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Abstract

Climate change is anticipated to impact the flow regime of riverine systems with
resultantconsequences for the freshwater habitat of Atlantic salfBaimosalar) and

the longterm sustainability otheir population numbers. The Burrishoole catchmant
relatively smallbut productivesalmoncatchment (~9&m® | ocat ed on | r e
coast is usedas a case study to investigate tiisseries of lgh resolution climate
scenarios weremployedto examine potential changes in the climate and hydrology of
this catchment.The climate scenarios used represent different combinations of
greenhouse gas emission scenarg) driving GCMs and statistical/dynamical
downscaling modst in addition, threelifferent rainfalirunoff models (HBV, HYSIM

and TOPMODEL) wereemployedi integrating acros®oth structual and parameter
uncertainty By considering multiple model pathways this study attempts to sample
across the uncwinties encountered at each stage in phecess of translating
prescribed anthropogenic forcings into local scale responses in the catchment system.
The hydrological projections werexaminedin the context of the habitaind flow
requirements ofAtlantic salmon at key stages in their hégcle (e.g. spawning,

migration).

Model projections suggest that the catchmieriikely to become warmer, with wetter
winters and drier summers occurririthe results of the hydrological modelling suggest
that this wil be accompanied by an increase in the seasonality of its flow regime
manifest in an increase in low (Q95) summer and high (Q05) winter flows. If realised,
these changes are likely to impact salmon throughkdaiction in the availability of
preferredhabitat, a loss in connectivity across the catchment system and a disruption to
the evolved synchrony between the occurrence of optirstr@am conditions and the
time at which certain life historgventsoccur.Each of hese factors is likely to impact

the processes ahigration, reproduction and recruitmengach ofwhich is critical for

the longterm viability of healthy, seHsustaining wild stocks in the catchment. Based
on the projected flow data it is likely that the carrying capacity and productivity of the
catchment may be reduced. In addition, by affecting those life stages which are already
subject to sigricant mortality losses (e.g. fry emergence, smolt migration), changes in
climate may result in population collapsearticularly if successive yeatasses are
affected.The results of the hydrological modelling highlight the sensitivity of smaller

spatg catchments to changes in clima@ven that theBurrishoole system igypical of



manyc at chment systems found ,hbahk@sults highligetlha nd o
vulnerability to climate change which is present more generally across the region.
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Chapter 1

Introduction

1.1 Research Background

Climate change is considered one of the most complex and important environmental
issues currently facing the global community. It poses a major challenge to human
society and threatens to undermine the functioning of terrestrial and aquatic ecosystems,
with resultant consequences for biodiversity, species distribudimch community
structures (Waltheet al, 2002; Thoma®t al, 2004; Hare, 2006; Warregt al, 2010).

Indeed there is a growing body of evidence which suggests that recent climate change
has affected a wide range of species with diversesiifetegies and geograplpoofiles
(Hughes, 2000; Wuethrich, 2000; McCarthy, 2001; Walgteal, 202; Parmesan &

Yohe, 2003).According to Parmesan (2006:8)t he di r ect i mpact s
climate change have been documented on every continent, in every ocean, and in most

maj or taxonomic groupso.

The latest report released by the Intergovernmental Panel on Climate Change (IPCC,
2007a) staheghwcohfidengeo (90% probabil
the industrial era (circa. 1750) the globally averaged effect of human activity on the
Earthdés energy balance has been one-of w
industrial levels(1750) a net increase of +1.6vith a +0.6 to +2.490% confidence

rangd Wm?i n t he planetodés radiative forcing h
in the planetary energy balance translate iatoincreasan the globaly averaged

surface air tempature which, according to the Goddard Institute for Space Studies
(GI §SS) , have increased over the peretod 1
al., 2010). In addition, it is estimated that the rate at which warming has occurred since
the beginningof the industrial era has been unprecedented in more than 10,000 years
(1 PCC, 2007a) . The observed changes in t
rising concentrations of atmospheric greenhouse gases (GHGs) which, along with
positive feedbackitiated in the system (e.g. increases in atmospheric water vapour
(Solomonet al, 2010), havehad the #ectofe nhanci ng t he Eart hos

effect. This has occurred despite human (e.g. the release of aerosols such as sulphate,



organic cabon, black carbon) and natural forcings (e.g. volcanic activity) exerting a
cooling influence on the planet (IPCC, 2007a).

Importantly for this studyfreshwater ecosystems are highlighted as being particularly
vulnerable to changes @limate, not least because they are already heavily degraded by
human activity, but also because of their geographically fragmented nature and the
associated lack of thermal refugia for more sensitive species. Given their sensitivity to
changes in climata, t i's suggested that freshwaters
an insight into the possible biological, chemical and physical responses of other
ecological systems to changes in climadr{an et al., 2009; Woodwaret al, 2010).

With respect tofreshwaters recent climate changée manifest primarily through
alterations in the thermal regime of river and lake systenignges irwhich reflect
warming trends evident in global and regional surface air temperatures. Changes in
climate have afs been detected through the response of various biological indicators;
this includes alterations in the phenology of some aquatic biota and changes in the
distributional range of more mobile speci@ghilst the majority of impact studies have
focused on teperature as the key driver of change in lotic ecosystems, dwiitg
influence on water quality, food abundance and the availability of physical habitat, as
well as its role in providing refuge, migratory cues and connectivity across freshwater
systemshydrology is as important as water temperature for determining the ecological
status of river systems and their letegym capacity to sustain populations of some

freshwater and anadromous fish speeiggluding Atlantic salmon%almo salay.

This stug seeks to contribute to the existing scientific discourse concerning the
potential impacts of climate change on the freshwater habitat of Atlantic salmon. The
study focuses on the Burrishoole catchment relatively small but productive
catchment systei90km®) | ocated on I relandds west ¢
been an observed progressive decline in the population numbers of this ecologically

i mportant and environmentally sensitive
(Stefanssoret al, 2003; Peyronnett al, 2007). Given that populations are subject a
wide range of anthropogenic stressors, and that their natural environment has already
been significantly degraded, it is important that the potential future impacts of climate

change orthis species arimvestigated

Although climate change is anticipated to affect all aspects of riverine ecosystems, this
study focuses on how changes in key climate variables are likely to impact the

hydrological regime of the study catchment. Projeatbdnges in patterns of flow



behaviour and the nature of extreme events are examined with respect to the habitat
requirements of Atlantic salmon at critical stages in their life cycle. The study findings
should offer some insight into how climate change effgct those catchment systems

| ocat ed on | r-enany aofdvidich arevsensldn natuoet@ thé Burrishoole.

In addition, the study should provide an empirical contribution to how catchment
management and fish stocking strategies are fornwylatdereby in order to guard
against further population declines, a strong emphasis will need to be placed on
mitigating the most deleteriowsfectsof climate changen the freshwater environment

1.2 The intensification of the natural greenhouse effect

The link between rising concentrations of atmospheric GHGs, alterations in the global
radiative balance and changes in the cli
greenhouse effect. Without a certain naturally occurring concentration of GHBs in t
atmosphere, the Earth would be too cold to sustain life. GHGs such as carbon dioxide
(CO,), methane (Ch), nitrous oxide (MNO) and water vapor (¥D) absorb and
subsequentlyadiate longvnave ener gy e mi t t e-dhereby helatimg E at

the planetdéds surface and at mosphere.

I f the Earthodéds radiative balance is pert
in order to adjust to a new equilibrium state. An externally imposed energy imbalance in
the system, either natural or anthropoig in origin, is termed radiative forcing; the
relationship between alterations in this forcing and changes in the equilibrium surface

temperature¥4 ) is given by:

()

Y4 1Y&

whereY&i s the radiative forcing and Ths i s

parameter is a measure of how responsive the climate system is to a change in forcing.

In addition to changes in langse and the intensification of agricultural practices, the
release of carbon dioxide through the mass combustion of fossil fuelechés the
observed increases in atmospheric GH@®¢#ose levels currently far exceed those of
the preindustrial era (IPCC, 2007a). The IPCC (2007a) states that enhanced
atmospheric concentrations of €@re the single largest contributing factor to the

over al | increase experienced in the Eart|



such as natural gas, petroleum and coaépresenting vast geological deposits of
decomposed organic material rich in hydrocarbenshen burned produce carbon
dioxide. The historical and continued reliance of industrialized nations on fossil fuels as
a cheap energy resourbas meantthat carbon dioxide and other GHGs have been
emitted in quantitiesvhich far exceed the natural rate of uptake by terrestrial and
aquatc systems (le Quémet al, 2009). If the current rate of GHG emissions continue, it
could potentially lead to a doubling or even tripling of -préustrial atmospheric
concentrations of CO(~280 ppmv; parts per million volume) before the end of the
present century (Tans, 2009).
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Figure 1.1 Principal anthropogenic and natural components of radiative forcing as outlined in the IPCC AR4 (2007). Th
represent the contribution of different radiative forcings for the year 2005 relative to theibg®f the industrial revolution (circ
1750) (Source: IPCC, 2007).

In recent years an increase in the demand for energy in emerging economies, and a
return to coal as a key resource for energy production, has helped contribute to further
increases N atmospheric GHGsLé Quéréet al, 2009). In the year 2008, total
anthropogenic emissions of G@pproximated to 10 billion tons of carbon annually
(equivalent to one million tons per hour or, on a per capita,ba§i® kg persohh™).

Of this amount 8.7 + 0.5 billion tons originated from the combustion of fossil fuels and
cement production; it is estimated that deforestation was responsible for a further 1.2 +
0.7 billion tons (Le Quérét al, 2009).

Data from the Mauna Loa obsetogy, located on the island of Hawaii in the South
Pacific Ocean, illustrates the observed upward trend in atmospheric carbon dioxide.
Since 1956CQ; levels have been monitored at the observatory using air samples taken

directly from the atmosphere (Keelg 1960) . The observatory



where the air is undisturbed by the localized effects of vegetation or human activity
meansits records provide a reliable indicator of changes in the elemental composition
of t he Ear t h odadditiant timeodatasét dronme Maund hoa constitutes the
longest continuous record of atmospheric,@Cexistence.

Records from the observatory indicate that between 1959 and 2011 atmospheric
concentrations C@ncreased from ~316 ppmv to ~391 ppmv (Figui®).1in line with
observed trends in carbon dioxiggmospheric concentrations of methane and nitrous
oxide have also increased. Over the period 1216 methane levels rose from
715ppbv (parts per billion volume) to 1772 ppbv, while concentrations rousitoxide
increased from 270 ppbv to 319 ppbv (IPCC, 2007). Along with the consumption of
fossil fuels, increases in atmospheric concentrations of these gases are attributed to the
intensification of agriculture and greater industrial activity.

I Scripps Institution of Oceanography
NOAA Earth System Research Laboratory
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Figurel.2 Atmospheric concentrations of carbon dioxide sampled directly from the atmosphere at the Mauna Lao obse
Hawaii. Therecords indicate in parts per millidhne increase in atmospheric €6hce 1958Smaller fuctuations irthe general
trend aremdicative ofseasonal variatioria atmospheric C® (Source:http://www.esrl.noaa.gov/gmd/ccgg/trendstcessed

27/11/2011)

Ice core samples constitute an important historical record of changes in the chemical
composition of the Earthds at mosphere.
Antarctica provides a record of past variations in atmospheric carbon dioxide and other
gases stretching back 800,000 years spahningfour interglacial cycles (Luthet al,

2008). Data from the Vostok site indicates that current atmospheric concentrations of
CO, far exceed the natural range of variability which, records suggest vatigeelne
180ppmv and 280ppmv (Pett al, 1999). Carbon dioxide measured at Mauna Loa and
other monitoring sites currently exceed the upper bound of this range by ~40%. The
records suggest that the current rate of increase in atmospheris @ much as®@

times greater than natural rates in the geological past, and at present, levels are currently
higher than at any time throughout the last 800,000 years (IPCC, 2007agt athi



2008); furthermoreit is likely that the rate of increase in atmospher@,@uring the
20" century is unprecedented in at least the past 16,000 years (IPCC, 208 %a)rs

also provide a record of variations in global temperature and hold information on the

occurrence of natural events (e.g. volcanic eruptiomsjormation on historic

conditionsis extractedby analysingsmall bubbles of air which contain a sample from
the atmosphereenclosed in the icdata from the Vostok site has been used to explore

the relationship between surface temperature and ptrads CQ. The records

illustrate the degree to which fluctuations in air temperature and atmosphébizn

dioxide co-vary (Figure 1.3); iceore data thus provides an insight into the possible

response of the climate systemdimanges in the elementadmposition oftheear t h 6 s

atmosphesz.
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Figure 1.3 Records of atmospheric carbon dioxide and surface temperature extracted from the Vostokdciélemie east
central Antarctica which stretch back over 400,000 years (Ratil, 1999).Current observations of G@ampled directly from
the atmosphere are higher than at any period in the ice core record. (Source: http://en.wikipedia.org/wiki/Imageewastmk
petit.png#file, accessed 27/11/2011)

Records from the Vostok sigiggests a lag between ¢£&hd temperature in the initial

warming phase of each cycle, thenGippears to lead. It is likely that this is associated
with a weakening in the orbital forcing (Milankovitch cycle), combined with the

positive feedbacks ofeduced albedo resulting from the decay of the Northern

Hemisphere ice sheetsand increased concentrations of atmospheric @@ CH

(Lorius et al, 1990) Essentially changes in the quantity of radiation the Earth receives

triggers a series of posigvfeedbacks in the system, leading to increases in atmospheric

GHGs which appear to lag behind increases in temperature. This illustrates the

importance of feedback mechanisms and their role in amplifying the climate response.

1.3 Observed changes in thglobal climate

The

PCC

(2007 a:

30)

states

t hat

fi at

CC

numerous longerm changes in climate have been observed. These include changes in



arctic temperatures angte, widespread changes in precipitation amountzano
salinity, wind patterns and aspects of extreme weather including droughts, heavy
precipitation, heat waves and the intensi
system is evident in the melting of ice sheets in Greenland (Heinah 2008) and
Antarctica, a process which, along with the thermal expansion of oceanic water, has
contributed to a rise in global sea levels (Church & White, 2006; Shepard & Wingham,
2007). It is estimated that sea levels rose byO~in during the 28 century
Additionally it is estimated that over the perid861 to 2003ea leveldave risen at an
average rate of 1.8m per annum (1.3 to 2r8m) (IPCC, 2007a)The rate of increase

in the last decade is estimated to be approximately double that occurring over the last
century (Church & White, 2006).

Warming is evident in the widespread melting of glaciers and reductions in the extent of
arctic seace and snow covefPolyak et al, 2010). Instrumental records of global
surface air and ocean temperatuaedso provide evidence for recent changes in the
climate systenfLevitus, 2000; 2005). It is estimated that since 1978 the annual average
arctic seace extent has shrunk by 2.70:6% per decade (IPCC, 2007a). Increases in
atmospheric C®have led to the oceans becoming more acidecords indicate that
surface water pH levels have decreased by an average of ~0.1 sinceefjéb@lent to

a ~ 30% increase in hydrogen ion (H+) centration (Orret al, 2005; IPCC, 2007a).
Figure 1.4 illustrates the relationship between increases in atmosphenme2Sured at
Mauna Loa, and surface ocean pH levels measured at the ALOHA ocean station (Doney
et al, 2009; Doreet al, 2009).
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Figure 1.4 Atmospheri€O,concentrations measured at the Mauna Loa observatory (ppmv; in red). Surfacp@Oggmatm; in
blue) and surface ocean pH (in green) measured at the ALOHA Ocean station (Sourcestdn2§09).



Over the instrumental period of record (with widespread measurenfienh 1880)
average gl obal air temperatures have 1inc
Figure 1.5showsthe recorded increase in globally averaged air temperatures for the
past ~160 yars. According to the World Meteorological Organisation (WMO), over the
period 20012010, global temperatures averaged 0.46°C above the I8l average

this is noted as the warmest decade on record since instrumental recordsAdégan (
2011).
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Global air temperature
pa-4 2011 anomaly +0.34°C
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Figure 1.5 Global temperature anomalies for the periodiIBB0L relative to the 1961990 average. This time series is compi
jointly by the Climatic Research Unit (CRU) and the UK Met Office.

Globally the warmest year on record was 201@ollowed by 2005 and 1998
respectively WMO, 2011). Significantly, the rate of warming experienced during the
latter half of the 28 and beginning of the 2&century has been greater than at any other
time during the past 1,000 years (IPCC, 2007a). Global observations indicate an
increase in the number of warm extremes and a reduction in the number of cold day
extremes- such changes in extreme conditions emesistent with the general upward
trend in global temperature (Alexandet al, 2006; IPCC, 2007a). Rising air
temperatures lead to a corresponding increase in the melisildiag capacity of the
atmosphere (Douvillet al, 2002; Trenbertlet al, 2003 Trenberth, 2011), the result of
which is altered precipitation patterns and changes in the nature (i.e. intensity,
frequency and type) of heavy precipitation events. It is estimated that on a globally
averaged basis precipitation over land has increagedpproximately 2% since the
beginning of the 20 century (Daiet al, 1997; Hulmeet al, 1998; Huntington, 2006);

this increase is however not spatially or temporally unifemith regional variations in

more general trends being appareitis notedthat dianges in total precipitation



receipts have been accompanied by an increase in the intensity of heavy or extreme
precipitation events (Groismaat al, 2005; Alexandeet al, 2006).

1.4 The ecological response to recent warming

Across both terrésal and aquatic systems recent changes in climate have been found to
correlate with changes in the distributional range of some species and alterations in the
time at which seasonal events occur (Hughes 2000; Parmesan & Yohe 2008t &oot
2003, Hicking et al, 2005; 2006). Observedhanges in the phenology (Roy & Sparks,
2000; Menzekt al, 2001; Hayset al. 2005, Adrainet al 2006; Visser & Both 2005;
Parmesan, 2006), distribution (Beaugraatdal. 2002; Rootet al, 2003; Parmesan &
Yohe, 2003),abundance (Hicklinget al, 2005) and physiological response (Janzen,
1994; Hughes, 2000) of various plant, animal and fish species have been attributed to
recent climate change (IPCC, 2007a).

A number of authors indicate that the most prominent respohseEmperate aquatic
ecosystems to climate warming has been a change in phenology (Gerten & Adrian,
2002; Adrianet al, 2006). Studies examining the response of biological indicators to
recent climate change have highlighted the earlier onset of spriegtseand a
lengthening of the growing season. Menzel and Fabian (1999) found that since the
1960s the average annual growing season in Europe has lengthened by 10.8 days which,
the authors attribute to an increase in regional air temperatures. A subssqdgrity
Menzelet al (2006)- which considered 125,000 observational series of some 542 plant
and 19 animal sgies in 21 European countries over the pet@®dll 2000- found that

on average the onset of spring/summer in Europe has advanced by 2pgmddgsade.
Menzelet al (2006) state that the observed changes in the timing of seasonal events

match warming trends evident in European temperature records.

In addition to changes in phenology, there has been a noted migration poleward of more
mobile species (Waltheet al, 2002; Rootet al, 2003). When investigating the
relationship between biological trends and recent climate change, a study by Parmesan
ard Yohe (2003} which considered more than7D0 speciesthe data for which varied

in length and time period coveredietected a significant range shift towards the poles

of 6.1 km per decade. Additionally, with respect to the phenological response of th

species considered, Parmesan and Yohe (2003) found an advance in the mean onset of



spring events by 2.3 days per decade. Observed changes in the composition of
ecological communitieas well aghe greater abundance of Rpative species have also
been inked toobservedtchangs in climate(Waltheret al, 2002).

There is substantial evidence linking observed trends in marine and freshwater
biological systems to increases in water temperature. Changes in these systems have
also been linked to warmiaglated trends in ice covesalinity, ocean circulation and
dissolved oxygen (Weyhenmeyet al, 1999; Beaugrand, 2002; Gerten & Adrian,
2002; Edwards & Richardson, 2004; Winder & Schindler, 2004; Hsyal 2005;

Adrian et al, 2006). Climatemediated chages in marine and freshwater ecosystems
include:

A shifts in the distributional range and abundance of gigmhktonand fish
species in highatitude oceans

A increases in algal armboplankton abundance in hidgititude and high
altitude lakes

A the earlier migration of riverine fish species and shifts in their distributional

range
(Source: IPCC, 2007b)

The earlier onset of spring events have been found in a range of taxonomicailsediv
organisms in the aquatic environmentincluding species of marine (Edwards &
Richardson, 2004) and freshwater plankton (Gerten & Adrian, 2002; Winder &
Schindler, 2004). The rapid response of marine species to-tehmrtand episodic
changes in seaurface temperaturessuch as those accompanying El Nifio events
highlights the sensitivity of aquatic species to ocean warming and their potential
response to future climate change (Hughes, 2000).

Changes in climate are anticipated to push the disiiaitrange of some fish species
towards areas at higher latitudes. Already there is evidence of shifts in the distribution
of some marine fish species relative to their thermal tolerances. Over a 20 year period
(19741993) Holbrooket al. (1997) found thiathe composition of Californian reef fish
populations had changed such that the proportion of southern warm affinity species
increasd from approximately 25% to 35%his was found to occur in parallel with a
~17% decline in the proportion of northern|ctaffinity species. Similarly, a study of

fish populations in the North Sea by Peetyal (2005) found that over a 25 year period
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both exploited and neaexploited species had responded to recent warming by shifting
their latitudinal range further nortlard, and/or by altering their swimming depth.

Beaugrancet al (2002) detected a maeszale change in the biogeography of calanoid
copepod crustaceans in thertheastern region of the North Atlantic Ocean. Over the
period 19601999 strong biogeagphical shifts in all copepod assemblages were found
to have occurred. In the nordast Atlantic it was found that that the distribution of
warm affinity species had shifted northward by 10° (latitude), this was accompanied by
a retreat in the distribdnal range of cold water species towards more northerly
latitudes. Observed changes in the calanoid copepod species composition were
attributed to an increase in regional sea surface temperatures. Beaeigean@002)
indicate that the range shift in mepod assemblages is commensurate with trends
detected in the phenology and distribution of many taxonomic groups in terrestrial
ecosystems located at similar latitudes. Following from this, Beaugrand and Reid (2003)
investigated the lonterm response afooplankton, phytoplankton and Atlantic salmon

to changes in hydrmeteorological forcing in the northeast Atlantic. It was found that
recent increases in regional seaface temperatures had an impact on all three trophic
levels. The authors point to aanked increase in Northern Hemisphere temperature
anomalies at the end of the 1970s (consistent with trends in the North Atlantic
Oscillation) as a critical period when all biological variables show a pronounced
change. Rijnsdorpt al (2009) assessed timpact of recent climate change on the life
cycle of various aquatic species, focusing primarily on fish species in the Northeast
Atlantic region. The authors found that during the early stages of thefidtfery, fish
species are particularly senséito climatic drivers. The study findings suggest that
further changes in the climate system are likely to influence growth, mortality and
recruitment, with resultant consequences for the overall productivity and abundance of

fish stocksn this region

1.5 Projected future climate change

The results of model experiments conducted to examine past variations in the climate
system suggest it is very unlikely that the warming experienced over the latter half of
the 2¢" century can be attributed to natural forcing alone (IPCC, 2007a). It is

anticipated that if GHGs continue to be emitted at or above current rates, it is very likely

that the warming trend evident in observed records will continue, and that changes
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experieced in the global climate during the"™2tentury will be greater than those
experienced over the course of thd" 2entury. Global climate models (GCMs) are the
primary tool used for wunderstanding past
employa in a climate change context, provide a means for exploring the potential
response of the climate system to a change in forcing. Depending on the particular
pathway human development may take, model experiments suggest an increase in
global temperaturesfto bet ween 1. 8e¢eC (Bl | ow emissi ol
emissions scenario) by the end of the present century{209@ relative to 1980989)

(IPCC, 2007a; Knuttet al, 2008) (Figure 1.6). This however represents a best estimate

or the point arand which the majority of modaimulationsconverge. Based otine

results ofmodel experimentsthe projected range in temperature increase is between
1.1eC (B1 scenari o) a n d sirBuladors@lso Sulydestlan s c e
increase in pcipitation at higher latitudes;t is anticipated that this will be
accompanied by corresponding decrease receiptsacrossthe subtropics (IPCC,
2007a).
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Figure 1.6 Projected patterns of future regional surface temperature change for the early afldéatei®lrelative to the periot
1980 1999. The central and right panels show the AOGCM multimodel average projections for the B1 (top), A1B (middle
(bottom) SRES scenarios averaged over the decade$ 2020 (centre) and 2092099 (right). Shownni the left panel are
probability distribution functions of the estimated global average temperature increase from an enseifiileracfAOGCM and

Earth System Model of Intermediate Complexity studies for the same periods.(Source: IPCC, 2007).

An increase in the occurrence of extreme precipitation and drought events is also
suggested to occur. Regions that are likely to experience increased precipitation receipts
include the Arctic, Northern Europe and the northeast USA (Haghak 2006; IPC,

2007a). If realised such changes in climate are likely to impact food production,
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heighten flood risk and reduce the availability of water resourtiass climate change
has potentially far reaching implications for the functioning of human and Societa
systems. Similarlyprojected changes in climate have the potential to negatively affect
natural systems withssociated consequendes species abundance, biodiversity and
habitat conservatignt is thus critical that the mogtotentially deleterios aspects of
future climate change are explored

1.6 Climate change and salmonids

Any shift or fundamental alteration in dominant climate conditions has the potential to
affect the integrityof freshwater ecosystems and adversely implaetavailability of
suitable instream habitatshusundermining the future viability of some populations of
freshwater andnadromoudish species, including the Atlantic salmo®a{mo salay.

This speciess listed in Annex Il and V of the EU Habitats Directive (1992) and thus
has been identified as a threatened species deserving of conservation action. Given that
they are highly sensitive to changing environmental conditions (i.e. beingdajited

and equiring highdissolved oxygerevels), the success of native stocks and their
productivity is considered a key indicator for the overall ecological-beilg of

freshwater systems.

Salmonids have complex life cyclesnsisting of several stages (etayvae, juveniles

and adult) each of which have different dietary, growth and habitat requirements
(Rijnsdrop et al, 2010). This picture is complicated by the requirement of some
salmonid species to migrate between the marine and freshwater envirgnments
undergoing significant physiological change and travelling great distances in order to
complete their lifecycle consequently, @mon are regarded as a species which are
particularly vulnerable to climate chang€his is due to their innate sensitivito
environmental conditions and the fact that their-¢ifele necessarily exposes them to

climatemediated changes in both the marine and freshwater environments.

In terms of the Atlantic salmgrreland remains one of a small number of European
countres which retain a viable native brood stock and attractive freshwater environment
for breeding; however, the continued survival of this once abundant species in many of

l relandés waterways has increasingleg com

al., 1998; Stefanssoet al, 2003). An analysis of lorterm survival and productivity
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trends for Irish stock suggest that many populations have gone into decline (Stefansson
et al, 2003). This mirrors a declinehich has occurrednore generally acrossir
distributional range but particularly along their southernmost limits where many
populations haveecome extinc{Parrishet al, 1998). It is anticipated that with further
increases in water temperature, the distributional range of this species will be redrawn
further northward where habitat conditions are likely to remain favourable for success
during the freshwater phase of théfe cycle (McCarthy & Houlihan, 1997; Friedland

et al, 2003; Jonsson & Jonsson, 2009).

Climatemediated changes in water temperature, precipitatiorsaadnflow all have
long-term implications for the lifdnistory strategy of salmonids and the lecairying
capacity of river systems. Changes in climate have the potential to alter the time at
which key stages irtheir life cycle occur (e.g. smoltification, sexual maturity)
(Berglund, 1991; Beaugrand & Reid, 2003; Jonsson & Jonsson, 2009; Graham &
Harod, 2009) as a resulimpacting the processes of recruitmergproductionand
migration each of which is critical for the lorgrm productivity of salmonid stocks.
Whilst changes in climate may directly affect salmon by altering aspects of their
phendogy (e.g. time of swirup), physiology and behaviour (e.g. feeding); it may also
affect them indirectly by reducing the availability of preferred habitat, altering food
web-dynamics and changing the nature of interspecific relationships. The decline in
many populationswhich has beembserved in recent decades is an indication of the
impact human activity has had on their environment (e.g. pollution, dams, over
abstraction and aquaculture) (Parrish, 1998; Stefanstsah, 2003). Climate change
brings theadded complication that it is likely to amplify the effects of any current
anthropogenic stressors; in this respect it presents additional challenges for the

management armslistainableestoration of freshwater habitats.

1.7 Research aims and objectives

The objective of this study is to examine how changes in climate may impact the flow
regime of the Burrishoole catchmena relatively small but productive upland system
typical of many catchments found along |
in the catchment hydrology are examined in the context of the freshwater habitat and
flow requirements of Atlantic salmo®s&lmo salay at different stages in their life cycle.

While the results of this study are specific to the Burrishoole catchmengetieral
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findings are likely to be of relevance to the future management of catchment systems

which possessimilar physical and ecological characteristics.

1.7.1 Aims

A Examine changes in key climate variables for the catchment using a series-of high
resdution climate projections.

A Analyse changes in different aspects o
output from a plausible set of hydrological models.

A Assess the potential implications that projected changes in the flow regime may
have with respedd the physiological and habitat requirements of Atlantic salmon
(Salmo salaj at different stages in their life cycle.

A Implement a robusmethodological approacfor dealing withthose uncertainties
which affecta climate impact study of this nature.

1.7.2 Research Outline

Climate change is anticipated to alter the flow regime of ineersystems with
consequences for the freshwater habitat of salmonids and théelongustainability of

their population numbers. The Burrishoole catchment, an internationally important
sentinel site for sal monid ntasruset asraicasg | o
study to investigate this. Changes in t
future climate forcings are explored using a set of high resolution climate sceamrios
input to multiple rainfaltrunoff models (integrating across féifent parameter sets and

model structures).

To examine how alterations in the hydrological regime correspond to changes in those
variables (depth, velocity, etc.) which are more closely linked to the availability of
physical habitat, the projected hydrgical flow series are subsequently used to model
changes in the channel hydraulics of two selected stream reaches. Explicit consideration
is given to the habitat requirements of Atlantic salm@airqio salaj at differentstages

in their life cycle (e.g. spawning, migration). To manage the uncertainties which
pervade the translation of different GHG emission scenarios and coarse scale GCM

projections into changes in flow and hab#atilability at the reach scale, methoids
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guantifying uncertainty in the final results are adopted. Figure 1.7 provides a schematic
of the key components of this study.

s N
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| | 1 7
~Z ~Z
N v
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Figure 1.7Schematic illustrating the main components of the study and how they are related.

1.8 RESCALE (Review and Simulate Climate and Catchment Responses at

Burrishoole)

Some of the workconductedfor this study contributed to RESCALER¢view and
Simulate Climate and @tchment Responses at Burriskg)o- a multidisciplinary
project carried outto examine thepotential impacs of climate change on the
Burrishoole catchment (Fealt al, 2010). The project remit was to investigate how
changes irstreamflow, temperature and water quality (DO, DOC and pH) may affect
the productivity of salmon stocks in the catchment. Some of the work documented in
the subsequent chaptersrelating primarily to the statistical downscalingwas
conducted for the pposes of RESCALE and is not of direct relevance to the findings
of this study; however, as it allows for a greateploration of themethodologgcal

approach adopteavhere appropriate the results from RESCALE are discussed.
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1.9 Chapter Summaries

Chapter 2 sets the context for the study being undertakgmoviding background
information on observed changes in climate and ecosystem functions at a global,
regional and national level. Anticipated changes in the climate system and hydrological
cycle ae discussed. The significance of natural flow regimes with respect to the
functioning of freshwater ecosystems and the availability of suitaldé&réam habitats

is highlighted in addition the potential impacts of climate change on aguat
ecosystems and salmonid species are explored.

Chapter 3 provides background information on the Burrishoole catchment and the
observed datasets used in this study. The importance of the catchment as an
international centre for research into migratoghfspecies is highlightethe physical
properties of the catchment asabsequentlyoutlined. There is evidence that the
catchment has experienced warming consistent with trends found both nationally and at
a global scale. Given the sigmiéince of thisfor the study being undertakem
discussion on observed changes in precipitation and tempefatutee catchment is
provided.

Chapter4e xami nes each |l ink in the fAcascade o
contributes to the oveltaincertainty in the results from impact studies. The importance

of accounting for uncertainty at each step in the process of translating storylines of
future socieeconomic development into local scakamate impacts is highlighted. In

addition, thevarious methods for quantifying uncertainty are discussed.

Chapter 5 critically examines the methods employed for downscaling coarse resolution
GCM data to the finer spatial scales relevant for conducting tocadgional scale

impact studies.

Chapter 6 describes the application of a statistical model used to downscale climate
data for the Burrishoole catchment. As dynamically downscaled data from the
ENSEMBLES(van der Linder& Mitchell, 2009)data archive is also employed in this
study, a descriptio of the GCMRCM 6 mo d e | pat hwaysdéd used
given.An assessment of model skill at simulating present day climate conddiothe
catchment isubsequentlprovided. A performance based weighting system is devised

for use in this studythe various criteria used to develop this audined.
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Chapter 7 examines projected changes in climate for the catchment. Despite a general
agreement between the respective ensemble members, a considerable amount of
uncertainty regarding future change in climate is evident. The added benefit of
employing a multmodel ensemble irconjunction with the formulated weighting
scheme is considered.

Chapter 8 discusses the issues associated with conducting hydrological impact studies.
The limitations of different hydrological models and the assumptions implicit in their
appliation in a climate change context are examined. A discussion on the sources of
uncertainty in hydrological modelling is providetthe various methods employed to
address them amdsooutlined.

Chapter 9 describes the hydrological meld used in this study. It highlights the
difficulties of selecting modelspecificto the physical characteristics of the Burrishoole
system and the responsive nature of its flow regime; in additioe@ merits of
employing a multimodel approach are exped. Model projected changes in the
hydrological regime of the study catchments are subsequently examined.

Chapter 10 provides contextual information on thek between hydrological processes

and the success of salmonids at different stages in theicyifie. This chapter also
discusses the methods used to model changes in habitat availability under future
climate. The results of the hydrological and hydraulic modelling are discussed in the
context of the known habitat and flow requirements of Atlasttmon at different

stages in their lifeeycle.

Chapter 11 provides an overview of the study and its findings; in addition key points of
discussion and potential areas for future research are highlighted. The relevance of the
findings from this study fothe future management chtchmentsystemssimilar in

nature to the Burrishoole explored.
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Chapter 2

Climate change, freshwater ecosystems and Atlantic salmon

2.1 Observed changes in the climatgystem

Rising atmospheric concentrations of carbon dioxide and other GHGs have contributed

to an increase in the planetds radiative

climate system, | eading to a war nourregt o f
scientific consensus attributes most of the observed increase in atmospheric GHGS to
human activity, principally the mass consumption of fossil fuels; a practice which has
underpinned the development of industrialisediety

Evidence suggests d@h concentrations of atmospheric carbon dioxide have increased
from a preindustrial level of ~280 ppmv to a current level of ~391 ppnarise of
~40% (IPCC, 2007a). If current rates of fossil fuel consumption continue, it is likely to
result in a doulshg or even tripling of atmospheric GQrelative to preindustrial
levels) by the end of the Zlcentury (Trans, 2009). An analysis of ice core data
indicates that atmospheric concentrations of carbon diax&eresently greater than at
any time in at least the past 800,000 years (Lethal, 2008) whilst records of past
variations in atmospheric GO estimatedrom various marine and terrestrial proxies
suggest that current levels are greater thamwatime in the past several million years
(Royeret al., 2006).

The results of model experiments indicate that the warming experienced since the mid
20" century cannot be attributed to natural forcing alone, and it is only when models are
run using both atural and anthropogenic forcing that the temperature increases
observed over the past century are replicatédyhlighting the impact which human
activity has had on the climate system (IPCC, 2007a). There are a number of indicators

which provide eviderge that changes in the global climate have occurred, this includes:

A the melting of ice sheets in Greenland and Antarctica (Hanal, 2008;
Velicogna, 2009; Rigne2011)

A arise in global average sea levels (Church & White, 2806prd & Wingham,
2007)
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A a reduction in glacier mass balance, contractions in snow cover and declines in
the extent of arctic seiae (IPCC, 2007a; Polyadt al, 2010)

A increases in global air (Jone$ al, 1999) and ocean temperaturég\tus,
2000; Levituset al, 2009)

A changing precipitation patterns (Hulraeal., 1998)

A the acidification odtalt2a08) wor |l dés oceal

Evidence that the climate system is undergoing fundamental changes can also be found
in the biological responses of natural system$ which climate is a key determining
variable. Observed changes in marine and terrestrial ecosystems which have leeen link
with changes in the global climate include an advance in the timing of seasonal events
and a reduction in the abundance of some species of flora and fauna; alterations in the
distributional range of more mobile species have also been linked to reiceatecl!
change (e.g. Hughes, 2000; Wuethrich, 2000; McCarthy, 2001; Wathedr, 2002;
Hickling et al., 2005, 2006).

2.1.1 Temperature

The three principal reconstructions of global surface temperature (National Oceanic and
Atmospheric Administration (NOA); Climate Research Unit (CRU); Goddard
Institute for Space Studies (GISS)) all indicate that the Earth has experienced significant
warming since the 1880s (Jonetsal, 1999; Hansewt al, 2011)- with most of this

warming occurring since the 1970sd#ie 2.1).

Bet ween 1906 and 2005 globally averaged
N 0.18eC (I PCC, 2007a). Over the past 50
to 0.13e¢eC per decade, and it isigeaterthanatl vy t
any time in the last one thousand years (IPCC, 2007a). More recé&hf$ have
indicated that since 1880 globabveragda i r t emper at ures have
(Hansenet al, 2010). According to the World Meteorological Organ@mat{\WWMO) -

over the period 2002010- global temperatures averaged 0.46°C above the-1960

average which, is the highest ever recorded for-geHd period WMO, 2011). When
estimating changes in temperature the WMO considers each of the dataseameathint

by the three organisations referred to above. Recent data assessed by GISS suggests that
2010 tied with 2005 as the warmest year in the 131 year instrumental record (Efansen

al., 2010).The three warmest years on record include 2010, 2005 and ih8d®lition
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records indicate that sixteen of the warmest years have occurred since\W9i @) (
2011). Kennedy and Parker (2010) indicate that warrakmgeriencedn 2010 was in
part related to the El Nifio that developed in 2009, this is also the cs¢hevihigh
temperatures recorded in 1998; however, no such natural factor can be attributed to the

warming experienced in 2005.

Temperature anomalies °C
1.0

0.9 1
0.8

0.7 A
0.6 A1
0.5 A

0.4 4

————— GISS annual anomalies
————— Hadley HadCRUT3 annual anomalies
——— NASA’s GISS 10 year moving average

——— 1Hadley HadCRUT3 10-year moving average

Figure 2.1 Observed gl obal annual av é20Hdeviattoresare ¢
estimatedelative to themean values for th£961-90 referenc@eriod Show in blue are estimated changes in tt
global mean surface temperature from the combined UK Met Office Hadle¢seGenl Climate Research Unit date
HadCRUT3. Shown in red are estimated temperature changes from NASA's GISS-datasetlies are calculate
relative to the period 1951980. (Sourcehttp://www.eea.europa.eu/deaadmaps/figuresaccessed 27/12/201

According to the dataset maintained by the UK Met Office (Climate Research Unit), the
period 20012010 (0.44°C above 19640 mean) was 0.20°C warmer than the period
19912000 (0.24°C above 19640 mean). Their analysis indicates that 1998h a
temperature of 0.55°C above the 1981 mean, is the warmest year on record. The next
nine warmest years all occur in the decade Z2WM0. During this period 2008 is the
only year which does not appear in the ten warmest .y&aspite 2008 beinghe

coldest year of the 2century, it is still the 12 warmest on record.

Despite an increase in global temperature, spatial disparities in the rate and magnitude
of war ming exist. For example, war ming h

sine 1979) as opposed to the oceans (0. 13c¢
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addition temperature increases have been greatest at high northern latitudes. This is
exemplified by average spring and winter temperatures in the arctic which, over the past
100 years have increased by approximately double the global average (IPCC, 2007a). In
contrast parts of the Antarctic continent and Pacific Ocean have exhibited little or no
evidence of warming (IPCC, 2007a). The WMO (2011) indicate that recent warming
has been especially strong in Africa, as well as in parts of Asia and the AKIO(

2011). The  Saharan/Arabian, East  African, Central Asian  and
Greenland/Arctic/Canadian suibgions have all experienced temperature increases in
the range of 1.2°C to 1.@°over the last decade (20Q0) - relative to thelong-term
average- and are 0.7°C to 0.9°C warmer than in any previous dedAti&Q, 201]).
According to the European Environment Agency (EEA) average annual surface
temperatures over the European oceam amd land maskavei ncr eased by
(18532009 relative to the 1850899 average) (EEA, 2010); when ocean areas are
excluded surface temperatures for the same period were found to have increased by
1. 3eC.

Observational records indicate an increase&hese in the occurrence of warm/cold day
extremes; also of note is an increase in the duration and frequency of heat waves (IPCC,
2007a). Alexandeet al. (2006) found that, for the period 193003, over 70% of the
global land area considered bihstudy exhibited a significant decrease in the annual
occurrence of cold nightghis was accompanied by a significant increase in the
frequency of warm nightswith some regions experiencing a doubling of these indices.
Similarly, Firch et al. (2002) found a decrease in the number of frost days, an increase

in the occurrence of warm summer nights and a reduction in theaimtizal extreme
temperature range. Instrumental records also show an increase in the incidence of
precipitation occurring as rain tar than snow, this finding is consistent with studies

focusing on temperature change in high latitudes (Mote, 2003; Kneitvéds 2006).

2.1.2 Precipitation

Linked with warmer air temperatures is an increase in the moisture carrying capacity of
the amosphere- the theoretical basis for which is the Clausitiapyeron relation.
There is however a considerable degree of uncertainty regarding whether humidity will
increase in accordance with the Clausispyeron relation or at a lower rate (Allen &
Ingram, 2002; Held & Soden, 2000; Trenberth, 2011). Allen and Ingram (2002) found
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that the precipitation response in a number of GCMs was approximately 3'4¥his

was related to evaporation being constrained at a rate lower than that required to satisfy
the 7% K'increase in specific humidity estimated by the Claiiglspyeron relation.
Observational data does however support increases at rates which are consistent with
the ClausiusClapyeron relation (Huntington, 2006; Allan & Soden, 2007; Wehtal,

2007; Zhanget al, 2007; Willetet al, 2008).Changes in the energy balance of the
climate system mean alterations in the spatial distribution and variability of
precipitation is likely to occur. A change in forcing is also likely to alter the frequency

of occurrence and intensity of extreme events, and lead to changes in the type and

amount of precipitation which occurs.

Precipitation records indicate an overall, although not significant increase in
precipitation and an intensification of the watgcle over the ZDcentury (Trenbertlet

al., 2007). On a globally averaged basis precipitation over igms$timated to have
increasedby approximately 2% since the beginning of thd” 2@ntury (Jones and
Hulme, 1996; Daet al, 1997; Hulmeet al, 198; Huntington, 2006). This is however

not spatially or temporally unifornwith regionalvariations being apparent (Karl &
Knight, 1998). The increase is most pron
with many regions experiencing a866 increaseover the period 1962005 (IPCC,

2007a).

Zhanget al (2007) found that the observed ingc
not been detected in precipitation at a global scale; the authors indicate that this is partly
due to changes in different regions cancelling each other out. Ztaay (2007)
compared trends found in land precipitation records over tHec@ftury with trends

found in model simulated data (based on a suite of 14 climate models). By considering
observed trends in the context of model simulations the authors state that ayghiopo
forcing has had a discernible influence on changes in precipitation across different
latitudinal bands. Zhangt al (2007) indicate that regional and global precipitation
trends cannot be explained either by internal climate variability or natwcahd alone;

thus the authors point to anthropogenic forcing as the primary driver of observed
changes inlarge scaleprecipitationregimes Zhanget al (2007) note increases in
precipitation over the Northern Hemisphere #atitudes, and state that shhas been
accompanied by a decrease in yields over the subtropics/trap&sauthorsalso

highlight the sensitivity ofegions like the Sahelconstituting the regiobetween the
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Sahara desetb the northand African savannatio the south to alteredprecipitation
patterns.

According to a number of studi¢ke high latitudes of the northern hemisphere have
experienced an increase in the amount and variability of precipitatmarticularly
during the wetter winter months (Alexandsral, 2006; Meehet al, 2006; Trenberth

et al, 2007). Increased receipts in the mid and high latitudes are in contrast with
decreases experienced in the northerntepybics (Houghtoret al, 2001). Record low
precipitationyields have been observed in equatorial regicince 1995, and there has
been a persistent decline in precipitation in the Sahel since the late 1960s (Dore, 2005).
According to Dore (2005) precipitation across the Africanticent has declined by 5

10% between the periods 1931960 and 19681997 this trend has been most
pronounced over the Sahel region whemer the same periodprecipitationreceipts

are estimated to hawkeclined by between 20% and 49%.

Marked increases in precipitation have been detected in northern Europe; however,
increags have been accompanied by a general decline in precipiyatids towards
southern Europe and across the Mediterranean region (Schonwiese & Rapp, 1997).
Over the 28 century it is estimated that precipitation amounts in hesrt Europe
increased byL0i 40%;in contrast some parts of southern Europe have dried by as much
as 20% (Dore, 2005). Such trends reflect a wider hemispherical pattern of divergent
zonal mean precipitation trends between high and low latitudes{@hj 1997; Hulme

et al, 1999.

Several studies have detected increases in precipitation receipts in a number of regions
(Dai et al, 1997; Alexandeet al, 2005), including areas of the United States (Karl &
Knight, 1998; Groismaret al, 1999) and Canada (Mekis & Hogg, 1999), ®out
America (Haylocket al, 2006a), the Arctic (Miret al, 2008), northern Taiwan (Yet

al. 2006), Australia (Hennessy al, 1999; Mantoret al, 2001) and the UK (Osborn &
Hulme, 2002).

In some regions an overall increalerreasein total annual redpts ha been
accompanied by changes in the seasonality of the precipitation regime. This is the case
in the UK where records indicate an increase in wirgefall amountswhich has been
accompanieda notable decline in summeeceipts- the latter of which is manifest
through an increasing frequency in the occurrence of drought events (Osborn & Hulme,

2002). An increase in the seasonality of the precipitation regime has been detected in
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different regions across Germanin this case researchers have found that an
increase/decrease in winter/summer rainfall amounts had occurred over the periods
19582001 (Hundecha & Bardossy, 2005) and 18BD6 (Hanselet al, 2009)

respectively.

Linked with increases in precipitation aomis are changes in the occurrence and
intensity of heavy rainfall events (Groisma al, 2005; Alexanderet al, 2006).
According to Dore (2005) it is likely that over the latter half of th& @ntury there has

been a 2% increase in the frequencf o heavy or 6extr emed
Northern Hemisphere particularly across the mid to high latitudes. Regional studies
focusing on the United States (Karl & Knight, 1998; Kun&eal, 1999), China (Litet

al., 2005; Zhaiet al, 2005), Canada (&neet al, 1999), Switzerland (Frei & Schar,
2001; Schmidli & Frei, 200%, Japan (lwashima & Yamamoto, 1993; Yamamoto &
Sakurai, 1999) and the Mediterranean (Kostopoulou & Jones, 2005) have all indicated
an increase in either the intensity of precipitatevents or the contribution of extreme
events to total annual receipts. Similar conclusions were drawn from studies focusing on
northern Italy Brunettiet al, 2000), theJK (wintertime precipitation) (Osbornet al

2000; Osborne & Hulme, 2002), Scaith (Fowler & Kilsby, 2003), South Africa,
northeast Brazil and the former USSR (Groisnenal, 1999; Gruzaet al, 1999;
Easterlinget al, 2000). Based on a comparison between observed and model simulated
data for the latter half of the ®@entury, Mn et al (2011) suggests that the increase in
heavy precipitation events observed over the Northern Hemisphere land area is linked to

anthropogenic forcing.

Dore (2005) indicates that increases in mean annual receipts are reflected
disproportionately in ioreased incidences of heavy precipitation, suggesting an
amplified response in the intensity of precipitation events to climate forcing (Groisman
et al, 1999; Gruzaet al, 1999; Easterlingt al, 2000). Essentially in cases where an
increase in total eipts has been observed, the relative increase in the frequency of
extreme precipitation events has been disproportionately greater (Dore, 2005). It follows
that where a reduction in rainfall amounts has been experienced, so too has a decrease in
the freaquency of extreme events (Katz, 1999; Groisratal, 1999); however, as stated

by Dore (2005) this generalization does always hold as increases in higher order events
have also been observed in areas where an overall decliyields has occurred

pointing to more fundamental changes in the probability distributibprecipitation
(Buffoni et al, 1999; Groismaet al,, 1999; Brunettet al, 2000; Dore, 2005).
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2.1.2 The Intensification of the Hydrological Cycle

It is argued that increasing atmospheric concentrations of carbon dioxide and other
GHGs have led to an intensification of the hydrological cyatenifest in an increase

in the flux of water between the terrestrial, atmospheric and aquatic spheree(irenb
1999, 2011; Huntington, 2006; Held & Soden, 2000, 2@xng & Jung, 2000 By
fundamentally altering the Earthos energ
aspects of the hydrological cycle (Battsal, 2008; Trenbertlet al, 2007) ncluding,
evaporation rates, the spatial and temporal variability of precipitation patterns and the
guantity as well as timing of flow through freshwater systems; furthermore, climate
change has the potential to alter the characteristics (frequencypdwuatl intensity) of
extreme eventsuch asfloods, droughtand severe storms. The relationship between
changes in the Earthds energy budget and
otherwise interpreted as the sensitivity of the hydrologicaresp to climate warming

is encapsulated by the ClausiGdapyeron relation (Held & Soden, 2000)easurable
changes in the processes and components of the hydrological cycle are important
indicators of warming in the climate system (DelGeatoal, 1991 Loacigaet al,

1996; Trenberth, 1999; Held & Soden, 2000; Areelal, 2001).

Trends found in a range of hydroclimatic variables including: precipitation (Houghton,
et al, 2001), runoff (Groismamet al, 2001), atmospheric water vapour (Newal,

2000) and glacier mass balance (Oerlemans, 2005) indicate that during all or part of the
20" century there was an acceleration of the hydrological cyaeserved at both
regional and continental scales (Huntington, 2006). Similar trends observed in the
length of growing seasons (Cooter & LeDuc, 1995), evapotranspiration rates (Golubev
et al, 2001) and soil moisture deficits (Robo@t al, 2000) also support an
intensification of the hydrological cycle. However, due to the various inconsistencies
betweenindividual studies- vis-a-vis the variables/regions considered, as well as the
limitations of available datasetsa significant degree of uncertainty is associated with
the assertion that an acceleration of the hydrological cycle has occurred (Humtingto
2006).

Trends detected in patterns of global runoff abat et al. (2004) and Labat et al
(2005)suggest an increase in continental runoff (estimated over the periodl292))
supporting the contention that an intensification of the water dyadeoccurredTheir

study suggested a 4% increase in global runoff per 1°C increase in air temperatures
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during the 28 century- with regional variations evident around this trend. Legates
al. (2005) however highlight a number of shortcomings in batdiss- whichinclude
the small sample considered and the potential confounding influence -aflimaic
drivers on changing runoff patterrs$ is argued this undermines the findings of both
Labatet al (2004)andLabatet al (2005).

The IPCC (2007bytates that there is a broadly consistent pattern of change in annual
runoff, with some areas, particularly those at higher latitudes, experiencing an increase;
conversely, in regions including west Africa, southern Eurapd southern Latin
America, redutions inannualrunoff have been experienced (Miky al, 2005; IPCC,
2007Db). At a regional scale studies have detected an increase in ruypaffsimfChina

(Taoet al, 2003; Heet al, 2010), Finland (Hyvarinen, 2003) and the coterminous USA
(Walter et al, 2004). In additionincreases in precipitation over number ofriver
catchments in the United States have been detected using hydrometric data (Lins &
Slack, 1999; Groismaet al, 2001; McCabe & Wolock, 2002).

Giorgi et al (2011) proposed theydroclimatic intensity index (H¥NT) as a measure

for detecting warming related trends in the water cycle. In order to explore the response
of the hydrological cycle to climate warming the authors applied the index to observed
station and gridded datasetf daily precipitation. The results suggested an increasing
trend in the index over the last decades of tHec@mtury which the authors attribute to

anthropogenic forcing.

Theoretically the observed increases in higher order precipitation eventss(@oet

al., 2004) shouldead to a corresponding increase in the frequency of flooding and
extreme flow events; however, evidence from regional studies conducted in the USA
(Lins & Slack, 1999; Douglast al, 2000; McCabe & Wolock, 2002; Vogel al,

2002), Scandinavia (Hyvarinen, 2003; Lindstrom & Bergstrom, 2004), Canada (Zhang
et al, 2001) and central Europe (Mudelsgel, 2003) do not consistently support this.
The findings of hesestudiesare generally at odds with those of Mi#y al. (2002)who
reported an increase in the frequency of flood events over tfec@tury (with
discharges exceeding 1Q@ar return periods).his study examined runoff patterns in

29 river basins- each with an area greater than 200,000knspanning diffeent
continents and climatic zone$he authors indicate that the link between increases in
the occurrence of flood events and radiatively induced climate change is a tentative one,
but consistent with model simulations. In a study of 195 catchmentslzaevicz et al

(2005) found that 137 of the selected catchments exhibited no trend in the annual
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maximum series; however 31 returned a positive trend and 27 exhibited a negative
trend. Petrow and Merz (2009) analysed 145 discharge gauges distributed across
Gemany for trends iflooding events. According to the authors spatial and seasonal
coherence of the results from individual records and river catchment suggests that
detected changes in flood behaviour are climate driBmih Robson (2002) and
Robsonet al. (1998) examined flow series from catchments in the UK for changing
flood patterns; both studies indicated thatclear evidence for warming related trends

in flood behaviour could be found.

2.1.3 Changes in European Extremes

The EU funded projead S T A R D &TAfisticdl RegionalDownscaling ofEXtremes

for European regions) was undertaken to examine changes in the frequency and
intensity of extreme precipitation and temperature across Europe. Observational records
from 491 Europeawide stations, ceering the period 1952000 were used in the

study. The results indicated an increase in mean temperatures across Europe consistent
with trends found in global datasets. This was found to be accompanied by an increase

in the occurrence of extreme temperatand precipitation events.

The indices used in STARDEX have been employed in several region specific studies
(e.g. Hundecha & Bardossy, 200B4cElwain & Sweeney, 2007 When examining
trends in daily precipitation and temperature across western Gerosng the
STARDEX indices, Hundecha and Bardossy (200%und an increase in daily
maximum and minimum extreme temperatures. With the exceptiotheo$ummer
seasonthe authors also found an increase in both the magnitude and frequency of
extreme precipétion events. The results of the STARDEX project can be summarized

on a seasonal basis as follows (STARDEX Final Report, 2005):

Winter
A With the exception of souttvestern Europe, there has been a general
increase in extreme maximum temperature.
A Extreme minimum temperature has increased to a greater degree than
extreme maximum temperature.
A With the exception of small decreasemted in parts of Greece,
Scandinavia and the Iberi&@®ninsulagxtreme minimum temperature has

increased over the entire region.
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A The longest winter dry period increased in Southern Europe; this is
contrasted with observed decreased in Northern Europe.

A The indices used indicated an increase in heavy rainfall across the UK,
central Europe and Scandinavia.

A In Eastern Europe, Greecadawestern part of the Iberian Peninsula the
indices suggested a general decrease in extreme precipitation.

Summer

A With the exception of Eastern Europe, northern Scandinavia and Russia,
extreme maximum temperature was found to have increased in most
regions.

A With the exception of a small number of stations, extreme minimum
temperature increased in most areas for this season.

A In contrast to winter, trends for the longest dry period during summer
were less spatially coherent; however, stations in centralpguthe UK
and southern Scandinavia exhibited a general increase in this index.

A In Scandinavia, northwest Russia and across southwest Europe a positive
trend in the incidence of extreme precipitation events was found.

A Across the northern Iberian Peninsuthe UK and northeast Europe a

decrease in heavy rainfall during this season was ftuhdve occurred

2.2 Climate change indicators for Ireland

Trends detected in observed temperature and precipitation records from synoptic
stations located acrosbeland indicate that its climate has undergone changes
commensurate with trends found in European and global datasets. A study by McElwain
and Sweeney (2007) found thatver the period 189Q004 | r el and6s mean
surface air temperature incredse by 0. 7eC. The gener al poOSi
follows a similar pattern to that fourglobally;h o we ver , | waslfoumddod s t |
exhibit greater interannual variabilitgnd displayed tendency to lag the global trend

a finding which maybe due in part to the temperate maritime nature of the climate and

the moderatingnfluence of the Gulf Stream (McElwain & Sweeney, 2007).

Analysis of the mstrumental records indicates that two distinct periods of warming

occurred (19141940 and 198@004). During the latter period of warming temperatures
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Il ncreased by ©Oaldfe<Lt pckou ldleec atdlee r at e of
decade). Theecords usedilso indicatd that six of the ten warmest years on record
occurred between 1995 and 200/cElwain and Sweeney (2007) found that 1945 was
the warmest year on recordhis isfollowed by 1998 which was the second warmest.
This is similar to global datasets where 1998 (at the time of this seidgjedas being

the warmest year (Jones al, 1999). The synoptic records indicated that for the
majority of stations an increase in mean temperatures (maximum and minimum) had
occurred; there was also a noted increase in the number of hot days (defined as
maximumt e mper at ur e > 1 8nehe pccuarende ofafrostl days (nmenansire

t emper at ulaé&endaccdnpadied by a shortening in the length of the frost
seasor{McElwain & Sweeney2007)

McElwain and Sweeney (2004) suggest that trends found in precipitation rezerds
consistent with patterns found at a European scale. Total annual precipitation yields
were found to have increased in the north and west of the country, in contrast on the
southern and soutbastern seaboard a slight negative trend in receipts wasl.foun
Stations located on the west coast suggested an increase in the maximum number of
consecutive wet days; additiongllycreases ithepr eci pi t at i on ™), nt ens
as well as the frequency of events greater tH& [@rcentile were found for #se

stations. Positive trends in the persistence and intensity of raaméationsistent with

increases in annual receipts for stations located on the west coast.

2.3 Projected changes in the global climate system

The IPCC (2007a) state that if atmospheric concentrations of aerosols and GHGs were
held constant at year 2000 levels it is likely that a further warming of ~ 0.1°C per
decade would still occur over the next two decades. This is due to the timescales
asso@ted with climatic feedbacks and the slow response of the oceans to warming.
Depending on which emissions pathway is considered more likely, climate models
suggest an i ncrease in gl obal temperat u
scenar i o) Flahigd emdsgiols sCeAatio) by the end of the present century
(20902099 relative to 1982989) (IPCC, 2007a; Knutét al., 2008)

Model simulations indicate that temperature increases are likely to be greatest over land
and at higher latitudes; in conttaslatively less warming igrojectedto occur over the
North Atlantic and Southern Oceans (IPCC, 2007a). Medpkrimentsalso indicate
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that the negative trend observed in snow cover and glacier mass balance will continue
It is likely this will negatively impact the availability of water resources in those regions
supplied by melt waters (Barnett, 2005). The results of a study conducted by
Schneebergeet al (2003) on 11 glaciers sampled from different climatic regions
suggest a volume loss of 60% Inet2050s.

Increases in air temperature are also likely to result in a continuation and further
enhancement of the negative trend observed in thaceseaxtent. In some model
projections, by the latter part of the®dentury Arctic latesummer sedce disappears
almost entirely (IPCC, 2007a). Model simulations also indicate that the warming
suggested to occur over the present century is likely to result ilB&%0decrease (by

the 2050s) in the permafrost area of the Northern Hemisphere. Melting Ahtaectic

and Greenland ice sheets is likely to continue, further contributing to increases in sea
level rise- estimates for which indicate that by the last decade of tflec@dtury,
relative to the last two decades of the"2gentury, sedevels mayhave risen by
between 0.18m (B1 scenario) and 0.59m (A1FI scenario) (IPCC, 2007a). These findings
are similar to Hortoret al (2008) who suggest an increase of between 0.42m and 0.57m
in sea levels by the end of the present century. The intensity afdta@piclones islso

likely to increase; in additignmodel projections indicate a poleward shift in extra
tropical storm tracks (IPCC, 2007a).

Bateset al (2008) document results from a mutiodel experiment consisting of
fifteen climate models, eaclim using the A1B emission scenario. Model simulations
projected an increase in atmospheric water vapour, evaporation and precipitation
consistent with an intensification of the global hydrological cycle. Despite a general
concordance between individuabdels, strong seasonal and regional differences were
found to occur. For the period 208099 (relative to 1982999) an increase of up to
20% in annual mean precipitation receipts across high latitudes was suggested. In
contrast the models indicated a aEse of 20% in annual yields across the subtropics.

A decline in receipts of up to 20% over the Mediterranean and Caribbean regions, as
well as the sudtropical western coasts of each continent were also projected to occur
(Bateset al, 2008). Regions Kely to experience an increase in precipitation included
the Arctic, Northern Europe, Canada and the northeast United States (Hayalge

2006; Bate=t al, 2008).

GCM experiments consistently suggest an increase in the variability, frequency and

intensity of heavy precipitation eventsalbeit with significant regional variations. The
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frequency of extreme precipitation is likely to increase over most areas during®the 21
century (e.g. tropical and hightitude zones) (Bate=t al, 2008). Projectedhcreases in

the precipitation intensity will likely result in an increase in the magnitude and duration
of high flow and flooding events. Midontinental drying, most notably in the sub
tropics, low and midatitudes, is likely to increase during summégading to a greater
risk of drought conditions (Sheffield & Wood, 2007; Bagesl, 2008).

In their study of model simulated precipitation data for a European domain,
Kundzewiczet al (2006) found a marked contrast between projected changes in winter
and summer precipitation patterns. Although not spatially uniform, wetter winters were
suggested to occur throughout the continesitihh respect to changes in summer rainfall
patterns, a distinction between northern and southern Europe was made. ly théike
southern Europe will experience drier summers whilst over northern Europe winter
precipitationyields are projected to increase. Due to changing precipitation patterns
problems of water quality and supply are likely to be exacerbated, particalzty
southern Europe during the drier summer months. A study by Palmer and Raiséanen
(2002) suggested an increase in the frei
Europe which, the authors link to an increase in the intensity oflatiidde storms.
According to Palmer and Raisanen (2002), for a doubling of @2 80 years from
present), a fivdold increase in the likelihood of very wet winters is projected for
Scotland, Ireland and much of the Baltic Sea basin, whilst a seven fold increase is

projected for parts of Russia.

With regards to changes in the intensity of precipitation over Europe, the highest
guartiles of daily rainfall amounts are anticipated to increase in many areas (Christensen
& Christensen 2003; Kundzewia al 2006). In keepingvith trends found over the

past century (Dore, 2005) the frequency and intensity of heavy precipitation events is
projected to increase in regions which also experience a general reduction in total
receipts (Christensen & Christensen 2003; Kundzewicd. 2006; Freiet al, 2006).

This is one of the key findings of a study by Christensen and Christensen (2003) who
examined the impacts of climate change on severe summertime flooding across Europe.
For southern and central Europe rising air temperatureslikely to increase soil
moisture deficits, leading to the more frequent occurrence of drought events and intense
summer drying (Douvilleet al, 2002; Christenseet al, 2007a).

A study by Fowler and Ekstréom (2009), which considered projections fromla-

model ensemble (obtained from PRUDENCE project), found that extreme precipitation
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across the UK during winter, spring and autumn is likely to increase. The absolute
maghnitude of increases ranged from 5% to 30% (PRY00 relative to the 1961990

cortrol) depending on region and season considered.

2.4 Projected changes in the hydrological cycle

Model projections suggest that by the mid' 2&ntury across the high latitudes, water
availability and mean annual runoff will have increased (Beted, 2008); in contrast,

over drier regions particularly those in the mithtitudes and the dry tropics a
decrease in the availability or water resources is likely to occur (e.g. western USA,
Mediterranean, southern Africa and northeastern Brazil) (Bdtals 2008). Milly et al

(2005) used 12 climate models to explore global trends in runoff and waittdity

under perturbed forcing conditions. For the year 2050 the models projected a 10% to
40% increase in runoff in eastern equatorial Africa and the La Plata basin (South
America) This was also the caseross the high latitudes of North Americajr&sia

and some major islands of the equatorial eastern Pacific Ocean. A decrease in runoff
(typically 1030% by 2050) was suggested for southern Africa, the Middle East,

southern Europe and the atitude region of western North America.

Using four diferent GCMbased climate scenarios, Arnell (1999) explored the potential
hydrological response of a defined European domain to projected changes in climate.
Although intermodel differences were evident, the projections broadly suggested a
decrease in anal runoff at latitudes south of 50°N-26% to -50%); in contrast
increases were suggested for areas north of 50°N latitude. Projected changes in patterns
of flood behaviour for Europe indicate that over large parts of the continent a reduction
in return peiods is likely (Lehneret al, 2006; Hirabayashet al, 2008; Dankers &

Feyen, 2008); however, the results from individual studies are inconsistent, highlighting
the uncertainties inherent in modelling climate and hydrological extremes at large

spatial scales.

There have been several studies focusing on the potential impacts of climate change on
river flows in theUnited Kingdom(e.g. Arnell & Reynard, 1996; Sefton & Boorman,
1997; Pilling & Jones, 1999, 2002; Arnell, 2004). In general thelteesuggest that
annual, winter and summer runoff is likely to decrease in southern regions; in contrast,

over northern areas flows are likely to increase throughout the year, particularly during
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winter. The principle findings from similar studies conddcte an Irish context (e.g.
Charlton & Moore, 2003Murphy & Charlton,2008; SteeleDunneet al, 2008 are

summarised below.

A The seasonality of runoff is likely to increase, with higher flows in winter and
spring; extended dryperiods are suggested to occur during the summer and
autumn months.

A The projected increase in winter runoff is more pronounced in westerly river
basins.

A All areas are anticipated to experience a reduction in summer rinoofever,
the greatest decreasa® likely to occur during the autumn monthsaddition
catchments situated along the eastern seaboard are likely to experience the
greatest decreage runoff.

A It is likely that the magnitude and frequency of flooding events will increase
nationally, bu particularly in those catchments located on the western seaboard.

A A number of catchments exhibited an increase in the incidence and duration of
low flow events.

A Those catchments which lack the storage potential with which to moderate the
effects of an ncreasingly seasonal rainfall regime are musinerable to

changes in climate.

2.5 Climate change impacts on freshwater ecosystems

Giventhat variations inlocalised climate conditionshave hada central role in shaping
the abiotic and biotic composition, as well as structure of freshwater ecosystems
likely that any change in suclm alemental variable will have a significant impact on all
facets of freshwater systemd&his includes for example, individual organisms,
interspecific relationshipgommunity structures, nutrient cycling and the nature of food
web-dynamics. Climate change is also likely to affect a range of abiotic factors
including the substrate coveflow regimeand water chemistryin doing so it may
impact the quantity and quality of available habitat and create conditions conducive to
the ingress of invasive species (Walther, 20@tkeeet al, 2003; Mos<t al, 2003
Burgmet 2007; Senerpont Domét al, 2007; Walsh & Kilsby, 2007; Kingt al, 2008;
Rahel & Olden, 2008; Heinet al, 2009; Doll& Zhang, 2010; Perkinst al, 2010;
Woodwardet al, 201Q Wronaet al, 2010.
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Given the level ofinterconnectiorwhich exists betweehydrological processes, the
functioning of riverine ecosystems and the productivity of salmonid populations, it is
important that the impacts of climate change on Atlantic salmon are framed within the
wider context of potential impacts freshwater ecosystems. Figure 2.2 highlights how
changes in streamflow may affect salmonid species both directly, by altering their
habitat conditions, and indirectly, by affecting wider ecosystem functions.

Catchment Activity

Industry, Intensive Agriculture, forestry, flood defence, land drainage, water supply, sewage disposal,
hydropower, amenity development, extractive industry

L 4 4 L 4

Physical Habitate.qg. Water Quality e.g. Water Quantity e.g.
Barriers Oxygen Flow regime shifts
Channelization Nutrients Loss of variation

Loss of channel structure Acidification/metals/Organics/ Reduced flows

Loss of channel complexity Pesticides/herbicides Increased flows

Loss of bankside vegetation Industrial pollutants Inter-catchment transfers
Siltation of gravels Endocrine disruptors

Connectivity of habitats

Temperature

\ 4

Fish ' Ecosystem Function
Carrying Capacity Energy cycling and transport

Growth/survival Food webs
Population structure Biodiversity

Spawning Stability and resilience
Migration and dispersal
Adaptation (phenotypic and genotypic)

Figure 2.2 Connections between humaivitgt hydrological and geomorphological processes and ecosystem/fish respor
(Adapted from Milneret al, 2010)

As they are physically fragmented and subject to numerous anthropogenic stressors,
freshwaters are considered particularly vulnerablentmnges in climate\Woodwardet

al., 2010) Based on an assessment of changes in biodiversity, €badd (2000)
considered lentic (i.e. ponds and lakes) and lotic (i.e. rivers and streams) ecosystems to
be the most sensitive to climate change wlwemsidered alongside marine and
terrestrial systemaNoodwardet al (2010)indicate thatfreshwaters at higher latitudes

and altitudes- where globally some of the fastest rates of warming have occurred

(Hansen, 2010)may act as 0 smwvding amédicateryod largenscae,
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changes which may occur in less vulnerable and more complex systems (i.e. species
rich).

Given the level of interdependence within ecosystems, together with regional disparities

in their response to climate forcing are tconfounding influence of human impacts, it

is difficult to demonstrate a direct causal link between recent climate change and
observed changes in freshwater ecosystems. Despite this there is evidence that changes
in climate havehadan impact on the blogical, physical and chemical characteristics of
freshwaters- both directly through changes in precipitation and air temperature, and
indirectly through interactions with other stressors (Niakiual., 2010).

Climate change is manifest primarily in 8®aspects of freshwater systems which are
temperaturalependent.Due to its influence on the rate at which biological and
chemicalprocesses occur (e.g. photosynthesis, behauitissolved oxygersaturation,
metabolic rate) temperature is a primaryiver of ecological change in aquatic
environments (Harlegt al, 2006). According to the IPCC (2007b) recent warming has
brought about an increase in river and lake water temperatures and contributed to
changes in the composition of community structures the timing of seasonal events.

In addition climate change has influenced changes in the productivity of freshwater
systems and affected the abundance of individual organisms (IPCC, 2007b). The
Millennium Ecosystem Assessment (200&jicated that recentlimate warming has

been a major driver of biodiversity loss in freshwater ecosystems. In global scale studies
investigating ®served declines in biodiversity, warming related trends in water
temperature and alterations in patteoh$low behaviour are ighlighted as having the

most significant impacts on biodiversity loss (La#&eal, 2000; Xenopoulo®t al,

2005; Heinoet al, 2005). For examplestudies by Hicklinget al (2005 2006)
attributed shifts in the distributional range of some freshwater and terrestrial taxa in

Britain to changes in climate observed over the period -P260.

The most immediate effects of recent climate change have been experienced as
increased riverand lake water temperaturelicreases in water temperatuhave
generallymirroredthe upward trend evident in regional air temperatures observed over

the past ~100 years (Winder & Schindler, 2004; l¢aml, 2006; Hammond & Pryce,

2007; Arvolaet al, 2010). The IPCC (2007b) indicate that since the 19@@der
temperatures have increased by between (

Europe, Asia and North America. The EEA (European Environment Agency) state that
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during last century water tem@gures inEuropearrivers and lakes have increased by
between 1°C and 3°Q2007) Langanet al (2007) reports that in an upland Scottish
river (Girnock burn),winter and spring maximum stream water temperatures increased
by 2eC over t hietal (@098) ex8ninedywatarrtesnperatdrasrin rivers
and streams across Switzerlandheir study covered an altitudinal range of almost
4000m The results indicated that warming was evident at all altitudes, with trends
being reflective of increases iagional air temperature observed over the past 40 years.

An analysis of temperature records from Lake Baikal (Serbia) indicated that over the
past 60 years surface water temperatures
(Hampton, 2008). Similarlyecords from Lake Constance (Germany) indicated that
mean annual | ake water temperature incre
(Straileet al, 2003). An analysis of deep lake water temperatunedicative of more
long-term temperature trendsuggest increases which are consistent with trends found

in surface waters (IPCC, 2007ecords indicate that since the early 1900s several
large Eat African lakes including, Edward, Albert, Kivu, Victoria, Tanganyika and
Malawi, have warmed by between 0.2 and 0.7°C (IPCC, 2007b).

Enhanced air and water temperatures are reflected in the more prolonged stratification
of lake waters and increases iretkength of icefree seasons. Changes in water
temperature, wind speed and precipitation patterns affect the time at which overturning
occurs and the extent of lake mixing, thus altering the persistence of thermal
stratification. By affecting the thermatgime of lacustrine systems, changes in climate
may alter the distribution of nutrients and oxygen; in addition it may change the overall
heat content and quality of surface watethangesin the persistence of thermal
stability may disupt biological cycles alter phytoplankton dynamics and impact
primary production (IPCC, 2007b; Adriagt al, 2009). According to Batest al
(2008), the freezep date of rivers and lakes has on average been delayed by a rate of
5.8 £ 1.6 days per caury (when averaged over all available datasets, spanning 150
years), whilst the date for breaip has occurred earlier, at a rate of 6.5 + 1.2 days per
century. Also reported is a lengthening in the stratified period {dyv2eks) of several

lakes in Euope and North America (IPCC, 2007b).

An analysis of 20 year records (196988) from lakes in northwestern Ontario
(Canada) i ndicated that both air and | ak

addition the observed data indicated that thefree season had extended by three
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weeks (Schindler, 1996). Several other studies also linked increasing temperatures to
the earlier breakip and later freezing of seasonal-a®er on rivers and lakes
(Livingstone 1999; Magnusoet al, 2000). A study by Coatet al (2006) of Lake
Tahoe (USA) found that over the period 19702002 - lake water temperatures had

i ncreased by approximately 0.15eC per de
in the persistence of thermal stratification. An analysis of recén@in Lake Zurich
(covering the period 1947998) by Livingstone (20063uggestecan increase in the
period of summer stratification of roughly®weeks, in addition thermal stability was
found to have increased by 20%.

Studies examining the potentiaésponse of lake systems to projected changes in
climate generally indicate that water temperaturparticularly in the epilimnion are
likely to increase. In additigntemperature profiles, thermal stability and mixing
patterns are likely to be alterddading to further increases in the persistence and extent
of summer stratification (Hondzo & Stefan, 1993; Stedtal., 1998).

By altering biological and chemical processes, cliingiediated changes in water
temperature, flow patterns and precipitatare likely to impact the various parameters
relating to water quality (e.g. biological oxygen demand, dissolved oxygen (DO),
dissolved organic carbon (DOC)), (e.g. Jennirgsal, 2009; Naderet al, 2010;
Whiteheadet al, 2009; Nickuset al, 2010). Wth respect to thisGrimalt et al (2010)
explored the impacts of climate change on the mobility of persistent organic pollutants
in freshwater bodies. The study highlighted how changes in climate may exacerbate the
impacts of any current anthropogenicessors on water quality. As DOC influences
acidity, light penetration, nutrient availability and potential toxicity, iamsimportant
parameter in terms afie overall ecological health of freshwasssystems. Due to the
influence which temperature @rprecipitation patterns have on the production and
outwash of DOC, trends observed in the concentration levels of DOC in freshwater
lakes providean indicator of changes in climate. During the past two decades increases
in DOC in areas of the UK, centr&lurope and North America have been detected
(Freemaret al, 2001; Evangt al, 2005; Monteitlet al, 2007). These increases have,

at least in part, been attributed to recent changes in climate (Frestna@n2001;
Hudsonet al, 2003; Evangt al, 2006; Worrallet al, 2006; Erlandssoat al, 2008).

Over the coming decades changing precipitation patterns are anticipated to increase the
frequency of acigpulses and releases of DO@ key mechanism for which is the more

regular occurrence of pedtought floods (Arnell, 1998; Whitehead, 20@®alyet al,
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2010. Temperature is a key physical determinant of oxyg@ubility, consequently
further increases in air temperatures are yilkelresult in a reduction in the DO content

of surface waters. DO levels agticipatedo be impacted also by temperatuimduced
increases in the rate of microbial activity. Changes in temperature and DO have
implications for the ecological welleingof freshwater bodies and the diversity of plant
and animal species which they can sustain (Hauat, 1997).

There is evidence that the recent warming of freshwaters and the associated change in
water quality has affecteddaverse range of taxonomicaups including riverine plants,
invertebrate and fish speci€s.g. Fry, 1971; Stefanssat al, 2003; Davidson &
Hazelwood, 2005; Zydlewslgt al, 2005; Kinget al, 2007; McGinnityet al, 2009).

Fish and invertebrate species whose thermal limits naag lalready been reached or
exceeded are most vulnerable to further increases in temperature. In addd&m
species sensitive to changes in environmental conditions will come under increased
pressure this is particularly relevant for colddapted spcies which require high DO
levels such as salmonids. Under future climate conditions;aftitdty species may be
replaced by species such as cyprinvidsch aremore tolerant of low oxygen conditions

and are better adapted to warmer environments (&gufresneet al, 2004). With
respect to thisrecent climate change has been detected in-temg fish and
invertebrate data collected from the upper Rhone (at Bugey). These records, which
cover the period 1979 to 1999, were examined to determine wheitemt climate
change has had a discernible influence on the structure of either community. It was
found that the more frequent occurrence of low flows, along with observed increases in
water temperature had favoured southern, thermophilic fish speae<lialh barbel)

at the expense of northern, c@dapted species (e.g. dace). In addjtibvermophilic
invertebrate taxa (e.g. Athricops, Potamopyrgus) were found to have replaced cold
water invertebrate taxa (Daufreseeal, 2004). The results indicthat the observed
change in community structure was in part attributable to changes in the thermal regime
of the river system changes in which reflect long term trends evident in regional air

temperatures

Increasing temperatures are likely to affeetshwater and anadromous fish species at

all stages in their life cycle (e.g. hatching, migration, spawning and grewttijough

the response may vary depending on the species and life stage considered (Elliott, 1991;
Jonssoret al, 2001; Jonsson &onsson, 2009 In many cases global climate change

represents an additional stressor for fish populations which may already be subject a
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range of humainduced pressures (Allan & Flecker, 1993). A stioyyMc Ginnity et

al. (2009) suggested that, while [&ttic salmon may have the capability to adapt to
increasing temperatures (with certain caveats attached), the presence of additional
stressors, including the supplementation of wild populations with hatchery fish, may
result in catastrophic population agses within a relative short period of time.

Studies have shown that the flow regime is a key component of lotic ecosystems, central
for determining the availability of suitable habitat andportant for regulating
ecological processefke migration and reproduction (Bunn & Arthington, 2002;
Verdonschotet al, 2010) Poff et al. (1998) highlight that naturaloiw regimes are
essential for aquatic and riparian species listdfive components of the flow regime
which are regarded as critical fonaintaining the ecological integrity of riverine
systems. These includiee magnitude, frequency, duration, timing and rate of change in
hydrologic conditionsit has been shown that anthropogenically imposed alterations
(e.g. impoundments, water abstianf channelization, diversions, etc.) on natural flow
regimes can have considerable consequences for the overall ecologiebéimnglof

river systems and their capacity to nurture viable populations of more sensitive species
(Poff & Ward, 1989; Bunn & Ahington, 2002; Gilveaet al, 2002;Johnseret al,

201Q Poff & Zimmerman, 2010 As outlined by Bunn and Arthington (2002) changing
flow regimes have the potential to affect each link in the relationship between flow,

habitat and biotic diversity (Figure 2.3).

Under altered flow conditions increases in the variability of availablgtat maylimit
access toresources, resulting in a decrease in the local carrying capacity of river
systems (Wrightet al, 2004). In addition changes in hydrology may lead to a
decoupling of the evolved relationship between established patternsvolbdloaviour

and the occurrence of various stages in the life history of aquatic bie¢avarious
componentsof the flow regime- particularly the seasonality and timing of more
extreme events are critical for the successful completion of different #fages (e.g.
spawning, recruitment, migration) (Dudgeenal.,, 2006). In a climate change context
alterations in flow are complicated by changes in the thermal regime of river systems
which may alter the phenology of some aquatic biota, possibly rasuitia further
narrowing in the window of opportunity whereby flow conditions are aligned with the
habitat and physiological requirements of individual organisms at a specific stages in

their life cycle.
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Figure 2.3 A schematic of the four principles outlined by BunAréington (2002) which describe the link between aquatic biodiversity and the natural flow regime of a river systengifies/can be

defined as patterns of variability in flow that describe the full range of behaviour exhibited by river systelosde¢egm average flows, seasonality, low and high flow statistics, interannual variability). Bunn

and Arthington (2002) state that flow regimes influence the diversity of aquatic flora and fauna via several interrefetasmmethat operate on diffetespatial and temporal scales. The first principle

outlined above highlights the importance of flow as a key determinant of physical habitat at different temporal andeapati@les from the scale of the catchment to the scale of microhabitatstlzong

channel reach). This is driven by both high and low flow components; high flows are important for determining the cimaramel sirape which low flows may limit habitat availability. The second principle

outlined above refers to the synchronicityvbeen the life history strategy of aquatic organisms and patterns of flow. The life cycle of aquatic species have eesp@usm to natural flow regimes, as such

the seasonality of the flow regime and the timing of key flow events (e.g. spatesyarenns i cal |y | inked to the completion of different stage:
importance of flow for maintaining lateral and longitudinal connectivity across river systems. Flow act as a mediurmdpniiigaaton and movement between different parts of river systems and between
in-stream and floodplain habitats. High flows may be particularly important for facilitating access to different parts widhe e fourth oBunn &Ar t hi ngt on 6 s dstakdtlalajteredflownci pl e
regimes may be more conducive to the ingress and proliferation of exotic species at the expense of napirevitietathe former are more adapted to the modified flow regime. Figdiie dapted from

Bunn & Arthington (20032. (Source: www.awsaplanning.com/Presentations_filesfRd@ortPresentation.ppt).



Changing flow regimes may also alterncectivity across river systenis thereby
iImpedingup-stream migration and reducing access to exploitable habitats, refugia and
food resourceslongdifferent parts of the stream network (Bunn & Arthington, 2002;
Pringle, 2003).

Any changes in flow may also impact riverine ecosystems by reducing watky qu

and altering those fluvial processes (e.g. rates of erosion and deposition) which are
critical for the maintenance of-stream habitats (e.g. riffpool sequence, refugia). For
example spates are necessary for the removal of accumulated sedineermtebris,
maintainingthe channel form andistributing organic material (e.g. detritus, algae)
(Verdonschotet al, 2010) Although high flows constitute an important component in
the overall flow regime, such episodic disturbances have great potentiartipt the
long-term functioning of lotic ecosystems. Under altered climate conditions an increase
in the magnitude or a change in the timing of flood events may lead to a scouring of
nests and benthic communities may alsoresult in organisms beingvoluntarily

displaced downstream into unfavourable habitats.

By restricting movement and access to resources, an increase in the frequency of
drought events may reduce the carrying capacity of river systems and limit the dispersal
of individuals along tb stream network an issue of particular concern during periods

of enhanceadvater temperatures. With respect to potential changes in hydrology, climate
change places additional pressures on river systems whose natural flow regimes have
already leen modified by human activity (Armitage & Pardo, 1993lden & Naiman,

2010; Tockneret al, 201Q. Using two climate scenarios and a global hydrological
model Xenopouloset al. (2005) found that under future climate forcing up to 75%
(quartile range #22%) of local fish biodiversity may bemeextinct (by 2070) in rivers

projected to experience a reduction in discharge.

In a comprehensive review study, Poff afichmerman(2010) found that the ecology

of river systems considering bothaquatic (macroinvertebrate and fish species) and
riparian organisms- overwhelmingly responds negatively to alterations in flow.
Negative impacts on aquatic species included: ddsensitive biota, increases in non
native species, lifeycle disruption (e.g. spawning cues), reduced habitat availability, a
decline inspecies abundance, a reduction in spawning and recruitment, the expiration of
native fishes and a change in thegplation structure .Riparian vegetation is important

for in-stream habitaés it provides shade and is an important food source. With respect
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to riparian zone®off andZimmerman(2010) found thathanges in flow resulted in:
the terrestrialisation of fl@, increased plant mortality, vegetation encroachment into

channelsand a reduction in plant coverage, species diversity and recruitment.

2.6 A summary of the anticipated impacts of climate change on freshwater

ecosystems

A summary of climate change pacts on freshwater ecosystems is provided below
(after Hauer, 1997; Mooeét al, 2004; IPCC, 2007a, 2007bBattarbee2008;Bates,et
al., 2008; Heringet al, 2010; Kernaret al, 201Q Verdonschoet al, 2010).

Changes relating to increasd air and water temperatures

A By reducing DO levels and creating conditions conducive to the release of
benthic phosphorus, increasing temperatures are likdowter water quality in
lentic systems

A Higher temperatures are likely to enhance the thermailisgaof lake systems
potentially altering primary production, nutrient cycling and phytoplankton
activity.

A The icefree season for river and lake systems is likely to be exteadeiresult
of which the length of time deep lakes experience hypoxiodié@mns may
increase.

A An increase in water temperature is likely to reduce phytoplankton diversity;
with a shift towards the dominance of cyanophytes expected to occur.

A For coldadapted species enhanced water temperatures are likely to reduce
recruitmentsuccess and increase exposure to parasitic transmission.

A Higher temperatures aemticipatedo altar the distribution of many fish species
and negatively impact benthic invertebrategarticularly in regions where
thermal tolerances have already beewched or exceeded.

A Itis likely that environmental conditions will favour wasadapted species (e.g.
cyprinid fish species) over celdapted species which are less tolerant of low
DO environments (e.g. salmonids) (eDgaufresneet al., 2004)

A An increag in the duration of summer stratificationdsticipatedto enhance

eutrophication and lead to oxygen depletion in deep zones.
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A Species extinctions are expected to occur where warm summer temperatures and
anoxia eliminate deep coldater refugia.

A Due to emperature increases significant changes are likely to occur in the
species composition, phenology and production of planktonic communities (e.g.
increases in toxic blugreen algal blooms).

A If a 2-3°C increase in temperature is realized there is poldntinumerous
arctic lakes to dry out.

Changes relating to altered precipitation and flow patterns

A Water levels are anticipated to increase in lakes at high latjitathese climate
models suggest an increase in precipitation receipts; a decline inleveaglsr is
suggested in lakes at mid and low latitudes.

A The upstream movement of river zones is likely to ocasra resulthose
species bound to small streams and springs in the lower reaches of river systems
- which are unable to seek refuge at highitudes- are particularly vulnerable
to changes in climate. For migratory species artificial or natural obstructions to
upstream migration may reduce access to thermal refugia in higher zones.

A The distributional range of diadrom®uwspecies is likely tcshift poleward.
Similarly, species of waterfowl, invertebrate and tropical invasive species are
likely to shift poleward with some localized extinctions occurring.

A Enhanced water temperature and alterationgsiablishedflow patternsare
likely to favourinvasive species.

A Changes in flow are likely to the impact the availability of preferred habitats
(quantity and quality) and limit access to exploitable resources.

A In riverine systems changing flow regimes may lead to a divergence in the
synchronicitybetween the timing of flow events and the occurrence of different
stages in the life history of aquatic biota. This is likely to be further complicated
by changes in temperature which may alter the phenology and behaviour of
some species.

A Due to an increasin the incidence of drought, it is likely that some rivers will
become intermittent with dry phases during the summer months.

A Changing precipitation patterns and increased soil moisture deficits are likely to
increase DOC concentrations, thus alterilggbochemical cycles and changing

the chemical composition of freshwaters.
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A The seasonal migration patterns of many wetland species are likely to be
affected with some specielsecoming locallyextinct.

A Due to their sensitivity to changes in the water bedaclosed lake systems are
most vulnerable to changes in climate. Under some climatic conditions it is
possible they will disappear entirely.

A Changes in climate and lane will place additional pressures on already

stressed ecosystems.

2.7 Climatechange and salmonids

According to Graham and Harrq@009:1143)ic hanges i n <c¢cl i mat e,
temperature, have and will continue to affect fish at all levels of biological organization:
cellular, individual, population, species, commyniand eosystem, influencing
physiological and ecological processes in a number of direct, indirect and complex
wa y. Jleere is a growing body of evidence indicating that the recent warming of
freshwaters and the associated reduction in water quality has aftbetgdhysiology

(Fry, 1971; Stefanssoet, al 2003), phenology (Zydlewslat al, 2005; Mc Ginnityet

al., 2009), distribution (Friedland, 2003; Juae¢sl, 2005) and survival of some fish
species (Daufresnet al., 2004; Kinget al, 2007; McGinnityet al., 2009; Clewst al,

2010). However, given the range of confounding factors which must be considered,
isolating the direct effects of recent climate change on salmonids is a difficult task
(Daufresneet al,, 2004); as is quantifying the possible imisaaf future climate change,
particularly as indirect and interacting factors may play as significant a role as those
more directeffects (e.g. changes in water temperature with respect to known thermal
tolerances) (Fealgt al, 2010). This is illustrated by Figure 2.2 which highlights how
any changein flow under altered climate conditions may impaatmonid species in a

number of both direct and interacting ways (Mile¢al, 2010).

2.7.1 Species distributionral life cycle

Historically Atlantic salmon $almo salay were widely distributed in all countries
whose river systems discharged into the temperate andrstib regions of the North
Atlantic Ocean (MacCrimmon & Gots, 1979; Webbal, 2007); however, imecent

decades their distribution has decreased and the number of returning adults has declined
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significantly. Along with the overexploitation of stocks this decline is attributed to
human interference with their ecology and habitat (Crisp, 2000). InpEutbe
distribution of Atlantic salmon currently ranges from northern Portugal to the Barents
Sea; in additionhis species can be found in the UK, Ireland, Iceland and Greenland. In
North America its range extends along the eastern seaboard, from agptoem vy 4 0 e
to northern Quebed orstadet al, 2010)

Similar to many other salmonidtghe Atlantic salmon is a diadromous species moving
between the freshwater and marine environments in order to complete its life cycle.
Typically juveniles will rear for a number of years in freshwater before undergoing a
process of physiological changgmedé s mo |l t i fi cationdé which p
the marine environment. Once they leave freshwater they migrate to their feeding
grounds in the expanses of the North Atlantic; here they mature and become adults
before returning to their natal streaarsd rivers with a high degree of fidelity in order

to spawn and complete their life cycl€hprstadet al, 2010) Moving between the
marine and freshwater environments allows them to fully exploit the resources available
in both. In contrastbrown trout(Salmo truttd - which is the other dominant salmonid
species in Irish rivers do not occur naturally in North America and are primarily
regarded as being a European species. As it can remain resident in the freshwater
environment to complete the variogtages of its life cycle, this species has a much

more flexible life history strategy.

Each stage in the lifeycle of salmonids is intrinsically linked with variations in climate
and weather events. Water temperatures influence key biological procasheass
stock recruitment, growth rates and reproduction; whilst migratory behainciuding

the timing of entry to river systems and the rate of upstream progression is influenced
by the flow regime (Graham & Harrod 2009, Mc Ginndtyal, 2009). As sianonids

use environmental variables as cues for migration, changes in flow and the timing of

seasonal events have a greater potential to impact these species (Friedland, 2003).

Both salmon and trout are found in almost every river system in Ireianceve, they

are more prevalent in those catchments situated along the Atlantic seaboard
particulaty those catchments which have been to a lesser degree adversely impacted by
human activity (Stefanssoet al, 2003; Harrod & Graham, 2009). Analysis of leng

term survival and productivity trends suggest that populations of both species in Ireland
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have suffered severe declines in recent decades (StefatsdoP003; Peyronnett al,
2007).

In parallel with increased searface temperatures the number ofuladsalmon
returning to Britain and Ireland has decreased significantly since the 1970s (Hendry &
CraggHine, 2003; Anon., 2005; Stefansseh al, 2003; Beaugrand & Reid, 2003;
Jonsson & Jonsson, 2004; Toedal, 2008). In England and Wales there isdevice

that the number of returning adult Salmwes decreased by ~50% since the-t8d@0s
(Hendry & CraggHine, 2003; Anon., 2005). For examplgopulations of Atlantic
salmon and brown trout have declined in the Wye catchment by an estimated 50% and
67% respectively (over the period 192004) (Clewst al, 2010).

The steady decline in Irish stocks of Atlantic salmon mg@rdecline evident more
generally acrosgheir distributional range. Along its southernmost limits salmon
populations are mostly erpiated (Parrishet al, 1998) and there is evidence that
populations at more northerly latitudes, which in the past have been regarded as being
relatively healthy, are also coming under threat (Graham & Harrod, 2009). Some of the
causes implicated in theedliine of both salmon and trout stocks include, amongst
others, the over extraction of water resources, poor water quality, the intensification of
aquaculture, the introduction of artificial barriers, the removal of riparian zones, the
proliferation of digase, and increases in parasitic transmission (Graham & Harrod,
2009). Harrod and Graham (2009) indicate that regardless of how well stocks have been
managed to date, or how well the aquatic environment has been protected in the past,
climate change is lddy to amplify the effects of any current anthropogenic stressors;
climate change thus presents a complex set of challenges for catchment and fishery

managers.

2.7.2 Climate change impacts on salmonids in freshwaters

A number of studies indicate that their sensitivity to environmental conditions- (cold
adapted; requiring high DO levels), and the significant distances they must travel in
order to complete their life cycle exposing them to the rigors of the marine and
freshwater environments and climate related changes in-bo#dan anadromous fish
species are particularly vulnerable to changes in climate (Ottetssdn 2004;Harrod

& Graham, 2004, Lassallet al 2008) . Al 't hough the Eart
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natural shifts in the past, aquatic species have been able to adapt to such changes
through their evolutionary or behavioural response. However, the rate at which climate
change is anticipated to occur may exceed the rate at which some species areo€apable
genetically or ecologically adapting. The innate ability of fish species to adapt to
changes in their environment will vary according to the habitat and species considered

it will also depend on their individual tolerances, with some species bermgfthd

others losing out. A number of authors have indicated that Atlantic salmon may not be
adapting at a quick enough rate to recent climate chaagea result localized
extinctions are likely to occur (Friedland, 2003; Ottersgnal, 2004; Graham &
Harrod, 2009).

The thermal tolerance®f salmonidsat different stages in thelife cycle is well-
understood (Crisp, 1981; Elliott, 1991and it is acknowledged that changes in
temperature have thgotential to affect each life stage differently (Crisp, 1981; Elliott,
1991; Friedlandet al, 2000; Friedlandet al, 2003; Salinger & Anderson, 2006;
Peyronnet, 2008; Jonsson & Jonsson, 2009; Graham & Harrod, 2009; Mc @inality
2009). For example areased water temperatures may negatively impact growth rates
and productivity, reduce paesmolt survival and increase the susceptibility to disease
and parasitic transmission (Hatial, 2006; Graham & Harrod, 2009; Mc Ginngyal
2009). Changes ithe thermal regime of river and lake systems are also likely to alter
the time at which different stages in the life history of salmonids occussalrand
Jonsson (2009) state that traits suchage at first maturity, longevity and fecundity
decline with increasing temperatures. Enhanced water temperatures also haverknock
effects for water quality (e.g. eutrophication) and the wider functioning of freshwater
ecosystems (e.g. foasleb dynamics)thus changes in climate may impact salmonid

populations in a myriad of both direct and indirect ways (Graham & Harrod, 2009).

Elliott and Elliott (2010) indicate that salmon are more sensitive to enhanced water
temperatures when compared to trout, addilly the temperature tolerance for alevins

is slightly lower than that for parr or smolfalmon eggs are noted as having the lowest
thermal tolerance consequentlythis life stage is highlighted as being the most
vulnerable to any increase in water parature. Elliott and Elliott (2010) state that if
winter temperatures in southern Britain and Ireland continue to increase along their
current trajectory it is possible they will soon exceed the upper thermal range for

embryonic development in botealmon and trout This highlights the possible
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consequenceslimate changanay have for recruitment success and the potential for
population collapse to occur if particular thermal thresholds are breached.

In a study of the River Fiddich in nordrast ScotlandMorrison (1989) found that
Atlantic salmonparr grew faster and smolted earlier as a result of an increase in river
water temperatures (between 1eC and 3eC)
local distilleries resulted in ambient water tempemdubeing increased through
artificial means. Morrison (1989) discovered that the rate of parr growth was faster
downstream of the effluent discharge points located along the river system. In a study of
the Miramichi Riverone of Can ad a 6salmomagvers Swanshurdetat t i v e
(2002) found that, under altered climate conditions, temperature thresholds are likely to
occur earlier and for an extended period, adversely affecting the growth of juvenile
salmon parr and reducing the overall produativt the Miramichi system. Similarly,

the results of a study by Luret al (2002) on the heat shock response of Atlantic
salmon in the Miramichi, suggested that increases in temperatirgilar to those
projected to occur ovdahe coming decades could have significant consequences for
productivity in this system. Graham and Harrod (2009) highlight the sensitivity of
salmonids to DO levels, suggesting that under warmer conditions a reduction in DO
would have the effect of increaginfish mortality, particularly duringhose more
sensitive life stages (e.g. juvenile). Toad al (2010) state that enhanced water
temperatures are likely to increase parr and smolt production in rivers at more northerly

latitudes where productivity isucrently constrained by lower water temperatures.

Davidson and Hazelwood (2005) formulated growth projections for Atlantic salmon in
four UK rivers (Thames, Wye, Dee and Lune) using the UKCIP02 temperature
scenarios. Their results suggested that undewaehissions scenario growth rates are
projected to improve in those catchment systems located in the north andvestth
However, under a high emissions scenario, whereby thermal tolerances are exceeded
over the latter half of the current century, mogebjections suggest a considerable
decline in growth rates across all catchments (Davidson & Hazelwood, 2005). Davidson
and Hazelwood (2005) state that in rivers along the southern edge of their distributional
range (i.e. River Thames)whereon a regioal basiswarmingin the UK is generally
projected to be greatest growth rates are anticipated to decline, with resultant
consequences for the abundance, survival and productivity of salmon sidtliese

areas
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It is widely acknowledged that temperatings a significant influence on the timing and
rate of smoltification (Zydlewsket al, 2005; Toddet al, 2010). By altering growth
rates, increasing temperatures may influence the size and age at which smoltification
occurs (Jonsson & Jonsson, 2009)stidy by Zydlewsket al (2005) found that an
earlier and more rapid increase in spring temperatures resulted in smolts migrating
downstream earlier. Alterations in the timing of smoltification and the migration of
smolts to sea have implications for pgstolt survival rates and success in the marine
environment (Friedlandt al, 2003). The influence of increased temperature on growth
rates and maturation in marimeaters as well as on the time of return migratioave

been variously explored by Martand Mitchell (1985), Friedland (2000), Friedlaed

al. (2003) and Jonsson and Jonsson (2004).

Changes in precipitation and patterns of flow behaviour are as important for
determining the impacts of climate change on salmonids as changes in other abiotic
variables (Heggenest al, 1999; Matheet al, 2008). Wengeet al. (2011) highlight

that climate impact assessments conducted on freshwater biota have typically focused
on temperature, ignoring critical drivers such as interspecific relationships and
hydrological flow regimes. Variations in river flow determine the availability of suitable
habitat and influence access to exploitable resopasesuch hydrological regimes are
critical for determining the local carrying capacity of river systems. Jow@®2) found

that the amount of available habitat was an important variable in determining the
abundance of adult brown trout in 82 New Zealand Rivers. Similarly Gibson and Myers
(1988) found a positive relationship between runoff and the survival of egljs a

underyearling salmon pairr five Canadian river systems.

The life history strategy of salmonids has evolved largely in response to the
hydrological conditions specific to the flow regime of their natal rivers (Dudgéab,

2006). Consequently clina mediated changes in established patterns of flow behavior,
and in particular alterations in the timing of seasonal events, may lead to a loss in the
synchrony between the occurrence of various life history stages and optistedam
conditions. Changes in climate also have the potential to alter the nature (e.g. frequency,
timing) of extreme flow events. Given their impact on mortality and the success of year
classes, any change in the occurrence of extreme flows have far reachlicgtioms

for the longterm sustainability of some salmonid populations. For exangpiEeme

high flows can lead to the wash out of eggs and fry, whilst a reduction in flow may

leave nests stranded and fish isolated in unfavourable habitats (Crisp, B$89).
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influencing fish movement and the connectivity of habitats, streamflow affects energy
expenditure feeding behaviouand the timing of migration (Armstrongt al, 1998;
Armstronget al, 2003; Berlancet al, 2004; Jonsson, 2009). For example, spatag

be required for fish to ascend artificial or natural barriers and thus are essential for
migratory progression. During prolonged low flow periods, upstream migration may be
delayed, preventing access to more suitable spawning areas. In additionbé&emas
shown that the occurrence of low flows can inhibit the movement of adults from coastal
waters into river systems, potentially resulting in mortality and reducing recruitment
levels (Solomart al, 1999; Soloman & Sambrook, 2004).

It is argued thatltanges in hydrology, coupled with the continued warming of both the
freshwater and marine environments, will result in a northward shift in the
biogeographical range of Atlantic salmon. This will result in the loss of populations in
areas along the soutimenost limits of their range (e.g. Iberian Peninsula and France),
whilst territories further northward which are presently unsuitable (e.g. arctic rivers) are
likely to be exploited (Stefanssaat al, 2003; Toddet al, 2010). Toddet al (2010)
indicate hat given the increases in drought and water temperature projected to occur
across Europe, it is possible that populations as far north as southern England may
become extinct. Similarly, it is likely that the southernmost populations of Atlantic
salmon in North America will be under the greatest threat of extinction (Reist,

2006). In reference to the British Isles, Graham and Harrod (2009) indicate that
increased water temperatures may enhance productivity and growth in northern and
upland mpulations; however, in southern and lowland areas increased temperature and

a reduction in DO may result in population losses.

2.8 A saimmary of the anticipated impacts ofclimate change onsalmonids

Climate change is likely to pose a significant thteathe continued existence of viable
salmon stocks in many waterways across Ireland. Figurdnighlights the potential
impacts of climate change on the various life stages of Atlantic salmon (Walsh &
Kilshy, 2007). The following is a summary of the likely impacts of climate change on
Atlantic salmon and trout sourced variously from Jonsson and Jonsson (2009),
Stefanssowet al (2003), Graham and Harrod (2009) and Milekal (2010).
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The biogeographbal distribution of Atlantic salmon is likely to move further
northwards, with extinctions likely along its southernmost limits.

Increases in temperature are likely to enhance the vulnerability of populations to
disease and parasitic transmission.

In northern and southern parts of the distribution range an increase in parr
mortality rates during winter is likely. This is an anticipated outcome of
increasing spring and winter droughts (southern regions) and less stable flow
conditions (northern regions).

Enhanced water temperature should favour wadaptedcyprinid fish species
over salmonids. In contragtels Anguilla anguilld may be better placed to
exploit higher water temperatures.

An increase in growth rates is likelywith the caveat that tempeuaés remain
within the optimal ther mal range for
It is likely that the spawning time will be delayed, occurring in the autumn or
early winter

Warmer temperatures will advance the time of egg hatching and alevin
emergence.

Smoltification is likely to occur at an earlier age, especially in northern and
intermediate parts of the distribution range.

A disproportionate increase in the rate of warming in freshwaters, as opposed to
the marine environment, may result etearlier migration of smolts to sea with
consequences for pesiolt survival.

It is likely that upstream migration will occur earlier in the year. This would
have the effect of altering patterns of energy use prior to spawning, with the
possibility of hcreased adult mortalities and reduced recruitriesets

An increase in flow variability and the occurrence of extremgdrological
events may delay upstream migration, increasing the possibility of fish straying
to other river systems.

Drought duringupstream migration may reduce spawning stocks and improve
the reproductive success of small relative to large adults.

It is likely that there will be an immediate phenotypic respaosaltered climate
conditions;however over the longeterm genetic chages in traits such as smolt

age, the age of maturity and disease resistance may occur.
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2.9 Conclusion

Scientific consensus attributes most of the recent warming experienced in the global
climate to anthropogenic emissions of carliboxide and other greenhouse gases. If
emissions remain on their current upward trajectory it is likely that the global climate
will undergo further warming, with many unforeseen and possibly irreversible
consequences for both human and environmentalmsgst€limatemediated changes in
precipitation and water temperature are likely to disrupt the functioning of freshwater
ecosystems and reduce the availability of suitablstream habitats with knockon
effects for the sustainability of some populatiarisfreshwater and anadromous fish
species.

The preceding sections provided evidence of anthropogenically induced changes in the
global climate system, and importantly highlighted that climate change signals have
already been detected in freshwater ecesgyst Although the impacts of recent climate
change are more tangible with respect to changes in those physical, biological and
chemical parameters which are temperatiependent, it is suggested that over the
coming decades a direct causal link betweeanghs in lotic ecosystems and the

intensification of the hydrological cycle will become increasingly apparent.

By altering the availability of suitable habitat, climatediated changes in patterns of
flow behaviour are likely to undermine the local cargy capacity of river systems,
leading to reductions in the abundance and productivity of native salmon $tozk.
observed progressive decline in their population numbkaeng with theirinherent
sensitivity to environmental conditions and vulnerabiliby anthropogenic stressors
mears it is important that the most deleterious effects of climate change on this species
whichis of greatecologicaland cultural significanceareinvestigatedand planned for.
The study documented in the proceeding ofigpfims to explore how changes in
climate may impact flow behaviour and habitat availability in a relatively productive
upland system. The following chapterovides background information on the

catchment and the datasets used.
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Chapter 3

The Burrishoole catchment

3.1 Background

The Burrishoole catchment is a mainstay for much of the research conducted at both a
national and international level on freshwater ecosystems and anadriishapecies
including the Atlantic salmonSalmo sala), sea trout $almo truttd and eel Anguilla
anguilla) . The catchment holds international
monitoring the status of migratory fish stocks. Since the mid 19&Ds tfapping
facilities operated in the catchment have recorded the movement of all fish between the
marineandfreshwaterenvironment of the catchmerkhe International Council for the
Exploration of the Seas (ICES) use the fish census recordsBuonishooleto gauge

the overall status of fish stocks in Ireland and the North Atlantic region. In addition
much of the research conducted on anadromous species utilizes data collected from the
Burrishoole catchment. The catchment is under the stewardttiig Marine Institute

who have a dedicated research facility located within its confines. Along with operating
the trapping facilities, they have implemented an extensive programme for monitoring

environmental conditions across the catchment.

Datasetsavailable from the catchment include letggm records of temperature and
precipitation which date back nearly sixty years. Monitoring instruments installed more
recently provide higiiesolution data on thermal profiles and several water quality
parameterge.g. pH, DOC and DO). It is the availability of both long and stern
environmental datasets, along with the fish census records, and extensive
empirical/local knowledge of the system which means it provides an ideal basis for
studying the potentiahipacts of climate change on salmonid species. The similarity of
the Burrishoole catchment to many catchm
- in terms of itsecology hydrology and geomorphological characteristianean its
response to altered riting conditions provides an indication of the impacts climate
change may have more generally across the region. This is significant given that

l relandés most productive salmon rivers
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3.2 Characterizing the catchmehsystem

The Burrishoole catchment i's |l ocated Ire
(9e 346 200 W 53¢ 556 220 N) (Figure 3.1
Basin District (WRBD). The catchment (Figure 3.2) is nestled at the heart Nefitan

Beg mountain range and drains in a natluth direction from its upland headwaters
through a freshwater lake and stream network, before reaching a brackish tidal lake
system L. Furnaceg located in its lower confines. The Burrishoole catchment
discharges into the Atlantic Ocean at the northeast corner of Clew bay. It takes on an
almost idealized amphitheatre like shape with steep slopes to the north, west and east
delineating its drainage boundary. The surrounding terrain is complex being
charactesed by localised valleys, steeply sloping mountain ranges and a flat alluvial
vall ey floor at the confluence of the ca
range spans approximately 700 metré®m 10 m at the outlet point to over 700 m at

the highest peaks on upland contributing areas. The western and upper parts of the
catchment hold status as a Special Area of Conservation (Site name Owenduff/Nephin
Complex; Site Code 000534).

Fish trapping facilities operated in the catchment are loaatdevo channels known as
the ASal mon Leapo and #AMill Raceo which
Furnace (Figure 3.2). These trapping installations are used to record the movement of
all migratory fish between the freshwater environs of the cagch andcoastalwaters.

Since 1970 a complete census of fish movement (both upstream and downstream) has
been complied; however, the catchment was first used as a site for fish trapping in 1958,

and the records for some species date back this far.

The tdal area of the freshwater component of the Burrishoole system is 88.Fken
catchment has a dense drainage network comprised of approximately 45 km of
interconnecting shallow streams and rivers. In addition it encompasses seven lakes of
various sizesthe three largest of which include Lough Bunaveela (0.5%,kbough
Feeagh (4.1 kf) - both of which are freshwater lakeand the brackish Lough Furnace
(1.41 knf) (Whelanet al, 1998). Both Lough Furnace and Lough Feeagh are situated in
the lower part of the Burrishoole valley, whilst the Bunaveela is located in the upper

reaches of the Goulan sghtchment.
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Figure 3.1 Location of the Burrishoole catchmantiBelumullet synoptic statigralso showraretheRCM grid boxesoverlying
the cathchment.

57



Rain Gauge
Weather Station

Flow Gauge
Catchment Area
High : 809

Low: 0
(=

Figure 3.2 Map of the Burrishoole catchment showing each of the five consttusratchments. Also shown is the Glendaht
catchment.

58



Metamorphic rock from the late Precambrian era comprises the bedrock geology of the
catchment and can be apportioned accordingly; 44% quartzites, 44% schists/gneiss,
11% and 1% sandstone and limestone (Parker, 1977; ébay, 1992; Irvineet al,

2000). In the lower parts of the catchment, towards its outlet point, metamorphic rocks

dip below Devonian Old Red Sandstone and Carboniferous limestone. A terminal

moraine delineating the boundary between the metamorphic and sedimentary rocks
which uneerlie the catchment is located between Lough Furnace and Lough Feeagh.

Spatial differences in the underlying geology are reflected in the water chemistry and
biological productivity of the catchment. Rivers on the western side of the catchment
are generdy more acidic and have a low buffering capacity (alkalinities in the order of
-2.7 to 2.7 mg [! CaCQ); this is in contrast to those rivers draining the eastern side of
the catchmentwhich generally have a pH level closer to circumneutral (in the afder
1520 mg L' CaCQ) and as a result have a higher aquatic productivity (Fetadf,

2010).

Due to its underlying geology the catchment is characterised as having a relatively poor
groundwater storage and transmissivity capacity. Figure 3.3 illastrétat the
catchment is underlain by aquifers classified as bemtglocally productive (PI) (GSI,
2003). The overlying soils are mainly poorly drained peaty podzols and gleys, with
blanket peatlands covering the mountain slopes to the north (FigyreL8ml cover
(Figure 3.5) in the catchment comprises 64% peat bog and 23% forestry, with the
remainder (13%) generally consisting of localised pockets of natural grassland, scrub,

transitional woodland and agricultural land (CORINE, 2003).

Vegetation coer on the blanket peats is dominated Myglinia caerulea Schoenus
nigricans and Scirpus caespitosué O6 Sul | i van, 1993) . The p
activity in the catchment is sheep grazing, with much of the peat bog area being treated
as commonage (Weil1996). The Burrishoole catchment has a history as a site for
commercial forestry activity. Afforestation schemes commenced in the catchment in
1951 and expanded between 1960 and 1969. Of the 23% of the catchment under forest,
a large proportion of it ighe result of commercial afforestation. The main species
covering the catchment include Sitka spruB&céa sitchens)s(26%) and Lodgepole

pine Pinus contorta (70%]) albeit thatsmall areas of native oak woodland exist.
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Soil Type
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Figure 3.4 Soil cover across the Burrishoole catchment. (Sdbatg & Fealy 2006
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Figure 3.5 Land cover type across the Burrishoole catchment (Source: CORINE, 2003)
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In the 1990s, clearfelling of forest plantations began; to date approximately 672 hectares
or ~30% of the total plantation area has been removed. A number of studies have
indicated that overgrazing and afforestation have impacted the catchment; however, any
link between such impacts and a reduction in fish stocks has not been conclusively
established.

3.3 Observed climatology

Owing to its close proximity to the Atlantic Ocean the catchment has a temperate
maritime climate. The climograph in Figure 3.6 showadues for mean monthly
temperature (eC) and precipitatio000.ecei

Records indicate that annual average me
11. 4eC (2007), in addition thé40 yeaarepermd d s

196:2000) August (15.2eC), July (15.1e¢eC) a
mont hs whilst January (5. 7eC), February (

200 T T T T T T 20

175

150

125 12.5

)

100

Precipitation (mm)
Degrees (C°

75

75

50

25

0 0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 3.6 Climograph depicting average monthly precipitatienc ei pt s ( mm) and mean mo
Burrishoole catchment. The plot is estimated using records from the Furnace weather station (Figure 3.2) averagediode
1961-2000.

Precipitation receipts in the catchment are relativel;hilis is due to the surrounding,
upland terrain which is conducive to orographic upita nd t he <cat chmen
location directly in the path of the prevailing rain bearing westerlies/seesterlies.
Multi-year annual precipitation yields ranfyjem 1118 mm (2009) to 1930 mm (2001),

and records indicate that (averaged over the 40 year period2008) December (179

mm), November (170 mm) and January (165 mm) are generally the wettest months,

whilst June (90 mm), May (95 mm) and July (95 mm)tgpécally the driest.
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The complexity of the local topography leads to highly heterogeneous precipitation
patterns across the catchmeRecords fromt h e ¢ a t awh raia gauge setwork
indicate that localized eventsparticularly with respect to exdme and heavy rainfall
events- are an important feature o$ precipitation regime. The spatially heterogeneous
nature of precipitation is demonstrated by an extreme event (> 250 year return period)
which occurred on the"2of July 2009 between 7 p.mu@9 p.m. During this two hour
period approximately 50 mm of rain fell on the eastern side of the catchment; however,
over the same period, gauges on the western side recorded as little as 16 mm of rainfall.
The precipitation which occurred is reflected measurements from water level
recorders located in the Goulan (6.48 m) and Srahrevagh (4.86 roatliments;
however, given that the flow levels lie outside the ranges for which the recorders are
rated, it is likely that theseneasurementsepresent an underestimation of the true
values (Fealet al, 2010). Flooding events in both rivers are typically in the region of
1.2 to 2 m in height. It is noted that during this event water levels rose almost
concurrently with the amount of predgiion recorded (Fealgt al, 2010).

3.4 Subcatchments of the Burrishoole system

As delineated by the location of gauging points across its stream network, the
Burrishoole catchment can be divided into a series of fivecatthments consisting of

the Glenamong, Maurmatta, Altahoney (located in the west and-math parts of the
catchment) Goulan and Srahrevagh (situated in the seath and east parts of the
catchment). Each of these scditchments, either directly or through the larger stream
netwak, drains into the two lakes situated on the valley floor. Also included is the
Glendahurk catchment which lies adjacent to the Burrishoole catchment along its
western drainage boundary. Although this is not part of the Burrishoole system,
monitoring of his catchment system is conducted as part of monitoring operations

carried out across the Burrishoole.

Of each catchment considered the Glenamong (172 &mdl Glendahurk (12.4 Kn
(Table 3.1) are the largest, with the Srahrevagh (4.9 keing the smikest. Peat is
overwhelmingly dominant in all sutatchments, particularly the Altahoney8fo
coverage), Goulan (100%) and Srahrevad@®4). The Glenamong (70%) and

Glendahurk (75%) are also notable for a high proportion of blanket peat coverage.
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Lough Buraveela, located in the Goulan catchment, is the only surface water body of
notable size located in the any of the-salbchments.

Catchment

Glendahurk Glenamong Maurmatta Altahoney Goulan Srahrevagh

CORINE Land Cover (%)

Agriculture B - - - - 1
Coniferous forests 9 28 32 32 11 30
Natural grassland 2 4 - 0 - 7
Transitional woodland scrub 15 - 16 13 14 59
Peat bogs 74 68 52 55 70 2
Water bodies - - - - 5

Aquifer Classification (%)
Poor aquifer, generally

unproductive except ilocal zones (PI) 88 100 100 100 100 100
Locally important, 12

generally moderately productive in local zones (LI

Soil Type (%)

Blanket Peat 74 68 91 78 100 89
Peaty Podzols 26 32 9 22 - 11
Morphometric Attributes

Area (ki) 12.4 17.1 6.4 9.2 9.6 4.9
Min Elevation (m) 47 12 54 94 59 23
Max Elevation (m) 710 708 383 626 389 550
Slope (°) 14.0 12.0 10.0 13.0 8.8 9.0

Table 3.1 Physical attributes of the five constituentcatichments of the greater Burrishoole sys(Eigure 3.2). Also listed are
the physical properties of the Glendahurk catchment.

The flow regime of each sedatchment is highly responsive to rainfall events, and
exhibits behaviour typically associated with runoff dominated systems. This is related to
the geometric properties of each drainage basin (e.g. steep slope, small arde and
poor productivity of the underlying aquifers. Both these factors contribute to the
inability of each catchment to attenuate the rapid movement of water through their
system or to dampen the streamflow response to heavy precipitation events. The low
cortribution of baseflow to catchment dischargevhich is particularly evident during

the drier summer monthsunder | i nes each catchment s
Streamflow records for two of the swebtchments indicate that they had completely
dried upon at least one occasion after a sustained period without rainfall. The presence
of blanket peatland plays a significant role in tta&@chmenthydrology. It has been
shown that well developed macropores and pipes which exist in the peat matrix provide
an effective conduit for rapid subsurface flow (Holden & Burt, 2003; Holden, 2005). In
addition, during storm events peat covered hillslopes are conducive to both infiltration
and saturation excess overland flow. Thus in peat dominated systems rapid lateral

t hroughflow) and overland flow contribut
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(Holden & Burt, 2003; Holden, 2005). Given the history of commercial forestry in the
Burrishoole catchment, it is possible that disruptions of the soil mataxhave #ered

its longterm hydrologic response. The extent to which this may have occurred is not
known and records do nepan a period long enough investigate it.

3.5 Instruments and data

To provide a record of environmental conditions across the Bualshsystem,
intensive instrumental monitoring of key climatological, chemical and ecological
variables is conducted. The catchment has its own weather station whose records for
temperature and precipitation date back over 60 years; it also has an extamsive
gauge networkHKigure 3.2) Continuougecordings for several water quality parameters,
including pH levels, DOC and DO are taken; in addition the thermal profile of the
catchment 6s |l ake system i s moni wwaokAsd, as
recorded are lake and stream water temperatures at various points across the catchment.
The following sections provide information on the instrumental datasets employed in

this study.

3.5.1 Furnace weather station

Instrumental records for daily temperature (maximum and minimum) and precipitation,
covering the period 1962009, were obtained from the manually operated Furnace
weather station (9°34'18"W 53°55'24"'Nhe stationis located at an altitude of ~14m
near the catchment s out | e wweaihewsiation are(ofFai g u r
high quality and a low proportion of the observed series is classified as missing or
invalid (3.5% minimum temperature, 4.5% maxmutemperature and 0.4%
precipitation series) (Table 3.2). The weather station is operated by the Marine Institute

in-conjunction with the Irish meteorological service, Migteann

Variable Record Date Start Missing n (%) Mean Median Std. Dev 95 % ile
Mi ni mum Temper s Jan1960 35 13 13 4.4 20.3
Maxi mum Temper s Jan1960 4.5 7.3 7.4 4.1 13.7
Precipitation (mm Nov-1959 0.4 4.3 1.8 6.2 16.6

Table 3.2 Datasets from the Furnace weashegion.
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3.5.2 Belmullet weather station

Data for other meteorological variablescluding wind speed, relative humidity,
radiation and potential evaporation were obtained from the Belmullet synoptic station
(9°59'53"W 54°14'57"N} located ~43 km to the norest of the catchmerfEigure

3.1). This is the closest synoptic station ttee catchment and is operated by Met
Eireann Although monitoring for a number of these variables is also conducted in the
catchment, records were either of an insufficient length or were of a poor quality;
consequently synoptic records from the Belmudiigttion were used instead. With the
exception of radiation (1982000) and potential evaporation (192Z000), observed
recordsfor each variablevere available for the period 19@000.

3.5.3 Upland rain gauge network

An extensive rain gauge network teases the upper reaches of the catchment, with
multiple gauging points being located within the boundary of each constituent sub
catchment (Figure 3.2). The observed rainfall series from the Furnace station is
considerably longer (1952009) than those pvided by the more recently established
upland gauges, many of which commenced operation in 2002. In total the datasets from

twelve gauges located across the catchment are used in this study (Table 3.3).

Owing to the complexity of the local topography g(eelevation, slope, aspect),
precipitation varies considerably across the catchment. For example, extreme events
found to occur in the records from individual gauges are not found in the data series
from others this highlightsthe spatial heterogeneityf precipitation, even at a sub
catchment scale. The position of the weather station near sea level means it fails to
capture the influence of orographic enhancement and the spatial variability of
precipitation at higher elevations in the catchment. Giman the catchment system is
highly responsive to rainfall events, this is an important consideration when attempting

to understand and model the hydrology of each respectiveasuabment.
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Gauge Start Data (days) Missing Altitude  Mean(mm/day) Median (mm/day) 95 % ile (mm/day)

Date n (%) (m)
Glenamong 1 May-02 1510 434 342 4.8 2.2 18.2
Glenamong 2 May-02 2397 10.2 197 5.4 3.1 20.4
Glenamong 3 May-02 2535 5.0 30 5.1 2.0 20.4
Glenamong 4  Jul03 1925 14.4 204 6.5 2.6 24.7
Maumaratta  May-02 2083 21.9 263 5.2 2.2 20.8
Altahoney May-02 1903 28.7 239 6.3 2.2 25.2
Srahrevagh 1 May-02 2505 6.1 372 4.4 1.6 18.8
Srahrevagh 2 May-02 2224 16.6 130 4.0 1.8 15.4
Srahrevagh 3 May-02 2233 16.3 23 4.8 1.8 19.3
Goulan May-02 2492 6.6 131 5.1 2.0 20.1
Namaroon Jan04 1848 10.5 290 6.6 3.2 243
Glendahurk Jun03 1676 26.5 247 49 2.2 17.4

Table 3.3 Datasets from the Burrishoole catchmentods
values for each gauge are shown.

As shown in Table 3.3 a number of the rainfall datasets are of a poor gtality
example ~43% of the daily entries in the Glenamong 1 series are missing. In order to
obtain a complete precipitation series for the purposes of calibrating the reaméf

models the records from individual gauges were averaged. For eaebastiiiment a
weighted average of the available precipitation data was used to compensate for the
missing entries in individual series. The weighting used was based on the correlation
between the records from each gauge and the observed streamflow series. For each
catchment only those gauges situated within, or in close proximity to the catchment
boundary were considered; in addition, only those precipitation series which exhibited a
strong correlation with streamflow were select@étlis approach allowed for the spatial
distribution of rainfall across each catchment to be considered, it also addressed the
problematic issue of missing values in the data selDiespite the deficiencies ithe
datasets highlighted in Table 3.3, it must be acknowledged that the upland network
provides high resolution information at a stiichment scale; in addition it offers good

coverage of the catchmentdés altitudinal

3.5.4 Water level records

Water levels are recorded at the outlet point for each catchment on a 15 minute interval
time step. Average daily volumetric flow values were obtained from recorded water
levels using a rating curve formulated for each gauging point. The observed datasets

were of varying lendts and quality with some displaying a high proportion of missing
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values (e.gGlendahurk ~20%)Table 3.4 provides details of the streamflow records for
each catchmenilThe quality of available data was an important criterion for selecting
which subcatchments would be best suited for conductinglapth hydrological
modelling. Due to various deficiencies in either the precipitation or flow dhéa,
number of catchment&hich could be considered for further analysis was limited to
two, namelythe Glenamong and Srahrevagh.

Catchment Start End Data Missing n Mean I33ai|y Std.3 Dev 95 ;’A) ile

Date Date (days) (%) (m*/sec) (m*/sec) (m*/sec)
Glenamong Jun02 Aug-09 2398 10.1 0.93 1.172 3.26
Maumaratta Jun02 Aug-09 2392 10.3 0.46 0.66 1.49
Altahoney May-02  Aug-09 2546 3.70 0.60 0.89 2.34
Srahrevagh Jun02 Aug-09 2419 9.30 0.32 1.85 1.03
Goulan Apr-03 May-06 1096 5.30 0.34 0.38 1.11
Glendahurk Jun02 Aug-09 2125 20.4 0.18 0.30 0.71

Table 3.4 Streamflow records from the Burrishoole catchment. The length of the record provided by each recorder a
proportion of missing valuds shown.

3.4.5 Data Quality Issues

As highlighted above a number of shortcomings are associated with the rain gauge and
streamflow datasets available for use in this study. In terms of precipitation, the records
from a number of gauging points had a high proportion of missing valaasisue
compounded by the relatively short length of the datasets and the fact that deficiencies
were generally common to the records obtained from all gauges. Given the highly
heterogeneous nature of precipitation across the catchment, incomplete recdaedk crea
difficulties when attempting to calibrate the hydrological models, whereby large peaks
in flow were noted to occur without the corresponding rainfall event being recorded.
Despite the high density of the gauging network, the localized nature of raicrfass

the catchment means that in cases where a particular gauge had failed, no record for
important events (although being present in the corresponding flow data) existed. As
outlined above, to overcome this shortcomiagweighted average of the awdile

precipitation series was used during model development.

The quality of the streamflow datasets was a key factor in determining whieh sub
catchments could be considered for use in this study. Similar to precipitation, a number
of flow records had a high proportion of missing values, with some displaying evidence
of disruption subsequent to the occurrence of an extreme event. There also appeared to

be a degree of drift or/and a step change in a number of records, indicating that some
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alteration of the channel shape or movement in the stage recorder had occarred. T
explore the quality of the streamflow data available a double mass curve was
constructed using the records from each of the six catchments (Figure 3.7). As its flow
series was shown to be the most reliable when gefssenced with other available
flow and precipitation records, the streamflow series from the Glenamong catchment
was used as a reference to evaluate the reliabilitjoof datafrom the other sub
catchments.

A degree of drift is evident in records from the Goulan, Maunagatt Glendahurkn
addition a step change is noticeable in d&tam the Altahoney.In contrast there
appears to be no such problems with the data from the Srahrevagh recorder. Given the
flashy nature of the flow response and the influence this haseothtnnel form, it is
possible that the stagiischarge relationship has changed over time, possibly leading to
the drift evident in Figure 3.7. Closer inspection of the dataset from the Goulan
indicates that an extreme event which occurred during DeceBdf8 resulted in
monitoring operations being disruptedsubsequent to this the instrument appears to
under record flow levels (Figure 3.8). Attempts were madecdaect both the
streamflow and precipitation records; however, given the difficultiesnpganting the

exact time wherdrift appears to begin, together with the large proportion of missing
values and the short record length, a robust correction could not be applied. Difficulties
were compounded by the fact that that both the mean andhear@ some series
appeared to change over tirmethus a simple bias correction could not be applied.
Anecdotally it is indicated that some recorders may have been moved or relocated in the
event of instrument wash oatcurring Due to the data qualitgsues discussed above,

only a subset of the catchments were selected for further study. This was a conscious
attempt to reduce uncertainty introduced to the hydrological models by way of the
observed data used (input and outpas) such it is part of wider strategy to address

the issue of stationarity in the model response.
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Figure 3.7 Double mass rating cunst®wing the cumulative monthly streamflow (mm) for each catchment plotted agains
from the Glenamong recorder.
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Figure 3.8 Smootttime series for the Goulan catchment showing change in both the mean and variance of the flow :
subsequent to an extreme event (circa. 14/12/2006).
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3.6 Indicators of climate change in the Burrishoole catchment

Fealy et al. (2010) examined whether a climate change signal was present in the
precipitation and temperature records from the Furnace weather station (Figure 3.2). In
addition the study examined whether warming related trends were evident in records of
lake water terperature. It was found that, over the period 12609 (50 years), mean

air temperatures in the catchmp®0al). Thead i n
rate of increase in daily maximum temperature was shown to be greater than minimum
temperature (Fdy et al, 2010). Seasonallyincreases in mean temperature were
greatest in spring (1.8e¢eC) and winter (1
(1.5eC) and autumn (1. 4eiCGbeitmarginally asoivhead t o
contrasted withrish temperature anomalies over a similar time period (288Ib), the

mean annual i ncrease in temperature recc
exceeded the nat i oneadl, 2010)eQvaer the pero® 198O ) ( F
midnight lake vater temperatures were found to have increased in all seasons and on an
annual basis (Fealgt al, 2010). Following trends in air temperature, the greatest

i ncreases in | ake water temperatures wert
(1. 79¢ @yely.respec

An analysis of several temperature indices using metrics from the STARDEX project
(STARDEX Final Report, 2005) supports evidence that the catchment has experienced
warming over the past several decades. Records from Furnace indicated an increase i
hot-temperature related indices and a decrease inteoigerature related indices. For
winter a significant increase was found in both thedwt (1.3°C) and colday (1.6°C)
thresholds. The records also indicated an increase in the duration of kegtthia has

been accompanied bgn increase in the number of consecutive hot days (tm#dx 90

percentile).

The frequency and intensity of heavy precipitatie@stimated using the 8@ercentile

of rainrday amounts was found to have increased both Wainter and on an annual
basis (estimated over the 198009). This finding is consistent with McElwain and
Sweeney (2007) who found that extreme rainfall intensity has increased in the west of
Ireland. The records indicated a small significant increase.@f mm/year in mean
annual precipitation receipts; however, on a seasonal basis, no significant

increase/decrease in mean rainfall amounts was found to have occurred.
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3.7 The status of Atlantic salmon $almo salaj in the Burrishoole catchment

The numbe of adult salmon returning to the catchment has been in decline since the
1970s (when full trapping began), with low numbers continuing each year since the
1980s(Figure 3.9). Numbers have fluctuated from a high of 1,777 in 1973 to a low of
252 in 1990 (Ealy et al, 2010). Although a ban in drift netting for salmon was
introduced in 2007 which led to a notable increase in the number of returns for that
year- numbers in 2008 and 2009 fell to levels similar to those recorded prior to the ban
being introdiced. It is noted in Fealgt al. (2010) that this sudden decline may be
related to a decrease in marine survival consistent with a negative trendfishprg
abundance in Irish stocks (after Peyroretedl, 2007). The records for smolt migration
show that the number of salmon recorded in downstream traps varies between a
maximum of 16,136 (1976) and a minimum of 3,794 (1991) (Fetaat, 2010). Fealy

et al (2010) state thathere isno discernible trend evident in the annual number of

smolts migraing from the catchment.
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Figure 3.9 The number of wild adult salmon which returned to the Burrishoole catchment on an annual basis, recordec
period 19702009 (Source: Fealgt al, 2010)

3.8 Conclusion

The Burrishoole catchment provides an ideal case study for exploring the impacts of

climate change on the freshwater habitat of Atlantic salmon. Although high quality
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datasets for a range of environmental variables monitored in the catchment are
available, deficiencies were evident in the quality of some precipitation and runoff
records Shortcomings in the observethtalimited the number of catchments which
could be considered for hydrological modelling. Critically trends found in-teng
records fromfte catchment indicate that its climate has undergone warming consistent
with trends found in national and global datasets. The biological and physical
characteristics of the catchmentencapsulated by the fact it is a productive upland
system, which is lghly responsive to rainfall events and has a high peat content
suggests that the study findings should provide an insight into the potential impacts of
climate change on other river systems located along the west coast, many of which are
similar in natue to the Burrishoole. The following chapter outlines the uncertainties
inherent in developing higresolution climate projections for use in local to regional
scale impact studies; in addition it discusses the merits of employing a performance

based weighihg system when using climate ensembles.
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Chapter 4

Uncertainty and predictability in climate modelling

4.1 Introduction

Alt hough we can state with a high degree
likely to change in response to further increases in atmospheric GHGs, due to our
limited understanding of feedback mechanisms and the inherent limitations to the
predctability of regional or local scale climate, a large amount of uncertainty (of which

a large part is irreducible) is implicitly associated with model projections of future
climate change.While the scientific community is confident that anthropogenic
emssions of GHGs and aerosols wildl alter
atmosphere; there is much less confidence associated with exactly how the climate
system may change in response to this (Dextsal, 2007).A considerable amount of
uncertainty is associated with model estimates of future climate charayefact
illustrated by the lack of convergence in the projections from individual climate models,
even in cases where the same forcing scemaripused. Ths divergence applies not

only to the magnitude but also to timing, spatial distribution and direction of change.
These uncertainties pose major challenges for policy makers who ideally require
probabilistic projections of future change which adhere to risk assessment

framework used tformulate robust adaptation strategies (Schneider, 2001).

As illustrated in Figure 4.1, uncertainty arises at each stage in the process of translating
storylines of anthropogenic GHG emissions into scenarios of futuratel change

(Jones, 2000; Moss & Schneider, 2000; Wilby, 2006 accumulation or propagation

of uncertainty at each stage has various|
(Schneider, 1983) or t he {belerg 093} &iguret v e
4.2). Model projected changes in the climate system are subject to a high degree of
uncertainty stemming from both aleatory
(6incompleted knowledged) sources ( Hul me
Hulme, 2000; Oberkampfet al, 2002). The latter arises due to our limited
understanding of climate system processes and their imperfect representation in climate

models - both of which introduceuncertainty when modelling the climate system
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response to a chge in forcing. With greater knowledge and improvements in

computing power this source of uncertainty has the potential to be somewhat redressed.

! Comprehensive Climate Model

| |
| |
|
I * Carbon Cycle Climate Interactions I |
| |
| CONCENTRATIONS RADIATIVE I
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Figure 4.1 Uncertainty arises at each step irptioeess of modelling the potential climate response to altered forcing conditic
(Source: IPCC, 2007).
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Figure 4.2 Key uncertainties in climate i mp bncdrtairtyisamified
as it is propagated through each stage of the model
uncertaintieso in Schneider, 1983 (Soul

Aleatoryuncertainty refers to the wunpredict e
system, both in the real world and in model simulations. Tdusce of uncertainty is

most conspicuously associated with the impossibility of knowing the exact- socio
economic pathway human development will take, and stemming from this, how
atmospheric concentrations of carbon dioxide and other GHGs are likely tgecham
result. To address uncertainties which a
or storylines are used to represent a range of possible outcomes or sequence of events.

In terms of anthropogenic GHGs, various storylines of hustaetaldevelopment are
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used to formul ate different emi ssion sce

the climate system, epistemic uncertainty is accounted for by performing multiple
model simulations whereby the initial state of the system is adjbstagen successive
model runs.This approach allows a range of equally plausible (pdten) dissimilar
projections of future climatevhich arerepresentative of natural climate variabilitg

be generatedrFor each simulation the temm@brevolution of the system is different;
however, the underlying climate signalvhich is one of a warming climateremains

the same.

With respect to the predictability of loeatale climate,the principal sources of
uncertainty includethe model formulation (e.gthe numerical scheme, parameterization
and grid resolution), forcing scenario and natural climate variabilltg latter of which
includes internal unforced variability (i.e. initial conditions) and natural forced
variability (e.g solar forcing) Karaunet al, 2010) Van der Linden and Mitchell
(2009) list the major sources of uncertainty identified by the EU funded ENSEMBLES
project (van der Linden & Mitchell, 2009), this includes:

A The socieeconomic assumptions upon which ergiss scenarios are based
(e.g. technological development, lange and carbon taxation).

A Feedbacks from changes in the climate system on -s@oinomic systems
leading to reactionary changes in anthropogenic emissions whittirnjraffect
the projected rate of future change in the climate system.

A Translating GHG emissions into atmospheric concentrations of radiatively
active gases.

A Translating atmospheric GHG concentrations to radiative forcing.

A Uncertainties associated with climaibservations (e.g. distribution patterns of
atmospheric constituents).

A Uncertainties associated with different classes of model error, including
structural model uncertainty (stemming from basic model construction),
uncertainty in the parameterisation efibgrid scale processes (e.g. cloud
physics) and stochastic uncertainties arising from the coupling between un
resolved sulgrid scale variability and the resolved gsdale flow.

A The initial model state (e.g. ocean temperatures).

A Dynamical downscaling diween global (GCMs) and regional climate models
(RCMs) (e.g. driving boundary conditions, the choice of GCM/RCM

combination).
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A Statistical downscaling of GCM output (e.g. choice of predictors, assumption of
stationarity in empirical relationships).

4.2 Emission scenarios and atmospheric greenhouse gas concentrations

To model changes in the climate system arising from anthropogenic forcings, GCMs
must take account of future atmospheric concentrations of GHGs (4, N.O, etc.)

and aerosol emissions. THECC Special Report on Emission Scenarios (SRES)
outlines several different storylines which plot possible directions of human
development through the 2tentury (Nakicenoviet al, 2000). Each storyline is based

on various assumptions about future agjtural and laneuse practicesgemographic
change aneconomic developmenalso considered ighe possible role of carbeinee

and renewable energy resources. These narratives are the basis for formulating different
emission scenariogach of the SREStorylines of futuredevelopment of which there

are 40- can be related to four preliminary marker scenarios; Al, A2, B1 and B2 (Box
4.1).

Al. The Al storyline and scenario family describes a future world of very rapid economic growth,|global
populationthat peaks in migentury and declines thereafter, and the rapid introduction of new and more
efficient technologies. Major underlying themes are convergence among regions, capacity building and
increased cultural and social interactions, with a substaetiuction in regional differences in per capita
income. The Al scenario family develops into three groups that describe alternative directjons of
technological change in the energy system. The three Al groups are distinguished by their technological
emphasis: fossil intensive (A1FI1), nefossil energy sources (A1T), or a balance across all sources (A1B)
(where balanced is defined as not relying too heavily on one particular energy source, on the assumption
that similar improvement rates apply to all enesupply and endse technologies).

A2. The A2 storyline and scenario family describes a very heterogeneous world. The underlying theme is
selfreliance and preservation of local identities. Fertility patterns across regions converge very [slowly,
which results in continuously increasing population. Economic development is primarily regipnally
oriented and per capita economic growth and technological change more fragmented and slower than
other storylines.

B1. The B1 storyline and scenario family descsilbeconvergent world with the same global populatjon,
that peaks in migdentury and declines thereafter, as in the Al storyline, but with rapid charlge in
economic structures toward a service and information economy, with reductions in material intehpity an
the introduction of clean and resoweafficient technologies. The emphasis is on global solutions to
economic, social and environmental sustainability, including improved equity, but without addjtional
climate initiatives.

B2. The B2 storyline and scario family describes a world in which the emphasis is on local solutiops to

economic, social and environmental sustainability. It is a world with continuously increasing |global
population, at a rate lower than A2, intermediate levels of economic deveibpanel less rapid and
more diverse technological change than in the Al and B1 storylines. While the scenario is also priented
towards environmental protection and social equity, it focuses on local and regional levels.

Box4.1The four SRES scenario o6famethli20(06 (1| PCC,
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As highlighted byNew & Hulme (2000) te four maker scenarios accourfbr
approximately 880% of the range in future emissions. The uncertainties associated
with futureemission pathways stem from assumptions made about the underlying socio
economic drivers and the means by which future emissions are quantified using each
narrative. Depending on the scenario considered, atmospheric concentrations of CO
vary significantly ranging from 540 ppmv to 970 ppmv by 2100 (IPCC, 2007a)ych
greaterthan present day~391 ppmv) or prendustrial levels (~280 ppmv).

Emission scenarios describe changes in atmospheric GHGs for a range of plausible
futures; however, it is esséaity impossible to provide scenarios which cover all
eventualitiesIn this respecttiis possible that a scenario never considered may come to
pass.Consequentlyevenat this initial stage, if all scenarios were to be explored in the
construction of loal scale climate projections, a significant level of uncertainty would
remain (Foley, 2010a). The results from model simulations presented in the IPCC
Fourth Assessment Report (AR4) (2007a) suggest that the dominant factor explaining
the spread in climatprojections is the emission scenario used. The projections indicate
that it is generally during the latter half of the current century that the emission scenario
has a discernible influence on the model response; thus, uncertainty introduced by way

of theemission scenario is to a certain extent dependent on the time scales considered.

Uncertainty associated with future GHG emissions is further compounded when
translating the SRES scenarios into atmospheoiocentrations of radiatively active
gases. Thissidue to dficiencies in our understanding of the natural sources and sinks
of eachGHG and the impact climatic feedbacks may have on them. For exagigibal

models of the coupled climat@arbon system indicate that atmospheric warming is
likely to reduce the capacity of terrestrial and marine systems to absorb carbon dioxide
(Cox et al, 2000; Dufresneet al, 2002; Friedlingsteiret al, 2006). An inomplete
knowledge of the behaviour, spatial distribution and lifespan of GHGs in the
atmosphere also contributes to uncertainties in biogeochemical cycles and estimates of

futureradiative forcing.

It is intended that four new scenarios of anthropogeadtative forcing, known as
representative concentration pathways (RCPs), will replace the current SRES emission
scenariogMoss et al, 2009; van Vuureret al, 2009; Inman, 2011). Each pathway
outlines changes in themEawmhaswmaahd at i v
2.6 W m? arising from different soci@conomic and technological development

scenarios. The range covered by the RCPs is wider than previously considered in IPCC
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reports (Inman, 2011); for exampléhey include a scenariolMAGE 2.6) which
projects that the worlddés emissions wil.|l
negative thereafter. In addition, the most warming intensive sceMBES$AGE 8.5)
suggests that atmosphegarbon dioxide would rise above 1,300 ppm WY@ The

RCPs are the basis for the most recent climate model experiments, the results of which
will inform the next IPCC assessment report (ARS).

4.3 Climate sensitivity and radiative forcing

There are various uncertainties associated with our understagd o f how t he
radiative balance may change in response to an increase in atmospheric GHGs and other
radiative forcings the most prominent of which include anthropogenic aerosols (e.g.
sulphate, black carbon) and stratospheric ozone. Whilsffdetseof increasing C&are
generally well understood, the influence which other GHGs and aerosols may have is
not. It is uncertain what the dominant effect of aerosols is likely to be; this refers both to
their role in cloud formation and the direct ughce they have on the absorption and
scattering of solar radiation. Loeb a®ili (2010) indicate that radiative forcing by
aerosols is the largest uncertainty in anthropogenic radiative forcing of the global
climate. Uncertainty also stems from how warmmegated feedbacks initiated in the
climate system may act to amplify or dampen changes in the radiative balance (e.g. a

reduction in the Eart hidecapg)l bedo resul t i n¢

Even if future concentrations of atmospheric GHGs were knowd, Gould be
translated into an exact corresponding change in the radiative balance, a comsiderabl
amount of uncertainty in the climate response would remain. Climate sensitivity is a
measure of how responsive the climate system is to a change in fétréindefined by

Roe and Baker € 2duilbrium ch&argé )n glabal and tarimual mean
surface air temperature, T, due to an increment in downward radiative flux, Rf, that
would result from sustained doubling of atmospheric, ©@er its preindustiial value

of 280 ppm 2xC®~560 ppm)o. Assuming the cli mat
of forcinga& (~3.7Wm?) (IPCC, 2007a) consistent with a doubling of atmospheric
CO:- 34 is the resultant change in the globally averaged surfatenarerature when

the system reaches its new equilibrium state. The sensitivity of the climate system to

this forcing is therefore:

1 34 T3&
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Based on the equation above, the anthropogenic contribution to radiative forcing can be
guantified as a change ithe globally averaged surface air temperature response.
Understanding and quantifying the climate sensitivity, including the role of various
feedbacks (e.g. cloud, i@bedo and water vapg and interactions which may dampen

or amplify theeffects of climateforcing is critical when modelling future changes in the
climate systemAccording to Cox and Stephenson (2007)ntate sensitivity is the
largest source of uncertainty in projections of future clinmateime scalebeyond a

few decades. Given thahe magnitude of model projected changes in climate are
strongly related to the responsivity of the climate system, there is an onus on the
scientific community to quantify, and where possible reduce uncertainty iolithate

response.

On the basis of avable evidence the IPCC AR4 (2007a) suggests a climate sensitivity

of ~3eC for a nor mal di stri buti4arb,e Cwi(tsh -
95% probability). For a lognormal distribution the climate sensitivity is estimated to be

between24 C and 4. 6eC (5 to 95% probability)
it is 1 mpossible to rule out higher wvalu

limit is very likely to begreatert han 1. 5eC (1 PCC, 2007 a; |
Knutti et al, 2008). Knutti and Hegerl (2008) reviewed the current scientific
understanding of climate sensitivithased on the various studies they considered

which spanned different timescales and methodological approachles authors

concludedthatseni t i vity is within thed4dgke@€rally

Estimates of the climate sensitivity have been obtained through an examination of
trends found in instrumental records of global temperature (~150 ydé@®aten,
2007; Knutti & Hegerl, 2008. The observed climate response to solar cycles and
volcanic activity has also been used to investigate the climate sensfimibate model
experiments and the investigation of paleoclimatological records provide two additional
lines of inquiry inb the response of the climate system to a change in forcing (Raiséanen,
2007; Foley, 2010b)Whilst dl climate models are based on the same immutable
physical laws as they variously differ with respect to their design, structure, and
parameterization, asell as how important climatic processes, feedback mechanisms
and system interactions are represented, the sensitivity of individual models to
perturbed forcingconditions differs alsa As a result the climate response can be
explored by analysing the outppfrom a multimodel ensembldMME) of climate

simulations (e.gYokohataet al, 2008). For exampleestimates of sensitivity based on
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an 18 model ensemble are reported in the IPCC AR4 (208imailarly, the climate
sensitivity may be investigated using perturbeephysics approachwhereby the
parameters of the same model are altered between successive modBiamiret @l,

2005; Stainforthet al, 2005). This approach is based on sampling those parameters
(within their estimated uncertainty ranges) whictiuence the simulatioof key system
processes(Rougier et al, 2009). Although the members of @erturbedphysics
ensemble (PPE) share the samparent model (with the same basic structure), the
responsiveness of the model 6s paramet er !
numerous permutations of the same model witthely varyingdegrees otensitivity
(Raisanen, 20076tainforthet al (2005) report esults from theclimateprediction.net
experiment- a perturbed model experiment consisting of over 2000 simulations.
According toStainforthet al (2005) dimate sensitivities were found to range fréems
than 2eC t o;onmolrye 4.hZ2a% dfletChe simul ations
found to cl ust e rtala(2005) evdluatdd. tlelgnatepredictioa.net
ensemble using observations of present day climate and found that the climate
sensitivity was at a best estirma®.32 C, rahged between 22@5" percentile)and

6.8 95" percentile).

Paleoclimate data from sources including-eoees and speleothermsused as proxy
records for changes in the global climateave been employed to explore the response

of the climate system to changes in forcing through geological time. A studgdiye

et al (2009) which consideredchanges in climate ovethe Palaeoceii&ocene
Thermal Maximum (circa. 55 million years agogluring which the planet warmed by
bet we e n 9 B-@ddndahat dtmospheric carbon dioxide increased during the main
event by less than ~70% (relative to-prent levels). Based on the curtgrdccepted
values for climate sensitivity, thisriseing®an only explain betw
of the warming inferred from proxy data. The study concludes that, in addition to direct
CQO, forcing, other processes and/or feedbacks that are as of yet unknown must have
caused a significant portion of the warmiexperienced during the Palaeoddbecene
Thermal Maximum- suggesting that the climate sensitivity may be greater than
currently estimated. A study by Schmittnet al (2011) combined temperature
reconstructions of the Last Glacial Maximum (circa 20,068ry ago) with the output

from climate model simulation® explore the climate sensitivity. In contrast to the
generally accepted ranggheir study findings suggested that sensitivity may be much
lower than stated in the 2007 IPCC report¢2@3 a s dianhle’e Gone.6¢ Gs the

66% probability range)As highlighted by Foley (2010a) much research is now being
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undertaken to try and validate the sensitivity of climate models using paleoclimate data
(e.g. Edwardet al, 2007).

4.4 Climate predictability

The degree to which we can predict the climate response to a change in forcing is
limited by our incomplete knowledge the global climate system and the simplifying
assumptions necessary to model a systeits@omplexity. Climate models provide a
threedimensional, physicallpased mathematical representation of the structure and
behaviour of the climate systemegpite their highly complex nature, these models
remain a simplified representation of reality, based on differing assumptions about the
physical processes, interactions and feedback mechanisms which underpin the workings

of the true system.

With respect to the climate predictability, uncertainty is introduced by way of the model
formulation (e.g. physics, parameterization schemes, paramataes, numerical
algorithms, horizontal and vertical resolution), unforced climate variability and the
requirement to approximate important syriid-scale processes. The model resolution
and parameterizations usedalong with thenecessityof omitting some processes
entirely - is required in order to balance the dynamic nature of the climate system and
the model complexity against the required runtime, the current limitations of computing
resources and our incomplete knowledge of the true system. Aagaod@iorgi (2005)
model configuration provides a dominant contribution to the uncertainty cascade, with
almost half of the overall range in the IPCC projections of global temperature change

attributed to this factor alone.

Although adequate to capturede scale variations in climate, the coarse resolution at
which GCMs are runmean they fail to explicitly resolve important sghd scale
processese(g. processes associated with convective cloud formation and precipitation
which must be represented paretrically. As demonstrated by Seni@®9), omitting
certain processes order toreduce the model complexity as an alternative to
representing them parametrically can have a significant impact otfie model
performance. Senior (1998) foumdarked differences in the response of lasgale
circulation and surface temperature when a scheme with interactive cloud radiative
properties was included (rather than omitted) in runs of the UK Meteorological ©®fice
GCM.
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Parameterization schemespresent the effect of suirid processes empirically, based

on their association with resolvalgeid-scale fieldsThe parameterization of important
physical processes (e.g. cloud migraysics) which are not explicitly resolved at the
grid-scale, leads terror in the model simulation and is one of the key sources of
uncertainty in model projection3 ¢baldi & Knutti, 2007). As the empirically derived
relationships which underpin parameterization schemes are based on present day
climate, applying them undaltered forcing conditions incurs an assumption in the
stationarity of the derived relationships. However, as the dynamical core of climate
models is based on immutable physical laws, the models provide credible estimates of
future climate change, despitlee requirement to parameterize key physical processes
(Foley, 2010b).

The climate system is an inherently dynamic, complex andinear system which, as

it evolves over time, is subject to a range of natural fluctuatiasural variability has

the @pacity to either amplify odampe the influence of both human and natural
forcings. Equally anthropogenic forcing has the capacity to disrupt natural modes of
variability and cyclical climatic processeslampening or amplifying their effects and
creating feedbacks in the system (Foley, 2010b). In this respect the ability of climate
models to simulate different naturally occurring modes of variability, and their response

to altered forcing conditions, will affect model projections of future climate

The degree to which climate models can capture natural variability is limited. Even in
the absence of anthropogenic forcing, where the climate system remains stable, large
scale modes of variability operating across timescales from the decadal (eogthN
Atlantic Oscillation) to the millennial (e.g. thermohaline circulatiennay only be
guasipredictable (Griffies & Bryan, 1997; Foley, 2010a). Men al. (2005) used a
1000yr control simulation from the ECHG AOGCM (AtmosphereOceanGeneral
CirculationModel) to evaluatemodel skill at capturing two dominant signals of natural
variability; the El Nifio-Southern OscillatiofENSO) and North Atlantic Oscillation
(NAO). It was found that the model captured the ENSO reasonably helever, tie
simulated amplitude of the ENSO signal was found to be too large, and its occurrence
too regular and frequent. With regards to the NABe model overestimated the
warming associated with the North Pacific during the high index plastidy by Bell

etal. (2000) considered the ability of B8OGCMs to simulate the variability of global
surface air temperature$he results indicated théte majority of models considered

underestimated unforced intannual temperature variations over the ocgans
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contrast they were found to have overestimated variability over land massésding
which the authors attribute to deficiencies in the land surface schemes used.

The climate response to altered forcing is related to the interaction which occurs
between th various components of the climate system (e.g. atmosphere, ocean, land
surface, cryosphere and biogeochemical cycles). A lack of knowledge regarding the
exact role of important feedbacks (e.g. water vapour/atmospheric warming, cloud
formation/radiation,jce and snow albedo), their rate of change and whether they are

linear in their response (to further climate warming) or subject to abrupt shifts leads to
uncertainty in the model projections.

Hawkins and Sutton (2007)vestigated the relative contribati which uncertainty in

the choice of GHG emission scenario, the individual model responses and the internal
unforced variability made to the total uncertainty in model projections of surface
temperature. Figure 4.3 indicates that over the first two deaafdhe 2¥ century the
dominant sources of uncertainty are natural variability and the predictability of the
climate response. Over longer time scales, particularly past theemidry, the greatest
contribution to uncertainty stems from the climatedeloand emission scenario.
Hawkins and Sutton (2007) indicate that the reduction in the contribution by natural
variability is due to a strengthening of the climate change signal. In contrast to global
projections (Figure 4.3(a)), natural variability is shown to have a greateencBuat a

regional scale (Figure 4.3(b)).

a Global, decadal mean surface air temperature b British Isles, decadal mean surface air temperature
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Figure 4.3 The relative contribution of each source of uncertainty to decadal mean surface temperature projectionshehc
fractional uncertainty (the 90% confidence level divided by the mean prediaiof@) fthe global mean, relative to the warmii
from the 19712000 mean, and (b) the British Isles mean, relative to the warming from the2D@0lmean (Source: Hawkins
Sutton, 2007). The plots are constructed using the Coupled Model Intercomparigmt [pirase 3 (CMIP3) multimodel air
temperature projections also used in the IPCC AR4 (2007).

Owing to a lack of convergence in the projections from individual climate models, it is

argued that considering the output from a single model in isolatey lead to the
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suppression of critical uncertainti@s estimates of future climate chan@fdulme &
Carter, 1999; Wilby & Harris, 2006)With respect to this,here are a number of
approaches which can be takenloth explore the uncertainty spa@nd quantify
uncertainty in the projected climate response. Sampling model uncertainty typically
involves employing a multnodel ensemble (MME) and/or, as described above,
running the same model numerous times with a different internal structure,

configuration @ parameterization scheme (perturbed physics ensemble (PPE)).

To compare the performance of different GCMs a number of studieduding the
Atmospheric Model Intercomparison Project (AMIP), the Arctic Ocean Model
Intercomparison Project (AOMIP) and tl&oupled Model Intercomparison Project
(CMIP) - have been undertakefhe findings from hese studies suggest that)
different models reproduce different components of the climate system with varying
degrees of successwith no single model being the ioskilful at reproducing all
aspects of observed system behaviour; and (b) the averaging of ensembles provides a
better fit to observations than any one individual model in isolation (Lambert & Boer,
2001).

4.5 Uncertainty in the development of high redation climate scenarios

GCMs can only Ppraoasvihde iat @ébpoatdati on of
continentalscale temperature and rainfall patterns may change in response to
anthropogenic forcingAs a result of thecoarse spatial resolution at whi6GGCM are

run, their data cannot be applied directly in local/regional scale impact studies.
Consequently, in order to generate climdéawhich is commensurate with the scales
required for conducting impact assessments, the output from GCM experimeshteem

firstly subjected to some form of downscaling (Didieto & Wilby, 2005).

The limitations and underlying assumptions implicit in downscaling climate scenarios
introduces an additional level of uncertainty to local or regional scale estimates of
climate change (Rowell, 2006). Dynamically downscaled scenarios are subject to many
of the same uncertainties associated with GCMs (e.g. model configuration,
parameterization, grid resolution and natural variability); however, regional models
have the added complicating factor that any bias or error present in the driving GCM is

propagatedhrough the modeléRaisaneret al, 2004).When uncertainties in both the
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nested regional and driving GCM interact, it may lead to the amplification of
uncertainty in the downscaled data; conversely, it may also result in error cancellation,
whereby theerrors in the downscaling and parent model cancel each other out,
producing a response which is consistent with the observations without the underling
mechanisms necessarily being corre€he uncertainty introduced to statistically
downscaledscenarios ases from a number of sources including the model choice,

predictor selection anglaining period used.

A number of European wide studies including PRUDENCE (Christegisaly 2007b),
ENSEMBLES (van der Linden and Mitchell, 2009); DEMETER (Developiref a
European Multimodel Ensemble system for seasonal to inTERannual prediction)
(Palmeret al, 2004) andSTARDEX (STARDEX Final Report, 200%)ave been used
to compare downscaling techniques and study diffesentces ofincertainty Rowell
(2006) &plored the uncertainty introduced the RCMs used to downscale temperature
and precipitation scenarios for the UK (over the lat& @intury) In the case of this
study data from PRUDENCE and the IPCC Data Distribution Centre (DCCuseas
Rowell (2006)highlights that,although it is a necessary stepgional downscaling
inevitably contributes a further source of uncertaitdythe overall uncertainty in
climate projections. The authdound that the formulation of the regional models
influenced the projected range in mean climate for theTbiK.results indicated thateh
largest source of uncertaintywhen all seasons and both variables were considered

was the formulation of the globabupled model.

In a similar study, data producedrough the EU funded ENSEMBLES project was
used to explore different sources of uncertainty, including the choice of driving GCM
and downscaling model; the study also considered efect which interannual
variability had. In accordance with thesults from its predecessor PRUDENCE
(Christenseret al. 2007b;Déquéet al, 2007, the results from ENSEMBLES (van der
Linden & Mitchell, 2009) indicated thatver the first half of the Zicenturylargescale
seasonal mean changes were largadyermined by the GCM, whilst differences
between the respective RCMs were more closely linkedataral variability Déqué

2007, 2009 van der Linden & Mitchell, 2009). The choice of RCM was shown to be
important, particularly as it was found that somedels amplified the climate change

signal whilst others tended to weaken it (van der Linden and Mitchell, 2009).

87



The results fromENSEMBLES (van der Linden & Mitchell, 2009) highlight that
uncertainties in both global and regional scale climate process#sbute to the full

range of plausible climate responses; consequemttpmprehensive sampling of both

Is needed in order to properly characterise the uncertainty space and inform the
development of robust adaptation stratedizige to temporal vart@ons in their relative
contribution to uncertainty in the regional scale response, it is argued that a greater
number of GCMs should be sampled over the latter half of the century (e.g. 2050
onwards) in contrast the RCMs should be more heavily sampledlew modelling
climate duringthe earlier half of the centurywhen conditions are closer to the present
day climate Déqué 2007; 2009van der Linden & Mitchell, 2009).

Chenet al (2011) investigated uncertainty in a hydrological impacts study which
employed climate scenarios derived using six different statistical downscaled methods
including a change factor approach and weather generator. It was found that the
uncertainty rang@riginating from the choice of 28 climate projections (seven GCMs
and threes emissions scenarios) was slightly larger than the uncertainty envelope
associated with the choice of downscaling method. Of the methods considered
regressiorbased statistical dawvecaling was found to have contributed most to the

overall downscaling uncertainty.

4.6 Uncertainty in climate impacts

When attempting to model the impacts of climate change on human and environmental
systems an additional source of unagty originates from the impact models used
represented by the final component in the chain of uncertainties (Figure 4.2). Not
unlike climate modelsthe limitations and assumptions associated with impact models
introduces uncertaintyto their outpt. One of the greatest uncertainties is the
assumption that the model remains valid under future climate conditions, of which it has

no prior experience.

Several studies have examined the relative contribution of the various stages in the
Acascadet afntuywecet o the overall unetartain
(2000) explored the influence of uncertainty on the results of an impacts study which
examined changes in flood frequency in England. Six different sources of uncertainty

were consideredncluding: the emission scenario, GCM structure, regionalization
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model (including RCM structure), hydrological model (considering both the structure
and parameter values) and the internal variability of the climate system (sampled by
applying different G® initial conditions). The results indicated that the greatest
contribution to uncertainty came from the GCM used. The authors highlight the
importance of natural variability, particularly when trying to identify clearly defined
climate change signals. Gramet al (2007a) examined the hydrological response of
the Lule River in Northern Sweden to changes in climate using the PRUDENCE dataset
(Christenseret al. 2007b) The study indicated that the choice of GCM had a greater
influence on the projecteldydrological response than the choice of emission scenario.
Similarly, when examining projected changes in three river bdscatedin Northern

and Central EuropeGrahamet al (2007b) found that the choice of GCM had a
significant influence on thprojectedhydrological response.

Wilby et al (2006) used two emission scenarios and three GCMs to investigate
uncertainty in an impact study which focused on the future availability of water
resources. The magnitude of projected changes was found to diffending on the
GCM selected. A study by Jaspetr al (2004), which examined the response of two
alpine river basins (Switzerland) to projected climate change, concluded that large
uncertainties are introduced by way of the GCMs used. The emission sogaaralso

found to have a noticeable influence on the results. The study employed 17 climate
projections derived from seven GCMs and four emission scenarios. Prudhomme and
Davies (2009a; 2009b) examined different sources of uncertainty in model projected
changes in the hydrological regime of four river catchments in the UK. The results
indicated that the GCMs were the largest source of uncertainty in the results; however,
uncertainty stemming from the downscaling method and emission scenario usedd was

asimilar magnitude, but generally less than the GCM.

In their study of climate change impacts on the hydrology of a Nordic catchment
(Chutedu-Diable, Quebec), Minvilleet al (2008) found that the choice of GCM
contributed most to the overall uncertairity the projected hydrological response
Wilby and Harris (2006) conducted a comprehensive assessment of uncertainty in
hydrological impact studiegheir study focused on low flows in the River Thames. It
was found that the hydrological model projectionsrevmost affected by uncertainty
stemming from the choice of GCM. Uncertainties due to the emission scenario and

hydrological model parameters were shown to be of lesser significance. In this study
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Wilby and Harris (2006) highlighted the benefits of adagta probabilistic framework

as a means for characterising uncertainty in the results from climate impact studies.

4.7 Managing uncertainty in climate projections

Due to the significant implications it has for policy decisions and the potential for
maladgtation to occur, addressing uncertainty in local scale projections of future
climate has become an issue of critical importance for impact assessors. Although it is
common practice, the oveeliance on a single realisation of future climatgpically

derived using a single emissions pathway and climate medehy lead to the
suppression of key uncertainties in estimates of future climate change. Hulme and
Carter (1999) go so far as to state that
policy decisions will be founded only on a partial assessment of the true risk posed by
climate change. In this respect it is important that the uncertainty space is adequately
sampled if the results from impact studies are to be used for the development of robust
adaptation responses. Thummploying a single projection of future climate is an
inappropriate strategy for conducting impact studies (Wilby & Harris, 2008).now

widely recognized that comprehensive impact assessments must address the issue of
uncetainty by employing multiple realizations of future climate a resulthere is an

onus on the climate modelling community not to produce a single deterministic account
of future climate, but rather a range of plausible climate pathways which alls rfo
consideration of the uncertainties encountered at each stage in the process of developing
regional or local scale climate projections. Indeed current research has moved somewhat
beyond this towards producing probabilistic projections of future clilased on the

output from multimodel ensembles. Advancing this approach, it is possible to attach
some weighting to the projections from individual models or ensemble members based

on their ability to capture different aspects of present day climate.

As highlighted above, an important finding of inlemparison studies like AMIP,
AOMIP and CMIP3,as well asprojects like PRUDENCEGQhristenseret al, 2007b)

and ENSEMBLES (van der Linden &itchell, 2009), is that irrespective of whether
operating at a global or regional scale, models display disparate skill levels, with some
being more proficient at capturing certain aspects of observed system behaviour when
compared with othersin additon, in any ensemble generally no single model

outperforms its competitors in all aspects of performance. For example, models which
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accurately replicate larggcale modes of circulation or different climatic regimes may
be poor at capturing extreme events m@gionaiscale forcings. It is generally
acknowledged thaby allowing the respective strengths of different models to be
combined, climate ensembles are likely to provide a more reliable estimate of future
climate change (Tebaldi & Knutti, 2007). Thushen examining the potential local
scale response to perturbed forcing it is advised that an ensemble based approach is
adopted- both as a means of incorporating uncertainties relating to the climate
predictability (i.e. to capture the spread of climatesponses) and as an
acknowledgement that tiperformance of the ensemble is likely to better than any of its
constituent ensemble membexben consideredh isolation (Buseret al, 2009). As
stated byWeigel et al. (2010), combining the output from difeaxt models is a more
pragmatic approach for addressing uncertainty and producing reliable estimates of
future changeUsing an ensemble not only allows the strengths of different models to
be exploited, it also facilitates attaching a conditional likeltho@lue to different
model outcomes. In addition it dispels the ewenfidence implicitly associated with
using a single realization of future climate (Weigeal, 2008).

Maraun et al. (2010) state thatincertainty in the modelesponse(i.e. formulaton,
parameterization, unforced variability) can be addressed by usingmudg! and/or
perturbed physics ensembléBenestad, 2004; Murphgt al, 2004; Stainforthet al,

2005; Tebaldi & Knutti, 2007. The former allows sampling of the uncertainty
asseiated with intermodel variability, whilst the latter allows for an exploration of
uncertainty associated with the internal model configuration (e.g. parameterization). As
the model parameters can be methodically reconfigured between successive runs,
perturbed physics ensembles (PPEs) allow for a more systematic sampling of
uncertainty when compared with muftiodel ensembles (MMES). In the case of the
latter, differenceswhich exist between individual models are to a certain extent
arbitrary. As a resultthe assumption that the models used in a MME are independent
from one another may not be valid (i.e. different models share similar structural
assumptions); this may lead to an oversampling of a particular region of the model
space, creating a bias in thigal ensemble and any probabilistic projections derived
from it. However, whilst the PPE may appear to offer a more systematic and less
subjective approacto addressg model uncertaintyas it is essentially the same model
which is altered between swssive runs, it cannot capture inteodel differences.

Given their highlighted shortcomings, an optimapproach whereby both the internal
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and intermodel variability could be sampledwould be to employ a muitnodel
perturbedphysics ensemble (Colkret al, 201Q Foley, 2010a).

4.8 Probabilistic projections and weighting criteria

In order for climate ensembles to be considered reliable it is important that the
performance of individual members is scrutinized ahat the methodological
approachewused to generate them are valid. A key issue when employing climate
ensembles is whether to use information about the skill of individual members under
present day climate to inform their relative contribution to the overall ensemble under
future forcing Foley, 2010b). Model weighting has been shown to improve prediction
skill and thus, when employed in a climate change context, may provide a means of
reducing uncertainty in future projectio(@/eigel et al, 2008; 2010)As outlined by
Weigelet al (2010, the criteria employed for model weighting in the past has included
an assessment of systematic bias over the control period (e.g. Giorgi & Mearns 2003;
Tebaldiet al, 2005) andmodel skill in capturing observed trends (e.g. Greenal,

2006; Hawkins& Sutton 2009; Boéet al, 2009) weighting schemes have also been
formulated usingcomposites of several other performance criteria (Murphyal,

2004).

The issue of whether to apply a weighting scheme is a particularly contentious one, not
least because it requires an assumption that model performance is both time and state
invariant. It also requires that a robust methodological approach for evaluhéng t
performance of competing models is employed. This is an issue which Végigel

(2010) highlights as a critical weakness in weighting schemes, and is one underlined by
the fact that no consensus regarding what constitutes best practice in thisriametlycu
exists. The principle argument in favour of model weighting is that difficult to

expect a model which has little or no skill under current conditions to be a reliable
estimator of future climate t he conver se o fperformanse withs t h
respect to current day climate is in no way a guarantee of its validity under altered
forcing, and thus each ensemble member should be considered equally plausible.
Weigel et al. (2010) state thattimay be more pragmatic to simply omit quty
performing models from the ensemble which, in some cases may be justifiable;
however, given the unpredictability of the climate system and our dearth of knowledge

regarding its true workings particularly under altered forcing conditionst may be
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better to err on the side of caution and include a larger number of models which exhibit
disparate skill levels, but which may contain the true outcome, rather than be over
confident in a smaller number of models which may (fatey, 2010a)In addition,as

it effectively constrains the uncertainty space, omitting ensemble members on the basis
of performance may lead to an underestimation of uncertainty. Based on the points
outlined abovemodel weighting may be considered a means of reducing uncertainty,

conversely may simply add an additional layer of uncertainty which must be explored.

The generation of multnodel ensembles and the development of methods like the
reliability ensemble averaging (REA) framework (Giorgi & Mearns, 2002; 2003), are
part of a wider undertaking by the modelling community to produce probabilistic
projections of future climate; howevern® of the impediments to the widespread
application of this approach is the uncertainty surrounding which techniques are most
suitable for ombining model simulations (Knutit al, 2010). As they are more
appropriate for expressing uncertainty, andaglicableto combining the information

from individual ensemble members, Bayesian methods have typically been employed to
produce probabiltgc projections based on ensemble data (Dessai & Hulme, 2004).
Among the first to employ a Bayesian framework was Tel&ldi (2005} in this case

the authorproduced weighted probability distributions of changes in mean temperature
over 22 different (Giorgi) regions of the global landma$sbaldi et al (2005)
employed the criteria afodelbias and convergence from the REA method proposed
by Giorgi and Mears (2002). This method assigns a weighting to each ensemble
member based on its ability to simulate present day climate; an additional measure
which considers model convergence under perturbed forcing is also used. Despite its
widespread applicatiorthe REA method has been the subject of some criticidra

main focus of which has been the incorporation of ¢bevergence criterionkor
example Xu et al (2010)state this ternartificially narrows the probability distribution

of projected change. In adiih, it is argued that using the criterion may not be valid
given that there is no observed data with which to benchmark model performance;
furthermore it assumes independence in the ensemble memberst Xu(2010)
updated the REA method by omitting thenvergence criterion and including
supplementary measures for quantifying model performancaddition the approach
proposedby Xu et al (2010) considers model performance with respectrtoltiple

climate variables.
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As outlined by Buseet al, (20®), the methodological framework set out by Tebaidi

al. (2005) has been generalized and advanced by others (e.g. ute2007; Min &
Hense, 2007Junet al, 2008;Buseret al, 2009 Smithet al, 2009. The framework

has also been applied in a statistical downscaling context by Hashahi(2009). In

this case a Bayesian weighted muitbdel ensemble approach was used to combine the
precipitation scenarigsroducedrom three different statistical model

Lopezet al (2006) compared the Bayesian framework of Tebatdal (2005) to the
approach devised by Alleet al (2003)- which is based on the detection of climate
change signals (Alleet al, 200Q 2003; Stott & Kettleborough, 2002). It was faln

that the underlying assumptions of both methods resulted in the predicted distributions
being significantly different from one anothevlin et al (2007) applied Bayesian
model averaging (BMA) to produce weighted distributions of temperature change for
different continental regions. Bayes factors and the expectai@amization algorithm

were compared as methods for estimating the weighting facldns study also
examined differences in the projections from the weighted (derived using BMA) and
unweighted (arithmetic) mean ensemble. Minal (2007) found that that the BMA
approach was sensitive to the training period uysedaddition it suggeste greater
increases in mean temperature and produced broader distributions when compared to
the unweighted mean ensemble. Greetngl (2005) employed a Bayesian linear model

to estimate probability distribution functions adgional temperature changeing a

multi-model ensemble of AOGCMs.

As discussed aboydhe use of weighted probabilistic methods requires that some
criteriaareused toassign a measure of reliability to the output from competing models
The REA approach, along with Bay&tor and expectatiemaximization algorithm
referred to above, are indicative of the methods used to formulate model weights.
Approaches to model evaluation have predominantly focused on how well models
reproduce different aspects of observed climatg. (@mean and higher order statistics,
inter-annual/decadal variability and geographical patterns) and system behaviour (e.g.
different mode of largscale circulation, North Atlantic Oscillation index). Murpby

al. (2004)devisedthe climate predictiomidex (CPI) which weighted GCMs depending

on how well they reproduced various statistical descriptors of prdsgntlimate. The
index was formulated based on model performance at simulating multiple climate
variables. Wilby and Harris (2006) employed Bl criteria (Murphyet al, 2004) to

weight GCMs used in a catchment scale impacts assessment. The weighting scheme is
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referred to as an impact relevant climate prediction index (IRCPI). In this case the index
was estimatedbased on the skill of each GCBt reproducing variables considered

important for capturing low flows in the study catchment (Thames, UK).

Brekkeet al. (2008) employed six metrics to quantify (GCM) model skill at capturing

the observed climatology of Northern California. In this stadyulttmodel ensemble
consisting of 75 ensemble membergenerated by 17 AOGCMswas assessed. To
formulate the model weights three different evaluation criteria were employed. The first
was based on the model 0s a byofthetstyudyegon; r e pr
the second examined model performance at capturing egobéd climatic processes.

The third criterion was based on how well each model described the link between the
local scale climate response and global scale forcings (i.eotelections). Thysn

order for the scenarios to be considered reljahke models used tgeneratehem had

to capture the connection between global and local stiat@te processesthey also

had to simulate these processes witiigh degree of skill.

49 ENSEMBLES: weighting scheme

As part of the ENSEMBLES project (van der Linden & Mitchell, 2009) a performance
based weighting system was developed and subsequentployed to produce
probabilistic projections of future climatdnange for Europesingthe ENSEMBLES

dataset. The work carried out for this is reported in a special editioClimate

Re s e ar c h Regional iCtimateMo dfe | evaluat i dwlumedd wei
2010). A holistic approach was taken when formulatirey ENSEMBLES weighting
scheme whereby each group involved consideredntrasting aspect of model

performance and explored the usaliffierentevaluation metrics.

Coppola et al (2010) proposed a weighting system for RCMs based on model
performance asimulating the suisCM-grid scale mesoscale climate signal (i.e. the
signal not explicitly resolved by low resolution climate model§he signal is
representative of the valaelded by the running GCM data throushigher resolution
dynamical model, ani indicative of how well th&kCM capture the influence okub

grid scale featuref.g. coastlines, topographyor this theperformance of each ERA

40 driven RCM was assessed on a seasonal basis and both temperature and precipitation

were consideredsi ve metrics were used to quantif
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observed spatial patterns of variability in mesoscale signals for each variable
independently. It was found that, when evaluated using the same performance criteria,
the weighted mean samble performed better than the unweighted mean ensemble

particularly over topographically complex regions (e.g. Alpine region).

Kjellstrom et al (2010) assessed the ability of 16 RCMwhen run using ERAIO
boundary conditions to reproduce daily rad monthly statistics of temperature and
precipitation for the period 1962000. The degree to which the empirical probability
distribution function of the observations matched that of the simulated series was
employed as a quantitative measure of modgll dkjellstrom et al. (2010) found that

the weighted ensemble was a slightly better approximation to the observations than the
corresponding unweighted ensemble for most regions, variables and seasons. Lenderink
(2010) devised a weighting system based loow well the RCMs simulated
precipitation extremes. For this the"9®9.9" and 99.98 percentiles of daily modelled
precipitation were compared on a seasonal basis with {08B% dataset. In their
contribution to the ENSEMBLE weighting scheiperenz anl Jacob (2010) considered
RCM (ERA40 driven) skill at simulating observed linear trends in annual mean
temperature ove8 different European regions faolne period 196200Q Skill scores

were assigned to individual RCMs based on differences betalesarved and model

simulated trends.

Also included in the overall ENSEMBLES weighting system are the results from
SanchezGomezet al (2009) who assessed RCM performance at simulating-taaje
circulation patternsThe models were evaluated based ow aell they reproduced the
frequency of occurrence, composite pattern, persistence, interannual variability and
long-term trends in the occurrence of different circulation types. In additadankaet

al. (unpublished) provided ensemble weights formuldi@sed on how well each model
reproduced the annual cycle in both temperature and precipi(&jlistrom & Giorgi,

2010)

Christenseret al (2010) investigated how the model weights derived from each of the
six studies outlined above could be combirieto a single comprehensive weighting
system. The authors investigated the effects of differently aggregating the individual
skill scores to produce the overall model weights; it was found that the final weights
were sensitive to the aggregation methedds Crucially, this study indicated that using

the formulated weights did not bring about any improvement above using the
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unweighted mean ensemble. One of the reasons proposed for this is that mean biases
were not explicitly considered by any of the pemiance criteria employed. The
findings of Christenseat al (2010) are generally in keeping with the results from other
studies (e.g. Wilby & Harris, 2006; Fowler & Ekstrom, 2009; Knettial, 2010).
Although the weighting scheme appears to add litlleerin terms of simulating current

day climate, it is argued that, as the weights have been objectively formulated, the
weighted mean ensemble may still provide a more reliable estimate of future climate
when compared to the unweighted mean ensemblewfere an equal weighting is
applied).In this respect employing model weights may be considered a more defensible
approach, despite appearing to have little influence on the overall outcome.

Déqué and Somot (2010) employed the weighting scheme deriveitheforegional
models used in ENSEMBLES to produce probabilistic climate projections for three
European cities (Budapest, Lisbon and Dublin). Here the same RCMs were employed to
dynamically downscale GCM simulatigrnthe resulting datasets were combined using
the ENSEMBLES weighting scheme outlined above. Over the control period-(1961
1990) there was no evidence that the use of the weights produced a weighted probability
distribution function PDF which was closer tdahe observedPDF than if equal or
randomly drawn weights were use®dditionally, it was found thairrespective of the
model weighting employed (equal, random or quantitatively derived), a similar response
to future climate forcing was elicitedéqué ad Somot (2010)state that as the
ENSEMBLES weights are based on a physical and fpulpose approactihey are

more robust than equal weightgven if the unweighted and weighted mean ensemble

return similar results.

4.10Conclusion

Our ability to traslate theorized storylines of future soe€iconomic development into
alterations in the elemental composition of the atmosphere and changes in local or
regional climate is | imited by both what
the workings, temp@l evolution and sensitivity of the climate system. When
simulating the climate response to a change in forcing, uncertainty is introduced by way
of the simplifications imposed on the climate system in order to make it solvable with

respect to current cqmting power and our incomplete knowledge of system processes.
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Uncertainty in climate models stems principally from their coarse resolution, internal
model configuration, and critically the requirement to approximate importargrgiib

scale processes. &mecessity to parameterikey physical processes, not resolvable at

the gridscale, incurs an assumption in the validity of empirically derived relationships
under perturbed forcingn addition, he predictability of the climate system is limited

by the chaotic nature of the system itself, both in the real world and in model
simulations. It is also limited by our incomplete understanding of the role feedback
mechanisms may have and how such feedbacks are represented in climate models; this
Is of particulr importance with respect to their interaction with natural modes of

variability and cyclical climate processes.

The principal means of addressing uncertainty in climate models is through the use of
multi-model or perturbed physics ensembles, both of vhiow key uncertainties to

be sampled when estimating the climate response. Different methods for combining the
information contained in such ensembles to produce probabilistic projections of future
change exist. One of the foremost critical issues @ssalcwith this is whether to apply
some weighting criteria to the ensemble membersrder toconstrain their relative
contribution to the aggregated ensemble response. Typically the weighting criteria used
is based on the ability of each respective piide member to capture some aspect of
observed climate behaviour. Whilst a mod
not be indicative of its skill when applied under altered forcing conditions, it can
equally be said that a model which is unablsitoulate past behaviour is also likely to

be less reliable when used to model future climate. Given these conflicting viewpoints
the application of a weighting scheme comes with the caveat that a robust approach for

guantifying model skill issdopted

As highlighted above the uncertainty which pervades climate change impact studies is
introduced not only by the predictability of the largmale climate response, but also
through the emission scenario, regionalization technique and impact model usesl. Figur
4.2 illustrates how uncertainty is accumulated or amplified as it passes through each
link in the chain, underlining the importance of independently sampling the
uncertainties present at each stage. The following chapter critically examines the
various nethodological approaches employed for downscaling coarse scale GCM data;
the chapter also provides an outline of the various uncertainties associated with

downscalingclimate dataand how they can be addressed.
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Chapter 5

Approachesto statistical and dynamical downscaling

5.1 Climate modelling and downscaling

Understanding how the Earthdds climate ma
atmospheric GHGs, and the possiliigacts any such changes may have on human and
environmental systems, is critical for developing robust adaptation strategies and
formulating appropriate policy decisions. Global climate models (GCMs) are the
primary tool used for studying past variationsit h e E a r, andavesemmoyedd ma t e
in a climate change context to explore the potential response of the climate system to a
change in forcing. These models are thilemensional numerical representations of the
structure and behaviour of the globahwte systemtheydescribe the dynamics of the
Earthdés oceans and atmosphere in a phys
complex workings and interactions of the various-systemswhich comprisethe

global climate system. Climate models areeg knstrument for exploring the possible
evolutionary pathways of thé a r tclimats under prescribed anthropogenic forcings

as sucltheir projections provide the primary source of information used for conducting

impact studies and developing climate i@ adaptation responses.

GCMs describe climate behaviour by integrating a range of chemical, biological and
fluid-dynamical equations which are either derived directly from physical laws (e.g.
Newton's first law of motion) or are formulated by more emspirmeans. There are
both atmospheric GCMs (AGCMs) and ocean GCMs (OGCMs); both of which can be
coupled to form an atmospheneean GCM (AOGCM) which, along with the addition

of various submodels (e.g. seme, land model and carbon cycle modéd;ms the
basisof a modelwhich provides a moreompleterepresentation of the climate system
Modelling future climate based on a global domain is necessamder toensure that

the interactions between different climate regimes are handled correctly. Breviou
studies have shown that GCMs have the capability to simulate thestzatpefeatures

and dynamics of the climate system (e.g. general circulation of the oceans and
atmosphere, subontinental patterns of temperature and precipitation); for example
somehave been shown to be skillful at capturing important climaticdefections

such as those associated with ENSE Nifno-Southern Oscillation)Leung et al,
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1999). Despite their recognized skill at a global scale, the coarse resolution at which
they operate restricts their capacity to provide a realistic description of both the
workings and condition of the system at finer spatial scales (Grotch & MacCracken,
1991; Zorita & Von Storch, 1999). This aspect of GCMs severely limits the direct use
of their output in regional/local scale impact applicatiofts which higher resolution

data isrequired (Giorgi & Mearns, 1991; Wilby & Wigley 1997, McGuifi¢ al, 1999;

Wilby et al, 1999; Giorgiet al 2001; Prudhommet al, 2002).

GCMs are currently ruat a relatively coarse spatial resolutiotypically of the order

of 300500 km. Operating at this scale is necessary given the constraints of currently
available computing power and the highly dynamic nature of the climate system
However, at this resoltion the influence of important sedyrid scale featureswhich

have a strong bearing othe local climate cannot be explicitlyaccounted far
Considering local scale forcings in any plausible future scenario is particularly
important where laricurface caditions significantly influence the character of
regional and local scale climate. Thisparticularly true for regions which present
highly heterogeneous environments such as coastal zones, regions with complex
topographies and areas with diverse laed types (Wilbyet al, 2004). Furthermore

their coarse resolution and limited physics prohibits them from explicgt$plving
important climatigprocesses which occur at a sgifid scale level (e.g. cloud formation,
evaporation, convective rainfall) many of which are either omitted frothe model
simulations orare representedising parameterization schemeBhysical processes
which occur at the sufrid level strongly affect local climate at the scales most relevant
to the ecological and human environmegnsequentlyheyare often those of greatest

importanceo impactassessor@Cubasckhet al, 1996; Zorita & von Storch, 1999).

Given that the global climate is primarily the response of the climate system to large
scalefactors( e . g . di fferences in solar feeaci ng,
distribution, orographic features) (Zorita & von Storch, 1999), it is rational to expect
that GCMswhich are proficient at capturing global scale processag not perfom

well at simulating regional climate which is primarily the response of the climate
system to regional scale forcings and climate processes which cannot be resolved based
on the grid resolutions currently employed. Ideally the climate scenarios used to drive
impact assessments should refleabgrid scale processes and capture locally specific
climate details lacking in the output from GCMs. Reflecting the heterogenettyeof

subGCM grid scale climate necessitates 0d
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to the finer spatial scales esfant for conducting impact studies. This may be to higher
resolution grids or point specific l|ocat
instrumental stations. Downscaling is based on the principle that local or regional
climate is primarily deterined by climate conditions on a much larger scale (\Weby

al., 2004). Developing models with which to capture this relationship allows changes in
localscale variables to be explored using coarse resolution GCM projections.

5.2 A review of different downscaling techniques

Downscaling methods can be broadly divided into two categories: empirical/statistical
downscaling and dynamical techniques. Empirical downscaling is based on developing
statistical models which describe the relationship between the Erale climate or
atmospheric state (e.g. circulation patterns) and the regiot@atalscale response (e.g.
point/grid scale precipitation); dynamical downscaling is conducted using limited area
modelswhich employ the same or similar numerical schemed parameterizatiorss

larger scale GCMsDownscaling methods, as reviewed by Wilby and Wigley (1997),
Wilby et al. (2004), Mearnst al. (2003) and Fowleet al (2007) can be divided into

four general categories: dynamical downscaling (Meatnal, 1995; Teutschbein &
Seibert, 2010; Rummukainen, 2010), regression based methods (Hewitson & Crane,
1996; Wilbyet al., 1999), weather classification (Yarnal, 2001) and stochastic weather
generators (Richardson, 1981; Racstal. 1991; Semenov & Barrow, 199Corte

Real & Hu, 1999; Kilshyet al, 2007%.

5.2.1 Dynamical Dowscaling

Dynamical downscaling typically involves embedding a higher resolution regional
climate model (RCM) within a coarse resolution global model, whettee nested
model is driven by lateral boundary conditions from the parent GCM. This is done so
with the aim of explicitly accounting for regional scale forcin@sg. complex
topographical features and heterogeneous land camdrmesoscale climate preses

not adequately captured Hgrgescale models (Giorgi & Mearns, 1991; Giorgi &
Mearns, 1999; Rummukainen, 2010).

RCMs are similar to GCMs in that they both rely on the same phydigamical

description of fundamental climate procesdeswever, RCN are run over a limited
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area at a much higher resolution. Over the domain on which the model is focused the
physical dynamics of the atmosphere are simulated using horizontal grids with a
resolution typically of the order of 280 km. Information on largescale climate
variables (e.g. pressure, vorticity, temperature, humidity etc.) are provided to the
regional climate model from thdriving GCM. This data is supplied as lateral boundary
conditions and processed a physically consistent mann&r producemore spatially
detailed climate simulations. Along with regional climate models there are two further
approaches to dynamical downscaling (Rummukainen, 2010). The first employs a high
resolution atmospheric global model; the second uses a global moted wiriable
resolution grid. Here the resolution of the computational grid is increased over a
particular area of the global domaifhe computationakcost of this approach is
currently much greater than that of a GCpohibiting its widespread applicati in
climate studies (Rummukainen, 2010).

A key benefit of employing RCMs is that they are capable of resolving important sub
GCM-grid scale processes dynamically; thus, as highlighted by Fewlat (2007),

RCMs are able to explicitly model importantgional climate features such as
orographic enhancement, local winds and extreme weather events (Murphy, 1999; Frei
et al, 2003; Fowleret al, 2005; Freiet al, 2006). Freiet al. (2003) assessed the
performance of five RCMs used to simulate preciptatover the European Alps.
Despite intermodel differences being apparent, the models wieosvn to becapable of
skillfully simulating the mesoscale features of heavy precipitation over an area with a
complex topography. Schmiddt al. (2006) state thahe ability of RCMs to incorporate
information about regional landse and topography makes dynamical downscaling

more skilful than statistical methods over areas of complex terrain.

The influence which sulrid scale topographic features (e.g. orograjbicing, rain
shadow effects) can have on local climate means that regional climate signals may be
significantly different from those simulated by GCM#&ighlighting the added benefit

of employing dynamicadownscaling(Leung et al, 2004; Fowleret al, 2007). In
addition, the ability of RCMs to simulate mesoscale precipitation processes in a
physically explicit manner mearhey potentially provide more plausible scenarios of

future change in extremmainfall and regional scale variability (Fowlet al., 2007).

Despite their high resolution some climate processes (e.g. cloud formation) will still
occur on too fine a spatial scale to be explicitly resolved and must be represented

parametrically (i.e. statistically approximated). Bighlightedby Freiet al. (2003) the
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requirement to represent some climate processtéss mannecan lead to intemodel
differences in projections of futurelimate, and introduces uncertainty to the model
simulations In addition, the resolution at whichORIs are currently run means their
output may still lack the detail required for conducting local scale impact stuities
necessitating the application of statisticaéthods One of the key assumptions of
dynamical downscaling, and climate modellingne generallyis that of stationarity

where theempirical relationships derived under observed climate assumed to
remain validunder the forcing conditions of possible future climates. €k&sentially
nonverifiable assumption underlies the parameterizations used in RCMs (and GCMs);
however, as the core basis of climate models is immutable physics and not unverifiable
assumptions, iis proposed that thisiakes a stronger argument for their validity émh
compared to statistical methods) ungerturbed forcingFoley, 2010a).

The requirement to parameterize important-guf) scale processes, along with biases
inherited from the driving GCM, necessarily introduces uncertainty to the downscaled
RCM projections. Uncertainty stemming from the model configuration (e.g. grid
resolution, model structure, parameterizatietc) and the internal variability of the
climate system also contribute to the overall uncertainty in the projected regional scale
response(Hagemannet al, 2004). It is argued that in order to address this, it is
preferable to adopt a multhodel approach, whereby an ensemble of plausible climate
projections is used to explore possible changes in regional climate (Fei\aler2007).
However, dynamical models are computationally demanding, limiting their application
in multiple scenario assessmentsorder toovercomethis, anumber of pan European
projects including PRUDENCE (European FR®ediction of Regional scenarios and
Uncertaintes for Defining European Climate change risks and Effd@hristenseret

al., 2007b) and ENSEMBLES (van der Linden & Mitchell, 2009) (van der Linden &
Mitchell, 2009) have been undertaken. Projects like those referred to above facilitate the
co-ordinaton of model experiments and the sharing of informatias part of which

the various institutes involved make the output from their model simulations (conducted
for a common domain and time period) freely available. In doing so such projects
provide the dta required for addressing some of tineertainties inherent in future

estimates of regional climate change.
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5.2.2 Statistical Downscaling

According to Mehrotra and Sharma (2011) statistical downscaling is the most favoured
method for transferring laegscale synoptic information from GCM simulations of
future climate to the point or catchment gird scales required for conducting impact
assessments. Statisticalethodsare based on the principle that local and regional
climate is conditioned by two faat® the largescale climatic or atmospheric state and
regional physiographic features such as topography,-daaddistribution and land
cover (von Storch1995 1999). Based on this a quantitative relationship can be
established between largeale predictors (e.g. circulation patterns, -gadle
humidity) and sulgrid scale climate (e.g. temperature, precipitation) or other surface
environmental variables (prietands). Once established under observed conditibas
statistical model is used to derive local point or grid scale scenarios for the surface
predictand using coarse resolution G@sita A study by Trigo and Palutikof (2001)
demonstrated that statisticdownscaling was more skilful in reproducing the mean,
variance and distribution of precipitation across the Iberian Peninsula when compared to
the GCM data without downscaling being appliesl such the study demonstrated the
06added val uestatisticahdownstalihgo y i n g

Depending on the particular approach taken and the research question posed, the
statistical relationship developed between the lsagde atmospheric predictors and
localscale predictand(s) can be expressed in a deterministigrastdchastic manner.
Statistical downscaling does not demand significant computing resources, meaning it is
suited to producing large ensembles of lesxzle climate scenaripsonsequentlyhis
approach to downscaling is widely used for conducting iaicey assessments. One of

the key drawbacks of statistical downscaling is that it requires good qualitydomg
instrumentalrecords- this is to ensure that a robust statistical relationship can be
established.As a result statistical methods are walited to areas where the
observational network is particularly dense, and high quality coverage of localised
climate conditions is provided¢rita & von Storch, 1999; Wilbet al, 2009.

A number of key assumptions underlie statistical downscaliegmibst fundamental of

which is that the predictegpredictand relationships established under present day
climate remain valid under the forcing conditions of possible future climates. The
assumption of stationarity ciatrywerebythe st ed
model is validated using a period from the instrumental record which is representative

of a climate regime o6differ entetbal, 2004).t ha't
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However, given that future climate may lie outside the bouhd#hat may have been
experienced previously a fact which is underlined by the ntinear nature of the
climate system and the potential for it to undergo abrupt chang@s assumption

remains somewhat unverifiable.

As stated by Fowleet al. (2007) his assumption has been shown to be questionable in
the observed record (e.g. Huth, 1997; Slonskal, 2001; Fowler & Kilsby, 2002). In a
study of the relationship between continental scatailation and surface climatéuth
(1997) found that theerived statisticatelationship did not remain stable over time and
exhibited considerablentra- and interdecadal variations. The author states that this
casts doubts on the applicability of circulation type approactdsch was the method
employed byHuth (1997)- in statistical downscaling. It igrgued that nostationarity

can be attributed to temporal changes in the structure of the climate system. It can also
be attributedo employing a calibration period which does not adequately sample the
naturalrange of variabilityandor by employing a predictor set which fails to reflect
low-frequency variations in climate (Wilby, 1998; Fowdral, 2007).

Statistical downscaling also assumes that the dacgée predictors employed to derive
localscale climate projections are physically meaningful, capture climatic variability
across a range of timescales and are well simulated by the driving GCMs (&iatgi
2001); in additionit is assumed that the largeale predictors used adequately capture
the climate change o6signal é (Hewiston &
widely acknowledged that downscaling models which employ circulatiosedba
predictors only may fail to reflect changes in humidity under altered climate conditions
(Wilby & Wigley, 1997, 2000; Charlest al, 1999; Murphy, 2000; Fowlegt al, 2007).
Trenberthet al (2003) point out that future changes in precipitation #edyl to occur
through increases in the moisture contathe atmosphereesulting from enhanced air
temperatures. This underlines the requirement to include variables which are physically
sensible, even if they appear to be Hformative under obserdeconditions. With
respect to the points made abpseme measurew dfumidity is typically used as a
predictor when downscaling precipitation (Wilby & Wigley, 19%asterling, 1999;
Murphy, 2000; Beckmann & Buishand, 200R)deedit is highlightedthat an increase

in model skill can be brought about by including some measuratmabspheric
humidity (Murphy, 1999).

Fowler et al (2007)indicatesthat the inclusion of a humidity variable in the predictor

set can lead to a convergence in thgjgotionsfrom dynamical and statisticahodels
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A study by Charlegt al (1999) found that when relative humidity was included in the
set of atmospheric predictors usdede model (a nhonhomogeneous hidden Markov
model) produce rainfall projections which were consistent with those from an RCM
subsequent studies by Timball al. (2008) and Vracet al (2007) produced similar
results. However, it is argued that when compareith other variables (e.g.
temperature, humidity)circulation based predictors are more skilfully simulated by
climate models (Cavazos & Hewiston, 2003hus in order to satisfy other
assumptions, such variables should be used exclusively in statistomidls This
apparent contradiction is indicagivof the difficulties which underlie the process of
predictor selection which is an important aspect of statistical methods and a critical
source of uncertainty in the downscaled projecticbavazos & Hewiston (2005)
evaluated the skill of 29 individuaNCEP (National Centers for Environmental
Prediction) predictors in capturing daily precipitation at 15 sites sampled across diverse
climatic regimes. In this study an artificial neural network (ANN) was used. The results
indicated that predictors represag mid-tropospheric circulation and specific humidity
were the most relevant controls of daily precipitation for all locations and seasons.
Tropospheric thickness, along with 2m and 850 hPa meridional wind components were
also important; however, theikglanatory power was found to be more regionally and

seasonally dependent.

In addition topredictor selectionthe size and location of the predictor domain used is
an important consideration. Brinkmann (2002) assessed the association between winter
precpitation using correlation fields and largeale circulation patterns of daily 700

hPa pressure data for three different North American precipitation regimes. Brinkmann
(2002) found that the optimum grbint location for downscaling may be a function of

the time scale under consideration, and as such may not be a function solely of the
target area. At the daily time scale, the optimum grid point was not that located within
the region for which precipitation was being downscaled, but was rather a pgsatttof

the west or northwest of it. Wilby and Wigley (2000) found that the location and spatial
extent of the predictor domain was an important factor affecting the stability and
realism ofthedownscaled precipitation scenarios. This study examinedphleability

of 15 predictors used to downscale precipitation for six regions in the conterminous
USA. The pattern analysis conducted by Wilby and Wigley (2000) suggested that the
maximum correlations between precipitation &M8LP (mean sea level pressingere

greatest away from the grlabx (i.e. where the predictors were spatially remote from
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the predictands); in contrast, maximum correlations for specific humidity occurred
when the data was propinquitous (i.e. in close proximity). &pakt (2007) conpared

the data downscaled using a multiple linear regression model with that from a
dynamical model (MM5). In this case both models were used to downscale monthly
(June, July and August) mean surface temperature over the eastern region of North
America. I was shown that the domain size had little effect on the skill of the regression
model under current climate conditions; however, it was found that the domain had a
greater influence othe projected changes in surface temperature than any other factor
considered including thetraining periodandpredictor setised

One of the key weaknesses statistical approaches have (particularly regression and
weather typing approaches) is that they tend to underestimate the variability of local
climate, andas a reult may fail to fully capture the changing nature of extreme events.
The under prediction of variance is particularly evident when downscaling those surface
variables which are to a lesser degree controlled by the-$agje atmospheric state,

and are istead more strongly influenced by local scale forcings (e.g. precipitation, local
winds). Essentially the inability of statistical approaches (particularly regression based
models and circulation typing) to explicitly account for local or regional scaténfys

(e. g. orographic enhancement) results i
component originating from smadtale atmospheric processes. This component of the
time series is essentifdr characterising local scale weather and patternsliofate

variability.

A number of techniques aimed at enhancing the variability of the downsiztizthve

been proposed. Variance inflatienas implemented by Kart al (1990) - uses a

scaling factor to linearly rescale the downscaedesso that its variance better accords

with that of the observations. Von Storch (1999) criticizes this approach for its
assumption that all locacale variability can be traced back to variability in the karge

scale predictors. It is argued that this agstion is not valid given that the predictors

are based on synoptic scale fields, and thus hold no information egridubcale
variability. Von Storch (1999) advocates the use of an alternative method termed
6randomi zationbo, w h e pterdd yby thehreodel is represdnied i t
t hrough the addition of O&édwhite etrabl93e 6 ( E
Kysely, 2002). This approach can be represented as:
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Randomization has also beemployed asa method forbias correahg RCM data
(Jakobet al, 2011).Buma and Dehn (1998) state that autoregressive character of the
observed (predictand) series should determine whether white (entirely independent) or
red noise (dependent on the past) is addedgeBii(1996; 2002) developed a more
complex technique based on canonical correlation analysis ternedx pande d
d own s c@.b.iHaotly 4999; Dehet al, 2000, MullerWohlfeil et al, 2000). As
explained by Cannon (2009) the method adds a constraint tegfession cost function
which forces the observed and predicted variances to be similar. Burger and Chen
(2005) conducted a review of each method and found that no one optimal approach
exists. Randomization was found to perform well with respect to mredenate
conditions, but was unable to represent local scale changes in atmospheric variability
when used to model future climate. In contrast expanded downscalirghasas to be
skillful at capturing atmospheric variability in a climate change contewthen
downscalingclimatedata to multiple sites variance inflation was found terepresent
spatial correlationsresulting in a loss of the temporal coherence between climate series
downscaled to individual sites. Expanded downscaling was also nobethgssensitive

in instances where the predictors/predictands deviated from normality. Cannon (2009)
proposesn additional method based on a multivariate ridge regression (htmkal &
Kennard, 1970; Brown & Zidek, 198@With negative paramete(slua & Gunst, 1983)

The technique is conceptually similar to expanded downscaling but is able to maintain

the covariance structure between variables.

As discussed above one of the most critical aspects of statistical downscaling is
predictor selection. Ideallyhe atmospheric variables used as lessgale predictors
should:

A have a strong and physically sensible relationship with the target variable

A explain lowfrequency (i.e. multdecadal) climate variability and observed
trends in climate data

A have a stable artime invariant relationship with the predictand

A be at an appropriate scale (i.e. in relation to important physical processes and
GCM performance)

A account for a significant proportion of the variability exhibited by the observed
series

A be realistically shulated by the driving global (or regional) model

A adequately capture the climate change signal (e.g. humidity used to downscale
precipitation)
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A maintain thecovariance structure between climatgiables

A maintain the spatial coherence between diffetamgjetsitedareas

(after Wilby& Wigley, 1997; Giorget al, 2001;STARDEX Final Report 2005)

The various techniques developed for statistical downscaling can be grouped into three
main categoriesregression models, weather generators and wegfhieg schemes.

5.2.2.1Classificationschemes

This synoptictype approach to downscaling seeks to establish a relationship between
variations in | ocal or regional climate
(Giorgiet al, 20Q1). Weatheror circulationtyping involves grouping days into discrete
classedased on their synoptic similarity (Wilkst al, 2004). In a downscaling context
weather classes have been defined using indices of air flow applied to sea level pressure
(Conwayet al, 1996) or by applying some type of cluster analysis to atmospheric
pressure data (Enke & Spekat, 1997; Fowteal, 2000; 2005). Similarly pressure data

may be discretized using correlation analyses (Betkal, 2000), eigenvector
techniques (Goodess & Palutikof, 1998), optimization algorithms (Pleilligl., 2007;

Kittel et al, 2009, fuzzy rules Bardossyet al, 2002; 2005; Wetterhadt al., 2009)or
seltorganising maps (Michaelidest al, 2007; Tumboet al, 2010). Such methods
come under the broad heading of objective classification schemes.-dcaige
circulation data may also be classified subjectivelpgisipproaches such as the Lamb
weather type (Lamb, 1972) and HieBsezowsky Groswetterlagen (Hess & Brezowsky,
1952, 1977). Such schemes employ a predefined set of rules and expert knowledge to
classify circulation data; typically it is the objectivisedsiens of these schemes which

are used (e.g. Jenkins@wollison type¥ (Jenkinson & Collison, 1977; James, 2006).

The application of weather typing in a downscaling context involves developing
conditional probability distributions for observed statis{es). mean wetlay amount)

which describe the relationship between a particular weather class and the surface
predictand. Once this relationship is established the same classification criteria is
applied to the output from GCM#ocal scale changes are mhestimated bgxamining
projected changes in the frequency of weather types ¢Hal, 1991; CorteRealet al,

1998; Goodess & Palutikof, 1998).
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Huth et al. (2008) highlights different approaches for using circulation classifications in

a downscaling context. This includes the use of an independent downscaling model for
each respective circulation class (ekmke et al, 1997)and employingmonthly or
seasoal frequencies of daily circulation types as predictors of monthly/seasonal mean
values for the predictand (e.Goodess & Jones, 2002)he first approach is based on

the fact that the predictand/predictor relationship may vary depending on the occurrence
of a particular circulation pattern. Huth (1999) employed this approach to downscale
temperature for Europe; in this study atmospheric data was classified into circulation
patterns using PCA (Principal Component Analysis) antelans clustering. A serie$

linear regression models were subsequemtbduced each of which was specific to a
particular circulation typeWhen using this downscaling approach the absence of other
atmospheric variables from the driving data assumes that pressure pattercsgtiore

the main processes governing local scale weather and climate. In some cases this may
weaken the connection between the surface predictand and changes in tsedkrge
atmopheric state- which is particularly important when estimating the preatict
response to altered forcing conditions (e.g. humidity when modelling precipitation)
(Karl et al, 1990; Murphy, 2000; Beckham & Buishand, 200&gather typing differs

from circulation classifications in that the former may incorporate additional

atmopheric variables (e.g. precipitable water).

Weather typing has the benefit of being based on the sensible linkages between the
large scale atmospheric state and variations in climate at a local and regional scale. The
approach also has the advantage ofdeible to downscale a range of environmental
variables and can be employed in nidiiie applications. There is however a number of
weaknesses associated with this appro@ete of the mairshortcomingshared by all
weather typingand circulation classifation schemeis their insensitivity to withirtype
variability (e.g. wet circulation types which include the occurrence of dry days)
(Brinkmann,1999; 2000). In additigra number of assumptions are implicit when using
synoptic typingas a downscalingobl, the most fundamental of which is that the
characteristics of eadiype remain the same under altered forcing conditions. A study
by Widmann and Schar (1997) found that changes in the nature of daily precipitation
across Switzerland were not due to s in the frequency of particular circulation
patterns (based on sea level pressure), but were ithtacésultof within-type changes

in rain producing circulation types, whereby the amount of raiafdbciateavith wet-

types was found to have inased. The study was conducted using records for the
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periods1901-1990 (with 113 continuously operating rgjauge sites) and 194090

(with 304 sites) respectivelyhis highlights the possible nestationarity of empirically
derived relationshipbetweertirculation types and surface weatherlso suggests that
additional atmospheric descriptors may be required (e.g. humidity). A study by Wilby
(1994) found that classification approaches had limited success in reproducing the
persistence of wet and dppells at two sites in southern England. In this study Wilby
(1994) identified the subjectivity introduced by the classification scheme and the non
stationarity of the precipitation characteristics associated with individual types as
important weaknessés this approach.

5.2.2.2 Stochastic Weather Generators

Stochastic downscaling methods employ weather generators (W&Bsh as WGEN
(Wilks, 1992), LARSWG (Racskoet al, 1991; Semenov & Barrow, 1994nd
EARWIG (Kilsby et al, 2007)- to produce multife synthetic series adaily or sub

daily weather data conditionadsinglargescale GCM projectionsThe generatedata
seriesreplicate the statistical attributes of local climate varigldes not the observed
sequence of events (Wilks & Wilby, 1999ashmiet al, 2009. WGs are a versatile

tool and have been employed for a range of tasks including generating data for use in
hydrological and agricultural risk assessments (e.g. Mavromatida&isen, 2001),
extending the simulation of daily weather to unobserved sites (e.g. Semenov & Brooks,
1999) and producing sigpecific climate scenarios for impact assessments (e.g.
Dubrovskyet al. 2004,Evanset al, 2008; Semenov, 2009; Semenov & Hadfo2009;
Semenov & Stratonovitch, 2010).

Generally WGs firstly determine theccurrenceof wet and dry days; this is done
typically by employing variants of Markov chain models (e.g. two state-didgr
markov chain) with specified transition probabilities (Richardson, 1981) or by using
empirical distributions of the wet/dry spell lengtlsefmenov & Brooks, 1999).
Secondary variables including rainfall amounts, temperature, solar radiation and
evaporation are subsequently modelled conditional on precipitation occurrence. In the
case of precipitatigra gamma distribution is typically us¢éo model wetday amounts.
Although first order models are often employed when modelling rainfall occurrence,
second and third order models have been used to improve performance at simulating

both the occurrence and persistence of wet/dry spell lengtimovements in the
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ability of WGs to reproduce both higher order events and the variability of a climatic
time-series have been brought about by the development of the N&epén
Rectangular Pulses (NSRP) stochastic precipitation model (Fetdr, 2007; Kilsby

et al, 2007; Burtoret al, 2010).Inthe case othis modelrainfall (both occurrence and
amount$ is simulated as a singleontinuousvariable. Precipitation is modelled as a
sequence astormevents(storm times areepresented as a Poisgmocesy consisting

of temporal clusters afincells eachof which hasanassociatedntensity. The amount

of rainfall occurringfor a given time stejis calculated byaccumulatinghe individual
raincell intensitiegBurton, et al, 2008)

WGs are adapted for statistical downscaling by conditioning their parameters on
variations in largescale atmospheric predictors (Katz, 1996; Semenov & Barrow, 1997,
Wilks, 1999; Wilby et al, 2004). WGs have also been usedcamjunction with
circulationpatterns (e.g. CortiRealet al, 1999), whereby the model parameters are set
conditional on the occurrence of different circulation types. Projected changes in the
large-scale atmospheric state are then reflected in the stochastically generated local
scak climate series. CorRealet al (1999) found that when conditioned using four
circulation patterns (identified using PCA andneans clustering), a weather generator
was able to simulatidhe important features of local precipitation (e.g. the distiobubf

wet and dry spell lengths, extreme precipitation) over southern Porxithab high
degree of skill highlighting the applicability of this approach for downscaling future

precipitation.

Several studies comparing the performance of differenthg@eagenerators have been
conducted. Semenost al (1998) assessed the merhance of the LARSVG and
WGEN; for the purposes of comparing model performar&sites in the USA, Europe
and Asia- represerdtive of different climatic regions were selectedWhilst it was
shown that both models were unable to captomesaspects of observed climate
including the annual variability in monthly meanthe WGEN model performed better
than theLARS-WG at simulatingmeanmonthly temperature and precipitatiohhe
authors attribute thito the WGEN having a greater number of parameters and allowing

more complex distributions to be fitted.

Stochastic downscaling techniques have the advantage of capturing the variability of
local climate and thus allowing for atber representation of higher order events in the
driving data for impact studies. In this respect WGs have an advantage over regression

or weather type approaches which, as discussed atengeto underestimate the true
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variability of locatscale climate WGs also have the advantage of allowing multiple
variades to be modelled concurrentlyhus ensuringthat the temporal coherence
between them is maintained. One of the key benefits of employing stochastic methods is
the ability to generate largensembles of climate data for use in risk assessments (e.g.
crop modelling, water resources management). Similarly stochastically generated data
can be used to represent natural climate variabildg issue of increasing importance
given the need to adess this source of uncertaintyadhmate impact studies. Weather
generators also have the benefit of being able to produce climate series with a high
temporal resolution (e.g. sudaily rainfall data).

The key weaknesses associated with employing stochastic models in a climate change
context are related tthe difficulties in modifying the model parameters. It has been
found that altering the precipitation parameters can result in inconsistent chatigges in
secondary variables (Wilks, 1992). In additian assumption in the stationarity of
inter-variable relationships under future climate forcing is implicitly associatedtigth

downscaled datasets

5.2.2.3 Regression Models

Regression models or trsfer functionsestablish a direct statistical relationship
between the observed loesdale predictand (e.g. point scale precipitation) and a suite
of largescale atmospheric predictors (e.g. mean sea level pressure, vorticity, meridional
velocity). The marse scale output from GCMs is then used to drive this relationship,
allowing changes in the corresponding local scale variable to be estimated. Although the
basic methodology remains the same, specific approaches differ according to the
transfer functionand predictor seemployed; hey also differ with respect to the
statistical fitting procedure used. The often complex andlinear predictoipredictand
relationships which exist have necessitated the use of a wide range of regression models
including, linear and noslinear regression (Huth, 199Bellstromet al, 2001; Fealy &
Sweeney, 2008)generalized linear models (Fealy & Sweeney, 2007) artificial neural
networks (ANNs) (Crane & Hewitson, 1998Vilby et al, 1998, singular value
decomposition (8D) (Huth, 1999; Chu & Yu, 2010)nulti-variate splinesGorteReal

et al, 1995)and canonical correlation analysis (CCA) (von Stasthal, 1993; Huth,

1999).
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Huth (1999) compared the performance of several linear models when used to
downscale daily mean winter temperatfime 39 stations across central Eurofidne

study considered CCA, SVD and three multiple regression models (stepwise regression
of principal @omponents (PCs) and regression of PCs with and without the stepwise
screening of gridded values). The predictors used in the study in@d00edPa heights,

MSLP, 850 hPa temperature and 10800 hPa thickness. The model incorporating PCs
with stepwise s&ening was found to perform best according to the evaluation criteria
employed.Each of the other methods performed comparably but only when a large
number of t he pr ednaldtior Huth (199€)sindicates tlkeat thes e d
SVD method performed wst. When evaluating the explanatory power of the
predictors used Huth (1999) found that those models which employed temperature
variables returned more accurate results than those using circulation variables alone
The best performing models were thoséngsa combination of 850 hPa, temperature

and 500 hPa. Huth (1999) indicates that the results may be different for other seasons,
particularly summer when the link between surface weather andfrédmency
circulation features is much weakét.is noted lowever that by using GCM output
rather that reanalysis data (as was used in this study) the models may produce different
results. The author indicates that this is due to GCMs simulating atmospheric predictors
and large scale climate features (e.g. telaecotions, modes of variability) when

compared with reanalysis dataith varying degrees of accuracy.

Fealy and Sweeney (2007) employed a generalized linear modelling appooach
downscale precipitation scenarios for 14 synoptic stations across Irilatiis case a

two step approach was takewhereby precipitation occurrence was downscaled using
logistic regressionrainfall amouns were subsequently modelled for wdays only

using a generalized linear modeith a gamma distribution and ldgk function. In a
subsequent study Fealy and Sweeney (2@08ployeda stepwise linear regression
model to downscale temperature, radiation and potential evapotranspiration for multiple

sitesacrosdreland.

Regression metlis have the benefit of allowing a direct and physically sensible
relationship to be established between lasalle weather events and the lasgale
atmospheric statéWilby, 1997) As regression models incur minimal computational
costs the approach issuited for conducting uncertainty assessments. The key

weaknesses associated with regression tymvnscaling are related to the
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underestimation of variance. The results from regression models are also affected by
uncertainty introduced by way of the pretdirs and model domain used.

5.3 An inter-comparison of statistical downscaling methods

A number of studies comparing the relative merits of different approaches in statistical
downscaling have been conduct&Ueichert and Birger (1998) comparkaear ad
nonlinear (Radial Basis Function) downscaling models using the same atmospheric
circulation data. In this case the models were used to downscale temperature,
precipitation and vapor pressure for a station located in central Europe. The results
indicatedthat when downscaling precipitation both modelling approaches performed
poorly, capturing only a small proportion of the observed variability (correlation ~40%)
The authors state that despite tlolear differences in the applicability of both models
were evident. Thartificial neural networlkwas better at capturing rainfall occurrence;

in addition it was found that heavy precipitation events occurring during convective
storms were often detected by the #imear model only. However, while the model
was able to detect these events, the amount of precipitation it simulated for them was so
low as to be inconsequential in the overall model outplgichert and Burger (1998)
highlight the underestimation of variance as a key weakness ajl{near modés. The
authors also highlight the limitations of analogue methods, pointing to their inability to
model new and possibly unforeseen climatic changes which lie outside the bounds of

what has occurred over the observed period of record.

Huth (2008) also elored differences between linear and +hioear downscaling
approaches; for this study temperature was downscaled to 8 stations across Europe.
Huth (2008) compared seven models, including linear regression of grid point values
and PC regressionof predict 6 s pr i nci pal components; tt
variants of ANNs and regression models based on individual circulation types.
Conditional on the evaluation criteria employed, pointwise linear regression appeared to
be the best performing methoBoth the pointwise neural network (NN) and linear
regression models were better than the P&3ed NN and linear models. It is noted by

the author that using the principal components may result in a loss of critical
information in the predictor fields. Hut(2008) indicates that the skill of the linear
model used may be due to the predictpnedictor relationship being intrinsically

linear,as a result of whiclittle value is added by employing a nbnear approach. The
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number of parameters which must ddjusted in neural networks, and the uncertainty
associated with calibrating them (i.e. difficulties in determining a global optimum), is

also cited as a possible reason for their relatively poor performance.

Zorita and von Storch (1999) compared an egaé approach to more compleodels

(CCA, ANNs and classification and regression tree approach) based on their ability to
downscale monthly and daily winter rainfall for 92 stations located across the Iberian
Peninsula. The results indicated that thetneddy simple analogue method performed

as well as the more complex methods considered. It was found the analogue approach
could be applied to nenormally distributed variables andas capable of reproducing

the observed variability of the predictanidalsohad theadditionalbenefit of preserving
inter-site correlations. In contrast the results indicated that the linear model and neural
networks used underestimated the variability of observed precipitdiovever, the
authors state that the linear model offers a more physically sensible approach for
capturing the relationship between local and large scale variability. This is in contrast to
the more complex classification and neural network methods whialitaZzand von
Storch (1999) indicate do not directly offer a physical interpretation of this relationship.
The authors argue that this supports more strongly the validity of linear models under
perturbed forcing conditions provided that the variability ofheir output can be

augmented to reflect the truarianceof the targepredicand

As highlighted by Fowleet al (2007) ANNs have been reported to perform poorly in
the simulation of daily precipitationparticularly with respect to the simulatiof the

wet day occurrence (e.g. Wilby & Wigley, 1997; Willey al, 1998; Zorita & von
Storch, 1999; Khast al, 2006). Schoof and Pryor (2001) compared the performance of
multiple-linear regressioto a series of ANNgvhen used to downscale daily (maximu

and minimum) air temperature, precipitation and total monthly precipitation receipts for
a site in Indianapolis (USA). The findings indicated that bapproachegperformed

well when used to downscale temperature, but were found to underestimate the
variability of precipitation, particularly over shorter time scales. The ANNs performed
better when used to model total monthly precipitation as opposed to daily precipitation;
in addition,when the models were used to downscale temperahadel performance

was found to improve when an autoregressive term was included.

Diaz-Nieto and Wilby (2005) compared the use of change factors to a statistical
downscaling model using a case study of low flows in the River Thabms baseline

and future climate condiins were considered. The authors highlight that the
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assumption implicit when using change factotisat the temporal structure of the future
climate is the same as the baseline climatologya key weakness of this approach.

The catchment response wdsund to be more complex and conservatiwden
modelled using the statistically downscaled data as opposed to data derived using the
change factor approacbiazNieto and Wilby (2005) attribute this to the differential
treatment of multdecadal natural vaability and the temporal structuring of daily

climate variables.

Harpham and Wilby (2005) compared the performance of three different models (Radial
Basis Function, Multi Layer Perceptron and SDSM) when used to downscale heavy
precipitation for multiplesites in northwest and southeast England respectively. It was
found that SDSM $tatistical DownScaling Model; Wilby et al, 2002) produced more
spatially coherent intesite correlations.This model waglso shown to provide a better
representation of digi precipitation quantileshowever, for individual sitegshe ANNs

were shown to be more skillfubhll models considered had the greatest skill for those

indices relating to the persistence of lasgale winter precipitation.

A number of other studies have compared SDSM to alternative downscaling
methods/models (e.g. Dibike & Coulibaly, 2005; Khanal, 2006; Diaz-Nieto &
Wilby, 2005. Chenet al. (2010) compared SDSM tosapport vector machine (SVM)

and multivariate analysiwhen used todownscaleclimate datafor the ShikMen
Reservoir basin in Taiwart was found that SDSM performed better than the other
models at capturing daily precipitation events less thamff) however,the results
indicated that the SVM method pneced a more accurate simulation of daily
precipitation when compared with either SDSM or the multivariate médstudy by

Liu et al (2008) compared SDSM with a time lagged feedforward neural network
(TLFN) and an evolutionary polynomial regression (EREhnique for downscaling
numerical weather ensemble forecasts generated by a medium range forecast model.
The selected methods were employed for downscaling daily precipitation and
temperature data for the Chida-Diable basin located in northeasternn@da. The
TLFN and EPR models were found to be more efficient techniques when applied to

downscale daily precipitation and temperature respectively.

Liu et al (2011) compared the performance of SDSM and a nonhomogeneous hidden
Markov model (NHMM) when u=d to downscale daily precipitation to the Tarim River

basin located in northwest China. The NHMM showed greater skill at simulating
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monthly precipitation and wetay amounts, in addition SDSM performed relatively
poorly at reproducing the higher quantilet rainfall amounts- particularly for dry
stations (those with an annual precipitation yield of <200 mm). Hashral (2010)
compared the performance of SDSM and the LARS when used to simulate the
frequency of extreme precipitation events for thetla river catchment (located in
South Island, New Zealand). Both models exhibited a comparable level of skill in
reproducing the monthly mean and standard deviation of the observed, series
additionally each model wa®und to reproduce preseday extremeevents with a
reasonable level of skilhowever, when used to downscale data from the same GCM
bothproduceddivergingaccounts of future extremes.

Dibike and Coulibaly (2005) employed the LAR®G and SDSM to downscale
temperature and precipitation seeios for a catchment syster@Hutedu-Diable) in
northern Quebec. Under observed conditions SDSM was found to underestimate the
wet-spell length for most months of the year contrast the LARSNG was more
skillful at reproducing wet and dry spell lengthBoth models reproducedaily
precipitation reasonably wellvith little difference being evident in their respective
performance. For the majority of months SDSM tended to overestimate temperature,
while the LARSWG both over and under estimated tempee during different
periods of the year. Although the models reproduced observed climate conditions with a
similar level of skill, each produced diverging projections of future change fehesd

using the sam&CM data. While the regression model suggesn increase in both the
mean and variability of daily precipitation, data downscaled using the BARSdid

not suggest such a trendthis highlights the uncertainty introduced by way of the
downscaling method usedKhan et al (2006) conducted a simail study to that of
Dibike and Coulibaly (2005) using the same catchment systdmre the authors
compared SDSM, an ANN and the LARBG. The study indicated that SDSM was the
best performing model at capturing the statistical attributes (e.g. skewngspetlr
lengths) of observed daily precipitation and temperature; the results indicated that the

ANN was the worst performing model.

Benestad (2001) compared empirical orthogonal functions (EOFs) to the more
conventional approach of CCA for downscalingamenonthly temperature in Norway.

The results suggested that the smallest errors were associated with scenarios derived
using EOI. Benestad (2001) state that EOFs have several advantages over using non

transformed predictoyshis includes the ability tdilter out noise and provide predictor
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fields with a high spatial resolution. In addititime EOFs have the benefit of limiting
the potentiafor overfitting the statistical model.

A study by Teutschbeinet al (2011) compared the performance of three different
approaches (analog method, mlbijective fuzzyrule-based classification and SDSM)
usedfor downscaling precipitatioto a mesescale catchment in southwest Sweden. It
was found that SDSM performed wetl reproducing precipitation values for winter and
spring, but slightly underestined precipitation during summer and autumn. In contrast
the analogue method was found to reproduce the annual cycle well. Based on the
findings of the study Teutschbeatal. (2011) considered SDSM to be the most suitable
approach for downscaling precipitation.

Wetterhallet al (2007) compared four different statistical downscaling methods (two
analog methods, multibjective fuzzyrule-based classification and SDSMasedon

their ability to reproduce the statistical characteristics of daily precipitation at seven
stations in soutitentral Sweden. The results indicated that both SDSM and the
classification method performed equally well or better than both analogue amspach
however, no one method was found to perform best for all seasons. It was also found
that SDSM skilfully captured the interannual variability of the precipitation series,
whilst the classification approach performed best at reproducing the persistehce a
distribution of dry spells although it tended to overestimate precipitation amounts.
Similar to Teutschbeiret al. (2011), Wetterhallet al (2007) state that SDSM may be

best suited for downscaling precipitation under altered forcing conditionsatthers

give reasons for this including that the analogue approach is based only on sampling
historical data and therefore cannot factor in unobserved changes. In addition
Wetterhallet al (2007) highlight thatwhen employing methods based on clasdifica
approaches, an assumption must be made that the identified circulation patterns have the
same variability under future forcing as under present day climate. The authors state that
although the assumption of stationarity is implciassociatedwith each methogd

SDSM and the fuzzy rule based classification approaches have the potential to produce

reliable results when applied under altered forcing conditions.

Chiew et al. (2010) compared the performance of three models used to downscale
precipitation 6r an area covering the head waters of Mheray River in soutkeast
Australia. The models used included a dadglng model, an analogumodeland two
stochastic models: GLIMCLIM (Generalised Linear Model for daily Climate time series

software packagejChandler, 2002), and NHMM (nonhomogeneous hidden Markov
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model) (Hugheet al, 1999). Chiewet al (2010) highlight the usefulness of the simpler
scaling and analogue methods for impact studies focused over very large regions (i.e.
where smoothed data $itess potential to affect the results); however, the authors state
that the parametric modeddfer potential improvementas they capture a fuller range

of the daily precipitation characteristics.

Frostet al (2011) examined the performance of five statistical models when used to
downscale multsite daily precipitation to a set of thirty point locations across south
eastern Australia. The methods used included a scaling and analogue model
GLIMCLIM (Chandler,2002) as well astwo stochastic models: NHMM and MMM

KDE (modified Markov model kernel probability density estimation). The models
were assessed based on their ability to reproduce a range of statistics including-the inter
annual variability, spatial d@rence and extremes. The study found that the relatively
simple scaling approach provided robust results for a range of statigiwsver, the
stochastic models were better able to capture higher order statistics. The authors
advocate the use of stoctiasnodels in cases where capturing the full range of-{day

day) variability in the downscaled series is important. It is argued that in the case of
macrascale impact studies, where less detailed climate data is required, scenarios
obtained using a saay approach should suffice (Frastal, 2011). In this respect the
most appropriate statistical method to use cgrabéeast irpart, determined basedn

the intended application of the downscaled data.

5.4 Relative skill of statistical and dynamicatlownscaling

As outlined in Table 5.1 there are various strengths and weakness associated with both
dynamical and statistical approaches. Given its low computational demands statistical
downscaling is ideal in cases where multiple leszalle scenarios amequired as a

result this approach may be more applicable when conducting uncertainty assessments.
However, unlike dynamical methods, statistical downscaling cannot explicitly resolve
the physical processes which conditisagionalscale climate. Insteagmpirical
methods seek only to quantitatively describe the relationship between large and local
scale variability, without any requirement to necessarily understand this relatidnship
albeit thatthere is an implicit assumption that the relationship wadog physically

sensible.
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There is a broad consensus within the downscaling community that both dynamical and
statistical approaches exhibit a comparable level of skill when applied under observed
climate conditions (Kidson & Thompson 1998, Meawmtsal 1999, Murphy 1999,
Hellstromet al, 2001). Indeed it is suggested that there may be no sopgisum
approach to downscaling, and that the most appropriate method may depend more on
the researchugstion posedhe complexity of the targeegionand thevariable(s) for

which data is required

Statistical Downscaling Dynamical Downscaling
Strengtls A Can derive pointcale climate information from A 1050 km resolution climate information from
GCM-scale output GCM-scale output

A Responds to different forcing conditions in a
physically consistent way

A Allows the easy production of climate ensembles fiA Capable of resolving important physical processes
risk/uncertainty analyses dynamically (e.g. orographic rainfall)

A Computationallyinexpensive

A Easily transferable to other regions A Consistency with GCM

A Can be used to downscale variables not available
from RCMs

Weaknesses A Dependent on the realism of GCM boundary forcin ; ) .
effected by biases in driving GCM A Dependent on the realism of GQddundary forcing

. L . A Choice of domain size and location influences

A Choice of domain size and location affects results
results

A Necessitates good quality data of a sufficient lengt . ) N .

. Requires significant computing per

to development and test statistical models

. ) A Limited to producing few ensembles of climate

A Dependent upon choice of predictors . P 9
scenarios

A Domain size, climatic region and season affects

downscaling skill
A Fundamental assumption of model stationarity is n

verifiable

Table 5.1 Summargf the relative strengths and weaknesses of statistical and dynamical approaches to downscaling (ad:
Wilby & Wigley, 1997).

Despite having a similar level of skill under current climdbeth statistical and
dynamical modelsmay produce signifiaatly different results when employed under
perturbed forcing conditions (Cubasehal, 1996; Wilby & Wigley, 1997; Wilbyet

al., 1998; Mearnst al., 1999; Murphy, 2000). Hence the choice of downscaling method
is one of the key sources of uncertaintyrégionalized climate scenarios. One of the
reasonssuggestedor this is that the statistical relationships established under present
day climate may not hold true when used to extrapolate beyond conditions for which
they were initially established (Coln 2007). This must be prefaced with the caveat

that dynamical models are themselves not exempt from making such assumptions.

Regional models incorporate statistical approximations of important climate processes
which occur on too small a spatial scale be resolved dynamically. The

parameterization schemes used to represent these processes are based on empirical
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relationships derived under present day climate, and as such may be invalid when
applied under altered forcing conditions. Howevas the corebasis of dynamical
models is immutable physical lavesid not unverifiable assumptions, it is argued this
provides a stronger foundation for their validity under perturbed forcing (Foley, 2010).
A number of studies have compared the performance of staltistid dynamical
methods undercontrasting conditions (e.g. across different timescales, in diverse
regions and under multiple future forcing conditions) using a range of evaluation

criteria.

Kidson and Thompson (1998) compared the performance of therRéditmospheric
Modelling System (RAMS) to a regression based statistical downscaling model. In this
study the models were assessed based on their ability to simulate observed daily
precipitation and temperature recorded at 78 sites across New Zealardn@gdhe

period 19801994). The statistical predictors used included five EOFs of pressure data
(1000 & 500 hPa) and series of locascalesecondary variables. The results indicated
that both methods performed well at simulating the daily and mortétipis anomalies

of each variable;however, the regional model was found to be more skilful at
reproducing convective precipitation. Although Kidson and Thompson (1998) highlight
the low computational requirements of statistical downscaling as one dfratsy s
points, the authors state that dynamical models may be more appropriate when
modelling climate conditions which are beyond the range of what haspbe@ously

experienced.

Murphy (1999) compared the skill of an RCM to that of a regression beaistical

model when employed to downscale precipitation and temperature for 976 sites across
Europe (covering the period 198%94). The performance of both the statistical and
dynamical approaches was considered alongside the unalterestaledoutputfrom

the driving GCMT as such thistudy highlightedt he O6added valueo6 ¢
downscaling model. The skill of each approach was comgzased orthe correlation
between the estimated and observed time series of monthly anomalies. BRtBMhe

and statistical model exhibited a similar level of skilditionallyboth were superior to

the grid scale GCM (without downscaling applied). The regression model was more
skilful at capturing summer temperature while the dynamical approach wadyslight
better at downscaling winter precipitation. With respect to precipitatdomnphy (1999)
highlights the greater skill levels of the RCM over areas with more complex

topographical features (e.g. coastlines, mountainous areas). Applying the same
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methods/mdels asMurphy (1999),Murphy (2000)producedclimate scenariosfor a
European domaimusing GCM data(20862100). The results indicate that while the
RCM and statistical models both simulated observed climate with a comparable level of
skill, when forcedusing GCM data they produced diverging projections of future
climate changeChanges in temperature suggested by the regression and dynamical
models respectively were found to differ by-B80%; differences were also apparent in

the precipitation scenariastained using eacmodel(RCM, GCM and statistical). To
address uncertainty in the projections the author suggests attaching a measure of
reliability to eachmethodmode| however it is highlighted that this would introduce a
degree of subjectivity to ghresults. With regards to the statistical model used, Murphy
(2000) found that the observed (based on reanalysis data) prguetictand
relationship was not the same as the corresponding relationship estimated using GCM
data. This highlights the infence which inconsistencies inherited from the driving
GCM can have on the predictpredictand relationship initially established using

observed or reanalysis data.

Differences in the climate projections downscaled using both a dynarRiegC{V2)

and stastical (WG) approach is also a feature of a study by Mearra. (1999).

Similar to the findings of Murphy (2000), both the statistical and regional models used
performed comparably when employed to downscale observed climate series
(temperature and pripitation); however, when the models were applied under
perturbed forcing they were found to respond differenilyje RCM simulated both
increases and decreases in the probability of precipitation; in contrast the statistical
model suggested increases only addition, for 40% of the locations and months
considered, the models disagreed as to the direction of mean change. The requirement
of the statistical model to extrapolate beyond observed conditions is cited as a possible

reason for the apparent lackamnvergence between the mogdedjections.

Hellstrom et al (2001) compared precipitation downscaled for Sweden using the
Rossby Centre RCM (RCA1) with data downscaled using a multigar regression
model. In this study circulation indices and atmbspic humidity were used as large
scale predictorsTwo different GCMs were considered (HadCM2 and ECHAM4) and
each model (including the GCMs) was assessed based on its ability to reproduce the
observed seasonal cycle. Each of the downscaling models bralgiut an
improvement in the skill of the GCMs, highlighting the value added by employing an

intermediate downscaling step. Hellstr@mal (2001) indicate that both the statistical
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and dynamical models exhibited equal skill in reproducing the annueippation
regime. An assessment of the downscaled projections indicated that differences between
those series derived using the regression models (i.e. forced by different GCMs) were
greater than differences between those derived using the dynamicalsmdtel
seasonally averaged difference between the dynamical and statistical soeioiaiived

using the ECHAM4 GCM was 12%; in contrast there was a 21% difference in the

scenarios downscaled from the HadCM?2.

Wilby et al (2000) found that anultiple-linear regression model performed better than

an RCM (RegCM2) when used to downscale precipitation and temperature for a
mountainous catchment in Coloraden{mas basijy in this study NCEP reanalysis data
was used. A study by Hay and Clark (2008)hich focused on three mountains
catchments in the USA (located in Washington, Nevada and Colorado), produced
similar results to Wilbyet al (2000). In this study NCEP reanalysis data was
downscaled using thRegCM2 regional modektatistical downscalg was conducted

using multiplelinear regression. It was found that both the statistical and dynamical
models were able to capture gross aspects in the seasonal cycles of observed
temperature and precipitatiomespectively however, the authors highlighthe
requirement to bias correct the dynamically downscaled data as a key drawback of this
approach, particularly as it is unknown whether the correctiempirically derived
observed climate dataremains valid under perturbed forcing conditions (i.eethér

the correction is both time and state invariant).

Spaket al (2007) employed multipidinear regression alongside a dynamical model
(MM5) to downscale monthly mean surface temperature over the eastern region of
North America. The predictors usedtime regression models included mean sea level
pressure (MSLP) and & temperature (decomposed into EOFs). The models employed
exhibited comparable skill levels when used to simulate observed conditions,
additiontheir projections suggested similar chasgn mean temperature (20R2087);
however, the models produced significantly different spatial patterns in the climate
response, highlighting that the projections may not only diverge on a temporal basis, but

also spatially.

HansserBaueret al (2003) dbwnscaled temperature and precipitation for a Norwegian
domain using multipldinear regression and a dynamical (HIRHAM) model.
Temperature and MSLP were used as predictors in the statistical model for both

variables. Differences in the projections fromcleamodel were found not to be
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statistically significant however, disparities in the spatial pattern of warming were
found to occur. HanssdBauer et al (2003) indicate that the RCM projections for
summer precipitation were more likely to be reliable wlemsidered against the
projections from the empirical model. In contrast to the dynatyidalwnscaled data, it

was found that the statistically downscaled projections did not suggest any change in
summer precipitation. This was attributed to surface &aipre not being included as a
predictor when modelling summer precipitation. It is argued this resulted in a loss of the
climate change signal, with the result that variations in MSLP only determined the
extent of future change. This highlights the intpaoce of predictor selection and the

uncertainty which it can introduce.

Schmidli et al (2007) conducted a study to assess the performance of six statistical
models and three RCMs when used to downscale precipitation for the European Alps.
The statisti@al models used includelinear regression, CCA, weather typing, a weather
generator, an analapproachand a model based dwcal intensity scalingFor each of

the models considered the complexity of the terrain and time of year was found to
influence grformance. The results generally indicated that the RCMs performed best
during winter over mountainous areas; in contrast, during the summer mowéns
flatter terrain disparities in the performance of the statistical and dynamical models were
reduced. The scenarios downscaled from the dynamical and statistical models
respectively were found to exhibit similar biases; however, the statistical methods
strongly underestimated the interannual variability, particularly during summer.
Schmidliet al (2007) dtributes this to the greater importance of stochastic processes
during this season and theability of the statistical modelto consider theffects of

local scale forcings. The study concludes that for this region, the methods used
significantly contrbute to uncertainty in the downscaled scenarios. This was
particularly evident for summer where large differences between the individual
statistical models, as well as between the projections from the statistical and regional

models, were found to occur.

Haylock et al. (2006b) compared the performance of six statistical (CCA, ANNSs,
SDSM) and two dynamical models (HadRM3, CHRM) when used to downscale
precipitation for two station networks in southeast and northwest England respectively.
The ability of each model to capeuseven indices of heavy precipitation (e.g. mean,
90" percentile) was used to gauge model performance. It was found that the models

performed best for winter as opposed to summer, and were better able to reproduce the
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mean rather than extreme statistif$ie ANNs were best at reproducing interannual
variability but tended to underestimate the extremes. When used to downscale
precipitation from the HadAM3P GCM, run using both the A2 and B2 SRES emission
scenario, the results indicated that intevdel diferences- with respectto projected
changes in each of the indices consideradere at least as large #se differences
evident between the emission scenarios. Thing results of the study highlight the

uncertainty which can be introduced by waylef downscaling model/method used.

In their study of the hydrological impact of climate change on the Seine river basin
(France)Boéet al. (2007) compared data downscaled fromMé&éd France ARPEGE

GCM using both astatistical and dynamical approachhe statistical downscaling
method employed was based on weather typing and conditional resampling. It was
found that thestatistical approach was more skilful at reproducing the temporal and
spatial autocorrelation properties of observed temperature racgipation; however,

the hydrological simulations produced using both sets of data were found to be
relatively similar. In addition bottvere found to reprodudée seasonal cyckes well as

the distribution of daily runoff with a high degree of accuracy

5.5 Conclusion

Whilst it is clear that downscaling adds considerable value to GCM generated data, as
highlighted by the various review studies undertaken (@/dpy & Wigley, 1997;
Murphy, 1999;STARDEX Final Report, 2005; Fowlezt al, 2007; Marauret al,

2010), no one optimum approach to downscaling exists. There are strengths,
weaknesses and assumptions implicit in all; furthermarth respect topresent day
climates at least, dynamical methods appeadnadid little advantage over the various
statistical techniques available (Fowral, 2007). It would appear that the answer to
the question of which is the best method is study speecifitce most appropriate
approach may depend d@he study arede.g. topgraphic complexity, availability of
observational datadnd datassetsrequired (e.g. target variable, stochastic/deterministic,
single/multiple sites) crucially it also depends onthe nature of the study being

undertaken (e.g. water balance studies, flasgessments).

RCMs have the advantage of being able to resolve local scale forcings dynamically, and

add considerable detail to coarse scale GCM dhis;is exemplified by their notable
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skill over topographically complex regions. Although their physidis means they

are potentially more reliable under perturbed forcing, the requirement to represent key
physical processes parametrically means regional models are dependent on the
stationarityof the empirically derived relationships undperturbedforcing. Maraunet

al. (2010) highlight the sensitivity of dynamicéwnscalingo the model configuration

(e.g. grid resolution, numerical schemehey also highlight the requirement to
representsubgrid scale processeparametricallyand the influence whbh biases
inherited from theadriving GCM can haveassourca of uncertaintyin the downscaled

scenarios

Similarly gatistical methods are subject to a range of uncertainties and are heavily
dependent on the assumption of stationarity. Predictor selast@writical step in the
application of statistical modeland one whicmecessarilyntroduces uncertainty to the
downscaleddata In a climate change context it is important that predictors which
capture the warming signal are considered, even if unoteerved conditions they
appear to add little explanatory power to the model. As highlighted abueme are
various shortcomings associated with all statistical methtwdsexample, although
linearregression provides a direct link between local and lacgée variability,the
propensityfor regression model® underestimate theue variance of the localcale
predictandis an important weakness, particularly in terof how extreme events are
represented. In order to address the uncertainty introduced by way of the downscaling
methodused Fowler et al (2007) advocate employing a range of methods within a
probabilistic framework, whereby the convergence/divergendie projections from
each can be accounted fdhe following chaptediscusses thearious methods used to

downscale climate scenarios for the Burrishoole catchment.

127



Chapter 6

High resolution climate scenarios for the Burrishoole catchment

6.1 Introduction

The climate scenarios used in this study represent multiple combinations of driving
GCMs, GHGemission scenarios and statistical/dynamical downscaling measlsh
representing atdiwfafyédr e Bty ¢rmmndcdeldep i ng mul
study attempts to sample across the uncertainties encountered at each stage in the
6cascade of unc échheder,n®8g8)Witho(igh it ig @ommeon gractke

the overreliance on a single aéisation of future climate may lead to the suppression of

key uncertainties in estimates of future climate change. The uncertainties which
permeate the development of high resolution climate projections are manifest in the
degree to which different climatmodels- when forced using the same driving data
produce conflicting projections of future change (Jenkins & Lowe, 2003). The
inconsistencies between model projections apply not only to the magnitude but also the
timing, spatial distribution and diréoh of change. Thus, where policy decisions are
based on a single realisation of future climate, there is potential for anavvender
estimation of the true risk posed by climate change, increasing the likelihood of

maladaption and the implementationireffective response decisions.

Employing multiple climate models, along with different downscaling methods/models,
is a more pragmatic approach which recognizes that all models or regionalization
techniques are lacking in skill (with respect to howlwedy capture different aspects of
observed system behaviour), and consequently it is not advisable to rely on any single
method or model pathway in isolatioAdopting a multimodel approach allows the
strengths of different models to be combinbd addtion it recognizes that all model
pathways represent a plausible future, and by utilizing the output from many different
pathways a greater number of these plausible futures can be saripisdoroviding a

more robust basis for climate change adaptatimhpolicy decisions.

Although the uncertainty inherent in loesdale climate projections is to a certakient
unavoidable, it is possible to quantify the uncertainty range using prior knowledge about
the relative skill of the particular model pathwagr methods used to develop them.
Attaching a weighting to each ensemble membleased on model skill under current

climate - has the advantage of constraining the influence which poorly performing
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models have on the overall ensemble response. Weigktisgmble members is
however a somewhat subjective process, and it is argued that the development and
implementation of weighting systemsin terms of the particular aspects of model
performance which are assessed, the metrics used to evaluate them wedhibiag
different metrics are themselves given in the final schesimply adds an additional

layer of uncertainty which must be explored (Christeregeal, 2010) Furthermorethe
implementation of a weighting scheme also comes with the assumpabmbdel
performance is both time and state invariant. Tebaldi and Knutti (2007) argue however
that weighting schemes can be made more robust by using multiple diagnostics and by
attempting to account for as much uncertainty as is possible. The converspl@ying

a weighting scheme is to treat the output from all models as being equally plausible,
irrespective of performance under present day conditions. Although this negates the
requirement to employ a weighting scheme, not attempting to attach sobadbitity to

model simulations implicitly assumethat all models produce equally reliable
projections of future climate, despite the fact that some may be poor at capturing the
(large and local scale) mechanisms which are important for determalintate

variability across differertemporal and spatiakcales.

With respect to the points raised abosencerning both the need to address uncertainty
and the benefits of employing multiple climate scenarios, a climate ensemble consisting
of both statisgally and dynamically downscaled data from multiple GCMs was used in
this study. In this case the dynamically downscaled projections were obtained from
RCM experiments conducted as part of the EU funded ENSEMBLES project (van der
Linden & Mitchell, 2009).The following sections discuss the statistical models used to
downscale climate scenarios for the catchment, in addition details of the dynamically
downscaled climate projections are provided; following from this the weighting scheme

developed for use irhé study ioutlined

6.2 Statistical downscaling of GCM output: data and methods

In order to addresthoseuncertainties stemming variously from the emission scenario,
GCM structure, model parameterization and climate sensitivity, the output from three
different GCMs (HadCM3, CGCM2 and CSIROmk2), each run using two different
emission scenarios (A2 and B2) werged as input data for the statistically downscaled
scenarios. In this study linear regression was used when downscaling climate data to the

catchment. e application of regression type methadslves five stepsWilby et al,
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200Q Wilby et al, 2002 Wilby et al, 2009: (1) predictor selection; (2) model
calibration; (3) simulation of observed series using reanalysis dd)a;model
validationn and 6) the generation of future tirgeries using GCM outpuDaily data

for the target variablewasobt ai ned from the catchmentos
Table 3.2). In cases where data for a particular variable was unavailable, fegords

the Belmullet synoptic station were used (Table 3.2).

6.2.1 Datasets: Statistical Downscaling

The datasetssed for model training and validation were selected on the basis that they
contained informatioron a range ofcontrastingconditions and were in some way
representative of (likely) future climate. The years 12000aresome of the warmest

on record forthe catchment and thus were considered to be representative of
atmospheric conditions under future climate forcing; for this reason, where observed
records were available for the years 18D0, the periods 1961978 and 1994000
respectivelywere used for model calibration. These periods were also selected as they
are consistent with the time periods used in the EU funded STARDEX prajeet of

the aims of which was to conduct an irtemparison of statistical downscaling
methods (STARDEX iral Report, 2005; Wetterha#tt al, 2007). In order for the
calibrated model to be applicable under perturbed forcing conditions, it is important that
the statistical relationship was shown to remain valid for an independent validation
period To this em observed records for the years 19P®93 were withheld for model

testing.
6.2.1.1 NCEP Reanalysis Data

The griddedatmospheric datased to establish the predicfmredictand relationship

was obtained from the UKSDSM data archive (Wilby & Dawson, 200A¢ source of

this data is the National Centers for Environmental Prediction (NCEP) reanalysis
project (Kalnayet al, 1996). For downscaling purposes the NCEP data was previously
regridded(i.e. interpolated onto a common grid)o conf or mti butdéee 327
longitude gridoftheHa d | ey Cent r e 6 s -oceanylpbalelonatemodad s p h €
HadCM3 (Harris, 2004)The UKSDSM archive contains daily predictors for the period
19612000 which variously describe atmospheric circulation, airflamd vapour

content at three different levels in the atmosphere (surface, 850 hPa and 500 hPa) (Table
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6.1). Reanalysis data from the UKSDSM archive is available for nine regions er grid

boxes covering the British Isles.

The tday lead and lag of each pretdr was also included in the datgd#is allowed

for any temporal offset between the NCEP predictors (averaged over the perioid 00:00
24:00) andpoint-scale observations (e.g. precipitation is recorded daily over the period
09:00 09:00 h) (Wilbyetal., 2002; Hayloclet al, 2006b; Fealy & Sweeney, 2007). To
ensure the downscaled scenarios were not compromised by systematic biases in the
driving data, candidate predictors (both NCEP and GCM) were standardized with
respect to their 1961990 climatolgy (after Karlet al, 1990)1 this was doneby
subtracting thelong term meanvalue and dividing the difference by its standard
deviation.It is common practice when developing lesahle scenarios to take climate
information from the grid box directlgverlying the study areghuslarge scale datasets

for the Irish grid box only wereonsideredn this study.

Variable Abbreviation

Mean temperature temp
Mean sea level pressure mslp
500 hPa geopotential height p500
850 hPa geopotential height p850
Near surface relative humidity rhum
Relative humidity at 500 hPa r500
Relative humidity at 850 hPa r850
Near surface specific humidity shum
Geostrophic airflow velocity f
Vorticity z
Zonal velocity component u
Meridional velocity component \Y
Wind direction th
Wind Divergence zh

Table 6.1 @ndidate (NCEP and GCM) predictor variables available from the UKSDSM data aidbteeltalics indicate
secondary airflow indices calculated from pressure fields (surface, 500 and 850 hPa).

6.2.1.2 Global Climate Model data for the Irish grid box

Future climate scenarios were generated using predictor variables from three different
GCMs, each run using both the med#high A2 and mediurtow B2 SRES (Special
Report on Emission Scenarios) esmss scenarios (Nakicenowvet al, 2000). GCM

data for the Irish grid box was obtained from the UKSDSM data archive (Wilby &
Dawson, 2004) and covers the period I98D0. The GCMs considered included:
HadCM3, from the Hadley Centre for Climate Predictend Research (Met Office,

UK); CCGCM2, from the Canadian Centre for Climate Modelling and Analysis
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(CCCMA; Canadg)and CSIRGMk2 from the Commonwealth Science and Industrial
Research Organisation (CSIRO, Australia). The same predictors available f'om th
NCEP reanalysis dataset (listed in Table 6.1) were available for each of the three
GCMs.

6.2.2 Model Description: Linear Regression (SDSM)

Linear regression was implemented through the statistical downscaling model SDSM
(Statistical DownScaling Model) (Wilby et al, 2002; Wilby & Dawson, 2004) a
software package used for downscaling multgdenarios of surface weather variables

at individual sites on a daily tirgtep using grid resolution4analysis and GCM data.
SDSM is best deftthe sthckadtic westheageredatygrland iregression
based downscaling methods (Wileg al, 2002). The model has previously been
applied in a host of meteorological, hydrological and environmental assessments across
diverse climatic regions (e.g. Hasset al, 1998; Wilbyet al, 1999, 2000; Hagt al,

2000; Harpham & Wilby, 2005; Dibiket al, 2008; Cheret al, 2010; Souvignet &
Heinrich, 2011; Liuet al, 2011).

SDSM has both a deterministic and stochastic component which allowisgbtporate
the strengths of both the regression and weather generator type approaches to
downscaling. Linear regression comprises the core deterministic component of the
model and is used to establish a direct relationship between a set otdatge

atmospheric predictors and the target variable. This relationship can be written as:

w T T o -

where® is the local predictandn dayz,T j is the regression parameter optimized using

ordinary least square8, represents? largescale atmospheric predictoemd- is a

random error term represented by the Gaussian distribiitiof,

The underestimation of variance is one of the key shortcomings of regression type
approacheso downscaling (see section 5.2.2). Tadeess this SDSM incorporates an
additional stochastic component which is used to artificially inflate the variance of the
downscaled series. Variance inflation is conducted using a psandom number
generator which samples values from a normal digtobhuvith a mean of zero and a

standard deviation equal to the standard efforf), . These values are added to the
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deterministically derived output for each day. Variance inflation is necessary given the
importance of representing extreme and high&ntile events in the downscaled series

- particularly with respect to the data used in impact studiesiance inflation is
implemented by tuning the amount of white nois€Q (which is added to the

deterministic model output using the following:

where ¢ are normally distributed random numbery, is the standard error of the
estimate(produced from the initial regression equajijahis the model bias and VIF is
the variance inflation factor. Both the VIF atxparameters are adjusted so that the
model output better accords with the observed sehieshe equation above VIF is
divided by a scaling factor which remains constant in the model.

The weather generator element of SDSM enables multiple synthetic meelesembles

of daily weather data to be produced using a common set oscald predictors.
Ensemble members differ with respect to their individual t&®ees evolution but
possess the same statistical attributes. The degree to which the respees/differ is
dependent on the relative significance of the stochastic component in the model
structure. For those variables which are to a greater degree determined kscédege
atmospheric forcing, a high proportion of the variance will be accouftedy
regression alone; however, where the -ggdle predictors account only for a fraction of

the observed variance, the stochastic element has a comparatively greater weighting.
This applies to variables |ikeisipgfemi pi t
localised factors not captured bihe grid-scale predictor fields. Stochastically
generating multiple climate realizations has the advantage of allowing the range of
internal variability displayed by the local climate to be somewhat representbeé
downscaled data. When using the SDSM modékre a variable did not conform to

the conventions of linear regression, a transformation was apples.ensured the
datasets approximated to the required normal distributiorihis study SDSM was

enployed to downscale climate scenarios for the following variables:

A Temperature (minimum and maximurfiCj

A Precipitation (mm) (occurrence and amounts)
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Wind Speed (kmT)

Relative Humidity (%)

Solar Radiation (Mj i)

Potential Evapotranspiration (PET) (hm

> > > >

6.2.3 Model Description: Generalized Linear Model (GLM)

Whilst conventional linear regression requires the response variable to be normally
distributed, generalized linear models (GLMs) have the advantage of being able to
model data series which followrobability distributions from the exponential family
(e.g. Gamma, Binomial, Poisson) (Mc Cullagh & Nelder, 1989). Thus, the use of GLMs
avoids the need for data transformation, which is desirable given the loss of information
which can occur when rescalins employed. In addition the relationship between the
response and explanatory variables may be more complex than the simple linear form
required for standard regression; with respect tq @isVis have theaddedbenefit of
allowing nonlinear relationsips to be modelled. As GLMs fit probability distributions

to the target variable they should allow for a better representation of the higher
guantiles consequently thefrave a clear advantage over linear regression, particularly

in cases where data traoghation is required.

GLMs have previously been employed to study different climatological series (e.g.
precipitation occurrence and amounts, wind speed) (Coe & Stern, 1982; Stern & Coe,
1984; Chandler & Wheater, 2002a, 2002b; ¥dral, 2002; Chandler2005; Yanget

al., 2006); they have also been used for the purposes of downscaling precipitation.
Abaurrea and Asin (2008mployedogistic regression and a GLM with a Gamma error
distribution to downscale rainfall occurrence and amounts respectivelasltfound

that the models were skilful in reproducing certain aspects of seasonal and daily
precipitation behaviour (e.g. wet and dry spell length), but were less successful at
reproducing extreme eventBealy and Sweeney (2007) also employed two difteren
GLMs when downscaling precipitation (occurrence and amounts) for a number of
synoptic stations across Ireland. Buishahdl (2004) applied a separate logistic model

for downscaling daily and monthly rainfall occurrence for three stations in the Rhine
basin. Buishanét al (2004)also used GLM with a Gamma distribution to downscale
individual wetday and monthly rainfall aounts for the same stations this study

GLMs were employed to downscale daily data for precipitation and wind szt
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of which present highly skewed distributions. A logistic regression was used to model
rainfall occurrence, whilst for both predgtion amounts and wind speed a Gamma
distribution with a log link function was employeWet-day rainfall amounts have
typically been described using the Gamma distribution (e.g. Katz, 1977; Buishand,
1978). In this study he method ofmaximum likelihoa was used to estimate the

coefficeientvalues for eachegressiormodel

6.2.4 Predictorselection

Predictor selection is critical for determining the character of the downscaled series
(Winkler et al, 1997; Charlest al, 1999) and represents a key source of uncertainty in
estimates of local climate change (Huth, 2004); however, despite the importance of this
process, there is little consensus within the downscaling community as to an optimum
predidor set or selection process. Past studies have employed a diverse array of
selection criteria, downscaling techniques and predictor combinations (including
climate data extracted from various predictor fields), covering a range of geographical
and climatecontexts. As a result interpretations of what constitutes the most appropriate
set of predictors for a given predictand or region differs greatly. As noted in previous
studies, selecting the most appropriate set of predictors, which are sensitive to the
region and timescales considered, is more pragmatic than using a single predictor or
standard predictor set (Wilbst al, 1998; Huth, 2004). Despite the differing and often
subjective approaches taken to predictor selection, there are a number of pumtsnco

to previous work which provides a guide to the selection process (listed in Section
5.2.2). These criteria are however frequently at odds with one another, indicating that a
balance must be struck when choosing the most suitable predictor set. ptegxa
comparison to surface climate variables, climate models generally provide a more
realistic description of largsecale circulation (Murphy, 1999); however, a number of
studies (e.g. Kidson & Watterson, 1995; Wilby & Wigley, 1997) have shown that
climate scenarios downscaled using circulation predicohgare largely insensitive to
alterations in climate forcing, thus warranting the inclusion of additional variables

which may be less well simulated.

In this study predictor selection was largelyvdn by the association shown between
the candidate predictors and the target variable. Predictors were also chosen with the

aim of capturing the key atmospheric mechanisms known to influkrcadscale
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events, even where the inclusion of such predichprzeared to add little explanatory
power to the model;of example, when modelling precipitation some measure of
atmospheric humidity was included for all seasons, despite humidity appearing to be
generally norinformative. Care was taken to avoid multitboearity and thus ensure
stability in the model output. Aeparate model was developed for each sedson
which the most appropriate set of predictors were selected. Modelling each predictand
on a seasonal basis removed any influence which the annual cycle may have had on the
coefficient values it also allowed for temporal variations in the strength of the
predicor-predictand relationship; however, where the downscaled series was shown to
be sensitive to the selection of a particular variable, the same predictor was chosen for
each season (e.g. the inclusion of mean sea level pressure when downscaling
precipitation). This was to ensure there was some continuity in the driving data used to

generate the seasonal scenarios.

In addition to employing largscale surface and atmospheric variables as predictors,
potential radiation and delta temperature (i.e. diurnaptenr at ur e r ange; @
to downscale daily solar radiation and potential evaporation respectively. This approach
takes its cue from conventional weather generators, whereby the data series for both
variables is typically estimated based on theirti@tship with other meteorological

parameters (Donatelit al, 2006; Fealy & Sweeney, 2008).

The quantity of sol ar radiation receivec
function of potential radiation and some measure of atmospheric transtyidsi this

case transmissivity is related to cloud coveror whi ch @T i s taken
and Campbell (1984) demonstrated that a relationship exists between the radiation
transmitted through the atmosphere and the diurnal range in neacesuwia
temperatur e. Foll owing Bristow and Campb

used in this study:

Ya Q¢ "Ya Q¢
C

Y'Y Y& Qo

where"Ya "Cand“Ya & tepresents point scale minimum and maximum temperature at

timet. Forthepurppes of model calibration T was
from the Furnace weather station (Figure 3.2). For each GCM and emissions pathway
T was <calculated wusing the downscaled

Potential radiation was caltated using the followingBristow & Campbell 1984)
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Distance from the sun:
QQ p TWoFDE MIp X ERE OMETIL U G
Declination:
QOB VET WX PYQER @ W8T p X2QE W8T o TVYQPR ¢ T 8ip X CQE &
Half day length:
W HED YORQR VOB GO
Potential Radiation:

. . R ZYE QBYQRQM 6 ¢ b Od6 £ QYR
VEOYORD ppH2QQ?2 -

wheredoyis the day of yearandlat is the latitude in radian§iven the influence which

solar radiath n has on surface evaporation, T
included in the predictor set when downscaling this varidbtaming solar radiation

was found to have a significant influence on potential evaporation, particularlyefor
winter seasorwhere its inclusion as a predictor increased the percentage of explained
variance from less than ~15% to over 55%his wasa finding common to both the

calibration and validation periods.

6.2.5 Temperaturecalibration and validation

Temperatureis a relatively homogenous variable over large areassequentlya
significant proportion of the variance exhibited at a lestalle is determined by the
largescale atmospheric statlh this study he predictors used to model poistale
temperaturancluded 2 m surface temperature and several variables which variously

describe atmospheric circulati¢fable 6.2).

Maximum Temperature Minimum Temperature
Season  Predictors Calibrationi Validationt Predictors Calibrationi  Validationi
(E%) (E %) (E%) (E%)
DJF temp, up500, zh5 72 73 temp, p500, f, zh5 67 65
MAM temp, u5, z,v5 74 79 temp, f8, z5, v5 69 66
JIA temp, 8u, v 65 66 temp, f8, v 50 52
SON temp, p500, v5,u5 82 81 temp ,f8, zh, z5 74 74

Table 6.2 Predictors used to downscale daily minimum and maxtennperature. Also shown is the explained variac®) for
the calibration 1961 1978; 19942000)and independent validatiohq791993)period.

This selection avoided the use of circulation variables alone which previous studies

have indicated care&d to unrealistically low estimates of temperature change (Huth,
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2004).The downscaled series captures a high proportion of the variance present in the
observed datahus within the SDSM model structure the deterministic component was
dominant. Based omhe explained variance and the slope of the best fit line, the
seasonally downscaled series better accords with the observed data for the autumn and
spring seasons(Figures 6.1& 6.2). In contrast the lowest explained variance is
associated witrsummer minimum temperature. Figure 6.3 and 6.4 indicate that the
downscaled data captures the observed annual aneamtaal variability with a high
degree of skill. Generally there appears to be no discernible difference in model skill
over the validatin and calibration period$able 6.3 compares the monthly statistics of

the observed and model simulated (maximum and minimum) temperaturefceties
validation period. Based on this the downscaled NCEP data appears to underestimate
the 8" percentile but captures well the &5percentile and monthly mean values. The

coefficient of determirgon (R?) is lowest for June and July minimum temperature.

Maximum Temperaturg Jan Feb Mar Apr May  Jun Jul Aug Sep Oct Nov Dec
Percentile § 333 -135 -11.3 -146 -88 6.2 -7.3 -82 -105 -104 -30 190
Mean 51 -2.5 21 -3.3 -2.7 -0.6 -1.1 0.0 -1.9 -1.6 2.9 3.4
Percentile 95th 52 26 111 -35 -8.4 -5.8 4.1 0.9 15 4.3 5.8 3.2
Std Deviation 7.4 83 368 3.7 -30 0.0 00 174 200 316 190 -7.7
Range -2.5 11.7 29.3 1.2 -101 -3.1 3.1 14.1 0.7 204 216 -121
R 077 070 064 067 068 062 064 065 066 062 065 0.75
Minimum Temperature

Percentile § -18.2 8.3 00 91 6.1 113 54 12 105 103 16.7 0.0
Mean 10.3 -3.4 2.4 -3.7 0.0 1.0 -1.6 0.0 2.9 0.0 3.8 4.9
Percentile 95th 0.0 -6.4 0.0 4.4 2.5 0.7 3.3 -0.6 5.7 -0.8 3.1 -4.3
Std Deviation 6.5 3.6 0.0 8.3 3.8 45 105 45 83 -36 00 -33
Range 2.9 8.7 -1.3 31.0 3.0 -185 14.4 -1.6 11.3 4.8 11.1 -1.2
R 0.67 0.57 056 059 0.53 0.38 043 051 053 065 057 0.67

Table 6.3 Percent bias for selected statistics calculated over the independent validatiod peghe93)on a monthly basis fo
maximum and minimum temperature respectively; also shown is the coefficient of determination. The temperature se
downscaled from NCEP reanalysis data and compared to observations from the Furnace weather station (Figure
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Figure 6.1 Seasonal scatter plots of downscaégsusobserved (Furnace weather station) daily minimum temperature for the Furnace weather station. Temperature is down9¢@lE® usanplysis dati
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provided.
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6.2.6 Precipitation:calibration andvalidation

Precipitation is an extremely heterogeneous varialileth temporally and spatially

and is to a large degree influenced by localised forcings which, due to thearidub
scale nature, are not fully captured in coargsolution atmospheric datasets.
Precipitation also presents a highly skewed discontind@isbution where the series

IS punctuated by the occurrence of rain days. This precludes the direct application

of well established and robust statistical methods which necessitate a normally
distributed continuous response variable. The statistisetibution of precipitation also
makes it difficult to properly characterise higher order statistics in the downscaled

series.

Using both SDSM and the GLM approach, precipitation was downscaled asstefwo
process (performed automatically by the SDSdftware). Firstly the sequence of days

on which rainfall occurs was determined; subsequent to this the quantity of rainfall
estimated o occur on a gmulatedosingawsecond tkgression madsl.

To fit the occurrence model the observedadatwas recodedinto a binary sequence
signifying the occur r eThe prediotérs useel to/davnsgaled a y
precipitation are largely consistent with previous studies, being comprised of various
circulation variables and some measureatthospheric humiditylt is acknowledged

that GCMs simulate those variables relating to atmospheric circulation with a high
degree of skill, consequently circulation variables are frequently used when
downscaling precipitation (Cavazos & Hewitson, 2008)véver the use of circulation
variables alone may be inappropriate as they fail to fully capture those atmospheric
mechanisms relating to thermodynamics and vapour contewhich are conducive to

local scale precipitation (Cavazos & Hewitson, 2005; leoet al., 2007). The moisture
content of the atmosphere is likely to be sensitive to warming climate conditions and as
such humidity is an important predictor in capturing the climate change signal;
furthermore it has been shown that the inclusion of someasure of atmospheric
moisture can bring about a convergence in the projections from statistical and
dynamical models (Charles al, 1999). When using SDSM the same predictor set was
employed when modelling wetay occurrence as the wady rainfall anounts. In
contrast, by allowing each parameter to be modelled independently using a different
predictor set, the GLM models allowed a more flexible approach to downscaling
precipitation (Table 6.4). When downscaling precipitation using SDSM those predicto

which were shown to be most skilful at capturing rainfall amounts were used. In this
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respect greater emphasis was ©placed on
opposed to the sequencing of rainf4ram days.

Season SDSM GLM - Occurrence GLM - Amounts
DJF mslp, u8, v8, shum mslp, u8, v8, shum mslp, u8, v8, shum
MAM mslp, u, v, rhum p500, u8, zh8,shum mslp, u, v, rhum
JIA mslp, u, v, rhum p500, u, zh, rhum mslp, u, v, rhum
SON mslp, u, v, rhum p850, u8, zh, rhum mslp, u, v, rhum

Table 6.4Predictors used to downscale precipitation for each season.

6.2.6.1 Linear Regression (SDSM)

The occurrence model in SDSM is described as (Wetteehall. 2005; Wilbyet al
1999; 2003):

wheret is the time in days, is the conditional probability of a wet day occurring on
dayt, 0 is the standardized predictor, andis the regression parameter optimized by
ordinary least squares\ uniformly distributed random number t i  p is used

to determine whether precipitation occurs on a given day; for each time stepdaywet

is projected to occurTif 1 . Incorporating this stochastic element means the model
is capable of producing multiple series of wet day occurrencesevelaeh series differs
with respect to their sequencing of wet/dry days. On a wet day rainfall amounts is

estimated using:
Y8 1 I o -

where whichY is the standardized precipitation on ddy is the calculated regression
parameter estimated using ordinary least squares,-and a random error term
represented by the normal distributibntt), 8To ensure the dateonformedto the
(normal) distribution required for linear regregm, a fourth root transformation was
applied prior tamodelfitting. The suitability of this transformation was tested using the
KolmogorovSmirnov test fornormality. The regression model in SDSM accounted
only for a small proportion of thvariance present in the observed series; as a result
variance inflation had a greater bearing on the character of the model othput.
current structure of the SDSM model does not allow an independent set of predictors to

be used when modelling preciiton occurrence and amounts respectively; however, it
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Is acknowledged that it may be possible to do so using SDS@&dnjunction with

external software.

6.2.6.2 Generalised Linear Model (GLM)

Logistic regression was used to model the probability of rainfall occurring on a given
day conditional on the larggcale atmospheric stat@he model assumes that the
logistic transformation o is a linear function of the predictors, acah be writteras:

> N o o = o

QU IIﬁ w ww E ow
where"Qo is the link functiond is the probability of occurrenceé) it ;8 hid are the
regression coefficients, ar o8 Foo are the predictors. In this study the regression
coefficients were estimated using the method of maximum likelihood. When compared
with multiple-linear regressionhis model is more appropriate for estimating the-wet
day occurrence. This is because thedelmutput is constrained between zero and one,
allowing it to be interpreted as a true probability. Using the observed dataset a threshold
probability is determined above which a rain day is assumed to occur. This threshold is
taken as the conditional grability and used to classify the occurrence of a wetddny
in the simulated data. Precipitation amounts were modelled by relating a linear
combination of the atmospheric predictors to the expected value of the response variable
(specified as having a gana distribution) through a logarithmic link function. This
model structure was chosen as gay precipitation approximates well to a gamma
distribution it alsoavoids unrealistic negative values for the estimated rainfall amounts.

The model can be wrén as:
ITged 11'¢c 1 1o E 1o

The GLM approach outlined above has the advantage of allowing two different
predictor sets to be used. This acknowledges that the initiation of a rainfall event, and
the ensuing intensity of that event, may bentrolled by different atmospheric

processes.

6.2.6.3 Modetomparison

Table 6.5 shows the percentage explained variance for the GLM and SDSM amounts
models described above. The explained varianisted for the respective calibration

and the validation periodsis calculated based on the modelled and observed datasets
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recaled using a fourth root transformatidiable 6.5 also shows the Heidke Skill Score
(HSS) for the GLM occurrence model . Thi
correctly simulate the occurrence of wet andatys. As the wetlay occurrence series

was stochastically generated in SDSM, the HSS metric could not be uassktshis

aspect of model performance.

The relatively low explained variance for wet day amourasfinding common to all
seasons is consistent with previous studies and illagés the difficulties associated
with downscaling poinscale precipitation using coarse resolution atmospheric data.
The percentage explained variance is greatest for winter, reflecting the stronger
coupling which exists during this season between lacgée atmospheric circulation

and the locakcale precipitation regime. This coupling is manifest in the greater
dominance of zonal airflow and the more frequent occurrence of intense low pressure
systems.  contrast, the explained variance was found tdokeest for summer, a
finding which is commensurate with a general reduction in the frequency of frontal
systemsa slackening in circulatioand a weakening in the linkage between lesggle
circulation and the locedcale response. Convective activitisca makes a more
significant contribution to receipts during this season, underlining the greater role local
forcings play, and the inherent limitations of coarse resolution models in terms of
capturing the influence which small scale perturbations in spimeric conditions can

have on the character of local precipitation.

Season SDSMi Precipitation Amounts (E %] GLM 1 Precipitation Amounts (E %] GLM - Wet Day Occurrence HS¢
Calibration Validation Calibration Validation Calibration Validation
DJF 32 30 30 29 60 60
MAM 26 27 24 25 67 63
JIA 19 23 19 22 61 60
SON 20 23 28 27 61 59

Table 6.5Explained variance (%) for the calibration (198378; 19942000) and validation (1979993) periods estimated on

seasonal basis. The explained varianaaisulated for the linear component of SDSM (i.e. with the variance inflation disat

and the GLM amounts model respectively. Prior to estimating the explained variance a fourth root transformation is gy

modelled and observed precipitaticatal Also shown is the HSS for the GLM occurrence model. Due to the stochastic mo
of wet days the HSS was not calculated for SDSM.

Based on Figure 6.5 SDSM tends to underestimate the monthly wet day occurrence (%)
while the GLM generally overestates the proportion of wet dayshis is particularly
evident for the summer months over the calibration period. Both models do however
capture the annual cycle well, particularly SDSM. The GLM consistentlyesténates

the mean monthly wet (Figure6ga)) and dry (Figure 6.6(b)) spell length, whilst SDSM

consistently undeestimates both parameters.
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Figure 6.5Monthly percent wetl a y s 2 ninffor the downscaled and observed (Furnace weather station) precipitation ¢
estimated over the calition (19611978; 19942000) and validation (1979993) periods respectively. Precipitation is downsc
from NCEP reanalysis data using both the SDSM and GLM models.
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Figure 6.6(aMean monthly wes p e | | | 2emmigfaor thedowhsraled and observed (Furnace weather station) precipit
series estimated over the calibration (196%8; 19942000) and validation (1979993) periods respectively. Precipitation i¢
downscaled from NCEP reanalysis data using both the SDSM andr@iddls.
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Figure 6.6(bMean monthly dryspell length (<0.2 mm) for the downscaled and observed (Furnace weather station) precij
series estimated over the calibration (19878; 19942000) and validation (1972993) periods respecgly. Precipitation is
downscaled from NCEP reanalysis data using both the SDSM and GLM models.

Figure 6.7 and 6.8 illustrates the skill of both the SDSM and GLM models at
reproducing the mean monthly, as well as kaenual precipitation receipts foreth
calibration and validation periods respectively. Generally the GLM model tends to over
estimate monthly amounts; this is particularly evidimtthe summer months where
June precipitation receipts are ~20% greater than the observed. SDSM also over
estimates June receipts for but not to the same degree (calibration 5%; validation 17%).
In contrast SDSM tends to undestimate the mean monthly values, this is most
noticeable over the validation period for the months of May (14%), August (12%) and
Septembe(11%). The coefficient of determinatiercalculated using the observed and
modelled mean monthly precipitation receipt;dicates that the GLM (calibration:
0.95; validation: 0.94) is marginally better than SDSM (calibration: 0.93; validation:
0.86) atreproducing the annual cycle. Similarihet coefficient of determination
calculated using the observed annual precipitation amouinidicates that the GLM
(calibration: 0.65; validation: 0.61) is slightly better than SDSM (calibration: 0.64;
validation: 0.60) at reproducing the observed pattern of-abtewal variability. The fact

t hat both models exhibit similar skil!/
precipitation regime may be due to the same predictor setsdéyeamounts) being

used andhe factthat both are essentially regression type models.
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Figure 67 Monthly mean precipitation receipts for the downscaled and observed (Furnace weather station) series estimat
calibration (19611978; 19942000) andvalidation (19791993) periods respectively. Precipitation is downscaled from NCE
reanalysis data using both the SDSM and GLM models.
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NCEP reanalysis data using both the SDSM and GLM models.
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Figure 6.9 shows the degree to which the GLM model;infiated SDSM and inflated
SDSM series capture the monthly variance of the observed precipitation series over the
calibration and validation periods respectively. There is a clear improvement in this
aspect of model performance when variance inflation is applied. The inability of the
GLM to capture the true variability of precipitatios reflected in the seasonal@

plots shown in the Figure 6.10. T¥eplots highlight that, irrespéive of the season and
period considered, the distribution of the rainfall data obtained using SDSM is closer to
the observations than the downscaled GLM data. It is shown that the GLM
underestimates the higher quantilgsarticularly the 98, 95" and ®™. With respect to

the GLM derived data, Figure 6.10 illustrates the degree to which the underestimation
of variance leads to a corresponding urelimation of higher quantiles thus
highlighting the importance of applying some technique to enharoceatiability of the

downscaled series.
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Figure 6.9 Monthly variance of the downscaled and observed (Furnace weather station) precipitationesetiesalibration
(1961-1978; 19942000) and validation (1978993) periods respectively. Precipitatisrdownscaled from NCEP reanalysis di
using both the SDSM and GLM models. Both the inflated andimitated downscaled SDSM data is plotted.

150



[ST

DJF MAM DJF MAM

80 v r T ' T - v 30 : T - . ' ! v 80 30 v . ! T T . '
70 1 70 70F 1 70 4
o
60 1 60 60 ° 1 60 1
o
1 E 50 E sof 1 E 50 1
‘ £ e H s
E i 4 F 5 -
£ 1 £ 40 e a0 1 40 1
Q =] =] E
+ = 3 2 N
E 1 E 30 £ 30 1 £ 30 1
1 20 1 ]
4 10 1 ]
0
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Observed Furnace (mm) Observed Furnace (mm) Observed Furnace (mm) Observed Furnace (mm)
JJA SON JJA SON
80 80 80 80
70 70 o ° q0r 70
o
60 60 60 ¢ 60 o
.
E 50 5 E 50 2 E 50 ° Z 50 .
£ £ £ E
Fl -] z El
e = E Ll ° =3
5 40 S 40 § 40 I § 40
i 2 2 & 3
230 . 2 30 2 - 2 30
20 20 20
10 10 10
0 0 0
30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Observed Furnace (mm) Observed Furnace (mm) Observed Furnace (mm) Observed Furnace (mm)
| = SDSM Linear Fit =  SDSM Data Reference Line  ®  Selected Quantiles - GLM Linear Fit = GLM Data ‘ ‘ o SDSM Linear Fit o SDSM Data Reference Line @  Selected Quantiles === GLM Linear Fit © GLM Data |
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It cannot however be argued that variance inflation is a panacea for the problem of
inadequately capturing the true variability of precipitation oritifieence of locakcale

forcings, nor can it be assumed that vac@mflation is capable of fullgharacterising
changes in the wvariability of t he catch
forcing. The use of inflation techniques in statistical downscaling have been questioned;
von Storch (1999) argues that vawa inflation- as applied by Karét al (1990)-
erroneously assumes that all losahle variability is driven by largecale variability in

the predictor fields. I n its place von S
whereby the processes unresolved by the {acgde predictor(s) are amanted for by

adding noise with some paefined properties to the downscaled series (see section
5.2.2). Given the degree to which the GLM approach underestimates the true variance,
coupled with the fact that both approaches reproduce other statistica sinilar level

of skill, the climate scenarios downscaled using SDSM only were used when modelling
changes in the catchment hydrologyhe results of the GLM ardiscussed above in

order to provide acomparison of two different regression type approsche

downscaling.

6.2.7 Othemeteorologicalparameters

A number of additional meteorological variables were downscaled for the catchment
which, although not employed directly in this study, were used as part of the RESCALE
project discussed in Chaptene (Fealy et al, 2010). As instrumental records of
sufficient length for these variables were not available from the Furnace weather station,
the required observational datasets were obtained from the Belmullet synoptic, station
which islocated to the mvh-west of the catchment. Given that these variables were not
used when modelling the catchment hydrology, they are not discussed in any great
detail. However, they are included here as they provide additional information on the

application of the downstiag method used in this study.
6.2.7.1 Windypeed

Wind speed distributions are typically positively skewed and generally approximate to
either a Gamma or Weibull distribution; to accommodate this within the GLM
framework a gamma distribution with a ldigk function was employed. SDSM was
also used to downscale wind speed, in this case to conform to the distribution required

for linear regression a square root transformation was applied. To reflect the processes
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which govern local scale wind, predictasbich describe atmospheric circulation only
were employed (Table 6.6). For each season, as well as over both the calibration and
validation periods, a relatively high proportion of the observed variance was accounted
for in the downscaled series. The sapnedictor set was used in each model, this is
reflected in the negligible differences in the explained variance for each; however, as
with precipitation, the GLM tended the underestimate the variance of the observed

series.
SDSM GLM
Season Predictors Calibration (E %) Validation (E %) Calibration (E %) Validation (E %)
DJF zh8, mslp, f8 49 51 51 47
MAM f8, p500, v 48 45 47 45
JJA z, 18, v 46 41 47 42
SON f8, zh5, z 47 47 45 45

Table 6.6 Kplained variance (%) calculated on a seasonal basis for the calibrationl@®88$;119942000) and validation (1979
1993) period respectivelWind speed is downscaled to the Belmullet synoptic station using NCEP reanalysis data. The e
variance iscalculated for the linear component of SDSM (i.e. with the variance inflation disabled) and the GLM respect

6.2.7.2 Relativlumidity

Relative humidity was downscaled to the Belmullet synoptic station using the SDSM
model only. Gridscale relative humidity was included in the predictor set for each
season. Incorporating this variable was considered impdrtamider to represerthe
linkage between local and maescale atmospheric conditions. Given that they
exhibited a strong correlation with poistale humidity, a number of circulation
variables were also included in the predictor set. A relatively low proportion of the

variance exHtiited by the observed series was captimethe downscaled data.

Season Predictors Calibration- (E %) Validation- (E %)
DJF f, v, 25, rhum 31 36
MAM v, f, 25, rhum 30 34
JIA u, Vv, z5, rhum 25 23
SON f5, z5, v, rhum 39 39

Table 6.7Explainedvariance(%) calculated on a seasonal basis for the calibration (1988; 19942000) and validation (1979
1993) periodsespectivelyRelative humidity is downscaled to the Belmullet synoptic station using NCEP reanalysis date
explained variance isalculated for the linear component of SDSM (i.e. with the variance inflation disabled).

6.2.7.3 Solaradiation andpotentialevaporation

When downscaling data series for both solar radiation and potential evaporation a
number of largescale predicts, along with potential radiation andyY were used
(Table 6.8; Table 6.9). Both variables were modelled using SDSM only. Due to the

influence which solar radiation has on the rate of evaporation, both variables were
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downscaled using similar predictor seffhe instrumental records available for solar
radiation and evaporation cover the periods 12820 and 1972000 respectively. To
overcome the short length of the data available for model traithiagpefficient values
wereaveraged across 10,0B00tstrappedamples.

Season  predictors Calibration- (E %) Validation- (E %)
DJF Pot Rad,pTv ,z5 ,u8,zh 65 60
MAM Pot Rad,Tzh, z5, u5, rhum 65 66
JJA Pot Rad,Trhum, u5, zh, z5 50 48
SON Pot Rad,pTzh, u8, z5 73 72

Table 6.8 Kplained variance (%) calculated on a seasonal basis for the calibration1{@88;119952000) and validation (1989
1993) periods respectivelyhe explainediariance is calculated for the linear component of SDSM. Solar radiation is down
to the Belmullet synoptic station using NCEP reanalysis data andgmaile temperature records.

Season Predictors Calibration- (E %) Validation- (E %)
DJF Pot Rad,pTv ,z5 ,f, rhum 64 55
MAM Pot Rad,Tzh, z5, u5, rhum 67 65
JJA Pot Rad,q Trhum, u5zh, z5, rhum 44 45
SON Pot Rad,pTv, u8, z5, rhum 73 70

Table 6.9 Eplained variance (%) calculated on a seasonal basis for the calibratiorl(@8¥)land validation (1982987) period:
respectivelyThe explained variance is calculated for the linear component of SDSM. Potential evaporation is downscalt
Belmullet synoptic station using NCEP reanalysis data and {sziale temperature records.

6.3 Dynamically downscaled datasets

Dynamical downscaling adds high resolution detail to the@GM-grid scale climate
whilst preserving the largecale climate features simulated by the driving global model
(Giorgi & Mearns, 1991; 1999; Giorget al, 2003; Kjellstrom & Giorgi, 2010;
Rummikainen, 2010). The strength of dynamical downscaling lies in the fact that the
models are based on immutable physics and can resolvgridulcale processes
dynamically. However, there are difficulties associated with integrating boundary
conditions fronthe parent GCM, and there remains a need to parametegyzdimate
processes which occur at scales too small to be resolved explicitly. Biases in the driving
data also introduce uncertainty to the model simulations, and it is argued that the
resolution & which they are currently run remains too coarse for their output to be
commensurate with poksicale observational datathus necessitating the subsequent

application of statisticalownscaling.

The dynamically downscaled data used in this study wasirgt from RCM
experiments conducted as part of the EU funded ENSEMBLES project

(www.ensemblegu.org (van der Linden & Mitchell, 2009). It constitutes one of the
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largestregionalclimate change research projeatslertakenthe work carried out for it
builds on earlier EU projects such as PRUDENQEristensenet al, 2007b)
STARDEX (STARDEX Final Report, 2005), MICE (Hanscet al, 2007) and
DEMETER (Palmeeet al, 2004). The main objective of ENSEMBLES was to produce
high resolution probabilistic information on future changes in climate for Europe using
a multtmodel ensemble. In addition the project aimed to identify methods for
quantifying and where possibleeducing the uncertainties inherent in producing
regional scale projections of future climate change. Throughout the project there was an
onus on participants to evaluate model performargiag quality controlled gridded
datasets

6.3.1 ENSEMBLES

To produce the dynamically downscaled climate scenarios used in this study, eleven
different institutes (Table 6.10) ran a series RCMs for a common European domain at a
horizont al spat i al r e g lateral bourwary conflitio@sSromk m  (
one or more of five different AOGCMs (Table 6.11). The various model combinations
employed - constituting different driving GCMs, GH@mission scenarios and
downscaling RCMs were used to produce a metiodel ensemblefdl9 dynamically

downscaled climate scenarios (Figure 6.11).

Acronym Institute RCM Reference

C4IRCA3 The Community Climate Change Consortium fc RCA3 Jonest al. (2004)
Ireland, Met Eireann

CHMIALADIN Czech Hydrometeorological Institute ALADIN Fardaet al. (2010)

CNRMRM4.5 Ce’ngre National de Recherches Meteorologiqu: RM4.5 (ALADIN) Raduet al (2008)
Méteo-France

DMI-HIRHAMS Danish Meteorological Institute HIRHAMS5 Christenseret al. (2006)

ETHZCLM Swiss Federal Institute of Technology CLM Bohmet al (2006)

ICTP-REGCM3 The Abdus Salam Intl. Centre for REGCM3 Giorgi & Mearns (1999)
Theoretical Physics

KNMI-RACMO2 The Royal Netherlands Meteorological RACMO2 Lenderinket al (2003)

METNOHIRHAM The Norwegian Meteorological Institute HIRHAM g%%%(;n & Haakenstad
UK Met Office, Hadley Centre for .

METO-HadRM3QO0 Climate Prediction and Research HadRM3, (Q0) Collinset al (2006, 2010)
UK Met Office, Hadley Centre for .

METO-HadRM3Q3 Climate Prediction and Research HadRM3, (Q3) Collinset al (2006, 2010)
UK Met Office, Hadley Centre for .

METO-HadRM3Q16 Climate Prediction and Research HadRM3, (Q16) Collinset al (2006, 2010)

MPI-M-REMO Max-Plancklnstitute for Meteorology REMO Jacob (2001)
Consortium on Regional Climatology

OURANOSMRCC4.2.3 and Adaptation to Climate Change CRCM Plummeret al (2006)

SMHI iggﬂfeh Meteorological and Hydrological RCA Kjellstrom et al. (2006)

RPN Recherche en Prévision Numérique GEMLAM Cotéet al (1998)

Table6.10Institutions, model names and abbreviations of the ENSEMBLES RCM simulations used in this study. The F

Centre contributed a perturbed physics ensemble consisting of three different RCM simulations, each of which was tena

different clmate sensitivity: standard (HQO), low (HGQ3) and high (HGQ16). The RPN (GEMLAM) and CHMI (ALADIN)
institutes did not use their RCMs to downscale GCM data.
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Institute Model Abb. Reference

University of Bergen, Norway (NERSC) BCM Fureviket al. (2003)

Canadian Meteorological Service (CCCma) CGCM3 Scinocceaet al (2008)

Centre National de Recherches Meteorologique, MEtéace ARPEGE Gibelin & Déqu&2003)

(CNRM)

Max-PlancklInstitute for Meteorology (MRM) ECHAMS5 Roeckneet al. (2003)
kJ’\/PI<E¥Ce)t_Sg|;:e, Hadley Centre for Climate Prediction and Research HadCM3 (QO) Gordonet al (2000); Collins (2010)
kJNPfEMCe)t_Sglg:e, Hadley Centre for Climate Prediction and Research HadCM3(Q3) Gordonet al (2000); Collins (2010)
UK Met Office, Hadley Centre for Climate Prediction and Research .
(METOH C') y ! et HadCM3 (Q16)  Gordonet al (2000): Collins (2010)

Table 6.11nstitutions, modehames and abbreviation§the GCMsused as boundary conditions for the ENSEMBLES RCM
simulations The Hadley Centre contributed a perturbed physics ensemble consisting of three different versions @fitg eteahof
which wastuned to have a differectimatesensitivity: standard (HQO), low (HGQ3) and high (HEQ16).
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All institutes - with the exception of Met Eireann (C4)produced data for the A1B
emission scenario only; this institute downscaled GCM data for both the A1B and A2
SRES scenarios. As shown in Figure 6.11 not all of these moddbimations or
6mod el pat hwayso run up u-rfiteimbdelcdmeinagtonsd o f
run only to the year 2050. The RCMs used to dynamically downscale GCM data have
also been forced using lateral boundary conditions from the ECMWF (European Centre
for Medium Range Weather Forecasts) ER® r eanal ysi s 2D&maset
for the period 1962000 (Uppalaet al., 2005).

Where reanalysis data is employed the models are said to be forced using unbiased
O0per fect boundary conditionsd and gener a
observed climate series, allowitige sequencing of simulated and observed weather
events to be compared (Maraenal., 2010). Although a number of institutes ran their
regional models at a resolution lodth 25 and 50 km, the higher resolution simulations
only were included in this studyn addition, only those climate scenarios downscaled
using models which have also been run using ERAeanalysis data were used. This
was to ensure that model performanceith respect to the ability of each RCM to
simulate the observed climate coimlis of the study areacould be assessed. As a
result the datasets used represent only assetilof the full suite of model simulations
which are available from the ENSEMBLES data archive. With the exception of the
RCM used by the Canadian based Congorton Regional Climatology and Adaptation

to Climate Change (OURANOS) (Lapristal, 2003), a description of the models used

in ENSEMBLES is provided by Jacal al. (2007).

The data produced by each model pathway shown in Figure 6.11 can be considered a
plausible scenario of detailed regional chargesampling across a range of different
GCM-RCM combinations a comprehensive exploration of the model and uncertainty
space can be conducted. The various model pathways employed allow different aspects
of climate model uncertainty to be considered (e.g. model formulation,
parameterization, climate sensitivity and GCM/RCM model combinatibis) is one of

the key strengths of the ENSEMBLES dataset. Of note in Figure 6.11 is that the Hadley
Centre ran three mabers from a perturbed physics ensemble (PPE) whereby the
physical parameterizations in both their RCM (HadRM3) and GCM (HadCM3) were
altered to reflect a different climate sensitivity (reference sensitivity: QO; high
sensitivity: Q16 and low sensitivity ). Also of note in Figure 6.11 is that in some

instances different institutes have employed the same RCM. With respect to an
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exploration of model uncertainty, thinakes an allowanc®r the possibility that the

same model may have had a different speaiion (e.g. number of levels, physics
routines, and parameterization scheme) or have been optimized for use in a particular
region. Differences in the model configuration may result in the same models producing
contrasting projections of future change.

Thereis however a number of limitations associated with the ENSEMBLES dataset.
Firstly, the fact that the model projections are basedhe A1B emission scenario
means the usefulness of the dataset is limited when exploring this aspect of uncertainty.
This is due to ENSEMBLES being focused primarily on addressing uncertainty in
regional models rather than the full range of uncertainties which affect estimates of
future climate changeSecondly, as shown in Figure 6.11, the individual model
pathways are noeéntirely independent. In some instances the same RCM has been
driven using boundary conditions from different GCMs (e.g. Met Eireann ran the RCA3
model using the HadCM3 and ECHAMS5 GCMs), conversely different RCMs have been
forced using data from the samear ent GCM (e. g. the Hadl ey
is used as boundary conditions for both the CLM and HIRHAM regional models). This
lack of independence means an esempling of a particular region of the model space

is likely to occuri therebyintroducing bias to the ensemble and any probabilistic

projections of future change derived from it.

Such bias may be addressed if every possible combination of a driving GCM and
downscaling regional model were included in the ensemble; however, large gaps in the
GCM-RCM matrix exist, a shortcoming related primarily to the computational costs
associated with satisfying all model combinations. The dataset used in this study could
be referred to as an etals200@) Whereby the nogep o r t
output is included simply by virtue of its availability rather than because it meets some
predefined criteria. Ideallynodelsshouldbe more systematically sampledth the aim

of preservingindependence; however, given the practical difficulties assocyaitéd
producing large climate ensembles, this would be a difficult objective to achieve,
particularly when trying to integrate the information from different institutas is the

case with the ENSEMBLES datas@&iven that model projections represent tsuc
valuable source of information, it is difficult to justify excluding certain ensemble
members on the basis that they lack independéieeability to factor in independence

iIs one of the advantages perturbed physics ensemblesihaleit that they @

constrained to sampling a much narrower region of the uncertainty space. It must be

158



recognized that despite its shortcomings, the ENSEMBLES dataset does allow inter
model variability to be considered and facilitates an exploration of different aspects o
model and climate uncertainty; as such the dataset offers clear advantages over relying
on a single realization of future climate. It also represents an advance over using climate

ensembles which are limited in terms of what aspects of uncertaintyaheddress.

For this studydownscaled (ERA0 and GCM) daily precipitatiork¢ m? s®) and 2m
temperature (K) (maximum and minimum) were obtained from the ENSEMBLES data
distribution centre accessed via www.ensembles.org. Once downloaded the daia

nine grid boxes, representing the model domain of interest, wegymjexted onto a
common grid projection and subsequently extracted. The catchment was found to be
overlain by two separate grlibxes (Figure 3.1) Following Leander and Buishand
(2007 precipitation and temperature for the catchment were calculated as a weighted
average of the values from each grid box, the weights were formulated based on the
proportion of the catchment falling within a specific goioi.

6.3.2 ERA40 RCMevaluation

Christensenet al. (2008) state that the inability of RCMs to simulate curday
climate accurately is one of the key sources of uncertainty in climate change impact
studies. It is therefore important that some analysis of RCM skill is conducted using
historical observations prior to employing their output in any impact assessment.
Temperature and precipitation are both of critical importance for determining the
potential hydrological response of the Burrishoole catchment to changes in climate, thus
it is important that the regional models used are capable of simulating these variables
under currentday climate with a certain degree of skill. To this end the RCMs listed in
Table 6.10 werassessed based on their ability to simulate observed climateiansdit

in the catchmentAlthough some of the RCMs examined were not used to downscale
GCM data, they are included in the analysis in order to provide a comparison of model
skill.

Examining the performance of regional models when driven using the sameyseanal
data allows any bias in the RCMs to be isolated and ensures parity when assessing the
performance of competing models. It also removes the potential for any biases inherited
from the driving GCM to act as a confounding source of error when attentpting

evaluate the performance of individual RCMs. Additionally, in a reanalysis driven
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model the sequence of synoptic weather will be temporally consistent with observed
weather patterns, as a result a direct comparison can be made between simulated and
obseved weather events. However, as highlighted by Maratinal (2010),
discrepancies in how small scale variability is generated in ROM#th respect to the

true system processesay lead to inconsistencies in thienulations

Given the wide range ofiteria and model diagnostics which can be applied, providing

an accurate and well rounded assessment of model performance is a challenging task.
For exampleregional models may be evaluated based on their ability to reproduce
large-scale circulation pagtns or different modes of variability (e.g. North Atlantic
Oscillation). They may also be appraised based on their skill at reproducing spatial
patterns of surface climate and/or their ability to capture the variability in observed
climatological series\er a range of timscales (from the seasonal to the decadal) or
frequencies. Models may also be evaluated based on whether they capture particular

weatherevents or extremes of conditions.

In this study the metrics used to assess model skill focuséteqgrerformance of each
regional model at simulating observed precipitation and temperature in the catchment
only; thus how well they reproduced the spatial variability of either variate indeed

other variable§ was not examined. In this respectnadel was considered skilful if it
captured temporal patterns of variability in the observed catchment climatology;
however, it may have performed poorly at simulating the temporal and spatial
characteristics of climate for other regiorw well the modks performed over larger
spatial domains or their ability to simulate different modes of circulation anddaede

variability were aspects of model skill which were also not explored.

For a model to be considered skilful it should ideally reproduc@desh and spatial
patterns of variability in surface climate across disparate scales. It should also capture
important aspects of atmospheric and climate system behaviour. In light of this the
potential shortcomings of the evaluation criteria employed his tstudy are
acknowledgedhowever, given that the catchment is taken as the sole bounded unit of
most importance in this study, it takes precedence with respect to model performance
over alternativeregions or larger spatial domains. In addition, givieat temperature
and precipitation are the most significant variables in terms of climate change impacts,
it was important that model skill in reproducing these variables was considered above

all others.
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Given that a model which is shown to be skilful imecaspect of performance cannot be
assumed to be proficient in others, it is more pragmaticagsess eacinodel
performance using a range of different criteria address this several different
evaluation metrics were employed in this study. It has lpmnted out that when
evaluating the performance of RCMs the observed dataset used should be of the same
spatial resolution as the model output (Marairal, 2010). Comparing the gridded
model data with point scale observations may lead to the misrepadse of errors
arising from the fact that the model output represents an areally averaged value of
surface conditions and as such will have a lower variance. As a means of evaluating
model performance the-BBS gridded observational dataset was consaiéor use in

this study (Haylocket al, 2008); however, when the gridded climate series overlying
the catchment was examined it did not correspond well with y3oaie observations

from the Furnace weather statioreven allowing for the fact that the @BS data is
spatially averaged. This may be because a small number of synoptic stations from
Ireland were used when formulating the dataset. Hoé&tted (2010) indicate that there

are substantial biases in theGBS dataset over regions where the ulyileg station
density is low. In addition, given the heterogeneous nature of precipitation in the
catchment, and that point scale data is used to drive the hydrological models, it was
important that a true, nesmoothed estimate of model performance wasduss a
benchmark. A number of studies have flagged the possibility of biases in@®SE

data as a reason for some metrics returning low skill scores when the dataset is used for
model evaluation. This is an issue which has been found to be of partelelance

when attempting to quantify how well models capture extreme events (Hefstla

2010; Kjellstrom 2010).

In the field of shorterm weathefforecasting a wealth of well tested and robust
methodological approaches exist for validating model forecasts (e.g. Barnston, 1992;
Murphy & Wilks, 1998; Jolliffe & Stephenson, 2003; Casatal, 2008). Given that the
downscaled reanalysis data is temporally consistent with the observations, many of
these methods are directly transferrable to the assessment of regional model skill. It
must be recognized that there is a degree of subjectivity surrounding which aspects of
model performance to assess. In addition, given the wide range of evaluation metrics
which are available, the is also a degree @mbiguityassociated with which are the
most appropriate metrics to employ. Whilst some tests are more widely used aimd held
higher esteem than others, in the field of numerical weather prediction (NWP) there are

no universally recognized optimum set of metrics. Essentially the suitability of a
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particular test must be determined based on the characteristics of the datdeamaia
the aspects of model performance which are considered most important.

The metrics used to assess model performance in this study are outlined in Table 6.12.
The criteria employed variously quantify model error, bias and association; Murphy
(1993) hghlights these as the most important indicators of forecast quality. As both
have different connotations regarding model skill, care was taken to use metrics which
drew a distinction between random and systematic model error. The statistical
distribution of precipitation (i.e. dichotomous, skewed and discontinuous), along with
the relatively high level of noise inherent in the data, pose a number of difficulties when
ng
example many of the skill scores (typically involving squared errors) used to describe

attempt. to accurately quantify a mod
continuous variables are sensitive to data which is not normally distributed. To
overcome this diagndss used in NWP to verify quantitative precipitation forecasts
(QPF) wee employed. A number of these metrics are based on categorizing
precipitation eventsbased on predefined thresho&d Contingency tables are
subsequently used to estimate model skiling the various categorical type metrics

available(Table 6.12).
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Average difference between the simulated and observed vaues
measure of systematic model error.

Average magnitude of the error

Average squared magnitude of the errarmeasure of total model
error.

Average squared magnitude of the errgives greater weight to
larger errors

Measures the degree of linear association between the simulate
observed values, independent of the absolute bias.

Square root of the average squared difference between the mc
error Q Y 0 andthe mean model errd. A measure of
random model error

The average squared difference between the model &ror “Y
0 and the mean model errdd. A measure of random model
error

Gives the ratio of the simulatedin frequency to the observed rair

frequency. Perfect = 1; overestimating >1; underestimating <1

Measures the fraction of all observed events which were correc
predicted. Range 0 touith 1 being a perfect score.

Measures the fraction of observed nehich were simulated to be
events. Range 0 to 1 withb@ing a perfect score.

Table 6.12 Metrics used to evaluate model performance.

Given that temperature is a continuous normally distributed variable, well established

measures for assessing model performance with respect to this variable exist. It is
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widely acknowledged that model skill varies both on a temporal and regional basis, in
addition some evaluation criteria (e.g. correlation coefficient) can be artificially inflated
if they are applied tahe annual series (i.e. capture annual trends), tirems$ both of
these issues model performance was assessedeasonal basis.

A number of the metrics outlined in Table 6.12 quantitatively assess differences in the
respective means of the observed and modelled datamber of others examine how
well the models reproduce observed patterns of variability. The former describes the
systematic bias in the model output whilst the latter is indicative of the random-or non
systematicmodel error. Both systematic bias and random error contribute toothé t
error evident in model simulations. Using algebraic manipulation it can be demonstrated

that the mean squared errar the total model errorcan be decomposed into:

ODYO w € i i «¢iii
wherei is productmoment correlabn between the observed and model simulated
seriesj andi are the standard deviations of the marginal distribution estimated from
the model output and observations respectiveiyally the first term in the equation
refers to the square of the ameerror(Murphy, 1988) This can be ravritten in a way
relative to the metrics outlined in Table 6.12, whereby the mean squared error (MSE) is
simply the product of the square of the model bias (Bias) and the variance of the error

(VAR Error) - calculatel based on the differences between the simulated and observed

series.

Py i L4
V] U

Y i =— @«

HereO represents the number of elements in the séNemd0 are the simulated and
observed series respectivel, is the error or difference between the modelled and
observed datasets, aifflis the mearmmodel error. Figure 6.12 illustrates how total,
random and systematic errors are manifest in the simulatedSyatamatic model error

is characterised as beiragconstant offset or biagsoin a specified reference point
typically represented using an observed data series. Random error appears as an
inconsistent variation in the model over time and/or spiade manifest in the model

being unable to reproduabserved patterns of variability. In NWP systematic erfors
which are assumed to remain thimyariant- can be corrected using relatively simple
postprocessing techniqueshis is in contrast to random errors which are considered to

be unpredictable and difficult to correct. In this respect random error may be regarded
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as less desirable and as such the metrics used to assess it may provide a more
informative picture of modgberformance. In the context of modelling changes in the
climate system, where forcing conditions are likely to change considerably over time,
and model projections are made on timescales ranging from the decadal to the
centennial, systematic error may berm difficult to remediate, particularly as an
assumption in the stationarity of the model bias must be made if any correction is
applied.

Figure 6.12 Total error is shown as the sum of the systematic and random components. Different metricedao besess ear
type of model error. (Source: http://www.meted.ucar.edu/nwp/model_derivedproducts/navmenu.php?tab=1&page=4.4.0.
24/11/2011)

The following sections document the ability of the RCMs listed in Table 6.10 to
simulate observed terapature and precipitation in the catchment. Model performance
is assessed based on a comparison between the output frodERAven model
simulations and poirgécale observational data from the Furnace weather st&toon.
consistencymnodel performances generally assessed over a 30 year period; hovirever
order to make full use of the information available a longer period (2060) was

choserfor this study

6.3.2.1 Minimuntemperature

Figure 6.13(a) and 6.13(b) show the MSE, squared Bias and caridrthe error for

each ERA40 model simulation calculated on a seasonal basis. Of all models considered
the ALADIN regional model run biviétéoFrance(abbreviated as CNRNRM4.5) was
generally the worst performing model. For each season it returnedytiestivalues for

the MAE and VAR Error. Figure 6.13(a) and 6.13(b) indicate that if the bias were to be
used as the sole measure of model skill it would suggest thiétem FranceRM4.5

model is among the best performing models, this illustrates theé teeeonsider
multiple aspects of performance when evaluating the overall model skill. In addition it
highlights the bias which may be introduced if random model error is not considered as

a measure of model skill.
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