1

2
ζγ2κ2

∫

S

Ψ2
n dS,

=







1
2
Z0k0γMnκ

2
Mn‖ΨMn‖2

S : for the TE case,

1
2
Y0k0γEnκ

2
En‖ΨEn‖2

S : for the TM case,

(3.1.12)

where κ is as on page 52, and Z0, Y0 and k0 are the free space impedance, admittance

and wavenumber. Here the boundary integral gives zero in both the TE and TM

cases by the boundary assumptions, and ‖Ψn‖2
S is the squared L2(S) norm of the

basis function over the waveguide cross section.

For non-evanescent fields, κ = k0

√

1 − γ2/k2
0 is real, this integral is real and

the time averages of the electric and magnetic field energies, we and wm, are equal

(see [11], [15]) and the time averaged power flow is P = 2wevg, which determines

the group velocity, vg. This is the regime in which Helmholtz equation is a wave

equation.

When κ ∈ iR Helmholtz equation is a diffusion type equation, second order in

axial distance, z. Within a section of guide of constant cross section the general

form for the time averaged power stored between transverse planes at z = z0 and

z = z0 + δz for TE modes is given by

2iω(wm − we) =
1

2
iZ0k0κ

2
M |γM |e−2|γM |z0(1 − e−2|γM |δz)‖ΨM‖2

S

=⇒ wm − we =
1

4ω
Z0k0κ

2
M |γM |e−2|γM |z0(1 − e−2|γM |δz)‖ΨM‖2

S

so that for TE modes wm > we in the length of waveguide. For TM modes the

equation becomes

we − wm =
1

4ω
Y0k0κ

2
E|γE|e−2|γE |z0(1 − e−2|γE |δz)‖ΨE‖2

S

and we > wm in the length of waveguide. For a numerical model these relations

need to be observed. There must be sufficient evanescent modes in the model that

these conditions hold in all sections of the guide.
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3.2 Scattering at a waveguide junction

For the purposes of modelling and analysis the fields are expanded in terms of

functions in L2(S). Physically this must be the correct space because there must

be finite power in the fields, and the power is related to the L2 norm by equation

(3.1.12). The assumption of perfectly conducting boundaries selects orthogonal

subspaces of L2(S) within which the TE and TM fields can be expanded. From the

previous section it is seen that the fields are described in terms of an L2 function

multiplied by terms related to the physics of wave propagation in the guide – the

frequency, impedances and dielectric properties. In what follows it will be shown

that the scattering of the modes across a junction is described by an expansion of

the modes on the larger guide section in terms of the modes in the smaller section – a

Fourier series expansion, in the general sense – and multiplication by an appropriate

impedance term.

Denote the guide cross section to the left of the junction by SL and that to the

right by SR. Without loss of generality assume that the guide is smaller on the

left than on the right. Whatever the two sections may be, and whatever the chosen

coordinate systems on SL and SR, the physical junction determines (is described by)

an injective mapping π : SL →֒ SR that will be a C∞ isometric embedding. Usually

in analysis of scattering in waveguides this mapping, and what follows from it, is

ignored, but in the analysis of misaligned guide sections it is critical. Furthermore,

for the analysis to be formally correct, it has to be used. The functions in H(SR)

pull back to H(SL) via the linear pull-back induced by the mapping π:

π∗ : H(SR) → H(SL), (π∗f)(x) = f(π(x)), for all x ∈ π(SL). (3.2.1)

Both of the spaces spanned by the TE fields and by the TM fields are representable

as functions in H(S). Denote these two spaces by E and M respectively; the total

fields to the left and right of the junction are contained in the spaces (E ⊕M)L and

(E ⊕M)R. Then π∗ gives the pull-back π∗ : (E ⊕M )R → (E ⊕M )L and, since the

constituent spaces all have denumerable bases and π∗ is linear, it determines infinite
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operator matrix, to be denoted by P , of the form



PEE PME

PEM PMM



 : (E ⊕M )L −→ (E ⊕M )R . (3.2.2)

Each sub-matrix in this operator matrix is an infinite operator matrix, the Pmk

component of which maps the k th TE or TM basis vector on the left to the m th

basis vector in the expansion of TE or TM on the right of the junction being Pmk =

〈ψk|π∗ψ′
m〉. Thus, this operator P , and its adjoint P †, describe the geometric aspects

of the scattering – those aspects of the scattering that relate purely to the embedding

π : SL → SR and the choice of bases in H(SL) and H(SR), the particular structure

of P being determined purely by the geometry of SL and SR and the embedding π.

For geometries such as the discs and rectangles considered below, and for regular

polygons generally, this structure will be particularly simple provided the sections

are perfectly coaxial and aligned. In that situation the matrix P will be found to take

a block diagonal form; effectively a direct sum of arrays, P =
⊕

Pn. If the alignment

is not perfect the mapping π becomes critical to the numerical implementation and

the operator matrix P will be dense. (For circular guides the index n will label the

azimuthal orders, and if a horn is constructed from section not perfectly aligned

there will be scattering between azimuthal orders with a resulting change in beam

structure and loss of efficiency.) From hereon, except when misaligned guides are

considered, π will be the identity mapping and all reference to it will usually be

dropped and the distinction between the domains of definition of the functions in

the integrands will be ignored.

There must also be endomorphisms that account for the reflection of modes at

the junction due to the step change in impedance:

R : (E ⊕M )L −→ (E ⊕M )L ,

Q : (E ⊕M )R −→ (E ⊕M )R .

It is immediate from the orthogonal decomposition of the fields and the integrals

of the previous section that these operator matrices will be diagonal with terms

〈ψi|ψj〉 ∝ δij; physically the reflection operators will be determined solely by the

impedance step across the junction and will not scatter power between modes.
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The scattering at the junction will then be described by an operator

S =




SLL SLR

SRL SRR



 ∈ End ((E ⊕M )L ⊕ (E ⊕M )R) (3.2.3)

that is to be constructed from the operators P , P †, Q and R.

At any junction in the guide there will be scattering of fields travelling towards

the junction from both the left and the right, both across the junction and back

from the junction. Choosing some ordering for the modes and expanding the fields

on either side of the junction in terms of the orthonormal TE and TM modes, the

TE fields are spanned by a basis {eEn,hEn}n∈N for E and the TM fields are spanned

by a basis {eMm,hMn}n∈N for M.

Denote the µ th electric and magnetic modes by eµ and hµ respectively. Denote

the complex coefficients of the modes in HL by Aµ and by Bµ, and those in HR by

Cµ and Dµ. Then all electric and magnetic fields to the left and right of the junction

are superpositions of modes travelling to the left and to the right, and take the form




EL

HL



 =
∑

µ∈N

[

Aµe
jkL

µz ± Bµe
−jkL

µ z
]




eLµ

hLµ



 , (3.2.4-A)




ER

HR



 =
∑

µ∈N

[

Dµe
jkR

µ z ± Cµe
−jkR

µ z
]




eRµ

hRµ



 , (3.2.4-B)

with +z being the positive propagation direction, and kL and kR denoting the

propagation constants in the waveguide to the left and right of the junction. The

expansion coefficient vectors A, B, C and D will, in general, be complex. That

these fields are also solutions to Helmholtz equation is immediate from the linearity

of the operator ∇
2
T +k2 and its independence of the axial coordinate, z.

With reference to the general description of the fields given in equation (3.2.4),

consider the magnetic fields to the left and right of the boundary. For the µ th

electric field mode eLµ ∈ EL, continuity of the magnetic fields across the junction

gives equality between the time averaged power at the junction from either side:
∫

SL

[

eLµ ×
∑

ν∈N

(Āν − B̄ν)h̄
L
ν

]

· dS =
∑

ν∈N

(Āν − B̄ν)

∫

SL

[

eLµ ×h̄
L
ν

]

· dS
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def
=
∑

ν∈N

(Āν − B̄ν)Rµν (3.2.5-A)

=

∫

SL

[

eLµ ×
∑

κ∈N

(D̄κ − C̄κ)h̄
R
κ

]

· dS

=
∑

κ∈N

(D̄κ − C̄κ)

∫

SL

[

eLµ ×h̄
R
κ

]

· dS

def
=
∑

κ∈N

(D̄κ − C̄κ)Pµκ (3.2.5-B)

for all µ ∈ N. Here the over-bar denotes complex conjugation, and the integrals

involving hR should strictly be written as integrals of eL×π∗ hR over SL, but the

natural identification of π(SL) ⊂ SR with SL and the form of π∗ in equation (3.2.1)

results in the given form. The form of π∗ has the physical interpretation that, for a

perfectly conducting waveguide wall, the tangential component of the electric field

is zero on the junction flange. If the guide wall is not a perfect conductor equations

3.2.5 will not determine the scattering amplitudes and the formalism breaks down.

In like manner, continuity of the transverse fields across the junction gives

∫

SL

[
∑

µ∈N

(Aµ +Bµ) e
L
µ ×h̄

R
κ

]

· dS =
∑

µ∈N

(Aµ +Bµ)

∫

SL

[

eLµ ×h̄
R
κ

]

· dS

def
=
∑

µ∈N

Pµκ(Aµ +Bµ) (3.2.6-A)

=

∫

SL

[
∑

ν∈N

(Dν + Cν) e
R
ν ×h̄Rκ

]

· dS

=
∑

ν∈N

(Dν + Cν)

∫

SL

[

eRν ×h̄Rκ
]

· dS

def
=
∑

ν∈N

Qνκ(Dν + Cν) (3.2.6-B)

It follows from equations (3.2.5) and (3.2.6) that the field coefficient vectors A±B =

[Aµ ± Bµ] ∈ HL and D ± C = [Dµ ± Cµ] ∈ HR are related by the operator matrix

equations

P (A+B) = Q(D + C) (3.2.7-A)

R̄(A− B) = P †(D − C) (3.2.7-B)

Here the adjoints of equations (3.2.5-A) and (3.2.5-B) have been taken. The scatter-

ing problem is to solve these simultaneous equations for the elements of the vectors
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A, B, C and D. The situation is illustrated by the diagrams

A

R̄
��

P // D

B C
P †

oo

Q

OO HL

R̄

WW

P
++ HR

P †

kk

Q

GG
. (3.2.8)

From (3.2.3) the scattering operator for the junction is the matrix operator

S =




S11 S12

S21 S22



 : HL⊕HR −→ HL⊕HR (3.2.9)

with entries that are operator matrices S11 ∈ End (HL), S12 ∈ L (HR,HL), S21 ∈
L (HL,HR) and S22 ∈ End (HR). (Use of indices 1 and 2 rather than L and R is to

conform to standard usage.) Clearly, the power of the input and the scattered fields,

measured by the L2 norm, are bounded, and ‖SijF‖ ≤ ‖Sij‖·‖F‖ ≤ ‖S‖·‖F‖, so the

operators are all contractions (see [23, 74] for definition). In an appropriate norm,

‖S‖ would represent the total scattered time-averaged power, and conservation of

power would require ‖S‖ = 1.

The problem at hand is to find the scattering operator S for the junction in

terms of P , Q and R from equations (3.2.7). The values of the operator elements

pij , qij and rij will then be derived from the particular representations of the bases

for HL and HR using equations (3.2.5) and (3.2.6). Formal manipulation of the

simultaneous equations (3.2.7) to eliminate output B gives

2PA =
[(
PR̄−1P † +Q

)
D −

(
PR̄−1P † −Q

)
C
]

=⇒ D = 2
[(
PR̄−1P † +Q

)−1
P
]

A−
[(
PR̄−1P † +Q

)−1 (
Q− PR̄−1P †

)]

C.

Similarly, elimination of the output D gives

B = 2
[(
R̄ + P †Q−1P

)−1
P †
]

C +
[(
R̄ + P †Q−1P

)−1 (
R̄ − P †Q−1P

)]

A.

Then, since S maps the inflowing fields A ∈ HL and C ∈ HR to the outflowing fields

B ∈ HL and D ∈ HR, the entries in the scattering operator (3.2.9) for the process

(3.2.7) are

S11 = [R̄ + P †Q−1P ]−1[R̄− P †Q−1P ] (3.2.10-A)

S12 = 2[R̄ + P †Q−1P ]−1P † (3.2.10-B)
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S21 = 2[Q+ PR̄−1P †]−1P (3.2.10-C)

S22 = −[Q+ PR̄−1P †]−1[Q− PR̄−1P †] (3.2.10-D)

giving, as the scattering operator matrix for a single junction with inputs A and C

(power flow towards the junction from left and right) and outputs B and D (power

flow away from the junction)




B

D



 =




S11 S12

S21 S22








A

C



 . (3.2.11)

Given two adjacent junctions in a waveguide separating sections of guide with

functions spaces H1, H2 and H3, the total scattering operator must be a product

of the two separate junction S-matrices in some appropriate sense. The situation is

represented in the following scattering diagram:

A

A11

��

A21 // D
B32 // E

B C
A12

oo
��

A22 B22

KS

F
B23

oo

B33 =

OO A

S11

��

S31 // E

B F
S13

oo

S33

OO

(3.2.12)

The product will be written B⊙A = S with A ∈ End (H1 ⊕H2), B ∈ End (H2 ⊕H3)

and S ∈ End (H1 ⊕H3). This is a simultaneous equation derived from




B

D



 =




A11 A12

A21 A22








A

C



 ,




C

E



 =




B22 B23

B32 B33








D

F





The algebraic approach to the solution is the following: Eliminating C and D from

D = A21A+A22C and C = B22D+B23F and solving for B in terms of the left side

and right side inputs A and F gives

C = B22 (A21A + A22C) +B23F

= (I − B22A22)
−1 [B22A21A+B23F ] ,

=⇒ B = A11A+ A12C

=
[
A11 + A12(I −B22A22)

−1B22A21

]
A+

[
A12(I − B22A22)

−1B23

]
F.

Likewise, solving for E in terms of the inputs A and F gives

E =
[
B32(I − A22B22)

−1A21

]
A+

[
B33 +B32(I − A22B22)

−1A22B23

]
F.
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Thus, the component operators of the cascaded scattering operator matrices are

S11 = A11 + A12(I −B22A22)
−1B22A21 (3.2.13-A)

S13 = A12(I −B22A22)
−1B23 (3.2.13-B)

S31 = B32(I −A22B22)
−1A21 (3.2.13-C)

S33 = B33 +B32(I −A22B22)
−1A22B23 (3.2.13-D)

These equations represent the scattering of power between the left-most domain,

H1, and the right-most domain H3, S11 ∈ End (H1), S13 ∈ L (H3,H1), S31 ∈
L (H1,H3), and S33 ∈ End (H3); the product is clearly associative. It cannot be

commutative except in the situation where S1 = S3. That situation does occur in

the case of a parallel corrugated waveguide. In that situation the waveguide is a

concatenation of symmetric units comprising pairs of junctions, except, possibly, for

the addition of a single junction on one end, and for the system of symmetric units

the scattering is symmetric and it is immediate that the operator reduces to

S11 = S22 = A11 + A12A22(I − A2
22)

−1A21 (3.2.14-A)

S12 = S21 = A12(I −A2
22)

−1A21 (3.2.14-B)

which is illustrated by the following diagram of a basic unit from which the cor-

rugated waveguide is constructed, and the associated scattering diagram for the

scattering operator across this unit, S ∈ End (H1 ⊕H1):

H1 H2 H1

•
A11

��

A21 // • A12 // • •
S11

��

S21 // •

• •
A12

oo
��

A22 A22

KS

•
A21

oo

A11 =

OO

• •
S12

oo

S22

OO

(3.2.15)

Once the appropriate phase slippage has been included into the scattering oper-

ators, this will represent the scattering through a basic unit of the guide. It means

that, in calculating the propagation through a corrugated waveguide, or any section

of a horn that forms a corrugated waveguide, the amount of calculation needed is

almost halved. The exploitation of this fact, and of the algebraic properties of these

operators, is part of the key to efficient and accurate numerical simulation that will

be addressed in section 3.6.

The system of equations (3.2.13) can be arrived at formally by chasing around
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the diagram (3.2.12) following all possible paths that the diagram permits – follow

the arrows in the direction that they point. To see this, write

(I − B22A22)
−1 = I +B22A22 + (B22A22)

2 + · · · · · ·

which describes the scattering of power back and forth across the junction. Thus,

with reference to diagram 5.3.2-B, to get from A to B sum A11 and all paths

A12(B22A22)
nB22A21 giving S11 = A11 +A12

∑∞
n=0(B22A22)

nB22A21 = A11 +A12(I −
B22A22)

−1B22A21. Likewise the formal structure of all SNM for all scattering prod-

ucts for the concatenation of any number of junctions are found from the dia-

grams. Diagram chasing works for a K-fold junction: at the common space H2

there are K arrows with one arrow pointing down and K − 1 pointing up; scat-

tering from any input to any output must follow all paths taking the one down-

ward arrow and any possible upward arrow. For a T-junction the diagram gives

scattering (B22A22)
n(C22A22)

m within the space common at the T, hence S11 =

A11 +A12(I −B22A22)
−1(I −C22A22)

−1(C22 +B22)A21, and so on for the mappings

S13, S14, S34 etc. The only technical point is to remember the exact equivalence of

all spaces when drawing the diagrams; therefore K − 1 diagrams are needed. For

a horn K = 2 and the equivalence is trivial. This does not address the problem of

matching the modes at the common junction to solve for the scattering coefficients,

but it does give the structure of the operator on H1 ⊕ · · · ⊕ Hn.

Two points have been glossed over. The first is the rather obvious point that

since the scattering is scattering of power, conservation of power must be observed.

In terms of the norms of the operator that means that the S-matrix of a length of

guide would be of norm ‖S‖ = 1 if there were no evanescent modes present or the

guide was of zero length. The S-matrix of a single junction must, therefore, be of

norm 1 as an endomorphism of HL⊕HR. But if that endomorphism arises as a true

step discontinuity there will be evanescent modes induced and when propagation

takes place there is amplitude decay because the Helmholtz equation becomes a dif-

fusion equation of second order in the axial coordinate for any mode with imaginary

propagation coefficient. The second point is that for the scattering product to be

defined the terms of the form (I−B22A22)
−1 to be defined the operators must satisfy
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‖B22A22‖ < 1. But that is immediate since all operators A22 and B22 must both be

strict contractions except where there is perfect reflection – a short – and in that

case P ≡ 0 in equations (3.2.10) and the entire process becomes trivial: S ≡ I.

3.3 An alternative description of scattering

The form of the component operators in the scattering operator given in equations

(3.2.10) is formally correct for any pair of waveguide sections SL and SR for which

the corresponding spaces of fields admit denumerable bases. They are not, however,

expressed in a way that will lead to efficient computation. There are several forms in

which equations (3.2.10) can be rewritten, but the one given here seems particularly

suitable for computational purposes.

The motivation comes from the following diagram that is common in the elimen-

tary theory of control for a single input, single output system with feedback:

u //

�yoo

// G //

oo K oo

x //

�
voo

What follows is not a true presentation of a control problem, it is simply the pre-

sentation of the idea that gave rise to the alternative form that scattering operators

given in equations (3.3.1), (3.3.2) and (3.3.3) that is the basis for the numerical

computation in chapter 5.

Let G represent the ‘transfer’, or throughput of some kind of system with input

u from the left. The output in the absence of a ‘control’, or feedback, K is x = Gu,

so the input to the system with control is u−Kx. Then formal manipulation gives

x = G(u−Kx) = G(I +KG)−1u =⇒ 2x = 2(I +GK)−1Gu
def
= S21u,

and define S11u
def
= u− 2Kx = (I+KG)−1(I−KG)u. Imagine G andK are rectified,

then for input v from the right the rôles of G and K are reversed and set y = Kv.

Then S12v = 2(I + KG)−1Kv and S22v = (I + GK)−1(GK − I) and note that

S12 = 2(I+KG)−1K = (I+KG)−1(I+KG+I−KG)K = (I+S11)K. Rearranging
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the equations gives various representations of the component S-matrices, amongst

which are

S11 = (I +KG)−1(I −KG) = I − S12G (3.3.1-A)

S12 = 2(I +KG)−1K = (I + S11)K (3.3.1-B)

S21 = 2(I +GK)−1G = (I − S22)G (3.3.1-C)

S22 = (I +GK)−1(GK − I) = S21K − I. (3.3.1-D)

As a result, and after re-expressing S21 and S22, the S-matrix for a junction can

always be written in terms of S11, I, G and K:

S =




S11 (I + S11)K

G(I + S11) G(I + S11)K − I



 . (3.3.2)

Here it is assumed that, in the finite sized approximation to S being used for compu-

tation of the scattering, S11 is N ×N and S22 is M ×M with N ≤M ; was N > M ,

then an equivalent rearrangement can be made in which the rôles of S11 and S22 are

reversed, so minimising the total size of the computation task in either case.

To exploit the computational simplicity that results from the scheme above the

waveguide junction scattering operators need to be presented in this form: Define

the operators G = Q−1P : HL → HR as a ‘transfer’ operator and K = R̄−1P † =

(PR−1)† : HR → HL as the ‘control’ operator. From equations (3.2.10) write S11 as

S11 = [R̄ + P †Q−1P ]−1[R̄− P †Q−1P ]

= [I + R̄−1P †Q−1P ]−1R̄−1R̄[I − R̄−1P †Q−1P ]

= (I +KG)−1(I −KG)

(3.3.3)

and the equations (3.3.1) and matrix (3.3.2) follow. Alternatively all of these equa-

tions are derived directly from equations (3.2.7). The particulars of K and G depend

upon the waveguide cross-section geometry, the boundary conditions and the dielec-

tric properties of any filling, and that will dictate the particulars of any scheme

for computing the modes and scattering products, but since these are completely

general expressions it does not matter what the guide section may be – the form of

the scattering operators can always be expressed in this form.
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There are several advantages to computing junction scattering in this way. It is in

the form of equations (3.3.2) that the matrices representing the scattering operators

in a finite model of the systems will be computed. The computational scheme will

will be described in some detail in chapter 5.

3.4 S2 ≡ I and S ⊙ S ≡ I at a junction

It has already been observed at the end of section 3.2 that, at a junction, S must be

of norm 1. Here it will be shown that there is are formal algebraic conditions S2 ≡ I

and S ⊙ S ≡ I which, along with ‖S‖F = 1, give potentially valuable tests on the

accuracy of computation over and above the numerical run-time conditioning tests

that are discussed in chapter 5: at a junction the scattering operator must satisfy

S2
11 + S12S21 = IL, S2

22 + S21S12 = IR,

S11S12 + S12S22 = 0, S21S11 + S22S21 = 0.
(3.4.1)

For a finite size numerical model none of these conditions can hold exactly, but they

must hold to high accuracy if the model is to be accurate.

From the definition S−1S = I, straightforward manipulation of the operator

sub-matrices Sij gives the formulæ

(S−1)11 = (S11 − S12S
−1
22 S21)

−1 (3.4.2-A)

(S−1)12 = −(S11 − S12S
−1
22 S21)

−1(S12S
−1
22 ) (3.4.2-B)

(S−1)21 = −(S−1
22 S21)(S11 − S12S

−1
22 S21)

−1 (3.4.2-C)

(S−1)22 = S−1
22 − (S−1

22 S21)(S11 − S12S
−1
22 S21)

−1(S12S
−1
22 ) (3.4.2-D)

where (S−1)ij refers to the ij th block matrix of the operator matrix S−1. With

reference to equations (3.3.1) we have S−1
11 = (I −KG)−1(I +KG) and can substi-

tute for all Sij into equation (3.4.2-A) in terms of K and G. Formal power series

manipulation gives (I ± XY )±1X = X(I ± Y X)±1 and (I ± XY )±1(I ∓ XY ) =

(I ∓XY )(I ±XY )±1, from which equation (3.4.2-A) gives

(S−1)11 =
[
(I +KG)−1(I −KG) + 4(I +KG)−1K(I −GK)−1G

]−1
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=
[
(I −KG)2 + 4KG

]−1
(I −KG)(I +KG) = S11.

Substituting this result into (3.4.2-B to D) gives the identities

(S−1)12 = S12, (S−1)21 = S21 and (S−1)22 = S22.

Thus, S−1 = S and S2 = I, giving the result that the scattering operator S at a

junction is a square root of the identity on HL⊕HR.

S11 and S22 are morphisms of HL and HR respectively so that there is no difficulty

over the domain and codomain when they are interpreted as component operators

of S−1. Likewise both S12 and (S−1)12 are mappings HR → HL and S21 and (S−1)21

are mappings HL → HR. Thus there is no algebraic difficulty with these equations;

furthermore, substitution of S for both A and B into equations (3.2.13) and use of

equations (3.4.1) shows that S ⊙ S = I, so this is not just a matrix inverse, but a

scattering inverse equation. Nevertheless, it has no physical meaning at all: there is

no scattering diagram from which these equations follow. A moment’s consideration

of the mechanics of the junction will show that this equation can relate to no physical

junction except the trivial junction where the step size is zero – the join between

two waveguide sections of identical cross section where the components of S reduce

to S11 = S22 = 0 and S12 = S21 = I. The relations (3.4.1) and (3.4.2) are purely

algebraic, they say nothing about the physics of scattering at a junction; there is no

physical process inverting a scattering process. None of the operators (S−1)IJ , nor

the inverses S−1
IJ of the component operators SIJ correspond to physical processes

in the sense that it is not possible build a structure that will generate the inverse

scattering.

3.5 Phase slippage

It is immediate from the scattering product equations (3.2.13) that the scattering

processes of phase slippage along a waveguide section followed by scattering at a

junction, and the scattering at a junction followed by phase slippage, are represented
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by the matrix products

S ⊙ V =




V1 0

0 I








S11 S12

S21 S22








V1 0

0 I



 =




V1S11V1 V1S12

S21V1 S22



 , (3.5.1-A)

V ⊙ S =




I 0

0 V2








S11 S12

S21 S22








I 0

0 V2



 =




S11 S12V2

V2S21 V2S22V2



 , (3.5.1-B)

where V1 and V2 are diagonal matrices that are functions of the section length, d,

cross sectional geometry and impedance of the guide taking the form

V =




VE 0

0 VM



 , (VE)ij = δij exp (−idκE,j) , (VM)ij = δij exp (−idκM,j) .

(3.5.2)

Since S is representable as an operator matrix in M2[H1 ⊕H2] = M2[(E ⊕M )1 ⊕
(E ⊕M )2], the components of each of the four operator sub-matrices VI ⊙SIJ ⊙ VJ ,

for I, J ∈ {1, 2}, are given by

[VI ⊙ SIJ ⊙ VJ ]mn = exp (−idIκIn) exp (−idJκJm) (SIJ)mn, (3.5.3)

where dI and dJ are the section lengths and κIn and κJm are the propagation coeffi-

cients of the appropriate waveguide section at either side of the junction. The indices

I and J label the codomain and domain respectively from the set {E1, M1, E2, M2}.

It is immediately apparent that the diagonal phase slippage operators and their

finite dimensional matrix approximations for an N mode model lie in a copy of C
N

in the space of operators and matrices. If, in the model there are K propagating

and N − K evanescent modes, the phase slippage of propagating modes occupy a

Cartesian product of K copies of the unit circle (a K-torus) while the evanescent

mode slippage coefficients lie in an (N−K)-fold Cartesian product (0, 1]×· · ·×(0, 1].

This gives a mapping

(R,+) → (V, ·), d 7→ diag{e−idκE1, · · · , e−idκMn},

from the reals to the diagonal phase slippage matrices in any one section. It follows

that each section length can be split into sub-lengths for the purposes of propagation,

with the computational convenience of negative length waveguide sections allowed.
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3.6 Propagation in parallel corrugated waveguides

Equations (3.2.14) of section 3.2 used the symmetry in an elementary section of a

parallel corrugated waveguide to give the scattering, H1 ⊕H1 → H1 ⊕H1, across

the basic unit illustrated here:

Basic unit

H1 H2 H1

1 2 N − 1 N

________

________

The scattering between the two ends of the entire guide of N basic units is the

(N − 1)-fold scattering power of the right-hand side of equations (3.2.14).

Let d1 be the half length of the narrow section in the basic unit and d2 be the half

length of the wide section, so that the total length of the basic unit is 2(d1+d2). Let

V1 and V2 be the phase slippage matrix images of d1 and d2 and junction scattering be

denoted Aij ; then the combination of the junction scattering and the phase slippage

along the half sections gives the scattering for the entire basic unit as

S11 = V1

[

A11 +
1

2
A12V

2
2 A22V

2
2

(
(I − A22V

2
2 )−1 + (I + A22V

2
2 )−1

)
A21

]

V1

= V1

[
A11 + A12V

2
2 B22(I − B2

22)
−1A21

]
V1, (3.6.1-A)

S12 =
1

2
V1

[
A12V

2
2

(
(I −A22V

2
2 )−1 + (I + A22V

2
2 )−1

)
A21

]
V1

= V1A12V
2
2 (I − B2

22)
−1A21V1, (3.6.1-B)

where B22
def
= A22V

2
2 . The total scattering H1 ⊕H1 → H1 ⊕H1 along all N basic

units is (N − 1)-fold product S ⊙ S ⊙ · · · ⊙ S which, since N can be written as

N = 2n1 + 2n2 + · · · 2nk(+1) for suitable constants nj , will factor into powers and

products of S. For example, a waveguide segment of 1024 = 210 basic units requires

ten scattering products: form S ⊙ S, square to get (S ⊙ S) ⊙ (S ⊙ S), then keep

squaring successive results; one of 121 = 26 + 25 + 24 + 23 + 1 units requires nine

products once S has been formed, while a guide comprising 81 = 26 + 24 + 1 basic

units requires five products. The cost in scattering products follows from the binary

representation of the number of basic units. The computational cost is in the extra

storage needed to temporarily retain some partial results when the number of units

is not a power of two.
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In addition to great efficiency this decomposition of a parallel waveguide section

into concatenations of a basic unit leads to improved numerical accuracy over brute

force modelling because the accumulation of numerical errors is greatly reduced in

long sections. This matter will be addressed in chapter 5. In the above example

of a waveguide of 1024 base units the total computational effort is the following:

form A11 and A12 for a single junction then form S11 and S12 as in equations (3.6.1),

then perform the ten scattering products as in equation (3.2.14) – a total of twenty

two scattering products to describe the entire waveguide. If the same system was

modelled näıvely there would be four scattering operations at each of the 2048 junc-

tions, plus four scattering operations at 2048 sections between adjacent junctions,

a total of 16384 scattering operations. The method described is approximately 745

times faster than a simple approach given the same scattering product algorithm;

for the 121 unit guide the speed-up would be of the order 40. Coding the process

is relatively complex, but the efficiency and the accuracy resulting form the great

reduction in error accumulation makes the effort worth while.

3.7 The transmission operators at a junction

The scattering operator S : HL⊕HR → HL⊕HR at a junction has associated with

it a transmission operator T : HL⊕HL → HR⊕HR and, if the system of equations

is to be algebraically consistent, each operator must determine the other. Here

the physical interpretation of HX ⊕HX is of fields travelling in both directions in

a waveguide section, while the mathematical interpretation is simply as the direct

sum of two identical copies of the space of transverse fields supported by the guide.

It is the scattering operator that is the primary and natural operator that describes

the physical process because the process of field propagation in a waveguide is one

of scattering simultaneously from the input at both ends to the output at both

ends; the transmission operator is an algebraic object derived from it that can be

constructed only from the components of the scattering operator.

The transmission operators seem to be appealing as objects in that they appear
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to give information about the transmission of fields through a waveguide struc-

ture that, it would be hoped, would be useful to model the ‘transmission’ from

the bolometer cavity to the horn or waveguide aperture. Here it is argued that

they are purely algebraic objects which have no real physical significance or rôle in

waveguide analysis. The physically significant operators are the subcomponents of

the scattering operators and, though it is possible to derive transmission operators

and products from them, nothing is gained either in terms of understanding or in

computational effort.

The diagrams associated with S and T , and with the fictitious component-wise

inverses for S (as distinct from the components of the fictitious S−1 of section 3.4)

are, respectively:

A

B

S11

��

A D
S21

//

CB
S12

oo C

D

S22

OO B

A

S−1
11

��

B C
S−1

12 //

DA
S−1

21

oo D

C

S−1
22

OO A

C

T21

��

A D
T11

//

BC
T22

oo B

D

T12

OO

Given the transmission operator T , the action on the fields can be written as a

transformation between leftward travelling and rightward travelling fields on either

side of the junction, subsystem or system, to give




l2

r2



 =




T11 T12

T21 T22








l1

r1



 (3.7.1)

Whereas the scattering operators map the inputs A⊕C onto the outputs B⊕D, the

transmission operators map the input-output on the left, A⊕B, to the output-input

on the right, D⊕C, which are the input-output for the next transmission operator in

the chain. Therefore the transmission operators for concatenated waveguide sections

are modelled by simple operator matrix multiplication of the component operators.

Algebraic manipulation of equation (3.7.1) gives

r2 = T21l1 + T22r1 =⇒ r1 = −(T−1
22 T21)l1 + T−1

22 r2,

l2 = T11l1 + T12r1 = (T11 − T12T
−1
22 T21)l1 + (T12T

−1
22 )r2,
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from which the components of the scattering operator, expressed in terms of the

components of the transmission operator, are

S =




−T−1

22 T21 T−1
22

T11 − T12T
−1
22 T21 T12T

−1
22



 : A⊕ C −→ B ⊕D (3.7.2)

This operator S, associated with T , can also be obtained by chasing around the

diagrams above and using the second row of equation (3.4.1).

The process of obtaining S from T can be reversed to obtain T from S by

algebraic manipulation. The resulting transmission matrix is

T =




S21 − S22S

−1
12 S11 S22S

−1
12

−S−1
12 S11 S−1

12



 : A⊕ B → D ⊕ C. (3.7.3)

S cannot be obtained from T if T22 is singular, nor can T be obtained from S if

S12 is singular. The expression for S in (3.7.2) is in terms of the sub-components of

T−1. Using equations (3.7.3) and (3.4.2) the inverse transmission operator can be

written

T−1 =




S−1

21 −S−1
21 S22

S11S
−1
21 S12 − S11S

−1
21 S22



 (3.7.4)

so that S21 must also be non-singular. Since T22, S12 and S21 map fields on the

left to fields on the right, for these operators to be non-singular the domain and

co-domain must have the same dimension and the operator matrix representations

cannot be row or column degenerate. Therefore, in the finite dimensional models,

the number of modes must be the same on either side of a junction or section of horn

or waveguide. It follows that a numerical implementation that varies the number of

modes from section to section is not algebraically consistent.

If such an operator corresponded to a physical process in a waveguide it would

be possible to build two waveguides structures, one for T and one for T−1, and by

joining them end to end produce a perfect transmission system that transferred the

fields at one of the waveguide to the other end of the waveguide structure without

any net change to the fields. That is an absurdity; in section 3.4 is was stated

that S−1
21 is a purely algebraic object corresponding to no physical process, that is
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the why T is purely an algebraic object. Indeed, since S12 = 2(I + KG)−1K and

K = R̄−1P †, for T to be physical would require K−1 to exist. That requires P † to

correspond to an invertible physical process, but P is a strict contraction so for P †

to be invertible power would have to be created.

With the reservation that the transmission operators are purely formal algebraic

objects, the relations between the algebraic properties of scattering and transmission

can be pursued a little further. Denote the the set of all scattering operators by

S and the set of all transmission operators by T . Both (S,⊙) and (T , ·) are both

closed and the products are associative, the product on T being simply matrix

multiplication when the transmission operators are written as in (3.7.1).

Let στ : T → S denote the mapping that takes a transmission operator to the

scattering operator associated given by equation (3.7.2), and denote the opposite

mapping of equation (3.7.3) by τσ : S → T . A tedious but simple calculations shows

that the scattering product S ×S → S, and the transmission product T ×T → T
are related by

(στT2) ⊙ (στT1) = στ (T2 · T1), (3.7.5-A)

τσS2 · τσS1 = τσ(S2 ⊙ S1), (3.7.5-B)

for transmission operators T1 and T2 and scattering operators S1 and S2. Further-

more, the composite operators στ ◦ τσ = 1S , the identity operator on the set S, and

τσ ◦ στ = 1T , the identity operator on the set T . The scattering identity operator

has already been noted in section 3.4 to have S11 = S22 = 0 and S21 = S12 = I,

but corresponds only to the trivial junction, and its transmission image is simply

the identity operator matrix. Thus it is seen that the mappings στ and τσ are

homomorphisms of sets that respect the products, but nothing more.

On the matter of computational complexity it should be observed that there is no

gain to be derived from avoiding the calculation of the scattering products by calcu-

lating the transmission operator from pairs of scattering operators and performing a

matrix product. The net computational cost is slightly higher than working entirely

within the framework of the scattering operators.



Chapter 4

Circular and rectangular

waveguides

The motivation for the development of the particular approach to the scattering

models and methods that are described in this thesis was the need to model the

Planck horns in a reasonable time frame. Those horns were all of circular, simply

connected, cross section. The equations for the fields and the scattering amplitudes

are presented in this chapter in the form in which they were used in the code

development. The mathematical formalism is that presented in chapter 3 and section

4.1 develops the equations for perfectly aligned sections from first principles. The

scattering amplitude formulæ are presented in section 4.2 followed by a discussion of

the radial dependence of the amplitudes in section 4.3. In section 4.4 the equations

for the scattering amplitude in rectangular waveguides are presented, followed by a

discussion of the breakdown of mode orthogonality due to finite wall conductivity in

section 4.5. The final section looks at the scattering between modes and azimuthal

orders that arises at imperfectly aligned junctions.

76
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4.1 Modes in a circular cylindrical waveguide

The homogeneous Helmholtz equation for a transverse field, F , of wavenumber k =

ω/c, in cylindrical polar coordinates is

[
∇

2 +k2
]
F =

[
1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2

∂2

∂ϕ2
+ k2

]

F = 0. (4.1.1)

Ignoring time dependence that is assumed to be a Fourier component, ejωt, of the

time signal, rearranging and seeking a separable solution F (r, ϕ, z) = R(r)Φ(ϕ)Z(z)

gives

ΦZ

r

d

dr

(

r
dR

dr

)

+
RZ

r2

d2Φ

dϕ2
+RΦ

d2Z

dz2
+ k2RΦZ = 0

=⇒ 1

rR

d

dr

(

r
dR

dr

)

+
1

Φr2

d2Φ

dϕ2
+ k2 = − 1

Z

d2Z

dz2
. (4.1.2)

Independence of the left and right-hand sides of equation (4.1.2) gives

d2Z

dz2
= −γ2Z, γ ∈ C, (4.1.3)

whereupon, setting κ2 = k2 − γ2 and rearranging gives

r

R

d

dr

(

r
dR

dr

)

+ r2κ2 = − 1

Φ

d2Φ

dϕ2
. (4.1.4)

Again, independence gives a solution

d2Φ

dϕ2
= −n2Φ, n ∈ C . (4.1.5)

Substituting from equation (4.1.5) into (4.1.4) gives the radial function R(r) as any

solution to Bessel’s equation

r
d

dr

(

r
dR

dr

)

+ (r2κ2 − n2)R = 0. (4.1.6)

Both equation (4.1.5) and (4.1.6) can be rearranged and put in self-adjoint Sturm-

Liouville form [8],

d

dx

[

p(x)
du(x)

dx

]

+ [λρ(x) − q(x)] u(x) = 0,

and it is a characteristic of all such systems that the solutions can be expanded in

terms of the eigenfunctions of the equation.
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Equation (4.1.5) is defined on the interval [−π, π] with periodic endpoint condi-

tions, p(ϕ) = ρ(ϕ) = 1, q(ϕ) = 0 and λ = n2 giving rise to Fourier series. Equation

(4.1.6) with p(r) = ρ(r) = r, q(r) = n2/r and λ = κ2 is defined on the half-open

interval (0, a] to avoid the vanishing of p(r) on the waveguide axis that would give

rise to a singular system. (The functions ρ become the weight functions for the or-

thogonality of the eigenfunctions in the mode expansion of the fields.) The extension

of the solutions (the field equations) to the waveguide axis is by continuity.

To obtain a particular solution and give a system of equations that can be used

in modelling a waveguide, appropriate boundary conditions and restrictions must be

imposed to force compatibility with the physical system, under whatever simplifying

assumptions are made.

First of all the functions Φ(ϕ) must be single valued and periodic on the unit

circle. As well as being physically necessary, this gives a separable solution space to

the azimuthal functions indexed by n ∈ Z. Consequently equation (4.1.6) is forced

to be of integral order. The eigenfunctions of (4.1.6) are then the Bessel functions of

integer order of first kind, Jn, of second kind, Nn, and the modified Bessel functions

of first and second order: In and Kn respectively. The physical assumption that the

fields be everywhere bounded eliminates Kn which increase without bound as r → 0.

On the same physical grounds the solution Nn is dismissed for being unbounded

below on the guide axis.

For the modelling of the Planck horns the physical assumption made is that

the horn walls, being gold coated copper, are perfectly conducting so that the pure

Dirichlet and Neumann boundary conditions and the analysis of section 3.1 apply

without modification. These assumptions eliminate In as a possibility since both

In(r) and I ′n(r) are strictly positive on (0,∞) and the boundary conditions could not

be matched. That leaves only the Jn for physically plausible eigenfunctions to (4.1.6)

under the assumed boundary conditions. Since J−n(r) = (−1)nJn(r), the indexing

set for the solution space is reduced to the non-negative integers, n ∈ Z≥0. (From

a mathematical point of view the physically correct eigenfunctions are found by

passing from the non-singular to the singular Sturm-Liouville system with bounded
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solutions as r → 0.)

Denote the radius of the waveguide by a. The boundary conditions on the wall

for the electric field require Jn(κa) = 0, and for the magnetic field J ′
n(κa) = 0 with

κ2 = k2 − γ2 to be determined for each n in each case, independently. Thus, in

each case, κa is either a zero of the Bessel function or of its derivative. Let qnm

denote the m th root of J ′
n and and pnm denote the m th root of Jn with m ∈ N. With

reference to the notation of equation (3.1.2), page 52, the boundary conditions will

be satisfied with κ2
Enm

= k2 − γ2
Enm

= (pnm/a)
2 for the electric case and κ2

Mnm
=

k2 − γ2
Mnm

= (qnm/a)
2 for the magnetic case. Rearranging these equations, define

the guide wavenumber for the m th radial mode of the n th azimuthal order for the

transverse electric and magnetic fields respectively to be

γEnm(a) = k

√

1 −
(pnm
ka

)2

, γMnm(a) = k

√

1 −
(qnm
ka

)2

.

Depending upon the wavenumber, k, these radicals may be real or complex. In

free space, k = k0 ∈ R so that the axial dependence of the field must, from equa-

tion (4.1.3), take the form e±jγz. The real roots correspond to modes that satisfy

Helmholtz equation and therefore propagate in the waveguide; the imaginary roots

correspond to evanescent modes with axial dependence e∓|γ|z that satisfy the dif-

fusion equation that is second order in z and, as discussed in subsection 3.1.1, are

critical to the correct accounting for power in the scattering system. In the general

case k ∈ C, but the boundary conditions at the waveguide walls must still hold. In

that case γEnm = k
[
1 − (pnm/|k|a)2 e−2j arg(k)

] 1
2 , with the equivalent expression for

γMnm .

From equation (4.1.5) with the periodic endpoint conditions Φ(−π) = Φ(π)

and Φ′(−π) = Φ′(π), the azimuthal dependence will be given by the eigenfunction

solutions 1, cos(nϕ) or sin(nϕ) corresponding to the eigenvalues n2. Thus, for each

n > 0, there will be two linearly independent eigenfunctions. The general form of the

axial fields in a lossless waveguide of circular cross-section with perfectly conducting

walls will therefore take the general form

ΨEnm,z(r, ϕ, z) ∝ AnmJn

(pnm
a
r
)
{

cos(nϕ)

sin(nϕ)

}

e±j(ωt−γEnmz), (4.1.7-A)
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ΨMnm,z(r, ϕ, z) ∝ BnmJn

(qnm
a
r
)
{

sin(nϕ)

cos(nϕ)

}

e±j(ωt−γMnmz), (4.1.7-B)

for some constants Anm and Bnm that depend upon the radial order, m, and the

azimuthal order n, of the mode. Then, using these expressions for the axial fields in

equations (3.1.2-A and B), the transverse electric and magnetic components of the

fields take the form

HEnm ∝ J ′
n

(qnm
a
r
)
{

sin(nϕ)

cos(nϕ)

}

r̂ +
Na

qnmr
Jn

(qnm
a
r
)
{

cos(nϕ)

− sin(nϕ)

}

ϕ̂, (4.1.8-A)

EEnm ∝ na

qnmr
Jn

(qnm
a
r
)
{

cos(nϕ)

− sin(nϕ)

}

r̂ − J ′
n

(qnm
a
r
)
{

sin(nϕ)

cos(nϕ)

}

ϕ̂, (4.1.8-B)

EMnm ∝ J ′
n

(pnm
a
r
)
{

cos(nϕ)

sin(nϕ)

}

r̂ +
na

pnmr
Jn

(pnm
a
r
)
{

− sin(nϕ)

cos(nϕ)

}

ϕ̂, (4.1.8-C)

HMnm ∝ na

pnmr
Jn

(pnm
a
r
)
{

sin(nϕ)

− cos(nϕ)

}

r̂ + J ′
n

(pnm
a
r
)
{

cos(nϕ)

sin(nϕ)

}

ϕ̂. (4.1.8-D)

The normalisation of these fields is the power normalisation of equation (3.1.10)

on page 55. The general form of this normalisation expression for both TE and TM

fields is the same: integrate the cross product E×H∗ over the disc. (It was noted

in the previous chapter that the both E and H are real up to a possibly imaginary

scalar determined by the impedance of the guide for the mode, and it follows that

the integrand is real up to a possibly imaginary factor that is independent of the

integration variables, so that the integral is real.) The integrals are separable and

the sine and cosine terms give a factor of π while the radial integrals for the TM

fields reduce to
∫ a

0

(

J ′
n

(pnm
a
r
)2

+ (1 + δn0 )

(
na

pnmr
Jn

(pnm
a
r
))2

)

r dr.

Using the well known recurrence relations for Bessel functions and their derivatives

n

x
Jn(x) =

1

2
(Jn−1(x) + Jn+1(x)) , J ′

n(x) =
1

2
(Jn−1(x) − Jn+1(x)) , (4.1.9)

and the symmetry J−1 = −J1 the integral becomes, upon multiplying by the az-

imuthal factor π,

P−2
Mnm

def
= π

(1 + δn0 )

2

∫ a

0

(

J2
n−1

(pnm
a
r
)

+ J2
n+1

(pnm
a
r
))

r dr.
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This integral is a sum of two Lommel integrals of the second kind [6], the general

solution to such integrals being, for n ∈ Z≥0,
∫ a

0

J2
n(αr)r dr =

a2

2

{

(J ′
n(aα))

2
+

(

1 − n2

a2α2

)

J2
n(aα)

}

.

Rearranging (4.1.9) to get J ′
n±1 in terms of Jn and Jn±1 and observing that Jn−1(pnm) =

−Jn+1(pnm), then substituting into the Lommel integral, expanding and cancelling,

then adding the contributions from the two integrands gives

P−2
Mnm

def
=
a2π(1 + δn0 )

2
J2
n+1(pnm),

from which the power normalisation coefficient for the nm th transverse magnetic

modes are

PMnm =

√
2 − δn0

a
√
π|Jn+1(pnm)| . (4.1.10)

Equivalent manipulations give the radial power normalisation factor for the TE

fields as

P−2
Enm

= π
(1 + δn0 )

2

∫ a

0

(

J2
n−1

(qnm
a
r
)

+ J2
n+1

(qnm
a
r
))

r dr.

Again, using the Lommel integral and relations (4.1.9) and using J ′
n(qnm) = 0 gives

the power normalisation coefficient for the nm th transverse electric mode as

PEnm =

√
2 − δn0

a
√
π|Jn(qnm)| ·

[

1 − n2

q2
nm

]− 1
2

. (4.1.11)

The system of equations (4.1.8) with normalisations (4.1.10) and (4.1.11) give,

with reference to (3.1.2), the TE and TM modes in cylindrical polar coordinates in

the form

eEnm

PEnm

=
na

qnmr
Jn

(qnm
a
r
)
{

cos(nϕ)

− sin(nϕ)

}

r̂ − J ′
n

(qnm
a
r
)
{

sin(nϕ)

cos(nϕ)

}

ϕ̂,

(4.1.12-A)

ZEnm

hEnm

PEnm

= J ′
n

(qnm
a
r
)
{

sin(nϕ)

cos(nϕ)

}

r̂ +
na

qnmr
Jn

(qnm
a
r
)
{

cos(nϕ)

− sin(nϕ)

}

ϕ̂,

(4.1.12-B)

eMnm

PMnm

= J ′
n

(pnm
a
r
)
{

cos(nϕ)

sin(nϕ)

}

r̂ +
na

pnmr
Jn

(pnm
a
r
)
{

− sin(nϕ)

cos(nϕ)

}

ϕ̂,

(4.1.12-C)
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ZMnm

hMnm

PMnm

=
na

pnmr
Jn

(pnm
a
r
)
{

sin(nϕ)

− cos(nϕ)

}

r̂ + J ′
n

(pnm
a
r
)
{

cos(nϕ)

sin(nϕ)

}

ϕ̂,

(4.1.12-D)

in which the transverse electric and magnetic mode impedances are

ZEnm =
Z0

γMnm

=
Z0

√

1 − (qnm/k0a)2

and

ZMnm = Z0γEnm = Z0

√

1 − (pnm/k0a)2

in conformity with the notation on page 52. The TE and TM magnetic fields in

equations (4.1.12-A to D) are related to the electric field components through the

off-axis block diagonal matrices

[hEnm ] =




0 −YEnm

YEnm 0



 [eEnm ] and [hMnm ] =




0 −YMnm

YMnm 0



 [eMnm ] .

The Cartesian versions of these equations are obtained from these by the appli-

cation of a formal rotation through an angle of ϕ: for the electric field modes




ex

ey



 =




cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)








er

eϕ



 , (4.1.13)

and equivalently for the magnetic modes.

4.2 Formulæ for the scattering amplitudes

The scattering across a junction is described by the weighted expansion of the pull-

back of the basis functions for the TE and TM fields in the larger section of the

waveguide at the junction in terms of the basis functions on the narrower side of

the junction. For perfectly aligned guides we can ignore the pull-back. Formally,

the fields in the wider section, of radius b, are expanded as a Fourier series of the

fields in the narrower section, of radius a < b; call these the right and left hand sides

respectively. Since the fields on the right are not required to match the boundary
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conditions that apply to the left it is to be expected that the expansion of the

series will require both TE and TM modes to provide the expansion for the fields

scattered across the boundary. Equally obviously the back-scattered fields – left

to left or right to right – cannot scatter into new modes, but must simply scale

by a factor not greater than one. The problem at hand is to find the scattering

coefficients to fill the operator matrices P , Q and R of section 3.2.

The matrix Q is associated with the scattering operator Q ∈ End (ER⊕MR)

which, from the orthogonality of the modes, must reduce to a direct sum QE⊕QM ∈
End (ER)⊕End (MR) of two diagonal matrices, the components of which will simply

be the waveguide admittances for each of the modes in the guide to the right of the

junction. Likewise R = RE ⊕ RM ∈ End (EL) ⊕ End (ML) will be diagonal with

components the waveguide admittances of the modes to the left of the junction.

Since k0 and the waveguide radius, a, and the roots of the Bessel functions

and their derivatives are all strictly positive and finite, 0 < k0a/qnm, and as k0 →
qnm/a from below,

[
1 − (k0a/qnm)2] → ∞, the impedance ZEnm becoming infinite

at k0a/qnm = 1. This is the cut-off condition for propagation at angular frequency

ωnm = cqnm/a below which the impedance becomes purely imaginary and Helmholtz

equation is of diffusion type. Likewise, YMnm → ∞ as k0 → pnm/a, YMnm and ZMnm

becoming purely imaginary for k0 > pnm/a. For each n ≥ 0 the matrix operators Q

and R then take the form



QEn 0

0 QMn



 ,




REn 0

0 RMn





where the sub-matrices are the diagonal matrices of admittances with Qij = Rij = 0

for i 6= j and

(QEnm)mm = YEnm(b), (QMnm)mm = YMnm(b),

(REnm)mm = YEnm(a), (RMnm)mm = YMnm(a).

Define the symbols

∀ n ≥ 1, αnk = sgn(Jn(qnk)) =







1 : k ≡ 1 mod (2)

−1 : k ≡ 0 mod (2)

(4.2.1-A)
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α0
k = −α1

k (4.2.1-B)

∀ n, βnk = − sgn(Jn+1(pnk)) =







−1 : k ≡ 1 mod (2)

1 : k ≡ 0 mod (2)

(4.2.1-C)

Denote the ratio of smaller to the larger waveguide radii at the step by ρ = a/b, then

P = Q∗Π, in which Π is a real matrix with components as given in the following

two sets of equations, (4.2.3) and (4.2.4) at the foot of this page. The scattering

amplitudes arises from substitution of equations (4.1.12) into the integrals of the

various eL×h∗
R which, ignoring the mode power normalisation factors PEnm and

PMnm and the impedances, all of which pull out of the integrand, and using the

relations (4.1.9), give rise to integrands that are a sum of terms with the general form

Jn±1(αr)Jm±1(βr)cs(nϕ)cs(mϕ), in which the terms cs(nϕ)cs(mϕ) are either pairs

of sine or cosine functions. The integrands are then separable and the orthogonality

of the sines and cosines forces n = m for non-zero integrals. That eliminates the

cross terms in which n ± 1 = m ∓ 1 leaving a sum of Lommel integrals of the first

kind, the general form and solution of which is

∫ a

0

Jn(αr)Jn(βr)r dr =
a

α2 − β2
· [βJn(aα)J ′

n(aβ) − αJ ′
n(aα)Jn(aβ)] . (4.2.2)

Solving the integral gives, for azimuthal order n = 0, the scattering amplitudes

(Π0
EE)mk = 2α0

k

ρ

q2
0m

· J1 (q0mρ)

|J0 (q0m)|

[

ρ2 −
(
q0k
q0m

)2
]−1

, (4.2.3-A)

(Π0
EM)mk = 0, (4.2.3-B)

(Π0
ME)mk = 0, (4.2.3-C)

(Π0
MM)mk = 2 β0

k

ρ

p0m

· J0 (p0mρ)

|J1 (p0m)|

[

ρ2 −
(
p0k

p0m

)2
]−1

, (4.2.3-D)

while for all azimuthal orders n > 0

(Πn
EE)mk =

2αnk ρ

q2
nm

· J
′
n (qnmρ)

|Jn (qnm)| ·
[

ρ2 − q2
nk

q2
nm

]−1 [(

1 − n2

q2
nk

)(

1 − n2

q2
nm

)]− 1
2

,

(4.2.4-A)

(Πn
EM)mk = 0, (4.2.4-B)
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(Πn
ME)mk =

αnk n

pnm · qnk
· Jn (pnmρ)

|Jn+1 (pnm)| ·
[

1 − n2

q2
nk

]− 1
2

, (4.2.4-C)

(Πn
MM)mk = 2 βnk

ρ

pnm
· Jn (pnmρ)

|Jn+1 (pnm)| ·
[

ρ2 − p2
nk

p2
nm

]−1

. (4.2.4-D)

Note also that as the step size increases ρ→ 0+ and, for a waveguide terminating

with its aperture in an infinite perfectly conducting plane (a step to free space in a

ground plane) the scattering amplitudes in equations (4.2.3) and (4.2.4) all tend to

zero. This implies a breakdown in the formalism and the step to free space cannot

be handled by treating the mouth of the horn as a wide flange. The reason is that

the enforced boundary conditions on the free space side of the plane are unphysical.

Indeed, a look at the derivation of the normalisation coefficients P−2
Enm

and P−2
Mnm

shows that the integrals are either zero or they are unbounded, depending upon n

and nonsense is to be expected.

The equations (4.1.12) for the basis elements of the TE and the TM fields in the

waveguide make clear that, in the circular cylinder case, the space of transverse fields

in one section of the guide has a basis set indexed by pairs (n,m) ∈ Z≥0 ×N, and

from the preceding discussion it is clear that modes of differing azimuthal order, n,

cannot scatter into each other at a junction provided the guide sections are coaxial.

From this it is immediate that the P operator matrices, as well as those for Q and

R, must decompose into direct sums P =
⊕∞

n=0 Pn as discussed on page 59. When

the guide sections at either side of the junction are not coaxial this decomposition

fails because the pull-back function (π∗Jn)(qklr/b) = Jn(qklπ(r)/b) is an infinite sum

of products of Bessel functions. As a result the operator matrix P is no longer

block diagonal, but becomes dense. (By dense is meant that the system of operator

matrices is, strictly speaking, an infinite array of infinite operator matrices, though it

will be seen that most of the power is scattered into ‘nearby’ azimuthal orders, thus

rendering the array of operator matrices essentially band diagonal.) This situation

is discussed in section 4.6.

All equations (4.2.3-A and D) and (4.2.4-A, C and D) tend uniformly to zero as

either ρ→ 1− or as m→ ∞. The difference between the case n = 0 and n 6= 0 can

be exploited in numerical work resulting in a computational complexity and time
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saving factor of two when calculating the azimuthal order 0 case for multi-mode

horns.

Numerical stability of the model requires, for some machine dependent ε > 0,

that |pnmρ−pnk| ≫ ε and |qnmρ−qnm| ≫ ε for all n, k, m at all junctions. Equations

(4.2.4-A and C) are always bounded since n < qnm; however, (1 − n2/q2
nm)

m→∞−−−→ 0

which could lead to numerical instability if the equations where programmed as

written. Reformulations of the equations (4.2.3) and (4.2.4) for numerical use in

any situation where small step sizes occur are given in section 5.2.

4.3 Scattering amplitude dependence on radial in-

dex m and k

For the modelling of the operator Π the development of the scattering amplitudes

as the indices m and k vary has to be understood so that the reduction from an

infinite dimensional scattering operator to a finite dimensional matrix model retains

sufficient information to give a reliable model and account adequately for the power

in evanescent modes.

In section 5.2 it will be shown that, writing ε = pnm/b− pnk/a, equations (4.2.3-

D) and (4.2.4-D) can be written using (5.2.3) in the alternative form

−2βnk
|Jn+1(pnm)| ·

pnk + aε

2pnk + ε
·
∑

ν∈N

(aε)ν−1

ν!
J (ν)
n (pnk)

which, using the relations (4.1.9) and the definition of βnk in equation (4.2.1-C), is

seen to have the limit |Jn+1(pnk)| / |Jn+1(pnm)| as ε→ 0. For TM to TM scattering

this is the maximum possible contribution to the scattering amplitude across a

junction from a radial mode index of k on the left of the junction to mode of index

m on the right. For m > k the roots satisfy pnm > pnk and for pnmρ > pnk
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(Πn
MM)mk = 2βnk

Jn(pnmρ)

pnmρ |Jn+1(pnm)| ·
[

1 −
(
pnk
pnmρ

)2
]−1

< 2βnk
Jn(pnmρ)

pnmρ |Jn+1(pnm)|
m→∞−−−→ 0+.

(4.3.1)

For m < k the equivalent equation for pnk > pnm > pnmρ again shows that

(Πn
MM)mk

m→1−−−→ 2βnk
pn1 ρ Jn(pn1ρ)

p2
nk |Jn+1(pn1)|

[
(pn1ρ/pnk)

2 − 1
]

and there are similar equations for ΠEE with equivalent trends.
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(b) ρ = 0.77
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(c) ρ = 0.91
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(d) ρ = 0.99

Figure 4.1: Illustrations of the variation in the form of the scattering amplitude for

radial orders k into m in sub-matrices Π0
EE with ρ. The arrays are rotated through

90◦. In (a) ρ is typical of the filter section in a single-mode horn; in (b) it is in

the taper section. In (c) ρ is typical of the parallel section of a single-mode ultra-

Gaussian horn, and in (d) ρ represents the almost diagonal condition for the step

size in a model of a smooth walled horn. For fixed ρ the arrays of all azimuthal

order have the same essential form, only the amplitudes differ, ρ determining the

slope of the dominant scattering amplitude band.
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EE
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(b) Π5

MM
for ρ = 0.77
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(c) The operator KG1

EE
for ρ = 0.40
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(d) The operator KG1

EE
for ρ = 0.83

Figure 4.2: Illustration of the (a) TE to TE, and (b) TM to TM scattering ampli-

tudes for radial orders k into m and azimuthal order 5 with ρ = 0.77. Figures (c)

and (d) illustrate the sparsity of the operator product KG = R̄−1ΠT Q̄Π of equation

(3.3.1) which gives rise to sparse sub-arrays of S, here the azimuthal order is 1. In

(c) the TE11 field is propagating in the filter section of the horn whereas in (d) the

field is propagating in the broadening section of the horn. By the time the field

is in the wide section of the horn ρ ∼ 0.95 and KG will be essentially a diagonal

operator. Both (c) and (d) are modelled at the same frequency (500GHz).

Thus it is seen that the maximum scattering amplitude in the k th column of

Π occurs in the m th row where m minimises ε =
∣
∣pnm/b − pnk/a

∣
∣ and falls off in

amplitude in the rows above and below. Typically, in a standard corrugated horn

the corrugation depths are of the order 0.25λ . d . 0.5λ and 0.43 . ρ . 0.95,

the smaller values for ρ applying in the neck of a single-mode horn where the mode

selection is made and the largest values applying close to the radiating aperture.
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It follows that the maximum scattering amplitudes lie off the diagonal, but the

operators become increasingly diagonal as ρ → 1; this is illustrated in figure 4.1.

The value of ρ determines the slope of the high amplitude band and the structure

of these operator arrays means that the L2 norm is determined largely by the values

in the the region immediately surrounding this band. The same applies in the finite

size model for the Frobenius norm.

From the equations on page 67, chapter 3, and the above it is seen that the

operators K = R̄−1ΠTQ and G = Q̄Q−1Π, so the derived operators in equations

(3.3.1) and (3.3.2) are obtained from Π or ΠT by multiplication by diagonal opera-

tors. G therefore has the same structure as Π, rows being multiplied by the squares

of the argument of the complex conjugates of the mode impedances; likewise K has

essentially the same structure as Π. Both KG and GK become diagonal dominant.

It follows that the structure of the operators in the S-matrix is essentially sparse,

and so sparse methods could be exploited for highly efficient preliminary design and

analysis of corrugated waveguides; see figures 4.1 and 4.2. See also figure 5.1, page

141 for the complete S21 scattering operators for single and multi-mode horns. In

particular the operators (I ±KG)±1 and (I ±GK)±1 must be essentially diagonal,

and that closeness to diagonality determines the structure S11 and S22 and would

allow the solution to S11 = (I +KG)−1(I −KG) as (I +KG)S11 = (I −KG) to be

solved by guessing a diagonal solution sii = (1− (KG)ii)/(1+(KG)ii) and resorting

immediately to iterative refinement of the trial solution. For smooth walled horns

in particular the step size needs to be kept very small; consequently the operators

become very nearly diagonal. Therefore, for such horns sparse methods could be

exploited for the detailed design and analysis of the horns without significant loss

of accuracy but with potentially great savings in computation time.

4.4 Scattering in rectangular waveguides

Given a rectangular waveguide of dimension a× b, set up a rectangular coordinate

system centred on the axis of the guide with x axis parallel to the edges of length
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a and y axis parallel to the side of length b, with orientation is such that +z is the

direction of forward propagation.

Let k denote the wavenumber in free space, m, n ∈ N∪{0} the mode numbers in

the x and y directions respectively. Then the modal wavenumbers and attenuation

in the guide are

km =
πm

a
kn =

πn

b
(4.4.1-A)

kmn =
√

k2
m + k2

n β∗
mn =

√

k2 − k2
mn. (4.4.1-B)

With normalisation coefficient Amn, the electric and magnetic transverse electric

field vectors for the mnth mode are [42]

(EE)mn = j
ωµAmn
k2
mn

[

kn cos
(

km
(
x+

a

2

))

sin
(

kn
(
y +

b

2

))

x̂

− km sin
(

km
(
x+

a

2

))

cos
(

kn
(
y +

b

2

))

ŷ

]

, (4.4.2-A)

(HE)mn = j
βmnAmn
k2
mn

[

km sin
(

km
(
x+

a

2

))

cos
(

kn
(
y +

b

2

))

x̂

+ kn cos
(

km
(
x+

a

2

))

sin
(

kn
(
y +

b

2

))

ŷ

]

. (4.4.2-B)

With normalisation coefficient Bmn, the electric and magnetic transverse magnetic

field vectors for the mnth mode are [42]

(EM)mn = −j βmnBmn

k2
mn

[

km cos
(

km
(
x+

a

2

))

sin
(

kn
(
y +

b

2

))

x̂

+ kn sin
(

km
(
x+

a

2

))

cos
(

kn
(
y +

b

2

))

ŷ

]

, (4.4.3-A)

(HM)mn = j
ωεBmn

k2
mn

[

kn sin
(

km
(
x+

a

2

))

cos
(

kn
(
y +

b

2

))

x̂

− km cos
(

km
(
x+

a

2

))

sin
(

kn
(
y +

b

2

))

ŷ

]

. (4.4.3-B)

It would be exceedingly inefficient to use these equations in the form given here

in numerical code. Both speed and accuracy can be improved by making a few ele-

mentary observations and it will be shown that, rather than the 16nm trigonometric

calls, only two calls to cosine and two calls to sine are required. With reference to

equation (4.4.2-A), observe that the term in square brackets evaluates to one of the
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following four cases:

α1[km sin(kmx) cos(kny)x̂+ kn cos(kmx) sin(kny)ŷ] : case m odd, n odd,

α2[km sin(kmx) sin(kny)x̂− kn cos(kmx) cos(kny)ŷ] : case m odd, n even,

α3[km cos(kmx) cos(kny)x̂− kn sin(kmx) sin(kny)ŷ] : case m even, n odd,

α4[km cos(kmx) sin(kny)x̂+ kn sin(kmx) cos(kny)ŷ] : case m even, n even,

in which the coefficients αj take the values

α1 =







−1 : ((m ≡ 1 mod (4)) ∧ (n ≡ 1 mod (4))) ∨

((m ≡ 3 mod (4)) ∧ (n ≡ 3 mod (4))),

1 : ((m ≡ 1 mod (4)) ∧ (n ≡ 3 mod (4)))∨

((m ≡ 3 mod (4)) ∧ (n ≡ 1 mod (4))),

0 : otherwise.

α2 =







−1 : ((m ≡ 1 mod (4)) ∧ (n ≡ 0 mod (4))) ∨

((m ≡ 3 mod (4)) ∧ (n ≡ 2 mod (4))),

1 : ((m ≡ 1 mod (4)) ∧ (n ≡ 2 mod (4)))∨

((m ≡ 3 mod (4)) ∧ (n ≡ 0 mod (4))),

0 : otherwise.

α3 =







1 : ((m ≡ 0 mod (4)) ∧ (n ≡ 1 mod (4))) ∨

((m ≡ 2 mod (4)) ∧ (n ≡ 3 mod (4))),

−1 : ((m ≡ 0 mod (4)) ∧ (n ≡ 3 mod (4)))∨

((m ≡ 2 mod (4)) ∧ (n ≡ 1 mod (4))),

0 : otherwise.

α4 =







1 : ((m ≡ 0 mod (4)) ∧ (n ≡ 0 mod (4))) ∨

((m ≡ 2 mod (4)) ∧ (n ≡ 2 mod (4))),

−1 : ((m ≡ 0 mod (4)) ∧ (n ≡ 2 mod (4)))∨

((m ≡ 2 mod (4)) ∧ (n ≡ 0 mod (4))),

0 : otherwise.
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The equations for HE, EM and HM can be similarly rewritten.

Thus the αj and the appropriate sine and cosine terms are simply cycled through

in a double loop over the mode indices. Furthermore, with the equations expressed

in this way and using the recurrence relations

cos(k2x) = 2 cos2(k1x) − 1,

cos(km+1x) = 2 cos(k1x) cos(kmx) − cos(km−1x) for m ≥ 3,

likewise for cos(kny), and for the sines

sin(km+1x) = 2 cos(k1x) sin(kmx) − sin(km−1x) for m ≥ 1,

it is seen that it is only necessary to make a single call to evaluate sin(xπ/a),

cos(xπ/a), sin(yπ/b) and cos(yπ/b) at each junction, and no other calls to sine or

cosine routines are required to evaluate each cos(km+1x) etc. For that reason the

calculation of the fields in a rectangular waveguide can be written in an exceedingly

efficient and computationally accurate way, far more efficient than calculations of

the Bessel functions for circular waveguides.

If the computational procedure follows the above scheme, then it would always

be best to use n and m as multiples of four. If that was deemed undesirable, then

the recurrence routines can be used in equations (4.4.2) and (4.4.3) directly but,

whichever of the two approaches is taken, more than two calls to the cosine and two

to the sine routine is unnecessary.

Scattering across junctions is determined exactly as in chapter 3 from the con-

tinuity of the magnetic fields and integration of the complex Poynting vector over

the open junction, giving

P =

∫

S

(eL×h∗
R) · dS

=

∫ a
2

− a
2

∫ b
2

− b
2

(
Ex,LH

∗
y,R − Ey,LH

∗
x,R

)
dx dy,

(4.4.4)

and equivalent equations for Q and R. These integrals are clearly separable, and

using the impedance relations Ex/Hy = ωµ/β = ZE, etc. the normalisation coeffi-
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cients are derived by setting

∫ a
2

− a
2

∫ b
2

− b
2

(
E2
x + E2

y

)
dx dy = 1, (4.4.5)

and these separable integrals give the cases

Am0 =: Am =

√

2

ab
· km
ωµ

: m 6= 0, n = 0, (4.4.6-A)

A0n =: An =

√

2

ab
· kn
ωµ

: m = 0, n 6= 0, (4.4.6-B)

Amn =
√

2(A2
m + A2

n) =
2kmn

ωµ
√
ab

: m 6= 0, n 6= 0, (4.4.6-C)

Bmn =
2√
ab

· knm|βmn|
= ωµ

Amn
|βmn|

:

{
m 6= 0, n 6= 0,

otherwise undefined.
(4.4.6-D)

Label the modes in the waveguide section to the right of the junction with

M, N ∈ N∪{0} and the dimensions of the guide by A and B. Then all of the

equations above give the equations for the right-hand section by substitution of the

symbols M form, N for n, A for a and B for b. Denote the electric-electric scattering

coefficient for the mode mn to mode MN by (PEE)MN,mn, and so on. Solving the

integrals of type (3.1.10) gives the junction scattering equations between modes at

the junction:

(RE)mn =
1

Z∗
E,mn

, (RM)mn =
1

Z∗
M,mn

, (4.4.7-A)

(QE)MN =
1

Z∗
E,MN

, (QM)MN =
1

Z∗
M,MN

. (4.4.7-B)

In the reduction of the scattering coefficient equations to the form (4.4.9) below,

the functions τ(m,M, a, A) and τ(n,M, b, B) are defined for M, N > 0 by

τ(m,M, a, A) = sin

[

kM
A− a

2

]

− (−1)m sin

[

kM
A+ a

2

]

=







−2 sin

(
kMa

2

)

cos

(
kMA

2

)

: m ≡ 0 mod (2),

2 sin

(
kMA

2

)

cos

(
kMa

2

)

: m ≡ 1 mod (2).

(4.4.8)

Again, for numerical work the evaluation of sines and cosines is avoided by use of

the recurrence relations indexed by M and N .
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Integral (4.4.4) gives the coefficients of the scattering matrix, P , which, scaled

by the waveguide impedances are as follows: define δ = 1/
√
abcd, β = arg(βMN) for

|βMN | > 0, β = 0 otherwise, and the functions τ as in equation (4.4.8) above, then

Z∗
E,0N(PEE)0n

0N =
2 δ a kn

(k2
n − k2

N)
τ(n,N, b, B)

: m = 0, n 6= 0, M = 0, N 6= 0, (4.4.9-A)

Z∗
E,M0(PEE)m0

M0 =
2 δ b km

(k2
m − k2

M)
τ(m,M, a, A)

: m 6= 0, n = 0, M 6= 0, N = 0, (4.4.9-B)

Z∗
E,MN(PEE)0n

MN =
−2

√
2 δ knkN

kMkMN(k2
n − k2

N)
τ(0,M, a, A) τ(n,N, b, B)

: m = 0, n 6= 0, M 6= 0, N 6= 0, (4.4.9-C)

Z∗
E,MN(PEE)m0

MN =
−2

√
2 δ kmkM

kNkMN(k2
m − k2

M)
τ(m,M, a, A) τ(0, N, b, B)

: m 6= 0, n = 0, M 6= 0, N 6= 0, (4.4.9-D)

Z∗
E,MN(PEE)mnMN =

4 δ kMkN kmn
kMN(k2

m − k2
M)(k2

n − k2
N)

τ(m,M, a, A) τ(n,N, b, B)

: m 6= 0, n 6= 0, M 6= 0, N 6= 0, (4.4.9-E)

(PEM)mnMN = 0 : ∀ m, n, M, and N, (4.4.9-F)

Z∗
M,MN(PME)0n

MN =
−2

√
2 δβ kn

kMN(k2
n − k2

N)
τ(0,M, a, A) τ(n,N, b, B)

: m = 0, n 6= 0, M 6= 0, N 6= 0, (4.4.9-G)

Z∗
M,MN(PME)m0

MN =
2
√

2 δβ km
kMN(k2

m − k2
M)

τ(m,M, a, A) τ(0, N, b, B)

: m 6= 0, n = 0, M 6= 0, N 6= 0, (4.4.9-H)

Z∗
M,MN(PME)mnMN =

−4 δβ (k2
mk

2
N − k2

nk
2
M)

kmnkMN(k2
m − k2

M)(k2
n − k2

N)
τ(m,M, a, A) τ(n,N, b, B)

: m 6= 0, n 6= 0, M 6= 0, N 6= 0, (4.4.9-I)

Z∗
M,MN(PMM)mnMN =

4 δ kmknkMN

kmn(k2
m − k2

M)(k2
n − k2

N)
τ(m,M, a, A) τ(n,N, b, B)

: m 6= 0, n 6= 0, M 6= 0, N 6= 0. (4.4.9-J)

For all cases not listed the scattering coefficients equations (4.4.9) are identically

zero, there being no scattering between those mode combinations. Note that the
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right hand sides of these equations are determined entirely by the geometry.

Define the ratios Z∗
E,mn/Z

∗
E,MN and Z∗

M,mn/Z
∗
M,MN at a junction to be to be

(CE)mnMN =
Z∗
E,mn

Z∗
E,MN

=
β∗
MN

β∗
mn

=
Z∗
M,mn

Z∗
M,MN

= (CM)mnMN ,

so define the ratio of impedances

Cmn
MN =

√

1 − (kMN/k)2

1 − (kmn/k)2
. (4.4.10)

Likewise Z∗
E,mn/Z

∗
M,MN = Cmn

MN · µ/ε.

Writing the scattering equations in terms of G = Q−1P and K = R̄−1P † as

in section 3.3, page 66 the angular frequency, permeability and permittivity cancel

and the impedances do not occur explicitly. In that case all of the 1/Z∗ terms are

replaced to give the entries of K† and G in terms of Cmn
MN and the right-hand sides

of equations (4.4.9)

(K†
EE)mnMN = (PEER

−1
E )mnMN = Cmn

MNZ
∗
E,MN(PEE)mnMN , (4.4.11-A)

(K†
ME)mnMN = (PMER

−1
E )mnMN =

µ

ε
Cmn
MNZ

∗
M,MN(PME)mnMN , (4.4.11-B)

(K†
MM)mnMN = (PMMR

−1
M )mnMN = Cmn

MNZ
∗
M,MN(PMM)mnMN , (4.4.11-C)

(GEE)mnMN = (Q−1
E PEE)mnMN = Cmn

MNZ
∗
E,MN(PEE)mnMN , (4.4.11-D)

(GME)mnMN = (Q−1
M PME)mnMN = Z∗

M,MN(PMM)mnMN , (4.4.11-E)

(GMM)mnMN = (Q−1
M PMM)mnMN = Cmn

MNZ
∗
M,MN(PMM)mnMN . (4.4.11-F)

It is these terms that determine whether or not the fields are real (propagating)

or imaginary (evanescent), in particular, form equation (4.4.11-E), matrix GME is

always real.

In the calculation of the operator matrices P, G and K there are five general

cases to be considered: (m = M = 0) ∧ (n,N > 0), (m,M > 0) ∧ (n = N = 0),

(m = 0,M > 0) ∧ (n,M > 0), (m,M > 0) ∧ (n = 0, N > 0) and (m,n,M,N > 0).

Corresponding to these five cases there are the mappings:

(m = M = 0) ∧ (n,N > 0) : E0N =
(
(PEE)0n

0N

)
E0n, (4.4.12-A)

(m,M > 0) ∧ (n = N = 0) : EM0 =
(
(PEE)m0

M0

)
Em0, (4.4.12-B)
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(m = 0,M > 0) ∧ (n,M > 0) :







EMN = ((PEE)0n
MN)E0n,

HMN = ((PME)0n
MN)E0n,

(4.4.12-C)

(m,M > 0) ∧ (n = 0, N > 0) :







EMN = ((PEE)m0
MN)Em0,

HMN = ((PME)m0
MN)Em0,

(4.4.12-D)

(m,n,M,N > 0) :







EMN = ((PEE)mnMN)Emn,

HMN = ((PME)mnMN)Emn

+ ((PMM)mnMN)Hmn.

(4.4.12-E)

4.5 Mode coupling and attenuation due to finite

wall conductivity

The working assumption that the walls of the waveguide are perfectly conducting

is the main reason why the scattering analysis is analytically tractable leading, for

circular waveguides, to the Lommel integrals of section 4.1, Bessel series and ordinary

Fourier series. In short, because of the assumed physical boundary conditions the

system separates cleanly into Sturm-Liouville series with either periodic, Dirichlet or

Neumann boundary conditions. The approximation is good because the conductivity

is very high and the skin depth very small at the operating frequencies, but if the

finite value of the guide walls is taken into account the model breaks down at two

levels. The first is that the propagation of the modes derived in section 4.1 are

no longer completely independent as is assumed; rather, they are coupled via the

currents induced in the guide walls, and those currents induce a component of the

electric field parallel to the walls which must, in turn, be the boundary values of

fields over the waveguide section that must scatter at the junction. The second

is that the magnetic fields over the flanges at the junctions induce electric fields

parallel to the flanges.

This is the first level of correction; deeper levels can be investigated, but they

are corrections of higher order. Thus, the Sturm-Liouville system no longer has the
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tidy separation of Dirichlet and Neumann boundary conditions. Nevertheless, it is

clear that the integrands over the waveguide cross section will remain separable so

that, in the case of the circular cylindrical waveguide, there will be no scattering

between different azimuthal orders in a perfectly aligned waveguide. The simple

form of the scattering amplitudes in equations (4.2.3) and (4.2.4) will hold only as

a zeroth order approximation.

The basic theory of first order approximation to the the fields proximate to

a good, but finite, conductivity wall is given by Jackson [33]. The basic idea is as

follows: assume that the perfect conductor theory is a good approximation and make

successive orders of correction. Only the first order of correction will be considered

here where the aim is only to be able to derive estimates of the relative magnitude

of these corrections.

Let H‖ and E‖ denote components of the magnetic fields at the guide wall that

are everywhere parallel to the tangent plane to the wall; let E⊥ and H⊥ denote

the orthogonal components and Ec and Hc the fields within the conductor. For a

perfect conductor a surface current, K = n̂ × H‖, is required to cancel the fields

that would otherwise be within the conductor. Assume that the fields outside the

conductor are as for the perfect conductor model: E → E⊥ and H → H‖ as the

walls are approached. The model is essentially a quasi-static one and so it is assumed

that the electric displacement is essentially zero. From Ohm’s Law and Ampére’s

equation and Faraday’s equation the approximations

Ec ∼
1

σ
∇×Hc, Hc ∼ − i

µω
∇×Ec (4.5.1)

follow for the fields within the conductor.

Assume that, because the conductor is good and the fields must therefore decay

very rapidly within the conductor in the direction −n (into the conductor), the

rate of change of the fields orthogonal to the wall is much greater than parallel to

it, then the nabla operator is well approximated by ∇ ∼ −n̂ ∂/∂r where r increases

into the guide wall. Equations 4.5.1 then combine to give the two equations
(
∂2

∂r2
+

2i

δ2

)

(n̂×Hc) ∼ 0, n̂ ·Hc ∼ 0,
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where δ =
√

2/µωσ is the skin depth. Immediately Hc, the field within the conduc-

tor, is everywhere parallel to the wall and the solution has exponential decay in the

−n̂ direction so that Hc has the form Hc ∼ H‖ e
−r(1−i)/δ to match the boundary

value in the first order correction. Then the first of equations (4.5.1) gives

Ec ∼ −1

σ
n̂× ∂Hc

∂r
= −1

σ
n̂× ∂

∂r

(
H‖ e

−r(1−i)/δ
)

=
(1 − i)

δ
(n̂×H‖)e

−r(1−i)/δ

= (1 − i)

√
ωµ

2σ
· e−r(1−i)/δ n̂×H‖

(4.5.2)

which is, once again, a field vector parallel to the walls of the waveguide. Ec is

orthogonal to, out of phase with, and proportional to, Hc, with a complex propor-

tionality coefficient that goes to zero as σ → ∞, decaying like Hc with depth of

penetration, though out of phase by −π/4.

The boundary condition n̂× (E −Ec) = 0 requires that there is a component of

the electric field parallel to the guide wall immediately outside the wall which must

match the field within the wall in the limit r → 0. Thus

E‖ = (1 − i)

√
ωµ

2σ
n̂×H‖ =

√
2

σδ
e−iπ/4 n̂×H‖ . (4.5.3)

From the Ohm’s Law relation J = σEc the ohmic losses are derived, and in this

first order correction to the model it is this electric field component that gives rise

to coupling between modes that these currents can couple to. Denote by Jn the

current induced by the n th waveguide mode hn (of either electric or magnetic type).

Let em be an electric field mode of either type. The coupling of the modes within a

waveguide section is determined by the integral

〈
em‖ |Jn

〉
=

∫

∂D

em‖ ·J∗
n ds (4.5.4)

over the boundary of the guide, the purely radial function exp(−2r/δ) having been

integrated out as in equation (4.5.6) below. In the case of the circular cylinder

∂D ∼= S1, the unit circle, scaling the arc length measure, ds, appropriately. This is

the standard inner product on L2(S1) and, ignoring possible frequency dependence
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of the conductivity and magnetic permeability, equation (4.5.4) evaluates to

〈
em‖ |Jn

〉
= σ

〈
em‖ | en‖

〉
= ∆ωµ

∫

S1

(n̂× hm‖) · (n̂× h∗
n‖) ds

= ∆ωµ

∫

S1

hm‖ h
∗
n‖ ds = ∆ωµ

〈
hm‖ |hn‖

〉
(4.5.5)

where ∆ is an integral involving δ. Equation (4.5.5) means that whenever the L2(S1)

inner product between two magnetic field modes is non-zero, there will be coupling

between the modes and the propagation of those modes will not be independent.

Evaluating equations (4.1.12-B and D) at the waveguide wall and substituting

into equation (4.5.5) gives, for electric-electric field coupling,

〈
em‖ |Jn

〉
= ωµ · Jm(qmk)Jn(qnl) ·

mn

qmkqnl
·
PEm

k

ZEm
k

·
PEn

l

Z∗
En

l

·
∫ ∞

r=0

e−2r/δ dr

×
∫ 2π

ϕ=0

{

cos(mϕ)

sin(mϕ)

}{

cos(nϕ)

sin(nϕ)

}

dϕ.

(4.5.6)

Here, and throughout, it is assumed that making the approximation that the waveg-

uide walls are infinitely thick is reasonable because they are sufficiently thick that

the fields within them have effectively decayed away before the outside is reached.

The integral of the exponential then contributes δ/2. From the orthogonality prop-

erties of the trigonometric integrands there is only coupling if m = n, and then the

integrals give coupling factors π in the sine-sine case for n > 0, and 0 for n = 0,

while for the cosine-cosine case the factors are π when n > 0 and 2π for n = 0. Thus,

within this approximation, different azimuthal orders do not couple, but within an

azimuthal order there are coupling factors

〈
en‖ |Jn

〉
=
Jn(qnk)Jn(qnl)

σδ
· n2

qnkqnl
·
PEn

k

ZEn
k

·
PEn

l

Z∗
En

l







π : n > 0, sin− sin

π : n > 0, cos− cos

2π : n = 0, cos− cos

0 : all other cases

(4.5.7)

which, for all n, tends to zero as k, l → ∞ and as σ → ∞. This coupling coeffi-

cient is only real in the case k = l; generally the waveguide impedance renders it

complex. The mathematical perspective of orthogonality between sine and cosine

terms in equation (4.5.6) corresponds with the physical independence of orthogonal

polarisations of the fields.
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It is worth noting here that the orthogonality expressed above is a purely geo-

metrical property – it has nothing to do with the frequency. In the general case one

could consider mode coupling across the spectral band of operation. In the general

case the coefficient in equation (4.5.7) would not be real; rather with frequencies

ω1 6= ω2 we would not necessarily have σ(ω1) = σ(ω2), or even µ(ω1) = µ(ω2),

though generally µ = µ0 for the materials from which the guide would be manufac-

tured. The coefficient would then become

〈
en‖ |Jn

〉
∝ Jn(qnk)Jn(qnl)

2σ(ω1)

(
1

δ(ω1)
+

1

δ(ω2)

)

· n2

qnkqnl
·
PEn

k

ZEn
k

·
PEn

l

Z∗
En

l

.

In the conventional TE/TM waveguide modes this expression, and equation (4.5.7),

would be real and positive for propagating modes, purely positive imaginary for the

coupling between propagating and evanescent modes, and negative real for evanes-

cent to evanescent coupling. In an arbitrary basis, obtained from the standard basis

by a unitary transformation, the coefficients would be a general complex number.

At first sight the possibility of mode coupling between different frequencies seems

problematic – likewise for pure imaginary and negative coupling coefficients – and it

is natural to ask if it can be physical. There are matters that are overlooked here and

not amenable to analytic treatment. The first is that the guide walls are treated as

being perfectly smooth. A real guide has some level of surface micro-roughness that

will depend upon the manufacturing technique, and as the skin depth approaches

the micro-roughness depth the theory must break down and attenuation be greater

than predicted due to higher equivalent surface resistance. This has been confirmed

by experiments reported in [5].

Equation (4.5.3) is a function on the boundary of the disc. We can assume that

it is holomorphic. Then by Cauchy’s theorem of complex analysis [7] it determines

a field over the entire disc that is holomorphic in the two transverse coordinates.

This contribution to the transverse field must scatter into the electric and magnetic

field components at the other side of a junction. It would be interesting to pursue

these induced fields, but the mathematics is inappropriately difficult.
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4.6 Scattering between misaligned circular guides

It is common practise in the construction of horns to build the horn as an assembly

of separately manufactured units. There are two reasons for doing this: ease of

manufacture and the requirement to fit filters into the assembly. The Planck horns

required blocking filters in the assembly and the length to diameter ratio meant that

it would not have been possible to manufacture the back to back horn as a single

piece. If the alignment of sections is not perfect, scattering no longer takes place

only from modes of one azimuthal only into modes of the same azimuthal order at

the join, but there is a scattering amplitude to all azimuthal orders. Furthermore,

the separation of polarisations breaks down – orthogonal polarisations scatter into

each other across an out of alignment junction – and there will be scattering of

magnetic into electric fields which does not take place in the aligned waveguides.

In the case of rectangular waveguides, if two waveguide sections are slightly

offset relatively to each other by some (ξ, η), but without relative rotation, then

the scattering amplitude integral (4.4.4) remains analytically tractable, all be it

splitting into four integrals rather than one. This is simply a consequence of writing

cos
(
kN(π∗x+A/2)

)
= cos

(
kN(x+A/2)

)
cos(kNξ)−sin

(
kN(x+A/2)

)
sin(kNξ), and

so on, expanding the products and observing that the basic form of the four new

scattering amplitude integrals defining scattering between modes remains the same

as for the aligned case, though now with mixed terms and scale factors of the type

cos(kMξ) sin(kNη), and so on. The mathematics remains as simple as in the aligned

case. For the circular waveguide no such tractable, analytical solutions exist, and it

is the circular case that is examined.

The matter is of interest to horns constructed like the Planck horns in which the

cavity horn is separated from the back-to-back horn by a filter and/or lens section

that gives scope for imperfect mechanical alignment of the sections. Intuitively it

would then be expected that, since the functions defining the modes on either side

of the junction are no longer defined on the same coordinate system, the Fourier

expansions will become very complicated, this complexity being a mathematical
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δ

r
rδ

b

a θ

A

ϕ

Figure 4.3: Diagram showing the coordinate systems over the domain of integration

for calculation of the scattering amplitudes for misaligned waveguides. In general

the displacements need not be aligned to the polarisation axes. In that case the

coordinate system in the larger waveguide section is rotated and there is a mixing

of polarisations.

reflection of complex inter-mode and inter-order scattering in the horn.

In this section the consequences of the misalignment of two joined guides is con-

sidered. First an analytic expression for the solution is sought; then a numerical

approach is taken. The analytic expression gives an understanding of the redistri-

bution of power between azimuthal orders, but the expressions are complex because

the integrals are not separable: they are mixed in both polar coordinates. The sine

and cosine terms over the displaced larger section are simple to express in terms of

the angular coordinate in the smaller guide, and that expression already indicates

the complexity of the scattering, but the main problem lies in the Bessel functions in

the larger guide: they are now functions of radius, guide offset, and polar angle. To

establish the form of the integrand for the scattering across the junction the cross

product is formed to find the appropriate Poynting vector as in section 4.1. Denot-

ing the mode of the electric field to the left by e = er r̂ + eθ θ̂ and the magnetic

mode to the right of the junction by h = hrδ r̂δ +hϕ ϕ̂, the cross product becomes,

on the twice punctured disc {(r, θ) : 0 < r ≤ a, 0 ≤ θ < 2π} − {(δ, 0)}

e×h =
1

rδ
[(r − δ cos θ)(er hϕ−eθ hrδ) + δ sin θ(er hrδ + eθ hϕ)] . (4.6.1)



CHAPTER 4. CIRCULAR AND RECTANGULAR WAVEGUIDES 103

This expression clearly has the correct limit as δ → 0, but will give rise to a far more

complex integrand than in the aligned case. The need to exclude the point (δ, 0)

from the domain is simply a reflection of the fact that polar coordinates are defined

only on R
n−{0} and the coordinate transformation required to derive (4.6.1) is not

defined on the axis of the displaced guide. The apparent pole in the equation is

not an analytic reality, but careful structuring of the integrand is required to avoid

numerical singularities.

Consider the case of magnetic to magnetic scattering. (The TE−TE scattering is

formally identical to the TM−TM scattering described here, requiring only the formal

substitution of symbols and the solution of equivalent integrals. The TE − TM and

also TM −TE scattering integrals are also mathematically equivalent and handled by

the same numerical approach. These other cases will not be described.) Expanding

equation (4.6.1) gives, up to a constant PMnm(a)PMnm(b)/ZMnm(b),

eM ×hM =
r − δ cos θ

rδ



J ′
n

(pnk
a
r
)

J ′
m

(pml
b
rδ

)
{

cos(nθ) cos(mϕ)

sin(nθ) sin(mϕ)

}

+
na

pnkr

mb

pmlrδ
Jn

(pnk
a
r
)

Jm

(pml
b
rδ

)
{

sin(nθ) sin(mϕ)

cos(nθ) cos(mϕ)

}



+
δ sin θ

rδ




mb

pmlrδ
J ′
n

(pnk
a
r
)

Jm

(pml
b
rδ

)
{

cos(nθ) sin(mϕ)

− sin(nθ) cos(mϕ)

}

+
na

pnkr
Jn

(pnk
a
r
)

J ′
m

(pml
b
rδ

)
{

− sin(nθ) cos(mϕ)

cos(nθ) sin(mϕ)

}



(4.6.2)

where rδ = rδ(r, δ, θ) and ϕ = ϕ(r, δ, θ) are functions of both integration variables,

and each of the pairs of Bessel functions and derivatives, for the case m ≥ 2, reduces

to a sum of products of the six terms

pml
4b
Jn±1

(pnk
a
r
)

Jm±2

(pml
b
rδ

)

and
pml
4b
Jn±1

(pnk
a
r
)

Jm

(pml
b
rδ

)

up to constant factors. The cases m = 0 and m = 1 must be dealt with separately.
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Observe that (r − δ cos θ)/rδ =
√

1 − δ2 sin2 θ/(r2 + δ2 − 2rδ cos θ) and that

δ2 sin2 θ/(r2 + δ2 − 2rδ cos θ)
r→δ±−−−→ (1 + cos θ)/2 = cos2(θ/2)

Thus, (r − δ cos θ)/rδ → sin(θ/2) and δ sin θ/rδ → cos(θ/2) smoothly on the circle

of radius δ. Furthermore since the terms involving Jm and J ′
m all tend to finite

limits on the same circle for all m, it follows that the scattering integrand has no

singularity in its domain. Expressing the integrand in a form that is numerically non-

singular across the entire integration domain is the dominant problem for developing

a successful quadrature scheme.

An indication of what happens to the scattering is the following: For mechanical

realism we can suppose that the offset is δ < b− a≪ a so that the offset is smaller

than the flange width. With reference to the diagram 4.3, the usual boundary

conditions and mathematical formulation apply in the guides on either side of the

junction, each in the appropriate centred coordinate system. In the smaller guide of

radius a the radial fields are expanded in the Jn(αr/a) while in the larger guide they

are to be expanded in Jm(βrδ/b), where α and β are roots of the Bessel function. To

estimate the scattering coefficients it would be convenient to start from the series

expansion of rδ =
√
r2 + δ2 − 2rδ cos θ, and then to substitute the truncated series

into the Bessel function, and expand that as a series. However, the series for rδ

cannot just be truncated at order δ2 say, because while δ2 may be small, pmkδ
2/b

might be large. Herein lies the main difficulty in the attempt to obtain analytic

estimates: in theory it can be done, but the result is a nested sequence of infinite

series in both δn and in cosn θ. Abandoning that approach as impractical, the next

step is to consider the Bessel functions, and then the functions sin(mϕ) and cos(mϕ).

The term 1/rδ in equation 4.6.1 is a potential problem in a numerical procedure,

but use can be made of the product expansion (see [34])

Jm

(pmk
b
rδ

)

=
1

m!

[pmk
2b

rδ

]m∏

l∈N

(

1 −
(
pmkrδ
bpml

)2
)

as will be shown, so that the product Jm(·) cos(mϕ) has no terms in 1/rδ. The

scattering is dominated by integral equations of the form (4.6.4-A) on the next page
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which, using the above equation and equation (4.6.7-A) on page 107, take the form
∫ 2π

θ=0

∫ a

r=0

Jn±1

(pnj
a
r
)

Jm±2

(pmk
b
rδ

)

r2 cos(nθ) cos(mϕ) dr dθ

=
1

(m± 2)!

[pmk
2b

]m±2
∫ 2π

θ=0

∫ a

r=0

Jn±1

(pnj
a
r
)

cos(nθ)

×
∏

l∈N

(

1 −
(

pmk
bp(m±2)l

)2

(r2 + δ2 − 2rδ cos θ)

)

× (r2 + δ2 − 2rδ cos(θ))±1
m∑

i=0

(−1)i
(
m

i

)

× rm−i+2δi cos((m− i)θ) dr dθ,

(4.6.3)

with equivalent integrals for the sin(nθ) and sin(mϕ) forms. This expression is not

practical from the perspective of numerical evaluation because the product initially

diverges rapidly before converging slowly. However, it does illustrate the extent

of the scattering: For any m and n there are integrals of all possible moments of

Jn(pnjr/a) and powers of cos θ. For all ν ∈ N and 0 ≤ i ≤ m there are terms

cosν θ cos(nθ) cos((m− i)θ), where cosν θ = a0 + a1 cos θ + · · ·+ aν cos(νθ) for some

rational coefficients aj . (For even ν the odd indexed aj will be zero while for odd

ν the even indexed aj will be zero.) For any n, m and i there will be some ν for

which one of the possible terms j − n± (m− i), for 0 ≤ j ≤ ν, will be zero, and for

that j the integral over θ in equation (4.6.3) will give π. With some thought it is

seen that, for ν = 0, this is just Jm
(
pmk

b

√
r2 + δ2

)
, while for ν 6= 0 it takes the form

Jm±2

(pmk
b

√
r2 + δ2

)

· (2rδ)ν
ν∑

j=0

[

aj cos(jθ)
∑

l1···lν

cl1 · · · clν
αl1 · · ·αlν

]

,

where the inner sum is over all possible multi-indices l1 · · · lν , li 6= lj , and

cl
αl

def
=

(pmk/bpnl)
2

(1 − p2
mk(r

2 + δ2)/(bpnl)2)

l→∞−−−→ 0+.

Thus, the integral (4.6.3) takes the form of a sum over j of integrals

2jπ

(m± 2)!

[pmk
2b

]m±2
m∑

i=0

(−1)iδj+i
(
m

i

)

×
∫ 2π

θ=0

∫ a

r=0

Jn

(pnj
a
r
)

Jm±2

(pmk
b

√
r2 + δ2

) ∑

l1···lν

rj+m−i+2

Pl1···lν (r)
dr dθ.

where the Pl1···lν (r) are the polynomials of order 2ν in r given by the cl/αl products

above. Therefore, since none of the moments of the Bessel functions are zero [6],
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it follows that there is scattering from all possible azimuthal orders n into all pos-

sible azimuthal orders m. Having obtained the qualitative understanding that was

sought, the problem is to achieve a presentation of the integrand of practical use for

numerical modelling.

To obtain estimates for the scattering amplitudes for misaligned circular waveg-

uides, the problem becomes one of solving non-separable integrals of the following

three general types obtained by expanding the terms of equation (4.6.2):

∫ 2π

θ=0

∫ a

r=0

Jn±1

(pnk
a
r
)

Jm±2

(pml
b
rδ

)

r2 csn(θ)csm(ϕ) dr dθ (4.6.4-A)

δ

∫ 2π

θ=0

∫ a

r=0

Jn±1

(pnk
a
r
)

Jm±2

(pml
b
rδ

)

r cs(θ)csn(θ)csm(ϕ) dr dθ (4.6.4-B)

δ

∫ 2π

θ=0

∫ a

r=0

Jn±1

(pnk
a
r
)

Jm

(pml
b
rδ

)

r cs(θ)csn(θ)csm(ϕ) dr dθ (4.6.4-C)

where the functions cs(θ), csn(θ) and csm(ϕ) are the appropriate sines and cosines.

As will be seen shortly, the functions Jm(pmlrδ/b)csm(ϕ) and Jm+2(pmlrδ/b)csm(ϕ)

can be written in a form that is numerically stable and, though algebraically com-

plex, reasonably straightforward to compute. However, the remaining function,

Jm−2(pmlrδ/b)csm(ϕ), has a second order pole at the centre of the offset waveguide

that arises from the term J0(pmlrδ/b)/r
2
δ (for allm > 0) occurring in the presentation

of the function. This is physically meaningless as well as numerically unstable and

the quadrature scheme needs to handle this in a simple, stable and non-disruptive

manner. Devising a presentation of the integrand that is completely stable repre-

sents the main challenge for work in this section. A method is presented below.

In the particular case m = 0 only the derivatives of J0(p0krδ/b) occur in equation

(4.6.2), the terms cos(0ϕ) and sin(0ϕ) give 1 and 0 respectively, and the following

substitution can be made:

J ′
0

(p0k

b
rδ

)

rδ
= −p0k

2b

(

J0

(p0k

b
rδ

)

+ J2

(p0k

b
rδ

))

.

This gives numerically stable integrals for the scattering amplitudes for the az-

imuthal order m = 0 in the right hand waveguide, the lower line in equation (4.6.2)
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giving zero, while the upper line can be rearranged to give the integral

p0k

4b

∫ 2π

θ=0

∫ a

r=0

(

J0

(p0k

b
rδ

)

+ J2

(p0k

b
rδ

))

×
[

Jn+1

(pnl
a
r
)

(r cos(nθ) − δ cos((n− 1)θ))

−Jn−1

(pnl
a
r
)

(r cos(nθ) − δ cos((n + 1)θ))
]

r dr dθ

(4.6.5)

From figure 4.3 it is clear that for rδ > 0, cosϕ = (r cos θ − δ)/rδ and sinϕ =

(r sin θ)/rδ. Then, for the other particular case, m = 1, observe that

r − δ cos θ

rδ
cosϕ = cos θ − sin2 θ

2

(
r2 + δ2

2rδ
− cos θ

)−1

, (4.6.6-A)

r − δ cos θ

rδ
sinϕ = sin θ

(

1 −
[

1 +
r(r − δ cos θ)

δ(δ − r cos θ)

]−1
)

, (4.6.6-B)

δ sin θ

rδ
cosϕ = − sin θ

(

1 −
[

1 +
δ(δ − r cos θ)

r(r − δ cos θ)

]−1
)

, (4.6.6-C)

δ sin θ

rδ
sinϕ =

sin2 θ

2

(
r2 + δ2

2rδ
− cos θ

)−1

. (4.6.6-D)

These will be numerically stable as rδ → 0, approaching the correct limits (one

for (4.6.6-A) and zero for equations B to D) smoothly and monotonically, and the

exceptional point on the offset axis, rδ = 0, will be handled provided the compiler

interprets, or can be instructed to interpret, 0/0 as 0, or a switch or IEEE ex-

ception handles the overflow. Then with these forms used in equation (4.6.2) the

computation will proceed stably across the entire disc.

The general case, m ≥ 2 has now to be dealt with, and to handle the general case

requires extensive rewriting of the functions under the integral. The orthogonality

of the modes of different azimuthal orders in aligned guides is expressed by the

orthogonality of the sine and cosine terms. Here the situation is complicated by the

fact that the azimuthal components of the basis functions over the smaller guide are

expanded in terms of cos(θ), sin(θ), cos(nθ) and sin(nθ), while those over the larger

section involve the terms cos(mϕ) and sin(mϕ). By induction on m, these become

cos(mϕ) =
1

rmδ

m∑

k=0

(−1)k
(
m

k

)

rm−kδk cos((m− k)θ), (4.6.7-A)

sin(mϕ) =
1

rmδ

m−1∑

k=0

(−1)k
(
m

k

)

rm−kδk sin((m− k)θ), (4.6.7-B)
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Here it has been assumed that the offset is aligned to the polarisation axis, as in figure

4.3 above. More generally it will be offset at (δ cos(θ0), δ sin(θ0)) for some angle θ0.

The result is that ϕ is replaced by ϕ+θ0, cos(ϕ+θ0) = r sin(θ−θ0)/rδ−δ sin(θ0)/rδ,

and so on, so that δ in equation (4.6.7) and in all that follows would replaced by

δ sin(θ0). Since that is a trivial change to the computation and makes no difference

to the physics it is ignored in what follows. Note that it is convenient to extend the

upper limit in the sum for sin(mϕ) from m− 1 to m, which just adds zero.

The problematic term 1/rmδ that, at first sight, gives rise to a pole of order m on

the axis of the offset waveguide, is handled by observing that for the Bessel function

of order s in rδ

1

rmδ
Js

(psk
b
rδ

)

=
rs−mδ

rsδ
Js

(psk
b
rδ

)

=
rs−mδ

rs−1
δ

· psk
2b

· 1

s

[

Js−1

(psk
b
rδ

)

+ Js+1

(psk
b
rδ

)]

=
rs−mδ

rs−2
δ

·
[psk

2b

]2

· (s− 2)!

(s+ 1)!

[

(s+ 1)Js−2

(psk
b
rδ

)

+ 2sJs

(psk
b
rδ

)

+ (s− 1)Js+2

(psk
b
rδ

) ]

: : : : : : : : : : : :

=
[psk

2b

]s rs−mδ

(2s− 1)!
·

s∑

l=0

AslJ2l

(psk
b
rδ

)

,

(4.6.8)

where the terms Asl are positive integer coefficients derived by induction in the

s steps required to eliminate the factor 1/rsδ at the apparent singularity. Pre-

calculating the coefficients in the last line of equation (4.6.8) outside the quadrature

loop, the standard recursion algorithm for the Bessel function Jn(x) for n ≥ 2 can

be modified to take the coefficient vector as an additional argument and to calculate

the entire right hand expression in equation (4.6.8) with only m additional floating

point additions and multiplications. Consequently, although the expression looks

complex, from the algorithmic point of view it is scarcely more complex than calcu-

lating the left hand side of equation (4.6.8), but is numerically stable everywhere.

From equations (4.6.7) and (4.6.8) we then have the product of the Bessel func-

tion in rδ times the sines or cosine of ϕ under the integral in equations (4.6.4-A to
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C) taking the form

Js

(pmk
b
rδ

)

csm(ϕ) =
[pmk

2b

]s rs−mδ

(2s− 1)!
·

s∑

l=0

AslJ2l

(pmk
b
rδ

)

×
m∑

i=0

(−1)i
(
m

i

)

rm−iδi csm−i(θ).

(4.6.9)

The integral now has a non-singular presentation and can be evaluated stably

providing s ≥ m. From the numerical perspective the difficulty arises only for the

case m− 2. Re-writing equation (4.6.9) for this case gives

Jm−2

(pmk
b
rδ

)

csm(ϕ) =
[pmk

2b

]m−2 1

(2m− 5)!
·
m−2∑

l=0

Am−2,l

r2
δ

J2l

(pmk
b
rδ

)

×
m∑

i=0

(−1)i
(
m

i

)

rm−iδi csm−i(θ)

=
[pmk

2b

]m 1

(2m− 5)!

{m−2∑

l=1

Am−2,l

(2l + 1)(2l)(2l − 1)

[

(2l + 1)J2l−2

(pmk
b
rδ

)

+ 2lJ2l

(pmk
b
rδ

)

+ (2l − 1)J2l+2

(pmk
b
rδ

)]

+
4b2

p2
nk

Am−2,0

r2
δ

J0

(pmk
b
rδ

)}

·
m∑

i=0

(−1)i
(
m

i

)

rm−iδi csm−i(θ),

(4.6.10)

and from the last line it is seen that the pole arises only from the term J0

(pm,k

b
rδ
)
/r2

δ

which is not present for analytic reasons. Because of this term the otherwise stable

presentation of the integrand will give rise to numerical overflow. It will be removed

in a simple way below.

When m ≥ 2 the terms in equation (4.6.2) can be expanded, reorganised and

gathered and, using equations (4.6.7) and for n ≥ 0, |m| ≥ 2 and k ∈ {0, 1}, to

write

c(n,m, k, θ)
def
=

m∑

i=0

(−1)i
(|m|

i

)

r|m|−iδi cos ((n +m+ k − i)θ) ,

then using equations (4.6.9) and (4.6.10) six integrands are obtained:

I∓m+2 =
r

8(m+ 1)

[pmk
2b

]m+2 r2 + δ2 − 2rδ cos θ

(2m+ 3)!

m+2∑

l=0

Am+2,lJ2l

(pmk
b
rδ

)

×
{

Jn−1

(pnj
a
r
)

[r c(n,−m, 0, θ) − δ c(n,−m, 1, θ)]
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∓ Jn+1

(pnj
a
r
)

[r c(n,m, 0, θ) − δ c(n,m, 1, θ)]
}

(4.6.11-A)

I∓m =
r

4(m− 1)

[pmk
2b

]m 1

(2m− 1)!

m∑

l=0

Am,lJ2l

(pmk
b
rδ

)

×
{

Jn−1

(pnj
a
r
)

[r c(n,−m, 0, θ) − δ c(n,−m, 1, θ)]

∓ Jn+1

(pnj
a
r
)

[r c(n,m, 0, θ) − δ c(n,m, 1, θ)]
}

(4.6.11-B)

I∓m−2 =
r

8(m− 1)r2
δ

[pmk
2b

]m−2 1

(2m− 5)!

m−2∑

l=1

Am−2,lJ2l−2

(pmk
b
rδ

)

×
{

Jn−1

(pnj
a
r
)

[r c(n,−m, 0, θ) − δ c(n,−m, 1, θ)]

∓ Jn+1

(pnj
a
r
)

[r c(n,m, 0, θ) − δ c(n,m, 1, θ)]
}

(4.6.11-C)

These integrands are then summed as I− = I−m+2 + I−m+ I−m−2 and I+ = I+
m+2 + I+

m+

I+
m−2 to give the upper and lower polarisation lines in equation (4.6.2).

Some comments need to be made about these equations: Firstly, in (4.6.11-A)

it is not strictly necessary to reduce Jm+2(pmkrδ/b) to a sum of terms J2l(pmkrδ/b),

l = 0, . . . , m+2; instead the same procedure could be halted after m steps, sufficient

to remove the 1/rδ factor and giving a reduction to a sum of terms J2l(pmkrδ/b),

l = 1, . . . , m and so avoid the r2
δ . To do so would require developing a second

algorithm for no marked gain in computational efficiency. Secondly, all six integrands

are now numerically stable as both as r → 0 and as rδ → 0 provided that, in I∓m−2

r/rδ is written as

r

r2
δ

=







r

r2 + δ2 − 2rδ cos θ

r→0−−→ 0 : r ≤ δ/2,

1

δ/r + r − 2δ cos θ

rδ→0−−−→ 1

1 − δ
: r > δ/2.

Calculation of the coefficients Aml is performed inductively in m steps for each m

following, in outline, the sequence of equation (4.6.8). It is a common problem with

factorial and related numerical integer arithmetic problems such as the calculation of

the Aml that the values rapidly exceed the representable integers. If 32 bit arithmetic

is used then the maximum azimuthal index that can be handled is m = 9; beyond

that overflow occurs unless 64 bit integers are used, but even then m = 14 is all

that can be achieved without overflow. For the Planck multi-mode horns, where
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the maximum azimuthal order is four, 32 bit arithmetic would be sufficient for the

investigation of alignment tolerances. Table 4.1 on page 117, gives the coefficients

Aml for the first ten azimuthal orders. Table 4.2 gives the corresponding coefficients

Cml
def
=

m!

2m(2m− 1)!
Aml. (4.6.12)

but the original, singular, non-separable integral has been replaced by a sum of

non-separable integrals over a sum: from equation (4.6.8)

∫ 2π

θ=0

∫ a

r=0

Jn

(pnj
a
r
)

Jm

(pmk
b
rδ

)

r cos(nθ) cos(mϕ) dr dθ

=







∫ 2π

θ=0

cos(nθ)

∫ a

r=0

Jn

(pnj
a
r
)

J0

(pmk
b
rδ

)

r dr dθ : m = 0

pmk
2b

∫ 2π

θ=0

cos(nθ)

∫ a

r=0

Jn

(pnj
a
r
)(

J0

(pmk
b
rδ

)

+ J2

(pmk
b
rδ

))

× r (r cos(θ) − δ) dr dθ

: m = 1

[pmk
2b

]m 1

(2m− 1)!

m∑

i=0

(−1)i
(
m

i

)

δi
∫ 2π

θ=0

cos(nθ) cos((m− i)θ)

×
∫ a

r=0

rm−i+1Jn

(pnj
a
r
) m∑

l=0

AmlJ2l

(pmk
b
rδ

)

dr dθ

: m ≥ 2.

(4.6.13)

The normalisation factors PMn
j

and PMm
k

from equation (4.1.10) have been omitted in

the above integral. It is immediate from equations (4.6.7) and (4.6.8) that the right

hand expressions are analytically correct in the limit δ → 0. Therefore, the validity

and accuracy of any quadrature scheme written to evaluate (4.6.13) can be tested

by evaluation at δ = 0 and comparing with the known analytic value (in particular,

for a = b, it should return the value one). There is an equivalent expression for the

sine-sine scattering and, unlike in the case of the aligned waveguides, also one for

sine-cosine scattering because there is no orthogonality of the integrands.

With numerically stable forms for the integrals described, the final problem is to

develop a suitable quadrature scheme for their evaluation. First a standard Gaus-

sian quadrature scheme was coded. Such schemes are relatively straightforward to

encode, but the sampling of the integration domain follows the coordinate system

on the domain and does not take into account the fluctuations and values of the



CHAPTER 4. CIRCULAR AND RECTANGULAR WAVEGUIDES 112

integrand. In this case the domain is the half disc (see figure 4.4 below). This is par-

ticularly the case for Gaussian quadrature in polar coordinates where the sampling

is very fine at the centre of the disc and where, for these integrals, the integrand is

essentially zero. The amplitude of the integrand is mostly very close to zero except

in a few well defined regions, and it is also oscillatory in both polar coordinates.

Consequently a standard quadrature scheme spends most of the time evaluating

and summing very small contributions to the scattering amplitude. Thus, though

the Gaussian quadrature scheme worked, it was inefficient in its use of memory and

very slow, particularly for higher azimuthal and radial orders. It was therefore aban-

doned in favour of an adaptation of a markedly different approach that had been

developed by the author to overcome similar sampling issues in the evaluation of

integrals occurring in Physical Optics analysis.

When Physical Optics is used for the analysis of optical systems integrands of the

type given in equations (6.3.3) on page 162 have to be solved, integrating the source

function for each field point, x′, at which the resulting field is to be found. The

integrand there is a function of the field point as well as the source, and so it changes

with x′. Consequently, even in the simple situation of a single-mode Gaussian

horn aperture field as source, which upon first sight is perfectly suited to Gaussian

quadrature in polar coordinates, Gaussian quadrature is inefficient for calculating

the field at points off the horn axis. In [54] an self-adaptive quadrature scheme

was developed that used the integrand values and/or derivatives to determine the

appropriate local sampling density for the quadrature. Essentially, if the integrand

is changing rapidly in a region of the domain, and there is power in the field there,

then sampling is fine; where the rate of change is low coarse sampling is used. In

Physical optics the situation is complicated by the phase, but for the evaluation of

the integrals in equation (4.6.4) there is no phase information and all that matters

are the local gradient and absolute value of the integrand.

The evaluation of the integrals of type (4.6.13) was done in the following way.

Since the purpose of the procedure is to investigate, quantitatively, the effects of

inter-modal scattering for misaligned waveguide junctions, assume for the sake of
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simplicity that the displacement is along the x-axis of the coordinate system (polar

angle θ = 0). Then the integration domain is reduced to a half disc, D = {(r, θ) :

0 ≤ r ≤ a, 0 ≤ θ ≤ π}, and the quadrature procedure begins with a coarse Delaunay

triangulation T of constant scale over a point set P in the closure of D. (By coarse

is meant that the distances between adjacent points of P is roughly four times the

minimum distance between zeroes of the highest order Bessel function occurring in

the integrand divided by the radius of the waveguide, though the exact value is not

very important; by constant scale is meant that the local mesh scale is everywhere

approximately the same, subject to the constrains of domain geometry.) A Delaunay

triangulation is a triangulation of a point set, P , in which the circumcircle of no

triangle contains a point of P . For technical details see [17] or texts on computational

geometry. In particular the centre of the disc (0, 0) and the two points (a, 0) and

(a, π) are in P . Each triangle will become a quadrature sub-domain, the final integral

being the sum of the sub-integrals. Let there be N triangles in T and denote the set

of all triangles in T by {Tn}Nn=1. Because the triangulation is Delaunay the triangles

are all roughly of the same shape and size at this stage. Let TS be the standard

triangle of side length one subdivided into 16 regular sub-triangles (i.e. its vertices

is set {(0, 0), (1, 0), (0, 1)} with each side subdivided into four equal lengths by the

addition of three points, and the sub-triangles are obtained by drawing lines between

the nine added points and adding an additional point at the intersections of the lines.

The points will hereafter be referred to as the nodes). Let τ : Tn → TS be the natural

mapping, then each Tn is sub-triangulated by pulling back the triangulation from

TS. This ensures that the preliminary quadrature on all adjoining triangles shares

common vertices on their common boundary.

With the preliminary triangulation established the next step is to establish a

quadrature order for the set T : evaluate the integrand at each of the 12 nodes in

each Tn ∈ T and integrate over each Tn using Simpson’s rule for each of the 16

sub-triangles. If In is the approximate integral over Tn, then impose an order in

{Tn}, re-indexing the triangles so that I1 ≥ I2 ≥ · · · ≥ IN . In the subsequent

quadrature procedure the convergence of the quadrature over the Tn will proceed in

this established order.
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The quadrature proper over T1 proceeds by first estimating the local gradient at

each of the 12 nodes using finite differences. Number the nodes n1, . . . , n12 and let

the gradient and the absolute value of the integrand at the k th node be gk and vk

respectively. Let the mean length of all triangle edges meeting at nk be dk, then

the real number h(k) = dke
bgkvk ≥ dk is the value of a mesh distribution function

(MDF), h, over Tn that extends to an MDF over P because the values of h on

the common nodes on the boundaries of adjacent Tn agree. The purpose of h is to

control the subsequent refinements of the quadrature domains Tn ∈ T ; for technical

details see [35]. Note that if either the gradient or the value of the integrand is zero

at the k th node of Tn, then h(k) = dk, otherwise dk < h(k). The real number b

in the expression for h is a forcing factor that can be used to give more aggressive

refinement of the quadrature domain if desired.

With h established for T1 a new Delaunay triangulation of T1 is generated under

the control of h. The purpose of the MDF is to ensure that, where there is no change

in value of the integrand the triangulation scale remains essentially unchanged, but

where the value is changing rapidly the local scale of the triangulation is changed

to give a finer triangulation. Thus, the quadrature sub-domains over T1 will reflect

the form of the integrand locally. Let the new triangulation of T1 be {T1k}Kk=1, then

there is a refined quadrature estimate over T1 given by applying Simpson’s rule over

each T1k; denote this new estimate I
(1)
1 and let ε

(1)
1 = |I(1)

1 − I1|.

Suppose that the overall quadrature error required is to be not greater than ε;

then since there are N triangles we require errors εn ≤ ε/N for each sub-quadrature.

If ε
(1)
1 ≤ ε/N then the quadrature has converged and the process moves on the

quadrature over T2, and so on. Generally it will not have converged and the next

refinement {T1k} by addition of an additional nodes at the weighted centre of each

edge: if ej is the edge with nodes nj1 and nj2 at its ends, and h(nj1) > h(nj2) then

the new node is placed at the centre of mass of the two nodes and will be closer to

nj1 than to nj2. Repeat the quadrature over this new refinement to get a value I
(2)
1

and error estimate ε
(2)
1 = |I(2)

1 − I
(1)
1 |. Proceed making further refinements until at

the m th refinement we have ε
(m)
1 = |I(m)

1 − I
(m−1)
1 | ≤ ε/N ; the value I

(m)
1 becomes
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the estimate for the integral over T1. Denoted this final value by I ′1 and its error

estimate ε′1.

Next proceed to seek convergence over T2. Since I2 ≤ I1 we can expect conver-

gence in no more than m steps if the integrand is everywhere quite well behaved over

T1 and T2 and the preliminary sampling scale for P chosen as stated. In any case

the convergence procedure will find the appropriate stopping point. Generally, for

the quadrature over T2, T3, . . . , TN convergence can be expected to become faster.

The final estimate for the inter-modal scattering integrand is then I =
∑N

n=1 I
′
n

and the estimated error will be
∑N

n=1 ε
′
n ≤ N · ε/N = ε. This procedure, though

relatively complex, has proven to be faster than standard Gaussian quadrature. The

main complexity is in the establishment of the preliminary MDF and the triangula-

tion refinement. However, these are all well established procedures in computational

geometry and algorithms and code are freely available. It would be interesting to

pursue a more sophisticated adaptive meshing procedure using anisotropic meshes

generated by the metric (detH)−1/2(p+n)H , where H is the Hessian of the integrand

function, as presented in [12]. An anisotropic mesh would be stretched in the di-

rection of least local change in the integrand, thus reducing the overall number of

samples in an appropriate way. The triangulation would no longer be Delaunay, but

that would not affect the efficacy of the procedure.

Although code has been developed to evaluate the integrals for the TM-TM

scattering case this mater has not been taken further in this work. The interest lies

in the qualitative investigation of the effects of waveguide section misalignment on

mode suppression and excitation as power is scattered between modes of the same

azimuthal order with amplitudes different from the aligned case, and scattering

between different azimuthal orders that either propagate through to the sky or are

reflected back, or are evanescent. In all cases some influence on both throughput

and beam shape is to be expected. The full coding and testing of the necessary code,

and its incorporation into the mode matching software, would be a more complex

undertaking than the development of the mode matching software itself. All that has

been done here is to set out an approach to the development of such code, finding a
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practical method of performing the quadrature essential to obtaining reliable results.
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Figure 4.4: The amplitude of the integrand over the integration domain in equation

(4.6.4) for the scattering of azimuthal order 2, radial order 3 into azimuthal order 5,

radial order 3 with the offsets ranging from 0.00 mm to 0.75 mm. These offsets have

been set unrealistically large to illustrate the changes of the scattering integrand

with increasing offset. The waveguide radii are 2.0 and 3.0 mm respectively. Note

that the symmetries of figure 4.4(a) are generated by the reflections in the x and y

axes, while the symmetries of the fields with offset waveguides are generated by the

reflection in the x axis only, thus limiting the reduction in the integrand over polar

angle to [0, π); hence the half disc domains. Note: these are maps of the integrands

(real functions) and are dependent purely upon the geometry of the waveguide and

independent of the frequency.



C
H

A
P

T
E

R
4
.

C
IR

C
U

L
A

R
A

N
D

R
E

C
T
A

N
G

U
L
A

R
W

A
V

E
G

U
ID

E
S

117

Table 4.1: The values of the first ten coefficients Aml, for azimuthal orders 0 through to 9, calculable using 32 bit arithmetic without

overflow.
1 1 1

2 3 4 1

3 20 30 12 2

4 210 336 168 48 6

5 3024 5040 2880 1080 240 24

6 55440 95040 59400 26400 7920 1440 120

7 1235520 2162160 1441440 720720 262080 65520 10080 720

8 32432400 57657600 40360320 22014720 9172800 2822400 604800 80640 5040

9 980179200 1764322560 1283143680 748500480 345461760 123379200 32901120 6168960 725760 40320

10 33522128640 60949324800 45711993600 28130457600 14065228800 5626091520 1758153600 413683200 68947200 7257600 362880

Table 4.2: The values of the first ten coefficients Cml
def
= m!

2m(2m−1)!
Aml. In the integral, these are further scaled by factors of δi/i!(m−i)!,

so that only the integrals associated with small l and i contribute significantly to the integral.

m \ l 0 1 2 3 4 5 6 7 8 9 10

1 1.000000E+00 1.000000E+00

2 5.000000E-01 6.666667E-01 1.666667E-01

3 2.500000E-01 3.750000E-01 1.500000E-01 2.500000E-02

4 1.250000E-01 2.000000E-01 1.000000E-01 2.857143E-02 3.571429E-03

5 6.250000E-02 1.041667E-01 5.952381E-02 2.232143E-02 4.960317E-03 4.960317E-04

6 3.125000E-02 5.357143E-02 3.348214E-02 1.488095E-02 4.464286E-03 8.116883E-04 6.764069E-05

7 1.562500E-02 2.734375E-02 1.822917E-02 9.114583E-03 3.314394E-03 8.285985E-04 1.274767E-04 9.105478E-06

8 7.812500E-03 1.388889E-02 9.722222E-03 5.303030E-03 2.209596E-03 6.798757E-04 1.456876E-04 1.942502E-05 1.214064E-06

9 3.906250E-03 7.031250E-03 5.113636E-03 2.982955E-03 1.376748E-03 4.916958E-04 1.311189E-04 2.458479E-05 2.892328E-06 1.606849E-07

10 1.953125E-03 3.551136E-03 2.663352E-03 1.638986E-03 8.194930E-04 3.277972E-04 1.024366E-04 2.410274E-05 4.017123E-06 4.228550E-07 2.114275E-08



Chapter 5

Numerical implementation of

mode-matching

Prior to this work the software available for the modelling of the Planck multi-mode

horns had been the code developed by Murphy at the National University of Ireland

Maynooth, [43], and later versions that retained the same computational core. To

make a serious attempt at the broad band modelling of the Planck multi-mode pix-

els, from the cavity to the radiating aperture, and to be able both to derive realistic

broad band beam patterns and to investigate the spectral properties of the scatter-

ing within the structure, new and much more efficient software was required. At

the most trivial level the formulae for the scattering coefficients used in the original

code and given in [43], [14] and [25] needed to be written for efficient computation.

Doing so would give improved accuracy, but only minor gains in speed. The form of

the scattering coefficient equations that have been used here are those given in equa-

tions (4.2.3) and (4.2.4). A significant gain in the speed of computation would only

be achieved with a complete restructuring of the code and new algorithms. At the

same time it had become evident that whatever code was written it needed to have

built into it run-time checks on the results at every scattering step. Checks were

needed for numerical stability of the matrix operations because these can become

ill conditioned; without stability checks the matrix operations could become close

to being numerically singular without the code failing. Further checks were needed

118
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to ensure that the model remained physically realistic at every step. A physically

realistic model requires a model space of sufficient dimension to account for essen-

tially all power at all scattering steps so that the finite dimension of the model does

not lead to significant information loss. In either case, without suitable run-time

checks the computer will produce output that can appear to be a valid electric field

structure but is physically unrealistic; sometimes wildly unrealistic.

The computational methods described here exploit the relative simplicity of the

scattering equations as written in matrix (3.3.2) over the familiar matrix equations

(3.2.10). The aim is both speed and accuracy gains over straightforward coding of

the matrix components in any of the forms given in equations (3.3.1). The gains fall

into two kinds: major gains in both speed and accuracy, and minor gains in speed.

Both are discussed because the long term aim (beyond the scope of this work) is

to produce code that can be used for broad-band optimisation of complex systems:

systems like the Planck multi-mode horns, smooth walled or hybrid equivalents, and

more general structures. In all of the sections describing the computational scheme

the general case is covered, applicable to all azimuthal orders. For order zero the

off diagonal block PME is identically zero which considerably simplifies the scheme,

a simplification that is exploited by writing a special set of algorithms to handle

the order zero case. Since the modifications to what follows are obvious they are

not discussed further, but with their implementation the azimuthal order zero case

takes half the computation time of the other orders.

5.1 Preliminaries: computational error

The major problem with any complex numerical computation is that there are a

plethora of sources of error that will accumulate and render the computation invalid

if they are not controlled or detected. Furthermore, it is useful to be able to estimate

the overall error in the computed result so that validity of the result can be judged.

In the modelling of scattering in centred, simply connected cross-sectional corrugated

waveguides for which there exist analytic solutions to the expansion of the fields in a
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waveguide section, the main sources of error are, in addition to the basic problems of

finite precision arithmetic and the density of representable numbers, (a) truncation

of the operators P , Q, R and the Sij to finite size, (b) the errors inherent in the

formation of matrix products and, most particularly, in (c) the solution of linear

systems to which the entire computational scattering problem reduces.

Accurate numerical solution of systems of equations such as (3.2.13), (3.3.1) and

(3.3.2) is predicated upon the solution of equations of the type S = A+BC−1D with

low relative error. For the Planck 857 GHz horn there are 2314 scattering junctions

in the full assembly model. Assume that the S-matrix at each junction is to be

presented in the form (3.3.2). Then if we proceed näıvely, at each junction there

will be the following equations to solve in addition to the formation of P , Q and R:

G = Q−1P, K = R̄−1P †, KG, S11 = (I+KG)−1(I−KG), S12 = (I+S11)K,

and so on. The calculation of G, K, and KG is trivial, as is the calculation of S12,

S21 and S22 once S11 is known. However, the computation of S11, and of the many

systems of equations of type A−1B at each of the 2313 scattering products, has to

be performed with extreme care.

Standard numerical analysis of the errors in solutions to linear systems, [32][36], is

as follows: Given matrices A ∈ GL (n; C) and B = [b1 · · ·bn] ∈ M(n; C) the problem

is to solve the system of n linear equations Axj = bj simultaneously to obtain

X = [x1 · · ·xn] = A−1B. If the true solution to Ax = b is xt and the calculated

solution is xc, then the residual is xr = A(xt−xc). Denote compatible matrix and

vector norms by ‖·‖, then the relative error for which estimates are required is defined

to be ‖xr ‖/‖xt ‖, while the norm compatibility condition ‖Ax ‖ ≤ ‖A‖·‖x ‖ gives

1

‖A‖ · ‖A−1‖ · ‖Axc− b ‖‖ b ‖ ≤ ‖xt−xc ‖
‖xt ‖

≤ ‖A‖ · ‖A−1‖ · ‖Axc− b ‖‖ b ‖ .

Defining ε = ‖Axc− b ‖/‖ b ‖ and the condition number to be κ(A) = ‖A‖ · ‖A−1‖,
the relative error is bounded by

ε

κ(A)
· ‖xt ‖ ≤ ‖xr ‖ ≤ εκ(A) · ‖xt ‖.

If κ(A) ∼ 1, then ε would be a true estimate of the relative error, but if κ(A) ≫ 1,

then ε may still be small whilst the true relative error is large. In that case Ax = b
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may be ill conditioned and A be close to singular. This is a condition that can

occur in the modelling of waveguides, particularly smooth walled guides, when small

radial steps arise and the scattering coefficients at a junction are calculated with

the standard numerical presentation of the equations (for example, using equations

(4.2.3-A and D) and (4.2.4-A and D) instead of the recurrence relations that will

be given in subsections 5.2.1, 5.2.2 and 5.2.3 below. Note that this is numerical

singularity, not analytic, and has no physical meaning.

The measure of closeness to singularity that is used in the numerical modelling

of the waveguides is the reciprocal condition number

1

κ(A)
= min {‖A− B‖/‖A‖ : B singular} . (5.1.1)

With computational errors the attempt to solve Ax = b will have lead to the

solution of (A + E)x = b for some error matrix E and, if the reciprocal condition

number is very small, then A + E is close to singular. There is a general rule of

thumb [19] that says that if (i) ð is the number of decimal places in the computation,

(ii) κ(A) ∼ 10k, and (iii) A is correctly scaled, then the result of the computation

will be accurate to approximately ð− k significant figures. (Correctly scaled means

solve (DrADl)D
−1
l x = Dr b for well chosen diagonal matrices Dr and Dl.)

The following lemma is given in [32]: Denoting the floating point operations on

two real numbers by fl( · ), if, for floating point numbers with mantissa d1 · · · dm the

floating point inner product (at the core of matrix multiplication)

fl

[
n∑

i=1

aibi

]

= fl

[

fl

[
n−1∑

i=1

aibi

]

+ fl(anbn)

]

,

is calculated with rounding, and if n · 101−m ≤ 1, then for any δ such that

|δa1| ≤ n|a1| · 101−m and |δai| ≤ (n− i+ 2)|ai| · 101−m

for all i = 1, . . . , n, then the floating point and true values are related by

fl

[
n∑

i=1

aibi

]

=
n∑

i=1

(1 + δ)aibi.

This is useful because it says that the computation cannot distinguish between

vectors a and aδ with |a |/(1 + δ) ≤ |aδ | ≤ (1 + δ)|a |. Thus the |δ|/(1 − |δ|)
neighbourhood of vectors surrounding the true a give the same matrix products.
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5.2 Numerically stable forms of ΠMM and ΠEE

For small step sizes, used for example in the modelling of smooth walled horns, or

more generally if either pnk/pnm ≃ a/b or qnk/qnm ≃ a/b at a junction, then the

scattering equations (4.2.3-A and D) and (4.2.4-A and D) will become numerically

unstable. In any horn design optimisation process the radii a and b have to be

free variables and to fragment the feasible domain for solutions by bounding a/b

away from all possible ratios pnk/pnm and qnk/qnm would destroy the optimisation

search. Thus, for both routine waveguide analysis and optimisation the ΠMM and

ΠEE component equations need to be rewritten to render all the terms completely

numerically stable. Taking the example of ΠMM , at the level of the Lommel integrals

it is clear that, in the limit as pnm/b→ pnk/a, the Lommel integral of the first kind

becomes a Lommel integral of the second kind. In the development of the equations

for scattering simulations the limit is undefined and the equations for electric-electric

and for magnetic-magnetic scattering are numerically unstable close to the numerical

singularity.

The limiting value as pnm/b− pnk/a→ 0 is found by writing ε =
pnm
b

− pnk
a

ρ

pnm

Jn

(pnma

b

)

ρ2 −
(
pnk
pnm

)2 =
pnm
ab

·
Jn

(pnma

b

)

(pnm
b

)2

−
(pnk
a

)2 =
pnm
ab

· Jn(pnk + aε)

ε

(
2pnk
a

+ ε

) , (5.2.1)

which, since both numerator and denominator tend to zero as ε → 0, takes the

limiting value

− a2

2pnk
Jn+1(pnk) (5.2.2)

when pnm/b = pnk/a, by l’Hôpital’s rule. This could also have been obtained from

the Taylor series expansion of Jn(pnkx + xε) in the Lommel integral of the first

kind and taking the limit to obtain the Lommel integral of the second kind. For

numerical simulation when |ε| ∼ 0, what is required is a Padé approximation or a

series expansion of the right hand side of equation (5.2.1) and an efficient means of

evaluating it.

The solution adopted here is to expand Jn(pnma/b) as a Taylor series about
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Jn(pnk): Since Jn(pnk) = 0, write

Jn(pnk + aε)

ε

(
2pnk
a

+ ε

) =
a2

2pnk + aε
·
∑

m∈N

(aε)m−1

m!
J (m)
n (pnk). (5.2.3)

Two methods of solution have been found, and both are given here: The first is the

product of a polynomial with coefficients that are Bessel functions of the first kind

and integer order with a polynomial approximation to Jn(x)/x for small |x|; the sec-

ond is a four term recurrence relation. Both converge stably to −a2Jn+1(pnk)/2pnk.

5.2.1 Polynomial approximation to ΠMM

A very accurate polynomial approximation to PMM is described. The equivalent

approximation for PEE will not be given since its derivation is essentially the same.

Consider the generating function for the Bessel functions [1][6]

g(x, t) = e(t−1/t)(x/2) =
∑

n∈Z

Jn(x)t
n.

Differentiating m times with respect to x gives

∂l

∂xl
g(x, t) =

[
1

2

(

t− 1

t

)]l

g(x, t)

=
∑

n∈Z

1

2l

(

t− 1

t

)l

tnJn(x) =
∑

n∈Z

tnJ (l)
n (x).

Rewriting this equality as

∑

n∈Z

tnJ (l)
n (x) =

1

2l

(

t− 1

t

)l∑

l∈Z

tlJl(x) (5.2.4)

and equating powers of t gives the derivatives as polynomials with coefficients that

are Bessel functions of the first kind and integer order which can be written out in

a table with the following pattern: up to a factor of 1/2l,

−4 −3 −2 −1 0 1 2 3 4

J
(1)
n = Jn−1 −Jn+1

J
(2)
n = Jn−2 −2Jn Jn+2

J
(3)
n = Jn−3 −3Jn−1 3Jn+1 −Jn+3

J
(4)
n = Jn−4 −4Jn−2 6Jn −4Jn+2 Jn+4

: · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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and so on, the coefficient for Jn−l+2k, 0 ≤ k ≤ l, in the row for J
(l)
n being (−1)k

(
l

k

)

.

From equations (5.2.3) and (5.2.4) it follows that the coefficient for the l th row

in the table is (aε)l−1/2ll! and since the Bessel functions are to be evaluated at the

zero of Jn, the central column entries are all zeros. Furthermore, the coefficients of

the terms Jn+l and Jn−l are related by the factor (−1)l. Observing that for all l ∈ N

the coefficients of the sum of all terms [Jn−l(pnk) + (−1)lJn+l(pnk)] is

∞∑

j=0

(−1)j
(aε)2j+l−1

22j+l(2j + l)!

(
2j + l

j

)

=
1

aε
·

∞∑

j=0

(−1)j

j!(j + l)!

(aε

2

)l+2j

,

it is seen that the sum of derivatives in equation (5.2.3) can be obtained by summing

down the columns of the table giving

∑

l∈N

(aε)l−1

l!
J (l)
n (pnk) =

∑

l∈N

[
(

Jn−l(pnk) + (−1)lJn+l(pnk)
)

× 1

aε
·

∞∑

j=0

(−1)j

j!(j + l)!

(aε

2

)l+2j
]

=
∑

l∈N

(

Jn−l(pnk) + (−1)lJn+l(pnk)
)Jl(aε)

aε
.

As written, this equation is just as numerically unstable as the equation it was

designed to replace, but for aε ≪ 1 the term Jl(aε)/aε can be evaluated as a

polynomial approximation to the series by writing

hl(ae) =

∞∑

j=0

(−1)j
(aε)2j+l−1

22j+lj!(j + l)!
≈ (aε)l−1

2ll!

[

1 − (aε)2

4(l + 1)

(

1 − (aε)2

4 · 2(l + 2)

(

· · ·

· · ·
(

1 − (aε)2

4 · (j − 1)(l + j − 1)

(

1 − (aε)2

4 · (j)(l + j)

))

· · ·
))]

.

(5.2.5)

Denote a truncation of this series (to any chosen number of terms) by h̄l, then the

polynomial approximation is then given by

Jn

(pnma

b

)

(pnm
b

)2

−
(pnk
a

)2 ≈
N∑

l=1

(
Jn−l(pnk) + (−1)lJn+l(pnk)

)
h̄l(ae). (5.2.6)

In the evaluation of Jn(x) the numerical method requires a downward recurrence

of length N = 2(n +
√

256n/2), where the arithmetic is integer arithmetic. As
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a conservative estimate for the limit, N , in equation (5.2.6) and the number of

terms, j, in equation (5.2.5), the value N just given and the value and j = 5 will

suffice to give the same accuracy as the Bessel function routine providing |aε| < 1.

Thus, since evaluation of Jn(x) by downward recurrence requires the evaluation of

J0(x), · · · , JN(x) (the correction to the first approximation being done at J0(x) and

propagated up to Jn(x), see [57]) the additional cost is only the minor extension of

the correction propagation up to JN(x).

5.2.2 Four term recurrence relation for ΠMM

The Bessel functions of the first kind and integer order are defined by the relation

x2J ′′
n(x) + xJ ′

n(x) + (x2 − n2)Jn(x) = 0. (5.2.7)

Substituting x = pnk gives J ′′
n(pnk) = −J ′

n(pnk)/pnk = Jn+1(pnk)/pnk. Repeated

differentiation of equation (5.2.7) gives the higher derivatives in terms of the lower:

J (3)
n (x) = −3

x
J ′′
n(x) −

[

1 − (n2 − 1)

x2

]

J ′
n(x) −

2

x
Jn(x) (5.2.8-A)

and for all m ≥ 0

J (m+4)
n (x) = −(2(m+ 2) + 1)

x
J (m+3)
n (x) −

[

1 − (n2 − (m+ 2)2)

x2

]

J (m+2)
n (x)

− 2(m+ 2)

x
J (m+1)
n (x) − (m+ 1)(m+ 2)

x2
J (m)
n (x). (5.2.8-B)

Substituting x = pnk eliminates the Jn(x) terms in J
(3)
n (pnk) and J

(4)
n (pnk). An

attempt to find a closed form solution to the sum in equation (5.2.3) as a multiple

of Jn+1(pnk)/pnk gives a leading term of Jn+1(pnk)[1− ln(1− aε)], but there remains

an infinite sequence of polynomials, the truncation of which would not lead to good

numerical approximation. However, using equations (5.2.8) it is now immediately

clear that the sum can be easily evaluated in a loop.

From the coefficients of J
(m+l)
n (x) in equation (5.2.8-B), evaluated at x = pnk,

define the following functions of an integer argument: for azimuthal and radial orders



CHAPTER 5. NUMERICAL IMPLEMENTATION OF MODE-MATCHING 126

n and k respectively

Mn
0,k(m) =

(m+ 1)(m+ 2)

p2
nk

, Mn
1,k(m) =

2m+ 4

pnk
,

Mn
2,k(m) =

[

1 − n2 − (m+ 2)2

p2
nk

]

, Mn
3,k(m) =

2m+ 5

pnk
.

Dividing the sum in equation (5.2.3) by Jn+1(pnk) gives an infinite order polynomial

in pnk and aε with real coefficients; so define

T nm,k(aε) =
(aε)m−1

(m)!

J
(m)
n (pnk)

Jn+1(pnk)
, for all m ≥ 1.

The terms in the loop are given by the sequence of constants and the following four

term recurrence relation: evaluating the first four T nm,k gives

T n1,k(aε) = −1, T n2,k(aε) =
aε

2pnk
,

T n3,k(aε) =
(aε)2

6

(

1 − n2 + 2

p2
nk

)

, T n4,k(aε) =
(aε)3

12pnk

(
3(n2 + 1)

p2
nk

− 1

)

,

and for all m ≥ 1

T nm+4,k(aε) = − aε

m+ 4

{

Mn
3,k(m)T nm+3,k(aε) +

aε

m+ 3

[

Mn
2,k(m)T nm+2,k(aε)+

aε

m+ 2

(

Mn
1,k(m)T nm+1,k(aε) +

aε

m+ 1
Mn

0,k(m)T nm,k(aε)
)]
}

.

(5.2.9)

The exact and numerically stable form for the ratio in the components of P n
MM ,

intended for use when |aε| = |pnma/b− pnk| ≪ 1 is given by

Jn (pnma/b)
(pnm

b

)2

−
(pnk
a

)2 =
a2Jn+1(pnk)

2pnk + aε
·
∑

m∈N

T nm,k(aε), for ε =
pnm
b

− pnk
a
. (5.2.10)

Since pnk > n for all n and k, it follows that T nm,k ∼
(

1 +
m2

p2
nk

)
(aε)m−1

m!
, and the

series therefore converges faster than (aε)m−1(m2+n2)/[n2m!] and the fifth term (the

firsts term in the loop) will be of order 10−10 or smaller for aε ≤ 10−2. Convergence

is therefore extremely rapid. In practise, with the threshold aε ≤ 10−2 the loop

exits after a single evaluation because 16 decimal place precision has already been

achieved.

The recurrence relation will converge rapidly at least for 0 < |aε| . 10 with care-

ful coding, but there is no gain in computational efficiency over direct computation

of the right hand side when |ε| ≫ 0; it is, however, correct for all values.
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5.2.3 Four term recurrence relation for ΠEE

The same method is used to find the asymptotic behaviour of the terms in P n
EE

in the limit as ε = qnm/b − qnk/a → 0. As above, using l’Hôpital’s rule and the

recurrence relation (5.2.7),

J ′
n(qnma/b)

(qnm
b

)2

−
(qnk
a

)2 =
J ′
n(qnk + aε)

ε

(
2qnk
a

+ ε

)
ε→0−−→ − a2

2qnk

(

1 − n2

q2
nk

)

Jn(qnk). (5.2.11)

The left hand side of this equation expands as a Taylor series giving

J ′
n(qnk + aε)

ε
(

2qnk

a
+ ε
) =

a2

(2qnk + aε)

[(
n2

q2
nk

− 1

)

Jn(qnk) +

∞∑

m=2

(aε)m−1

m!
Jn(qnk)

(m+1)

]

.

(5.2.12)

For all m ∈ N define the functions Hn
m,k(aε) =

(aε)m−1

(m)!

J
(m+1)
n (qnk)

Jn(qnk)
, and the follow-

ing functions for all m ∈ Z:

En
0,k(m) = −(m+ 2)(m+ 3)

q2
nk

, En
1,k(m) = −2m+ 6

qnk
,

En
2,k(m) =

[
n2 − (m+ 3)2

q2
nk

− 1

]

, En
3,k(m) = −2m+ 7

qnk
.

Substituting from equations (5.2.7) and (5.2.8), the evaluation of the series in the

right hand side of equation (5.2.12) is given by a loop over m with initialisation

functions and four term recurrence relation

Hn
1,k(aε) =

n2

q2
nk

− 1, (5.2.13-A)

Hn
2,k(aε) =

aε

2qnk

(

1 − 3n2

q2
nk

)

(5.2.13-B)

Hn
3,k(aε) =

aε

3

[

En
3,k(−1)Hn

2,k(aε) +
aε

2

[
En

2,k(−1)Hn
1,k(aε) + En

0,k(−1)
]]

,

(5.2.13-C)

Hn
4,k(aε) =

aε

4

[

En
3,k(0)Hn

3,k(aε) +
aε

3

(

En
2,k(0)Hn

2,k(aε) +
aε

2
En

1,k(0)Hn
1,k(aε)

)]

,

(5.2.13-D)

and for all m ≥ 1

Hn
m+4,k(aε) =

aε

m+ 4

[

En
3,k(m)Hn

m+3,k(aε) +
aε

m+ 3

{

En
2,k(m)Hn

m+2,k(aε)

+
aε

m+ 2

[

En
1,k(m)Hn

m+1,k(aε) +
aε

m+ 1
En

0,k(m)Hn
m,k(aε)

]}] (5.2.14)
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Thus, the exact and numerically stable form for the ratio in the components of P n
EE

intended for use when |aε| = |qnma/b− qnk| ≪ 1 is given by

J ′
n (qnma/b)

(qnm
b

)2

−
(qnk
a

)2 =
a2Jn(qnk)

2qnk + aε
·
∑

m∈N

Hn
m,k(aε). (5.2.15)

Just as the recurrence relation for Jn(pnma/b)/ ((pnm/b)
2 − (pnk/a)

2) is stable for all

aε and converges rapidly for 0 ≤ aε . 10, equation (5.2.15) is also stable and rapidly

convergent over the same range. From the point of view of numerical efficiency,

however, the recurrence relations should only be used when |aε| . 0.01 to ensure

that there is no loss of precision.

5.2.4 Using the recurrence relations in scattering code

There are basically two ways that the recurrence relations of the previous two sub-

sections, or the polynomial approximation of subsection 5.2.1 and its ΠEE equivalent

can be incorporated into scattering code. The most obvious way is to calculate the

ε and to have set a threshold below which the evaluation of the components of PMM

or PEE uses the recurrence relations instead of the standard algorithms. An alter-

native would be to always use the standard algorithm and proceed with the matrix

operations as described in this chapter. If the horn geometry (step size ratio) gives

rise to numerical instability and any junction the high threshold for numerical sta-

bility (the chosen threshold for the reciprocal condition number 1/κ(A) of equation

(5.1.1) and the forward and backward error estimates of subsection 5.4.2) will de-

tect the problem. Then, instead of aborting with a failure report, the code could

reevaluate the operator matrices and repeat the calculation. Only then, if there was

still numerical instability, would the code abort.

5.2.5 Limiting cases as a→ b

For numerical modelling of smoothed walled horns the particular case a → b must

be stable and return the identity matrix in the limit.
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The form of equation (4.2.4-C) for the terms (Πn
ME)mk is numerically stable and

tends to zero with both m and k. The same is true for equations (4.2.4-A and D)

for indices m 6= k and |a − b| ≪ minm,k |qnm − qnk| or |a− b| ≪ minm,k |pnm − pnk|
respectively. As in equation (4.3.1) the limit is determined simply by the limiting

values J
′

n(qnma/b) → 0 and Jn(pnma/b) → 0. Thus, all off diagonal entries in the Π

matrix tend stably to zero.

For the case m = k equation (5.2.15), or (5.2.11) with equation (4.2.4-A), gives

2αnk · J ′
n

(qnma

b

)

ab|Jn (qnm)| ·
[(qnm

b

)2

−
(qnk
a

)2
]

[(

1 − n2

q2
nk

)(

1 − n2

q2
nm

)]− 1
2

lim
a→b−−→ 2αnk · Jn(qnk)

a2|Jn(qnk)|
(

1 − n2

qnk

) · a
2

2

(

1 − n2

qnk

)

= 1

(5.2.16)

by definition of αnk . Likewise, equation (5.2.10), or (5.2.1) combined with equation

(4.2.4) gives, in the limit pnk/pnm → a/b,

− a2Jn(pnk)

2 pnk
· 2 βnk pnk
a2|Jn(pnk)|

= − sgn(Jn(pnk)) β
n
k = 1 (5.2.17)

by definition of βnk . Thus, for all indices m and k, the real part of the matrix Π

will converge uniformly and stably to the identity matrix as a → b when using the

recurrence relations (5.2.10) and (5.2.15), as was required, but not with the standard

forms of the equations.

5.3 Formulation of the coding problem

For efficient modelling of the horns the structure of the operator matrices needs to be

exploited. What has to be avoided above all else is the use of matrix multiplication

and inversion where not absolutely essential and the use of complex matrices where

families of real matrices can be used in their place. It will be shown that, while

matrix multiplication cannot be avoided, the size of the problem can be reduced,

and that matrix inversion is completely avoidable.
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For a system of nE electric and nM magnetic modes, a literal approach to the

solution of S11 = (R̄+P †Q−1P )−1(R̄−P †Q−1P ) requires 4(nE+nM)3 64 bit complex

multiplications; treating the matrices K and G as complex matrices and solving

(I+KG)S11 = (I−KG) reduces this to 2(nE +nM)3. Since complex multiplication

is performed on a machine with fast multiplication with four real multiplications,

one addition and one subtraction, if the structure of the matrices K and G can be

exploited to eliminate the need for any complex multiplication in forming KG, the

size of the problem can be reduced further from 8(nE +nM)3 real multiplications to

5(nE + nM)3. To do so requires analysis of the structure of the matrices K and G.

For each azimuthal order writing the matrices P in terms a purely real matrix,

Π, and the admittance factors, gives an array of the form



PEE 0

PME PMM



 =




Q∗
E(b)ΠEE 0

Q∗
M(b)ΠME Q∗

M(b)ΠMM



 . (5.3.1)

Pre-multiplying P by Q−1 and P † by R̄−1 gives



GEE 0

GME GMM



 =




Q−1
E (b)Q∗

E(b)ΠEE 0

Q−1
M (b)Q∗

M(b)ΠME Q−1
M (b)Q∗

M(b)ΠMM



 , (5.3.2-A)




KEE KEM

0 KMM



 =




[QE(b)ΠEER

∗
E(a)]T [QM(b)ΠMER

∗
E(a)]T

0 [QM (b)ΠMMR
∗
M(a)]T



 , (5.3.2-B)

where MT denotes the transpose of a matrix M . For free space or loss-less dielectric

filled guides the matrix G is purely real because the components, z, of Q−1Q∗ have

the form e2i arg(z) which has value +1 for propagating modes and −1 for evanescent

modes; thus, (GIJ)mk = ±(ΠIJ)mk. In the operator matrix K the products of the

admittance and impedance gives purely real coefficients where either the admittance

to the left and impedance to the right of the junction are both real, or both are pure

imaginary; they give a pure imaginary coefficient only where either the left side

or right side coefficient is imaginary. The result is that all three of the matrices

KIJ have a block structure of the form

2

4

A B

C D

3

5 where the sub-matrices A, B, C and

D are generally rectangular and of shape particular to the submatrix of K, with

components aij, dij ∈ R and bij , cij ∈ iR, or general complex if the material filling

the waveguide at either junction gives a complex ratio Za/Zb. The dimensions and
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shape of the submatrices in K is determined by the admittance-impedance products

in equation (5.3.2-B). Denoting the waveguide material to the left and right of the

junction by Za and Zb respectively, these are

(ZE(a))mm(YE(b))ll = (Za/Zb) ·
[(

1 − (qnl/kb)
2
)
/
(
1 − (qnm/ka)

2
)] 1

2 (5.3.3-A)

(ZE(a))mm(YM(b))ll = (Za/Zb) ·
[(

1 − (qnm/ka)
2
) (

1 − (pnl/kb)
2
)]− 1

2 (5.3.3-B)

(ZM(a))mm(YM(b))ll = (Za/Zb) ·
[(

1 − (pnm/ka)
2
)
/
(
1 − (pnl/kb)

2
)] 1

2 . (5.3.3-C)

All submatrices in both K and G are therefore dimensionless.

For fixed wavenumber, k, write

q(a,m) = |1 − (qnm/ka)
2| 12 , p(b, l) = |1 − (pnl/kb)

2| 12

etc. Then, using the logical AND symbol, ∧, up to a factor of Za/Zb:

(ZE(a))mm(YE(b))ll =







iq(b, l)/q(a,m) : (ka < qnm) ∧ (kb > qnl)

−iq(b, l)/q(a,m) : (ka > qnm) ∧ (kb < qnl)

q(b, l)/q(a,m) : otherwise

(5.3.4-A)

(ZE(a))mm(YM(b))ll =







−1/ (q(a,m) · p(b, l)) : (ka < qnm) ∧ (kb < pnl)

1/ (q(a,m) · p(b, l)) : (ka > qnm) ∧ (kb > pnl)

−i/ (q(a,m) · p(b, l)) : otherwise

(5.3.4-B)

(ZM(a))mm(YM(b))ll =







ip(a,m)/p(b, l) : (ka < pnm) ∧ (kb > pnl)

−ip(a,m)/p(b, l) : (ka > pnm) ∧ (kb < pnl)

p(a,m)/p(b, l) : otherwise

(5.3.4-C)

Note ka = qnm would imply infinite impedance in the waveguide to the left of the

junction, while kb = pnl would imply zero impedance in the waveguide to the right

of the junction. Usually Za = Zb (i.e. the same matrial filling the waveguide at

either side of the junction) in which case the factor plays no rôle in the scattering

operation. Otherwise the ratio introduces an additional, possibly complex, factor. If

the factor is real it presents no impediment to increasing efficiency in the numerical
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implementation of scattering models; if complex, K will be complex at every locus.

Nevertheless, the computation of the S-matrix for the junction can still make full

use of the stratagem outlined in what follows, though there will be an additional

order N2 complex multiplication of the array KG by the constant factor Za/Zb.

5.4 Computation of the S-matrix at a junction

The computation of the full S-matrix at a junction will return a complex matrix that

is first scattered with the system S-matrix up to the current junction and then phase

slipped to the following junction. There are three steps for the computation if the

S-matrix once the relatively trivial task of obtaining K and G has been completed:

firstly calculation of the products (I ±KG); secondly the calculation of S11; finally

calculation of S12, S21 and S22. Note: in the presentation that follows it has been

assumed that the number of TE modes is not greater than the number of TM modes

in the model; if that is not the case then S22 is calculated first and all other SIJ

calculated from it in the obvious modifications to the procedure given below.

5.4.1 Computing (I ±KG)

Fix the frequency, hence the wavenumber k, and fix the azimuthal order, n. At any

given junction the radii a and b are fixed which determines the critical parameter

ρ = a/b. The three sets of three equations in (5.3.4) are three-valued multiplication

tables on the sets {pnm} and {qnm} with set product ∩ (equivalent to logical ∧):

the values ka and kb partition the sets {pnm} and {qnm} giving a four place table,

each product in the table corresponding to a submatrix in

2

4

A B

C D

3

5 with value ±1 on

the diagonal blocks of A and D and ±i for B and C. The aim here is to replace the

complex submatrices in K with real matrices, form real products equivalent to each

of KEEGEE, KEMGME, KEMGMM , KMMGME and KMMGMM , and then to form

the complex arrays I ±KG.

To follow the above strategy with minimum operation count allocate memory
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for the matrices as follows: Define X = (I +KG) and Y = (I −KG) and allocate

complex arrays X11(1 : nE , 1 : nE), X12(1 : nE , 1 : nM ), X21(1 : nM , 1 : nE) and

X22(1 : nM , 1 : nM), and the equivalent submatrices for matrix Y . Calculate the

size to wavelength scales ka and kb and search for qa = max{m : ka < qnm},
qb = max{m : kb < qnm} and pa = max{m : ka < pnm}, pb = max{m : kb < pnm}.
The multiplication table for equation (5.3.4-A and C) is

2

4

1 −i

i 1

3

5. Then KG is stored

in X by assigning to the j th column of X11 = KEEGEE + KEMGME, for all j ∈
{1, · · · , nE}

for i = 1, qa

(X11)ij =

[
qb∑

m=1

(KEE)im(GEE)mj −
pb∑

m=1

(KEM)im(GME)mj

]

− i

[
nE∑

m=qb+1

(KEE)im(GEE)mj −
nM∑

m=pb+1

(KEM)im(GME)mj

]

(5.4.1-A)

for i = qa + 1, nE

(X11)ij =

[
nE∑

m=qb+1

(KEE)im(GEE)mj +

nM∑

m=pb+1

(KEM)im(GME)mj

]

+ i

[
qb∑

m=1

(KEE)im(GEE)mj +

pb∑

m=1

(KEM)im(GME)mj

]

(5.4.1-B)

The other three submatrices are simpler: for X12 = KEMGMM the sums for the

columns j ∈ {1, · · · , nM} are

for i = 1, qa

(X12)ij = −
pb∑

m=1

(KEM)im(GMM)mj − i

nM∑

m=pb+1

(KEM)im(GMM)mj (5.4.2-A)

for i = qa + 1, nE

(X12)ij = −
nM∑

m=pb+1

(KEM)im(GMM)mj + i

pb∑

m=1

(KEM)im(GMM)mj (5.4.2-B)

Equivalent sums are obtained for X21 = KMMGME and X22 = KMMGMM .

There follows the (nE+nM)2 copies to fill Y : Y11 = −X11 etc. then the (nE+nM )

additions for each of Y → Y + I, and X → X + I.

The total cost, counted in terms of 64-bit real operations, required to fill the
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arrays X = (I +KG) and Y = (I −KG), given K and G, for the method outlined

above and for multiplication of a real matrix G by a complex matrix K, ignoring

operations common to both methods, are as follows. For the above method, 2(n3
E +

2n2
EnM+nEn

2
M+n3) multiplications and 2(n3

E+nEnM (nE+nM−1)−n2
E−n2

M+n3
M )

additions or subtractions are required; using a complex array K, 4(n3
E + 2n2

EnM +

nEn
2
M + n3) multiplications and n3

E + n2
E(nM − 2) + n2

M(2nE − 1) − 2nEnM + n3
M

additions. On a fast floating point machine real addition and real multiplication,

performed at the same precision, both take a single clock cycle; on such machines

the net gain from using real K is (nE + nM)2 + n2
M (1 − nE) clock cycles.

When modelling the Planck 545GHz and 857GHz horns the total number of

scattering junctions is roughly 2 × 103. For typical model sizes the clock cycle

reduction per junction is 7×106, so the cycle saving for the horn assembly for each

frequency is of the order 1.4 × 1010. That is about five seconds per frequency on

a 3000MHz processor. The gain would not merit the time spent coding for simple

horns and models run at few frequencies, but for complex horn optimisation run at

many frequencies and hundreds of times, the coding effort is worthwhile. In studies

of the power transmission dependence on frequency in the horns, conducted over

one or two hundred frequency samples, the gain was noticeable. (Depending upon

how the program has been compiled to handle denormal numbers, the gain could

be much greater.)

The second place that using real K and a similar approach to the above to

computation of a matrix product is in the formation of S12 = (I + S11)K. There

(I +S11) is always complex but, at a modest cost in coding complexity, the product

(I + S11)K can be done entirely with real multiplication with a operation count

reduction of almost one half.

5.4.2 Computing the S-matrix

It is at this stage that the greatest gains can be made in the speed of computation

and in accuracy, and the procedure outlined in this section, and applied to the
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computation of the scattering product in the following section, is what made the

scattering studies for the Planck multi-mode horn assemblies a tractable problem.

The input are the eight complex submatrices of X = (I+KG) and Y = (I−KG)

from page 133 and the first stage output is to be S11 = X−1Y . As a matter of

principle in numerical work with arrays you never calculate A = B−1C by calculating

B−1 and then performing the multiplication unless that approach cannot be avoided.

Here there is no need to calculate any inverses or perform the very large complex

matrix multiplication X−1Y ; rather, the strategy is to solve the system of linear

equations XS11 = Y . To do so näıvely would only halve the time cost of solving for

X−1 and then X−1Y ; to do so efficiently gives far greater time savings.

In the following procedure the strategy is to exploit the structure of the arrays

X and Y to solve for S11. Alternatives would be to solve for S12 from X and K, or

to have computed (I ±GK) and a complex G to compute S21. The strategy would

be the same in all cases, but the sequence of calculations described here gives the

lowest total cost in CPU clock cycles at each junction.

Write X and Y as above and S11 =




S11 S12

S21 S22



. The systems of equations to

be solved are

X11 S11 +X12 S21 = Y11 (5.4.3-A)

X11 S12 +X12 S22 = Y12 (5.4.3-B)

X21 S11 +X22 S21 = Y21 (5.4.3-C)

X21 S12 +X22 S22 = Y22. (5.4.3-D)

Then, since X11 is square, equations (5.4.3-A and C) give the pair of simultaneous

equations in S11 and S21:

X21 S11 +(X21X
−1
11 X12) S21 = X21X

−1
11 Y11

X21 S11 + X22 S21 = Y21

=⇒ (X22 −X21X
−1
11 X12) S21 = Y21 −X21(X

−1
11 Y11).

Write H = X−1
11 X12 and A = X−1

11 Y11. The first problem is to solve X11H =

X12 for H and then X11A = Y11 for A. The method is to use equilibrated PLU
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decomposition of X11 followed iterative improvement (see [57]) and then by forward

and backward substitution to derive H and A. Here L and U are lower and upper

triangular matrices respectively and P is a permutation matrix. Equilibration helps

ensure numerical stability and the reciprocal condition number of the equilibrated

array, the pivot growth factor, and forward and backward error bounds can be

estimated. These checks, explained in the following paragraphs, are performed at

every junction and at every scattering product. Thus, the numerical stability of the

procedure can be checked at every step for every azimuthal order and the model

aborted if it approaches numerical singularity or the reciprocal condition number

indicates possible or actual instability.

A detailed account of the meanings of these error checking terms can be found

in [32]; a summary follows. Suppose that when solving for X in some linear system

AX = B the exact solution is X and the calculated solution is X̄; the forward error

is defined to be the estimate of the error bound on the columns of X̄ given by

max
j

∣
∣X̄kj −Xkj

∣
∣

maxk
∣
∣X̄kj

∣
∣
.

The estimated component-wise backward error bound is the smallest change in any

element of A or of B that would render the solution X̄ exact. The reciprocal condi-

tion number is a measure of the closeness to singularity of the system of equations

and was defined in equation (5.1.1). A good and stable model will be far from

singular (to machine precision) at every step.

The reciprocal pivot growth factor is the ratio of uniform norms ‖A ‖∞/‖U‖∞,

where A = PLU , P is the permutation matrix, L the lower triangular matrix and U

the upper triangular matrix of the decomposition. If ‖A ‖∞/‖U‖∞ ≪ 1 the stability

of the LU decomposition is poor and the computation should be aborted. The code

(SKITTER) written for the modelling of the Planck multi mode horns sets a high

threshold on both the reciprocal condition number and the reciprocal pivot growth

factor to catch any instability and ensure high numerical precision. For standard

corrugated horns no instability has ever been detected in models run with SKIT-

TER, but it is a simple matter to alter corrugated horn geometry files to give a

mechanically realistic horn that resulted in scattering operators close to singularity.
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Since the code was written as a research tool (rather than for commercial appli-

cations) it was written to abort on encountering any hint of numerical instability.

Mistakes in the horn geometry file have been caught by these stability checks, the

code reporting the junction number where the error occurred, step size, and so on.

In horn profile optimisation code, where the step size might want to go to zero,

it would be more useful to detect the instability and then to use the procedures

in section 5.2 to recalculate the operators P or Π, and then repeat the scattering

calculation at the step.

PLU decomposition only needs to be done once and is a step in the process of

finding an inverse matrix. Forward and backward substitution on an N ×N array

are processes of order 2N2/3 and LU decomposition is of order N3/3; thus, the cost

of computing H is of order n3
E . With the PLU factorisation already available from

the calculation of H , computing A = X−1
11 Y11 is of order 2n3

E/3. It will be used twice

more at a cost of 2n3
E/3. The total cost is then of order 3n3

E whereas computing the

inverse and using it three times would be a cost of order 5n3
E . (See reference [57] for

a discussion of the complexity of these operations.)

The solutions A and H give (X22 − X21H) S21 = Y21 − X21A with S21 to be

solved for. Let T = (X22−X21H). Again use PLU decomposition of T and solve for

S21. This decomposition of T is of order 2n3
M/3 and the result will be used twice.

From the equation X11 S11 = Y11−X12 S21, use the existing PLU decomposition

of X11 and values of X12 and S21 to solve for S11.

Equations (5.4.3-B and D) give the simultaneous equations to solve for S22:

X21 S12 +(X21X
−1
11 X12) S22 = X21X

−1
11 Y12

X21 S12 + X22 S22 = Y22

=⇒ (X22 −X21X
−1
11 X12) S22 = Y22 −X21(X

−1
11 Y12)

=⇒ T S22 = Y22 −X21(X
−1
11 Y12).

Again, the existing PLU decomposition of X11 is used to solve for B in X11B =

Y12 giving T S22 = Y22 − X21B which is solved for S22 using the existing PLU

decomposition of T . Finally, calculate S12 = B − H S22 = −H(I + S22) and the
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complete solution to S11 has been obtained. No operations of order greater than

max{n3
E , n

3
M} have been performed, and those operations are unavoidable matrix

multiplications.

With S11 computed the remainder of the components of the full scattering op-

erator S are computed in the following strict order:

X = I + S11, S21 = GX, S12 = XK, S22 = GS12 − I. (5.4.4)

The S-matrix then has the form given in equation (3.3.2). In equation (5.4.4) the

GX and GS12 are simple multiplication of a real matrix times a complex matrix

and requires no special coding; the product XK can be carried out by a procedure

similar to that followed in forming GK in §5.4.1 using the set multiplication tables

derived there. Note that if the impedance ratio Z = Za/Zb is a complex scalar, then

once S11 has been calculated it has to be multiplied by Z and the identity matrices

in equation (5.4.4) have to be replaced by ZI.

The relative complexity of the methods for calculating the S-matrix at a junction

described in this section and calculation directly from equations (3.3.2) are, counting

order N3 terms only: 8(nE + nM)3 from equations (3.3.2) provided no unnecessary

calculations are made, compared with 20n3
E/3 + 13n3

M/3 + 8n2
EnM + 6nEn

2
M for the

method above. Equating one clock cycle to one operation, the saving is approxi-

mately 4n3
E/3+12n2

EnM +18nEn
2
M +11n3

M/3 cycles. Thus, writing α = nM/nE , the

relative speed of identically compiled code to calculate the S-matrix at a junction

would be a factor in the range (1.846, 2.56] for α ∈ [1,∞), with greatest gains as

α → 1+.

5.4.3 Computation of the scattering product

Equations (3.2.13-A to D) define the scattering product between two S-matrices.

Once again the problem is to compute the product with the minimum of operations,

but this time all matrices are complex. Write equations (3.2.13) as C = A ⊙ B.

These equations are simply matrix products and sums with the exceptions of the



CHAPTER 5. NUMERICAL IMPLEMENTATION OF MODE-MATCHING 139

two terms (I−A22B11)
−1 and (I−B11A22)

−1, so that it is in the calculation of those

two terms that the efficiency can be obtained.

Observe that (I − B11A22)
−1B11 = B11(I − A22B11)

−1 so that the system of

equations can be rewritten as

C11 = A11 + (A12B11)(I − A22B11)
−1A21 (5.4.5-A)

C12 = (A12B11)(I − A22B11)
−1(B−1

11 B12) (5.4.5-B)

C21 = B21(I −A22B11)
−1A21 (5.4.5-C)

C22 = B22 +B21(I −A22B11)
−1(A22B12) (5.4.5-D)

Clearly the products involving (I − A22B11)
−1 must be solved, but the methods of

PLU factorisation from subsection 5.4.2 can be used. The only question mark is

over the efficiency of solving the term B−1
11 B12.

At any step in the modelling process the array B will be the most recent S-

matrix to have been calculated prior to the scattering product. The calculation of

D = B−1
11 B12 is to be done by solving B11D = B12, but that is has the form

B11D = (I +KG)−1(I −KG)D = B12 = (I +B11)K = 2(I +KG)−1K

=⇒ (I −KG)D = 2K. (5.4.6)

From §5.4.2, the components of Y = (I−KG) and of K are already in storage from

the calculation of B11, so the problem is to solve for D in Y D = 2K. The problem

here is smaller than the problem of solving for B11 because component KME = 0. It

is also a smaller problem than solving (I − B11A22)
−1B12 both for the same reason

and because of the saving of the order (nE + nM)3 matrix multiplication B11A22.

The problem is then to use the methods of §5.4.2 to solve for D21, D11, D22 and

D12, strictly in that order, from the set of equations

(Y22 − Y21Y
−1
11 Y12)D21 = −2Y21Y

−1
11 KEE

D11 = 2Y −1
11 KEE − Y12D21

(Y22 − Y21Y
−1
11 Y12)D22 = 2(KMM − Y21Y

−1
11 KEM)

D12 = 2Y −1
11 KEM − Y12D22.

(5.4.7)
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Finally, the solution to equations (5.4.5) follows essentially the same procedure as

given in 5.4.2.

In order to avoid excessive complexity of notation write

A22 =




AEE AEM

AME AMM



 , B11 =




BEE BEM

BME BMM



 , A21 =




A11 A12

A21 A22





and define X = (I −A22B11) so that

X11 = I − AEEBEE + AEMBME X12 = AEEBEM + AEMBMM

X21 = AMEBEE + AMMBME X22 = I − AMEBEM + AMMBMM .

Equation (5.4.5-A) then becomes C11 = A11 +A12B11X
−1A21, the solution of which

requires that first the solution, E say, to XE = A21 be found. To do so requires

solving (X22−X21X
−1
11 X12)E22 = X22 A22 −X21 A12 which is done by first finding the

PLU factorisation of X11, then solving for F in X11F = X12, and thereafter finding

the PLU factorisation of (X22 −X21F ). From E22 comes E12 = A12 −FE22. In like

manner solve for J in X22J = X21 and then (X11 − X12J)E11 = X11 A11 −X12 A21

followed by E21 = A21 −JE11. Once that has been done, with D from equations

(5.4.7) the solution to all of equations (5.4.5-A to D) is simply a matter of matrix

multiplication and addition, using the PLU factorisations of (X22 − X21X
−1
11 X12)

and of (X11 −X12J) = (X11 −X12X
−1
22 X21).

The relative complexity of calculating the scattering product by an efficient but

straightforward implementation of equations (3.2.13) compared with using the above

method is approximately 14(n3
E + n3

M) + 42nEnM(nE + nM) compared with

9(n3
E + n3

M) + 26nEnM (nE + nM ) + 2n2
M(nE + nM).

In addition to reductions in computational time, the methods outlined above make

smaller demands on cache and stack size and can be expected to lead to higher

precision as a result both of the reduction in floating point operations and less

rounding.
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(a) ClOVER 150GHz. (b) PLANCK 545GHz full pixel.

(c) PLANCK 100GHz full pixel. (d) PLANCK 100GHz Back-Back.

Figure 5.1: The scattering amplitudes in the S21 matrices for (a) the

ClOVER 150GHz horn, (b) the azimuthal order 1 field of the Planck 545GHz multi-

mode horn, (c) the full horn assembly of the Planck 100GHz single-mode horn, and

(d) the back-to-back section of the the horn in (c). Each grey square is the amplitude

of an S21 element. These plots illustrate both the sparsity of the operator arrays and

the modal purity of the ClOVER ultra-Gaussian horn and the full pixel assembly of

a Planck single-mode horn. Compare (d) with (c): These plots also indicate that the

accuracy of the field modelling in Planck would be compromised by modelling the

back-to-back sections of the horns only, no matter how many modes were included

in the models. That is particularly true for the multi-mode horns in which the full

pixel has a more complex mode structure than the back-to-back section.



Chapter 6

Representation of fields: Schmidt

triples

The problem at hand is to find the smallest set of data that completely encapsulates

the scattering properties of the instrument. This set will turn out to be a set of

vector-scalar-vector triples, the cardinality of the set being the rank of the scatter-

ing operator. The set is simple to calculate from the scattering operator and its

application to system analysis and performance prediction leads to great efficiency

when there is more than one mode.

For a single-mode system, at any one frequency, the field radiated from the

aperture of the horn is represented by a single vector in the Hilbert space of aperture

fields. In the mode-matching formalism that one vector is the image of the input

vector under the action of the S21 operator. (Strictly speaking, it is essentially the

image under S21 of the entire basis for the space of fields feeding into the horn

from the bolometer cavity.) For a multi-mode system the radiated field is a set of

fields. Each of those fields is, once again, simply a vector in the aperture Hilbert

space. However, the representation of the field in terms of the columns of the matrix

representation of S21 is not usually an efficient representation in the sense that the

underlying space spanned by the fields is smaller in dimension than the number of

fields in the scattering model – the columns of S21 form a non-minimal spanning set

142
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for the fields at the horn aperture. For example, in the Planck 857GHz horns the

structure of the horns leads to a requirement for large numbers of waveguide modes

to give a stable model of the scattering process (stable in the sense that adding

more modes to each azimuthal order in the model does not significantly alter the

radiated field). The model requires in excess of sixty radial modes in each of three

to five azimuthal orders, the precise numbers being frequency dependent, but the

fields radiated from the horn do not span a dimension sixty dimensional space at any

frequency over the band: the dimension of the vector space spanned by the field is

both considerably smaller and frequency dependent. What is required is an optimal

representation of the radiated fields: optimal in the sense of a minimal set of vectors

spanning the subspace in which the field lies, and the vector coordinates of the field

in that space. What will be found is an orthonormal basis for the smallest subspace

containing the field and an expansion of the aperture fields in that basis, the image

of the basis under the S21 operator and the contraction factors for each vector.

At each azimuthal order the model requires some N radial modes to represent

the scattering in the waveguide at a particular frequency. We can always use the

same number of radial modes at every scattering junction provided the number is

sufficiently large, so the model of the space of radiated fields at any one azimuthal

order has dimension N . The näıve way to model the radiated field pattern is to

take these N fields at each azimuthal order and propagate them through whatever

system follows the horn: the Planck telescope, in this instance. The answer would

be correct and is a useful check on the method to be described below, but the

process is grossly inefficient. Rather than propagate N fields in M azimuthal orders

it would be better to find a new basis of fields that is of minimal dimension for the

frequency and azimuthal order. For the Planck 857GHz horn the scattering model

was of the order 64 × 3 to 64 × 5 dimensional, depending upon the frequency, but

these fields were representable in spaces that varied from ten to twenty dimensions

as a function of frequency – ten dimensional at the low frequency end of the band,

rising to twenty dimensional at the top end. The next section describes the method

used to find these new representations of the fields – methods taken from functional

analysis and linear algebra. Here the application is only to the relation between the
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input field and radiated field, but it applies equally to the fields at every stage in

the scattering or propagation. The method necessarily has a more mathematical

flavour than the rest of the thesis; however it is presented at a fairly non-technical

level and basic mathematical terms are used without definition or explanation.

6.1 Representation of fields by Schmidt pairs

Let S : H1 −→ H2 be a compact linear operator between separable Hilbert spaces

and {en}, n ∈ N∪{0}, be a complete orthonormal sequence in the orthogonal

complement of the kernel, Ker(S)⊥. Then every element x ∈ H1 can be written in

the form x =
∑
xn en +x′ for some x′ ∈ Ker(S), and the scalars xn will generally be

complex. Now suppose that the en are eigen-vectors of the Hermitian (self adjoint)

bounded operator S†S ∈ B(H1), then for all n ∈ N∪{0} there exist eigenvalues

λn ∈ R≥0 and an eigenfunction expansion:

S†S x =
∑

S† (S (xn en +x′)) =
∑

xnS†S en =
∑

xnλn en (6.1.1)

in which the last sum is finite if the nullity of S, dim Ker(S), is finite.

Let sn
def
=

√
λn and for all sn > 0 define fn = s−1

n S en ∈ H2. Any pair (x,y) ∈
H1 ×H2 for which S x = sy for some s ∈ R is called a Schmidt pair. By construction

the pairs (en,fn) are Schmidt pairs for all n with en ∈ Ker(S)⊥, and for all x =
∑
xn en +x′

S x =
∑

snx
n fn . (6.1.2)

The set {f j = s−1
j S ej} is an orthonormal basis for the image of the orthogonal

complement of its kernel since, by definition of the adjoint

〈
f i | f j

〉

H2
= s−1

i s−1
j 〈S ei |S ej〉H2

= s−1
i

〈
ei |S†(s−1

j S ej)
〉

H1
= s−1

i sj 〈ei | ej〉H1
= δij,

If the domain and co-domain of a scattering operator S have orthonormal bases

{ei} and {f j} respectively, then, since S is linear and H1 and H2 have inner prod-

ucts, there is a matrix representation of S which is the array [sij]
∞
i,j=1 in which the

sij are the generalised Fourier coefficients sij =
〈
f j |S ei

〉

H2
. Clearly this is the case



CHAPTER 6. REPRESENTATION OF FIELDS: SCHMIDT TRIPLES 145

here: write H1 = S1 ⊕Ker(S) and S2 = S(S1) ⊂ H2, then the set of all Schmidt

pairs {(en,fn)}Nn=1 is an orthonormal basis for S1 ⊕S2, and with respect to these

orthonormal bases the matrix representation of S is diagonalised. Therefore, pro-

vided the scattering operators satisfy the required conditions, finding the Schmidt

pair bases and the associated Schmidt numbers, s, for the operator will immediately

give an expansion of the field in the radiating aperture in terms of an orthonormal

basis and the magnitude of the contribution of the basis fields, the Schmidt modes,

to the total field will be given by the Schmidt numbers. Henceforth the Schmidt

numbers will be termed the s-numbers.

From now on the concept of Schmidt pair for an operator S will be extended to

a triple, the set of which will be referred to as a Schmidt triple: {(en, sn,fn)}Nn=1.

This set encapsulates all information about the system described by S – for any

system, but for a horn in particular, the Schmidt triple will be the complete and

minimal encapsulation of its scattering properties that was sought.

If T1 is any compact linear operator associated with a partial system and T2 is any

such operator for the next part of the system with Dom(T2) = Codom(T1) (for ex-

ample the transmission operator for a horn feeding a telescope and the transmission

operator for the telescope) and if T1 and T2 have Schmidt triples {(en, sn,fn)}Nn=1

and {(gk, tk,hk)}Kk=1, it is not necessarily true either that gk = fn for any pair of in-

dices (n, k), or that K = N , though clearly span 〈f 1, . . . ,fN 〉 and span 〈g1, . . . , gK〉
are subspaces of the same Hilbert space and must have non-trivial intersection if

there is to be any throughput. Rather, the operator product acts on the en by

T2T1 en = snT2(fn) =

K∑

k=1

sntk 〈gk | fn〉hk . (6.1.3)

Therefore it cannot be expected that, even when the product operator has a physical

meaning (such as is the case for the product of two total transmission operators as

in equation (3.7.3)), a Schmidt field description of the system will be achieved from

Schmidt field descriptions of the components. That would only be the case if either

{fn} ⊆ {gk} or {gk} ⊆ {fn} as set inclusions, not merely as subspace intersections.

If the Schmidt triple description of a system is to be valid the operators must be
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shown to be of the required type: compact linear operators between separable Hilbert

spaces. For any such operators that are non-hermitian and associated with some

physical transfer process the analysis will apply, under the appropriate restriction

to the orthogonal complement of its kernel. In an optical system the information

transfer must be finite because the system has finite resolution. Physically this

means that the system operator has a finite dimensional orthogonal complement of

the kernel. Then H = S⊕Ker(S) with S ⊂ H closed and linear and there exists

an isomorphism S ∼= C
N for some finite N . Since C

N is separable and complete, so

is S, and that is the space to which the theory applies, not to the whole of H.

To argue for compactness use the fact that the operator describes a linear (by

assumption) physical process and since the input has bounded energy, ‖x ‖2
2 < ∞,

then ‖S(x)‖2 < ∞. In particular, there is a complete orthonormal sequence in S

that is the sequence of eigenvectors of S†S, and
∑ ‖S(en)‖2

2 ≤
∑ ‖ en ‖2

2 = rank(S).

Therefore S is Hilbert-Schmidt and therefore compact a fortiori. Mathematical

details can be found in any text on functional analysis; see [22], [29], [58], [74].

Rather than this function-analytic argument for compactness a heuristic, physical

cum mathematical, argument for the plausibility of compactness in applications

to waveguides is the following: Every finite rank operator is compact since, if the

range of S is R, then R inherits the norm from H2 and has the metric determined

by this norm. It is then a finite dimensional metric space and closed bounded

sets in a finite dimensional normed space are compact. A sequence, {xn}n∈N, of

vectors representing physical fields in H1 must be bounded, so its image {S xn}n∈N

is bounded in R and hence has compact closure and so has a cluster point, y say, in

R, but R is a metric space and so S xn → y. However a horn or waveguide operator

is essentially of finite rank (meaning that there is a finite dimensional subspace onto

which the fields can be projected without significant loss of information or change in

beam profile) since propagation of the field through the guide results in attenuation

of the field for all modes above cut-off. Thus, for a physical guide, given an input

field x =
∑
ak xk and any ε ∈ R>0 (a lower bound on measurable power, say)

there is some mode index, Kε, such that the residual power in the ‘tail’ of the mode
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expansion is less than ε; that is

0 =
∥
∥x−

∞∑

k=1

ak xk
∥
∥

2
≤
∥
∥x−

Kε∑

k=1

ak xk
∥
∥

2
+
∥
∥

∞∑

k=Kε+1

ak xk
∥
∥

2
<
∥
∥x−

Kε∑

k=1

ak xk
∥
∥

2
+ ε.

Then for practical purposes the model of the propagated field can be take to be

x ∼ xε
def
=
∑Kε

k=1 ak xk with image S xε =
∑Kε

k=1 akS xk ∈ span{S x1, . . . , S xKε},
and the model can be taken to be an operator with both domain and range of

dimension Kε. The model of the operator is then a matrix in M(Kε; C) and the

model function spaces are just C
Kε. If this was not the case, then the entire processes

of modelling horns by the scattering matrices would be invalid. In the next section

explicit examples from the Planck multi-mode horns will be given showing that

the horn models are essentially of rank much smaller than the dimension of the

waveguide mode space from which the Schmidt fields are derived, the rank being

frequency dependent.

Note that the truncation of the partial series at the K th term does not imply the

truncation of the waveguide mode expansion of the vectors ej or f j . These remain

l2 sequences, f j = (f
(j)
1 , f

(j)
2 , . . . , f

(j)
n , . . . ) with ‖ f j ‖2 <∞ and entries f

(j)
n → 0 as

n→ ∞; likewise for all ej.

The relationship between the Schmidt fields for the finite dimensional model and

singular value decomposition is simple and leads to one method for calculating the

Schmidt triples: the singular value decomposition of a matrix gives S = UDV †

where V is unitary in the domain, U is unitary in the co-domain and D is diagonal.

The rank of D is the rank of S and the columns of U corresponding to the non-zero

elements of D form a unitary basis for the co-domain, while the columns of V form a

basis for S = Ker(S)⊥ which spans the observable fields. By unitarity of U there is a

unitary equivalence S†S = V D2V † between S†S and D2 and if dn is the n th non-zero

column of D, then S†S en = V D2(0 · · ·0 1n 0 · · ·0)T = V (0 · · ·0 d2
n 0 · · ·0)T = d2

n en

and the required Schmidt triple is (en, sn,fn), where fn is the n th column of U and

sn = dn = Dnn > 0.

When the system Schmidt triples {(en, sn,fn)}Nn=1 have been found, given any
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set of input fields, {gk}Kk=1, the output of the system is given by the set of fields
{

sn fn

N∑

n=1

〈gk | en〉
}K

k=1

. (6.1.4)

When modelling the aperture fields of a horn it is primarily the non-zero columns

of the U derived from the S21 operator that is of interest; vectors that span the co-

domain orthogonal to the image of the kernel. The Schmidt triples can be derived

from either the S21 or S12 operators, and if they do not give the same fields, then

somewhere in the modelling process the calculation has either been conducted with

poor numerical accuracy, or incorrectly. That has been a useful check on the results

of the Planck multi-mode modelling.

The Schmidt field expansion of the scattering operators was developed for the

multi-mode systems, but is equally applicable to single-mode systems with a single

triple characterising the system. The advantage of applying the Schmidt field trans-

formations to the single-mode S21 operator is that it finds a hybrid field, expanded

in the transverse field of the model, spanned by a single vector in both cavity and

aperture, fields that are truly characteristic of the system within the limits imposed

by the finite dimensional model. For a horn with very high spectral purity like the

ClOVER horns the unitary transformation converts the columns of the S21 operator

into a single aperture Schmidt field vector that is almost identical to the first column

of the matrix, once s-number scaling is taken into account. For the Planck 100GHz

single-mode horns the spectral purity of the operator is not as great; consequently,

more information is contained in the S21 matrix columns other than the first, and

the unitary transformation to the Schmidt field recovers this information about field

structure that would be lost if the simple procedure of taking the first column of

the operator matrix as the field vector was followed. Propagating all column vector

fields through the optical system to derive the far field beam would also recover the

same information, but at unnecessary computational cost since the other columns

contain little information. The models of the ClOVER 150GHz and the Planck

100GHz horns discussed in section 2.3 were re-run with sixtyfour mode models for a

direct comparison of the S21 operator matrices and the Schmidt fields. The plots in

figure 5.1, page 141, illustrate the point about spectral purity, but detailed inspec-
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tion of the 64-dimensional complex Schmidt vectors and matrix columns is required

to appreciate the true differences and these are discussed in the next section.

The idea of applying the concept of the Schmidt pair to optical systems seems to

have been first put forward by Withington in [70] in the context of signal detected

when imaging with phased arrays, following on from a series of papers [71][72][73].

Withington refers to the input fields as ‘eigen-fields’. The term ‘Schmidt field’ is

used here instead of ‘eigen-field’ for the express reason that eigen means ‘the same’,

but the point of the Schmidt fields is that the fields are changed in the process

of propagation, and the Schmidt field pairs for any system are ‘optimal’ basis for

S1 ⊕S2 ⊂ H1 ⊕H2 in the sense that the fields propagated by the S21 operator can

be successively approximated by partial sums

S21(x) = S21

(
N∑

n=1

xn en

)

=

K∑

n=1

snx
n fn + εK , K ≤ N (6.1.5)

in a basis for which the 2-norm of the remainder vector, ‖ εK ‖2, is smaller than

for any other K-term approximation in any other basis, the ordering being the

natural ordering of the s-numbers: s1 ≥ s2 ≥ · · · ≥ sK ≥ · · · ≥ sN > 0. Here

it is stressed that the concept is applicable to the fields propagated through an

optical system of any kind (indeed to any physical process described by a compact

linear operator between separable Hilbert spaces) and to scattering in a corrugated

waveguide system in particular. Although the above presentation has skirted around

analytical details, a careful analysis shows that the functional analytic theory is

applicable to the situation.

6.2 Cl OVER and Planck horn Schmidt triples

The S21 operator of the waveguide system is a function of frequency. Therefore, the

characteristic triples of the system, {(ϕn, sn,ψn)}Nn=1, derived from the operator are

also frequency dependent. Thus we should write {(ϕn(ν), sn(ν),ψn(ν))}
N(ν)
n=1 to be

precise, and that is to be understood hereafter. That this is the case over a frequency

interval spanning a cut on is obvious because the dimension of the subspace spanned



CHAPTER 6. REPRESENTATION OF FIELDS: SCHMIDT TRIPLES 150

by the Schmidt vectors changes. Away from a cut on region the space remains of

a constant dimension, but because a waveguide is a resonant system, the subspace

itself, or the triples within the subspace, can vary. A useful mental picture is of a

finite dimensional hyperplane wobbling slightly in the space of fields and the ϕn, ψn

and the sn undergoing a Brownian motion type dance around the mean triple over

the frequency interval. Call this mean point the local stability point for the frequency

interval. When the frequency is increased to above, or crosses, an adjacent cut on

frequency, the system {(ϕn, sn,ψn)}Nn=1 rapidly becomes a system {(ϕ′
n, s

′
n,ψ

′
n)}N

′

n=1

with N ′ ≥ N + 1 and settles down to wobble around a new local stability point. As

seen with transitory cut-in of the azimuthal order four modes in the Planck 545GHz

back-to-back horn, this transition may be chaotic (see the order 4 curve in figure

2.15 (a), page 33).

Figure 6.3 shows the absolute values of the complex coordinates of the Schmidt

vectors in the complex mode space E ⊕M of the ClOVER 150GHz horn aperture at

5GHz intervals from 130GHz to 180GHz. The mode space is infinite dimensional,

though in the numerical model giving these results the model space was C
32 ⊕C

32.

All Schmidt vectors are unit vectors by construction, and so the vector is a point on

the unit sphere of fields with ‖ψ ‖2 = 1. The Schmidt field itself lies on the complex

line through that point at a distance s that is the s-number for the field.
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Figure 6.1: The s-numbers for the aperture fields at three spot frequencies at the

bottom, centre and top ends of the operating bands of (a) the Planck 545GHz and

(b) the 857GHz horn assemblies. In both plots only those s-numbers sn > 10−4

are plotted. The TEM model space had dimension 54 for the 545GHz horn and

64 for the 857GHz, but it is seen from these plots that the effective dimension of

the field space varies across the band and is always smaller than 18 (counting both

polarisations).
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Figure 6.2: Graph (a) shows the changing s-numbers in order of decreasing field

power contribution and (b) shows the corresponding (normalised) aperture field

cross-sections. All graphs cover the 540 to 550GHz band in 2.5GHz steps centred

on 545GHz. This is the chaotic cut-on region of figure 2.14 just above the cut

on of an additional azimuthal order 3 field component and below the cut on of

an additional order 1 component. The narrowness of the 545GHz aperture field

is primarily due to suppression of azimuthal orders 2 and 3. Figure (c) shows the

contributions from the different azimuthal orders at each frequency in the following

order on x-axis ordinate 0 through to 4: [01], [02], [11], [21] and [31]. Figure (d) is

a linear version of (b) and clearly shows the changing beam shapes that result from

the Schmidt mode contributions in (c). The colours in all plots correspond to the

same frequencies.



CHAPTER 6. REPRESENTATION OF FIELDS: SCHMIDT TRIPLES 152

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

lo
g1

0(
m

od
e_

am
pl

itu
de

)

TE mode index

130 GHz
135 GHz
140 GHz
145 GHz
150 GHz
155 GHz
160 GHz
165 GHz
170 GHz
175 GHz
180 GHz

(a) ClOVER 150GHz horn aperture field TE mode contributions.
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(b) ClOVER 150GHz horn aperture field TM mode contributions.

Figure 6.3: The amplitudes of (a) the TE, and (b) the TM mode contributions to the

aperture field Schmidt vectors of the ClOVER 150GHz horn at eleven frequencies

across the band. The mode ordering is the natural ordering by Bessel function root.

These are the absolute values of the coordinates of the Schmidt field in the mode

space E ⊕M of the horn aperture. It is seen that at all frequencies the dominant

mode is the fundamental TE mode followed by the fundamental TM mode. All

models have 32 TE and 32 TM modes, but the amplitudes of the higher modes are

below 5 × 10−4 and are not plotted.
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(a) ClOVER 150GHz horn waveguide feed.
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(b) ClOVER 150GHz horn aperture.
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(c) Planck 143GHz horn waveguide feed.
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(d) Planck 143GHz horn aperture.

Figure 6.4: The amplitudes of the electric and the magnetic mode contributions to

the waveguide field and aperture field Schmidt vectors of the ClOVER 150GHz and

the radiating section of the Planck 143 GHz horns at their band centres. Modes

with amplitudes below 5×10−4 and are not plotted. In (b) the modes construct the

hybrid HE11 +HE12 field. The y-scales are log10(amplitude).

For a multi-mode system the picture is similar. As an example take the Planck

857GHz horn at 995 GHz (the top end of the band). There, in each polarisation,

there are eleven s-numbers greater than 10−4 (contributing a power fraction less

than 10−8/11 to the beam; see figure 6.6 below). These are the calculated s-numbers

for both the S21 and S12 operators. To each of the s-numbers there is associated a

Schmidt vector in both the cavity and the aperture. Each set in its respective domain

comprises mutually orthogonal vectors on the unit sphere, the set determining the

hyperplane (a copy of C
11) in which the field exists with coordinates given by the

s-numbers. The model space here was isomorphic to C
320 (five azimuthal orders of

64 modes) but the space containing the Schmidt fields used in modelling the beam is

C
10 since the [32]-mode contains too little power to warrant its inclusion in the beam
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pattern model; thus, the nullity of the horn operator in this model was 310 and a

considerable computational time saving in calculating the far field beam patterns is

to be expected. The matter of computation efficiency is discussed on page 158. The

transverse waveguide mode contributions to each of these eleven Schmidt vectors

are plotted in figures 6.7 on page 156 and 6.8 on page 157. Each field in each set

is the image of the equivalent field (with the same label and colour) in the other

set. Thus, if we take as an example the [21]-mode in each set (the black dots in the

plots) and the corresponding s-number from figure 6.6, we have a Schmidt triple

for the horn at this frequency. Since the cavity mode space and the aperture mode

space are spanned by the same transverse modes (up to radial normalisation) it is

immediately clear from the plots 6.7 and 6.8 that the Schmidt fields in a pair are

radically different, so giving rise to the radically different fields in the cavity and

aperture illustrated in figure 6.5.

In the examples above it is seen that the image space of the horn operator is of

complex dimension one for a single-mode horn and of a small, frequency dependent,

number of dimensions for the Planck multi-mode horns. Any optical system has

finite resolution and that can be understood as a finite basis for the range of the

system operator. For a telescope such as Planck or Herschel, the modes in the

bolometer cavity are mapped through the optical system onto the sky. The telescope

transforms the horn aperture distribution into a telescope aperture distribution.

That aperture distribution can be mapped to the far field in a number of ways, but

most obviously by Fourier transform or spherical wave expansion. Whatever method

is chosen the basis set required for the expansion will be finite (if they were not,

then the basis set would span the entire space and be complete, so giving unlimited

resolution). In the particular case of the Fourier spectrum the basis set used would

be the Hermite functions; in any case a discrete spectrum for both domain and

co-domain is required. The system scattering operator will then have finite range

simply because the instrument resolution is finite. Then compactness of the operator

is immediate.
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(a) Cavity field power pattern. (b) Aperture field power pattern.

Figure 6.5: Power patterns of the Planck 857GHz horn (a) cavity field and (b)

aperture field, both at 995GHz. These two fields patterns are constructed form the

Schmidt triples for the S21 operator with amplitudes as plotted is figures 6.7 and

6.8, pages 156 and 157 respectively. Each component of the aperture field is a ψn

corresponding to the component ϕn of the cavity field. For plotting the waveguide

radius has been normalised to 1 in both plots. In (a) the waveguide radius at

the corrugation depth to cavity radius ratio is 0.211 and corresponds to the centre

reddish disc.
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Figure 6.6: The s-numbers for the Planck 857GHz horn operating at 995GHz. The

[01]-mode is purely electric, the [02] and [03] modes are purely magnetic; all others

are hybrid. These are the s-numbers for the eleven fields containing at least 10−9 of

the total field power encoded in both the S21 and S12 operators for azimuthal orders

0, 1, 2, 3 and 4. Although the space is 11 dimensional there is so little power in

the [32] mode that it would not be included in a model and the state space can be

considered to be 10 dimensional.
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(a) Planck 857GHz horn at 995GHz, TE mode contribution to the ϕn.
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(b) PlanckGHz horn at 995GHz, TM mode contribution to the ϕn.

Figure 6.7: The amplitudes of (a) the TE, and (b) the TM mode contributions to

cavity field (the ϕn) of the eleven Schmidt vectors of the five Planck 857GHz horn

S12 operators at 995GHz. In (a) the [02] mode and [03] mode are listed, but they

are zero because they are pure magnetic modes; likewise for the purely electric [01]

mode in (b). The images of these fields, ψn = s−1
n Sϕn, are plotted in figure 6.8

below.
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(a) Planck 857GHz horn at 995GHz, TE mode contribution to the ψn.
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(b) PlanckGHz horn at 995GHz, TM mode contribution to the ψn.

Figure 6.8: The amplitudes of (a) the TE, and (b) the TM mode contributions to

the aperture field (ψn) of the eleven Schmidt vectors of the five Planck 857GHz

horn S21 operators at 995GHz. These vectors are the S21-images of the vectors in

figure 6.7 above; the colour coding is the same in both plots. In figure 6.5-(b) the

field generated by these vectors is plotted.
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Figure 6.9: Planck 857GHz horn aperture field total power pattern cross-section at

band centre: (a) The field reconstructed from the 200 fields encoded in 100 columns

from the five S21 matrices. (b) The same field reconstructed from 16 Schmidt fields

derived from the same five S21 matrices. For both reconstructions the threshold

for inclusion of a component field was set at ‖x ‖2 ≥ 10−4. For the same horn

at 995GHz the S21 column reconstruction requires 210 fields and the Schmidt field

reconstruction requires 20 fields.

As an illustration of the accuracy and efficiency of the Schmidt field reconstruc-

tion, consider the Planck 857GHz horn at the band centre. Figure 6.9 shows a

decibel plot of the cross-section through the total power pattern of the aperture

field at the band centre (both polarisations). Setting the Euclidean norm of the

component fields at 10−4 as an inclusion threshold, the aperture field model uses

200 fields derived from the columns of the S21 matrix (100 per polarisation) while

the Schmidt field reconstruction requires 16 fields (eight per polarisation). Given

that reconstruction of the far field beam of the Planck telescope from the aperture

fields is approximately linearly dependent on the number of fields, the broad band

modelling of the telescope beams from the sixteen fields of the Schmidt field recon-

struction was approximately 12×(number of frequencies) times faster than it would
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have been with the two hundred S21 column fields. The broad band reconstruction

for the 857GHz horn was done with 54 frequencies and took 576 computer hours

using the Schmidt fields. Thus, with the straightforward reconstruction from the

S21 matrix fields the same computation would have taken some 6219 hours – roughly

eight and a half months per horn. For the 545GHz horn the time saving factor was

approximately a factor of seven. For a single mode horn the computation time is

the same in both cases. Thus, while the approach is applicable in all cases, the gain

depends upon the dimension of the hyper-plane spanned by the aperture fields in

the Hilbert space of aperture fields.

6.3 Measurement of power

The beam pattern can be measured by scanning with a point-like source and cor-

recting for the beam pattern of the source. If the geometry of the horn is known suf-

ficiently precisely then the Schmidt triples can be assumed known and the response

of the bolometer to the individual cavity Schmidt fields deduced from a comparison

of the measured and modelled beams (up to a common scale factor). For a single-

mode horn there is no difficulty because there is just one Schmidt mode with unit

amplitude and the measurement gives a direct measurement of the Schmidt field in

the aperture and, if the input power density is known, of the unknown bolometer

response. For a multi-mode system like the Planck horns the argument becomes

circular: it is not known precisely what has been built, so the Schmidt triples are

not known precisely; the beam pattern can be measured and the probe pattern

deconvolved, but what is being measured is the total power in a field in a multi-

dimensional space plus the bolometer response to the unknown Schmidt fields. The

modelled Schmidt field and numbers could be compared with the measurements, but

only if the bolometer response to individual waveguide modes was know and it was

also known that there was no correlation between the power measured simultane-

ously in pairs of modes regardless of their relative phase and amplitudes. It follows

that, whereas for a single-mode horn the measurement of the beam pattern gives the

Schmidt triple of the system when all experimental artifacts have been accounted
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for, with a multi-mode system no such assurance can be given. All that can be given

is a probability amplitude for the Schmidt triples: a probability distribution on the

space of all possible Schmidt triples for the system is required, a distribution which

would be essentially zero outside a small neighbourhood of the designed Schmidt

triples for an ideally designed and manufactured system.

A geometrical picture of this situation is helpful. If there are azimuthal orders 0

to n and the i th order has Ki radial modes, then the model space is C
K0 × · · ·×C

Kn .

If the number of Schmidt fields in the i th azimuthal order is Ni ≥ 1, then those fields

lie on the sphere of unit modulus vectors, S2Ki−1 ⊂ C
Ki, and define a plane that cuts

the sphere in a sphere of dimension Ni−1. Because the fields of different azimuthal

orders are independent, these n spheres are to be treated independently. The group

that acts on C
Ki preserving the S2Ki−1 sphere and orientation is the special unitary

group SU(Ki). A small perturbation to the sphere is described by an element of

SU(Ki) in a small neighbourhood of the identity; consequently it is useful to think

of a perturbation as an element of the tangent space to the group at the identity.

That tangent space is the Lie algebra, suKi
, of traceless skew-hermitian matrices

which acts on C
Ki via the exponential mapping, exp : sun → SU(n), u(ψ)

def
= euψ,

[59][61]. In general this will not preserve the sphere SNi−1 ⊂ SKi−1, but it will map

Schmidt fields to possible Schmidt fields.

The small perturbations of the complete set of Schmidt fields is therefore an

element of suK0 × · · · × suKn with each coordinate element acting independently on

each coordinate in C
K0 × · · · × C

Kn. Since the Lie algebras are real vector spaces

the perturbations can be given real coordinates. (Only the linear structure and

mapping into SU(n) will be used here; the Lie algebraic structure is not needed.)

Thus, since precise knowledge of what has been built is not possible, but it is rea-

sonable to assume that what has been built is close to what has been designed, the

actual Schmidt fields at any given frequency can be thought of as a perturbation of

the designed fields: if in the i th azimuthal order the design was for Schmidt fields

ψ
(i)
1 , . . . ,ψ

(i)
Ni

, then the actual fields will be eui ψ
(i)
1 , . . . , e

ui ψ
(i)
Ni

for some ui ∈ suKi

close to the zero matrix. The possible horns that would be produced from a given
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design would be described by a distribution on each of the n Lie algebras, each

distribution centred on the zero matrix (assuming no bias).

As a real vector space sun
∼= R

n2−1 so that there are n2 − 1 linearly independent

infinitesimal perturbations to the Schmidt vectors in C
n. Fix the isomorphism and

let Ak be the sun image of the k th unit vector in R
n2−1; then the n2 − 1 paths

γAk
: R → SU(n), defined by γAk

(t) = etAk

are paths through, and mutually orthogonal at, the identity that describe (locally)

independent perturbations of the unit sphere on which the Schmidt fields reside.

Assume that, if a vast number of nominally identical copies of a Planck multi-

mode horn (or any other horn) were made and the Schmidt fields measured in some

way, and they were found to follow some distribution. For the sake of an example

assume they are normally distributed about the design values. Then the distribution

can be modelled as a normal distribution of perturbations on the Lie algebras: In

each of the n + 1 azimuthal orders choose an orthonormal basis {A1, . . . , AKi
} for

suKi
; fix normally distributed tj for j = 1, . . . , Ki so that each has distribution

pi(tj) = e−(tj−µj)
2/2σ2

j /2πσj which can all have independent variances and zero mean.

Then the perturbation of the Schmidt fields in this azimuthal order are given by

ψ → et1A1 · · · etKi
AKi ψ = et1A1+···+tKi

AKi ψ . (6.3.1)

This equation is useful for the actual modelling of scattering operators from the

Schmidt field descriptions of the design as will be discussed in section 6.4.

It is important to appreciate that the perturbation works both at the level of the

Schmidt fields and at the level of the S matrices because the perturbation matrix

is unitary: (AS)†(AS) = S†S, and snAψn = A(snψn) = A(S ϕn) = (AS)ϕn.

Consequently it does not matter whether the perturbation is applied before or after

calculation of the Schmidt fields. From the perspective of computational efficiency

it is better to derive the fields and then to apply perturbations.

The next unknown to consider is the distribution of the Schmidt numbers. There

are
∑n

i=0Ni Schmidt fields each with Schmidt number ski
∈ [0, 1]. The design is for
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some {ski
: i = 0, . . . , n; ki = 1, . . . , Ni} but for each ki there is a distribution τki

on [0, 1/ski
] and the possible values are s′ki

= τki
ski

∈ [0, 1].

Finally, roll all other unknowns (such as exact filter transmission and readout

noise) into a single unknown of bolometer response. An ideal bolometer would

absorb all incident radiation and detect unit power from all possible Schmidt fields.

In practise the bolometer will not be perfect, so that given input ψ the measured

power will be an efficiency B(ψ)2 ≤ 1. The efficiency may vary between azimuthal

orders, so there are mappings Bi : S2Ki−1 → [0, 1].

The complete picture becomes the following: The model space is C
K0 × · · ·×C

Kn

and the design is for Schmidt field and s-number pairs {(ψki
, ski

) : i = 0, . . . , n; ki =

1, . . . , Ni}. The actual set is {(eui ψki
, τki

ski
) : i = 0, . . . , n; ki = 1, . . . , Ni} for some

{ui ∈ suKi
: i = 1, . . . , n}. However the Bi scale the τki

ski
and the total observed

power in a single polarisation with all modes excited is

PTO =

n∑

i=0

Ni∑

ki=1

‖Bi(e
ui ψki

)τki
ski
eui ψki

‖2
2 =

n∑

i=0

Ni∑

ki=1

Bi(e
ui ψki

)2τ 2
ki
s2
ki
. (6.3.2)

Assume that, in the beam pattern measurement setup, the horn aperture is

centred at the origin of the coordinate system and the horn radiates in the positive

z direction. The source probe scans the aperture from a plane {(x, y, z0) : x, y ∈ R}
at a distance z0 from, and parallel to, the aperture. If the probe has aperture A

in which the fields (after accounting for the edge currents and impedance step to

free space) are E and H , then the electric field at a point x = (x, y, 0) in the horn

aperture, due to the probe centred at x′ = (x′, y′, z0), is given in the physical optics

approximation (see [18], [49]) by

E(x,x′) =
k2

0Z0

4π

∫

A

[

JE

(

− j

k0R
− 1

k2
0R

2
+

j

k3
0R

3

)

+ (JE ·r̂)r̂
(

j

k0R
+

3

k2
0R

2
− 3j

k3
0R

3

)]

e−jk0R da

− k2
0

4π

∫

A

(JM ×r̂)1 + jk0R

k2
0R

2
e−jk0R da,

(6.3.3)

where JE
def
= −2ẑ ×H and JM

def
= −2ẑ ×E, the integral is over the probe aperture

with coordinates x′′ centred on x′, r = x−x′′ and R = | r |. What the horn
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actually measures is given by the sum of the inner products of the field illuminating

the aperture, E(x′), with the Schmidt fields of the horn, scaled as in equation 6.3.2:

PO(x′) =

n∑

i=0

Ni∑

ki=1

Bi(e
ui ψki

)2τ 2
ki
s2
ki

〈
E(x′)|eui ψki

〉2
. (6.3.4)

This is an idealised single frequency mapping whereas every term on the right

hand side of equation (6.3.4) is a function of frequency. The complete observed

beam pattern is the set {P̃O(x′) : x′ = (x, y, z0)} where P̃O is the integral over

the measurement frequency band of the PO. In a real measurement there is a finite

set of values measured at a finite set of points x′
j, j = 1, . . . , J . Suppose that

the measurements are known to within ±δ, which will probably be a function of

frequency and of measured power, but for the sake of simplicity assume that it is

constant. Then if two horn assemblies are measured with the same setup giving

powers P̃O and P̃ ′
O, and
∣
∣
∣P̃O(x′

j) − P̃ ′
O(x′

j)
∣
∣
∣ ≤ δ for all j = 1, . . . , J,

it would not be possible to distinguish the horns over this frequency band with this

measurement setup. It does not mean that the horns are the same, only that sums

in equation (6.3.4) integrated across the measurement band for both horns are the

same to within error. Nor does it mean that the horns will be indistinguishable

over some other frequency band and, most importantly, even if there is agreement

to within measurement error as band averages it does not follow that the Schmidt

fields, s-numbers or bolometer responses are the same, only that if the number of

modes is small there is a reasonable chance that they are close. The situation is in

stark contrast with a single-mode system where it is certain that the Schmidt field

structure is the same to within experimental error if there exists a scalar function

of frequency, h(ν) say, such that at every measurement datum x′,
∫ ν1

ν0

∣
∣
∣h(ν)B(eu(ν)ψ(ν))2τ(ν)2s(ν)2

〈
E(x′; ν)|eu(ν)ψ(ν)

〉2

−B(eu
′(ν)ψ(ν))2τ ′(ν)2s′(ν)2

〈

E(x′; ν)|eu′(ν)ψ(ν)
〉2
∣
∣
∣
∣

dν ≤ δ

(6.3.5)

over all measurement bands. Then the mode structure is the same to within experi-

mental error, eu
′
ψ = euψ, even if the unknown B(eu(ν)ψ(ν))τ(ν)s(ν) products are

not identical, because they simply scale the overall pattern.
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The mappings Bi and τki
and the Lie algebra elements ui ∈ suKi

are all unknown

and, to complicate matters, are themselves functions of frequency that might be

smooth, but might not even be continuous if there are resonances as in the Planck

multi-mode horn assemblies. Both the models reported in section 2.4 (simulations

of idealised instantaneous measurements at pure frequencies) and the measurements

reported in the same section, indicate that the behaviour is quite chaotic. In any case

neither the measurement process nor the models can truly distinguish discontinuous,

continuous or differentiable behaviour, but the measurement process can be modelled

as an approximation to a Riemann-Stejltz integration, and that seems to be the most

appropriate integration theory.

There are three sets of distributions in total: (a) the distributions on the Lie

algebras of suKi
for each azimuthal order i = 0, . . . , n, (b) the distribution for the

perturbations of the s-numbers, and (c) the distributions describing the uncertainties

rolled into in the bolometer response. The distributions on the Lie algebras are

determined by
∑n

i=0(K
2
i −1) random real numbers following the chosen distribution.

The
∑n

i=0Ni s-numbers si each have perturbation τi ∈ [0, 1/si], and to each of these

there is an unknown bolometer response which can be modelled as a distribution on

[0, 1].

6.4 Perturbing the field models

Given a completed horn design and an assumed bolometer response to the Schmidt

fields of the design, it would aid performance prediction if the model was perturbed

in a realistic way. The tolerance models of section 2.4 were generated by running

multiple horn geometries; if the design is reasonably stable to manufacturing toler-

ances, then it would be much more efficient to perturb the finished design. (In the

case of the Planck 857GHz horn models, direct modelling of a perturbed geome-

try file takes about ten minutes for the five azimuthal orders at a single frequency

whereas generating a perturbation of the Schmidt structure or five S21 matrices takes

of the order one second.) Because very few multi-mode horns have been built and
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the mode structure of those horns has proven difficult to measure, essentially noth-

ing can be said about the probability distributions of the Schmidt triples, though it

is clear from the power measurements plotted in figure 2.17 on page 35 and from the

equivalent measurements for the 857GHz horns, that there is considerable variation

in performance between nominally identical horns. Here the aim is to show that the

design can be perturbed in a simple way so that the performance of many physically

realistic horns, close to the design, can be assessed. To produce a perturbed model

the perturbations have to be chosen randomly and that requires a choice of prob-

ability distribution. In principle any distribution can be used; here the Gaussian

with mean and variance chosen to bias the perturbation towards the design will be

used, though purely for illustrative purposes.

Assume that nothing is known about the sensitivity of the design to the pertur-

bation of individual modes. As in the previous section let there be Ki waveguide

modes in the model for the i th azimuthal order. Then the appropriate Lie algebra

for generating the perturbations is suKi
and dimR(suKi

) = K2
i −1. Fix a probability

distribution and generate K2
i −1 random real numbers over a small interval centred

on zero: [−1, 1] for example. Denote the resulting sequence {r1, r2, . . . , rK2
i −1}. From

these numbers construct an element of u ∈ suKi
as follows: For k = 1, . . . , Ki−1 set

ukk = irk, and uKiKi
= −i

∑Ki−1
k=1 rk so that Tr(u) = 0. Then set n = Ki− 2, choose

any t ∈ [−1, 1] as the distance along the path from the zero matrix, and proceed to

fill the remainder of the upper triangle of u:

For j = 1, . . . , Ki − 1 {For k = 2, . . . , Ki {n = n+ 2, ujk = (rn + irn+1)}}.

Since matrix is hermitian it is not necessary to use the sub-diagonal elements to

form sums or products if one of the standard packed storage schemes is used, for

example the BLAS, [28]. Since the elements of u are small, the exponential of u

will be well approximated by a finite series expansion that can be terminated when

‖tnun/n!‖F ≤ ε for some chosen ε greater than the machine epsilon. Then γu(t) ≃
I+tu+t2u2/2+t3u3/3!+· · ·+tn−1un−1/(n−1)! is the generated SU(Ki) perturbation

matrix. As an example, a random element of SU(64) that would be suitable for

perturbing a typical model S21 for the Planck multi-mode horns can be generated in
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∼ 0.05 seconds with all columns satisfying |xi ·x†
j | = δij ± 10−17, the magnitude of

the error depending upon the path length factor t and the details of the algorithm

and compiling. A simple test of the output is to calculate either one of the Frobenius

norm ‖γu(t)†γu(t)‖F , the uniform norm ‖γu(t)†γu(t)‖∞ or ‖γu(t)†γu(t)−I‖max, which

should return the values Ki, 1 and 0 respectively to within ∼ 10−16.

An important point reflecting the physics of the model has been glossed over.

With reference to equation (6.3.1) on page 161, infinitesimal rotations are deter-

mined by displacements in the Lie algebra tangent to the direction of individual

modes. The effect of the resulting rotation is to transfer power out of one mode into

other modes. An arbitrarily generated rotation could model the transfer of power

out a propagating mode and into evanescent modes, and that could lead to unreal-

istic models. The perturbation model must be set up so that the dominant rotation

has as axis the hyperplane determined by the evanescent modes in each of the TE

and TM subspaces. That rotation is to be combined with a small random rotation

allowing for the weak intermixing of any mode. Computationally this is simple:

if, in the model, there are ne TE modes of which the first ke are propagating (in

the aperture space) and nm TM modes of which the first km are propagating, then

the dominant perturbation is generated by an A ∈ sune+nm matrix which is zero

everywhere except in the upper left ke× ke block and the km× km block with upper

left corner at Ane+1,ne+1, each non-zero sub-block being traceless as required of an

element in the Lie algebra. The exponential of such a matrix will leave the evanes-

cent modes unchanged. (Clearly any other linear embedding suke+km →֒ sune+nm

which preserves the evanescent modes pointwise will do as well.) To that is added a

random element of sune+nm that is much closer to the zero matrix than the dominant

rotation. The exponential of the sum will be a perturbation that leaves the total

power in the evanescent field little changed, as is required for a physically realistic

model, while allowing the redistribution of power between propagating modes to

dominate the perturbation.

The other two perturbations required are the τi perturbations of the si and

the function B that incorporates the frequency dependent bolometer response, fil-
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ter transmission and other ‘losses’ in the measurement of the Schmidt fields. The

range of τi is [0, 1/si] and to be realistic needs to be centred at one. A reason-

able model would be a Gaussian with small variance and mean 1, normalised to

a maximum value of one: τi(x) = exp[−(x − 1)2/2σ2
i ]. To choose the sample

point, x, use any probability distribution on [0, 1/si]; here the Gaussian p(ξ) =

exp[−(ξ − 1)2/2σ2]/2πσ, with σ ∼ 0.5 will be used to generate the sample point x:

generate uniformly distributed random samples ξ ∈ [0, 1/si] and η ∈ [0, 1/2πσ]; if

η ≤ p(ξ), then τi(ξ) is used as the perturbation for si, otherwise generate new (ξ, η)

pairs until a validly distributed ξ is found.

The unitary transformations that transform the design S21 matrix into the S12

matrix for a tolerance model can be derived form the two matrices in the following

way. Having calculated the Schmidt vectors for the designed and tolerance systems

the result is two sets of unimodular vectors. Each set can be arranged into a square

matrix preserving the column ordering between the two models. Since the columns

are all unimodular and orthogonal, the result is unitary. Denote the two matrices S

and S ′ respectively, then the problem is to solve for A in AS = S ′ using standard

computational linear algebraic methods. Necessarily A will be special unitary and

the associated Lie algebra element u ∈ suN such that eu = A ∈ SU(N) can be found

by taking the logarithm base e as a power series, loge(I + A) =
∑∞

n=1(−1)NAn/n,

testing the trace of the partial sums for convergence in suN . By running a few tol-

erance models, then constructing the deformation operators in suN , the magnitude

and phase of the off diagonal elements can be used to set realistic bounds on distri-

butions used to generate the random perturbations of the design, and thus generate

many tolerance models with extreme rapidity.

6.5 A hypothetical calibration scheme

The following scheme was devised with the intention that it be tested with multi-

mode horn measurements to be made at Manchester in collaboration with Maynooth.

Since the measurements are to proceed the scheme is presented lest it be useful to
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those involved in the measurement program, but has not been tested and improved.

The scheme is first presented under the assumption that Schmidt mode filters can

be manufactured for preliminary calibration; finally the method is revised under

the assumption that bolometer response to individual Schmidt modes cannot be

measured directly an so no preliminary calibration can be made.

The problem of calibration is to determine the Schmidt vectors and numbers and

the efficiency of the bolometer response. The usual way to do this would be to scan

the beam, but as pointed out above the beam scan gives limited information except

in the case of a single-mode system. What is put forward here is a hypothetical

scheme for a detailed calibration over a narrow frequency band starting from the

essential assumption that the manufactured system is sufficiently close to the design

that accurate estimates of both the left and right Schmidt fields, the ψn and ϕn

respectively, have been made. In what follows problems of implementation such as

the likelihood of exciting standing waves due to the inclusion of mode filters, are

ignored.

Knowing the cavity Schmidt fields of the design, {ϕn}Nn=1, build a ‘cavity’ that

consists simply of the bolometer with its back short terminating a section of waveg-

uide of the correct radius. Design an illumination system that will give a known

power and phase distribution over the open end of the waveguide; for the sake of

argument let it have a locally planar phase front and Gaussian power distribution.

A single Schmidt field, ϕn, is a known (though possibly complicated) amplitude and

phase distribution. Therefore, at least in principle, it would be possible to design a

phase and amplitude mask that, placed within the opening of the waveguide, would

admit only field ϕn. By inserting neutral density filters, or otherwise adjusting the

input power, the bolometer response B(ϕn) could then be measured directly for this

field.

Having measured the {B(ϕn)} the horn is then assembled and a second set

of filters prepared for the ψn. If the system was a perfect reproduction of the

design, then the measured power would be B(ϕn)
2τ 2
ns

2
n so that, with the bolometer

already calibrated, the product τnsn, and thus τn, would be known. From these



CHAPTER 6. REPRESENTATION OF FIELDS: SCHMIDT TRIPLES 169

measurements the beam pattern for the system with the assumed Schmidt fields

can be calculated from the individual fields and equation (6.3.3) with the rôles of

probe and horn reversed. The predicted beam pattern would then be compared

with the measured beam pattern at the frequencies used for calibration. If the

agreement was good to within experimental uncertainty at a number of frequencies,

then the hypothesis that the Schmidt mode structure, {ϕn, sn,ψn}Nn=1, of the horn

was known would have strong support.

To make assessments of the usefulness of the beam pattern measurement, and to

talk about the information content of the beam measurement, a random variable and

probability distribution functions are required. The domain of the random variables

will be Ω = S2N−1 × [0, 1], a point ω = (ψ, s̃) ∈ Ω is a possible Schmidt field

and a real number s̃ = B(ψ)τs. In conventional statistics and information theory a

random variable takes a value either in a discrete set of numbers or in a number field;

here the ‘value’ is a beam pattern. Nevertheless, the measurement plane is divided

into sample points indexed by probe position, and these can be given any ordering

to give a set X = {xL : L = 1, . . . , L}. At each sample point equation (6.3.4) gives

a real number, and each ω ∈ Ω takes as value the vector (PO(x1), . . . , PO(xL)) ∈ R
L

of values of the power in a beam due to ω = (ψ, s̃). Since the outcome of the

measurement is dependent upon the choice of set X it seems natural to indicate this

by writing ωψ,s(X) = (PO(x1), . . . , PO(xL)) and interpret ωψ,s( · ) : R
2 → R in the

continuum limit as the measured power function.

Equation (6.3.3) on page 162 with the horn aperture as the source gives, for a

Schmidt field over the aperture, the electric field strength at x in the measurement

plane. Integrated over the probe aperture and convolved with the probe field gives a

prediction of the measurement, and taking the modulus squared gives the power up

to normalisation. When the performance of the horn is modelled it is the individual

ωψ,s(X) over the set of the Schmidt triplets that is modelled and the model beam

power pattern is the sum of all the vectors. If the aperture filters for the Schmidt

modes were constructed to be illuminated by the coherent sum of all fields due to

the probe at its complete set of measurement loci, X, (a partial Huygens wavelet



CHAPTER 6. REPRESENTATION OF FIELDS: SCHMIDT TRIPLES 170

type construction) then the Schmidt field beams could be individually measured and

compared with the model. Here it will be assumed that this cannot be done. What

is actually measured is just the total power at each x ∈ X.

Let ω̄ = (ωψ1,s1, . . . , ωψN ,sN
) be a vector in ΩN determined by N orthogonal

ψn and their supposed s-numbers, and let Y = (y1, . . . , yL) ∈ R
L, then define a

distribution vector of distribution function values by

Fω̄,X(Y ) =
(
Fω̄,x1(y1), . . . , Fω̄,xL

(yL)
)

(6.5.1)

where for each l = 1, . . . , L, the coordinate functions are Fω̄,xl
(yl) = P{ω̄(xl) ≤ yl},

with each ω̄(xl) = PO(xl) being the total power observed from sampling position

xl, as in equation (6.3.4). In the terminology of the previous two sections there

is, for each azimuthal order i, a set of Ni Schmidt vectors in S2Ki−1, a sample

space Ωi = S2Ki−1 × [0, 1] with random variables ω̄i = (ω
ψ

(i)
1 ,s

(i)
1
, . . . , ω

ψ
(i)
Ni
,s

(i)
Ni

), and

distribution vector Fω̄i,X(Y ). From the analytical and the physical perspective the ω̄i

are completely separate, but from the measurement perspective they are inseparable

since the vector ω̄X(Y ) =
∑

i ω̄i,X(Y ) is the measured total power at the sample

points. That is the essence of the problem; if the interest lies in knowing only

the total beam pattern, then measuring ω̄(X) is all that is required, but if the

interest is the structure of the beam for comparison with the design, then in an

ideal world the individual (ψ
(i)
l , s

(i)
l ) pairs need to be known for all azimuthal orders.

However the individual (ψ
(i)
l , s

(i)
l ) cannot be measured, and all that can be asked

is what the probability is that the observed ω̄(X) is compatible with the assumed

(ψ
(i)
l , s

(i)
l ) given the calibrations (B(ψ

(i)
l ), τ

(i)
l ), everything being averaged over each

measurement frequency band separately. Thus, what is sought is a conditional

probability density p(ω̄0 · · · ω̄N |ω̄) for parameter estimation. That is rather daunting,

particularly if the total number of Schmidt modes is large.

What is proposed here is that the perturbation method of section 6.4 be used

in a stochastic sampling of the space of [0, 1]-valued functions over the Schmidt

fields, namely Ω = Ω0 × · · · × ΩN for an N + 1 azimuthal order system. This is

perfectly feasible since, on a standard PC, it takes only about 1/15 th of a second

to compute a perturbation of the S21 matrix and to derive the Schmidt vectors and
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numbers and to calculate the aperture fields from them. The slowest part of the

process is to compute the beam pattern from the aperture fields. Nevertheless, if the

procedure followed was to prepare the beam measurement set-up, and then to start

the stochastic simulations, given the time that it takes to make a measurement of

the beam pattern it would be reasonable to expect roughly one completed simulation

per minute. (Here it is assumed that the model is coded efficiently and compiled

properly). The final step in the procedure is to make a comparison between the

beam measurements and the output of the models and to weight the outcome: If

the beam power measurement at datum x is m(x) and the j th model gives mj(x),

the pointwise error is |m(x) −mj(x)| and the total distance between measurement

and model measured at {x1, . . . ,xL} is given by d(m,mj) =
∑

j

∑

l |m(xl)−mj(xl)|
if the central part of the main beam is to dominate the comparison, or by d(m,mj) =
∑

j

∑

l |1 − mj(xl)/m(xl)| if all data are to be treated equally (though beware of

noise in low power measurements with such a metric). The model at the minimum

distance is the best ‘fit’ given the calibration assumptions and results. The outcome

of the stochastic model would indicate how sensitive the system was to perturbation.

If the system shows a clear localisation of the results, then the probability that the

best fit model is a reliable indicator of what has been built is high, but if there is

no clear localisation, or two or more local minima, then a further stochastic model

with restricted feasible domain would have to be run. Note that two models are

close if the Euclidean distance between their perturbation vectors in the real vector

space suK0 × · · ·× suKN
is small and the results are localised if there is a small open

neighbourhood in suK0 × · · · × suKN
over which the d(m,mj) are all small. It is

the hyper-volume and shape of this open neighbourhood that indicates localisation.

Figure 6.10 below summarises the process.
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INPUT FROM SYSTEM DESIGN AND ASSUMPTIONS:

1. Design S21 matrix or Schmidt triples.
2. Assumed distribution function for

(a) Schmidt field perturbations: suK0 × · · · × suKN
coordinate distributions.

(b) Generalised s-number perturbations B( · )τ .
STOCHASTIC MODEL PREPARATION:

For model index j = 1, . . . ,M :

Stochastic perturbation generator:
Produces ui ∈ suKi

and τik for azimuthal
orders i = 0, . . . , N .

- Create j th model file:
Store ui and τik.

Perturbed model:
All Schmidt triples (ψn, sn,ϕn) for
for the j th perturbed model.

- Copy to j th model file.

Aperture fields:
For all (ψn, sn).

Simulated beam power pattern:
mj : incoherent sum of all aperture fields. - Copy to j th model file.

POST PROCESSING:

Input:

1. Measured beam pattern, m.
2. All simulated beam patterns, mj .

Output:

Metrics d(m,mj) and suK0 × · · · × suKN

volume of feasible perturbations.

Figure 6.10: Scheme for the stochastic search for the probable Schmidt structure of

a multi-mode horn. The final output is a hyper-volume in suK0 × · · · × suKN
, the

elements of which generate feasible perturbations of the design that give modelled

beam patterns compatible with the measured beam.

What is sought is the conditional probability p(ω̄0 · · · ω̄N |ω̄), but we always have

a finite set of measurements and models and therefore cannot define a true density.

However, given the output of the post processing of the models, define the normal-

isation of the measurement and model values to be m̄(x) = m(x)/maxi{m(xi)} so

that the peak power is one in both maps, then let

P (ω̄0 · · · ω̄N |ω̄) = 1 −
∑

j

∑L
l=1 |m̄(xl) − m̄j(xl)|

∑

j

∑L
l=1 |m̄(xl) + m̄j(xl)|

, (6.5.2)

where the sum over j is understood to be over the set of all Schmidt fields. With

this definition 0 ≤ P (ω̄0 · · · ω̄N |ω̄) ≤ 1 and it takes the value zero only when the

model propagates no power to the far field and the value one when the model agrees

perfectly with the measurement. This is therefore a true conditional probability

that the Schmidt field structure is in agreement with measurement to within the



CHAPTER 6. REPRESENTATION OF FIELDS: SCHMIDT TRIPLES 173

limits of modelling and measurement accuracy. Since evanescent fields influence the

modelled beam and measurement only very weakly, the uncertainty in the evanes-

cent field structure will always be relatively high for an imperfect model; however,

the Schmidt fields have unit power and B(ψ)τs ≤ 1 so that the modelled beam

cannot both match the non-evanescent structure of the measured beam and have

unrealistic power in the evanescent component. Thus P (ω̄0 · · · ω̄N |ω̄) ≃ 1 will ensure

a physically realistic field structure.

In the above discussion a critical point has been raised that is not explicitly

written in the expression for P (ω̄0 · · · ω̄N |ω̄): the expression assumes a particular

Schmidt triple structure and requires a preliminary precise mode response calibra-

tion subject to that assumed structure to provide the estimated B(ψ)τ values. Thus,

the probability is really a conditional probability subject to the probability that the

calibration values are correct. The choice of calibration modes and the accuracy of

the calibration values will bias the result and the probability is really the probability

subject to that calibration. If the probability distribution indicates a Schmidt mode

structure that is very close to the calibration mode structure, then the result can be

taken to be reliable. Otherwise the entire process of beam pattern modelling ought

to redone following a recalibration using the most probable Schmidt mode structure.

Possibly the experimenter is not going to have the time or the finances to do any

calibration at all, or the construction of the mode filters might prove impossible. In

that case the same process as above can be repeated assuming the values B(ψ)τ = 1

for all Schmidt fields. In that case the output of the stochastic modelling is a new

model S21 operator and Schmidt triples, but for the Schmidt field-number pair (ψ, s)

returned by the analysis the number s is really s̃ = B(ψ)τs for unknown B(ψ)τ .

The stochastic analysis ought then to be repeated with the new Schmidt structure as

the assumed value and a new optimal perturbation found. If this new perturbation

is represented by an SU(K0) × · · · × SU(KN ) matrix A0 × · · · × AN with each An

having ‖An−I‖F ≃ 0, (or equivalently for the Lie algebra element un with An = eun

has ‖un‖max ≃ ‖un‖F ≃ 0), then the result of the preliminary analysis is reliable.

However, even when a reliable result has been found, without the mode calibration
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no true value for the s-number can be deduced because the bolometer response to the

individual Schmidt modes is not known. Even if the returned s-number equals the

assumed s-number it cannot be known if the result occurred because the bolometer

response to the mode is perfect, or because the Schmidt number was higher than

predicted and the bolometer response sub-optimal, except when s = s̃ = 1.



Chapter 7

Planck reflector surface fitting

The reflectors of the Planck telescope, when at L2, were expected to cool to around

50 Kelvin. The 50K predictions for the shape of the Planck secondary reflector

flight model (SRFM) and the primary reflector flight model (PRFM), obtained by

linear regression analysis on the best fit surfaces to the room temperature coordinate

measuring machine (CMM) and cryogenic videogrammetry data, are presented. The

work was carried out at the request of ESTEC in 2008 as part of the programme

to obtain the best possible pre-launch knowledge of the optical properties of the

telescope. The work divided into two stages: firstly, conic surface fitting to the

measurement data using the non-linear method of orthogonal distance regression;

secondly, linear regression analysis to attempt to predict the shapes and positions

to which the reflectors would have contracted when in a steady state at 50K –

the nominal in-flight temperature. The results were subsequently used as input to

the pre-launch multi-mode beam pattern prediction (see 2.4) and then the post-

launch reverse engineering of the telescope – work described in chapter 7. The work

presented here has been extracted form technical reports [52], [51] and [50] that were

presented to ESTEC in 2008. All cryogenic measurements were made in the test

facilities at CSL, Belgium, and provided for the purposes of analysis by ESTEC.

This work was entirely driven by the engineering requirements of the Planck

project, and the presentation of the results, as tables of derived data, reflects the

175
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needs of the engineers. The tables give a summary of the fitting results to all data

sets, basic statistics for the form error measured along the normal to the best fit

surface, and all surface parameters derived from the fitting of an ellipsoid to the data

sets by orthogonal distance regression. In addition, for the optical model parameters

(the semi-major and semi-minor axis lengths, the ellipsoid centre displacement from

the aperture coordinate system, and the rotations about the aperture coordinate

x-axis and y-axis) the 95% confidence intervals and estimated standard deviations

for the fit of each parameter is listed. All results are presented in the tables for

clarity and ease of comparison.

The contract with ESTEC required the fitting of ellipsoidal surface models to

the reflectors and the provision of the best fit model data and residual surface form

error maps to the Planck engineering team, and only the fits to ellipsoidal models is

presented here. However, to investigate the surface distortion a spheroidal surface

model was used. Fitting a spheroid uses a three-axis model rather than the two

axis model of an ellipsoid (as well as surface rotations and displacements) and gives

a third rotation angle as well as axis length. The result was a model surface fit

with lower residual errors, and the different changes in the lengths of the two semi-

minor axes could be seen very clearly in the fits to the measurement data both

at different temperatures and at the same temperature at different stages in the

cryogenic cycle – clear evidence for thermally induced distortion. This was found to

be more pronounced in the PRFM than the SRFM. The greater distortion may have

been due simply to the larger reflector not being in as good a thermal equilibrium as

the smaller reflector, or may have resulted from the greater distortion of the reflector

with the greater radius of curvature; most likely both.

During the linear regression analysis the SRFM returned a good to high con-

fidence measure for the linear model; for the PRFM the confidence measure was

not as good. This reflects two things about the differences in the data available for

each reflector. Firstly, the PRFM showed greater distortion during the cryogenic

cycling than did the SRFM. Secondly, the SRFM surface data was noisier than the

PRFM data, and also there was less of it. As a result, the confidence intervals for
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the SRFM were relatively large; for the PRFM fitting the confidence intervals were

very small which reflected a very high estimate of the reliability of the orthogonal

distance regression fit to the surface. With the larger confidence intervals it is easier

to get a linear fit to the data (see the graphs 7.1 and 7.4, both of which show the

95% confidence intervals for the fitting to each data set).

The contract deliverables were GRASP models of the Planck telescope optics at

the estimated in-flight temperature with surface form error maps of two kinds: large

scale maps and detailed surface quilting maps. These were delivered to ESTEC-TEC

MMO and to industrial contractors to ESTEC involved in the design and building

telescope (ASTRIUM, ThalesAlenia Space and TICRA). In the following sections

a general description of the analysis methods that were adopted is given, but no

commercially sensitive information is included.

7.1 Surface fitting by orthogonal distance regres-

sion

The problem of fitting a surface to the measurement data is a nonlinear problem

with unknown errors on the measurement data. The model used for the fitting

was required to be an ellipsoidal surface, though a general spheroidal surface model

was also used. Two techniques were combined: orthogonal distance regression as

described in [9] and [10] for the model fitting and error estimation, and methods

taken from non-sequential ray tracing to establish the nearest point on the trial

model surface to the measurement data.

The problem at hand is to fit a spheroidal surface to a set of measurement data.

The data comprised either sets of coordinates of points on the reflector surface ob-

tained by a coordinate measuring machine at 293K, or sets comprising centroid

positions of markers on the surfaces of the Planck reflectors that were measured by

videogrammetry at a number of temperatures on the cryogenic cool-down and warm-

up cycle between 293K and 95K. The markers were bonded to the surface of the
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reflectors and during thermal cycle some of the markers gradually became detached

from the surface, and sometimes fell off. There is an intrinsic and unknown mea-

surement error for each centroid, and for those markers that became even partially

detached over the sequence of measurements that error is not constant. Moreover,

unless a marker became fully detached at some point in the cycle, there is no way

to determine whether or not any individual marker underwent a shift in position on

the surface, or if the surface has deformed. The problem is to fit the model to the

data and to find the maximum likelihood estimator: pointwise weights reflecting the

reliability of the data.

Let (x, y, z) denote the measured centroid of a marker in the coordinate system of

the measurement apparatus. The coordinate system was established by measuring

the centroids of a collection of pin-balls attached to the reflector within the cryostat

at each temperature and, for the present purposes, can be taken as given. The

centroids are then measured relative to these coordinate systems.

Ellipsoid fitting requires a seven parameter model: the semi-major and semi-

minor axis lengths, the rotations about the two semi-minor axes (pitch and yaw) and

three displacements of the entire surface. Spheroid fitting requires nine parameters:

the seven for the ellipsoid plus the second semi-minor axis length and rotation about

the semi-major axis. In the spheroidal models the rotation about the major axis

proved to be redundant, reflecting no detectable roll about that axis. Only the seven

parameter model will be discussed as the nine parameter model is derived in the

same way.

Let there be n data; then the input to the model is the preliminary guess for the

best fit surface parameters β and the measurement data array x:

β = (β1, · · · , β7), x = {xi = (xi, yi, zi), i = 1, · · · , n}.

Associated with each xi ∈ x there is a vector of unknown errors, ξi, arising from

both measurement and surface error, and weight, wi:

ξ = {ξi = (ξx, ξy, ξz), i = 1, · · · , n}, w = {wi ∈ R≥0, i = 1, · · · , n}.

The weights describe the estimated confidence in the accuracy of the centroids and
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can be adjusted in the light of successive fits and, for markers that came detached

from the surfaces, given decreasing values between the initial, room temperature

measurements and the last measurement set at which the marker was still attached

(or zero if preferred).

Let A ∈ SO(3; R) denote the matrix for rotation about semi-minor x-axis (pa-

rameter β3) followed by rotation about semi-minor y-axis (parameter β4). Let

d = (β5, β6, β7) be the translation vector of the ellipsoid centre, and write

x̄i = (x̄i, ȳi, z̄i) = A(xi + ξi +d) (7.1.1)

for the position of the corrected measurements. Once the correct model parameter,

β, has been found, the set {x̄i} will be the best fit ellipsoid to the data in standard

form. For the ellipsoid the problem is to find:

min
β,ξ

n∑

i=1

wi| ξi |2 subject to P (x̄i) =
x̄2
i + ȳ2

i

β1

+
z̄2
i

β2

= 0 ∀ i, (7.1.2)

where parameters β1 and β2 are the semi-minor and semi-major axis lengths, re-

spectively. The errors are to be the orthogonal distance from the transformed mea-

surement coordinate to the trial surface: for each i, ξi = xi− si where si is that

unique point on the trial surface minimising | ξi |. With this definition of the error

the closest model surface to the measured data will be found in the proper sense of

metric space theory, subject only to the limitations of having a finite data set.

The first part of the problem is to find, for each trial β, the associated error

vector set {ξi}ni=1. To do this a method used in non-sequential ray tracing was used:

Given any spheroid and a ray intercept with that spheroid, to find the reflected ray

it is necessary to find the normal to the surface at that intercept. However since

any conformal deformation of the surface preserves the angles between lines at any

point, the problem can be reduced to the trivial problem of finding the normal to

the unit sphere. This is the way reflection and scattering from spheroidal surfaces

is calculate in the non-sequential ray-tracing tools used for both stray light analysis

in optical systems and in animation [30]. In the current problem the method is

to apply the conformal mapping (of the trial ellipsoid onto the unit sphere) to the

measured data: xi 7→ fβ(x1), say. Each datum determines a radial vector which
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intercepts the sphere: σi = fβ(x1)/|fβ(xi)| giving the required error estimate as

ξi = xi−f−1
β (σi).

The orthogonal distance regression algorithm used was that described in [9]

which returns standard deviation and 95% confidence interval estimates for each

component of the model parameter, β. It was programmed in standard conforming

FORTRAN 95, and all data presented here is the output of the programs written

for the purposes of fulfilling the requirements of the ESTEC contract. In the follow-

ing three sections the tables of results are presented, followed by discussion of the

evidence for reflector distortion due to residual thermal stress in the cryogenically

cooled reflectors.

7.2 Results: fitting the SRFM measurement data

The measurement data for the SRFM comprised one CMM data set of 8949 surface

coordinates, taken at 293K, and eleven data sets taken by videogrammetry within

the cryostat at CSL during the thermal cycling of the reflector over the temperature

range range 293K to 95K, each set comprising approximately 2860 points. In all

of the following tables the data is listed in the order of the data sets, starting with

the CMM data and followed by the videogrammetry data in the temperature cycle

order as follows:

293 K 293 K 293 K 140 K 110 K 95 K
CMM SRFM SRFM M01 SRFM M02 SRFM M03 SRFM M04 SRFM M05

140 K 95 K 140 K 200 K 293 K 293 K
SRFM M06 SRFM M07 SRFM M08 SRFM M09 SRFM M10 SRFM M11

In all of the following tables the parameters are: A – semi-minor axis length (β1);

B – semi-major axis length (β2); α – rotation about the x-axis (β3); β – rotation

about the y-axis (β4); and dX, dY and dZ are longitudinal displacements along the

x, y, and z axes (β5, β6, β7); Int FD is the inter-focal distance and VF dist is the

vertex to focus distance of the ellipsoid. All lengths are in millimetres, except for

the residual surface errors given in table 7.4 which are in microns; all rotations are

given in degrees. Displacement and rotation are measured relative to the coordinate
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system determined by the three point mount which is nominally co-centred with,

and parallel to, the aperture coordinate system, with the semi-major axis aligned

to the coordinate system z axis. The optical parameters for the surface – the radius

of curvature and conic constant, or equivalently the inter-focal distance and vertex

distance – are derived form the fit parameters A and B defined above as follows:

k =

(
A

B

)2

− 1, R = A2/B,

IF dist = 2
√
B2 − A2, VF dist = B

(

1 −
√
−k
)

.

T (K) A σA B σB α σα β

293 727.0261 0.00271 820.7323 0.0065 -0.0000002 0.000320 1.1695044
293 727.0393 0.00077 820.7485 0.0019 0.0147302 0.000120 1.0285662
293 727.0393 0.00077 820.7485 0.0019 0.0147302 0.000120 1.0285662
140 726.9394 0.01243 820.5658 0.0302 0.0279317 0.001927 1.0697632
110 726.9149 0.01285 820.5156 0.0312 0.0289275 0.001993 1.0799602
95 726.9165 0.01288 820.5226 0.0312 0.0308254 0.001997 1.0763719

140 726.9536 0.00100 820.5678 0.0025 0.0298980 0.000157 1.0705069
95 726.9066 0.01279 820.5093 0.0310 0.0282322 0.001984 1.0788939

140 726.9718 0.01253 820.6074 0.0304 0.0260809 0.001941 1.0715667
200 726.9738 0.01153 820.6312 0.0280 0.0299922 0.001786 1.0545999
293 727.0842 0.00085 820.8199 0.0021 0.0139935 0.000133 1.0171727
293 727.0384 0.00934 820.7739 0.0227 0.0183574 0.001444 1.0232384

T (K) σβ dX σdX dY σdY dZ σdZ
293 0.000959 330.305 0.005024 -0.000 0.0026005 432.778 0.0119650
293 0.000277 334.689 0.001514 -0.219 0.0009901 443.698 0.0034819
293 0.000277 334.689 0.001514 -0.219 0.0009901 443.698 0.0034819
140 0.004412 334.899 0.023970 -0.327 0.0158200 443.255 0.0556710
110 0.004562 334.952 0.024780 -0.335 0.0163580 443.142 0.0575490
95 0.004572 334.930 0.024837 -0.351 0.0163950 443.173 0.0576810

140 0.000361 334.914 0.001970 -0.343 0.0012893 443.245 0.0045290
95 0.004541 334.940 0.024666 -0.330 0.0162830 443.144 0.0572850

140 0.004446 334.930 0.024152 -0.313 0.0159400 443.277 0.0560960
200 0.004089 334.830 0.022220 -0.311 0.0146600 443.412 0.0516090
293 0.000306 334.640 0.001674 -0.213 0.0010944 443.834 0.0038496
293 0.003308 334.651 0.017985 -0.248 0.0118570 443.761 0.0417780

Table 7.1: The results obtained from fitting the seven parameter ellipsoid model

surface by orthogonal distance regression to the 12 data sets for the SRFM.

Semi-minor axis: 726.885 mm (dX, dY, dZ): (335.005,-0.376,443.048)
Semi-major axis: 820.463 mm

Radius of curvature: 643.977 mm α: 0.034◦

Conic constant: -0.215104 β: 41.091◦

Inter-focal dist: 761.048 Vertex-focus dist: 439.937

Table 7.2: 55K estimates for the SRFM derived by linear regression on the results

obtained by ODR fitting to the CMM and videogrammetry data files
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(a) Fitted semi-minor axis as a function of temperature. The ratio of the 95% confidence interval

width to the semi-minor axis length is ±3.5 × 10−5 for the videogrammetry data.
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(b) Fitted semi-major axis as a function of temperature. The ratio of the 95% fit confidence

interval width to the semi-major axis length is ±6 × 10−5 for the videogrammetry data.

Figure 7.1: SRFM semi-axes and linear regression fit. To derive the fit point at

55K the outlier points at 140K and 293K under vacuum were removed from the

data. Including them changes both axis lengths by less than 20µm (approximately

2.5 × 10−3 % in each case) but lowers the probability estimate of correctness of fit

the the semi-minor axis length below the usually accepted minimum.
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(a) CMM SRFM at 293K (b) SRFM M09 at 200K

(c) SRFM M06 at 140K (d) SRFM M05 at 95K

Figure 7.2: The changing surface form sagitta error (in aperture coordinates) as

the SRFM cools. These maps are the residual when the best fit ellipsoid has been

subtracted from the surface data and are measured along the ellipsoid normal. All

maps are on a common scale from +60µm to −60µm.

T(K) A A − A + B B − B + Data Set

293 727.0261 727.0208 727.0314 820.7323 820.7196 820.7450 CMM SRFM
293 727.0393 727.0378 727.0408 820.7485 820.7448 820.7522 SRFM M01
293 727.0393 727.0378 727.0408 820.7485 820.7448 820.7522 SRFM M02
140 726.9394 726.9150 726.9638 820.5658 820.5066 820.6250 SRFM M03
110 726.9149 726.8897 726.9401 820.5156 820.4545 820.5767 SRFM M04
95 726.9165 726.8912 726.9418 820.5226 820.4613 820.5839 SRFM M05

140 726.9536 726.9516 726.9556 820.5678 820.5630 820.5726 SRFM M06
95 726.9066 726.8816 726.9317 820.5093 820.4484 820.5702 SRFM M07

140 726.9718 726.9472 726.9964 820.6074 820.5478 820.6671 SRFM M08
200 726.9738 726.9512 726.9964 820.6312 820.5763 820.6861 SRFM M09
293 727.0842 727.0825 727.0859 820.8199 820.8158 820.8240 SRFM M10
293 727.0384 727.0200 727.0567 820.7739 820.7294 820.8183 SRFM M11

Table 7.3: SRFM semi-minor and semi-major axis lengths and 95% confidence in-

tervals obtained by orthogonal distance regression. Results are shown in red should

be compared with other data taken at the same temperature.
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All of the fitting results indicate that the SRFM was not in a state of thermal

equilibrium at the times in the thermal cycle at which the videogrammetry mea-

surements were made. With reference to table 7.3 above, the first row is the room

temperature fit to the CMM data. This data is intrinsically more accurate than

the videogrammetry data and the data set is more than three times the size. Fur-

thermore, the data are taken over the entire surface, right out to the edge of the

reflector where the surface form error is greatest. Effectively, the CMM data is the

most reliable data set, and the videogrammetry data is available only over a smaller

portion of the reflector over which the surface shape is closest to an ellipsoid. That

is why the CMM fit returns an ellipsoid with semi-axes of the order 15µm shorter

than the first pair of videogrammetry results at the same temperature (the extreme

edges of the reflectors curl up very slightly).

The second and third rows in table 7.3 show repeated videogrammetry mea-

surements taken before the surface thermal cycle. As would be hoped, they return

identical fits to within error. The reflector was then cooled to 95K. The two mea-

surements at 95K are different, but both are within the error bounds of the other

and the 95% confidence interval for the two semi-axis lengths are virtually identi-

cal. Looking at the three measurements made at 140K shows that the second time

the reflector returned to 140K it showed less distortion than in the first and third

measurements, and both those measurements returned axis lengths outside the 95%

confidence interval for the second measurement. This is seen clearly in the positions

of the three circles at 140K in figure 7.1 where the first measurement is clearly

anomalous due, presumably, to the reflector not being at a uniform temperature

when the measurements were made.

Finally, the last two rows show the fits when the system has nominally returned

to its original temperature, but clearly the reflector itself was in a state of thermal

stress when data set SRFM M10 was taken. When measurement set SRFM M11 was

taken the reflector had returned to its original shape to within the 95% confidence

interval.

With the ellipsoid fitted to the data, the residual fit errors are the orthogonal
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distances from the surface of the ellipsoid to the measurement datum. These dis-

tances provide a form error map, the statistics for which are presented in table 7.4.

From these maps an estimate for the 50K form error was derived by the methods

presented in section 7.5 below.

T Surface shape parameters (mm) Surface form error (µm)

(K) Rad Conic Int FD VF dist Stdev Min Max P-V

293 644.0188 -0.2153 761.668 439.898 11.6344 -38.4107 44.2549 82.67

293 644.0294 -0.2153 761.687 439.905 8.9235 -29.9294 35.1534 65.08

293 644.0294 -0.2153 761.687 439.905 18.7312 -147.8871 52.3168 200.20

140 643.9957 -0.2152 761.282 439.925 8.9235 -29.9294 35.1534 65.08

110 643.9918 -0.2151 761.158 439.936 18.7312 -147.8871 52.3168 200.20

95 643.9891 -0.2151 761.183 439.931 11.7547 -43.3531 46.2428 89.60

140 644.0193 -0.2152 761.236 439.950 24.8199 -153.5048 74.7819 228.29

95 643.9821 -0.2151 761.163 439.928 12.1530 -40.4716 50.5232 90.99

140 644.0205 -0.2152 761.337 439.939 25.7199 -169.2620 76.2625 245.52

200 644.0053 -0.2152 761.432 439.915 12.1803 -41.7040 45.3714 87.08

293 644.0529 -0.2154 761.824 439.908 25.8721 -179.0477 78.9238 257.97

293 644.0078 -0.2154 761.800 439.874 24.8788 -161.4504 83.8810 245.33

Table 7.4: Best fit radius of curvature, conic constant, inter-focal distance and

vertex-focus distance derived for the SRFM by orthogonal distance regression fitting

to the CMM and videogrammetry data files. With each set of results is given basic

statistics for the residual fitting errors.

T (K) Rad Rad + Rad − Conic Conic - Conic + Data Set

293 644.0188 644.0382 643.9994 -0.2153 -0.2153 -0.2153 CMM SRFM
293 644.0294 644.0350 644.0238 -0.2153 -0.2153 -0.2153 SRFM M01
293 644.0294 644.0350 644.0238 -0.2153 -0.2153 -0.2153 SRFM M02
140 643.9957 644.0853 643.9060 -0.2152 -0.2150 -0.2153 SRFM M03
110 643.9918 644.0845 643.8992 -0.2151 -0.2150 -0.2153 SRFM M04
95 643.9891 644.0820 643.8962 -0.2151 -0.2150 -0.2153 SRFM M05

140 644.0193 644.0266 644.0121 -0.2152 -0.2151 -0.2152 SRFM M06
95 643.9821 644.0743 643.8899 -0.2151 -0.2150 -0.2153 SRFM M07

140 644.0205 644.1109 643.9302 -0.2152 -0.2150 -0.2154 SRFM M08
200 644.0053 644.0885 643.9222 -0.2152 -0.2151 -0.2154 SRFM M09
293 644.0529 644.0591 644.0467 -0.2154 -0.2153 -0.2154 SRFM M10
293 644.0078 644.0752 643.9405 -0.2154 -0.2152 -0.2155 SRFM M11

Table 7.5: Orthogonal distance regression fits to the SRFM radius of curvature and
conic, with 95% confidence intervals.
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7.3 Results: fitting the PRFM measurement data

The procedures described above for the fitting of the SRFM were followed exactly

for fitting the PRFM. All data for the PRFM is tabulated in exactly the same way as

for the SRFM and all nomenclature is as before. The same general comments about

reflector distortion apply as before, and will not be repeated. The only additional

comment is that the fitting of a spheroid showed that the two semi-minor axes

differed slightly and the general level of surface distortion was higher than for the

SRFM. That would be expected because the PRFM is relatively flat, and being of

the same thickness would therefore be less rigid.

In all of the following tables the data is listed in the order of the data sets, starting

with the CMM data and followed by the videogrammetry data in the temperature

cycle order as follows:

293 K 293 K 293 K 140 K 110 K 95 K
CMM PRFM PRFM M01 PRFM M02 PRFM M03 PRFM M04 PRFM M05

140 K 95 K 140 K 200 K 293 K 293 K
PRFM M06 PRFM M07 PRFM M08 PRFM M09 PRFM M10 PRFM M11

(a) CMM PRFM at 293K (b) PRFM M09 at 200K

(c) PRFM M06 at 140K (d) PRFM M05 at 95K

Figure 7.3: The changing surface form sagitta error (in aperture coordinates) as the

PRFM cools. All maps are on a common scale of +60µm to −60µm.
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Table 7.6: The results obtained from fitting the seven parameter ellipsoid model

surface by ODR to the 12 data sets for the PRFM.

T (K) A σA B σB α σα β

293 3966.409 0.2891 10923.553 1.6013 -0.0000 0.0001 -37.2041

293 3966.789 0.0062 10926.226 0.0346 0.3692 0.0000 -37.2224

293 3966.797 0.0062 10926.249 0.0345 0.3691 0.0000 -37.2223

140 3957.509 0.0077 10879.348 0.0426 0.3630 0.0000 -37.2467

110 3954.634 0.0079 10864.014 0.0436 0.3627 0.0000 -37.2540

95 3953.920 0.0080 10860.846 0.0442 0.3616 0.0000 -37.2558

140 3956.341 0.0077 10872.837 0.0425 0.3627 0.0000 -37.2488

95 3951.662 0.0080 10849.105 0.0440 0.3612 0.0000 -37.2589

140 3957.542 0.0076 10878.482 0.0420 0.3630 0.0000 -37.2473

200 3962.696 0.0070 10905.552 0.0386 0.3636 0.0000 -37.2364

293 3970.175 0.0067 10943.809 0.0369 0.3685 0.0000 -37.2167

293 3968.632 0.0063 10935.749 0.0351 0.3680 0.0000 -37.2190

T (K) σβ dX σdX dY σdY dZ d σdZ

293 0.0005 -1050.7988 0.0108 0.0000 0.0038 10311.875 1.6115

293 0.0000 -1052.3921 0.0002 -16.3600 0.0001 10320.353 0.0348

293 0.0000 -1052.3917 0.0002 -16.3578 0.0001 10320.377 0.0347

140 0.0000 -1052.6020 0.0003 -16.1729 0.0001 10273.050 0.0429

110 0.0000 -1052.7330 0.0003 -16.1657 0.0001 10257.561 0.0439

95 0.0000 -1052.7083 0.0003 -16.1325 0.0001 10254.380 0.0444

140 0.0000 -1052.6529 0.0003 -16.1667 0.0001 10266.450 0.0427

95 0.0000 -1052.6936 0.0003 -16.1189 0.0001 10242.620 0.0443

140 0.0000 -1052.7182 0.0003 -16.1779 0.0001 10272.127 0.0423

200 0.0000 -1052.5934 0.0003 -16.1948 0.0001 10299.403 0.0388

293 0.0000 -1052.3819 0.0003 -16.3417 0.0001 10338.017 0.0371

293 0.0000 -1052.3846 0.0002 -16.3281 0.0001 10329.927 0.0353

Table 7.7: 55K estimates for the PRFM derived by linear regression on the results

obtained by ODR fitting to the CMM and videogrammetry data files

Semi-minor axis: 3950.749 mm dX: -1052.799 mm
Semi-major axis: 10844.348 mm dY: -16.080 mm

dZ: 10238.622 mm

Radius of curvature: 1439.314 mm α: 0.35985◦

Conic constant: -0.867275 β: -37.263324◦

Inter-focal distance: 2019.154 mm
Vertex-focus distance: 745.226 mm
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(a) Fitted semi-minor axis as a function of temperature.
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(b) Fitted semi-major axis as a function of temperature.

Figure 7.4: PRFM semi-axes and linear regression fit. To derive the fit point at 55K

the outlier point on warm up at 293K under vacuum were removed form the data.
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T Surface shape parameters (mm) Surface form error (µm)

(K) Rad Conic Int FD VF dist Stdev Min Max P-V

293 1440.227 -0.8682 20355.993 745.557 20.846 -87.959 129.668 217.63

293 1440.151 -0.8682 20361.434 745.509 13.339 -105.206 48.015 153.22

293 1440.154 -0.8682 20361.477 745.510 16.656 -77.657 127.442 205.10

140 1439.593 -0.8677 20268.041 745.327 13.283 -105.069 47.161 152.23

110 1439.535 -0.8675 20237.359 745.335 16.576 -77.922 127.276 205.20

95 1439.436 -0.8675 20231.113 745.289 16.710 -108.067 65.029 173.10

140 1439.609 -0.8676 20254.970 745.352 21.023 -80.727 130.969 211.70

95 1439.348 -0.8673 20207.667 745.272 17.058 -109.300 68.766 178.07

140 1439.735 -0.8677 20266.153 745.406 21.548 -87.605 132.486 220.09

200 1439.905 -0.8680 20320.246 745.429 17.223 -106.050 69.131 175.18

293 1440.293 -0.8684 20396.534 745.541 21.666 -85.837 128.549 214.39

293 1440.234 -0.8683 20380.439 745.530 16.515 -106.987 66.485 173.47

Table 7.8: Best fit radius of curvature, conic constant, inter-focal distance and

vertex-focus distance for the PRFM derived by orthogonal distance regression fitting

to the CMM and videogrammetry data files. With each set of results is given basic

statistics for the residual fitting errors.

T (K) A A - A + B B - B +

293 3966.409 3965.842 3966.975 10923.553 10920.414 10926.692

293 3966.789 3966.777 3966.801 10926.226 10926.158 10926.294

293 3966.797 3966.785 3966.809 10926.249 10926.181 10926.316

140 3957.504 3957.489 3957.519 10879.348 10879.264 10879.431

110 3954.634 3954.618 3954.649 10864.014 10863.929 10864.100

95 3953.920 3953.905 3953.936 10860.846 10860.759 10860.932

140 3956.341 3956.326 3956.356 10872.837 10872.754 10872.920

95 3951.662 3951.647 3951.678 10849.105 10849.019 10849.192

140 3957.542 3957.527 3957.557 10878.482 10878.400 10878.565

200 3962.696 3962.683 3962.710 10905.552 10905.476 10905.627

293 3970.175 3970.162 3970.189 10943.809 10943.736 10943.881

293 3968.632 3968.620 3968.645 10935.749 10935.681 10935.818

Table 7.9: PRFM semi-minor and semi-major axis lengths and 95% confidence in-

tervals.
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Table 7.10: PRFM radius of curvature and conic 95% confidence intervals.

T (K) Rad Rad - Rad + Conic Conic - Conic +

293 1440.2271 1441.0527 1439.4021 -0.8682 -0.8680 -0.8683

293 1440.1509 1440.1687 1440.1330 -0.8682 -0.8682 -0.8682

293 1440.1538 1440.1716 1440.1360 -0.8682 -0.8682 -0.8682

140 1439.5933 1439.6153 1439.5713 -0.8677 -0.8677 -0.8677

110 1439.5348 1439.5574 1439.5122 -0.8675 -0.8675 -0.8675

95 1439.4355 1439.4583 1439.4126 -0.8675 -0.8675 -0.8675

140 1439.6090 1439.6310 1439.5870 -0.8676 -0.8676 -0.8676

95 1439.3476 1439.3704 1439.3247 -0.8673 -0.8673 -0.8673

140 1439.7354 1439.7571 1439.7137 -0.8677 -0.8676 -0.8677

200 1439.9052 1439.9251 1439.8853 -0.8680 -0.8680 -0.8680

293 1440.2932 1440.3122 1440.2742 -0.8684 -0.8684 -0.8684

293 1440.2343 1440.2523 1440.2162 -0.8683 -0.8683 -0.8683

7.4 Surface form error maps

At each temperature, the orthogonal distance regression fitting of the ellipsoid

to the videogrammetry data gave, at each datum, a residual surface error vector

ε = (εx, εy, εz) orthogonal to the best fit surface. The position of each datum was

measured relative to the mounting coordinates, and having derived the ellipsoid

parameters the coordinate transformation could be made to the ellipsoid vertex co-

ordinate system and to the reflector aperture coordinate system. The plane of the

aperture coordinate system is parallel to the plane of the mounting coordinate sys-

tem for both reflectors. If Pa is the projection operator onto the aperture plane,

then at each datum the scalar s = ε−Pa ε is a surface form error vector at the

datum orthogonal to the aperture. These maps can be used in the GRASP model

to add form error to the perfect ellipsoid.

The problem was to derive a form error map for each of the two reflectors that

extended to the reflector rims and would be a reasonable approximation of the true,

but unknown, form errors at operating temperature. By the term ‘reasonable ap-



CHAPTER 7. PLANCK REFLECTOR SURFACE FITTING 191

proximation’ is meant the following: (a) the form error statistics of the extrapolated

Zernike surface should follow the temperature dependent trend set by the videogram-

metry data, particularly the RMS form error that is the most important measure

for wavefront error, and (b) that the overall shape of the error surface should follow

the observed temperature dependent trend (see figures 7.2 and 7.3).

The method adopted was to use the Zernike surface reconstruction methods

developed for the study of the thermoelastic deformation of the Herschel telescope

primary reflector, [49][48]: first obtain a very high fidelity Zernike polynomial fit to

each sagitta error map at each temperature, then use linear regression analysis to

extrapolate each of the Zernike coefficients individually to 50K, and finally rebuild

the surface sagitta error estimate map at 50K using those extrapolated values.

Technical details of the fitting and mathematical details are to be found in [49].

For this study the first 325 Zernike polynomials were used (in the ordering due to

Zernike; see [11] chapter 9 and Appendix VII, and [49] chapter 6) which include all

radial and azimuthal orders 0 to 24.

The difficulty with the method was that the Zernike coefficients, whilst reproduc-

ing the videogrammetry maps with very high precision, showed marked fluctuation

even between videogrammetry maps taken at the same temperature. That reflected

the fact that, at the scale of the surface form errors, the reflector surfaces showed

marked changes with temperature and residual surface stress. The only reasonable

test of the likelihood that the resulting surface was realistic was to look at the surface

form error statistics and to compare those with the interferogram data (available

only for the SRFM). The reconstructed map covered the entire surface whereas the

interferogram did not include the edges where roll-off and distortion were greatest.

Therefore the Zernike data should show slightly larger RMS form error and signif-

icantly larger peak-to-valley error. Furthermore, the RMS value should be close to

the 95K videogrammetry map. To make a good comparison with the 95K map

the full aperture form error map was built for the second of the two 95K data sets

(for both reflectors) using the Zernike reconstruction of the error maps. The 50K

maps and 95K maps for each reflector were built on the same triangulation of the
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reflector aperture. The surface for error statistics for the 95K surfaces presented in

the following table are derived form those maps and should be compared with the

statistics for data sets SRFM M07 and PRFM M07 in rows six and eight of tables

7.4, page 185, and 7.8 page 189, respectively. For the SRFM and PRFM the results

were as follows:

SRFM 50 K Zernike SRFM at 95 K Interferogram

Mean (µm) : 0.217 -0.593 0.000
RMS (µm) : 13.508 12.018 10.200

Maximum (µm) : 74.335 63.231 no data
Minimum (µm) : -121.964 -112.013 no data

P-V (µm) : 196.299 175.244 114.000

PRFM 50 K Zernike PRFM at 95 K Interferogram

Mean (µm) : 0.866 0.000 no data
RMS (µm) : 21.273 19.812 no data

Maximum (µm) : 314.740 246.178 no data
Minimum (µm) : -164.079 -108.698 no data

P-V (µm) : 478.819 354.876 no data

Table 7.11: Estimates of the 50K surface form error statistics for the SRFM and

the PRFM compared with the statistics for the Zernike reconstruction of the 95K

surface and the interferometer measurement over the measurable section of surface.

From these tabulated data we get the only indication available that the RMS

wavefront error statistics, the key measure of the reflected beam quality, will be

reasonably reliable:

SRFM: 27.016 µm PRFM: 42.546 µm Total: 50.399 µm

Table 7.12: Estimated in-flight wavefront error contributions from the SRFM and

PRFM, and the total wavefront error. These estimates assume uniform aperture

illumination of the entire surface of both reflectors, and, for the total, statistical

independence for the form error in the two reflectors.

For the highest frequency channel at 857GHz, where surface form error is of

greatest concern, this total RMS wavefront error corresponds to λ/7. Furthermore,

this estimate will be pessimistic because the illumination of the apertures is Gaus-

sian, not uniform. At mid band in the lowest HFI frequency channel, 100GHz,

these form errors give λ/57 RMS wavefront error. The generally accepted defini-

tion of diffraction limit is λ/4, and though there will be contributions to wavefront

error from optical misalignment and the departure of the surfaces from the ideal
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shape, this analysis suggested that the contribution form form error would not be

significant.

7.5 Quilted surface form error maps

The Planck reflectors were constructed form resin bonded carbon fibre in the form of

a front and back skin separated by a honeycomb. As the structure cools the bonding

of the skins to the honeycomb causes stress in the surface with the result that the

honeycomb shows through the reflector surface as print-through, and the surface

quilts. The quilting is not uniform and does not follow the common models of a

simple cosine surface sagitta over each honeycomb cell. That was revealed by the

series of cryogenic interferograms taken by Robert Daddato (ESTEC). The sequence

of interferograms also showed that the quilting over individual cells could completely

reverse the quilt sagitta sign over the cooling cycle. A full technical report on the

interferometry set-up and surface recovery for both the SRFM and PRFM was given

in [16]. The videogrammetry gave a general surface shape and form error map at

50K, but with only one or two data per cell, it could not reveal the quilting detail.

The final requirement of the surface modelling contract was to produce a surface

form error map, to be included in the GRASP model of the telescope, that included

the quilting as well as the general form error.

Reconstruction of the complete surface form error maps was made difficult by

two circumstances: For the SRFM the interferogram was good but only covered

part of the reflector (see figure 7.5); for the PRFM technical difficulties described in

[16] meant that the maps were incomplete and unreliable. (Essentially the problem

was that the reflector surface gradients at, and normal to, the cell boundaries where

too great to permit phase unwrapping to derive quilt depth.) Therefore, for the

SRFM the problem was how to use the interferogram and videogrammetry maps to

extend the quilting map over the entire surface, while for the PRFM the problem

was how, given the limited information available, to construct a quilted surface map

that, although it could not be strictly correct, was at least a quilting on the correct
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scale in terms peak-to-valley and RMS error, and correctly positioned. The method

adopted is described in the following two sections.

7.6 The SRFM surface quilting map

The best available surface error map at around operating temperature is derived

form the interferometry map 09 SRFM 2 1 50K 30JUN05 1STIT SFE sag Zvrf.itx.

This file was used to derive the quilting map on both surfaces, but in different ways.

The interferometry map itself is of the residual surface error over as much of the

reflector surface as it was possible to illuminate in the interferometry setup. It is

in the aperture coordinate system, O-M2C, in which the honeycomb cell structure

forms a regular hexagonal pattern. The sampling of the surface is on the scale 1mm,

which is too fine for practical use in the the GRASP model, but does provide great

detail to use in building a map. As seen in figure 7.5-(a), the interferogram does not

extend quite to the reflector rim and the part of the reflector surface closest to the

parent ellipsoid’s vertex is missing.

The hexagonal cell structure has a wall spacing of 600mm. To extract the surface

detail, upon each cell in the interferogram a disc of radius 600mm was centred with

an equilateral triangulation of 4mm on a side. Thus, the triangulation of the disc

mapped to a triangulation of the cell skin over the cell and overlapped the adjacent

cells as far as the cell centre. The interferogram data that was supported on the

disc was interpolated onto the vertices of the triangulation using Akima’s method

[3][4][49]. Triangulation vertices that fell beyond the bounds of the interferogram

map were assigned the height value zero. From each of these discs a second copy was

made with the best fit plane removed. These ‘flattened’ cell maps have essentially

only the residual quilting structure (since the surface curvature has already been

removed in taking the interferogram).

A smooth partition of unity was then constructed that took the value 1 over the

central hexagon and fell to zero at the boundary of the disc. Thus, using the partition

of unity, the entire quilted surface map could be reconstructed from the family of
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(a) Interferogram of the SRFM at 50K (b) Reconstruction of the SRFM at 50K

Figure 7.5: The interferogram map of part of the SRFM at 55K, and a plot of

the reconstruction of the entire surface form error map using the videogrammetry

measurements of the full surface. Note that the quilting depth is identical in both

maps over the area covered by the interferogram, but the low resolution grey scale of

the reconstruction plot does not show the detail of the interferogram. Data courtesy

of Robert Daddato (ESTEC)

discs, and this reconstruction was identical to the original data set interpolated onto

the vertices of the 4mm side length triangulation.

The quilting map was extended to give the entire surface map as follows: On the

section of the map where the interferometric map is complete the original discs were

used so that on that part of the surface the interferometric map is recovered, but

with the new and coarser sampling. On the missing data part, a random selection

was made from the ‘flattened’ discs – one for each missing cell. To the sagitta

of the points in each disc was added the sagitta of the 50K surface form error

model at the coordinates of the triangulation vertices. These discs were then pieced

together with all of the other discs using the partition of unity. The resulting map

is illustrated in figure 7.5-(b). It must be stressed that, over the area covered by

the interferogram it recovers the interferogram map exactly, and it blends smoothly

into the videogrammetry data over the remainder of the surface giving a quilting
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over the whole surface with a smooth transition across the patch boundary.

The output map was written to a text file in the GRASP SFC file format, [55], to

give a residual surface error map that could be used in the Physical Optics modelling

of the 50K telescope for beam pattern prediction. Note that the O-M2C coordinate

system has height axis +Z downwards (into the reflector) so that the local depression

in the centre of the map is a high region on the reflector. In the GRASP model

supplied the coordinate system is correctly oriented for interface control conformance

and use with the deformation map.

7.7 The PRFM surface quilting map

The PRFM map is derived from (a) the 50K Zernike surface model described in sec-

tion 7.4, and (b) ‘flattened’ discs of the quilt model described above. The size of the

PRFM means that to avoid excessive computation times (with no demonstrable gain

in accuracy) it was sensible to build the model with coarser sampling than is used

on the SRFM. A sample spacing of 6mm was used. Again, an equilateral triangular

grid of points was used, and the residual SRFM quilting surface re-sampled at the

new scale and the sample discs ‘flattened’. (The sample spacing on the discs had to

be chosen to be an integer divisor of the cell’s inter-wall spacing so that in all models

the quilt boundary was correctly reproduced.) All discs that overlap the edge of the

SRFM were then rejected because they have atypical structure. Furthermore, the

21 patches that adjoin the mount points (the three obvious large hexagons in the

interferogram 7.5) were separated out, leaving a subset of 174 ‘interior’ cell patches.

The underlying quilt was then constructed as follows: For every cell in the PRFM

that is not adjacent to a mount point, randomly select a disc from the set of 174 and,

for each disc, randomly rotate it through nπ/3 radians, where n ∈ {0, 1, · · · , 5}. For

the cells adjacent to a mount point select an appropriate cell according to its position

and orientation. Patch all of the 745 cells (illustrated in figure 7.6) together using a

smooth partition of unity. The result was a map of 225353 points representative of

the type of quilting that was to be expected for the PRFM at operating temperature,
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without the general surface form error.

This quilting map, by construction, has mean height essentially zero, and no un-

realistic local slopes. Because the depth of the quilts was unknown (due to the phase

unwrapping difficulties) the reconstruction allowed for an optional depth scaling of

the quilt. Having made the quilt map, the next step was to build the 50K Zernike

surface error map, as described in section 7.4, on the same set of (x,y)-coordinates

as the points of the quilting map. Note that the Zernike map was derived from

the videogrammetry data that had an average of only three sample points per cell;

consequently there is virtually no cell deformation information in the Zernike map.

The resulting large scale surface form error sagitta were then added to the fine scale

quilting map to produce the final form error map for the PRFM. (In the technical

report [50] a plot of the final map was given. It is not reproduced here because the

quilt structure is almost indiscernible on an A4 plot).

Figure 7.6: The internal cell structure of the PRFM superimposed on the Zernike

polynomial construction of the surface form error map at 50K. The plane of the

map is the plane of the aperture coordinate system.



Chapter 8

The Planck telescope: reverse

engineering

The material in this chapter has been extracted from the final report, [53], on the

author’s work on the reverse engineering of the Planck telescope; work that was

conducted on behalf of the Planck Core Team and funded by PRODEX 90258-CN2

between January and September 2010. The aim of the work was to revise the pre-

launch model of the Planck telescope (discussed in chapter 7) to build a model of the

telescope that, so far as was possible, would return the same beam patterns, with the

same pointing directions, that was being derived from the calibration measurements

made on Mars and Jupiter and processed by the HFI beam analysis team. With

that achieved the models could be used by the telescope builders and ESA to derive

knowledge of the telescope optics as they were at L2, and to compare what had been

built with what had been designed.

8.1 Methodology

A series of models of the telescope were built incorporating all thirty two polarised

and twelve unpolarised single-mode beams of the HFI. All models were in confor-

mance with (a) the predicted in-flight reflector shapes and surface form errors (see

198



CHAPTER 8. THE PLANCK TELESCOPE: REVERSE ENGINEERING 199

chapter 7), and (b) mechanical structure of the telescope as measured: [67] and [68]

and the relative positions of the reflectors given in [66] and [20] and the knowledge

of the telescope focal plane assembly reported in [21]. Preliminary analysis of the

models was conducted at the centre frequency of each band; detailed analysis was

conducted with broad-band models spanning the full spectrum of each pixel in six-

teen or seventeen frequencies per band. (Since the study was conducted using only

the single-mode channels there was no change in beam structure across the band and

the large numbers of frequencies needed for multi-mode channels were not required.)

With the aim being to produce a best estimate of the telescope configuration as it

was at L2, the defining parameters of all models were constrained to lie within a fea-

sible domain determined by realistic engineering considerations: measurement error

analysis and finite element models of the telescope structure under in-flight condi-

tions provided by industry, [63]. The parameters adjusted in the models where the

conic constants and curvatures of both reflectors, their relative positions and tilts,

the position of the focal plane assembly relative to the reflectors, and the rotation

of the focal plane assembly. The analysis was concentrated upon matching both the

HFI focal plane map and the beam shapes that had been obtained by the HFI team

from the scans of Mars and Jupiter at the time of the contract.

The modelled beam power patterns for all single-mode horns were analysed to

obtain centroids and best fit elliptical Gaussians, and those parameters compared

with the tabulated measurements from the two issued data sets (Mars DataV32,

Mars DataV41 and the equivalent sets for Jupiter) available at the time when the

work was undertaken. Between the Mars and Jupiter sets there was essentially no

difference, so only the data derived from observations of Mars is reported below.

The result was a range of closely related models that were mechanically realistic

and give good fits to the latest measurement data sets for all HFI pixels in the

100GHz to 353GHz range. Overall it appeared that the optics were within the

measurement error estimates and that the only essential mechanical change was the

displacement of the focal plane by 0.5mm towards the secondary reflector. The

results are described, qualified, and tabulated in what follows.
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Good overall agreement was attained between the HFI focal plane distortion,

individual beam centroids, and beast fit elliptical Gaussian beam size. The discrep-

ancies between in-scan measurement and model beam centroids in the data set V32

was nearly twice as bad as for the data set V41, suggesting that the pixel timing

parameters had improved, though it remains large for some pixels (see figure 8.3,

page 211). In-scan, where the uncertainties in timing are significant, the global

model/measurement centroid fit error had mean -0.0907′′ and standard deviation

9.2624′′, cross-scan, where the uncertainty in the timing has no effect, the mean and

standard deviation are 0.0852′′ and 3.3256′′ respectively; see table 8.2 and figure 8.3.

One of the complications that the measurement data presented in the attempt

to get ‘perfect’ agreement between model and measurement was the offsets between

orthogonal polarisations ()referred to as A and B polarisations) in some pixels.

Broad band physical optics modelling of the system indicated that a perfect horn

would exhibit centroid offsets induced by the optics between orthogonally polarised

beams at the sub-arc second level. There were cross-scan polarisation centroid offsets

as large as 8.8′′, and these appear to be real (present in both measurement sets).

There is a reasonable physical explanation for how such an offset can arise in a

single-mode pixel that is discussed in §8.3.1.

Since no measurement is exact there is no unique solution to the reverse en-

gineering problem. Several similar models were build, run and analysed, all were

mechanically feasible, and all showed very similar agreement with the measurements.

That meant that the optical design was stable to small perturbations (was reason-

ably tolerant of manufacturing error). At the time of the contract, because many

aspects of the pixel performance were not fully understood and no measurement

error estimates were available, there was no way to discriminate between them and

to decide which was the “best” model. As confidence in the beam centroid positions

and shapes grows, the models could be returned to and tuned. With the then avail-

able V41 data set it appeared that the models could be improved very slightly by a

very small tilt to the focal plane, of the order 1/100◦, but the models were in good

overall agreement with measurement. Sources of modelling error (where the term
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‘error’ is used in the scientific sense of uncertainty) are discussed in sections 8.2.1

to 8.2.3 below.

8.2 The telescope model

The Planck telescope is a fairly conventional unobscured, off-axis, quasi-Gregorian,

but used wide field with the focal plane position below optic axis of the telescope

(intersecting the focal surface approximately at the top of the focal plane layout

diagram shown in figure 8.1 on page 206). The nominal paraxial focal length of

the system was 1600mm and, prior to this study, the configuration of the telescope

was described by the following position and axis orientation, measured relative the

geometric centre of the focal plane assembly (see figure 8.1 on page 206) and the

radius of curvature and conic constant:

Primary reflector vertex coordinates:

origin x: -69.2382 mm, y: -0.056 mm, z: -136.9882 mm

x axis x: 0.8534851114, y: -0.3542000047E-03, z: -0.521117107

y axis x: 0.3449000117E-03, y: 0.9999999339, z: -0.1148000039E-03

R 1439.314 mm

conic -0.867275

Secondary reflector vertex coordinates:

origin x: 474.4054 mm, y: 0.0107 mm, z: 914.1936 mm

x axis x: 0.9313259733, y: -0.3635999896E-03, z: -0.3641864896

y axis x: 0.3010999815E-03, y: 0.9999999286, z: -0.228499986E-03

R 643.977 mm

conic -0.215104

Line of sight:

x axis x: 0.996194693807249, y: 0.0, z: -8.715579171967110E-002

y axis x: 0.0, y: 1.0, z: 0.0

The reverse engineering of the telescope is being approached with the working

assumption that what was least certain about the telescope construction before
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launch was most likely to be incorrect in the pre-flight model. That meant that

particular attention had to be given to the curvature and conic constant of the two

reflectors since those four parameters had the dominant influence on the optical

performance of the telescope. The remaining constructional parameters – those

determined by the telescope support structure – were easier to measure and to model

and were therefore known with much greater confidence, and had a weaker influence

on the optical performance when adjusted within the limits of uncertainty. The

reflector shapes, the focal plane tilt, the focal-plane to secondary reflector spacing,

secondary to primary spacing, and the lateral displacement of the two reflectors

were all adjusted in the investigation of the model. The surface form error maps,

though included in the models, have only a minimal influence on the beam centroid

and shape since, as shown in section 7.4, the form errors contribute less than λ/7

RMS wavefront error whereas beam distortion and aberration are significant in any

two reflector optical telescope when used for wide field imaging, as is Planck.

There were four issues of prime concern in the reverse engineering of the tele-

scope: (i) that the individual beam centroid coordinates predicted by the model

should agree with with the coordinates derived from the planetary scans to within

the limits on the accuracy of the measurements, and thus (ii) that the overall optical

distortion maps from measurement and model should agree; (iii) that the modelled

and measured beam widths should agree to within measurement error when anal-

ysed in the same way; and (iv) that the reconstructed telescope should agree in

every respect to within the error bounds on the measured dimensions, component

locations, tilts, reflector curvatures, and so on, of every component in the telescope

as it was, in flight, at L2.

At the time when this work was undertaken there were three main obstacles

to realising these four goals: (i) there were currently no estimates of the in-scan

centroid measurement errors for each pixel; (ii) the coalignment of the star tracker

and the telescope was not known to within 108′′, and (iii) the understanding of the

bolometer response was in a state of flux; consequently the beam measurements

were not fixed and certain. The first of these obstacles means that the in-scan beam
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centroids did not give as reliable an indication of the model’s validity as the cross-

scan measurements. However, since measurement error in the in-scan direction had

no effect on the cross-scan centroid coordinate, the cross-scan coordinates of the

beams give a reliable measure of agreement between optical distortion of model

and telescope. The second obstacle had no influence on the optical validity of the

model; it simply means that, once the mean of all centroid coordinates for model

and measurements agree to within 108′′, nothing more can be known. The third

issue was a serious handicap to progress.

In the search for agreement between the model and the measurements of the beam

centroid locations derived from the scans of the planets (data sets Mars DataV41,

Mars DataV32 and Jupiter DataV32) the optical parameters of the models – the

curvatures and conics, and the relative positions and tilt angles of the reflectors and

the focal plane assembly – were progressively adjusted. After each modification the

GRASP model was run, the far field beam pattern derived for all polarisations and

pixels, and the results compared with the planet scan measurements. Throughout

the modelling the values for curvatures and conics, and the secondary parameters

of mirror offset, were constrained to vary within the error bounds on the measured

values with the aim of attaining agreement between measurement and model for

focal plane distortion and beam sizes. Component displacements within the ranges

450µm – 500µm for the focal plane assembly towards the SRFM, up to 100µm for

the SRFM displacement towards the focal plane, and up to 350µm for the PRFM

towards the SRFM were found to give improved conformance to measurement while

remaining within the limits on the uncertainties on the relative positions of the

mirrors derived form [20]. It would have been preferable to use the raw metrology

data for the cold telescope structure to further constrain the models, but the data

were not available during the contract. Note that there is only very minor variation

in performance between models with (a) the focal plane displaced by 500µm and no

other changes, and (b) the complete set of changes; this reflects the configuration

tolerance of the optical system. Once estimates of on-sky centroiding errors become

available it might become possible to make a choice between models; currently it is

not possible.
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In the remainder of this chapter five models are referred to, labelled A through

to E. Most tabulated data refers to model A, though it is debatable which of models

A, B or E are in best overall agreement with the measurements. In these models

both the primary reflector and the secondary reflector are within the estimated

uncertainty in the mirror shape. The relative locations of the focal plane assembly

and the two reflectors are also within the tolerances in position than can be derived

from the ThalesAlenia Space documents [66] and [20].

Because of the complexity and computational time involved in the modelling

of the multi-mode channels they were not used in the reverse engineering of the

telescope. Furthermore, knowledge of the multi-mode pixel bolometer properties

was less developed than for the single-mode pixels, and there were greater problems

in centroiding planet scans. Consequently, since both the centroid coordinates and

the beam sizes were less reliable than for the single-mode channels, it seemed sensible

to ignore the multi-mode channels until such time as both measurement and model

attained their final state.

8.2.1 Sources of model error: reflector shape and form error

The shapes of the two reflectors in the pre-flight model were derived both directly

by linear extrapolation (regression) to operating temperature of the curvatures and

conics derived from analysis of the videogrammetry measurements made at a range

of temperatures down to 95K, and by linear extrapolation of the semi axis lengths

followed by derivation of the conic and curvature. For the SRFM there are also

interferograms covering most of the surface. Interferometric measurements were

made by Robert Daddato and CSL at a range of temperatures down to 45K. From

the analysis of the videogrammetry data it was clear that at no stage in either the

cool down or warm up cycles were the reflectors at thermal equilibrium, and this lead

to the uncertainties in the reflector shapes derived by extrapolation to the estimated

operating temperatures that are given in this report.

Table 8.1 gives the pre-flight videogrammetry estimates of the radius of curvature
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and conic of both reflectors along with the interferometry estimates for the secondary

reflector. The values are compared with the values used in the reverse engineering

model A of the telescope.

Note that the reason for the slightly better agreement between the quoted

videogrammetry estimates of the reflector shapes and this in-flight model compared

with the interferometry estimates is that the interferometry measurements were

made over a smaller area than the videogrammetry, and that biased the result (see

Chapter 7 and figure 7.5). The effect of inclusion or removal, or even inversion, of

the surface error maps on the modelled beam centroid coordinates is much smaller

than that due to the indeterminacy, ±20µm, of the horn positions in the focal plane.

Primary reflector radius of curvature and conic

Pre-flight estimate Error bound estimate Model Difference

R (mm) 1439.314 ±0.2 1439.42 0.106
k −0.867275 ±5.0 × 10−5 −0.867266 9.0 × 10−6

Secondary reflector radius of curvature and conic

Pre-flight estimate Error bound estimates Model Difference

R (mm) 643.977 ±0.1 644.075 0.098
k −0.215104 ±5.0 × 10−5 −0.215102 −2.0 × 10−6

Secondary reflector interferometry estimates

R (mm) 643.972 – 644.60 0.628
k −0.215424 – −0.21510 −3.24 × 10−4

Table 8.1: Pre-flight radius of curvature and conic constant estimates for the PRFM

and SRFM, the error bars on the estimates, the current values used in model A of the

telescope, and the differences between pre-flight estimates and provisional model. In

addition, the estimates derived from the interferometric measurements of the SRFM

are given. Curvature and conic estimates are derived are part of the linear regression

analysis output.
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8.2.2 Sources of model error: focal plane metrology

The measurement of the relative positions and pointing directions for the horns in

the HFI focal plane assembly were made at room temperature and documented in

[21]. The documented uncertainty in the nominal relative phase centre position is

±20µm in the transverse direction. Axial position error was not recorded, but it

is reasonable to assume that it is not critical for the single-mode pixels because

they have a confocal distance of the order 11mm or greater. There must be some

change in the inter-focal spacing error upon cooling, but it is unknown. Finally the

metrology was not accurate enough to determine individual pixel pointing, but the

telescope images the phase centre onto the sky and the pointing error is of secondary

importance. Simulations suggest that the pixel pointing error can be ignored in the

model.

Figure 8.1: The layout of the HFI focal plane. The horns that are polarised are

represented by cicles with crosses, the orientation of the two polarisations being

indicated by the orientation of the arms of the cross. Horns that are unpolarised

are represented by circles without croses.
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No attempt was been made to use the freedom of the metrology tolerances to ad-

just the model focal plane to attain closer agreement between measurement though,

with a design focal length of 1600mm giving a plate scale of 129 arc seconds per

millimetre, the ±20µm positional uncertainty for the pixels gives an angular un-

certainty for the beam on the sky of 2.58′′. This matter is touched upon again in

§8.3.

8.2.3 Sources of model error: pixel modelling and source

spectrum

The models of the fields radiated by the pixels that were used in modelling the beam

patterns assume a perfect black body response. In reality the response is biased

by the bolometer and cavity design and by the spectral transmission of the filter

stacks. No two filter stacks or bolometers are identical in their spectral response, so

no two nominally identical pixels will give precisely the same beam. If the spectral

response of each of the bolometers was known the modelled beams could be weighted

accordingly. Furthermore, the models assumed that the measurements were made

on a black-body.

The effect of these simplifications is an uncertainty in the centroid of the beam

and in its FWHM. The GRASP9 models show a small spectral drift in the beam

centroid of the order 1′′ as the frequency is scanned across the band of an individ-

ual pixel, and the overall spectral response and source spectrum of the pixel would

modify the measured beam width. However Mars, with an angular extent of ap-

proximately 7′′ as seen from L2, is a reasonable approximation to a point-like black

body, and if the measured 545GHz and 857GHz pixel spectral is fairly typical, the

net effect on the beam width will be small. These effects are, however, unquantified.
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8.3 Beam centroids: the focal plane map

Figure 8.2 illustrates the coincidence of the measured and modelled beam centroids

for all single-mode horns in the HFI at the central frequency (model A). The plot

illustrates the generally good overall agreement between the measurements and the

model. The data set used for the plot is Mars DatV41 for which the centroids and

the model off-sets are tabulated in Table 8.5, page 225. The data set Mars DatV32

and Jupiter DatV32 has also been checked (the agreement between these two data

sets is at the fraction of an arc second level). With the issue of data set V41 there

was a marked improvement in the agreement between the model and the measured

beam centroids in the in-scan direction due, not to changes in the model, but in the

data reduction process. Very little changed in the cross-scan direction, but in the

in-scan direction there was almost a halving of the peak-to-peak offset error.

Figure 8.3-(b) shows the difference between the measurements and the models for

both polarisations of all pixels, data set V41. This plot is particularly informative

because it shows that while the cross-scan focal plane map agrees to within ±8′′

with a standard deviation of 3.33′′ (essentially unchanged from the V32 data set fit

plotted in figure 8.3-(a)), the scatter in the in-scan measured beams centroids gives

a peak-peak fitting error of 13.8′′ to −19.1′′ with a standard deviation of 9.2624′′.

The in-scan result for the V32 data set was +42′′ to −27′′ with a standard deviation

of 18′′; see also table 8.2.

The error bars in Figure 8.3 are estimates of the total model errors: room tem-

perature pixel-pixel focal plane metrology error 20µm increased by cooling to 30µm

giving 2.2′′ on the sky, spectral drift contribution of 0.5′′, and modelled field cen-

troiding tolerance 1′′. This last tolerance is subject to the choice in thresholding of

the modelled far field. The plot shows error bars of 3.7′′ applied to both in-scan and

cross-scan directions, but see the comments in section 8.5.

No centroiding errors in the measured beams were taken into account because

no measurement error estimates were available. Furthermore, the measured (and

probably real) pointing offsets between A and B polarisations in some pixels (tab-
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ulated and discussed in subsection 8.3.1) make the comparison between model and

measurement below the 6′′ level difficult for some pixels. The statistics of the beam

centroid differences are given in table 8.2 for all models, A, B, C, D and E.

The cross-scan difference are all less than 8.3′′. The in-scan differences are

greater. The scatter in the in-scan offsets cannot be an optical phenomenon because

of the complete the overlap of the beams on the primary, and extensive overlap of

the secondary reflector, and so must be due to uncertainties in the timing. In-scan

uncertainty does not influence the cross-scan offsets. Error bars are as described

above.

Figure 8.4 illustrates the variation in the measured/modelled beam centroid off-

sets for four further mechanically realistic models. All models have the relative

displacements of focal plane and the secondary and primary reflectors constrained

to within 500µm. The small differences in configuration show different offsets for

individual beams, but the overall pattern is consistent across all models. (The mea-

surement data set used for reference in all analysis was V41, the data taken from

the table on Antoine Chamballu’s wiki page of 15th July 2010.) The same pattern

is found in models that extend outside the range of mechanically plausibly models,

such as were described in the Phase 1, 2 and 3 technical report presented to ESTEC

prior to the Phase 4 report that forms the basis for the material in this chapter.
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Figure 8.2: The HFI single-mode pixel focal plane map for Model A: coincidence of

measured and modelled beam centroid locations. Key: + measured on Mars, data

set Mars DataV41, © modelled broad band. Axis scales are in degrees offset from

the nominal LOS. For the 32 polarised beams the centroid of both polarisations are

plotted, resulting in double crosses and circles. The 545GHz and 857GHz beams

are not included in the analysis, and datum H-143-5 is not in the Mars DataV41

table. Note that the orientation of the plus signs bares no relation to the polarisation

angle, they are purely positional markers.

Model Scan direction Maximum Minimum Mean Std. DataV. Variance

A in-scan 13.7954 -19.0594 -0.0907 9.2624 85.7912
X-scan 6.9941 -8.2329 0.0852 3.3256 11.0597

B In-scan: 15.8325 -21.0495 -0.1115 9.9208 98.4221
X-scan: 7.2459 -9.6201 -0.3316 3.8292 14.6628

C In-scan: 16.0917 -21.3015 -0.1605 9.6827 93.7546
X-scan: 7.5414 -8.8822 -0.3271 3.7148 13.8000

D In-scan: 15.5026 -20.3929 -0.1482 9.4922 90.1018
X-scan: 7.5190 -9.1818 -0.3783 3.7695 14.2090

E In-scan: 14.0551 -18.4469 -0.1399 9.0120 81.2155
X-scan: 6.5805 -7.3433 0.0897 3.1857 10.1489

Table 8.2: Fitting statistics for the differences between the measured and modelled

beam centroids for all 40 single-mode beams. Units: arc seconds. For model A the

data are listed in Table 8.5 and plotted in figure 8.3 (b). For models B to E the

in-scan and cross-scan centroid offsets are plotted in figures 8.4 (a) to (d), in the

same order. All dimensions are arc seconds.
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Figure 8.3: Measured-modelled beam centroid differences in arc seconds, using mea-

surement data from (a) V32 , and (b) V41. Model A. The with the issue of the V41

data set the differences between the modelled and measured in-scan offsets approx-

imately halved; an improvement due to improvement in the instrument calibration.
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(b) Model C
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(c) Model D
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Figure 8.4: Plots of the measured-modelled beam centroid offsets for four different

telescope configurations. All models show the same overall pattern of fit between

measured and modelled beam centroids. Model E shows marginally better fit statis-

tics than the other models; see table 8.2.

8.3.1 Polarisation pointing offsets

Table 8.3 shows the measured in-scan and cross-scan pointing offsets between polar-

isations A and B in all thirty two polarised pixels, for data set V41. For the in-scan

set there are large discursions from the sub arc second values that would be expected

from the effects of the optics on the beam from a perfect pixel. These gross pointing

offsets, 31′′ in the case of the 100GHz pixel H-100-1, which has a nominal FWHM

of 10′, are probably largely the result of uncertainties in the time-line for the pixels,

an hypothesis supported by the much greater offsets observed in data set V32 than

in V41.

The measured cross-scan offsets are generally slightly larger than, but broadly

in line with, those predicted by the models, showing offsets between measured beam
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Table 8.3: Measured and modelled pointing offsets between the two orthogonal

polarisations of the beam in all of the polarised horns, model A, broad band; units:

arc seconds. The anomalous measured in-scan offsets can probably be attributed to

timing error; the anomalous measured cross-scan offsets are more likely to be real.

Horn in-scan cross-scan

Measured Modelled Measured Modelled

H-100-1 30.9149 0.0756 2.6591 0.3024

H-100-2 2.7081 0.3816 1.9725 0.1404

H-100-3 3.9593 0.0468 0.5257 0.2340

H-100-4 1.6829 0.1008 8.8182 0.2952

H-143-1 12.3692 0.3852 0.1800 0.1116

H-143-2 6.1458 0.4608 2.9821 0.0540

H-143-3 2.5072 0.2880 5.0643 1.1628

H-143-4 0.2377 0.1080 1.1466 1.2636

H-217-5 1.5756 0.2160 0.1581 0.2196

H-217-6 5.1366 0.2448 0.6197 0.1044

H-217-7 5.8283 0.0396 0.3409 0.2232

H-217-8 0.3016 0.1188 0.8543 0.2736

H-353-3 5.8826 0.1080 0.6581 0.0216

H-353-4 2.1304 0.1188 0.1916 0.0324

H-353-5 0.5062 0.0180 0.0781 0.0432

H-353-6 4.3611 0.0000 1.9030 0.0540

centroids for orthogonal polarisation in a single pixel of the order 1′′. However, pixel

H-100-4 shows a measured 8.8′′ offset between orthogonal polarisations, and pixel

H-143-3 a 5.1′′ offset. These may represent calibration errors, or they may be real

offsets. They are fairly consistent between data sets V32 and V41.

Assuming that these offsets are real, an explanation needs to be given. If the two

polarisations from a single horn are pointing in different directions the two polarised

fields in the horn aperture must be asymmetrical and different. For that to be the

case the radiating horn has to be supporting modes other than those that would

be induced by the fundamental. Since the throat of the back-to-back horn acts as

a mode filter and will not support higher order modes it means that the higher

order modes that induce asymmetry must be induced in the radiating horn after the
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throat. That would occur if there is an obstruction in a corrugation or a damaged

corrugation. In particular, if there is a trace of the mandrel upon which the horn

was electroformed, the corrugation would not have axial symmetry and the result

would be that the modes scattering out of the throat scatter into modes that would

not be present in a horn with perfect axial symmetry. The remainder of the horn

also acts as a weak mode filter, but a residual asymmetry in the aperture field can

result.

Necessarily this is very speculative. It would not possible to prove that this

is what was happening without retrieving the horns, but the fact that there is a

measured pointing offset between two polarisation in a single horn places further

limits on the agreement that can be expected between measurement and model. To

put this in perspective, 8.8′′ corresponds to the centres of the A and B polarisations

being offset by approximately 65µm in a horn aperture of 14339µm – a relative error

of 0.45%. The presence of higher order modes in the radiated field would change

the beam profile; but clearly the asymmetries are very weak, so the change in shape

would be hard to detect.

8.4 Elliptical Gaussian fit FWHM for measured

and modelled beams

Table 8.10 shows the results of elliptical Gaussian fitting to model A, the fitted

FWHM for model B, and the measured FWHM for all beams from the data set

Mars DatV32 and Mars DatV41, and the values obtained from these models are

representative of those attained by all models. The exact results obtained by ellip-

tical Gaussian fitting depend upon the algorithm used and the data thresholding.

Typically, choosing a threshold of -10 dB returns a marginally narrower beam than

a higher threshold (say -5 dB). The only truly valid comparison between measure-

ments and models would be obtained by using the same algorithm and identical

sampling and thresholding on the modelled fields as on the measurements. This

was not possible because access to the data and to the data processing pipeline was

restricted to the data processing team members.
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For the fitting reported here two optimising power pattern fitting routines were

written, one using the long established Simplex parameter space search method,

the second using a linear quasi-Newton method; both searched the same parameter

space (ellipse axis lengths, peak value, centroid coordinates and ellipse rotation

angle) and returned almost identical results. The Simplex method is well known

and an account can be found in [24] and code in [57], and will not be summarised

here. The Newton methods make a quadratic approximation to the function being

sought; a valid assumption in the case of a Gaussian power distribution. Thus the

Gaussian power difference distribution, G(x), is approximated by some quadratic

q(x) and, if x∗ is the point in the parameter space at which the difference between the

Gaussian and the data is a minimum, then at a point x(k) near x∗, the local quadratic

approximation is q(x(k) + δ) = G(x(k)) + g(k)T

δ+1
2
δT G(k) δ, where δ = x∗−x(k),

g(k) = ∇G(x(k)), and G(k) is the Hessian of G at x(k). Quasi-Newton methods

make a positive definite approximation H(k) ≈ G(k) at each iteration, set a search

direction s(k) = −H(k) g(k), find a new x(k+1) = x(k) +α(k) s(k) for some scalar α(k),

and update the approximation to the Hessian to give H(k+1). Mathematical details

can be found in [24].

Whatever method is used, the aim is to minimise the absolute difference in the

measured or modelled power distribution and the test function. There are a couple

of things that need to be considered. The first is that the 143GHz beams are close

to the optic axis of the telescope and will therefore exhibit little distortion or other

aberration. The beams should therefore be found to be virtually circular, and indeed

they are (see figure 8.8). The rotation angle is then redundant and the code needs to

be able to handle the resulting degeneracy. More importantly, the beams are not all

that Gaussian, particularly the 100GHz beams that are furthest from the optic axis

and will therefore show greatest distortion, and the outer 353GHz beams that are

both far from the axis and of relatively high frequency so that both beam distortion

and aberration are expected to be high. It would have been more informative to find

the Gauss-Laguerre or Ince-Hermite spectra, both of which are conformally related

to the Hermite function analysis subsequently adopted for the multi-mode beam

analysis, but elliptical Gaussian fitting was a contractual requirement.
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Model label Measured

Pixel (A) (B) (C) (D) (E) V32 V41
H-100-1A 9.45656 9.65344 9.47736 9.48893 9.45327 9.48183 10.0575
H-100-1B 9.64705 9.65204 9.49570 9.49198 9.46706 9.58726 10.1906
H-100-2A 9.61013 9.63286 9.47563 9.49176 9.44088 9.43678 9.70971
H-100-2B 9.61633 9.64123 9.47729 9.50464 9.44183 9.45047 9.38593
H-100-3A 9.60933 9.63181 9.46393 9.48926 9.43608 9.42714 10.0661
H-100-3B 9.62208 9.65092 9.48993 9.50685 9.44175 9.44621 10.0345
H-100-4A 9.63927 9.65464 9.48272 9.48872 9.46435 9.55189 10.2004
H-100-4B 9.65240 9.67337 9.50277 9.50600 9.46980 9.52794 9.91908

H-143-1A 7.07470 7.14870 7.10177 7.09117 6.98235 6.91896 6.96828
H-143-1B 7.01203 7.09407 7.05280 7.04226 6.93496 6.96804 6.95189
H-143-2A 7.01910 7.09322 7.04428 7.07071 6.95027 6.88849 7.01083
H-143-2B 6.99909 7.06695 7.01599 7.02965 6.92193 6.87046 6.98437
H-143-3A 6.97355 7.03827 6.97650 6.99459 6.87561 6.97519 7.08094
H-143-3B 7.00407 7.08094 7.01766 7.03783 6.90339 6.94679 6.86819
H-143-4A 7.03171 7.09430 7.06446 7.06146 6.95817 7.08521 7.01279
H-143-4B 7.04052 7.10760 7.05533 7.06940 6.94871 7.07287 7.08531

H-143-5 7.34458 7.46722 7.44043 7.45108 7.29816 7.18205 7.15966
H-143-6 7.28515 7.40490 7.36977 7.40065 7.23510 7.17162 7.12807
H-143-7 7.26726 7.38195 7.34621 7.37534 7.20941 7.17395 7.23309
H-143-8 7.33128 7.43874 7.40407 7.42635 7.27890 7.33856 –

H-217-1 4.69155 4.76403 4.71486 4.71079 4.65484 4.65464 4.67979
H-217-2 4.69778 4.77022 4.72640 4.74574 4.64157 4.74743 4.63756
H-217-3 4.69960 4.76945 4.72463 4.73798 4.63799 4.66260 4.57269
H-217-4 4.69204 4.75906 4.71252 4.71178 4.63119 4.60960 4.64027

H-217-5A 4.66891 4.73461 4.68728 4.65760 4.60462 4.73211 4.76929
H-217-5B 4.67061 4.74166 4.69238 4.68484 4.61412 4.74743 4.71350
H-217-6A 4.69044 4.76334 4.71798 4.72689 4.62754 4.66260 4.68057
H-217-6B 4.69304 4.76590 4.72473 4.72582 4.63667 4.63459 4.62484
H-217-7A 4.68687 4.75590 4.71366 4.71735 4.63556 4.62434 4.59254
H-217-7B 4.69307 4.76365 4.71867 4.72276 4.63770 4.66547 4.62591
H-217-8A 4.67147 4.72868 4.67704 4.66601 4.61394 4.69041 4.68530
H-217-8B 4.66977 4.72820 4.67802 4.67000 4.60746 4.74138 4.75164

H-353-1 4.44536 4.39336 4.37733 4.34558 4.40915 4.52602 4.53123
H-353-2 4.36215 4.30017 4.29591 4.29056 4.34476 4.43023 4.43329

H-353-3A 4.35483 4.29230 4.30645 4.31756 4.35891 4.42912 4.41162
H-353-3B 4.36495 4.29261 4.30791 4.31616 4.35878 4.42594 4.33692
H-353-4A 4.38212 4.31364 4.32339 4.34111 4.38041 4.39701 4.37221
H-353-4B 4.38280 4.31440 4.32371 4.33688 4.37553 4.39036 4.37819
H-353-5A 4.38533 4.38693 4.31985 4.33777 4.35929 4.31478 4.41046
H-353-5B 4.37914 4.31028 4.31763 4.33241 4.36648 4.39791 4.41973
H-353-6A 4.37978 4.30063 4.30398 4.31651 4.37487 4.46048 4.35391
H-353-6B 4.37672 4.30178 4.31634 4.32363 4.36488 4.42553 4.35162

H-353-7 4.39498 4.31506 4.30958 4.30116 4.36929 4.42893 4.40631
H-353-8 4.46431 4.53607 4.37213 4.34240 4.43055 4.40301 4.48774

Table 8.4: FWHM derived from elliptical Gaussian fitting to the modelled beam in

the LOS coordinate system thresholding to -10 dB for models A, B, C, D and E and

the measured FWHM from Mars DatV32 and Mars DataV41. (See figure 8.5.)
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The general agreement is good to the level of approximately 6′′ or better on the

FWHM for most pixels. The measured unpolarised 143GHz show an asymmetry

in beam width across the plane of symmetry of the optics. That is unexpected

and is not explicable in terms of the aberrations that a quasi-Gregorian system ex-

hibits: if the beams close to the optic axis exhibited astigmatism (due to system

misalignment) it would be even more pronounced in the rest of the pixels, but no

such discrepancy between measurement and modelling is evident. Furthermore, the

measurements of the 143GHz beams are mostly 9′′ to 16′′ narrower than the more

symmetrical modelled beams for model A, but note the spread of FWHM in both

measurements and models tabulated in Table 8.4. This may be a data processing

artifact, or may indicate differences in performance for the four pixels. Pixel models

take no account of the source spectrum, nor of the pixel-by-pixel frequency depen-

dent filter transmission or the spectral response of the cavities, neither of which are

know.
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Figure 8.5: Plot of the FWHM for models A through to E and for data sets V32

and V41, as tabulated in Table 8.4. Note that the FWHM fitting to measurement

set V41, 100GHz horns appear anomalously large compared with all of the models

and with the results of fitting to measurement set V32.
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8.4.1 353 GHz beams
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(d) H-353-8

Figure 8.6: Normalised beam power maps (dB) for a subset of the 353GHz pixel

beams. The ellipses show the FWHM ellipses returned by elliptical Gaussian beam

fitting as listed in Table 8.10. The beam models use sixteen equally spaced sample

frequencies across the band.

In-scan (deg) Cross-scan (deg)
Pixel Measured Model Diff (min) Measured Model Diff (min)

H-353-1 -2.05511504 -2.054817 -0.01788255 -0.00311576 0.002814 -0.35578574
H-353-2 -1.40983655 -1.410721 0.05306723 0.02449356 0.029024 -0.27182654

H-353-3A -0.80968414 -0.812701 0.18101185 -0.00001766 0.004245 -0.25575971
H-353-3B -0.81131819 -0.812731 0.08476879 -0.00020046 0.004239 -0.26636763
H-353-4A -0.19497610 -0.195808 0.04991426 0.02657979 0.030040 -0.20761287
H-353-4B -0.19556789 -0.195841 0.01638689 0.02652657 0.030031 -0.21026588
H-353-5A 0.38806256 0.387454 0.03651374 0.00288485 0.006659 -0.22644926
H-353-5B 0.38820317 0.387459 0.04464994 0.00290654 0.006647 -0.22442753
H-353-6A 0.98577901 0.984992 0.04722035 0.02751943 0.032471 -0.29709426
H-353-6B 0.98456760 0.984992 -0.02546430 0.02804804 0.032456 -0.26447739

H-353-7 1.54258425 1.547846 -0.31570521 0.00238702 0.008365 -0.35867862
H-353-8 2.08207570 2.087346 -0.31621824 0.02738838 0.033946 -0.39345721
Difference statistics:
In-scan: Mean: -0.01347810 Stdev: 0.14420351 Var: 0.02079465

Cross-scan: Mean: -0.27768355 Stdev: 0.05928328 Var: 0.00351451

Table 8.6: Table of in-scan and cross-scan beam centroids for the 353GHz beams.
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8.4.2 217GHz beams
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(d) H-353-1

Figure 8.7: Normalised beam power maps (dB) for a subset of the 217GHz pixels.

The ellipses show the FWHM ellipses returned by elliptical Gaussian beam fitting as

listed in Table 8.10. The beam models use sixteen equally spaced sample frequencies

across the band.

In-scan (deg) Cross-scan (deg)
Pixel Measured Model Diff (min) Measured Model Diff (min)

H-217-1 -0.9862491 -0.982002 -0.2548265 -1.01309828 -1.008670 -0.26569673
H-217-2 -0.3016303 -0.296765 -0.2919156 -0.98726308 -0.983155 -0.24648473
H-217-3 0.3316057 0.337149 -0.3325994 -1.01150770 -1.007468 -0.24238204
H-217-4 1.0152104 1.020972 -0.3456991 -0.98724138 -0.980951 -0.37742254

H-217-5A -1.2111753 -1.214540 0.2018806 -0.50907897 -0.504787 -0.25751828
H-217-5B -1.2116130 -1.214600 0.1792212 -0.50903507 -0.504726 -0.25854392
H-217-6A -0.5269182 -0.526616 -0.0181331 -0.48259759 -0.477626 -0.29829555
H-217-6B -0.5283451 -0.526684 -0.0996631 -0.48276972 -0.477597 -0.31036319
H-217-7A 0.5657188 0.564611 0.0664708 -0.50647140 -0.501000 -0.32828416
H-217-7B 0.5640999 0.564600 -0.0300076 -0.50656608 -0.501062 -0.33024500
H-217-8A 1.2488630 1.250839 -0.1185618 -0.48078996 -0.475859 -0.29585779
H-217-8B 1.2487792 1.250806 -0.1216091 -0.48055267 -0.475935 -0.27705991
Difference statistics:
In-scan: Mean: -0.09712027 Stdev: 0.17897748 Var: 0.03203294

Cross-scan: Mean: -0.29067949 Stdev: 0.03894866 Var: 0.00151700

Table 8.7: Table of in-scan and cross-scan beam centroids for the 217GHz beams.
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8.4.3 143GHz beams
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(a) H-143-1A
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(d) H-143-6

Figure 8.8: Normalised beam power maps (dB) for a subset of the 143GHz pixels.

The ellipses show the FWHM ellipses returned by elliptical Gaussian beam fitting

as listed in Table 8.10. The beam models use seventeen equally spaced frequencies

across the band.

In-scan (deg) Cross-scan (deg)
Pixel Measured Model Diff (min) Measured Model Diff (min)

H-143-1A -1.35838761 -1.361215 0.16964341 1.18711421 1.191984 -0.29218766
H-143-1B -1.36182350 -1.361322 -0.03009001 1.18706422 1.192015 -0.29704693
H-143-2A -0.55013663 -0.550624 0.02924248 1.21449904 1.218144 -0.21869740
H-143-2B -0.54842947 -0.550752 0.13935184 1.21532741 1.218159 -0.16989532
H-143-3A 0.58077395 0.579715 0.06353704 1.19186230 1.195002 -0.18838226
H-143-3B 0.58147039 0.579707 0.10580362 1.19045555 1.194679 -0.25340679
H-143-4A 1.46176415 1.460152 0.09672910 1.21450841 1.220466 -0.35745546
H-143-4B 1.46183019 1.460122 0.10249127 1.21418992 1.220115 -0.35550504

H-143-5 -1.13459442 -1.132583 -0.12068536 1.72834963 1.732967 -0.27704224
H-143-6 -0.28817926 -0.287318 -0.05167589 1.75534438 1.760570 -0.31353740
H-143-7 0.31506409 0.313679 0.08310534 1.73121013 1.735959 -0.28493197
Difference statistics:
In-scan: Mean: 0.04895440 Stdev: 0.08187090 Var: 0.00670284

Cross-scan: Mean: -0.25067404 Stdev: 0.09414494 Var: 0.00886327

Table 8.8: Table of in-scan and cross-scan beam centroids for the 143GHz beams.
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8.4.4 100GHz beams
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1.02 1.27 1.52 1.77 2.02
LOS_X (Deg)

-1.68

-1.43

-1.18

-0.93

-0.68

L
O

S
_

Y
 (

D
eg

)

-57.51

-46.00

-34.50

-23.00

-11.50

0.00

P
o

w
er

(b) H-100-1B

1.29 1.54 1.79 2.04 2.29
LOS_X (Deg)

-0.87

-0.62

-0.37

-0.12

0.13

L
O

S
_

Y
 (

D
eg

)

-59.29

-47.43

-35.57

-23.72

-11.86

0.00

P
o

w
er

(c) H-100-2A

1.29 1.54 1.79 2.04 2.29
LOS_X (Deg)

-0.10

0.15

0.40

0.65

0.90

L
O

S
_

Y
 (

D
eg

)

-58.92

-47.14

-35.35

-23.57

-11.78

0.00

P
o

w
er

(d) H-100-3A
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(e) H-100-4A
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(f) H-100-4B

Figure 8.9: Normalised power maps (dB) for a subset of the 100GHz beams. The

ellipses show the FWHM ellipses returned by elliptical Gaussian beam fitting as

listed in Table 8.10. The beam models use 16 equally spaced sample frequencies

across the band for the 100GHz horns. The beam LOS coordinate system in these

plots and in Fig. 8.8 is the engineering LOS which differs from the measurement

data table definition by the transformation x→ y, y → −x, i.e. a 90◦ rotation.
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Table 8.9: Tables showing the measured in-scan and cross-scan beam centroid co-

ordinates from the Mars data table V41, the modelled centroid coordinates, and

the differences. Note that the absolute pointing is not known to better than 1.8

arc minutes and the measurement error was unknown. Modelled beam centroiding

depends upon the method used and data threshold imposed; the numbers tabulated

impose no thresholding and are true centroids (centre of mass). Mean focal plane

displacement for all beams: −0.028′′ ×−0.286′′.

In-scan (deg) Cross-scan (deg)
Pixel Measured Model Diff (min) Measured Model Diff (min)

H-100-1A -1.1770384 -1.171320 -0.3431057 -1.51934640 -1.514141 -0.31232377
H-100-1B -1.1684509 -1.171341 0.1734033 -1.51860775 -1.514057 -0.27304507
H-100-2A -0.3651289 -0.364837 -0.0175145 -1.79265167 -1.786759 -0.35356035
H-100-2B -0.3643767 -0.364943 0.0339812 -1.79210377 -1.786720 -0.32302616
H-100-3A 0.4068292 0.406794 0.0021142 -1.78957164 -1.785752 -0.22917844
H-100-3B 0.4057294 0.406781 -0.0630939 -1.78971767 -1.785687 -0.24184042
H-100-4A 1.2085305 1.211391 -0.1716296 -1.51492380 -1.510394 -0.27178793
H-100-4B 1.2089980 1.211419 -0.1452607 -1.51737331 -1.510312 -0.42367832
Difference statistics:

In-scan: Mean: -0.06638822 Stdev: 0.14514444 Var: 0.02106691
Cross-scan: Mean: -0.30355506 Stdev: 0.05986102 Var: 0.00358334

8.5 Conclusions, and advancing the model

The contract to undertake the reverse engineering of the telescope was awarded,

the work undertaken and the contract concluded before the beam processing had

developed to the stage where the essential input – centroid location, centroid mea-

surement error, beam FWHM and FWHM error, ellipse orientation and orientation

error – was known with confidence. Steady progress to establish the input was being

made while the reverse engineering was ongoing, but the work would have benefited

from a delay of a couple of years. With the knowledge of the beams that exists

today – shortly after the end of the satellites working life – much more could be said

with certainty about the conformance of the model to the observation.

Referring to the cross-scan offsets in figure 8.3-(b), if a measurement centroiding

error of as little as 2′′ exists, then the existing models are all, to within measure-

ment and modelling error, in agreement in the cross-scan direction. In-scan, the

measurement had not sufficiently developed to establish the true centroid coordi-

nate due to uncertainties in the time-lines of individual bolometers. Further, the
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measurements of beam size and shapes was still in a state of flux, and some of the

observations, such as the ellipticities of the unpolarised 143GHz beams, were not

optically plausible. Given that state of affairs, as much progress was made as the

available information permitted, and the models are in good overall agreement with

observation.

Assume that the work was resumed with the most up-to-date beam measurement

input; then the in-flight telescope configuration could be reliably derived as discussed

above with the following changes. (a) The model requires, as input from the data

pipeline, proper estimates of the measurement errors in all five parameters used in

the elliptical Gaussian fit. Without these there can be no real confidence in the level

of agreement between measurement and model. Furthermore, there is no quantifiable

limit on the required accuracy from the model. (b) The output from the model needs

to be processed by exactly the same method as the measurement data. For elliptical

Gaussian fitting it would give a better (completely unequivocal) comparison between

measurement and model if the far field beam pattern was converted directly into

the data format in which the on-sky measurements are fed into the data pipeline,

and the pipeline itself was used to determine the fit between measurement and

model. Since the GRASP files are text files, this presents no technical difficulty.

(c) Measurements of polarisation: From the linearly polarised vector fields that the

models derive, two sets of information are easily derived: (i) the total power coupling

into (one polarisation of) the horn, and (ii) the co-polar angle of the field on the sky

for that horn in that polarisation. (The polarisation angle has not been used, but it

is a simple matter to derive from the linearly polarised electric vector field, in any

coordinate system, if it is required.) Models and measurements of polarisation could

then be compared. Finally, (d) the estimates of the bounds within which the focal

plane, and primary and secondary reflectors have be moved needs to be confirmed

as valid by reference to the measurements made by industry.

Further improvement could be made if the measured filter transmissions could be

taken into account in the modelled beams. For that it would be necessary to know

which filter was in which horn. Alternatively an average transmission could be
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derived from all filter measurements at each frequency. Furthermore, the spectrum

of the sources should also be included in the weighting.

Figure 8.10: Single frequency (mid band) model of the location of the beams on the

sky. The pixels are as follows: top row – unpolarised 143GHz horns, second row

– polarised 143GHz horns; (missing row of the multi-mode 545GHz and 857GHz

horns); third row – the eight 353GHz horns; forth row – polarised 217GHz horns;

fifth row – unpolarised 217GHz horns; at the bottom of the picture – the four

polarised 100GHz horns. The optic axis of the telescope intersects the focal plane

above the two central unpolarised 143GHz horns and, as the distance increases

from the axis, the distortion in the beams, and the general level of aberration,

increases in the manner typical of Gregorian-type telescopes. This is most apparent

in the outermost 353GHz beams, H-353-1 and H-353-8. The aberration in the four

innermost 353GHz beams are clearly seen to be dominated by coma, a fact not

evident in the broad-band images in figure 8.6.
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Table 8.5: Measured beam centroid positions in the LOS from the data set

Mars DataV41 and the offset of the provisional modelled centroid positions, model

A. All units are degrees. See figure 8.2 and figure 8.3.

Pixel in-scan offset cross-scan offset

H-100-1A -1.17703843 -0.00525105 -1.51934640 -0.00043100
H-100-1B -1.16845094 0.00335743 -1.51860775 0.00022364
H-100-2A -0.36512891 0.00017547 -1.79265167 -0.00111828
H-100-2B -0.36437665 0.00103373 -1.79210377 -0.00060938
H-100-3A 0.40682924 0.00050261 -1.78957164 0.00095475
H-100-3B 0.40572944 -0.00058419 -1.78971767 0.00074372
H-100-4A 1.20853051 -0.00239312 -1.51492380 0.00024459
H-100-4B 1.20899799 -0.00195364 -1.51737331 -0.00228691

H-143-1A -1.35838761 0.00329477 1.18711421 -0.00009540
H-143-1B -1.36182350 -0.00003412 1.18706422 -0.00017639
H-143-2A -0.55013663 0.00095475 1.21449904 0.00112943
H-143-2B -0.54842947 0.00278991 1.21532741 0.00194280
H-143-3A 0.58077395 0.00152633 1.19186230 0.00163469
H-143-3B 0.58147039 0.00223077 1.19045555 0.00055095
H-143-4A 1.46176415 0.00207953 1.21450841 -0.00118320
H-143-4B 1.46183019 0.00217556 1.21418992 -0.00115069

H-143-5 -1.13459442 -0.00154405 1.72834963 0.00015702
H-143-6 -0.28817926 -0.00039389 1.75534438 -0.00045123
H-143-7 0.31506409 0.00185247 1.73121013 0.00002553

H-217-1 -0.98624911 -0.00377973 -1.01309828 0.00034611
H-217-2 -0.30163026 -0.00439788 -0.98726308 0.00066631
H-217-3 0.33160568 -0.00507595 -1.01150770 0.00073469
H-217-4 1.01521035 -0.00529427 -0.98724138 -0.00151598

H-217-5A -1.21117532 0.00383205 -0.50907897 0.00048242
H-217-5B -1.21161298 0.00345440 -0.50903507 0.00046533
H-217-6A -0.52691822 0.00016516 -0.48259759 -0.00019720
H-217-6B -0.52834505 -0.00119368 -0.48276972 -0.00039833
H-217-7A 0.56571884 0.00157521 -0.50647140 -0.00069701
H-217-7B 0.56409987 -0.00003275 -0.50656608 -0.00072969
H-217-8A 1.24886297 -0.00150865 -0.48078996 -0.00015657
H-217-8B 1.24877918 -0.00155944 -0.48055267 0.00015673

H-353-1 -2.05511504 0.00016933 -0.00311576 -0.00115537
H-353-2 -1.40983655 0.00135183 0.02449356 0.00024395

H-353-3A -0.80968414 0.00348424 -0.00001766 0.00051173
H-353-3B -0.81131819 0.00188019 -0.00020046 0.00033493
H-353-4A -0.19497610 0.00129928 0.02657979 0.00131418
H-353-4B -0.19556789 0.00074049 0.02652657 0.00126996
H-353-5A 0.38806256 0.00107594 0.00288485 0.00100024
H-353-5B 0.38820317 0.00121154 0.00290654 0.00103393
H-353-6A 0.98577901 0.00125438 0.02751943 -0.00017718
H-353-6B 0.98456760 0.00004297 0.02804804 0.00036644

H-353-7 1.54258425 -0.00479438 0.00238702 -0.00120359
H-353-8 2.08207570 -0.00480293 0.02738838 -0.00178323
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Model (A) Modelled FWHM Measured FWHM

Pixel Minor Major Eccen (ε) (A) (B) (1) (2)
H-100-1A 8.60981 10.38659 0.55935 9.45656 9.65344 9.48183 10.0575
H-100-1B 8.94101 10.40885 0.51201 9.64705 9.65204 9.58726 10.1906
H-100-2A 8.79809 10.49713 0.54545 9.61013 9.63286 9.43678 9.70971
H-100-2B 8.82506 10.47855 0.53916 9.61633 9.64123 9.45047 9.38593
H-100-3A 8.74614 10.55771 0.56012 9.60933 9.63181 9.42714 10.0661
H-100-3B 8.89560 10.40789 0.51913 9.62208 9.65092 9.44621 10.0345
H-100-4A 8.80328 10.55466 0.55167 9.63927 9.65464 9.55189 10.2004
H-100-4B 8.95783 10.40082 0.50816 9.65240 9.67337 9.52794 9.91908

H-143-1A 6.89149 7.26278 0.31564 7.07470 7.14870 6.91896 6.96828
H-143-1B 6.99530 7.02881 0.09754 7.01203 7.09407 6.96804 6.95189
H-143-2A 6.89198 7.14856 0.26551 7.01910 7.09322 6.88849 7.01083
H-143-2B 7.00019 6.99799 0.26551 6.99909 7.06695 6.87046 6.98437
H-143-3A 6.88718 7.06102 0.22053 6.97355 7.03827 6.97519 7.08094
H-143-3B 6.90941 7.10002 0.23016 7.00407 7.08094 6.94679 6.86819
H-143-4A 6.90241 7.16342 0.26748 7.03171 7.09430 7.08521 7.01279
H-143-4B 6.82742 7.26027 0.34012 7.04052 7.10760 7.07287 7.08531

H-143-5 7.22662 7.46446 0.25042 7.34458 7.46722 7.18205 7.15966
H-143-6 7.15640 7.41622 0.26238 7.28515 7.40490 7.17162 7.12807
H-143-7 7.15090 7.38551 0.25005 7.26726 7.38195 7.17395 7.23309
H-143-8 7.31427 7.34833 0.09617 7.33128 7.43874 7.33856 –

H-217-1 4.31100 5.10569 0.53579 4.69155 4.76403 4.65464 4.67979
H-217-2 4.35230 5.07068 0.51310 4.69778 4.77022 4.74743 4.63756
H-217-3 4.35224 5.07467 0.51425 4.69960 4.76945 4.66260 4.57269
H-217-4 4.32493 5.09032 0.52737 4.69204 4.75906 4.60960 4.64027

H-217-5A 4.35619 5.00407 0.49211 4.66891 4.73461 4.73211 4.76929
H-217-5B 4.40716 4.94980 0.45523 4.67061 4.74166 4.74743 4.7135
H-217-6A 4.43976 4.95527 0.44412 4.69044 4.76334 4.66260 4.68057
H-217-6B 4.46963 4.92762 0.42101 4.69304 4.76590 4.63459 4.62484
H-217-7A 4.42785 4.96104 0.45100 4.68687 4.75590 4.62434 4.59254
H-217-7B 4.47850 4.91792 0.41318 4.69307 4.76365 4.66547 4.62591
H-217-8A 4.37704 4.98571 0.47881 4.67147 4.72868 4.69041 4.6853
H-217-8B 4.40213 4.95368 0.45857 4.66977 4.72820 4.74138 4.75164

H-353-1 4.07349 4.85117 0.54306 4.44536 4.39336 4.52602 4.53123
H-353-2 4.10935 4.63051 0.46090 4.36215 4.30017 4.43023 4.43329

H-353-3A 4.18398 4.53266 0.38462 4.35483 4.29230 4.42912 4.41162
H-353-3B 4.22293 4.51174 0.35203 4.36495 4.29261 4.42594 4.33692
H-353-4A 4.28993 4.47629 0.28554 4.38212 4.31364 4.39701 4.37221
H-353-4B 4.31107 4.45572 0.25273 4.38280 4.31440 4.39036 4.37819
H-353-5A 4.27629 4.49715 0.30953 4.38533 4.38693 4.31478 4.41046
H-353-5B 4.30637 4.45314 0.25463 4.37914 4.31028 4.39791 4.41973
H-353-6A 4.19676 4.57078 0.39619 4.37978 4.30063 4.46048 4.35391
H-353-6B 4.21780 4.54163 0.37084 4.37672 4.30178 4.42553 4.35162

H-353-7 4.12852 4.67864 0.47046 4.39498 4.31506 4.42893 4.40631
H-353-8 4.09111 4.87155 0.54290 4.46431 4.53607 4.40301 4.48774

Table 8.10: Major, a, and minor, b, axis beam widths, ε =
√

1 − (b/a)2 and FWHM,

given by elliptical Gaussian fitting to the modelled beam in the LOS coordinate

system measured FWHM from (1) Mars DatV32, and (2) Mars DataV41.



Appendix A

Mathematical reference

There follow some basic definitions and statements from the elementary theory of

functional analysis, concerning Hilbert spaces in particular, that are used in the text.

The necessary background can be found in any introduction to functional analysis

or Hilbert spaces; for example the following references, with the most elementary

given first: [62], [74], [29].

A.1 Hilbert spaces and definitions of mathemati-

cal terms

A.1.1. A linear space (vector space) is said to be complete if every Cauchy sequence

has a limit in that space.

A.1.2. A mapping, S, between linear spaces is said to be a contraction if ‖S‖ ≤ 1;

that is ‖S x ‖ ≤ ‖S‖‖x ‖ for all x in the domain of S. It is a strict contraction if

‖S‖ < 1.

A.1.3. A sequence {xn}n∈N in a linear space is said to be Cauchy if, given ε >

0, ∃K ∈ N such that n, m > K =⇒ |xn − xm| < ε.

A.1.4. An inner product on a complex linear space V is a bilinear mapping 〈· | ·〉 :

227
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V × V → C such that, for all x, y, z ∈ V and λ ∈ C

(i) 〈x|y〉 = 〈y|x〉,

(ii) 〈λx|y〉 = λ 〈x|y〉 ,

(iii) 〈x+ y|z〉 = 〈x|z〉 + 〈y|z〉 ,

(iv) 〈x|x〉 ≥ 0 with equality iff x = 0.

That is, the mapping is a complex valued, conjugate symmetric, non-degenerate

bilinear pairing.

A.1.5. Given an inner product space (V, 〈 · | · 〉), V is (an orthogonal) direct sum of

inner product spaces E an M if E ∩M = {0}, every v ∈ V can be written uniquely

as v = e+m for e ∈ E and m ∈ M with 〈e |m〉 = 0. The direct sum is written

V = E ⊕M.

A.1.6. A pre-Hilbert space or inner product space is pair
(
V, 〈· | ·〉

)
where V is a

linear space and 〈· | ·〉 is an inner product.

A.1.7. A Hilbert space is a complete normed linear space in which the norm is de-

fined be an inner product. Equivalently, the space has a complete metric determined

by the inner product.

Every pre-Hilbert space has a completion in which the points of the completed

space are equivalence classes of Cauchy sequences, two sequences being equivalent

if they have the same limit. Strictly speaking the direct sums of Hilbert spaces that

are referred to in this thesis are pre-Hilbert, not Hilbert. That distinction will be

glossed over throughout the thesis; firstly because the completions will always exist,

and secondly because the main interest is in the finite dimensional models of the

spaces rather than the spaces themselves, and the finite models are just complex

vector spaces which are necessarily complete.

If a Hilbert space has a denumerable, orthonormal basis, then that basis will be

complete. It is a theorem of Hilbert space theory that, given any denumerably

infinite orthonormal sequence {en}n∈N in a Hilbert space H, the following three

statements are equivalent: (i) {en}n∈N is complete, (ii) H is the complex linear span

of {en}n∈N, and (iii) the squared norm ‖x ‖2 is
∑

n∈N
| 〈x | en〉 |2 for all x ∈ H.
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A.2 Operator, matrix and vector norms

The vector spaces that are considered for the numerical models are all finite dimen-

sional over either the real or the complex fields. In this appendix the field will be

denoted F and a vector in the n-dimensional vector space Fn will be denoted by x

while matrices will be denote by A.

The vector norms used in the document are:

The L1 norm ‖ x ‖1 = |xi| + |x2| + . . .+ |xn| (A.2.1)

The L2 norm ‖ x ‖2 =
(
|xi|2, |x2|2, . . . , |xn|2

)1/2
(A.2.2)

The L∞ norm ‖ x ‖∞ = max{|xi|, |x2|, . . . , |xn|} (A.2.3)

A matrix norm, ‖ · ‖m, is said to be subordinate to a vector norm, ‖ · ‖v, if

‖ A ‖m= max
x 6=0

‖ Ax ‖v
‖ x ‖v

= max
‖x‖v=1

‖ Ax ‖v . (A.2.4)

The matrix norms used are the Frobenius, uniform and maximum norms:

‖A‖F =

(
∑

i

∑

j

|aij|2
) 1

2

, (A.2.5)

‖A‖∞ = max
i

∑

j

|aij|, (A.2.6)

‖A‖max = max
i

max
j

{|aij|}. (A.2.7)

The Frobenius norm (also called the Euclidean norm) is the matrix equivalence of

the L2 operator norm:

‖g‖2 = 〈g|g〉 =

(∫

|g|2 dx

) 1
2

,

where the integral is taken over the entire domain of g.
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A.3 Green’s identities

If V is a volume with boundary S = ∂V , then Green’s first identity for two scalar

functions, u and v, defined and differentiable over the closure of V is

∫

V

(
∇ v · ∇ u+ u∇2 v

)
dV =

∫

S

u∇ v · dS. (A.3.1)

Green’s second identity takes the form

∫

V

(
u∇2 v − v∇2 u

)
dV =

∫

S

(u∇ v − v∇ u) · dS. (A.3.2)

A.4 Fourier spectra

The basis functions for the Fourier expansion in the circular aperture are the discrete

set indexed by (n,m) ∈ Z≥0 ×N

Ψnm =
1√
Nnm

Jn(knmr)Φn(ϕ),

where the Nnm are the normalisation factors appropriate to the field type and the

Φn are sines or cosines fitting n times onto the unit circle. In free space, retaining

the polar coordinates, the spectrum becomes

Ψ̃nk =
√
kJn(kr)Φn(ϕ),

for a continuous parameter k. Thus, calculating the Fourier expansion of the waveg-

uide modes for a waveguide of radius a, and thus the far field pattern of the idealised

telescope, amounts to computing the Fourier coefficients

Pnmk =

√

k

Nnm

∫ a

0

Jn(kr)Jn(knmr)r dr

the set of which, for each mode Φnm, is a mapping (0,∞) → C. In practise only a

finite set of waveguide modes is used, and a discrete subset of the Fourier coefficients

for each would be calculated. The integgral has the analytic solution (4.2.2) on page

84, the first term in the square brackets vanishing for the magnetic field, and the

second term for the electric field. To get a reasonable idea of the main beam k need

only extend out to an angle given by the aperture radius times the plate scale.
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An alternative would be write the modes over the aperture in Cartesian coordinate

and to use the Hermite function expansion of the modes over the aperture. These

functions (see [69], [22]) are the eigenfunctions of the 1D Fourier transform and form

a basis for the space of Schwartz functions. A function, f , is Schwartz, denoted

f ∈ S(R) if, for all integers k, l ≥ 0,

sup
x∈R

|x|k|f (l)(x)| <∞.

Since these are related to Gaussian beam modes which are useful for the preliminary

analysis of optical systems, these two subjects will be discussed in the following three

sections.

A.5 Bolometer theory

To discuss what is observable in a measurement made with a horn of the type used

in Planck it is necessary to outline the function of the detectors; bolometers in this

case.

Radiation incident upon the bolometer is absorbed by a mass of heat capacity C(T ),

where T is the absolute temperature. The absorber is thermally linked to a heat sink

at temperature Ts through a thermal conductor with conductance function G(T ).

The absorber in the Planck bolometers is a metallised mesh. Absorption of radiation

increases the temperature of the mesh, the change being measured as as a change in

the resistance, R(T ), of a semi-conducting neutron transmutation doped germanium

thermometer biased by constant current Ib.

Denote the electrical bias power by Pb = R(T )I2
b and the load resistance by Rl,

chosen so that Rl ≫ R(T ). Denote the ratio of the infinitesimal change in resistance

to infinitesimal change in temperature, normalised by the resistance, by

α =
1

R(T )

dR

dT
.

Define the voltage responsivity function to be the ratio of a small voltage change to a

small input power from a signal with angular frequency ω; the voltage responsivity
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is given by

S(T ) =
α
√

Pb(T )R(T )

G(T ) + iωC(T ) − αPb(T ) [1 − 2R(T )/(R(T ) − Rl)]
in V/W.

The response time function of the bolometer is given by

τ(T ) =
C(T )

G(T ) − αPb(T ) [1 − 2R(T )/(R(T ) − Rl)]
.

Define the noise equivalent power (NEP) of the bolometer to be the optical signal

power equal to the noise in a 1Hz amplifier bandwidth at the output. Then, mul-

tiplying the product of the optical efficiency, ε, and the total noise by the voltage

responsivity, gives

ε2NEP2 = γ14kT
2G(T ) + γ2

4kTR(T )

S2

+
e2n + γ3R

2(T )i2n
S2

+ NEP2
phot +

v2
excess

S2
.

The expression and definition of the parameters γj are from [41], to which reference

should be made for details: γ14kT
2G(T ) represents thermal fluctuation noise from

phonon exchange between the absorber and the heat sink; γ24kTR(T )/S2 is the

Johnson noise of the thermometer referred to the bolometer input by dividing by S2;

the term (e2n + γ3R
2(T )i2n) /S

2 is the amplifier noise referred to the bolometer input,

in units of V2/Hz, en and in being voltage and current noises; the term NEP2
phot

is the incident power photon noise in W2/Hz, while the final term represents all

excess noise in the bolometer and the readout, in V2/Hz, divided by the voltage

responsivity. The design and calibration of the Planck bolometers is summarised in

[31].

In the Planck multi-mode horns the absorbing mesh is a silicon nitride spider web

coated with gold on a bonding layer of titanium, the disc of the web having a

diameter of 2λ at the band centre and the equivalent sheet impedance is designed

for optimum absorption when it is placed in a cavity with a 1/4-wave back-short, at

mid band. The web-like structure reduces the probability of cosmic ray interaction

and, in addition, renders the structure inefficient as an absorber of high frequency

photons, thus helping to filter out radiation that is out of the band. The absorption

efficiency will be frequency dependent.
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A.6 The paraxial wave equation

Assume that a function V ∈ C2(R4; C ) describes a strictly monochromatic scalar

wave of the form V (x, y, z, t) = F (x, y, z) exp(−jωt) so that the function V satisfies

the wave equation. Then the spacial component, F , satisfies the Helmholtz equation

(∇2 + k2)F = 0 (A.6.1)

where k = ω/c, F ∈ C2(R3; C ) and, if V is to represent any physical field, F ∈
L2(R3) so that it has finite total power. The paraxial wave equation [27] [26] [49],

∂2u

∂x2
+
∂2u

∂y2
− 2jk

∂u

∂z
= 0 (A.6.2)

is derived from the Helmholtz equation, so the association with a scalar electric or

other field is strictly irrelevant; it is enough to assume that we have an L2 function

that satisfies the Helmholtz equation. Nevertheless, since the Helmholtz equation

describes a process of propagation, the function will be referred to as a beam or a

field. It may be supposed to describe, for example, a scalar field, a component of a

vector field or of a correlation tensor.

A.7 Modes of the paraxial wave equation

There are various sets of solutions to the paraxial wave equation, one of which

is the family of Gauss-Hermite functions. The idea is the following: the beam is

propagating in the z-direction, so we attempt to describe the field as a one-parameter

family of functions in L2(R2), parametrised by z. Since L2(R2) ∼= L2(R) ⊗ L2(R)

consider the paraxial wave equation in the plane; then one solution is the one-

parameter family of functions (see [60][26])

Fn(x, z) =

[ √
2√

πw(z)2nn!

]1/2

Hn

(

x
√

2

w(z)

)

exp

[

− x2

w(z)2
− jk

(

z +
x2

2R(z)
− (

2n+ 1

2k
)ϕ(z)

)]
(A.7.1)
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where w0 is the beam waist radius at z = 0; R(z) = z[1 + (πw2
0/λz)

2] is the beam

radius of curvature, w(z) = w0

√

1 + (λz/πw2
0)

2 is the beam waist radius, andϕ(z) =

arctan(λz/πw2
0) is the phase shift.

This is the so called ‘normal set’. The set {Fnm(x, y, z) = Fn(x, z)Fm(y, z) : n,m ∈
N∪{0}} spans the space of solutions to the paraxial wave equation. The higher

the order of the mode function, the more rapidly the beam described by the mode

diverges. Consequently the high order modes are only valid approximations to a

beam close to the z axis. This equation can be written in terms of the eigen-

functions of the Fourier transform as follows: set

hn(x) =
(−1)n

n!
exp(πx2)Dn exp(−2πx2). (A.7.2)

The hn are eigen-functions of the Fourier transform operator and the set of functions

{en : n ≥ 0}, where

en(x) =

[√
2 · n!

(4π)n

]1/2

hn(x) for all n ∈ Z≥0 (A.7.3)

forms an orthonormal basis for the space of Schwartz functions, S, with the L2(R)

inner product, (see section A.8 on page 235 and references [64][22]). Write

en(x; z) =

[
(2π)n

w(z)
√
π

] 1
2

en

(
x

w(z)
√
π

)

(A.7.4)

In terms of this basis, (A.7.1) becomes

Fn(x, z) = en(x; z) exp [−jkψ(x; z)] exp[−jkCn(z)] (A.7.5)

where

Cn(z) = z − (n+
1

2
)
ϕ(z)

k
(A.7.6)

and

k · ψ(x; z) =
λz

w2
0

(
x

w
√
π

)2

= k · x2

2R(z)
. (A.7.7)

The equations (A.7.1) and (A.7.5) have the form Fn(x, z) = en(x, z) exp(−jkΨn(x, z)),

where the amplitude function, en(x, z), and the phase function, Ψn(x, z) = ψ(x; z)+

Cn(z), are real valued. Since the waist function, w, is an even function of z, en is
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even in z. Also, ϕ(z) is odd, so the phase terms, ψ and Cn, are odd in z. Further-

more, ψ is an even function of x and en is an even function of x if n is even and an

odd function if n is odd. Therefore, Ψn(x, z) is an odd function of z and an even

function of x, whilst en(x; z) is even or odd according to whether n is even or odd.

For fixed z and all n it is clear from (A.7.5) that F ∈ L2(R), but less obvious that

Fn(x; z) ∈ S; that it is a Schwartz function is proven in section A.8. It is clear from

(A.7.4) and the definition of k · ψ in (A.7.7) that Fn does not change form as it

propagates, only the scale and phase changes.

At any point in the plane at which a Gauss-Hermite mode describes the paraxial

propagation of the beam, the direction of propagation of the mode is given by the

gradient of the phase function.

A.8 Schwartz functions and Gauss-Hermite modes

The space of Schwartz functions on R, denoted by S = S(R) is the set of all indefi-

nitely differentiable functions on the real line with all derivatives rapidly decreasing.

That is a function f ∈ S(R) if, for all integers k, l ≥ 0,

sup
x∈R

|x|k|f (l)(x)| <∞

For all a ∈ R>0, the weighted Gaussian exp(−ax2) is a Schwartz function. It follows,

by the the closure of S under pointwise multiplication of functions, that the functions

en(x) =

[√
2n!

(4π)n

]1/2

hn(x) for all n ∈ Z≥0

and therefore also the functions e(x; z) defined in (A.7.4), are Schwartz functions

for all fixed z ∈ R. The functions hn(x) are eigen-functions of the Hermite operator

Hf(x) = −D2f + 4π2x2f with eigenvalue 4π(n+ 1/2) (see [22]). Since

4π(n+
1

2
)〈hn, hm〉 = 〈Hhn, hm〉 = 〈hn, Hhm〉 = 4π(m+

1

2
)〈hn, hm〉

if and only if n = m, it follows that hn is orthogonal to hm for all n,m ≥ 0. Therefore

the set {en : n ≥ 0} forms an orthonormal set in S.
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The functions given in equation (A.7.5), for all n ≥ 0 and any fixed z ∈ R are

Schwartz functions. To see this proceed as follows: Holding z constant, the term

exp[jkCn(z)] can be ignored as it is simply a constant of unit modulus. Further-

more, setting ξ = x/w
√
π, differentiation with respect to ξ yields the following two

equations:

Dk
ξ en(x; z) =

1

(w
√
π)k

Dk
xen(x; z),

Dl
ξ exp(−jkψ(ξ)) =

1

(w
√
π)l

Dk
x exp(−jkψ(ξ))

Thus, differentiating with respect to ξ or x changes only the scaling, not the result

we wish to prove. For all k, l, n ≥ 0, and all x ∈ R, Leibniz’s rule gives

|x|k|DlFn(x)| = |x|k
∣
∣
∣
∣
∣

l∑

p=0

(
l

p

)

Dl−pen(x)D
pe−jkψ

∣
∣
∣
∣
∣

= |x|k
∣
∣
∣
∣
∣

l∑

p=0

(
l

p

)

Dl−pen(x)Qp(x)e
−jkψ

∣
∣
∣
∣
∣

where Qp(x) is a polynomial in x of order p with complex coefficients, the details

of which do not concern us. Write Qp(x) = q0 + q1x + q2x
2 + · · · + qpx

p and q =

max{|q0|, |q1|, . . . , |qp|}, then

|x|k|DlFn(x)| < l! · q · |x|k
l∑

p=0

(1 + |x| + |x|2 + · · · + |x|p)
∣
∣Dl−pen(x)

∣
∣

= l! · q ·
l∑

p=0

(|x|k + |x|1+k + · · · + |x|p+k)
∣
∣Dl−pen(x)

∣
∣

< l! · q · (p+ 1) ·
l∑

p=0

max{|x|k, |x|p+k}
∣
∣Dl−pen(x)

∣
∣ <∞

where we have used | exp(−jkψ)| = 1 and the fact that en ∈ S. More generally, S
is an ideal in the ring C∞(R).

For all n,m ≥ 0, Fn is orthonormal to Fm. This is almost immediate from the

orthonormality of en and em:

〈Fn, Fm〉 =

∫

R

Fn(x; z)F̄m(x; z) dx
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=

∫

R

en(x; z) exp [−jkψ(x; z)] exp[−jkCn(z)]em(x; z) exp [jkψ(x; z)]

exp[jkCm(z)] dx

= exp[(m− n)
ϕ(z)

k
] ·
∫

R

en(x; z)em(x; z) dx

= exp[(m− n)
ϕ(z)

k
]

[
(2π)n+m

w4π2

] 1
2

·
∫

R

en(ξ)em(ξ) dξ

= exp[(m− n)
ϕ(z)

k
]

[
(2π)n+m

w4π2

] 1
2

· δnm

=







0 : n 6= m

1 : n = m

Starting from the definition of hn+1 given in (A.7.2), write

Dn+1 exp(−2πx2) = Dn{−4πx exp(−2πx2)}

and expand the right hand side as a polynomial using the Leibniz rule. After

rearranging, the resulting expression for hn+1 is the recurrence relation hn+1 =

4π{xhn − hn−1}/(n+ 1). Then

Fn+1(x; z) =

[
(2π)n+1

w
√
π

] 1
2

·
[√

2 · (n+ 1)!

(4π)n+1

] 1
2

hn+1

(
x

w
√
π

)

× exp(−jkψ(x; z)) exp(jkCn+1(z))

=
4π

n+ 1

{
x

w
√
π

[
(2π)n

w
√
π

] 1
2

[√
2 · n!

(4π)n

] 1
2

hn

(
x

w
√
π

)[
(n + 1)

2

] 1
2

−
[
(2π)n−1

w
√
π

] 1
2

[√
2 · (n− 1)!

(4π)n−1

] 1
2

hn−1

(
x

w
√
π

)[
(n+ 1) · n

8

] 1
2
}

× exp(−jkψ(x; z)) exp(jkCn+1(z))

=
4π

n+ 1

{
x

w
√
π

[
(n+ 1)

2

] 1
2

exp(−jkψ(x; z)) exp(jk[Cn − Cn + Cn+1])

× en(x; z) −
[
(n + 1) · n

8

] 1
2

en−1(x; z) exp(−jkψ(x; z))

× exp(jk[Cn−1 − Cn−1 + Cn+1])

}

=
4π

√

2(n + 1)

{
x

w
√
π
Fn(x; z) − exp(−j ϕ(z))

√
n

2
Fn−1(x; z)

}
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× exp(−2jkϕ(z))

having used Cn+1(z) − Cm(z) = (m − n − 1)ϕ(z)/k from the definition in

equation (A.7.6).

Thus it is seen that the Gauss-Hermite modes satisfy the recurrence relation

Fn+1(x; z) =
4π

√

2(n+ 1)

{
x

w
√
π
Fn(x; z) − exp(−j ϕ(z))

√
n

2
Fn−1(x; z)

}

× exp(−2jkϕ(z))

(A.8.1)

that can be used in numerical routines for their calculation because the recurrence

is stable.
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