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Abstract 

Climate change is anticipated to impact the flow regime of riverine systems with 

resultant consequences for the freshwater habitat of Atlantic salmon (Salmo salar) and 

the long-term sustainability of their population numbers. The Burrishoole catchment, a 

relatively small but productive salmon catchment (~90 km
2
) located on Irelandôs west 

coast, is used as a case study to investigate this. A series of high resolution climate 

scenarios were employed to examine potential changes in the climate and hydrology of 

this catchment. The climate scenarios used represent different combinations of 

greenhouse gas emission scenarios, driving GCMs and statistical/dynamical 

downscaling models; in addition, three different rainfall-runoff models (HBV, HYSIM 

and TOPMODEL) were employed ï integrating across both structural and parameter 

uncertainty. By considering multiple model pathways this study attempts to sample 

across the uncertainties encountered at each stage in the process of translating 

prescribed anthropogenic forcings into local scale responses in the catchment system. 

The hydrological projections were examined in the context of the habitat and flow 

requirements of Atlantic salmon at key stages in their life-cycle (e.g. spawning, 

migration).  

Model projections suggest that the catchment is likely to become warmer, with wetter 

winters and drier summers occurring. The results of the hydrological modelling suggest 

that this will be accompanied by an increase in the seasonality of its flow regime - 

manifest in an increase in low (Q95) summer and high (Q05) winter flows. If realised, 

these changes are likely to impact salmon through a reduction in the availability of 

preferred habitat, a loss in connectivity across the catchment system and a disruption to 

the evolved synchrony between the occurrence of optimal in-stream conditions and the 

time at which certain life history events occur. Each of these factors is likely to impact 

the processes of migration, reproduction and recruitment - each of which is critical for 

the long-term viability of healthy, self-sustaining wild stocks in the catchment. Based 

on the projected flow data it is likely that the carrying capacity and productivity of the 

catchment may be reduced. In addition, by affecting those life stages which are already 

subject to significant mortality losses (e.g. fry emergence, smolt migration), changes in 

climate may result in population collapse - particularly if successive year-classes are 

affected. The results of the hydrological modelling highlight the sensitivity of smaller 

spatey catchments to changes in climate. Given that the Burrishoole system is typical of 
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many catchment systems found along Irelandôs western seaboard, the results highlight a 

vulnerability to climate change which is present more generally across the region.   
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Chapter 1 

 Introduction  

 

1.1 Research Background 

Climate change is considered one of the most complex and important environmental 

issues currently facing the global community. It poses a major challenge to human 

society and threatens to undermine the functioning of terrestrial and aquatic ecosystems, 

with resultant consequences for biodiversity, species distribution and community 

structures (Walther et al., 2002; Thomas et al., 2004; Hare, 2006; Warren et al., 2010). 

Indeed there is a growing body of evidence which suggests that recent climate change 

has affected a wide range of species with diverse life-strategies and geographic profiles 

(Hughes, 2000; Wuethrich, 2000; McCarthy, 2001; Walther et al., 2002; Parmesan & 

Yohe, 2003). According to Parmesan (2006:2) ñthe direct impacts of anthropogenic 

climate change have been documented on every continent, in every ocean, and in most 

major taxonomic groupsò.  

The latest report released by the Intergovernmental Panel on Climate Change (IPCC, 

2007a) states with ñvery high confidenceò (90% probability) that since the beginning of 

the industrial era (circa. 1750) the globally averaged effect of human activity on the 

Earthôs energy balance has been one of warming. The report states that, relative to pre-

industrial levels (1750), a net increase of +1.6 (with a +0.6 to +2.4 90% confidence 

range) Wm
-2

 in the planetôs radiative forcing has occurred (IPCC, 2007a). Such changes 

in the planetary energy balance translate into an increase in the globally averaged 

surface air temperature which, according to the Goddard Institute for Space Studies 

(GISS), have increased over the period 1880 to 2010 by an average of 0.8ęC (Hansen et 

al., 2010). In addition, it is estimated that the rate at which warming has occurred since 

the beginning of the industrial era has been unprecedented in more than 10,000 years 

(IPCC, 2007a). The observed changes in the Earthôs radiative balance are attributed to 

rising concentrations of atmospheric greenhouse gases (GHGs) which, along with 

positive feedbacks initiated in the system (e.g. increases in atmospheric water vapour 

(Solomon et al., 2010)), have had the effect of enhancing the Earthôs natural greenhouse 

effect. This has occurred despite human (e.g. the release of aerosols such as sulphate, 
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organic carbon, black carbon) and natural forcings (e.g. volcanic activity) exerting a 

cooling influence on the planet (IPCC, 2007a).   

Importantly for this study freshwater ecosystems are highlighted as being particularly 

vulnerable to changes in climate, not least because they are already heavily degraded by 

human activity, but also because of their geographically fragmented nature and the 

associated lack of thermal refugia for more sensitive species. Given their sensitivity to 

changes in climate, it is suggested that freshwaters act as ósentinel systemsô, providing 

an insight into the possible biological, chemical and physical responses of other 

ecological systems to changes in climate (Adrian et al., 2009; Woodward et al., 2010). 

With respect to freshwaters, recent climate change is manifest primarily through 

alterations in the thermal regime of river and lake systems - changes in which reflect 

warming trends evident in global and regional surface air temperatures. Changes in 

climate have also been detected through the response of various biological indicators; 

this includes alterations in the phenology of some aquatic biota and changes in the 

distributional range of more mobile species. Whilst the majority of impact studies have 

focused on temperature as the key driver of change in lotic ecosystems, owing to its 

influence on water quality, food abundance and the availability of physical habitat, as 

well as its role in providing refuge, migratory cues and connectivity across freshwater 

systems, hydrology is as important as water temperature for determining the ecological 

status of river systems and their long-term capacity to sustain populations of some 

freshwater and anadromous fish species - including Atlantic salmon (Salmo salar).   

This study seeks to contribute to the existing scientific discourse concerning the 

potential impacts of climate change on the freshwater habitat of Atlantic salmon. The 

study focuses on the Burrishoole catchment - a relatively small but productive 

catchment system (~90 km
2
) located on Irelandôs west coast. In recent decades there has 

been an observed progressive decline in the population numbers of this ecologically 

important and environmentally sensitive species in many of Irelandôs waterways 

(Stefansson et al., 2003; Peyronnet et al., 2007). Given that populations are subject a 

wide range of anthropogenic stressors, and that their natural environment has already 

been significantly degraded, it is important that the potential future impacts of climate 

change on this species are investigated.  

Although climate change is anticipated to affect all aspects of riverine ecosystems, this 

study focuses on how changes in key climate variables are likely to impact the 

hydrological regime of the study catchment. Projected changes in patterns of flow 
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behaviour and the nature of extreme events are examined with respect to the habitat 

requirements of Atlantic salmon at critical stages in their life cycle. The study findings 

should offer some insight into how climate change may affect those catchment systems 

located on Irelandôs west coast - many of which are similar in nature to the Burrishoole. 

In addition, the study should provide an empirical contribution to how catchment 

management and fish stocking strategies are formulated, whereby in order to guard 

against further population declines, a strong emphasis will need to be placed on 

mitigating the most deleterious effects of climate change on the freshwater environment. 

 

1.2 The intensification of the natural greenhouse effect 

The link between rising concentrations of atmospheric GHGs, alterations in the global 

radiative balance and changes in the climate system are framed by the Earthôs natural 

greenhouse effect. Without a certain naturally occurring concentration of GHGs in the 

atmosphere, the Earth would be too cold to sustain life. GHGs such as carbon dioxide 

(CO2), methane (CH4), nitrous oxide (N2O) and water vapor (H2O) absorb and 

subsequently radiate long-wave energy emitted by the Earthôs surface - thereby heating 

the planetôs surface and atmosphere.  

If the Earthôs radiative balance is perturbed, the global surface temperature will respond 

in order to adjust to a new equilibrium state. An externally imposed energy imbalance in 

the system, either natural or anthropogenic in origin, is termed radiative forcing; the 

relationship between alterations in this forcing and changes in the equilibrium surface 

temperature (Ў4) is given by: 

Ў4 ʇЎ&  

where Ў& is the radiative forcing and ɚ is the climate sensitivity K/(W/m-2
). This 

parameter is a measure of how responsive the climate system is to a change in forcing.  

In addition to changes in land-use and the intensification of agricultural practices, the 

release of carbon dioxide through the mass combustion of fossil fuels has led to the 

observed increases in atmospheric GHGs - whose levels currently far exceed those of 

the pre-industrial era (IPCC, 2007a). The IPCC (2007a) states that enhanced 

atmospheric concentrations of CO2 are the single largest contributing factor to the 

overall increase experienced in the Earthôs radiative forcing (Figure 1.1).  Fossil fuels 
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such as natural gas, petroleum and coal - representing vast geological deposits of 

decomposed organic material rich in hydrocarbons - when burned produce carbon 

dioxide. The historical and continued reliance of industrialized nations on fossil fuels as 

a cheap energy resource has meant that carbon dioxide and other GHGs have been 

emitted in quantities which far exceed the natural rate of uptake by terrestrial and 

aquatic systems (le Quéré et al., 2009). If the current rate of GHG emissions continue, it 

could potentially lead to a doubling or even tripling of pre-industrial atmospheric 

concentrations of CO2 (~280 ppmv; parts per million volume) before the end of the 

present century (Tans, 2009). 

 

In recent years an increase in the demand for energy in emerging economies, and a 

return to coal as a key resource for energy production, has helped contribute to further 

increases in atmospheric GHGs (Le Quéré et al., 2009). In the year 2008, total 

anthropogenic emissions of CO2 approximated to 10 billion tons of carbon annually 

(equivalent to one million tons per hour or, on a per capita basis, ~ 0.2 kg person
-1
 h

-1
). 

Of this amount 8.7 ± 0.5 billion tons originated from the combustion of fossil fuels and 

cement production; it is estimated that deforestation was responsible for a further 1.2 ± 

0.7 billion tons (Le Quéré et al., 2009).  

Data from the Mauna Loa observatory, located on the island of Hawaii in the South 

Pacific Ocean, illustrates the observed upward trend in atmospheric carbon dioxide. 

Since 1956, CO2 levels have been monitored at the observatory using air samples taken 

directly from the atmosphere (Keeling, 1960). The observatoryôs location at an altitude 

Figure 1.1 Principal anthropogenic and natural components of radiative forcing as outlined in the IPCC AR4 (2007). The values 

represent the contribution of different radiative forcings for the year 2005 relative to the beginning of the industrial revolution (circa. 
1750) (Source: IPCC, 2007). 
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where the air is undisturbed by the localized effects of vegetation or human activity 

means its records provide a reliable indicator of changes in the elemental composition 

of the Earthôs atmosphere. In addition, the dataset from Mauna Loa constitutes the 

longest continuous record of atmospheric CO2 in existence. 

Records from the observatory indicate that between 1959 and 2011 atmospheric 

concentrations CO2 increased from ~316 ppmv to ~391 ppmv (Figure 1.2). In line with 

observed trends in carbon dioxide, atmospheric concentrations of methane and nitrous 

oxide have also increased. Over the period 1750-2005 methane levels rose from 

715ppbv (parts per billion volume) to 1772 ppbv, while concentrations of nitrous oxide 

increased from 270 ppbv to 319 ppbv (IPCC, 2007). Along with the consumption of 

fossil fuels, increases in atmospheric concentrations of these gases are attributed to the 

intensification of agriculture and greater industrial activity. 

 

 

Ice core samples constitute an important historical record of changes in the chemical 

composition of the Earthôs atmosphere. The Vostok ice core drilled in central east 

Antarctica provides a record of past variations in atmospheric carbon dioxide and other 

gases stretching back 800,000 years and spanning four interglacial cycles (Lüthi et al., 

2008). Data from the Vostok site indicates that current atmospheric concentrations of 

CO2 far exceed the natural range of variability which, records suggest varies between 

180ppmv and 280ppmv (Petit et al., 1999). Carbon dioxide measured at Mauna Loa and 

other monitoring sites currently exceed the upper bound of this range by ~40%. The 

records suggest that the current rate of increase in atmospheric CO2 is as much as 30 

times greater than natural rates in the geological past, and at present, levels are currently 

higher than at any time throughout the last 800,000 years (IPCC, 2007a; Luthi et al., 

Figure 1.2 Atmospheric concentrations of carbon dioxide sampled directly from the atmosphere at the Mauna Lao observatory 

Hawaii. The records indicate in parts per million the increase in atmospheric CO2 since 1958. Smaller fluctuations in the general 

trend are indicative of seasonal variations in atmospheric CO2. (Source: http://www.esrl.noaa.gov/gmd/ccgg/trends/, accessed 
27/11/2011)   
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2008); furthermore it is likely that the rate of increase in atmospheric CO2 during the 

20
th
 century is unprecedented in at least the past 16,000 years (IPCC, 2007a). Ice cores 

also provide a record of variations in global temperature and hold information on the 

occurrence of natural events (e.g. volcanic eruptions). Information on historic 

conditions is extracted by analysing small bubbles of air - which contain a sample from 

the atmosphere - enclosed in the ice. Data from the Vostok site has been used to explore 

the relationship between surface temperature and atmospheric CO2. The records 

illustrate the degree to which fluctuations in air temperature and atmospheric carbon 

dioxide co-vary (Figure 1.3); ice-core data thus provides an insight into the possible 

response of the climate system to changes in the elemental composition of the Earthôs 

atmosphere.  

 

 

 

Records from the Vostok site suggests a lag between CO2 and temperature in the initial 

warming phase of each cycle, then CO2 appears to lead. It is likely that this is associated 

with a weakening in the orbital forcing (Milankovitch cycle), combined with the 

positive feedbacks of reduced albedo - resulting from the decay of the Northern 

Hemisphere ice sheets - and increased concentrations of atmospheric CO2 and CH4 

(Lorius et al., 1990). Essentially changes in the quantity of radiation the Earth receives 

triggers a series of positive feedbacks in the system, leading to increases in atmospheric 

GHGs which appear to lag behind increases in temperature. This illustrates the 

importance of feedback mechanisms and their role in amplifying the climate response. 

 

1.3 Observed changes in the global climate  

The IPCC (2007a:30) states that, ñat continental, regional and ocean basin scales 

numerous long-term changes in climate have been observed. These include changes in 

Figure 1.3 Records of atmospheric carbon dioxide and surface temperature extracted from the Vostok ice core - drilled in east 

central Antarctica - which stretch back over 400,000 years (Petit et al., 1999). Current observations of CO2 sampled directly from 

the atmosphere are higher than at any period in the ice core record. (Source: http://en.wikipedia.org/wiki/Image:Vostok-ice-core-
petit.png#file, accessed 27/11/2011) 
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arctic temperatures and ice, widespread changes in precipitation amounts, ocean 

salinity, wind patterns and aspects of extreme weather including droughts, heavy 

precipitation, heat waves and the intensity of tropical cyclonesò. Warming of the climate 

system is evident in the melting of ice sheets in Greenland (Hanna et al., 2008) and 

Antarctica, a process which, along with the thermal expansion of oceanic water, has 

contributed to a rise in global sea levels (Church & White, 2006; Shepard & Wingham, 

2007). It is estimated that sea levels rose by ~170 mm during the 20
th
 century. 

Additionally it is estimated that over the period 1961 to 2003 sea levels have risen at an 

average rate of 1.8 mm per annum (1.3 to 2.3 mm) (IPCC, 2007a). The rate of increase 

in the last decade is estimated to be approximately double that occurring over the last 

century (Church & White, 2006).  

Warming is evident in the widespread melting of glaciers and reductions in the extent of 

arctic sea-ice and snow cover (Polyak et al., 2010). Instrumental records of global 

surface air and ocean temperatures also provide evidence for recent changes in the 

climate system (Levitus, 2000; 2005). It is estimated that since 1978 the annual average 

arctic sea-ice extent has shrunk by 2.7 ± 0.6% per decade (IPCC, 2007a). Increases in 

atmospheric CO2 have led to the oceans becoming more acidic. Records indicate that 

surface water pH levels have decreased by an average of ~0.1 since 1750 - equivalent to 

a ~ 30% increase in hydrogen ion (H+) concentration (Orr et al., 2005; IPCC, 2007a). 

Figure 1.4 illustrates the relationship between increases in atmospheric CO2 measured at 

Mauna Loa, and surface ocean pH levels measured at the ALOHA ocean station (Doney 

et al., 2009; Dore et al., 2009).  

Figure 1.4 Atmospheric CO2 concentrations measured at the Mauna Loa observatory (ppmv; in red). Surface ocean pCO2 (µatm; in 
blue) and surface ocean pH (in green) measured at the ALOHA Ocean station (Source: Doney et al., 2009). 

) 
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Over the instrumental period of record (with widespread measurements from 1880) 

average global air temperatures have increased by approximately 0.8ęC (GISS, 2010). 

Figure 1.5 shows the recorded increase in globally averaged air temperatures for the 

past ~160 years. According to the World Meteorological Organisation (WMO), over the 

period 2001-2010, global temperatures averaged 0.46°C above the 1961-1990 average - 

this is noted as the warmest decade on record since instrumental records began (WMO, 

2011). 

 

Globally the warmest year on record was 2010 - followed by 2005 and 1998 

respectively (WMO, 2011). Significantly, the rate of warming experienced during the 

latter half of the 20
th
 and beginning of the 21

st
 century has been greater than at any other 

time during the past 1,000 years (IPCC, 2007a). Global observations indicate an 

increase in the number of warm extremes and a reduction in the number of cold day 

extremes - such changes in extreme conditions are consistent with the general upward 

trend in global temperature (Alexander et al., 2006; IPCC, 2007a). Rising air 

temperatures lead to a corresponding increase in the moisture-holding capacity of the 

atmosphere (Douville et al., 2002; Trenberth et al., 2003; Trenberth, 2011), the result of 

which is altered precipitation patterns and changes in the nature (i.e. intensity, 

frequency and type) of heavy precipitation events. It is estimated that on a globally 

averaged basis precipitation over land has increased by approximately 2% since the 

beginning of the 20
th
 century (Dai et al., 1997; Hulme et al., 1998; Huntington, 2006); 

this increase is however not spatially or temporally uniform - with regional variations in 

more general trends being apparent. It is noted that changes in total precipitation 

Figure 1.5 Global temperature anomalies for the period 1850ï2011 relative to the 1961ï1990 average. This time series is compiled 

jointly by the Climatic Research Unit (CRU) and the UK Met Office. 
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receipts have been accompanied by an increase in the intensity of heavy or extreme 

precipitation events (Groisman et al., 2005; Alexander et al., 2006).  

 

1.4 The ecological response to recent warming 

Across both terrestrial and aquatic systems recent changes in climate have been found to 

correlate with changes in the distributional range of some species and alterations in the 

time at which seasonal events occur (Hughes 2000; Parmesan & Yohe 2003; Root et al. 

2003, Hickling et al., 2005; 2006). Observed changes in the phenology (Roy & Sparks, 

2000; Menzel et al., 2001; Hays et al. 2005, Adrain et al. 2006; Visser & Both 2005; 

Parmesan, 2006), distribution (Beaugrand et al. 2002; Root et al., 2003; Parmesan & 

Yohe, 2003), abundance (Hickling et al., 2005) and physiological response (Janzen, 

1994; Hughes, 2000) of various plant, animal and fish species have been attributed to 

recent climate change (IPCC, 2007a).  

A number of authors indicate that the most prominent response of temperate aquatic 

ecosystems to climate warming has been a change in phenology (Gerten & Adrian, 

2002; Adrian et al., 2006). Studies examining the response of biological indicators to 

recent climate change have highlighted the earlier onset of spring events and a 

lengthening of the growing season. Menzel and Fabian (1999) found that since the 

1960s the average annual growing season in Europe has lengthened by 10.8 days which, 

the authors attribute to an increase in regional air temperatures. A subsequent study by 

Menzel et al. (2006) - which considered 125,000 observational series of some 542 plant 

and 19 animal species in 21 European countries over the period 1971ï2000 - found that 

on average the onset of spring/summer in Europe has advanced by 2.5 days per decade. 

Menzel et al. (2006) state that the observed changes in the timing of seasonal events 

match warming trends evident in European temperature records.  

In addition to changes in phenology, there has been a noted migration poleward of more 

mobile species (Walther et al., 2002; Root et al., 2003). When investigating the 

relationship between biological trends and recent climate change, a study by Parmesan 

and Yohe (2003) - which considered more than 1,700 species, the data for which varied 

in length and time period covered - detected a significant range shift towards the poles 

of 6.1 km per decade. Additionally, with respect to the phenological response of the 

species considered, Parmesan and Yohe (2003) found an advance in the mean onset of 
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spring events by 2.3 days per decade. Observed changes in the composition of 

ecological communities as well as the greater abundance of non-native species have also 

been linked to observed changes in climate (Walther et al., 2002).  

There is substantial evidence linking observed trends in marine and freshwater 

biological systems to increases in water temperature. Changes in these systems have 

also been linked to warming-related trends in ice cover, salinity, ocean circulation and 

dissolved oxygen (Weyhenmeyer et al., 1999; Beaugrand, 2002; Gerten & Adrian, 

2002; Edwards & Richardson, 2004; Winder & Schindler, 2004; Hays et al. 2005; 

Adrian et al., 2006). Climate-mediated changes in marine and freshwater ecosystems 

include: 

Á shifts in the distributional range and abundance of algal, plankton and fish 

species in high-latitude oceans 

Á increases in algal and zooplankton abundance in high-latitude and high-

altitude lakes 

Á the earlier migration of riverine fish species and shifts in their distributional 

range  

(Source: IPCC, 2007b) 

The earlier onset of spring events have been found in a range of taxonomically diverse 

organisms in the aquatic environment - including species of marine (Edwards & 

Richardson, 2004) and freshwater plankton (Gerten & Adrian, 2002; Winder & 

Schindler, 2004). The rapid response of marine species to short-term and episodic 

changes in sea-surface temperatures - such as those accompanying El Niño events - 

highlights the sensitivity of aquatic species to ocean warming and their potential 

response to future climate change (Hughes, 2000).  

Changes in climate are anticipated to push the distributional range of some fish species 

towards areas at higher latitudes. Already there is evidence of shifts in the distribution 

of some marine fish species relative to their thermal tolerances. Over a 20 year period 

(1974-1993) Holbrook et al. (1997) found that the composition of Californian reef fish 

populations had changed such that the proportion of southern warm affinity species 

increased from approximately 25% to 35%; this was found to occur in parallel with a 

~17% decline in the proportion of northern, cold affinity species. Similarly, a study of 

fish populations in the North Sea by Perry et al. (2005) found that over a 25 year period 

http://www.global-greenhouse-warming.com/phytoplankton.html
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both exploited and non-exploited species had responded to recent warming by shifting 

their latitudinal range further northward, and/or by altering their swimming depth.  

Beaugrand et al. (2002) detected a macro-scale change in the biogeography of calanoid 

copepod crustaceans in the northeastern region of the North Atlantic Ocean. Over the 

period 1960-1999 strong biogeographical shifts in all copepod assemblages were found 

to have occurred. In the north-east Atlantic it was found that that the distribution of 

warm affinity species had shifted northward by 10° (latitude), this was accompanied by 

a retreat in the distributional range of cold water species towards more northerly 

latitudes. Observed changes in the calanoid copepod species composition were 

attributed to an increase in regional sea surface temperatures. Beaugrand et al. (2002) 

indicate that the range shift in copepod assemblages is commensurate with trends 

detected in the phenology and distribution of many taxonomic groups in terrestrial 

ecosystems located at similar latitudes. Following from this, Beaugrand and Reid (2003) 

investigated the long-term response of zooplankton, phytoplankton and Atlantic salmon 

to changes in hydro-meteorological forcing in the northeast Atlantic. It was found that 

recent increases in regional sea-surface temperatures had an impact on all three trophic 

levels. The authors point to a marked increase in Northern Hemisphere temperature 

anomalies at the end of the 1970s (consistent with trends in the North Atlantic 

Oscillation) as a critical period when all biological variables show a pronounced 

change. Rijnsdorp et al. (2009) assessed the impact of recent climate change on the life 

cycle of various aquatic species, focusing primarily on fish species in the Northeast 

Atlantic region. The authors found that during the early stages of their life-history, fish 

species are particularly sensitive to climatic drivers. The study findings suggest that 

further changes in the climate system are likely to influence growth, mortality and 

recruitment, with resultant consequences for the overall productivity and abundance of 

fish stocks in this region. 

 

1.5 Projected future climate change 

The results of model experiments conducted to examine past variations in the climate 

system suggest it is very unlikely that the warming experienced over the latter half of 

the 20
th
 century can be attributed to natural forcing alone (IPCC, 2007a). It is 

anticipated that if GHGs continue to be emitted at or above current rates, it is very likely 

that the warming trend evident in observed records will continue, and that changes 
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experienced in the global climate during the 21
th
 century will be greater than those 

experienced over the course of the 20
th
 century. Global climate models (GCMs) are the 

primary tool used for understanding past variations in the Earthôs climate, and when 

employed in a climate change context, provide a means for exploring the potential 

response of the climate system to a change in forcing. Depending on the particular 

pathway human development may take, model experiments suggest an increase in 

global temperatures of between 1.8ęC (B1 low emissions scenario) and 4ęC (A1FI high 

emissions scenario) by the end of the present century (2090-2099 relative to 1980-1989) 

(IPCC, 2007a; Knutti et al., 2008) (Figure 1.6). This however represents a best estimate 

or the point around which the majority of model simulations converge. Based on the 

results of model experiments the projected range in temperature increase is between 

1.1ęC (B1 scenario) and 6.4ęC (A1FI scenario). Model simulations also suggest an 

increase in precipitation at higher latitudes; it is anticipated that this will be 

accompanied by a corresponding decrease in receipts across the subtropics (IPCC, 

2007a).  

 

An increase in the occurrence of extreme precipitation and drought events is also 

suggested to occur. Regions that are likely to experience increased precipitation receipts 

include the Arctic, Northern Europe and the northeast USA (Hayhoe et al., 2006; IPCC, 

2007a). If realised such changes in climate are likely to impact food production, 

Figure 1.6 Projected patterns of future regional surface temperature change for the early and late 21
st
 century relative to the period 

1980ï1999. The central and right panels show the AOGCM multimodel average projections for the B1 (top), A1B (middle) and A2 

(bottom) SRES scenarios averaged over the decades 2020ï 2029 (centre) and 2090ï2099 (right). Shown in the left panel are 

probability distribution functions of the estimated global average temperature increase from an ensemble of different AOGCM and 
Earth System Model of Intermediate Complexity studies for the same periods.(Source: IPCC, 2007). 
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heighten flood risk and reduce the availability of water resources - thus climate change 

has potentially far reaching implications for the functioning of human and societal 

systems. Similarly, projected changes in climate have the potential to negatively affect 

natural systems with associated consequences for species abundance, biodiversity and 

habitat conservation; it is thus critical that the most potentially deleterious aspects of 

future climate change are explored. 

 

1.6 Climate change and salmonids 

Any shift or fundamental alteration in dominant climate conditions has the potential to 

affect the integrity of freshwater ecosystems and adversely impact the availability of 

suitable in-stream habitats, thus undermining the future viability of some populations of 

freshwater and anadromous fish species, including the Atlantic salmon (Salmo salar). 

This species is listed in Annex II and V of the EU Habitats Directive (1992) and thus 

has been identified as a threatened species deserving of conservation action. Given that 

they are highly sensitive to changing environmental conditions (i.e. being cold-adapted 

and requiring high dissolved oxygen levels), the success of native stocks and their 

productivity is considered a key indicator for the overall ecological well-being of 

freshwater systems.  

Salmonids have complex life cycles consisting of several stages (egg, larvae, juveniles 

and adult) each of which have different dietary, growth and habitat requirements 

(Rijnsdrop et al., 2010). This picture is complicated by the requirement of some 

salmonid species to migrate between the marine and freshwater environments, 

undergoing significant physiological change and travelling great distances in order to 

complete their lifecycle; consequently, salmon are regarded as a species which are 

particularly vulnerable to climate change. This is due to their innate sensitivity to 

environmental conditions and the fact that their life-cycle necessarily exposes them to 

climate-mediated changes in both the marine and freshwater environments. 

In terms of the Atlantic salmon, Ireland remains one of a small number of European 

countries which retain a viable native brood stock and attractive freshwater environment 

for breeding; however, the continued survival of this once abundant species in many of 

Irelandôs waterways has increasingly come under threat from human activity (Parrish et 

al., 1998; Stefansson et al., 2003). An analysis of long-term survival and productivity 
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trends for Irish stock suggest that many populations have gone into decline (Stefansson 

et al., 2003). This mirrors a decline which has occurred more generally across their 

distributional range, but particularly along their southernmost limits where many 

populations have become extinct (Parrish et al., 1998). It is anticipated that with further 

increases in water temperature, the distributional range of this species will be redrawn 

further northward where habitat conditions are likely to remain favourable for success 

during the freshwater phase of their life cycle (McCarthy & Houlihan, 1997; Friedland 

et al., 2003; Jonsson & Jonsson, 2009).  

Climate-mediated changes in water temperature, precipitation and streamflow all have 

long-term implications for the life-history strategy of salmonids and the local-carrying 

capacity of river systems. Changes in climate have the potential to alter the time at 

which key stages in their life cycle occur (e.g. smoltification, sexual maturity) 

(Berglund, 1991; Beaugrand & Reid, 2003; Jonsson & Jonsson, 2009; Graham & 

Harrod, 2009), as a result impacting the processes of recruitment, reproduction and 

migration, each of which is critical for the long-term productivity of salmonid stocks. 

Whilst changes in climate may directly affect salmon by altering aspects of their 

phenology (e.g. time of swim-up), physiology and behaviour (e.g. feeding); it may also 

affect them indirectly by reducing the availability of preferred habitat, altering food 

web-dynamics and changing the nature of interspecific relationships. The decline in 

many populations which has been observed in recent decades is an indication of the 

impact human activity has had on their environment (e.g. pollution, dams, over-

abstraction and aquaculture) (Parrish, 1998; Stefansson et al., 2003). Climate change 

brings the added complication that it is likely to amplify the effects of any current 

anthropogenic stressors; in this respect it presents additional challenges for the 

management and sustainable restoration of freshwater habitats.  

 

1.7 Research aims and objectives 

The objective of this study is to examine how changes in climate may impact the flow 

regime of the Burrishoole catchment - a relatively small but productive upland system 

typical of many catchments found along Irelandôs western seaboard. Projected changes 

in the catchment hydrology are examined in the context of the freshwater habitat and 

flow requirements of Atlantic salmon (Salmo salar) at different stages in their life cycle. 

While the results of this study are specific to the Burrishoole catchment, the general 
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findings are likely to be of relevance to the future management of catchment systems 

which possess similar physical and ecological characteristics.  

 

1.7.1 Aims 

Á Examine changes in key climate variables for the catchment using a series of high-

resolution climate projections.  

Á Analyse changes in different aspects of the catchmentôs flow regime using the 

output from a plausible set of hydrological models. 

Á Assess the potential implications that projected changes in the flow regime may 

have with respect to the physiological and habitat requirements of Atlantic salmon 

(Salmo salar) at different stages in their life cycle.  

Á Implement a robust methodological approach for dealing with those uncertainties 

which affect a climate impact study of this nature. 

 

1.7.2 Research Outline  

Climate change is anticipated to alter the flow regime of riverine systems with 

consequences for the freshwater habitat of salmonids and the long-term sustainability of 

their population numbers. The Burrishoole catchment, an internationally important 

sentinel site for salmonid monitoring located on Irelandôs west coast is used as a case 

study to investigate this. Changes in the catchmentôs flow regime under a range of 

future climate forcings are explored using a set of high resolution climate scenarios as 

input to multiple rainfall-runoff models (integrating across different parameter sets and 

model structures).  

To examine how alterations in the hydrological regime correspond to changes in those 

variables (depth, velocity, etc.) which are more closely linked to the availability of 

physical habitat, the projected hydrological flow series are subsequently used to model 

changes in the channel hydraulics of two selected stream reaches. Explicit consideration 

is given to the habitat requirements of Atlantic salmon (Salmo salar) at different stages 

in their life cycle (e.g. spawning, migration). To manage the uncertainties which 

pervade the translation of different GHG emission scenarios and coarse scale GCM 

projections into changes in flow and habitat availability at the reach scale, methods for 
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quantifying uncertainty in the final results are adopted. Figure 1.7 provides a schematic 

of the key components of this study. 

 

 

1.8 RESCALE (Review and Simulate Climate and Catchment Responses at 

Burrishoole) 

Some of the work conducted for this study contributed to RESCALE (Review and 

Simulate Climate and Catchment Responses at Burrishoole) - a multi-disciplinary 

project carried out to examine the potential impacts of climate change on the 

Burrishoole catchment (Fealy et al., 2010). The project remit was to investigate how 

changes in streamflow, temperature and water quality (DO, DOC and pH) may affect 

the productivity of salmon stocks in the catchment. Some of the work documented in 

the subsequent chapters - relating primarily to the statistical downscaling - was 

conducted for the purposes of RESCALE and is not of direct relevance to the findings 

of this study; however, as it allows for a greater exploration of the methodological 

approach adopted, where appropriate the results from RESCALE are discussed.  

 

Figure 1.7 Schematic illustrating the main components of the study and how they are related. 
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1.9 Chapter Summaries 

Chapter 2 sets the context for the study being undertaken - providing background 

information on observed changes in climate and ecosystem functions at a global, 

regional and national level. Anticipated changes in the climate system and hydrological 

cycle are discussed. The significance of natural flow regimes with respect to the 

functioning of freshwater ecosystems and the availability of suitable in-stream habitats 

is highlighted; in addition the potential impacts of climate change on aquatic 

ecosystems and salmonid species are explored.  

Chapter 3 provides background information on the Burrishoole catchment and the 

observed datasets used in this study. The importance of the catchment as an 

international centre for research into migratory fish species is highlighted; the physical 

properties of the catchment are subsequently outlined. There is evidence that the 

catchment has experienced warming consistent with trends found both nationally and at 

a global scale. Given the significance of this for the study being undertaken, a 

discussion on observed changes in precipitation and temperature for the catchment is 

provided. 

Chapter 4 examines each link in the ñcascade of uncertaintyò, describing how each one 

contributes to the overall uncertainty in the results from impact studies. The importance 

of accounting for uncertainty at each step in the process of translating storylines of 

future socio-economic development into local scale climate impacts is highlighted. In 

addition, the various methods for quantifying uncertainty are discussed. 

Chapter 5 critically examines the methods employed for downscaling coarse resolution 

GCM data to the finer spatial scales relevant for conducting local to regional scale 

impact studies.  

Chapter 6 describes the application of a statistical model used to downscale climate 

data for the Burrishoole catchment. As dynamically downscaled data from the 

ENSEMBLES (van der Linden & Mitchell, 2009) data archive is also employed in this 

study, a description of the GCM-RCM ómodel pathwaysô used to generate this data is 

given. An assessment of model skill at simulating present day climate conditions for the 

catchment is subsequently provided. A performance based weighting system is devised 

for use in this study - the various criteria used to develop this are outlined.  
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Chapter 7 examines projected changes in climate for the catchment. Despite a general 

agreement between the respective ensemble members, a considerable amount of 

uncertainty regarding future change in climate is evident. The added benefit of 

employing a multi-model ensemble in-conjunction with the formulated weighting 

scheme is considered. 

Chapter 8 discusses the issues associated with conducting hydrological impact studies. 

The limitations of different hydrological models and the assumptions implicit in their 

application in a climate change context are examined. A discussion on the sources of 

uncertainty in hydrological modelling is provided; the various methods employed to 

address them are also outlined.  

Chapter 9 describes the hydrological models used in this study. It highlights the 

difficulties of selecting models specific to the physical characteristics of the Burrishoole 

system and the responsive nature of its flow regime; in addition, the merits of 

employing a multi-model approach are explored. Model projected changes in the 

hydrological regime of the study catchments are subsequently examined. 

Chapter 10 provides contextual information on the link between hydrological processes 

and the success of salmonids at different stages in their life cycle. This chapter also 

discusses the methods used to model changes in habitat availability under future 

climate. The results of the hydrological and hydraulic modelling are discussed in the 

context of the known habitat and flow requirements of Atlantic salmon at different 

stages in their life-cycle. 

Chapter 11 provides an overview of the study and its findings; in addition key points of 

discussion and potential areas for future research are highlighted. The relevance of the 

findings from this study for the future management of catchment systems similar in 

nature to the Burrishoole is explored. 
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Chapter 2  

Climate change, freshwater ecosystems and Atlantic salmon 

 

2.1 Observed changes in the climate system 

Rising atmospheric concentrations of carbon dioxide and other GHGs have contributed 

to an increase in the planetôs radiative forcing and altered the energy balance of the 

climate system, leading to a warming of the Earthôs oceans and atmosphere. The current 

scientific consensus attributes most of the observed increase in atmospheric GHGs to 

human activity, principally the mass consumption of fossil fuels; a practice which has 

underpinned the development of industrialised society. 

Evidence suggests that concentrations of atmospheric carbon dioxide have increased 

from a pre-industrial level of ~280 ppmv to a current level of ~391 ppmv - a rise of 

~40% (IPCC, 2007a). If current rates of fossil fuel consumption continue, it is likely to 

result in a doubling or even tripling of atmospheric CO2 (relative to pre-industrial 

levels) by the end of the 21
st
 century (Trans, 2009). An analysis of ice core data 

indicates that atmospheric concentrations of carbon dioxide are presently greater than at 

any time in at least the past 800,000 years (Luthi et al., 2008); whilst records of past 

variations in atmospheric CO2 - estimated from various marine and terrestrial proxies - 

suggest that current levels are greater than at any time in the past several million years 

(Royer et al., 2006). 

The results of model experiments indicate that the warming experienced since the mid-

20
th
 century cannot be attributed to natural forcing alone, and it is only when models are 

run using both natural and anthropogenic forcing that the temperature increases 

observed over the past century are replicated - highlighting the impact which human 

activity has had on the climate system (IPCC, 2007a). There are a number of indicators 

which provide evidence that changes in the global climate have occurred, this includes:  

Á the melting of ice sheets in Greenland and Antarctica (Hanna et al., 2008; 

Velicogna, 2009; Rignot, 2011) 

Á a rise in global average sea levels (Church & White, 2006; Sheperd & Wingham, 

2007) 
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Á a reduction in glacier mass balance, contractions in snow cover and declines in 

the extent of arctic sea-ice (IPCC, 2007a; Polyak et al., 2010) 

Á increases in global air (Jones et al., 1999) and ocean temperatures (Levitus, 

2000;  Levitus et al., 2009) 

Á changing precipitation patterns (Hulme et al., 1998) 

Á the acidification of the worldôs oceans (Doney et al., 2009) 

Evidence that the climate system is undergoing fundamental changes can also be found 

in the biological responses of natural systems - of which climate is a key determining 

variable. Observed changes in marine and terrestrial ecosystems which have been linked 

with changes in the global climate include an advance in the timing of seasonal events 

and a reduction in the abundance of some species of flora and fauna; alterations in the 

distributional range of more mobile species have also been linked to recent climate 

change (e.g. Hughes, 2000; Wuethrich, 2000; McCarthy, 2001; Walther et al., 2002; 

Hickling et al., 2005, 2006). 

 

2.1.1 Temperature 

The three principal reconstructions of global surface temperature (National Oceanic and 

Atmospheric Administration (NOAA); Climate Research Unit (CRU); Goddard 

Institute for Space Studies (GISS)) all indicate that the Earth has experienced significant 

warming since the 1880s (Jones et al., 1999; Hansen et al., 2011) - with most of this 

warming occurring since the 1970s (Figure 2.1).  

Between 1906 and 2005 globally averaged surface air temperatures increased by 0.74ęC 

Ñ 0.18ęC (IPCC, 2007a). Over the past 50 years the rate of warming has almost doubled 

to 0.13ęC per decade, and it is likely that the current rate of warming is greater than at 

any time in the last one thousand years (IPCC, 2007a). More recently, GISS have 

indicated that since 1880 globally averaged air temperatures have increased by ~0.8ęC 

(Hansen et al., 2010). According to the World Meteorological Organisation (WMO) - 

over the period 2001-2010 - global temperatures averaged 0.46°C above the 1961-1990 

average which, is the highest ever recorded for a 10-year period (WMO, 2011). When 

estimating changes in temperature the WMO considers each of the datasets maintained 

by the three organisations referred to above. Recent data assessed by GISS suggests that 

2010 tied with 2005 as the warmest year in the 131 year instrumental record (Hansen et 

al., 2010). The three warmest years on record include 2010, 2005 and 1998; in addition 
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records indicate that sixteen of the warmest years have occurred since 1990 (WMO, 

2011). Kennedy and Parker (2010) indicate that warming experienced in 2010 was in 

part related to the El Niño that developed in 2009, this is also the case with the high 

temperatures recorded in 1998; however, no such natural factor can be attributed to the 

warming experienced in 2005. 

 

 

 

According to the dataset maintained by the UK Met Office (Climate Research Unit), the 

period 2001-2010 (0.44°C above 1961-90 mean) was 0.20°C warmer than the period 

1991-2000 (0.24°C above 1961-90 mean). Their analysis indicates that 1998, with a 

temperature of 0.55°C above the 1961-90 mean, is the warmest year on record. The next 

nine warmest years all occur in the decade 2001-2010. During this period 2008 is the 

only year which does not appear in the ten warmest years. Despite 2008 being the 

coldest year of the 21
st
 century, it is still the 12

th
 warmest on record.  

Despite an increase in global temperature, spatial disparities in the rate and magnitude 

of warming exist. For example, warming has been greater over land (0.27ęC per decade 

since 1979) as opposed to the oceans (0.13ęC per decade since 1979) (IPCC, 2007a); in 

Figure 2.1 Observed global annual average temperature (ęC) deviations for the period 1850ï2010. Deviations are 

estimated relative to the mean values for the 1961-90 reference period. Show in blue are estimated changes in the 
global mean surface temperature from the combined UK Met Office Hadley Centre and Climate Research Unit dataset 
HadCRUT3. Shown in red are estimated temperature changes from NASA's GISS dataset - anomalies are calculated 
relative to the period 1951-1980. (Source: http://www.eea.europa.eu/data-and-maps/figures. accessed 27/12/2011). 
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addition temperature increases have been greatest at high northern latitudes. This is 

exemplified by average spring and winter temperatures in the arctic which, over the past 

100 years have increased by approximately double the global average (IPCC, 2007a). In 

contrast, parts of the Antarctic continent and Pacific Ocean have exhibited little or no 

evidence of warming (IPCC, 2007a). The WMO (2011) indicate that recent warming 

has been especially strong in Africa, as well as in parts of Asia and the Arctic (WMO, 

2011). The Saharan/Arabian, East African, Central Asian and 

Greenland/Arctic/Canadian sub-regions have all experienced temperature increases in 

the range of 1.2°C to 1.4°C over the last decade (2001-10) - relative to the long-term 

average - and are 0.7°C to 0.9°C warmer than in any previous decade (WMO, 2011). 

According to the European Environment Agency (EEA) average annual surface 

temperatures over the European ocean area and land mass have increased by 1.1ęC 

(1850-2009 relative to the 1850-1899 average) (EEA, 2010); when ocean areas are 

excluded surface temperatures for the same period were found to have increased by 

1.3ęC.  

Observational records indicate an increase/decrease in the occurrence of warm/cold day 

extremes; also of note is an increase in the duration and frequency of heat waves (IPCC, 

2007a). Alexander et al. (2006) found that, for the period 1951-2003, over 70% of the 

global land area considered by their study exhibited a significant decrease in the annual 

occurrence of cold nights; this was accompanied by a significant increase in the 

frequency of warm nights - with some regions experiencing a doubling of these indices. 

Similarly, Firch et al. (2002) found a decrease in the number of frost days, an increase 

in the occurrence of warm summer nights and a reduction in the intra-annual extreme 

temperature range. Instrumental records also show an increase in the incidence of 

precipitation occurring as rain rather than snow, this finding is consistent with studies 

focusing on temperature change in high latitudes (Mote, 2003; Knowles et al., 2006).  

 

2.1.2 Precipitation 

Linked with warmer air temperatures is an increase in the moisture carrying capacity of 

the atmosphere - the theoretical basis for which is the Clausius-Clapyeron relation. 

There is however a considerable degree of uncertainty regarding whether humidity will 

increase in accordance with the ClausiusïClapyeron relation or at a lower rate (Allen & 

Ingram, 2002; Held & Soden, 2000; Trenberth, 2011). Allen and Ingram (2002) found 
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that the precipitation response in a number of GCMs was approximately 3.4% K
-1
. This 

was related to evaporation being constrained at a rate lower than that required to satisfy 

the 7% K
-1 

increase in specific humidity estimated by the ClausiusïClapyeron relation. 

Observational data does however support increases at rates which are consistent with 

the ClausiusïClapyeron relation (Huntington, 2006; Allan & Soden, 2007; Wentz et al., 

2007; Zhang et al., 2007; Willet et al., 2008). Changes in the energy balance of the 

climate system mean alterations in the spatial distribution and variability of 

precipitation is likely to occur. A change in forcing is also likely to alter the frequency 

of occurrence and intensity of extreme events, and lead to changes in the type and 

amount of precipitation which occurs.  

Precipitation records indicate an overall, although not significant increase in 

precipitation and an intensification of the water cycle over the 20
th 

century (Trenberth et 

al., 2007). On a globally averaged basis precipitation over land is estimated to have 

increased by approximately 2% since the beginning of the 20
th
 century (Jones and 

Hulme, 1996; Dai et al., 1997; Hulme et al., 1998; Huntington, 2006). This is however 

not spatially or temporally uniform, with regional variations being apparent (Karl & 

Knight, 1998). The increase is most pronounced polewards of 30ę in both hemispheres, 

with many regions experiencing a 6-8% increase over the period 1900-2005 (IPCC, 

2007a).  

Zhang et al. (2007) found that the observed increase in the Earthôs radiative forcing has 

not been detected in precipitation at a global scale; the authors indicate that this is partly 

due to changes in different regions cancelling each other out. Zhang et al. (2007) 

compared trends found in land precipitation records over the 20
th
 century with trends 

found in model simulated data (based on a suite of 14 climate models). By considering 

observed trends in the context of model simulations the authors state that anthropogenic 

forcing has had a discernible influence on changes in precipitation across different 

latitudinal bands. Zhang et al. (2007) indicate that regional and global precipitation 

trends cannot be explained either by internal climate variability or natural forcing alone; 

thus the authors point to anthropogenic forcing as the primary driver of observed 

changes in large scale precipitation regimes. Zhang et al. (2007) note increases in 

precipitation over the Northern Hemisphere mid-latitudes, and state that this has been 

accompanied by a decrease in yields over the subtropics/tropics; the authors also 

highlight the sensitivity of regions like the Sahel - constituting the region between the 
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Sahara desert to the north and African savannah to the south - to altered precipitation 

patterns. 

According to a number of studies the high latitudes of the northern hemisphere have 

experienced an increase in the amount and variability of precipitation - particularly 

during the wetter winter months (Alexander et al., 2006; Meehl et al., 2006; Trenberth 

et al., 2007). Increased receipts in the mid and high latitudes are in contrast with 

decreases experienced in the northern sub-tropics (Houghton et al., 2001). Record low 

precipitation yields have been observed in equatorial regions since 1995, and there has 

been a persistent decline in precipitation in the Sahel since the late 1960s (Dore, 2005). 

According to Dore (2005) precipitation across the African continent has declined by 5-

10% between the periods 1931ï1960 and 1968ï1997; this trend has been most 

pronounced over the Sahel region where - over the same period - precipitation receipts 

are estimated to have declined by between 20% and 49%.  

Marked increases in precipitation have been detected in northern Europe; however, 

increases have been accompanied by a general decline in precipitation yields towards 

southern Europe and across the Mediterranean region (Schonwiese & Rapp, 1997). 

Over the 20
th
 century it is estimated that precipitation amounts in northern Europe 

increased by 10ï40%; in contrast some parts of southern Europe have dried by as much 

as 20% (Dore, 2005). Such trends reflect a wider hemispherical pattern of divergent 

zonal mean precipitation trends between high and low latitudes (Dai et al., 1997; Hulme 

et al., 1998).  

Several studies have detected increases in precipitation receipts in a number of regions 

(Dai et al., 1997; Alexander et al., 2005), including areas of the United States (Karl & 

Knight, 1998; Groisman et al., 1999) and Canada (Mekis & Hogg, 1999), South 

America (Haylock et al., 2006a), the Arctic (Min et al., 2008), northern Taiwan (Yu et 

al. 2006), Australia (Hennessy et al., 1999; Manton et al., 2001) and the UK (Osborn & 

Hulme, 2002).  

In some regions an overall increase/decrease in total annual receipts has been 

accompanied by changes in the seasonality of the precipitation regime. This is the case 

in the UK where records indicate an increase in winter rainfall amounts, which has been 

accompanied a notable decline in summer receipts - the latter of which is manifest 

through an increasing frequency in the occurrence of drought events (Osborn & Hulme, 

2002). An increase in the seasonality of the precipitation regime has been detected in 
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different regions across Germany. In this case researchers have found that an 

increase/decrease in winter/summer rainfall amounts had occurred over the periods 

1958-2001 (Hundecha & Bardossy, 2005) and 1851-2006 (Hansel et al., 2009) 

respectively.  

Linked with increases in precipitation amounts are changes in the occurrence and 

intensity of heavy rainfall events (Groisman et al., 2005; Alexander et al., 2006). 

According to Dore (2005) it is likely that over the latter half of the 20
th
 century there has 

been a 2-4% increase in the frequency of heavy or óextremeô precipitation in the 

Northern Hemisphere - particularly across the mid to high latitudes. Regional studies 

focusing on the United States (Karl & Knight, 1998; Kunkel et al., 1999), China (Liu et 

al., 2005; Zhai et al., 2005), Canada (Stone et al., 1999), Switzerland (Frei & Schar, 

2001; Schmidli & Frei, 2005), Japan (Iwashima & Yamamoto, 1993; Yamamoto & 

Sakurai, 1999) and the Mediterranean (Kostopoulou & Jones, 2005) have all indicated 

an increase in either the intensity of precipitation events or the contribution of extreme 

events to total annual receipts. Similar conclusions were drawn from studies focusing on 

northern Italy (Brunetti et al., 2000), the UK (wintertime precipitation) (Osborne et al. 

2000; Osborne & Hulme, 2002), Scotland (Fowler & Kilsby, 2003), South Africa, 

northeast Brazil and the former USSR (Groisman et al., 1999; Gruza et al., 1999; 

Easterling et al., 2000). Based on a comparison between observed and model simulated 

data for the latter half of the 20
th
 century, Min et al. (2011) suggests that the increase in 

heavy precipitation events observed over the Northern Hemisphere land area is linked to 

anthropogenic forcing. 

Dore (2005) indicates that increases in mean annual receipts are reflected 

disproportionately in increased incidences of heavy precipitation, suggesting an 

amplified response in the intensity of precipitation events to climate forcing (Groisman 

et al., 1999; Gruza et al., 1999; Easterling et al., 2000). Essentially in cases where an 

increase in total receipts has been observed, the relative increase in the frequency of 

extreme precipitation events has been disproportionately greater (Dore, 2005). It follows 

that where a reduction in rainfall amounts has been experienced, so too has a decrease in 

the frequency of extreme events (Katz, 1999; Groisman et al., 1999); however, as stated 

by Dore (2005) this generalization does always hold as increases in higher order events 

have also been observed in areas where an overall decline in yields has occurred - 

pointing to more fundamental changes in the probability distribution of precipitation 

(Buffoni et al., 1999; Groisman et al., 1999; Brunetti et al., 2000; Dore, 2005).  
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2.1.2 The Intensification of the Hydrological Cycle 

It is argued that increasing atmospheric concentrations of carbon dioxide and other 

GHGs have led to an intensification of the hydrological cycle - manifest in an increase 

in the flux of water between the terrestrial, atmospheric and aquatic spheres (Trenberth, 

1999, 2011; Huntington, 2006; Held & Soden, 2000, 2006; Chang & Jung, 2010). By 

fundamentally altering the Earthôs energy balance, climate change is likely to affect all 

aspects of the hydrological cycle (Bates et al., 2008; Trenberth et al., 2007) including, 

evaporation rates, the spatial and temporal variability of precipitation patterns and the 

quantity as well as timing of flow through freshwater systems; furthermore, climate 

change has the potential to alter the characteristics (frequency, duration and intensity) of 

extreme events such as floods, drought and severe storms. The relationship between 

changes in the Earthôs energy budget and the intensification of the hydrological cycle - 

otherwise interpreted as the sensitivity of the hydrologic response to climate warming - 

is encapsulated by the ClausiusïClapyeron relation (Held & Soden, 2000). Measurable 

changes in the processes and components of the hydrological cycle are important 

indicators of warming in the climate system (DelGenio et al., 1991; Loaciga et al., 

1996; Trenberth, 1999; Held & Soden, 2000; Arnell et al., 2001). 

Trends found in a range of hydroclimatic variables including: precipitation (Houghton, 

et al., 2001), runoff (Groisman et al., 2001), atmospheric water vapour (New et al., 

2000) and glacier mass balance (Oerlemans, 2005) indicate that during all or part of the 

20
th
 century there was an acceleration of the hydrological cycle - observed at both 

regional and continental scales (Huntington, 2006). Similar trends observed in the 

length of growing seasons (Cooter & LeDuc, 1995), evapotranspiration rates (Golubev 

et al., 2001) and soil moisture deficits (Robock et al., 2000) also support an 

intensification of the hydrological cycle. However, due to the various inconsistencies 

between individual studies - vis-à-vis the variables/regions considered, as well as the 

limitations of available datasets - a significant degree of uncertainty is associated with 

the assertion that an acceleration of the hydrological cycle has occurred (Huntington, 

2006).  

Trends detected in patterns of global runoff by Labat et al. (2004) and Labat et al. 

(2005) suggest an increase in continental runoff (estimated over the period 1920-1995),  

supporting the contention that an intensification of the water cycle has occurred. Their 

study suggested a 4% increase in global runoff per 1°C increase in air temperatures 
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during the 20
th
 century - with regional variations evident around this trend. Legates et 

al. (2005) however highlight a number of shortcomings in both studies - which include 

the small sample considered and the potential confounding influence of non-climatic 

drivers on changing runoff patterns. It is argued this undermines the findings of both 

Labat et al. (2004) and Labat et al. (2005). 

The IPCC (2007b) states that there is a broadly consistent pattern of change in annual 

runoff, with some areas, particularly those at higher latitudes, experiencing an increase; 

conversely, in regions including west Africa, southern Europe and southern Latin 

America, reductions in annual runoff have been experienced (Milly et al., 2005; IPCC, 

2007b). At a regional scale studies have detected an increase in runoff in parts of China 

(Tao et al., 2003; He et al., 2010), Finland (Hyvarinen, 2003) and the coterminous USA 

(Walter et al., 2004). In addition, increases in precipitation over a number of river 

catchments in the United States have been detected using hydrometric data (Lins & 

Slack, 1999; Groisman et al., 2001; McCabe & Wolock, 2002). 

Giorgi et al. (2011) proposed the hydroclimatic intensity index (HY-INT) as a measure 

for detecting warming related trends in the water cycle. In order to explore the response 

of the hydrological cycle to climate warming the authors applied the index to observed 

station and gridded datasets of daily precipitation. The results suggested an increasing 

trend in the index over the last decades of the 20
th
 century which the authors attribute to 

anthropogenic forcing. 

Theoretically, the observed increases in higher order precipitation events (Groisman et 

al., 2004) should lead to a corresponding increase in the frequency of flooding and 

extreme flow events; however, evidence from regional studies conducted in the USA 

(Lins & Slack, 1999; Douglas et al., 2000; McCabe & Wolock, 2002; Vogel et al., 

2002), Scandinavia (Hyvarinen, 2003; Lindstrom & Bergstrom, 2004), Canada (Zhang 

et al., 2001) and central Europe (Mudelsee et al., 2003) do not consistently support this. 

The findings of these studies are generally at odds with those of Milly et al. (2002) who 

reported an increase in the frequency of flood events over the 20
th
 century (with 

discharges exceeding 100-year return periods). This study examined runoff patterns in 

29 river basins - each with an area greater than 200,000km
2 

- spanning different 

continents and climatic zones. The authors indicate that the link between increases in 

the occurrence of flood events and radiatively induced climate change is a tentative one, 

but consistent with model simulations. In a study of 195 catchments, Kundzewicz et al. 

(2005) found that 137 of the selected catchments exhibited no trend in the annual 
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maximum series; however 31 returned a positive trend and 27 exhibited a negative 

trend. Petrow and Merz (2009) analysed 145 discharge gauges distributed across 

Germany for trends in flooding events. According to the authors the spatial and seasonal 

coherence of the results from individual records and river catchment suggests that 

detected changes in flood behaviour are climate driven. Both Robson (2002) and 

Robson et al. (1998) examined flow series from catchments in the UK for changing 

flood patterns; both studies indicated that no clear evidence for warming related trends 

in flood behaviour could be found. 

 

2.1.3 Changes in European Extremes 

The EU funded project óSTARDEXô (STAtistical Regional Downscaling of EXtremes 

for European regions) was undertaken to examine changes in the frequency and 

intensity of extreme precipitation and temperature across Europe. Observational records 

from 491 European-wide stations, covering the period 1958-2000 were used in the 

study. The results indicated an increase in mean temperatures across Europe consistent 

with trends found in global datasets. This was found to be accompanied by an increase 

in the occurrence of extreme temperature and precipitation events.  

The indices used in STARDEX have been employed in several region specific studies 

(e.g. Hundecha & Bardossy, 2005; McElwain & Sweeney, 2007). When examining 

trends in daily precipitation and temperature across western Germany using the 

STARDEX indices, Hundecha and Bardossy (2005) found an increase in daily 

maximum and minimum extreme temperatures. With the exception of the summer 

season the authors also found an increase in both the magnitude and frequency of 

extreme precipitation events. The results of the STARDEX project can be summarized 

on a seasonal basis as follows (STARDEX Final Report, 2005):  

Winter 

Á With the exception of south-western Europe, there has been a general 

increase in extreme maximum temperature. 

Á Extreme minimum temperature has increased to a greater degree than 

extreme maximum temperature. 

Á With the exception of small decreases noted in parts of Greece, 

Scandinavia and the Iberian Peninsula, extreme minimum temperature has 

increased over the entire region. 
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Á The longest winter dry period increased in Southern Europe; this is 

contrasted with observed decreased in Northern Europe. 

Á The indices used indicated an increase in heavy rainfall across the UK, 

central Europe and Scandinavia.  

Á In Eastern Europe, Greece and western part of the Iberian Peninsula the 

indices suggested a general decrease in extreme precipitation. 

 

Summer 

Á With the exception of Eastern Europe, northern Scandinavia and Russia, 

extreme maximum temperature was found to have increased in most 

regions. 

Á With the exception of a small number of stations, extreme minimum 

temperature increased in most areas for this season. 

Á In contrast to winter, trends for the longest dry period during summer 

were less spatially coherent; however, stations in central Europe, the UK 

and southern Scandinavia exhibited a general increase in this index. 

Á In Scandinavia, northwest Russia and across southwest Europe a positive 

trend in the incidence of extreme precipitation events was found. 

Á Across the northern Iberian Peninsula, the UK and northeast Europe a 

decrease in heavy rainfall during this season was found to have occurred. 

 

2.2 Climate change indicators for Ireland 

Trends detected in observed temperature and precipitation records from synoptic 

stations located across Ireland indicate that its climate has undergone changes 

commensurate with trends found in European and global datasets. A study by McElwain 

and Sweeney (2007) found that, over the period 1890-2004, Irelandôs mean annual 

surface air temperature increased by 0.7ęC. The general positive trend in air temperature 

follows a similar pattern to that found globally; however, Irelandôs trend was found to 

exhibit greater interannual variability and displayed a tendency to lag the global trend - 

a finding which may be due in part to the temperate maritime nature of the climate and 

the moderating influence of the Gulf Stream (McElwain & Sweeney, 2007).  

Analysis of the instrumental records indicates that two distinct periods of warming 

occurred (1910-1940 and 1980-2004). During the latter period of warming temperatures 
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increased by 0.42ęC per decade - almost double the rate of the first period (0.23ęC per 

decade). The records used also indicated that six of the ten warmest years on record 

occurred between 1995 and 2004. McElwain and Sweeney (2007) found that 1945 was 

the warmest year on record ï this is followed by 1998 which was the second warmest. 

This is similar to global datasets where 1998 (at the time of this study) is noted as being 

the warmest year (Jones et al., 1999). The synoptic records indicated that for the 

majority of stations an increase in mean temperatures (maximum and minimum) had 

occurred; there was also a noted increase in the number of hot days (defined as 

maximum temperature >18ęC) and a decrease in the occurrence of frost days (minimum 

temperature < 0ęC) - a trend accompanied by a shortening in the length of the frost 

season (McElwain & Sweeney, 2007). 

McElwain and Sweeney (2004) suggest that trends found in precipitation records are 

consistent with patterns found at a European scale. Total annual precipitation yields 

were found to have increased in the north and west of the country, in contrast on the 

southern and south-eastern seaboard a slight negative trend in receipts was found. 

Stations located on the west coast suggested an increase in the maximum number of 

consecutive wet days; additionally, increases in the precipitation intensity (Ó10 mm d
-1
), 

as well as the frequency of events greater the 90
th
 percentile were found for these 

stations. Positive trends in the persistence and intensity of rainfall are consistent with 

increases in annual receipts for stations located on the west coast.  

 

2.3 Projected changes in the global climate system 

The IPCC (2007a) state that if atmospheric concentrations of aerosols and GHGs were 

held constant at year 2000 levels it is likely that a further warming of ~ 0.1°C per 

decade would still occur over the next two decades. This is due to the timescales 

associated with climatic feedbacks and the slow response of the oceans to warming. 

Depending on which emissions pathway is considered more likely, climate models 

suggest an increase in global temperatures of between 1.8ęC (B1 low emissions 

scenario) and 4ęC (A1FI high emissions scenario) by the end of the present century 

(2090-2099 relative to 1980-1989) (IPCC, 2007a; Knutti et al., 2008) 

Model simulations indicate that temperature increases are likely to be greatest over land 

and at higher latitudes; in contrast relatively less warming is projected to occur over the 

North Atlantic and Southern Oceans (IPCC, 2007a). Model experiments also indicate 
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that the negative trend observed in snow cover and glacier mass balance will continue. 

It is likely this will negatively impact the availability of water resources in those regions 

supplied by melt waters (Barnett, 2005). The results of a study conducted by 

Schneeberger et al. (2003) on 11 glaciers sampled from different climatic regions 

suggest a volume loss of 60% by the 2050s.  

Increases in air temperature are also likely to result in a continuation and further 

enhancement of the negative trend observed in the sea-ice extent. In some model 

projections, by the latter part of the 21
st 

century Arctic late-summer sea-ice disappears 

almost entirely (IPCC, 2007a). Model simulations also indicate that the warming 

suggested to occur over the present century is likely to result in a 20-35% decrease (by 

the 2050s) in the permafrost area of the Northern Hemisphere. Melting of the Antarctic 

and Greenland ice sheets is likely to continue, further contributing to increases in sea 

level rise - estimates for which indicate that by the last decade of the 21
st
 century, 

relative to the last two decades of the 20
th
 century, sea-levels may have risen by 

between 0.18m (B1 scenario) and 0.59m (A1FI scenario) (IPCC, 2007a). These findings 

are similar to Horton et al. (2008) who suggest an increase of between 0.42m and 0.57m 

in sea levels by the end of the present century. The intensity of tropical cyclones is also 

likely to increase; in addition, model projections indicate a poleward shift in extra-

tropical storm tracks (IPCC, 2007a).  

Bates et al. (2008) document results from a multi-model experiment consisting of 

fifteen climate models, each run using the A1B emission scenario. Model simulations 

projected an increase in atmospheric water vapour, evaporation and precipitation - 

consistent with an intensification of the global hydrological cycle. Despite a general 

concordance between individual models, strong seasonal and regional differences were 

found to occur. For the period 2080ï2099 (relative to 1980-1999) an increase of up to 

20% in annual mean precipitation receipts across high latitudes was suggested. In 

contrast the models indicated a decrease of 20% in annual yields across the subtropics. 

A decline in receipts of up to 20% over the Mediterranean and Caribbean regions, as 

well as the sub-tropical western coasts of each continent were also projected to occur 

(Bates et al., 2008). Regions likely to experience an increase in precipitation included 

the Arctic, Northern Europe, Canada and the northeast United States (Hayhoe et al., 

2006; Bates et al., 2008).  

GCM experiments consistently suggest an increase in the variability, frequency and 

intensity of heavy precipitation events - albeit with significant regional variations. The 
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frequency of extreme precipitation is likely to increase over most areas during the 21
st
 

century (e.g. tropical and high-latitude zones) (Bates et al., 2008). Projected increases in 

the precipitation intensity will likely result in an increase in the magnitude and duration 

of high flow and flooding events. Mid-continental drying, most notably in the sub-

tropics, low and mid-latitudes, is likely to increase during summer - leading to a greater 

risk of drought conditions (Sheffield & Wood, 2007; Bates et al., 2008). 

In their study of model simulated precipitation data for a European domain, 

Kundzewicz et al. (2006) found a marked contrast between projected changes in winter 

and summer precipitation patterns. Although not spatially uniform, wetter winters were 

suggested to occur throughout the continent; with respect to changes in summer rainfall 

patterns, a distinction between northern and southern Europe was made. It is likely that 

southern Europe will experience drier summers whilst over northern Europe winter 

precipitation yields are projected to increase. Due to changing precipitation patterns 

problems of water quality and supply are likely to be exacerbated, particularly over 

southern Europe during the drier summer months. A study by Palmer and Räisänen 

(2002) suggested an increase in the frequency of óveryô wet winters across northern 

Europe which, the authors link to an increase in the intensity of mid-latitude storms. 

According to Palmer and Räisänen (2002), for a doubling of CO2  (61ï80 years from 

present), a five-fold increase in the likelihood of very wet winters is projected for 

Scotland, Ireland and much of the Baltic Sea basin, whilst a seven fold increase is 

projected for parts of Russia.  

With regards to changes in the intensity of precipitation over Europe, the highest 

quartiles of daily rainfall amounts are anticipated to increase in many areas (Christensen 

& Christensen 2003; Kundzewicz et al. 2006). In keeping with trends found over the 

past century (Dore, 2005) the frequency and intensity of heavy precipitation events is 

projected to increase in regions which also experience a general reduction in total 

receipts (Christensen & Christensen 2003; Kundzewicz et al. 2006; Frei et al., 2006). 

This is one of the key findings of a study by Christensen and Christensen (2003) who 

examined the impacts of climate change on severe summertime flooding across Europe. 

For southern and central Europe rising air temperatures are likely to increase soil 

moisture deficits, leading to the more frequent occurrence of drought events and intense 

summer drying (Douville et al., 2002; Christensen et al., 2007a).  

A study by Fowler and Ekström (2009), which considered projections from a multi-

model ensemble (obtained from PRUDENCE project), found that extreme precipitation 
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across the UK during winter, spring and autumn is likely to increase. The absolute 

magnitude of increases ranged from 5% to 30% (2070ï2100 relative to the 1961-1990 

control) depending on region and season considered.   

 

2.4 Projected changes in the hydrological cycle 

Model projections suggest that by the mid 21
st
 century across the high latitudes, water 

availability and mean annual runoff will have increased (Bates et al., 2008); in contrast, 

over drier regions - particularly those in the mid-latitudes and the dry tropics - a 

decrease in the availability or water resources is likely to occur (e.g. western USA, 

Mediterranean, southern Africa and northeastern Brazil) (Bates et al., 2008). Milly et al. 

(2005) used 12 climate models to explore global trends in runoff and water availability 

under perturbed forcing conditions. For the year 2050 the models projected a 10% to 

40% increase in runoff in eastern equatorial Africa and the La Plata basin (South 

America). This was also the case across the high latitudes of North America, Eurasia 

and some major islands of the equatorial eastern Pacific Ocean. A decrease in runoff 

(typically 10-30% by 2050) was suggested for southern Africa, the Middle East, 

southern Europe and the mid-latitude region of western North America.  

Using four different GCM-based climate scenarios, Arnell (1999) explored the potential 

hydrological response of a defined European domain to projected changes in climate. 

Although inter-model differences were evident, the projections broadly suggested a 

decrease in annual runoff at latitudes south of 50°N (-25% to -50%); in contrast 

increases were suggested for areas north of 50°N latitude. Projected changes in patterns 

of flood behaviour for Europe indicate that over large parts of the continent a reduction 

in return periods is likely (Lehner et al., 2006; Hirabayashi et al., 2008; Dankers & 

Feyen, 2008); however, the results from individual studies are inconsistent, highlighting 

the uncertainties inherent in modelling climate and hydrological extremes - even at large 

spatial scales.  

There have been several studies focusing on the potential impacts of climate change on 

river flows in the United Kingdom (e.g. Arnell & Reynard, 1996; Sefton & Boorman, 

1997; Pilling & Jones, 1999, 2002; Arnell, 2004). In general the results suggest that 

annual, winter and summer runoff is likely to decrease in southern regions; in contrast, 

over northern areas flows are likely to increase throughout the year, particularly during 
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winter. The principle findings from similar studies conducted in an Irish context (e.g. 

Charlton & Moore, 2003; Murphy & Charlton, 2008; Steele-Dunne et al., 2008) are 

summarised below. 

Á The seasonality of runoff is likely to increase, with higher flows in winter and 

spring; extended dry periods are suggested to occur during the summer and 

autumn months. 

Á The projected increase in winter runoff is more pronounced in westerly river 

basins.  

Á All areas are anticipated to experience a reduction in summer runoff; however, 

the greatest decreases are likely to occur during the autumn months. In addition 

catchments situated along the eastern seaboard are likely to experience the 

greatest decrease in runoff. 

Á It is likely that the magnitude and frequency of flooding events will increase 

nationally, but particularly in those catchments located on the western seaboard. 

Á A number of catchments exhibited an increase in the incidence and duration of 

low flow events.  

Á Those catchments which lack the storage potential with which to moderate the 

effects of an increasingly seasonal rainfall regime are most vulnerable to 

changes in climate. 

 

2.5 Climate change impacts on freshwater ecosystems 

Given that variations in localised climate conditions have had a central role in shaping 

the abiotic and biotic composition, as well as structure of freshwater ecosystems, it is 

likely that any change in such an elemental variable will have a significant impact on all 

facets of freshwater systems. This includes, for example, individual organisms, 

interspecific relationships, community structures, nutrient cycling and the nature of food 

web-dynamics. Climate change is also likely to affect a range of abiotic factors 

including the substrate cover, flow regime and water chemistry. In doing so it may 

impact the quantity and quality of available habitat and create conditions conducive to 

the ingress of invasive species (Walther, 2001; Mckee et al., 2003; Moss et al., 2003; 

Burgmer, 2007; Senerpont Domis et al., 2007; Walsh & Kilsby, 2007; King et al., 2008; 

Rahel & Olden, 2008; Heino et al., 2009; Döll &  Zhang, 2010; Perkins et al., 2010; 

Woodward et al., 2010; Wrona et al., 2010).  
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Given the level of interconnection which exists between hydrological processes, the 

functioning of riverine ecosystems and the productivity of salmonid populations, it is 

important that the impacts of climate change on Atlantic salmon are framed within the 

wider context of potential impacts on freshwater ecosystems. Figure 2.2 highlights how 

changes in streamflow may affect salmonid species both directly, by altering their 

habitat conditions, and indirectly, by affecting wider ecosystem functions.  

 

 

As they are physically fragmented and subject to numerous anthropogenic stressors, 

freshwaters are considered particularly vulnerable to changes in climate (Woodward et 

al., 2010). Based on an assessment of changes in biodiversity, Sala et al. (2000) 

considered lentic (i.e. ponds and lakes) and lotic (i.e. rivers and streams) ecosystems to 

be the most sensitive to climate change when considered alongside marine and 

terrestrial systems. Woodward et al. (2010) indicate that freshwaters at higher latitudes 

and altitudes - where globally some of the fastest rates of warming have occurred 

(Hansen, 2010) - may act as ósentinel systemsô, providing an indication of larger scale 
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changes which may occur in less vulnerable and more complex systems (i.e. species 

rich). 

Given the level of interdependence within ecosystems, together with regional disparities 

in their response to climate forcing and the confounding influence of human impacts, it 

is difficult to demonstrate a direct causal link between recent climate change and 

observed changes in freshwater ecosystems. Despite this there is evidence that changes 

in climate have had an impact on the biological, physical and chemical characteristics of 

freshwaters - both directly through changes in precipitation and air temperature, and 

indirectly through interactions with other stressors (Nickus et al., 2010).  

Climate change is manifest primarily in those aspects of freshwater systems which are 

temperature-dependent. Due to its influence on the rate at which biological and 

chemical processes occur (e.g. photosynthesis, behaviour, dissolved oxygen saturation, 

metabolic rate) temperature is a primary driver of ecological change in aquatic 

environments (Harley et al., 2006). According to the IPCC (2007b) recent warming has 

brought about an increase in river and lake water temperatures and contributed to 

changes in the composition of community structures and the timing of seasonal events. 

In addition climate change has influenced changes in the productivity of freshwater 

systems and affected the abundance of individual organisms (IPCC, 2007b). The 

Millennium Ecosystem Assessment (2005) indicated that recent climate warming has 

been a major driver of biodiversity loss in freshwater ecosystems. In global scale studies 

investigating observed declines in biodiversity, warming related trends in water 

temperature and alterations in patterns of flow behaviour are highlighted as having the 

most significant impacts on biodiversity loss (Lake et al., 2000; Xenopoulos et al., 

2005; Heino et al., 2005). For example, studies by Hickling et al. (2005, 2006) 

attributed shifts in the distributional range of some freshwater and terrestrial taxa in 

Britain to changes in climate observed over the period 1960-2000.  

The most immediate effects of recent climate change have been experienced as 

increased river and lake water temperatures. Increases in water temperature have 

generally mirrored the upward trend evident in regional air temperatures observed over 

the past ~100 years (Winder & Schindler, 2004; Hari et al., 2006; Hammond & Pryce, 

2007; Arvola et al., 2010). The IPCC (2007b) indicate that since the 1960s, water 

temperatures have increased by between 0.2ęC and 2.0ęC in rivers and lakes across 

Europe, Asia and North America. The EEA (European Environment Agency) state that 
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during last century water temperatures in European rivers and lakes have increased by 

between 1°C and 3°C (2007). Langan et al. (2007) reports that in an upland Scottish 

river (Girnock burn), winter and spring maximum stream water temperatures increased 

by 2ęC over the last 30 years. Hari et al. (2006) examined water temperatures in rivers 

and streams across Switzerland - their study covered an altitudinal range of almost 

4000m. The results indicated that warming was evident at all altitudes, with trends 

being reflective of increases in regional air temperature observed over the past 40 years.  

An analysis of temperature records from Lake Baikal (Serbia) indicated that over the 

past 60 years surface water temperatures have increased at a rate of 0.2ęC per decade 

(Hampton, 2008). Similarly records from Lake Constance (Germany) indicated that 

mean annual lake water temperature increased by 0.17ęC per decade (since the 1960s) 

(Straile et al., 2003). An analysis of deep lake water temperatures - indicative of more 

long-term temperature trends - suggest increases which are consistent with trends found 

in surface waters (IPCC, 2007b). Records indicate that since the early 1900s several 

large East African lakes including, Edward, Albert, Kivu, Victoria, Tanganyika and 

Malawi, have warmed by between 0.2 and 0.7°C (IPCC, 2007b). 

Enhanced air and water temperatures are reflected in the more prolonged stratification 

of lake waters and increases in the length of ice-free seasons. Changes in water 

temperature, wind speed and precipitation patterns affect the time at which overturning 

occurs and the extent of lake mixing, thus altering the persistence of thermal 

stratification. By affecting the thermal regime of lacustrine systems, changes in climate 

may alter the distribution of nutrients and oxygen; in addition it may change the overall 

heat content and quality of surface waters. Changes in the persistence of thermal 

stability may disrupt biological cycles, alter phytoplankton dynamics and impact 

primary production (IPCC, 2007b; Adrian et al., 2009). According to Bates et al. 

(2008), the freeze-up date of rivers and lakes has on average been delayed by a rate of 

5.8 ± 1.6 days per century (when averaged over all available datasets, spanning 150 

years), whilst the date for break-up has occurred earlier, at a rate of 6.5 ± 1.2 days per 

century. Also reported is a lengthening in the stratified period (by 2-3 weeks) of several 

lakes in Europe and North America (IPCC, 2007b).  

An analysis of 20 year records (1969-1988) from lakes in northwestern Ontario 

(Canada) indicated that both air and lake water temperatures had increased by 2ęC; in 

addition the observed data indicated that the ice-free season had extended by three 
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weeks (Schindler, 1996). Several other studies also linked increasing temperatures to 

the earlier break-up and later freezing of seasonal ice-cover on rivers and lakes 

(Livingstone 1999; Magnuson et al., 2000). A study by Coats et al. (2006) of Lake 

Tahoe (USA) found that - over the period 1970-2002 - lake water temperatures had 

increased by approximately 0.15ęC per decade, associated with which was an increase 

in the persistence of thermal stratification. An analysis of records from Lake Zurich 

(covering the period 1947-1998) by Livingstone (2006) suggested an increase in the 

period of summer stratification of roughly 2-3 weeks, in addition thermal stability was 

found to have increased by 20%.  

Studies examining the potential response of lake systems to projected changes in 

climate generally indicate that water temperatures - particularly in the epilimnion ï are 

likely to increase. In addition, temperature profiles, thermal stability and mixing 

patterns are likely to be altered, leading to further increases in the persistence and extent 

of summer stratification (Hondzo & Stefan, 1993; Stefan et al., 1998).  

By altering biological and chemical processes, climateïmediated changes in water 

temperature, flow patterns and precipitation are likely to impact the various parameters 

relating to water quality (e.g. biological oxygen demand, dissolved oxygen (DO), 

dissolved organic carbon (DOC)), (e.g. Jennings et al., 2009; Naden et al., 2010; 

Whitehead et al., 2009; Nickus et al., 2010). With respect to this, Grimalt et al. (2010) 

explored the impacts of climate change on the mobility of persistent organic pollutants 

in freshwater bodies. The study highlighted how changes in climate may exacerbate the 

impacts of any current anthropogenic stressors on water quality. As DOC influences 

acidity, light penetration, nutrient availability and potential toxicity, it is an important 

parameter in terms of the overall ecological health of freshwater ecosystems. Due to the 

influence which temperature and precipitation patterns have on the production and 

outwash of DOC, trends observed in the concentration levels of DOC in freshwater 

lakes provide an indicator of changes in climate. During the past two decades increases 

in DOC in areas of the UK, central Europe and North America have been detected 

(Freeman et al., 2001; Evans et al., 2005; Monteith et al., 2007). These increases have, 

at least in part, been attributed to recent changes in climate (Freeman et al. 2001; 

Hudson et al., 2003; Evans et al., 2006; Worrall et al., 2006; Erlandsson et al., 2008). 

Over the coming decades changing precipitation patterns are anticipated to increase the 

frequency of acid-pulses and releases of DOC - a key mechanism for which is the more 

regular occurrence of post-drought floods (Arnell, 1998; Whitehead, 2009; Fealy et al., 
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2010). Temperature is a key physical determinant of oxygen solubility, consequently 

further increases in air temperatures are likely to result in a reduction in the DO content 

of surface waters. DO levels are anticipated to be impacted also by temperature-induced 

increases in the rate of microbial activity. Changes in temperature and DO have 

implications for the ecological well-being of freshwater bodies and the diversity of plant 

and animal species which they can sustain (Hauer et al., 1997). 

There is evidence that the recent warming of freshwaters and the associated change in 

water quality has affected a diverse range of taxonomic groups including riverine plants, 

invertebrate and fish species (e.g. Fry, 1971; Stefansson et al., 2003; Davidson & 

Hazelwood, 2005; Zydlewski et al., 2005; King et al., 2007; McGinnity et al., 2009). 

Fish and invertebrate species whose thermal limits may have already been reached or 

exceeded are most vulnerable to further increases in temperature. In addition, those 

species sensitive to changes in environmental conditions will come under increased 

pressure - this is particularly relevant for cold-adapted species which require high DO 

levels such as salmonids. Under future climate conditions, cold-affinity species may be 

replaced by species such as cyprinids which are more tolerant of low oxygen conditions 

and are better adapted to warmer environments (e.g. Daufresne et al., 2004). With 

respect to this, recent climate change has been detected in long-term fish and 

invertebrate data collected from the upper Rhone (at Bugey). These records, which 

cover the period 1979 to 1999, were examined to determine whether recent climate 

change has had a discernible influence on the structure of either community. It was 

found that the more frequent occurrence of low flows, along with observed increases in 

water temperature had favoured southern, thermophilic fish species (e.g. chub, barbel) 

at the expense of northern, cold-adapted species (e.g. dace). In addition, thermophilic 

invertebrate taxa (e.g. Athricops, Potamopyrgus) were found to have replaced cold-

water invertebrate taxa (Daufresne et al., 2004). The results indicate that the observed 

change in community structure was in part attributable to changes in the thermal regime 

of the river system - changes in which reflect long term trends evident in regional air 

temperatures. 

Increasing temperatures are likely to affect freshwater and anadromous fish species at 

all stages in their life cycle (e.g. hatching, migration, spawning and growth) - although 

the response may vary depending on the species and life stage considered (Elliott, 1991; 

Jonsson et al., 2001; Jonsson & Jonsson, 2009). In many cases global climate change 

represents an additional stressor for fish populations which may already be subject a 
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range of human-induced pressures (Allan & Flecker, 1993). A study by Mc Ginnity et 

al. (2009) suggested that, while Atlantic salmon may have the capability to adapt to 

increasing temperatures (with certain caveats attached), the presence of additional 

stressors, including the supplementation of wild populations with hatchery fish, may 

result in catastrophic population collapses within a relative short period of time.  

Studies have shown that the flow regime is a key component of lotic ecosystems, central 

for determining the availability of suitable habitat and important for regulating 

ecological processes like migration and reproduction (Bunn & Arthington, 2002; 

Verdonschot et al., 2010). Poff et al. (1998) highlight that natural flow regimes are 

essential for aquatic and riparian species and list five components of the flow regime 

which are regarded as critical for maintaining the ecological integrity of riverine 

systems. These include the magnitude, frequency, duration, timing and rate of change in 

hydrologic conditions. It has been shown that anthropogenically imposed alterations 

(e.g. impoundments, water abstraction, channelization, diversions, etc.) on natural flow 

regimes can have considerable consequences for the overall ecological well-being of 

river systems and their capacity to nurture viable populations of more sensitive species 

(Poff & Ward, 1989; Bunn & Arthington, 2002; Gilvear et al., 2002; Johnsen et al., 

2010; Poff & Zimmerman, 2010). As outlined by Bunn and Arthington (2002) changing 

flow regimes have the potential to affect each link in the relationship between flow, 

habitat and biotic diversity (Figure 2.3).  

Under altered flow conditions increases in the variability of available habitat may limit 

access to resources, resulting in a decrease in the local carrying capacity of river 

systems (Wright et al., 2004). In addition, changes in hydrology may lead to a 

decoupling of the evolved relationship between established patterns of flow behaviour 

and the occurrence of various stages in the life history of aquatic biota. The various 

components of the flow regime - particularly the seasonality and timing of more 

extreme events - are critical for the successful completion of different life stages (e.g. 

spawning, recruitment, migration) (Dudgeon et al., 2006). In a climate change context 

alterations in flow are complicated by changes in the thermal regime of river systems 

which may alter the phenology of some aquatic biota, possibly resulting in a further 

narrowing in the window of opportunity whereby flow conditions are aligned with the 

habitat and physiological requirements of individual organisms at a specific stages in 

their life cycle.  
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Figure 2.3 A schematic of the four principles outlined by Bunn & Arthington (2002) which describe the link between aquatic biodiversity and the natural flow regime of a river system. Flow regimes can be 

defined as patterns of variability in flow that describe the full range of behaviour exhibited by river systems (e.g. long term average flows, seasonality, low and high flow statistics, interannual variability). Bunn 

and Arthington (2002) state that flow regimes influence the diversity of aquatic flora and fauna via several interrelated mechanisms that operate on different spatial and temporal scales. The first principle 

outlined above highlights the importance of flow as a key determinant of physical habitat at different temporal and spatial scales (i.e. from the scale of the catchment to the scale of microhabitats along the 

channel reach). This is driven by both high and low flow components; high flows are important for determining the channel form and shape which low flows may limit habitat availability. The second principle 

outlined above refers to the synchronicity between the life history strategy of aquatic organisms and patterns of flow. The life cycle of aquatic species have evolved in response to natural flow regimes, as such 

the seasonality of the flow regime and the timing of key flow events (e.g. spates) are intrinsically linked to the completion of different stages in an organismôs life cycle. The third principle highlights the 

importance of flow for maintaining lateral and longitudinal connectivity across river systems. Flow act as a medium facilitating migration and movement between different parts of river systems and between 

in-stream and floodplain habitats. High flows may be particularly important for facilitating access to different parts of the network. The fourth of Bunn & Arthingtonôs (2002) principles states that altered flow 

regimes may be more conducive to the ingress and proliferation of exotic species at the expense of native biota, provided the former are more adapted to the modified flow regime. Figure 2.3 is adapted from 

Bunn & Arthington (2002). (Source: www.awsaplanning.com/Presentations_files/RJG-ReportPresentation.ppt). 
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Changing flow regimes may also alter connectivity across river systems ï thereby 

impeding up-stream migration and reducing access to exploitable habitats, refugia and 

food resources along different parts of the stream network (Bunn & Arthington, 2002; 

Pringle, 2003).  

Any changes in flow may also impact riverine ecosystems by reducing water quality 

and altering those fluvial processes (e.g. rates of erosion and deposition) which are 

critical for the maintenance of in-stream habitats (e.g. riffle-pool sequence, refugia). For 

example, spates are necessary for the removal of accumulated sediment and debris, 

maintaining the channel form and distributing organic material (e.g. detritus, algae) 

(Verdonschot et al., 2010). Although high flows constitute an important component in 

the overall flow regime, such episodic disturbances have great potential to disrupt the 

long-term functioning of lotic ecosystems. Under altered climate conditions an increase 

in the magnitude or a change in the timing of flood events may lead to a scouring of 

nests and benthic communities; it may also result in organisms being involuntarily 

displaced downstream into unfavourable habitats. 

By restricting movement and access to resources, an increase in the frequency of 

drought events may reduce the carrying capacity of river systems and limit the dispersal 

of individuals along the stream network - an issue of particular concern during periods 

of enhanced water temperatures. With respect to potential changes in hydrology, climate 

change places additional pressures on river systems whose natural flow regimes have 

already been modified by human activity (Armitage & Pardo, 1995; Olden & Naiman, 

2010; Tockner et al., 2010). Using two climate scenarios and a global hydrological 

model Xenopoulos et al. (2005) found that under future climate forcing up to 75% 

(quartile range 4ï22%) of local fish biodiversity may become extinct (by 2070) in rivers 

projected to experience a reduction in discharge.  

In a comprehensive review study, Poff and Zimmerman (2010) found that the ecology 

of river systems - considering both aquatic (macroinvertebrate and fish species) and 

riparian organisms - overwhelmingly responds negatively to alterations in flow. 

Negative impacts on aquatic species included: a loss of sensitive biota, increases in non-

native species, life-cycle disruption (e.g. spawning cues), reduced habitat availability, a 

decline in species abundance, a reduction in spawning and recruitment, the expiration of 

native fishes and a change in the population structure.  Riparian vegetation is important 

for in-stream habitat as it provides shade and is an important food source. With respect 
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to riparian zones Poff and Zimmerman (2010) found that changes in flow resulted in: 

the terrestrialisation of flora, increased plant mortality, vegetation encroachment into 

channels; and a reduction in plant coverage, species diversity and recruitment.  

 

2.6 A summary of the anticipated impacts of climate change on freshwater 

ecosystems 

A summary of climate change impacts on freshwater ecosystems is provided below 

(after Hauer, 1997; Mooij et al., 2004; IPCC, 2007a, 2007b; ; Battarbee, 2008; Bates, et 

al., 2008; Hering et al., 2010; Kernan et al., 2010; Verdonschot et al., 2010). 

 

Changes relating to increased air and water temperatures 

Á By reducing DO levels and creating conditions conducive to the release of 

benthic phosphorus, increasing temperatures are likely to lower water quality in 

lentic systems.  

Á Higher temperatures are likely to enhance the thermal stability of lake systems - 

potentially altering primary production, nutrient cycling and phytoplankton 

activity. 

Á The ice-free season for river and lake systems is likely to be extended; as a result 

of which the length of time deep lakes experience hypoxic conditions may 

increase. 

Á An increase in water temperature is likely to reduce phytoplankton diversity; 

with a shift towards the dominance of cyanophytes expected to occur. 

Á For cold-adapted species enhanced water temperatures are likely to reduce 

recruitment success and increase exposure to parasitic transmission. 

Á Higher temperatures are anticipated to altar the distribution of many fish species 

and negatively impact benthic invertebrates - particularly in regions where 

thermal tolerances have already been reached or exceeded.  

Á It is likely that environmental conditions will favour warm-adapted species (e.g. 

cyprinid fish species) over cold-adapted species which are less tolerant of low 

DO environments (e.g. salmonids) (e.g. Daufresne et al., 2004).  

Á An increase in the duration of summer stratification is anticipated to enhance 

eutrophication and lead to oxygen depletion in deep zones. 
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Á Species extinctions are expected to occur where warm summer temperatures and 

anoxia eliminate deep cold-water refugia.  

Á Due to temperature increases significant changes are likely to occur in the 

species composition, phenology and production of planktonic communities (e.g. 

increases in toxic blue-green algal blooms).  

Á If a 2-3°C increase in temperature is realized there is potential for numerous 

arctic lakes to dry out. 

 

Changes relating to altered precipitation and flow patterns 

Á Water levels are anticipated to increase in lakes at high latitudes, where climate 

models suggest an increase in precipitation receipts; a decline in water levels is 

suggested in lakes at mid and low latitudes. 

Á The upstream movement of river zones is likely to occur; as a result those 

species bound to small streams and springs in the lower reaches of river systems 

- which are unable to seek refuge at higher altitudes - are particularly vulnerable 

to changes in climate. For migratory species artificial or natural obstructions to 

upstream migration may reduce access to thermal refugia in higher zones. 

Á The distributional range of diadromous species is likely to shift poleward. 

Similarly, species of waterfowl, invertebrate and tropical invasive species are 

likely to shift poleward with some localized extinctions occurring. 

Á Enhanced water temperature and alterations in established flow patterns are 

likely to favour invasive species. 

Á Changes in flow are likely to the impact the availability of preferred habitats 

(quantity and quality) and limit access to exploitable resources. 

Á In riverine systems changing flow regimes may lead to a divergence in the 

synchronicity between the timing of flow events and the occurrence of different 

stages in the life history of aquatic biota. This is likely to be further complicated 

by changes in temperature which may alter the phenology and behaviour of 

some species. 

Á Due to an increase in the incidence of drought, it is likely that some rivers will 

become intermittent with dry phases during the summer months.  

Á Changing precipitation patterns and increased soil moisture deficits are likely to 

increase DOC concentrations, thus altering biogeochemical cycles and changing 

the chemical composition of freshwaters. 
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Á The seasonal migration patterns of many wetland species are likely to be 

affected, with some species becoming locally extinct. 

Á Due to their sensitivity to changes in the water balance, closed lake systems are 

most vulnerable to changes in climate. Under some climatic conditions it is 

possible they will disappear entirely. 

Á Changes in climate and land-use will place additional pressures on already-

stressed ecosystems. 

 

2.7 Climate change and salmonids 

According to Graham and Harrod (2009:1143), ñchanges in climate, and in particular 

temperature, have and will continue to affect fish at all levels of biological organization: 

cellular, individual, population, species, community and ecosystem, influencing 

physiological and ecological processes in a number of direct, indirect and complex 

waysò. There is a growing body of evidence indicating that the recent warming of 

freshwaters and the associated reduction in water quality has affected the physiology 

(Fry, 1971; Stefansson et, al. 2003), phenology (Zydlewski et al., 2005; Mc Ginnity et 

al., 2009), distribution (Friedland, 2003; Juanes et al., 2005) and survival of some fish 

species (Daufresne et al., 2004; King et al., 2007; McGinnity et al., 2009; Clews et al., 

2010). However, given the range of confounding factors which must be considered, 

isolating the direct effects of recent climate change on salmonids is a difficult task 

(Daufresne et al., 2004); as is quantifying the possible impacts of future climate change, 

particularly as indirect and interacting factors may play as significant a role as those 

more direct effects (e.g. changes in water temperature with respect to known thermal 

tolerances) (Fealy et al., 2010). This is illustrated by Figure 2.2 which highlights how 

any change in flow under altered climate conditions may impact salmonid species in a 

number of both direct and interacting ways (Milner et al., 2010). 

 

2.7.1 Species distribution and life cycle 

Historically Atlantic salmon (Salmo salar) were widely distributed in all countries 

whose river systems discharged into the temperate and sub-arctic regions of the North 

Atlantic Ocean (MacCrimmon & Gots, 1979; Webb et al., 2007); however, in recent 

decades their distribution has decreased and the number of returning adults has declined 
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significantly. Along with the overexploitation of stocks this decline is attributed to 

human interference with their ecology and habitat (Crisp, 2000). In Europe the 

distribution of Atlantic salmon currently ranges from northern Portugal to the Barents 

Sea; in addition this species can be found in the UK, Ireland, Iceland and Greenland. In 

North America its range extends along the eastern seaboard, from approximately 40ęN 

to northern Quebec (Thorstad et al., 2010).  

Similar to many other salmonids, the Atlantic salmon is a diadromous species moving 

between the freshwater and marine environments in order to complete its life cycle. 

Typically juveniles will rear for a number of years in freshwater before undergoing a 

process of physiological change termed ósmoltificationô which prepares them for life in 

the marine environment. Once they leave freshwater they migrate to their feeding 

grounds in the expanses of the North Atlantic; here they mature and become adults 

before returning to their natal streams and rivers with a high degree of fidelity in order 

to spawn and complete their life cycle (Thorstad et al., 2010). Moving between the 

marine and freshwater environments allows them to fully exploit the resources available 

in both. In contrast, brown trout (Salmo trutta) - which is the other dominant salmonid 

species in Irish rivers - do not occur naturally in North America and are primarily 

regarded as being a European species. As it can remain resident in the freshwater 

environment to complete the various stages of its life cycle, this species has a much 

more flexible life history strategy. 

Each stage in the life cycle of salmonids is intrinsically linked with variations in climate 

and weather events. Water temperatures influence key biological processes such as 

stock recruitment, growth rates and reproduction; whilst migratory behaviour, including 

the timing of entry to river systems and the rate of upstream progression is influenced 

by the flow regime (Graham & Harrod 2009, Mc Ginnity et al., 2009). As salmonids 

use environmental variables as cues for migration, changes in flow and the timing of 

seasonal events have a greater potential to impact these species (Friedland, 2003). 

Both salmon and trout are found in almost every river system in Ireland; however, they 

are more prevalent in those catchments situated along the Atlantic seaboard - 

particularly those catchments which have been to a lesser degree adversely impacted by 

human activity (Stefansson et al., 2003; Harrod & Graham, 2009). Analysis of long-

term survival and productivity trends suggest that populations of both species in Ireland 
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have suffered severe declines in recent decades (Stefansson et al, 2003; Peyronnet et al., 

2007).  

In parallel with increased sea-surface temperatures the number of adult salmon 

returning to Britain and Ireland has decreased significantly since the 1970s (Hendry & 

Cragg-Hine, 2003; Anon., 2005; Stefansson et al., 2003; Beaugrand & Reid, 2003; 

Jonsson & Jonsson, 2004; Todd et al., 2008). In England and Wales there is evidence 

that the number of returning adult Salmon has decreased by ~50% since the mid-1970s 

(Hendry & Cragg-Hine, 2003; Anon., 2005). For example, populations of Atlantic 

salmon and brown trout have declined in the Wye catchment by an estimated 50% and 

67% respectively (over the period 1985-2004) (Clews et al., 2010). 

The steady decline in Irish stocks of Atlantic salmon mirrors a decline evident more 

generally across their distributional range. Along its southernmost limits salmon 

populations are mostly extirpated (Parrish et al., 1998) and there is evidence that 

populations at more northerly latitudes, which in the past have been regarded as being 

relatively healthy, are also coming under threat (Graham & Harrod, 2009). Some of the 

causes implicated in the decline of both salmon and trout stocks include, amongst 

others, the over extraction of water resources, poor water quality, the intensification of 

aquaculture, the introduction of artificial barriers, the removal of riparian zones, the 

proliferation of disease, and increases in parasitic transmission (Graham & Harrod, 

2009). Harrod and Graham (2009) indicate that regardless of how well stocks have been 

managed to date, or how well the aquatic environment has been protected in the past, 

climate change is likely to amplify the effects of any current anthropogenic stressors; 

climate change thus presents a complex set of challenges for catchment and fishery 

managers.  

 

2.7.2 Climate change impacts on salmonids in freshwaters 

A number of studies indicate that their sensitivity to environmental conditions (cold-

adapted; requiring high DO levels), and the significant distances they must travel in 

order to complete their life cycle - exposing them to the rigors of the marine and 

freshwater environments and climate related changes in both - mean anadromous fish 

species are particularly vulnerable to changes in climate (Ottersen et al., 2004; Harrod 

& Graham, 2004; Lassalle et al., 2008). Although the Earthôs climate has undergone 
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natural shifts in the past, aquatic species have been able to adapt to such changes 

through their evolutionary or behavioural response. However, the rate at which climate 

change is anticipated to occur may exceed the rate at which some species are capable of 

genetically or ecologically adapting. The innate ability of fish species to adapt to 

changes in their environment will vary according to the habitat and species considered; 

it will also depend on their individual tolerances, with some species benefitting and 

others losing out. A number of authors have indicated that Atlantic salmon may not be 

adapting at a quick enough rate to recent climate change; as a result localized 

extinctions are likely to occur (Friedland, 2003; Ottersen et al., 2004; Graham & 

Harrod, 2009).  

The thermal tolerances of salmonids at different stages in their life cycle is well-

understood (Crisp, 1981; Elliott, 1991), and it is acknowledged that changes in 

temperature have the potential to affect each life stage differently (Crisp, 1981; Elliott, 

1991; Friedland et al., 2000; Friedland et al., 2003; Salinger & Anderson, 2006; 

Peyronnet, 2008; Jonsson & Jonsson, 2009; Graham & Harrod, 2009; Mc Ginnity et al. 

2009). For example increased water temperatures may negatively impact growth rates 

and productivity, reduce post-smolt survival and increase the susceptibility to disease 

and parasitic transmission (Hari et al., 2006; Graham & Harrod, 2009; Mc Ginnity et al. 

2009). Changes in the thermal regime of river and lake systems are also likely to alter 

the time at which different stages in the life history of salmonids occur. Jonsson and 

Jonsson (2009) state that traits such as, age at first maturity, longevity and fecundity 

decline with increasing temperatures. Enhanced water temperatures also have knock-on 

effects for water quality (e.g. eutrophication) and the wider functioning of freshwater 

ecosystems (e.g. food-web dynamics), thus changes in climate may impact salmonid 

populations in a myriad of both direct and indirect ways (Graham & Harrod, 2009). 

Elliott and Elliott (2010) indicate that salmon are more sensitive to enhanced water 

temperatures when compared to trout, additionally the temperature tolerance for alevins 

is slightly lower than that for parr or smolts. Salmon eggs are noted as having the lowest 

thermal tolerance; consequently this life stage is highlighted as being the most 

vulnerable to any increase in water temperature. Elliott and Elliott (2010) state that if 

winter temperatures in southern Britain and Ireland continue to increase along their 

current trajectory it is possible they will soon exceed the upper thermal range for 

embryonic development in both salmon and trout. This highlights the possible 
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consequences climate change may have for recruitment success and the potential for 

population collapse to occur if particular thermal thresholds are breached. 

In a study of the River Fiddich in north-east Scotland, Morrison (1989) found that 

Atlantic salmon parr grew faster and smolted earlier as a result of an increase in river 

water temperatures (between 1ęC and 3ęC). In the case of this river, discharges from 

local distilleries resulted in ambient water temperatures being increased through 

artificial means. Morrison (1989) discovered that the rate of parr growth was faster 

downstream of the effluent discharge points located along the river system. In a study of 

the Miramichi River - one of Canadaôs most productive salmon rivers - Swansburg et al. 

(2002) found that, under altered climate conditions, temperature thresholds are likely to 

occur earlier and for an extended period, adversely affecting the growth of juvenile 

salmon parr and reducing the overall productivity of the Miramichi system. Similarly, 

the results of a study by Lund et al. (2002) on the heat shock response of Atlantic 

salmon in the Miramichi, suggested that increases in temperature - similar to those 

projected to occur over the coming decades - could have significant consequences for 

productivity in this system. Graham and Harrod (2009) highlight the sensitivity of 

salmonids to DO levels, suggesting that under warmer conditions a reduction in DO 

would have the effect of increasing fish mortality, particularly during those more 

sensitive life stages (e.g. juvenile). Todd et al. (2010) state that enhanced water 

temperatures are likely to increase parr and smolt production in rivers at more northerly 

latitudes where productivity is currently constrained by lower water temperatures.  

Davidson and Hazelwood (2005) formulated growth projections for Atlantic salmon in 

four UK rivers (Thames, Wye, Dee and Lune) using the UKCIP02 temperature 

scenarios. Their results suggested that under a low emissions scenario growth rates are 

projected to improve in those catchment systems located in the north and north-west. 

However, under a high emissions scenario, whereby thermal tolerances are exceeded 

over the latter half of the current century, model projections suggest a considerable 

decline in growth rates across all catchments (Davidson & Hazelwood, 2005). Davidson 

and Hazelwood (2005) state that in rivers along the southern edge of their distributional 

range (i.e. River Thames) - where on a regional basis warming in the UK is generally 

projected to be greatest - growth rates are anticipated to decline, with resultant 

consequences for the abundance, survival and productivity of salmon stocks in these 

areas. 
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It is widely acknowledged that temperature has a significant influence on the timing and 

rate of smoltification (Zydlewski et al., 2005; Todd et al., 2010). By altering growth 

rates, increasing temperatures may influence the size and age at which smoltification 

occurs (Jonsson & Jonsson, 2009). A study by Zydlewski et al. (2005) found that an 

earlier and more rapid increase in spring temperatures resulted in smolts migrating 

downstream earlier. Alterations in the timing of smoltification and the migration of 

smolts to sea have implications for post-smolt survival rates and success in the marine 

environment (Friedland et al., 2003). The influence of increased temperature on growth 

rates and maturation in marine waters, as well as on the time of return migration have 

been variously explored by Martin and Mitchell (1985), Friedland (2000), Friedland et 

al. (2003) and Jonsson and Jonsson (2004).  

Changes in precipitation and patterns of flow behaviour are as important for 

determining the impacts of climate change on salmonids as changes in other abiotic 

variables (Heggenes et al., 1999; Mather et al., 2008). Wenger et al. (2011) highlight 

that climate impact assessments conducted on freshwater biota have typically focused 

on temperature, ignoring critical drivers such as interspecific relationships and 

hydrological flow regimes. Variations in river flow determine the availability of suitable 

habitat and influence access to exploitable resources; as such hydrological regimes are 

critical for determining the local carrying capacity of river systems. Jowett (1992) found 

that the amount of available habitat was an important variable in determining the 

abundance of adult brown trout in 82 New Zealand Rivers. Similarly Gibson and Myers 

(1988) found a positive relationship between runoff and the survival of eggs and 

underyearling salmon parr in five Canadian river systems.  

The life history strategy of salmonids has evolved largely in response to the 

hydrological conditions specific to the flow regime of their natal rivers (Dudgeon et al., 

2006). Consequently climate mediated changes in established patterns of flow behavior, 

and in particular alterations in the timing of seasonal events, may lead to a loss in the 

synchrony between the occurrence of various life history stages and optimal in-stream 

conditions. Changes in climate also have the potential to alter the nature (e.g. frequency, 

timing) of extreme flow events. Given their impact on mortality and the success of year-

classes, any change in the occurrence of extreme flows have far reaching implications 

for the long-term sustainability of some salmonid populations. For example, extreme 

high flows can lead to the wash out of eggs and fry, whilst a reduction in flow may 

leave nests stranded and fish isolated in unfavourable habitats (Crisp, 1989). By 
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influencing fish movement and the connectivity of habitats, streamflow affects energy 

expenditure, feeding behaviour and the timing of migration (Armstrong et al., 1998; 

Armstrong et al., 2003; Berland et al., 2004; Jonsson, 2009). For example, spates may 

be required for fish to ascend artificial or natural barriers and thus are essential for 

migratory progression. During prolonged low flow periods, upstream migration may be 

delayed, preventing access to more suitable spawning areas. In addition it has been 

shown that the occurrence of low flows can inhibit the movement of adults from coastal 

waters into river systems, potentially resulting in mortality and reducing recruitment 

levels (Soloman et al., 1999; Soloman & Sambrook, 2004).  

It is argued that changes in hydrology, coupled with the continued warming of both the 

freshwater and marine environments, will result in a northward shift in the 

biogeographical range of Atlantic salmon. This will result in the loss of populations in 

areas along the southernmost limits of their range (e.g. Iberian Peninsula and France), 

whilst territories further northward which are presently unsuitable (e.g. arctic rivers) are 

likely to be exploited (Stefansson et al., 2003; Todd et al., 2010). Todd et al. (2010) 

indicate that given the increases in drought and water temperature projected to occur 

across Europe, it is possible that populations as far north as southern England may 

become extinct. Similarly, it is likely that the southernmost populations of Atlantic 

salmon in North America will be under the greatest threat of extinction (Reist et al., 

2006). In reference to the British Isles, Graham and Harrod (2009) indicate that 

increased water temperatures may enhance productivity and growth in northern and 

upland populations; however, in southern and lowland areas increased temperature and 

a reduction in DO may result in population losses.  

 

2.8 A summary of the anticipated impacts of climate change on salmonids 

Climate change is likely to pose a significant threat to the continued existence of viable 

salmon stocks in many waterways across Ireland. Figure 2.4 highlights the potential 

impacts of climate change on the various life stages of Atlantic salmon (Walsh & 

Kilsby, 2007). The following is a summary of the likely impacts of climate change on 

Atlantic salmon and trout sourced variously from Jonsson and Jonsson (2009), 

Stefansson et al. (2003), Graham and Harrod (2009) and Milner et al. (2010).  
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Á The biogeographical distribution of Atlantic salmon is likely to move further 

northwards, with extinctions likely along its southernmost limits. 

Á Increases in temperature are likely to enhance the vulnerability of populations to 

disease and parasitic transmission.  

Á In northern and southern parts of the distribution range an increase in parr 

mortality rates during winter is likely. This is an anticipated outcome of 

increasing spring and winter droughts (southern regions) and less stable flow 

conditions (northern regions). 

Á Enhanced water temperature should favour warm-adapted cyprinid fish species 

over salmonids. In contrast eels (Anguilla anguilla) may be better placed to 

exploit higher water temperatures. 

Á An increase in growth rates is likely - with the caveat that temperatures remain 

within the optimal thermal range for growth and food sources arenôt diminished. 

Á It is likely that the spawning time will be delayed, occurring in the autumn or 

early winter  

Á Warmer temperatures will advance the time of egg hatching and alevin 

emergence. 

Á Smoltification is likely to occur at an earlier age, especially in northern and 

intermediate parts of the distribution range. 

Á A disproportionate increase in the rate of warming in freshwaters, as opposed to 

the marine environment, may result in the earlier migration of smolts to sea with 

consequences for post-smolt survival. 

Á It is likely that upstream migration will occur earlier in the year. This would 

have the effect of altering patterns of energy use prior to spawning, with the 

possibility of increased adult mortalities and reduced recruitment levels. 

Á An increase in flow variability and the occurrence of extreme hydrological 

events may delay upstream migration, increasing the possibility of fish straying 

to other river systems.  

Á Drought during upstream migration may reduce spawning stocks and improve 

the reproductive success of small relative to large adults. 

Á It is likely that there will be an immediate phenotypic response to altered climate 

conditions; however, over the longer-term genetic changes in traits such as smolt 

age, the age of maturity and disease resistance may occur. 
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Figure 2.4 Potential impacts of climate change on the various life-stages of Atlantic salmon (Salmo salar) (Source: Walsh & Kilsby, 2007) 
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2.9 Conclusion 

Scientific consensus attributes most of the recent warming experienced in the global 

climate to anthropogenic emissions of carbon dioxide and other greenhouse gases. If 

emissions remain on their current upward trajectory it is likely that the global climate 

will undergo further warming, with many unforeseen and possibly irreversible 

consequences for both human and environmental systems. Climate-mediated changes in 

precipitation and water temperature are likely to disrupt the functioning of freshwater 

ecosystems and reduce the availability of suitable in-stream habitats - with knock-on 

effects for the sustainability of some populations of freshwater and anadromous fish 

species. 

The preceding sections provided evidence of anthropogenically induced changes in the 

global climate system, and importantly highlighted that climate change signals have 

already been detected in freshwater ecosystems. Although the impacts of recent climate 

change are more tangible with respect to changes in those physical, biological and 

chemical parameters which are temperature-dependent, it is suggested that over the 

coming decades a direct causal link between changes in lotic ecosystems and the 

intensification of the hydrological cycle will become increasingly apparent.  

By altering the availability of suitable habitat, climate-mediated changes in patterns of 

flow behaviour are likely to undermine the local carrying capacity of river systems, 

leading to reductions in the abundance and productivity of native salmon stock. The 

observed progressive decline in their population numbers, along with their inherent 

sensitivity to environmental conditions and vulnerability to anthropogenic stressors, 

means it is important that the most deleterious effects of climate change on this species - 

which is of great ecological and cultural significance - are investigated and planned for. 

The study documented in the proceeding chapters aims to explore how changes in 

climate may impact flow behaviour and habitat availability in a relatively productive 

upland system. The following chapter provides background information on the 

catchment and the datasets used.  
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Chapter 3 

The Burrishoole catchment 

 

3.1 Background 

The Burrishoole catchment is a mainstay for much of the research conducted at both a 

national and international level on freshwater ecosystems and anadromous fish species - 

including the Atlantic salmon (Salmo salar), sea trout (Salmo trutta) and eel (Anguilla 

anguilla). The catchment holds international importance as a ósentinel systemô for 

monitoring the status of migratory fish stocks. Since the mid 1970s fish trapping 

facilities operated in the catchment have recorded the movement of all fish between the 

marine and freshwater environment of the catchment. The International Council for the 

Exploration of the Seas (ICES) use the fish census records from Burrishoole to gauge 

the overall status of fish stocks in Ireland and the North Atlantic region. In addition, 

much of the research conducted on anadromous species utilizes data collected from the 

Burrishoole catchment. The catchment is under the stewardship of the Marine Institute 

who have a dedicated research facility located within its confines. Along with operating 

the trapping facilities, they have implemented an extensive programme for monitoring 

environmental conditions across the catchment.  

Datasets available from the catchment include long-term records of temperature and 

precipitation which date back nearly sixty years. Monitoring instruments installed more 

recently provide high-resolution data on thermal profiles and several water quality 

parameters (e.g. pH, DOC and DO). It is the availability of both long and short-term 

environmental datasets, along with the fish census records, and extensive 

empirical/local knowledge of the system which means it provides an ideal basis for 

studying the potential impacts of climate change on salmonid species. The similarity of 

the Burrishoole catchment to many catchment systems found along Irelandôs west coast 

- in terms of its ecology, hydrology and geomorphological characteristics - mean its 

response to altered forcing conditions provides an indication of the impacts climate 

change may have more generally across the region. This is significant given that 

Irelandôs most productive salmon rivers are located along the western seaboard.  
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3.2 Characterizing the catchment system 

The Burrishoole catchment is located Irelandôs on west coast near Newport Co. Mayo 

(9ę 34ô 20ò W 53ę 55ô 22ò N) (Figure 3.1) and comprises part of the Western Region 

Basin District (WRBD). The catchment (Figure 3.2) is nestled at the heart of the Nephin 

Beg mountain range and drains in a north-south direction from its upland headwaters 

through a freshwater lake and stream network, before reaching a brackish tidal lake 

system (L. Furnace) located in its lower confines. The Burrishoole catchment 

discharges into the Atlantic Ocean at the northeast corner of Clew bay. It takes on an 

almost idealized amphitheatre like shape with steep slopes to the north, west and east 

delineating its drainage boundary. The surrounding terrain is complex being 

characterised by localised valleys, steeply sloping mountain ranges and a flat alluvial 

valley floor at the confluence of the catchmentôs stream and lake systems. Its altitudinal 

range spans approximately 700 metres - from 10 m at the outlet point to over 700 m at 

the highest peaks on upland contributing areas. The western and upper parts of the 

catchment hold status as a Special Area of Conservation (Site name Owenduff/Nephin 

Complex; Site Code 000534). 

Fish trapping facilities operated in the catchment are located on two channels known as 

the ñSalmon Leapò and ñMill Raceò which connect Lough Feeagh with the tidal Lough 

Furnace (Figure 3.2). These trapping installations are used to record the movement of 

all migratory fish between the freshwater environs of the catchment and coastal waters. 

Since 1970 a complete census of fish movement (both upstream and downstream) has 

been complied; however, the catchment was first used as a site for fish trapping in 1958, 

and the records for some species date back this far.  

The total area of the freshwater component of the Burrishoole system is 89.5 km
2
. The 

catchment has a dense drainage network comprised of approximately 45 km of 

interconnecting shallow streams and rivers. In addition it encompasses seven lakes of 

various sizes; the three largest of which include Lough Bunaveela (0.54 km
2
), Lough 

Feeagh (4.1 km
2
) - both of which are freshwater lakes - and the brackish Lough Furnace 

(1.41 km
2
) (Whelan et al., 1998). Both Lough Furnace and Lough Feeagh are situated in 

the lower parts of the Burrishoole valley, whilst the Bunaveela is located in the upper 

reaches of the Goulan sub-catchment.  
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Figure 3.1 Location of the Burrishoole catchment and Belumullet synoptic station; also shown are the RCM grid boxes overlying 

the cathchment. 

Belmullet synoptic station 
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Figure 3.2 Map of the Burrishoole catchment showing each of the five constituent sub-catchments. Also shown is the Glendahurk 

catchment. 
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Metamorphic rock from the late Precambrian era comprises the bedrock geology of the 

catchment and can be apportioned accordingly; 44% quartzites, 44% schists/gneiss, 

11% and 1% sandstone and limestone (Parker, 1977; Long et al., 1992; Irvine et al., 

2000). In the lower parts of the catchment, towards its outlet point, metamorphic rocks 

dip below Devonian Old Red Sandstone and Carboniferous limestone. A terminal 

moraine delineating the boundary between the metamorphic and sedimentary rocks 

which underlie the catchment is located between Lough Furnace and Lough Feeagh.  

Spatial differences in the underlying geology are reflected in the water chemistry and 

biological productivity of the catchment. Rivers on the western side of the catchment 

are generally more acidic and have a low buffering capacity (alkalinities in the order of 

-2.7 to 2.7 mg L
-1

 CaCO3); this is in contrast to those rivers draining the eastern side of 

the catchment, which generally have a pH level closer to circumneutral (in the order of 

15-20 mg L
-1
 CaCO3) and as a result have a higher aquatic productivity (Fealy et al., 

2010).  

Due to its underlying geology the catchment is characterised as having a relatively poor 

groundwater storage and transmissivity capacity. Figure 3.3 illustrates that the 

catchment is underlain by aquifers classified as being only locally productive (Pl) (GSI, 

2003). The overlying soils are mainly poorly drained peaty podzols and gleys, with 

blanket peatlands covering the mountain slopes to the north (Figure 3.4). Land cover 

(Figure 3.5) in the catchment comprises 64% peat bog and 23% forestry, with the 

remainder (13%) generally consisting of localised pockets of natural grassland, scrub, 

transitional woodland and agricultural land (CORINE, 2003).  

Vegetation cover on the blanket peats is dominated by Molinia caerulea, Schoenus 

nigricans and Scirpus caespitosus (OôSullivan, 1993). The predominant agricultural 

activity in the catchment is sheep grazing, with much of the peat bog area being treated 

as commonage (Weir, 1996). The Burrishoole catchment has a history as a site for 

commercial forestry activity. Afforestation schemes commenced in the catchment in 

1951 and expanded between 1960 and 1969. Of the 23% of the catchment under forest, 

a large proportion of it is the result of commercial afforestation. The main species 

covering the catchment include Sitka spruce (Picea sitchensis) (26%) and Lodgepole 

pine (Pinus contorta) (70%); albeit that small areas of native oak woodland exist. 
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Figure 3.3 Aquifer productivity across the Burrishoole catchment (Source: GSI, 2003) 



  

61 

 

 

 

 

Figure 3.4 Soil cover across the Burrishoole catchment. (Source: Daly & Fealy, 2006) 
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 Figure 3.5 Land cover type across the Burrishoole catchment (Source: CORINE, 2003) 
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In the 1990s, clearfelling of forest plantations began; to date approximately 672 hectares 

or ~30% of the total plantation area has been removed. A number of studies have 

indicated that overgrazing and afforestation have impacted the catchment; however, any 

link between such impacts and a reduction in fish stocks has not been conclusively 

established. 

 

3.3 Observed climatology 

Owing to its close proximity to the Atlantic Ocean the catchment has a temperate 

maritime climate. The climograph in Figure 3.6 shows values for mean monthly 

temperature (ęC) and precipitation receipts (mm) calculated over the period 1961-2000. 

Records indicate that annual average mean temperatures range from 9ęC (1986) to 

11.4ęC (2007), in addition the records show that (averaged over the 40 year period 

1961-2000) August (15.2ęC), July (15.1ęC) and June (13.8ęC) are generally the warmest 

months whilst January (5.7ęC), February (5.8ęC) and December (6.5ęC) are the coolest.  

 

 

Precipitation receipts in the catchment are relatively high; this is due to the surrounding, 

upland terrain - which is conducive to orographic uplift - and the catchmentôs coastal 

location directly in the path of the prevailing rain bearing westerlies/south-westerlies. 

Multi-year annual precipitation yields range from 1118 mm (2009) to 1930 mm (2001), 

and records indicate that (averaged over the 40 year period 1961-2000) December (179 

mm), November (170 mm) and January (165 mm) are generally the wettest months, 

whilst June (90 mm), May (95 mm) and July (95 mm) are typically the driest.  

Figure 3.6 Climograph depicting average monthly precipitation receipts (mm) and mean monthly temperature ęC for the 

Burrishoole catchment. The plot is estimated using records from the Furnace weather station (Figure 3.2) averaged over the period 
1961-2000. 
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The complexity of the local topography leads to highly heterogeneous precipitation 

patterns across the catchment. Records from the catchmentôs own rain gauge network 

indicate that localized events - particularly with respect to extreme and heavy rainfall 

events - are an important feature of its precipitation regime. The spatially heterogeneous 

nature of precipitation is demonstrated by an extreme event (> 250 year return period) 

which occurred on the 2
nd

 of July 2009 between 7 p.m. and 9 p.m. During this two hour 

period approximately 50 mm of rain fell on the eastern side of the catchment; however, 

over the same period, gauges on the western side recorded as little as 16 mm of rainfall. 

The precipitation which occurred is reflected in measurements from water level 

recorders located in the Goulan (6.48 m) and Srahrevagh (4.86 m) sub-catchments; 

however, given that the flow levels lie outside the ranges for which the recorders are 

rated, it is likely that these measurements represent an underestimation of the true 

values   (Fealy et al., 2010). Flooding events in both rivers are typically in the region of 

1.2 to 2 m in height. It is noted that during this event water levels rose almost 

concurrently with the amount of precipitation recorded (Fealy et al., 2010).  

 

3.4 Sub-catchments of the Burrishoole system 

As delineated by the location of gauging points across its stream network, the 

Burrishoole catchment can be divided into a series of five sub-catchments consisting of 

the Glenamong, Maurmatta, Altahoney (located in the west and north-west parts of the 

catchment) Goulan and Srahrevagh (situated in the north-east and east parts of the 

catchment). Each of these sub-catchments, either directly or through the larger stream 

network, drains into the two lakes situated on the valley floor. Also included is the 

Glendahurk catchment which lies adjacent to the Burrishoole catchment along its 

western drainage boundary. Although this is not part of the Burrishoole system, 

monitoring of this catchment system is conducted as part of monitoring operations 

carried out across the Burrishoole.  

Of each catchment considered the Glenamong (17.2 km
2
) and Glendahurk (12.4 km

2
) 

(Table 3.1) are the largest, with the Srahrevagh (4.9 km
2
) being the smallest. Peat is 

overwhelmingly dominant in all sub-catchments, particularly the Altahoney (78% 

coverage), Goulan (100%) and Srahrevagh (89%). The Glenamong (70%) and 

Glendahurk (75%) are also notable for a high proportion of blanket peat coverage. 
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Lough Bunaveela, located in the Goulan catchment, is the only surface water body of 

notable size located in the any of the sub-catchments.  

  
Catchment 

 

Glendahurk Glenamong Maurmatta Altahoney Goulan Srahrevagh 

CORINE Land Cover (%) 
      

Agriculture - - - - - 1 

Coniferous forests 9 28 32 32 11 30 

Natural grassland 2 4 - 0 - 7 

Transitional woodland scrub 15 - 16 13 14 59 

Peat bogs 74 68 52 55 70 2 

Water bodies - - - - 5 - 

Aquifer Classification (%) 
      

Poor aquifer, generally  

unproductive except in local zones (Pl) 
88 100 100 100 100 100 

Locally important,  

generally moderately productive in local zones (LI) 
12 - - - - - 

Soil Type (%) 
      

Blanket Peat  74 68 91 78 100 89 

Peaty Podzols 26 32 9 22 - 11 

Morphometric Attributes  
      

Area (km
2
) 12.4 17.1 6.4 9.2 9.6 4.9 

Min Elevation (m) 47 12 54 94 59 23 

Max Elevation (m) 710 708 383 626 389 550 

Slope (°) 14.0 12.0 10.0 13.0 8.8 9.0 

 

 

The flow regime of each sub-catchment is highly responsive to rainfall events, and 

exhibits behaviour typically associated with runoff dominated systems. This is related to 

the geometric properties of each drainage basin (e.g. steep slope, small area) and the 

poor productivity of the underlying aquifers. Both these factors contribute to the 

inability of each catchment to attenuate the rapid movement of water through their 

system or to dampen the streamflow response to heavy precipitation events. The low 

contribution of baseflow to catchment discharge - which is particularly evident during 

the drier summer months - underlines each catchmentôs lack of storage potential. 

Streamflow records for two of the sub-catchments indicate that they had completely 

dried up on at least one occasion after a sustained period without rainfall. The presence 

of blanket peatland plays a significant role in the catchment hydrology. It has been 

shown that well developed macropores and pipes which exist in the peat matrix provide 

an effective conduit for rapid subsurface flow (Holden & Burt, 2003; Holden, 2005). In 

addition, during storm events peat covered hillslopes are conducive to both infiltration 

and saturation excess overland flow. Thus in peat dominated systems rapid lateral 

(throughflow) and overland flow contribute to the óflashyô nature of the storm response 

Table 3.1 Physical attributes of the five constituent sub-catchments of the greater Burrishoole system (Figure 3.2). Also listed are 
the physical properties of the Glendahurk catchment. 
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(Holden & Burt, 2003; Holden, 2005). Given the history of commercial forestry in the 

Burrishoole catchment, it is possible that disruptions of the soil matrix may have altered 

its long-term hydrologic response. The extent to which this may have occurred is not 

known and records do not span a period long enough to investigate it.  

 

3.5 Instruments and data 

To provide a record of environmental conditions across the Burrishoole system, 

intensive instrumental monitoring of key climatological, chemical and ecological 

variables is conducted. The catchment has its own weather station whose records for 

temperature and precipitation date back over 60 years; it also has an extensive rain 

gauge network (Figure 3.2). Continuous recordings for several water quality parameters, 

including pH levels, DOC and DO are taken; in addition the thermal profile of the 

catchmentôs lake system is monitored, as are flow levels across its stream network. Also 

recorded are lake and stream water temperatures at various points across the catchment. 

The following sections provide information on the instrumental datasets employed in 

this study. 

 

3.5.1 Furnace weather station 

Instrumental records for daily temperature (maximum and minimum) and precipitation, 

covering the period 1961-2009, were obtained from the manually operated Furnace 

weather station (9°34'18"W 53°55'24"N); the station is located at an altitude of ~14m 

near the catchmentôs outlet point (Figure 3.2). Datasets from the weather station are of a 

high quality and a low proportion of the observed series is classified as missing or 

invalid (3.5% minimum temperature, 4.5% maximum temperature and 0.4% 

precipitation series) (Table 3.2). The weather station is operated by the Marine Institute 

in-conjunction with the Irish meteorological service, Met Éireann. 

Variable Record Date Start Missing n (%) Mean Median Std. Dev 95 % ile 

Minimum Temperature (ęC) Jan-1960  3.5 13 13 4.4 20.3 

Maximum Temperature (ęC) Jan-1960 4.5 7.3 7.4 4.1 13.7 

Precipitation (mm) Nov-1959 0.4 4.3 1.8 6.2 16.6 

Table 3.2 Datasets from the Furnace weather station. 
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3.5.2 Belmullet weather station 

Data for other meteorological variables including wind speed, relative humidity, 

radiation and potential evaporation were obtained from the Belmullet synoptic station 

(9°59'53"W  54°14'57"N) - located ~43 km to the north-west of the catchment (Figure 

3.1). This is the closest synoptic station to the catchment and is operated by Met 

Éireann. Although monitoring for a number of these variables is also conducted in the 

catchment, records were either of an insufficient length or were of a poor quality; 

consequently synoptic records from the Belmullet station were used instead. With the 

exception of radiation (1981-2000) and potential evaporation (1971-2000), observed 

records for each variable were available for the period 1961-2000. 

 

3.5.3 Upland rain gauge network 

An extensive rain gauge network traverses the upper reaches of the catchment, with 

multiple gauging points being located within the boundary of each constituent sub-

catchment (Figure 3.2). The observed rainfall series from the Furnace station is 

considerably longer (1959- 2009) than those provided by the more recently established 

upland gauges, many of which commenced operation in 2002. In total the datasets from 

twelve gauges located across the catchment are used in this study (Table 3.3).  

Owing to the complexity of the local topography (e.g. elevation, slope, aspect), 

precipitation varies considerably across the catchment. For example, extreme events 

found to occur in the records from individual gauges are not found in the data series 

from others; this highlights the spatial heterogeneity of precipitation, even at a sub-

catchment scale. The position of the weather station near sea level means it fails to 

capture the influence of orographic enhancement and the spatial variability of 

precipitation at higher elevations in the catchment. Given that the catchment system is 

highly responsive to rainfall events, this is an important consideration when attempting 

to understand and model the hydrology of each respective sub-catchment.  
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Gauge 
Start  

Date 

Data (days) Missing 

 n (%)  

Altitude  

(m) 

Mean (mm/day) Median (mm/day) 95 % ile  (mm/day) 

Glenamong 1 May-02 1510 43.4 342 4.8 2.2 18.2 

Glenamong 2 May-02 2397 10.2 197 5.4 3.1 20.4 

Glenamong 3 May-02 2535 5.0 30 5.1 2.0 20.4 

Glenamong 4 Jul-03 1925 14.4 204 6.5 2.6 24.7 

Maumaratta May-02 2083 21.9 263 5.2 2.2 20.8 

Altahoney May-02 1903 28.7 239 6.3 2.2 25.2 

Srahrevagh 1 May-02 2505 6.1 372 4.4 1.6 18.8 

Srahrevagh 2 May-02 2224 16.6 130 4.0 1.8 15.4 

Srahrevagh 3 May-02 2233 16.3 23 4.8 1.8 19.3 

Goulan May-02 2492 6.6 131 5.1 2.0 20.1 

Namaroon Jan-04 1848 10.5 290 6.6 3.2 24.3 

Glendahurk Jun-03 1676 26.5 247 4.9 2.2 17.4 

 

 

As shown in Table 3.3 a number of the rainfall datasets are of a poor quality; for 

example, ~43% of the daily entries in the Glenamong 1 series are missing. In order to 

obtain a complete precipitation series for the purposes of calibrating the rainfall-runoff 

models, the records from individual gauges were averaged. For each sub-catchment a 

weighted average of the available precipitation data was used to compensate for the 

missing entries in individual series. The weighting used was based on the correlation 

between the records from each gauge and the observed streamflow series. For each 

catchment only those gauges situated within, or in close proximity to the catchment 

boundary were considered; in addition, only those precipitation series which exhibited a 

strong correlation with streamflow were selected. This approach allowed for the spatial 

distribution of rainfall across each catchment to be considered, it also addressed the 

problematic issue of missing values in the data series. Despite the deficiencies in the 

datasets highlighted in Table 3.3, it must be acknowledged that the upland network 

provides high resolution information at a sub-catchment scale; in addition it offers good 

coverage of the catchmentôs altitudinal range.  

 

3.5.4 Water level records 

Water levels are recorded at the outlet point for each catchment on a 15 minute interval 

time step. Average daily volumetric flow values were obtained from recorded water 

levels using a rating curve formulated for each gauging point. The observed datasets 

were of varying lengths and quality with some displaying a high proportion of missing 

Table 3.3 Datasets from the Burrishoole catchmentôs upland rain gauge network. The record length and the proportion of missing 

values for each gauge are shown. 
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values (e.g. Glendahurk ~20%). Table 3.4 provides details of the streamflow records for 

each catchment. The quality of available data was an important criterion for selecting 

which sub-catchments would be best suited for conducting in-depth hydrological 

modelling. Due to various deficiencies in either the precipitation or flow data, the 

number of catchments which could be considered for further analysis was limited to 

two, namely, the Glenamong and Srahrevagh. 

 

 

 

3.4.5 Data Quality Issues  

As highlighted above a number of shortcomings are associated with the rain gauge and 

streamflow datasets available for use in this study. In terms of precipitation, the records 

from a number of gauging points had a high proportion of missing values - an issue 

compounded by the relatively short length of the datasets and the fact that deficiencies 

were generally common to the records obtained from all gauges. Given the highly 

heterogeneous nature of precipitation across the catchment, incomplete records created 

difficulties when attempting to calibrate the hydrological models, whereby large peaks 

in flow were noted to occur without the corresponding rainfall event being recorded. 

Despite the high density of the gauging network, the localized nature of rainfall across 

the catchment means that in cases where a particular gauge had failed, no record for 

important events (although being present in the corresponding flow data) existed. As 

outlined above, to overcome this shortcoming, a weighted average of the available 

precipitation series was used during model development. 

The quality of the streamflow datasets was a key factor in determining which sub-

catchments could be considered for use in this study. Similar to precipitation, a number 

of flow records had a high proportion of missing values, with some displaying evidence 

of disruption subsequent to the occurrence of an extreme event. There also appeared to 

be a degree of drift or/and a step change in a number of records, indicating that some 

Catchment 
Start 

Date 

End 

Date 

Data 

(days) 

Missing n 

(%) 

Mean Daily 

(m
3
/sec) 

Std.  Dev 

(m
3
/sec) 

95 % ile 

(m
3
/sec) 

Glenamong  Jun-02 Aug-09 2398 10.1 0.93 1.172 3.26 

Maumaratta Jun-02 Aug-09 2392 10.3 0.46 0.66 1.49 

Altahoney May-02 Aug-09 2546 3.70 0.60 0.89 2.34 

Srahrevagh Jun-02 Aug-09 2419 9.30 0.32 1.85 1.03 

Goulan Apr-03 May-06 1096 5.30 0.34 0.38 1.11 

Glendahurk Jun-02 Aug-09 2125 20.4 0.18 0.30 0.71 

Table 3.4 Streamflow records from the Burrishoole catchment. The length of the record provided by each recorder and the 
proportion of missing values is shown. 
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alteration of the channel shape or movement in the stage recorder had occurred. To 

explore the quality of the streamflow data available a double mass curve was 

constructed using the records from each of the six catchments (Figure 3.7). As its flow 

series was shown to be the most reliable when cross-referenced with other available 

flow and precipitation records, the streamflow series from the Glenamong catchment 

was used as a reference to evaluate the reliability of flow data from the other sub-

catchments. 

A degree of drift is evident in records from the Goulan, Maumaratta and Glendahurk; in 

addition a step change is noticeable in data from the Altahoney. In contrast there 

appears to be no such problems with the data from the Srahrevagh recorder. Given the 

flashy nature of the flow response and the influence this has on the channel form, it is 

possible that the stage-discharge relationship has changed over time, possibly leading to 

the drift evident in Figure 3.7. Closer inspection of the dataset from the Goulan 

indicates that an extreme event which occurred during December 2006 resulted in 

monitoring operations being disrupted - subsequent to this the instrument appears to 

under record flow levels (Figure 3.8). Attempts were made to correct both the 

streamflow and precipitation records; however, given the difficulties in pinpointing the 

exact time when drift appears to begin, together with the large proportion of missing 

values and the short record length, a robust correction could not be applied. Difficulties 

were compounded by the fact that that both the mean and variance of some series 

appeared to change over time ï thus a simple bias correction could not be applied. 

Anecdotally it is indicated that some recorders may have been moved or relocated in the 

event of instrument wash out occurring. Due to the data quality issues discussed above, 

only a sub-set of the catchments were selected for further study. This was a conscious 

attempt to reduce uncertainty introduced to the hydrological models by way of the 

observed data used (input and output); as such it is part of a wider strategy to address 

the issue of stationarity in the model response.  



  

71 

 

 

 

 

Figure 3.7 Double mass rating curves showing the cumulative monthly streamflow (mm) for each catchment plotted against data 
from the Glenamong recorder. 

 

Figure 3.8 Smoothed time series for the Goulan catchment showing change in both the mean and variance of the flow series 
subsequent to an extreme event (circa. 14/12/2006). 
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3.6 Indicators of climate change in the Burrishoole catchment 

Fealy et al. (2010) examined whether a climate change signal was present in the 

precipitation and temperature records from the Furnace weather station (Figure 3.2). In 

addition the study examined whether warming related trends were evident in records of 

lake water temperature. It was found that, over the period 1960-2009 (50 years), mean 

air temperatures in the catchment had increased significantly (1.48 ęC; p<0.001). The 

rate of increase in daily maximum temperature was shown to be greater than minimum 

temperature (Fealy et al., 2010). Seasonally, increases in mean temperature were 

greatest in spring (1.8ęC) and winter (1.7ęC); in contrast records indicated that summer 

(1.5ęC) and autumn (1.4ęC) had warmed to a lesser degree ï albeit marginally so. When 

contrasted with Irish temperature anomalies over a similar time period (1960-2005), the 

mean annual increase in temperature recorded at Furnace (1.1ęC) was found to have 

exceeded the national average (0.9ęC) (Fealy et al., 2010). Over the period 1960-2009 

midnight lake water temperatures were found to have increased in all seasons and on an 

annual basis (Fealy et al., 2010). Following trends in air temperature, the greatest 

increases in lake water temperatures were associated with winter (1.8ęC) and spring 

(1.79ęC) respectively.  

An analysis of several temperature indices using metrics from the STARDEX project 

(STARDEX Final Report, 2005) supports evidence that the catchment has experienced 

warming over the past several decades. Records from Furnace indicated an increase in 

hot-temperature related indices and a decrease in cold-temperature related indices. For 

winter a significant increase was found in both the hot-day (1.3°C) and cold-day (1.6°C) 

thresholds. The records also indicated an increase in the duration of heat waves; this has 

been accompanied by an increase in the number of consecutive hot days (tmax 90
th

 

percentile). 

The frequency and intensity of heavy precipitation - estimated using the 90
th
 percentile 

of rain-day amounts - was found to have increased both for winter and on an annual 

basis (estimated over the 1960-2009). This finding is consistent with McElwain and 

Sweeney (2007) who found that extreme rainfall intensity has increased in the west of 

Ireland. The records indicated a small significant increase of 0.01 mm/year in mean 

annual precipitation receipts; however, on a seasonal basis, no significant 

increase/decrease in mean rainfall amounts was found to have occurred. 
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3.7 The status of Atlantic salmon (Salmo salar) in the Burrishoole catchment 

The number of adult salmon returning to the catchment has been in decline since the 

1970s (when full trapping began), with low numbers continuing each year since the 

1980s (Figure 3.9). Numbers have fluctuated from a high of 1,777 in 1973 to a low of 

252 in 1990 (Fealy et al., 2010). Although a ban in drift netting for salmon was 

introduced in 2007 - which led to a notable increase in the number of returns for that 

year - numbers in 2008 and 2009 fell to levels similar to those recorded prior to the ban 

being introduced. It is noted in Fealy et al. (2010) that this sudden decline may be 

related to a decrease in marine survival consistent with a negative trend in pre-fishery 

abundance in Irish stocks (after Peyronnet et al., 2007). The records for smolt migration 

show that the number of salmon recorded in downstream traps varies between a 

maximum of 16,136 (1976) and a minimum of 3,794 (1991) (Fealy et al., 2010). Fealy 

et al. (2010) state that there is no discernible trend evident in the annual number of 

smolts migrating from the catchment. 

 

 

3.8 Conclusion 

The Burrishoole catchment provides an ideal case study for exploring the impacts of 

climate change on the freshwater habitat of Atlantic salmon. Although high quality 

Figure 3.9 The number of wild adult salmon which returned to the Burrishoole catchment on an annual basis, recorded over the 

period 1970ï2009 (Source: Fealy et al., 2010) 
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datasets for a range of environmental variables monitored in the catchment are 

available, deficiencies were evident in the quality of some precipitation and runoff 

records. Shortcomings in the observed data limited the number of catchments which 

could be considered for hydrological modelling. Critically trends found in long-term 

records from the catchment indicate that its climate has undergone warming consistent 

with trends found in national and global datasets. The biological and physical 

characteristics of the catchment - encapsulated by the fact it is a productive upland 

system, which is highly responsive to rainfall events and has a high peat content - 

suggests that the study findings should provide an insight into the potential impacts of 

climate change on other river systems located along the west coast, many of which are 

similar in nature to the Burrishoole. The following chapter outlines the uncertainties 

inherent in developing high-resolution climate projections for use in local to regional 

scale impact studies; in addition it discusses the merits of employing a performance 

based weighting system when using climate ensembles. 
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Chapter 4 

 Uncertainty and predictability in climate modelling 

 

4.1 Introduction 

Although we can state with a high degree of certainty that the Earthôs climate system is 

likely to change in response to further increases in atmospheric GHGs, due to our 

limited understanding of feedback mechanisms and the inherent limitations to the 

predictability of regional or local scale climate, a large amount of uncertainty (of which 

a large part is irreducible) is implicitly associated with model projections of future 

climate change. While the scientific community is confident that anthropogenic 

emissions of GHGs and aerosols will alter the elemental composition of the Earthôs 

atmosphere; there is much less confidence associated with exactly how the climate 

system may change in response to this (Dessai et al., 2007). A considerable amount of 

uncertainty is associated with model estimates of future climate change ï a fact 

illustrated by the lack of convergence in the projections from individual climate models, 

even in cases where the same forcing scenarios are used. This divergence applies not 

only to the magnitude but also to timing, spatial distribution and direction of change. 

These uncertainties pose major challenges for policy makers who ideally require 

probabilistic projections of future change which adhere to the risk assessment 

framework used to formulate robust adaptation strategies (Schneider, 2001).  

As illustrated in Figure 4.1, uncertainty arises at each stage in the process of translating 

storylines of anthropogenic GHG emissions into scenarios of future climate change 

(Jones, 2000; Moss & Schneider, 2000; Wilby, 2005). The accumulation or propagation 

of uncertainty at each stage has variously been described as the ñcascade of uncertaintyò 

(Schneider, 1983) or the ñuncertainty explosionò (Henderson-Sellers, 1993) (Figure 

4.2). Model projected changes in the climate system are subject to a high degree of 

uncertainty stemming from both aleatory (óunknowableô knowledge) and epistemic 

(óincompleteô knowledgeô) sources (Hulme & Carter, 1999; Jones, 2000; New & 

Hulme, 2000; Oberkampf et al., 2002). The latter arises due to our limited 

understanding of climate system processes and their imperfect representation in climate 

models - both of which introduce uncertainty when modelling the climate system 
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response to a change in forcing. With greater knowledge and improvements in 

computing power this source of uncertainty has the potential to be somewhat redressed.  

 

 

Aleatory uncertainty refers to the unpredictable and óchaoticô nature of the climate 

system, both in the real world and in model simulations. This source of uncertainty is 

most conspicuously associated with the impossibility of knowing the exact socio-

economic pathway human development will take, and stemming from this, how 

atmospheric concentrations of carbon dioxide and other GHGs are likely to change as a 

result. To address uncertainties which arise due to unpredictability, different óscenariosô 

or storylines are used to represent a range of possible outcomes or sequence of events. 

In terms of anthropogenic GHGs, various storylines of human-societal development are 

emission 

scenarios

carbon 

cycle 
response

global 

climate 
sensitivity

regional 

climate
change

scenarios

range of 

possible 
impacts

? ? ? ?

Figure 4.2 Key uncertainties in climate impact assessments represented using the ñuncertainty explosionò. Uncertainty is amplified 

as it is propagated through each stage of the modelling process; (modified after Jones, 2000 and ñcascading pyramid of 

uncertaintiesò in Schneider, 1983 (Source: IPCC, 2001). 

 

Figure 4.1 Uncertainty arises at each step in the process of modelling the potential climate response to altered forcing conditions 

(Source: IPCC, 2007). 
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used to formulate different emission scenarios. With respect to the óchaoticô nature of 

the climate system, epistemic uncertainty is accounted for by performing multiple 

model simulations whereby the initial state of the system is adjusted between successive 

model runs. This approach allows a range of equally plausible yet (often) dissimilar 

projections of future climate, which are representative of natural climate variability, to 

be generated. For each simulation the temporal evolution of the system is different; 

however, the underlying climate signal - which is one of a warming climate - remains 

the same. 

With respect to the predictability of local-scale climate, the principal sources of 

uncertainty include, the model formulation (e.g. the numerical scheme, parameterization 

and grid resolution), forcing scenario and natural climate variability - the latter of which 

includes internal unforced variability (i.e. initial conditions) and natural forced 

variability (e.g. solar forcing) (Maraun et al., 2010). Van der Linden and Mitchell 

(2009) list the major sources of uncertainty identified by the EU funded ENSEMBLES 

project (van der Linden & Mitchell, 2009), this includes: 

Á The socio-economic assumptions upon which emissions scenarios are based 

(e.g. technological development, land-use and carbon taxation). 

Á Feedbacks from changes in the climate system on socio-economic systems - 

leading to reactionary changes in anthropogenic emissions which, in-turn, affect 

the projected rate of future change in the climate system. 

Á Translating GHG emissions into atmospheric concentrations of radiatively 

active gases. 

Á Translating atmospheric GHG concentrations to radiative forcing. 

Á Uncertainties associated with climate observations (e.g. distribution patterns of 

atmospheric constituents). 

Á Uncertainties associated with different classes of model error, including 

structural model uncertainty (stemming from basic model construction), 

uncertainty in the parameterisation of sub-grid scale processes (e.g. cloud 

physics) and stochastic uncertainties arising from the coupling between un-

resolved sub-grid scale variability and the resolved grid-scale flow. 

Á The initial model state (e.g. ocean temperatures). 

Á Dynamical downscaling between global (GCMs) and regional climate models 

(RCMs) (e.g. driving boundary conditions, the choice of GCM/RCM 

combination). 
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Á Statistical downscaling of GCM output (e.g. choice of predictors, assumption of 

stationarity in empirical relationships). 

 

4.2 Emission scenarios and atmospheric greenhouse gas concentrations 

To model changes in the climate system arising from anthropogenic forcings, GCMs 

must take account of future atmospheric concentrations of GHGs (CO2, CH4, N2O, etc.) 

and aerosol emissions. The IPCC Special Report on Emission Scenarios (SRES) 

outlines several different storylines which plot possible directions of human 

development through the 21
st
 century (Nakicenovic et al., 2000). Each storyline is based 

on various assumptions about future agricultural and land-use practices, demographic 

change and economic development; also considered is the possible role of carbon-free 

and renewable energy resources. These narratives are the basis for formulating different 

emission scenarios. Each of the SRES storylines of future development - of which there 

are 40 - can be related to four preliminary marker scenarios; A1, A2, B1 and B2 (Box 

4.1).  

A1. The A1 storyline and scenario family describes a future world of very rapid economic growth, global 
population that peaks in mid-century and declines thereafter, and the rapid introduction of new and more 

efficient technologies. Major underlying themes are convergence among regions, capacity building and 

increased cultural and social interactions, with a substantial reduction in regional differences in per capita 
income. The A1 scenario family develops into three groups that describe alternative directions of 

technological change in the energy system. The three A1 groups are distinguished by their technological 

emphasis: fossil intensive (A1FI), non-fossil energy sources (A1T), or a balance across all sources (A1B) 

(where balanced is defined as not relying too heavily on one particular energy source, on the assumption 

that similar improvement rates apply to all energy supply and end-use technologies). 

 

A2. The A2 storyline and scenario family describes a very heterogeneous world. The underlying theme is 

self-reliance and preservation of local identities. Fertility patterns across regions converge very slowly, 

which results in continuously increasing population. Economic development is primarily regionally 

oriented and per capita economic growth and technological change more fragmented and slower than 

other storylines. 
 

B1. The B1 storyline and scenario family describes a convergent world with the same global population, 

that peaks in mid-century and declines thereafter, as in the A1 storyline, but with rapid change in 

economic structures toward a service and information economy, with reductions in material intensity and 

the introduction of clean and resource-efficient technologies. The emphasis is on global solutions to 

economic, social and environmental sustainability, including improved equity, but without additional 

climate initiatives. 

 

B2. The B2 storyline and scenario family describes a world in which the emphasis is on local solutions to 

economic, social and environmental sustainability. It is a world with continuously increasing global 

population, at a rate lower than A2, intermediate levels of economic development, and less rapid and 

more diverse technological change than in the A1 and B1 storylines. While the scenario is also oriented 

towards environmental protection and social equity, it focuses on local and regional levels. 

 Box 4.1 The four SRES scenario ófamiliesô (IPCC, 2001 after Nakicenovic et al., 2000). 
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As highlighted by New & Hulme (2000) the four marker scenarios account for 

approximately 80-90% of the range in future emissions. The uncertainties associated 

with future emission pathways stem from assumptions made about the underlying socio-

economic drivers and the means by which future emissions are quantified using each 

narrative. Depending on the scenario considered, atmospheric concentrations of CO2 

vary significantly, ranging from 540 ppmv to 970 ppmv by 2100 (IPCC, 2007a) - much 

greater than present day (~391 ppmv) or pre-industrial levels (~280 ppmv). 

Emission scenarios describe changes in atmospheric GHGs for a range of plausible 

futures; however, it is essentially impossible to provide scenarios which cover all 

eventualities. In this respect it is possible that a scenario never considered may come to 

pass. Consequently, even at this initial stage, if all scenarios were to be explored in the 

construction of local scale climate projections, a significant level of uncertainty would 

remain (Foley, 2010a). The results from model simulations presented in the IPCC 

Fourth Assessment Report (AR4) (2007a) suggest that the dominant factor explaining 

the spread in climate projections is the emission scenario used. The projections indicate 

that it is generally during the latter half of the current century that the emission scenario 

has a discernible influence on the model response; thus, uncertainty introduced by way 

of the emission scenario is to a certain extent dependent on the time scales considered. 

Uncertainty associated with future GHG emissions is further compounded when 

translating the SRES scenarios into atmospheric concentrations of radiatively active 

gases. This is due to deficiencies in our understanding of the natural sources and sinks 

of each GHG and the impact climatic feedbacks may have on them. For example, global 

models of the coupled climate-carbon system indicate that atmospheric warming is 

likely to reduce the capacity of terrestrial and marine systems to absorb carbon dioxide 

(Cox et al., 2000; Dufresne et al., 2002; Friedlingstein et al., 2006). An incomplete 

knowledge of the behaviour, spatial distribution and lifespan of GHGs in the 

atmosphere also contributes to uncertainties in biogeochemical cycles and estimates of 

future radiative forcing.  

It is intended that four new scenarios of anthropogenic radiative forcing, known as 

representative concentration pathways (RCPs), will replace the current SRES emission 

scenarios (Moss et al., 2009; van Vuuren et al., 2009; Inman, 2011). Each pathway 

outlines changes in the Earthôs radiative forcing (8.5 W m
ī2

, 6 W m
ī2

, 4.5 W m
ī2

 and 

2.6 W m
ī2

) arising from different socio-economic and technological development 

scenarios. The range covered by the RCPs is wider than previously considered in IPCC 
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reports (Inman, 2011); for example, they include a scenario (IMAGE 2.6) which 

projects that the worldôs emissions will drop below zero (circa. 2070), and become 

negative thereafter. In addition, the most warming intensive scenario (MESSAGE 8.5) 

suggests that atmospheric carbon dioxide would rise above 1,300 ppm by 2100. The 

RCPs are the basis for the most recent climate model experiments, the results of which 

will inform the next IPCC assessment report (AR5). 

 

4.3 Climate sensitivity and radiative forcing 

There are various uncertainties associated with our understanding of how the Earthôs 

radiative balance may change in response to an increase in atmospheric GHGs and other 

radiative forcings - the most prominent of which include anthropogenic aerosols (e.g. 

sulphate, black carbon) and stratospheric ozone. Whilst the effects of increasing CO2 are 

generally well understood, the influence which other GHGs and aerosols may have is 

not. It is uncertain what the dominant effect of aerosols is likely to be; this refers both to 

their role in cloud formation and the direct influence they have on the absorption and 

scattering of solar radiation. Loeb and Su (2010) indicate that radiative forcing by 

aerosols is the largest uncertainty in anthropogenic radiative forcing of the global 

climate. Uncertainty also stems from how warming related feedbacks initiated in the 

climate system may act to amplify or dampen changes in the radiative balance (e.g. a 

reduction in the Earthôs albedo resulting from melting ice-caps).  

Even if future concentrations of atmospheric GHGs were known, and could be 

translated into an exact corresponding change in the radiative balance, a considerable 

amount of uncertainty in the climate response would remain. Climate sensitivity is a 

measure of how responsive the climate system is to a change in forcing. It is defined by 

Roe and Baker (2007: 629) as ñthe equilibrium change in global and annual mean 

surface air temperature, T, due to an increment in downward radiative flux, Rf, that 

would result from sustained doubling of atmospheric CO2 over its pre-industrial value 

of ~280 ppm (2 x CO2 ~560 ppm)ò. Assuming the climate system undergoes a doubling 

of forcing ɝ&  (~3.7 Wm
2
) (IPCC, 2007a) - consistent with a doubling of atmospheric 

CO2 - ɝ4  is the resultant change in the globally averaged surface air temperature when 

the system reaches its new equilibrium state. The sensitivity of the climate system to 

this forcing is therefore: 

ʇ ɝ4 Ⱦɝ&  
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Based on the equation above, the anthropogenic contribution to radiative forcing can be 

quantified as a change in the globally averaged surface air temperature response. 

Understanding and quantifying the climate sensitivity, including the role of various 

feedbacks (e.g. cloud, ice-albedo and water vapour) and interactions which may dampen 

or amplify the effects of climate forcing is critical when modelling future changes in the 

climate system. According to Cox and Stephenson (2007) climate sensitivity is the 

largest source of uncertainty in projections of future climate on time scales beyond a 

few decades. Given that the magnitude of model projected changes in climate are 

strongly related to the responsivity of the climate system, there is an onus on the 

scientific community to quantify, and where possible reduce uncertainty in the climate 

response. 

On the basis of available evidence the IPCC AR4 (2007a) suggests a climate sensitivity 

of ~3ęC for a normal distribution, with a likely range of approximately 2ï4.5ęC (5 to 

95% probability). For a log-normal distribution the climate sensitivity is estimated to be 

between 2.1ęC and 4.6ęC (5 to 95% probability) with a median value of 3.2ęC. Although 

it is impossible to rule out higher values (>4.5ęC), it is stated that the lower sensitivity 

limit is very likely to be greater than 1.5ęC (IPCC, 2007a; Knutti & Hegerl, 2008; 

Knutti et al., 2008). Knutti and Hegerl (2008) reviewed the current scientific 

understanding of climate sensitivity; based on the various studies they considered - 

which spanned different timescales and methodological approaches - the authors 

concluded that sensitivity is within the generally accepted range of 2ęC - 4.5ęC.  

Estimates of the climate sensitivity have been obtained through an examination of 

trends found in instrumental records of global temperature (~150 years) (Räisänen, 

2007; Knutti & Hegerl, 2008). The observed climate response to solar cycles and 

volcanic activity has also been used to investigate the climate sensitivity. Climate model 

experiments and the investigation of paleoclimatological records provide two additional 

lines of inquiry into the response of the climate system to a change in forcing (Räisänen, 

2007; Foley, 2010b). Whilst all climate models are based on the same immutable 

physical laws, as they variously differ with respect to their design, structure, and 

parameterization, as well as how important climatic processes, feedback mechanisms 

and system interactions are represented, the sensitivity of individual models to 

perturbed forcing conditions differs also. As a result the climate response can be 

explored by analysing the output from a multi-model ensemble (MME) of climate 

simulations (e.g. Yokohata et al., 2008). For example, estimates of sensitivity based on 
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an 18 model ensemble are reported in the IPCC AR4 (2007a). Similarly, the climate 

sensitivity may be investigated using a perturbed-physics approach, whereby the 

parameters of the same model are altered between successive model runs (Piani et al., 

2005; Stainforth et al., 2005). This approach is based on sampling those parameters 

(within their estimated uncertainty ranges) which influence the simulation of key system 

processes (Rougier et al., 2009). Although the members of a perturbed-physics 

ensemble (PPE) share the same parent model (with the same basic structure), the 

responsiveness of the modelôs parameters is such that altering their values creates 

numerous permutations of the same model with widely varying degrees of sensitivity 

(Räisänen, 2007). Stainforth et al. (2005) report results from the climateprediction.net 

experiment - a perturbed model experiment consisting of over 2000 simulations. 

According to Stainforth et al. (2005) climate sensitivities were found to range from less 

than 2ęC to more than 11ęC; only 4.2% of the simulations exceeded 8ęC, and most were 

found to cluster around 3.4ęC. Piani et al. (2005) evaluated the climateprediction.net 

ensemble using observations of present day climate and found that the climate 

sensitivity was at a best estimate 3.3ęC, but ranged between 2.2ęC (5
th
 percentile) and 

6.8ęC (95
th
 percentile). 

Paleoclimate data from sources including ice-cores and speleotherms - used as proxy 

records for changes in the global climate - have been employed to explore the response 

of the climate system to changes in forcing through geological time. A study by Zeebe 

et al. (2009), which considered changes in climate over the PalaeoceneïEocene 

Thermal Maximum (circa. 55 million years ago) - during which the planet warmed by 

between 5ęC and 9ęC - found that atmospheric carbon dioxide increased during the main 

event by less than ~70% (relative to pre-event levels). Based on the currently accepted 

values for climate sensitivity, this rise in CO2 can only explain between 1ęC and 3.5ęC 

of the warming inferred from proxy data. The study concludes that, in addition to direct 

CO2 forcing, other processes and/or feedbacks that are as of yet unknown must have 

caused a significant portion of the warming experienced during the PalaeoceneïEocene 

Thermal Maximum - suggesting that the climate sensitivity may be greater than 

currently estimated. A study by Schmittner et al. (2011) combined temperature 

reconstructions of the Last Glacial Maximum (circa 20,000 years ago) with the output 

from climate model simulations to explore the climate sensitivity. In contrast to the 

generally accepted range, their study findings suggested that sensitivity may be much 

lower than stated in the 2007 IPCC report (2.3ęC as the median; 1.7ęC to 2.6ęC as the 

66% probability range). As highlighted by Foley (2010a) much research is now being 
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undertaken to try and validate the sensitivity of climate models using paleoclimate data 

(e.g. Edwards et al., 2007).  

 

4.4 Climate predictability 

The degree to which we can predict the climate response to a change in forcing is 

limited by our incomplete knowledge of the global climate system and the simplifying 

assumptions necessary to model a system of its complexity. Climate models provide a 

three-dimensional, physically-based mathematical representation of the structure and 

behaviour of the climate system. Despite their highly complex nature, these models 

remain a simplified representation of reality, based on differing assumptions about the 

physical processes, interactions and feedback mechanisms which underpin the workings 

of the true system.  

With respect to the climate predictability, uncertainty is introduced by way of the model 

formulation (e.g. physics, parameterization schemes, parameter values, numerical 

algorithms, horizontal and vertical resolution), unforced climate variability and the 

requirement to approximate important sub-grid-scale processes. The model resolution 

and parameterizations used - along with the necessity of omitting some processes 

entirely - is required in order to balance the dynamic nature of the climate system and 

the model complexity against the required runtime, the current limitations of computing 

resources and our incomplete knowledge of the true system. According to Giorgi (2005) 

model configuration provides a dominant contribution to the uncertainty cascade, with 

almost half of the overall range in the IPCC projections of global temperature change 

attributed to this factor alone.  

Although adequate to capture large scale variations in climate, the coarse resolution at 

which GCMs are run mean they fail to explicitly resolve important sub-grid scale 

processes (e.g. processes associated with convective cloud formation and precipitation) 

which must be represented parametrically. As demonstrated by Senior (1999), omitting 

certain processes in order to reduce the model complexity - as an alternative to 

representing them parametrically - can have a significant impact on the model 

performance. Senior (1998) found marked differences in the response of large-scale 

circulation and surface temperature when a scheme with interactive cloud radiative 

properties was included (rather than omitted) in runs of the UK Meteorological Officeôs 

GCM.  
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Parameterization schemes represent the effect of sub-grid processes empirically, based 

on their association with resolvable grid-scale fields. The parameterization of important 

physical processes (e.g. cloud micro-physics) which are not explicitly resolved at the 

grid-scale, leads to error in the model simulation and is one of the key sources of 

uncertainty in model projections (Tebaldi & Knutti, 2007). As the empirically derived 

relationships which underpin parameterization schemes are based on present day 

climate, applying them under altered forcing conditions incurs an assumption in the 

stationarity of the derived relationships. However, as the dynamical core of climate 

models is based on immutable physical laws, the models provide credible estimates of 

future climate change, despite the requirement to parameterize key physical processes 

(Foley, 2010b).  

The climate system is an inherently dynamic, complex and non-linear system which, as 

it evolves over time, is subject to a range of natural fluctuations. Natural variability has 

the capacity to either amplify or dampen the influence of both human and natural 

forcings. Equally anthropogenic forcing has the capacity to disrupt natural modes of 

variability and cyclical climatic processes - dampening or amplifying their effects and 

creating feedbacks in the system (Foley, 2010b). In this respect the ability of climate 

models to simulate different naturally occurring modes of variability, and their response 

to altered forcing conditions, will affect model projections of future climate.  

The degree to which climate models can capture natural variability is limited. Even in 

the absence of anthropogenic forcing, where the climate system remains stable, large 

scale modes of variability - operating across timescales from the decadal (e.g. North 

Atlantic Oscillation) to the millennial (e.g. thermohaline circulation) - may only be 

quasi-predictable (Griffies & Bryan, 1997; Foley, 2010a). Min et al. (2005) used a 

1000-yr control simulation from the ECHO-G AOGCM (Atmosphere-Ocean General 

Circulation Model) to evaluate model skill at capturing two dominant signals of natural 

variability; the El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation 

(NAO). It was found that the model captured the ENSO reasonably well; however, the 

simulated amplitude of the ENSO signal was found to be too large, and its occurrence 

too regular and frequent. With regards to the NAO, the model overestimated the 

warming associated with the North Pacific during the high index phase. A study by Bell 

et al. (2000) considered the ability of 16 AOGCMs to simulate the variability of global 

surface air temperatures. The results indicated that the majority of models considered 

underestimated unforced inter-annual temperature variations over the oceans; in 
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contrast, they were found to have overestimated variability over land masses - a finding 

which the authors attribute to deficiencies in the land surface schemes used. 

The climate response to altered forcing is related to the interaction which occurs 

between the various components of the climate system (e.g. atmosphere, ocean, land 

surface, cryosphere and biogeochemical cycles). A lack of knowledge regarding the 

exact role of important feedbacks (e.g. water vapour/atmospheric warming, cloud 

formation/radiation, ice and snow albedo), their rate of change and whether they are 

linear in their response (to further climate warming) or subject to abrupt shifts leads to 

uncertainty in the model projections.  

Hawkins and Sutton (2007) investigated the relative contribution which uncertainty in 

the choice of GHG emission scenario, the individual model responses and the internal 

unforced variability made to the total uncertainty in model projections of surface 

temperature. Figure 4.3 indicates that over the first two decades of the 21
st
 century the 

dominant sources of uncertainty are natural variability and the predictability of the 

climate response. Over longer time scales, particularly past the mid-century, the greatest 

contribution to uncertainty stems from the climate model and emission scenario. 

Hawkins and Sutton (2007) indicate that the reduction in the contribution by natural 

variability is due to a strengthening of the climate change signal. In contrast to global 

projections (Figure 4.3(a)), natural variability is shown to have a greater influence at a 

regional scale (Figure 4.3(b)).  

 

 

 

Owing to a lack of convergence in the projections from individual climate models, it is 

argued that considering the output from a single model in isolation may lead to the 

Figure 4.3 The relative contribution of each source of uncertainty to decadal mean surface temperature projections shown by the 

fractional uncertainty (the 90% confidence level divided by the mean prediction) for (a) the global mean, relative to the warming 

from the 1971ï2000 mean, and (b) the British Isles mean, relative to the warming from the 1971ï2000 mean (Source: Hawkins & 

Sutton, 2007). The plots are constructed using the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel air 
temperature projections also used in the IPCC AR4 (2007). 
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suppression of critical uncertainties in estimates of future climate change (Hulme & 

Carter, 1999; Wilby & Harris, 2006). With respect to this, there are a number of 

approaches which can be taken to both explore the uncertainty space and quantify 

uncertainty in the projected climate response. Sampling model uncertainty typically 

involves employing a multi-model ensemble (MME) and/or, as described above, 

running the same model numerous times with a different internal structure, 

configuration or parameterization scheme (perturbed physics ensemble (PPE)).  

To compare the performance of different GCMs a number of studies - including the 

Atmospheric Model Intercomparison Project (AMIP), the Arctic Ocean Model 

Intercomparison Project (AOMIP) and the Coupled Model Intercomparison Project 

(CMIP) - have been undertaken. The findings from these studies suggest that (a) 

different models reproduce different components of the climate system with varying 

degrees of success - with no single model being the most skilful at reproducing all 

aspects of observed system behaviour; and (b) the averaging of ensembles provides a 

better fit to observations than any one individual model in isolation (Lambert & Boer, 

2001). 

 

4.5 Uncertainty in the development of high resolution climate scenarios 

GCMs can only provide a óbroad-brushô interpretation of how variables such as 

continental-scale temperature and rainfall patterns may change in response to 

anthropogenic forcing. As a result of the coarse spatial resolution at which GCM are 

run, their data cannot be applied directly in local/regional scale impact studies. 

Consequently, in order to generate climate data which is commensurate with the scales 

required for conducting impact assessments, the output from GCM experiments must be 

firstly subjected to some form of downscaling (Diaz-Nieto & Wilby, 2005).  

The limitations and underlying assumptions implicit in downscaling climate scenarios 

introduces an additional level of uncertainty to local or regional scale estimates of 

climate change (Rowell, 2006). Dynamically downscaled scenarios are subject to many 

of the same uncertainties associated with GCMs (e.g. model configuration, 

parameterization, grid resolution and natural variability); however, regional models 

have the added complicating factor that any bias or error present in the driving GCM is 

propagated through the models (Räisänen et al., 2004). When uncertainties in both the 
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nested regional and driving GCM interact, it may lead to the amplification of 

uncertainty in the downscaled data; conversely, it may also result in error cancellation, 

whereby the errors in the downscaling and parent model cancel each other out, 

producing a response which is consistent with the observations without the underling 

mechanisms necessarily being correct. The uncertainty introduced to statistically 

downscaled scenarios arises from a number of sources including the model choice, 

predictor selection and training period used.  

A number of European wide studies including PRUDENCE (Christensen et al., 2007b), 

ENSEMBLES (van der Linden and Mitchell, 2009); DEMETER (Development of a 

European Multi-model Ensemble system for seasonal to inTERannual prediction) 

(Palmer et al., 2004) and STARDEX (STARDEX Final Report, 2005) have been used 

to compare downscaling techniques and study different sources of uncertainty. Rowell 

(2006) explored the uncertainty introduced by the RCMs used to downscale temperature 

and precipitation scenarios for the UK (over the late 21
st
 century). In the case of this 

study data from PRUDENCE and the IPCC Data Distribution Centre (DCC) was used. 

Rowell (2006) highlights that, although it is a necessary step, regional downscaling 

inevitably contributes a further source of uncertainty to the overall uncertainty in 

climate projections. The author found that the formulation of the regional models 

influenced the projected range in mean climate for the UK. The results indicated that the 

largest source of uncertainty - when all seasons and both variables were considered - 

was the formulation of the global-coupled model.  

In a similar study, data produced through the EU funded ENSEMBLES project was 

used to explore different sources of uncertainty, including the choice of driving GCM 

and downscaling model; the study also considered the effect which interannual 

variability had. In accordance with the results from its predecessor PRUDENCE 

(Christensen et al. 2007b; Déqué et al., 2007), the results from ENSEMBLES (van der 

Linden & Mitchell, 2009) indicated that over the first half of the 21
st
 century large-scale 

seasonal mean changes were largely determined by the GCM, whilst differences 

between the respective RCMs were more closely linked to natural variability (Déqué, 

2007, 2009; van der Linden & Mitchell, 2009). The choice of RCM was shown to be 

important, particularly as it was found that some models amplified the climate change 

signal whilst others tended to weaken it (van der Linden and Mitchell, 2009).  
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The results from ENSEMBLES (van der Linden & Mitchell, 2009) highlight that 

uncertainties in both global and regional scale climate processes contribute to the full 

range of plausible climate responses; consequently, a comprehensive sampling of both 

is needed in order to properly characterise the uncertainty space and inform the 

development of robust adaptation strategies. Due to temporal variations in their relative 

contribution to uncertainty in the regional scale response, it is argued that a greater 

number of GCMs should be sampled over the latter half of the century (e.g. 2050 

onwards); in contrast, the RCMs should be more heavily sampled when modelling 

climate during the earlier half of the century, when conditions are closer to the present 

day climate (Déqué, 2007; 2009; van der Linden & Mitchell, 2009). 

Chen et al. (2011) investigated uncertainty in a hydrological impacts study which 

employed climate scenarios derived using six different statistical downscaled methods, 

including a change factor approach and weather generator. It was found that the 

uncertainty range originating from the choice of 28 climate projections (seven GCMs 

and threes emissions scenarios) was slightly larger than the uncertainty envelope 

associated with the choice of downscaling method. Of the methods considered 

regression-based statistical downscaling was found to have contributed most to the 

overall downscaling uncertainty.   

 

4.6 Uncertainty in climate impacts 

When attempting to model the impacts of climate change on human and environmental 

systems an additional source of uncertainty originates from the impact models used - 

represented by the final component in the chain of uncertainties (Figure 4.2).  Not 

unlike climate models, the limitations and assumptions associated with impact models 

introduces uncertainty to their output. One of the greatest uncertainties is the 

assumption that the model remains valid under future climate conditions, of which it has 

no prior experience.  

Several studies have examined the relative contribution of the various stages in the 

ñcascade of uncertaintyò to the overall uncertainty in impact assessments. Kay et al. 

(2000) explored the influence of uncertainty on the results of an impacts study which 

examined changes in flood frequency in England. Six different sources of uncertainty 

were considered including: the emission scenario, GCM structure, regionalization 
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model (including RCM structure), hydrological model (considering both the structure 

and parameter values) and the internal variability of the climate system (sampled by 

applying different GCM initial conditions). The results indicated that the greatest 

contribution to uncertainty came from the GCM used. The authors highlight the 

importance of natural variability, particularly when trying to identify clearly defined 

climate change signals. Graham et al. (2007a) examined the hydrological response of 

the Lule River in Northern Sweden to changes in climate using the PRUDENCE dataset 

(Christensen et al. 2007b). The study indicated that the choice of GCM had a greater 

influence on the projected hydrological response than the choice of emission scenario. 

Similarly, when examining projected changes in three river basins located in Northern 

and Central Europe, Graham et al. (2007b) found that the choice of GCM had a 

significant influence on the projected hydrological response.  

Wilby et al. (2006) used two emission scenarios and three GCMs to investigate 

uncertainty in an impact study which focused on the future availability of water 

resources. The magnitude of projected changes was found to differ depending on the 

GCM selected. A study by Jasper et al. (2004), which examined the response of two 

alpine river basins (Switzerland) to projected climate change, concluded that large 

uncertainties are introduced by way of the GCMs used. The emission scenario was also 

found to have a noticeable influence on the results. The study employed 17 climate 

projections derived from seven GCMs and four emission scenarios. Prudhomme and 

Davies (2009a; 2009b) examined different sources of uncertainty in model projected 

changes in the hydrological regime of four river catchments in the UK. The results 

indicated that the GCMs were the largest source of uncertainty in the results; however, 

uncertainty stemming from the downscaling method and emission scenario used was of 

a similar magnitude, but generally less than the GCM.  

In their study of climate change impacts on the hydrology of a Nordic catchment 

(Chute-du-Diable, Quebec), Minville et al. (2008) found that the choice of GCM 

contributed most to the overall uncertainty in the projected hydrological response. 

Wilby and Harris (2006) conducted a comprehensive assessment of uncertainty in 

hydrological impact studies; their study focused on low flows in the River Thames. It 

was found that the hydrological model projections were most affected by uncertainty 

stemming from the choice of GCM. Uncertainties due to the emission scenario and 

hydrological model parameters were shown to be of lesser significance. In this study 
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Wilby and Harris (2006) highlighted the benefits of adopting a probabilistic framework 

as a means for characterising uncertainty in the results from climate impact studies. 

 

4.7 Managing uncertainty in climate projections 

Due to the significant implications it has for policy decisions and the potential for 

maladaptation to occur, addressing uncertainty in local scale projections of future 

climate has become an issue of critical importance for impact assessors. Although it is 

common practice, the over-reliance on a single realisation of future climate - typically 

derived using a single emissions pathway and climate model - may lead to the 

suppression of key uncertainties in estimates of future climate change. Hulme and 

Carter (1999) go so far as to state that this practice is ódangerousô, as any subsequent 

policy decisions will be founded only on a partial assessment of the true risk posed by 

climate change. In this respect it is important that the uncertainty space is adequately 

sampled if the results from impact studies are to be used for the development of robust 

adaptation responses. Thus, employing a single projection of future climate is an 

inappropriate strategy for conducting impact studies (Wilby & Harris, 2006). It is now 

widely recognized that comprehensive impact assessments must address the issue of 

uncertainty by employing multiple realizations of future climate. As a result there is an 

onus on the climate modelling community not to produce a single deterministic account 

of future climate, but rather a range of plausible climate pathways which allow for some 

consideration of the uncertainties encountered at each stage in the process of developing 

regional or local scale climate projections. Indeed current research has moved somewhat 

beyond this towards producing probabilistic projections of future climate based on the 

output from multi-model ensembles. Advancing this approach, it is possible to attach 

some weighting to the projections from individual models or ensemble members based 

on their ability to capture different aspects of present day climate.  

As highlighted above, an important finding of inter-comparison studies like AMIP, 

AOMIP and CMIP3, as well as projects like PRUDENCE (Christensen et al., 2007b) 

and ENSEMBLES (van der Linden & Mitchell, 2009), is that irrespective of whether 

operating at a global or regional scale, models display disparate skill levels, with some 

being more proficient at capturing certain aspects of observed system behaviour when 

compared with others. In addition, in any ensemble generally no single model 

outperforms its competitors in all aspects of performance. For example, models which 
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accurately replicate large-scale modes of circulation or different climatic regimes may 

be poor at capturing extreme events or regional-scale forcings. It is generally 

acknowledged that by allowing the respective strengths of different models to be 

combined, climate ensembles are likely to provide a more reliable estimate of future 

climate change (Tebaldi & Knutti, 2007). Thus, when examining the potential local 

scale response to perturbed forcing it is advised that an ensemble based approach is 

adopted - both as a means of incorporating uncertainties relating to the climate 

predictability (i.e. to capture the spread of climate responses) and as an 

acknowledgement that the performance of the ensemble is likely to better than any of its 

constituent ensemble members when considered in isolation (Buser et al., 2009). As 

stated by Weigel et al. (2010), combining the output from different models is a more 

pragmatic approach for addressing uncertainty and producing reliable estimates of 

future change. Using an ensemble not only allows the strengths of different models to 

be exploited, it also facilitates attaching a conditional likelihood value to different 

model outcomes. In addition it dispels the over-confidence implicitly associated with 

using a single realization of future climate (Weigel et al., 2008).  

Maraun et al. (2010) state that uncertainty in the model response (i.e. formulation, 

parameterization, unforced variability) can be addressed by using multi-model and/or 

perturbed physics ensembles (Benestad, 2004; Murphy et al., 2004; Stainforth et al., 

2005; Tebaldi & Knutti, 2007). The former allows sampling of the uncertainty 

associated with inter-model variability, whilst the latter allows for an exploration of 

uncertainty associated with the internal model configuration (e.g. parameterization). As 

the model parameters can be methodically reconfigured between successive runs, 

perturbed physics ensembles (PPEs) allow for a more systematic sampling of 

uncertainty when compared with multi-model ensembles (MMEs). In the case of the 

latter, differences which exist between individual models are to a certain extent 

arbitrary. As a result the assumption that the models used in a MME are independent 

from one another may not be valid (i.e. different models share similar structural 

assumptions); this may lead to an oversampling of a particular region of the model 

space, creating a bias in the final ensemble and any probabilistic projections derived 

from it. However, whilst the PPE may appear to offer a more systematic and less 

subjective approach to addressing model uncertainty, as it is essentially the same model 

which is altered between successive runs, it cannot capture inter-model differences. 

Given their highlighted shortcomings, an optimum approach - whereby both the internal 
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and inter-model variability could be sampled - would be to employ a multi-model 

perturbed-physics ensemble (Collins et al., 2010; Foley, 2010a).  

 

4.8 Probabilistic projections and weighting criteria 

In order for climate ensembles to be considered reliable it is important that the 

performance of individual members is scrutinized and that the methodological 

approaches used to generate them are valid. A key issue when employing climate 

ensembles is whether to use information about the skill of individual members under 

present day climate to inform their relative contribution to the overall ensemble under 

future forcing (Foley, 2010b). Model weighting has been shown to improve prediction 

skill and thus, when employed in a climate change context, may provide a means of 

reducing uncertainty in future projections (Weigel et al., 2008; 2010). As outlined by 

Weigel et al. (2010), the criteria employed for model weighting in the past has included 

an assessment of systematic bias over the control period (e.g. Giorgi & Mearns 2003; 

Tebaldi et al., 2005) and model skill in capturing observed trends (e.g. Greene et al., 

2006; Hawkins & Sutton 2009; Boé et al., 2009); weighting schemes have also been 

formulated using composites of several other performance criteria (Murphy et al., 

2004). 

The issue of whether to apply a weighting scheme is a particularly contentious one, not 

least because it requires an assumption that model performance is both time and state 

invariant. It also requires that a robust methodological approach for evaluating the 

performance of competing models is employed. This is an issue which Weigel et al. 

(2010) highlights as a critical weakness in weighting schemes, and is one underlined by 

the fact that no consensus regarding what constitutes best practice in this area currently 

exists. The principle argument in favour of model weighting is that it is difficult to 

expect a model which has little or no skill under current conditions to be a reliable 

estimator of future climate; the converse of this is that a modelôs performance with 

respect to current day climate is in no way a guarantee of its validity under altered 

forcing, and thus each ensemble member should be considered equally plausible. 

Weigel et al. (2010) state that it may be more pragmatic to simply omit poorly 

performing models from the ensemble which, in some cases may be justifiable; 

however, given the unpredictability of the climate system and our dearth of knowledge 

regarding its true workings - particularly under altered forcing conditions - it may be 
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better to err on the side of caution and include a larger number of models which exhibit 

disparate skill levels, but which may contain the true outcome, rather than be over-

confident in a smaller number of models which may not (Foley, 2010a). In addition, as 

it effectively constrains the uncertainty space, omitting ensemble members on the basis 

of performance may lead to an underestimation of uncertainty. Based on the points 

outlined above, model weighting may be considered a means of reducing uncertainty, or 

conversely may simply add an additional layer of uncertainty which must be explored.  

The generation of multi-model ensembles and the development of methods like the 

reliability ensemble averaging (REA) framework (Giorgi & Mearns, 2002; 2003), are 

part of a wider undertaking by the modelling community to produce probabilistic 

projections of future climate; however, one of the impediments to the widespread 

application of this approach is the uncertainty surrounding which techniques are most 

suitable for combining model simulations (Knutti et al., 2010). As they are more 

appropriate for expressing uncertainty, and are applicable to combining the information 

from individual ensemble members, Bayesian methods have typically been employed to 

produce probabilistic projections based on ensemble data (Dessai & Hulme, 2004). 

Among the first to employ a Bayesian framework was Tebaldi et al. (2005); in this case 

the authors produced weighted probability distributions of changes in mean temperature 

over 22 different (Giorgi) regions of the global landmass. Tebaldi et al. (2005) 

employed the criteria of model bias and convergence from the REA method proposed 

by Giorgi and Mearns (2002). This method assigns a weighting to each ensemble 

member based on its ability to simulate present day climate; an additional measure 

which considers model convergence under perturbed forcing is also used. Despite its 

widespread application, the REA method has been the subject of some criticism, the 

main focus of which has been the incorporation of the convergence criterion. For 

example, Xu et al. (2010) state this term artificially narrows the probability distribution 

of projected change. In addition, it is argued that using the criterion may not be valid 

given that there is no observed data with which to benchmark model performance; 

furthermore it assumes independence in the ensemble members. Xu et al. (2010) 

updated the REA method by omitting the convergence criterion and including 

supplementary measures for quantifying model performance; in addition, the approach 

proposed by Xu et al. (2010) considers model performance with respect to multiple 

climate variables.  
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As outlined by Buser et al., (2009), the methodological framework set out by Tebaldi et 

al. (2005) has been generalized and advanced by others (e.g. Furrer et al. 2007; Min & 

Hense,  2007; Jun et al., 2008; Buser et al., 2009; Smith et al., 2009). The framework 

has also been applied in a statistical downscaling context by Hashmi et al. (2009). In 

this case a Bayesian weighted multi-model ensemble approach was used to combine the 

precipitation scenarios produced from three different statistical models.  

Lopez et al. (2006) compared the Bayesian framework of Tebaldi et al. (2005) to the 

approach devised by Allen et al. (2003) - which is based on the detection of climate 

change signals (Allen et al., 2000, 2003; Stott & Kettleborough, 2002). It was found 

that the underlying assumptions of both methods resulted in the predicted distributions 

being significantly different from one another. Min et al. (2007) applied Bayesian 

model averaging (BMA) to produce weighted distributions of temperature change for 

different continental regions. Bayes factors and the expectation-maximization algorithm 

were compared as methods for estimating the weighting factors. This study also 

examined differences in the projections from the weighted (derived using BMA) and 

unweighted (arithmetic) mean ensemble. Min et al. (2007) found that that the BMA 

approach was sensitive to the training period used; in addition it suggested greater 

increases in mean temperature and produced broader distributions when compared to 

the unweighted mean ensemble. Greene et al. (2005) employed a Bayesian linear model 

to estimate probability distribution functions of regional temperature change using a 

multi-model ensemble of AOGCMs.  

As discussed above, the use of weighted probabilistic methods requires that some 

criteria are used to assign a measure of reliability to the output from competing models. 

The REA approach, along with Bayes factor and expectation-maximization algorithm 

referred to above, are indicative of the methods used to formulate model weights. 

Approaches to model evaluation have predominantly focused on how well models 

reproduce different aspects of observed climate (e.g. mean and higher order statistics, 

inter-annual/decadal variability and geographical patterns) and system behaviour (e.g. 

different mode of large-scale circulation, North Atlantic Oscillation index). Murphy et 

al. (2004) devised the climate prediction index (CPI) which weighted GCMs depending 

on how well they reproduced various statistical descriptors of present-day climate. The 

index was formulated based on model performance at simulating multiple climate 

variables. Wilby and Harris (2006) employed the CPI criteria (Murphy et al., 2004) to 

weight GCMs used in a catchment scale impacts assessment. The weighting scheme is 
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referred to as an impact relevant climate prediction index (IRCPI). In this case the index 

was estimated based on the skill of each GCM at reproducing variables considered 

important for capturing low flows in the study catchment (Thames, UK).  

Brekke et al. (2008) employed six metrics to quantify (GCM) model skill at capturing 

the observed climatology of Northern California. In this study a multi-model ensemble 

consisting of 75 ensemble members - generated by 17 AOGCMs - was assessed. To 

formulate the model weights three different evaluation criteria were employed. The first 

was based on the modelôs ability to reproduce the local climatology of the study region; 

the second examined model performance at capturing global-scale climatic processes. 

The third criterion was based on how well each model described the link between the 

local scale climate response and global scale forcings (i.e. teleconnections). Thus, in 

order for the scenarios to be considered reliable, the models used to generate them had 

to capture the connection between global and local scale climate processes; they also 

had to simulate these processes with a high degree of skill. 

 

4.9 ENSEMBLES: weighting scheme 

As part of the ENSEMBLES project (van der Linden & Mitchell, 2009) a performance 

based weighting system was developed and subsequently employed to produce 

probabilistic projections of future climate change for Europe using the ENSEMBLES 

dataset. The work carried out for this is reported in a special edition of Climate 

Research entitled ñRegional Climate Model evaluation and weightingò (volume 44, 

2010). A holistic approach was taken when formulating the ENSEMBLES weighting 

scheme, whereby each group involved considered contrasting aspect of model 

performance and explored the use of different evaluation metrics. 

Coppola et al. (2010) proposed a weighting system for RCMs based on model 

performance at simulating the sub-GCM-grid scale mesoscale climate signal (i.e. the 

signal not explicitly resolved by low resolution climate models). The signal is 

representative of the value added by the running GCM data through a higher resolution 

dynamical model, and is indicative of how well the RCM captures the influence of sub-

grid scale features (e.g. coastlines, topography). For this the performance of each ERA-

40 driven RCM was assessed on a seasonal basis and both temperature and precipitation 

were considered. Five metrics were used to quantify each modelôs ability to reproduce 
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observed spatial patterns of variability in mesoscale signals for each variable 

independently. It was found that, when evaluated using the same performance criteria, 

the weighted mean ensemble performed better than the unweighted mean ensemble - 

particularly over topographically complex regions (e.g. Alpine region).  

Kjellström et al. (2010) assessed the ability of 16 RCMs - when run using ERA-40 

boundary conditions - to reproduce daily and monthly statistics of temperature and 

precipitation for the period 1961-2000. The degree to which the empirical probability 

distribution function of the observations matched that of the simulated series was 

employed as a quantitative measure of model skill.  Kjellström et al. (2010) found that 

the weighted ensemble was a slightly better approximation to the observations than the 

corresponding unweighted ensemble for most regions, variables and seasons. Lenderink 

(2010) devised a weighting system based on how well the RCMs simulated 

precipitation extremes. For this the 99
th
, 99.9

th
 and 99.99

th
 percentiles of daily modelled 

precipitation were compared on a seasonal basis with the E-OBS dataset. In their 

contribution to the ENSEMBLE weighting scheme Lorenz and Jacob (2010) considered 

RCM (ERA-40 driven) skill at simulating observed linear trends in annual mean 

temperature over 8 different European regions for the period 1961-2000. Skill scores 

were assigned to individual RCMs based on differences between observed and model 

simulated trends. 

Also included in the overall ENSEMBLES weighting system are the results from 

Sanchez-Gomez et al. (2009) who assessed RCM performance at simulating large-scale 

circulation patterns. The models were evaluated based on how well they reproduced the 

frequency of occurrence, composite pattern, persistence, interannual variability and 

long-term trends in the occurrence of different circulation types. In addition Halenka et 

al. (unpublished) provided ensemble weights formulated based on how well each model 

reproduced the annual cycle in both temperature and precipitation (Kjellström & Giorgi, 

2010).  

Christensen et al. (2010) investigated how the model weights derived from each of the 

six studies outlined above could be combined into a single comprehensive weighting 

system. The authors investigated the effects of differently aggregating the individual 

skill scores to produce the overall model weights; it was found that the final weights 

were sensitive to the aggregation method used. Crucially, this study indicated that using 

the formulated weights did not bring about any improvement above using the 
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unweighted mean ensemble. One of the reasons proposed for this is that mean biases 

were not explicitly considered by any of the performance criteria employed. The 

findings of Christensen et al. (2010) are generally in keeping with the results from other 

studies (e.g. Wilby & Harris, 2006; Fowler & Ekström, 2009; Knutti et al., 2010). 

Although the weighting scheme appears to add little value in terms of simulating current 

day climate, it is argued that, as the weights have been objectively formulated, the 

weighted mean ensemble may still provide a more reliable estimate of future climate 

when compared to the unweighted mean ensemble (i.e. where an equal weighting is 

applied). In this respect employing model weights may be considered a more defensible 

approach, despite appearing to have little influence on the overall outcome. 

Déqué and Somot (2010) employed the weighting scheme derived for the regional 

models used in ENSEMBLES to produce probabilistic climate projections for three 

European cities (Budapest, Lisbon and Dublin). Here the same RCMs were employed to 

dynamically downscale GCM simulations; the resulting datasets were combined using 

the ENSEMBLES weighting scheme outlined above. Over the control period (1961-

1990) there was no evidence that the use of the weights produced a weighted probability 

distribution function (PDF) which was closer to the observed PDF than if equal or 

randomly drawn weights were used. Additionally, it was found that irrespective of the 

model weighting employed (equal, random or quantitatively derived), a similar response 

to future climate forcing was elicited. Déqué and Somot (2010) state that as the 

ENSEMBLES weights are based on a physical and multi-purpose approach, they are 

more robust than equal weights - even if the unweighted and weighted mean ensemble 

return similar results. 

 

4.10 Conclusion 

Our ability to translate theorized storylines of future socio-economic development into 

alterations in the elemental composition of the atmosphere and changes in local or 

regional climate is limited by both what is óunknownô and what is óunknowableô about 

the workings, temporal evolution and sensitivity of the climate system. When 

simulating the climate response to a change in forcing, uncertainty is introduced by way 

of the simplifications imposed on the climate system in order to make it solvable with 

respect to current computing power and our incomplete knowledge of system processes.  
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Uncertainty in climate models stems principally from their coarse resolution, internal 

model configuration, and critically the requirement to approximate important sub-grid 

scale processes. The necessity to parameterize key physical processes, not resolvable at 

the grid-scale, incurs an assumption in the validity of empirically derived relationships 

under perturbed forcing. In addition, the predictability of the climate system is limited 

by the chaotic nature of the system itself, both in the real world and in model 

simulations. It is also limited by our incomplete understanding of the role feedback 

mechanisms may have and how such feedbacks are represented in climate models; this 

is of particular importance with respect to their interaction with natural modes of 

variability and cyclical climate processes. 

The principal means of addressing uncertainty in climate models is through the use of 

multi-model or perturbed physics ensembles, both of which allow key uncertainties to 

be sampled when estimating the climate response. Different methods for combining the 

information contained in such ensembles to produce probabilistic projections of future 

change exist. One of the foremost critical issues associated with this is whether to apply 

some weighting criteria to the ensemble members in order to constrain their relative 

contribution to the aggregated ensemble response. Typically the weighting criteria used 

is based on the ability of each respective ensemble member to capture some aspect of 

observed climate behaviour. Whilst a modelôs ability to simulate observed climate may 

not be indicative of its skill when applied under altered forcing conditions, it can 

equally be said that a model which is unable to simulate past behaviour is also likely to 

be less reliable when used to model future climate. Given these conflicting viewpoints, 

the application of a weighting scheme comes with the caveat that a robust approach for 

quantifying model skill is adopted. 

As highlighted above the uncertainty which pervades climate change impact studies is 

introduced not only by the predictability of the large-scale climate response, but also 

through the emission scenario, regionalization technique and impact model used. Figure 

4.2 illustrates how uncertainty is accumulated or amplified as it passes through each 

link in the chain, underlining the importance of independently sampling the 

uncertainties present at each stage. The following chapter critically examines the 

various methodological approaches employed for downscaling coarse scale GCM data; 

the chapter also provides an outline of the various uncertainties associated with 

downscaling climate data and how they can be addressed. 
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Chapter 5 

Approaches to statistical and dynamical downscaling 

 

5.1 Climate modelling and downscaling 

Understanding how the Earthôs climate may change in response to further increases in 

atmospheric GHGs, and the possible impacts any such changes may have on human and 

environmental systems, is critical for developing robust adaptation strategies and 

formulating appropriate policy decisions. Global climate models (GCMs) are the 

primary tool used for studying past variations in the Earthôs climate, and are employed 

in a climate change context to explore the potential response of the climate system to a 

change in forcing. These models are three-dimensional numerical representations of the 

structure and behaviour of the global climate system; they describe the dynamics of the 

Earthôs oceans and atmosphere in a physically explicit manner, and account for the 

complex workings and interactions of the various sub-systems which comprise the 

global climate system. Climate models are a key instrument for exploring the possible 

evolutionary pathways of the Earthôs climate under prescribed anthropogenic forcings; 

as such their projections provide the primary source of information used for conducting 

impact studies and developing climate change adaptation responses. 

GCMs describe climate behaviour by integrating a range of chemical, biological and 

fluid-dynamical equations which are either derived directly from physical laws (e.g. 

Newton's first law of motion) or are formulated by more empirical means. There are 

both atmospheric GCMs (AGCMs) and ocean GCMs (OGCMs); both of which can be 

coupled to form an atmosphere-ocean GCM (AOGCM) which, along with the addition 

of various sub-models (e.g. sea-ice, land model and carbon cycle model), forms the 

basis of a model which provides a more complete representation of the climate system. 

Modelling future climate based on a global domain is necessary in order to ensure that 

the interactions between different climate regimes are handled correctly. Previous 

studies have shown that GCMs have the capability to simulate the large-scale features 

and dynamics of the climate system (e.g. general circulation of the oceans and 

atmosphere, sub-continental patterns of temperature and precipitation); for example, 

some have been shown to be skillful at capturing important climatic tele-connections 

such as those associated with ENSO (El Niño-Southern Oscillation) (Leung et al., 
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1999). Despite their recognized skill at a global scale, the coarse resolution at which 

they operate restricts their capacity to provide a realistic description of both the 

workings and condition of the system at finer spatial scales (Grotch & MacCracken, 

1991; Zorita & Von Storch, 1999). This aspect of GCMs severely limits the direct use 

of their output in regional/local scale impact applications, for which higher resolution 

data is required (Giorgi & Mearns, 1991; Wilby & Wigley 1997, McGuiffie et al., 1999; 

Wilby et al., 1999; Giorgi et al. 2001; Prudhomme et al., 2002).   

GCMs are currently run at a relatively coarse spatial resolution - typically of the order 

of 300-500 km. Operating at this scale is necessary given the constraints of currently 

available computing power and the highly dynamic nature of the climate system. 

However, at this resolution the influence of important sub-grid scale features, which 

have a strong bearing on the local climate, cannot be explicitly accounted for. 

Considering local scale forcings in any plausible future scenario is particularly 

important where landïsurface conditions significantly influence the character of 

regional and local scale climate. This is particularly true for regions which present 

highly heterogeneous environments such as coastal zones, regions with complex 

topographies and areas with diverse land-use types (Wilby et al., 2004). Furthermore, 

their coarse resolution and limited physics prohibits them from explicitly resolving 

important climatic processes which occur at a sub-grid scale level (e.g. cloud formation, 

evaporation, convective rainfall) - many of which are either omitted from the model 

simulations or are represented using parameterization schemes. Physical processes 

which occur at the sub-grid level strongly affect local climate at the scales most relevant 

to the ecological and human environment; consequently they are often those of greatest 

importance to impact assessors (Cubasch et al., 1996; Zorita & von Storch, 1999). 

Given that the global climate is primarily the response of the climate system to large-

scale factors (e.g. differences in solar forcing, the Earthôs rotation, the global land-sea 

distribution, orographic features) (Zorita & von Storch, 1999), it is rational to expect 

that GCMs which are proficient at capturing global scale processes may not perform 

well at simulating regional climate - which is primarily the response of the climate 

system to regional scale forcings and climate processes which cannot be resolved based 

on the grid resolutions currently employed. Ideally the climate scenarios used to drive 

impact assessments should reflect sub-grid scale processes and capture locally specific 

climate details lacking in the output from GCMs. Reflecting the heterogeneity of the 

sub-GCM grid scale climate necessitates ódownscalingô coarse resolution model output 



  

101 

 

to the finer spatial scales relevant for conducting impact studies. This may be to higher 

resolution grids or point specific locations on the Earthôs surface commensurate with 

instrumental stations. Downscaling is based on the principle that local or regional 

climate is primarily determined by climate conditions on a much larger scale (Wilby et 

al., 2004). Developing models with which to capture this relationship allows changes in 

local-scale variables to be explored using coarse resolution GCM projections.  

 

5.2 A review of different downscaling techniques 

Downscaling methods can be broadly divided into two categories: empirical/statistical 

downscaling and dynamical techniques. Empirical downscaling is based on developing 

statistical models which describe the relationship between the large scale climate or 

atmospheric state (e.g. circulation patterns) and the regional or local scale response (e.g. 

point/grid scale precipitation); dynamical downscaling is conducted using limited area 

models which employ the same or similar numerical schemes and parameterizations as 

larger scale GCMs. Downscaling methods, as reviewed by Wilby and Wigley (1997), 

Wilby et al. (2004), Mearns et al. (2003) and Fowler et al. (2007) can be divided into 

four general categories: dynamical downscaling (Mearns et al., 1995; Teutschbein & 

Seibert, 2010; Rummukainen, 2010), regression based methods (Hewitson & Crane, 

1996; Wilby et al., 1999), weather classification (Yarnal, 2001) and stochastic weather 

generators (Richardson, 1981; Racsko et al,. 1991; Semenov & Barrow, 1997; Corte-

Real & Hu, 1999; Kilsby et al., 2007).  

 

5.2.1 Dynamical Downscaling 

Dynamical downscaling typically involves embedding a higher resolution regional 

climate model (RCM) within a coarse resolution global model, wherein the nested 

model is driven by lateral boundary conditions from the parent GCM. This is done so 

with the aim of explicitly accounting for regional scale forcings (e.g. complex 

topographical features and heterogeneous land cover) and mesoscale climate processes 

not adequately captured by large-scale models (Giorgi & Mearns, 1991; Giorgi & 

Mearns, 1999; Rummukainen, 2010).  

RCMs are similar to GCMs in that they both rely on the same physical-dynamical 

description of fundamental climate processes; however, RCMs are run over a limited 
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area at a much higher resolution. Over the domain on which the model is focused the 

physical dynamics of the atmosphere are simulated using horizontal grids with a 

resolution typically of the order of 20-50 km. Information on large scale climate 

variables (e.g. pressure, vorticity, temperature, humidity etc.) are provided to the 

regional climate model from the driving GCM. This data is supplied as lateral boundary 

conditions and processed in a physically consistent manner to produce more spatially 

detailed climate simulations. Along with regional climate models there are two further 

approaches to dynamical downscaling (Rummukainen, 2010). The first employs a high 

resolution atmospheric global model; the second uses a global model with a variable-

resolution grid. Here the resolution of the computational grid is increased over a 

particular area of the global domain. The computational cost of this approach is 

currently much greater than that of a GCM, prohibiting its widespread application in 

climate studies (Rummukainen, 2010). 

A key benefit of employing RCMs is that they are capable of resolving important sub-

GCM-grid scale processes dynamically; thus, as highlighted by Fowler et al. (2007), 

RCMs are able to explicitly model important regional climate features such as 

orographic enhancement, local winds and extreme weather events (Murphy, 1999; Frei 

et al., 2003; Fowler et al., 2005; Frei et al., 2006). Frei et al. (2003) assessed the 

performance of five RCMs used to simulate precipitation over the European Alps. 

Despite inter-model differences being apparent, the models were shown to be capable of 

skillfully simulating the mesoscale features of heavy precipitation over an area with a 

complex topography. Schmidli et al. (2006) state that the ability of RCMs to incorporate 

information about regional land-use and topography makes dynamical downscaling 

more skilful than statistical methods over areas of complex terrain.  

The influence which sub-grid scale topographic features (e.g. orographic forcing, rain 

shadow effects) can have on local climate means that regional climate signals may be 

significantly different from those simulated by GCMs - highlighting the added benefit 

of employing dynamical downscaling (Leung et al., 2004; Fowler et al., 2007). In 

addition, the ability of RCMs to simulate mesoscale precipitation processes in a 

physically explicit manner means they potentially provide more plausible scenarios of 

future change in extreme rainfall and regional scale variability (Fowler et al., 2007).  

Despite their high resolution some climate processes (e.g. cloud formation) will still 

occur on too fine a spatial scale to be explicitly resolved and must be represented 

parametrically (i.e. statistically approximated). As highlighted by Frei et al. (2003), the 
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requirement to represent some climate processes in this manner can lead to inter-model 

differences in projections of future climate, and introduces uncertainty to the model 

simulations. In addition, the resolution at which RCMs are currently run means their 

output may still lack the detail required for conducting local scale impact studies - thus 

necessitating the application of statistical methods. One of the key assumptions of 

dynamical downscaling, and climate modelling more generally, is that of stationarity - 

where the empirical relationships derived under observed climate are assumed to  

remain valid under the forcing conditions of possible future climates. This essentially 

non-verifiable assumption underlies the parameterizations used in RCMs (and GCMs); 

however, as the core basis of climate models is immutable physics and not unverifiable 

assumptions, it is proposed that this makes a stronger argument for their validity (when 

compared to statistical methods) under perturbed forcing (Foley, 2010a). 

The requirement to parameterize important sub-grid scale processes, along with biases 

inherited from the driving GCM, necessarily introduces uncertainty to the downscaled 

RCM projections. Uncertainty stemming from the model configuration (e.g. grid 

resolution, model structure, parameterization, etc.) and the internal variability of the 

climate system also contribute to the overall uncertainty in the projected regional scale 

response (Hagemann et al., 2004). It is argued that in order to address this, it is 

preferable to adopt a multi-model approach, whereby an ensemble of plausible climate 

projections is used to explore possible changes in regional climate (Fowler et al., 2007). 

However, dynamical models are computationally demanding, limiting their application 

in multiple scenario assessments. In order to overcome this, a number of pan European 

projects, including PRUDENCE (European FP5 Prediction of Regional scenarios and 

Uncertainties for Defining European Climate change risks and Effects) (Christensen et 

al., 2007b) and ENSEMBLES (van der Linden & Mitchell, 2009) (van der Linden & 

Mitchell, 2009) have been undertaken. Projects like those referred to above facilitate the 

co-ordination of model experiments and the sharing of information - as part of which 

the various institutes involved make the output from their model simulations (conducted 

for a common domain and time period) freely available. In doing so such projects 

provide the data required for addressing some of the uncertainties inherent in future 

estimates of regional climate change.  
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5.2.2 Statistical Downscaling 

According to Mehrotra and Sharma (2011) statistical downscaling is the most favoured 

method for transferring large-scale synoptic information from GCM simulations of 

future climate to the point or catchment gird scales required for conducting impact 

assessments. Statistical methods are based on the principle that local and regional 

climate is conditioned by two factors: the large-scale climatic or atmospheric state and 

regional physiographic features such as topography, land-sea distribution and land-

cover (von Storch; 1995, 1999). Based on this a quantitative relationship can be 

established between large-scale predictors (e.g. circulation patterns, grid-scale 

humidity) and sub-grid scale climate (e.g. temperature, precipitation) or other surface 

environmental variables (predictands). Once established under observed conditions, the 

statistical model is used to derive local point or grid scale scenarios for the surface 

predictand using coarse resolution GCM data. A study by Trigo and Palutikof (2001) 

demonstrated that statistical downscaling was more skilful in reproducing the mean, 

variance and distribution of precipitation across the Iberian Peninsula when compared to 

the GCM data without downscaling being applied; as such the study demonstrated the 

óadded valueô in employing statistical downscaling. 

Depending on the particular approach taken and the research question posed, the 

statistical relationship developed between the large-scale atmospheric predictors and 

local-scale predictand(s) can be expressed in a deterministic and/or stochastic manner. 

Statistical downscaling does not demand significant computing resources, meaning it is 

suited to producing large ensembles of local-scale climate scenarios; consequently this 

approach to downscaling is widely used for conducting uncertainty assessments. One of 

the key drawbacks of statistical downscaling is that it requires good quality long-term 

instrumental records - this is to ensure that a robust statistical relationship can be 

established. As a result statistical methods are well-suited to areas where the 

observational network is particularly dense, and high quality coverage of localised 

climate conditions is provided (Zorita & von Storch, 1999; Wilby et al., 2004).  

A number of key assumptions underlie statistical downscaling, the most fundamental of 

which is that the predictor-predictand relationships established under present day 

climate remain valid under the forcing conditions of possible future climates. The 

assumption of stationarity can be tested through ómodel transferabilityô - whereby the 

model is validated using a period from the instrumental record which is representative 

of a climate regime ódifferentô to that used for model fitting (Charles et al., 2004). 
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However, given that future climate may lie outside the bounds of what may have been 

experienced previously - a fact which is underlined by the non-linear nature of the 

climate system and the potential for it to undergo abrupt changes - this assumption 

remains somewhat unverifiable.  

As stated by Fowler et al. (2007) this assumption has been shown to be questionable in 

the observed record (e.g. Huth, 1997; Slonsky et al., 2001; Fowler & Kilsby, 2002). In a 

study of the relationship between continental scale circulation and surface climate Huth 

(1997) found that the derived statistical relationship did not remain stable over time and 

exhibited considerable intra- and inter-decadal variations. The author states that this 

casts doubts on the applicability of circulation type approaches - which was the method 

employed by Huth (1997) - in statistical downscaling. It is argued that non-stationarity 

can be attributed to temporal changes in the structure of the climate system. It can also 

be attributed to employing a calibration period which does not adequately sample the 

natural range of variability and/or by employing a predictor set which fails to reflect 

low-frequency variations in climate (Wilby, 1998; Fowler et al., 2007).  

Statistical downscaling also assumes that the large-scale predictors employed to derive 

local-scale climate projections are physically meaningful, capture climatic variability 

across a range of timescales and are well simulated by the driving GCMs (Giorgi et al., 

2001); in addition, it is assumed that the large-scale predictors used adequately capture 

the climate change ósignalô (Hewiston & Crane, 1996, 2006). With respect to this it is 

widely acknowledged that downscaling models which employ circulation based 

predictors only may fail to reflect changes in humidity under altered climate conditions 

(Wilby & Wigley, 1997, 2000; Charles et al., 1999; Murphy, 2000; Fowler et al., 2007). 

Trenberth et al. (2003) point out that future changes in precipitation are likely to occur 

through increases in the moisture content of the atmosphere resulting from enhanced air 

temperatures. This underlines the requirement to include variables which are physically 

sensible, even if they appear to be non-informative under observed conditions. With 

respect to the points made above, some measurew of humidity is typically used as a 

predictor when downscaling precipitation (Wilby & Wigley, 1997; Easterling, 1999; 

Murphy, 2000; Beckmann & Buishand, 2002); indeed it is highlighted that an increase 

in model skill can be brought about by including some measure of atmospheric 

humidity (Murphy, 1999).  

Fowler et al. (2007) indicates that the inclusion of a humidity variable in the predictor 

set can lead to a convergence in the projections from dynamical and statistical models. 



  

106 

 

A study by Charles et al. (1999) found that when relative humidity was included in the 

set of atmospheric predictors used, the model (a nonhomogeneous hidden Markov 

model) produced rainfall projections which were consistent with those from an RCM - 

subsequent studies by Timball et al. (2008) and Vrac et al. (2007) produced similar 

results. However, it is argued that when compared with other variables (e.g. 

temperature, humidity), circulation based predictors are more skilfully simulated by 

climate models (Cavazos & Hewiston, 2005); thus, in order to satisfy other 

assumptions, such variables should be used exclusively in statistical models. This 

apparent contradiction is indicative of the difficulties which underlie the process of 

predictor selection - which is an important aspect of statistical methods and a critical 

source of uncertainty in the downscaled projections. Cavazos & Hewiston (2005) 

evaluated the skill of 29 individual NCEP (National Centers for Environmental 

Prediction) predictors in capturing daily precipitation at 15 sites sampled across diverse 

climatic regimes. In this study an artificial neural network (ANN) was used. The results 

indicated that predictors representing mid-tropospheric circulation and specific humidity 

were the most relevant controls of daily precipitation for all locations and seasons. 

Tropospheric thickness, along with 2m and 850 hPa meridional wind components were 

also important; however, their explanatory power was found to be more regionally and 

seasonally dependent.  

In addition to predictor selection, the size and location of the predictor domain used is 

an important consideration. Brinkmann (2002) assessed the association between winter 

precipitation using correlation fields and large-scale circulation patterns of daily 700 

hPa pressure data for three different North American precipitation regimes. Brinkmann 

(2002) found that the optimum grid-point location for downscaling may be a function of 

the time scale under consideration, and as such may not be a function solely of the 

target area. At the daily time scale, the optimum grid point was not that located within 

the region for which precipitation was being downscaled, but was rather a point offset to 

the west or northwest of it. Wilby and Wigley (2000) found that the location and spatial 

extent of the predictor domain was an important factor affecting the stability and 

realism of the downscaled precipitation scenarios. This study examined the applicability 

of 15 predictors used to downscale precipitation for six regions in the conterminous 

USA. The pattern analysis conducted by Wilby and Wigley (2000) suggested that the 

maximum correlations between precipitation and MSLP (mean sea level pressure) were 

greatest away from the grid-box (i.e. where the predictors were spatially remote from 
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the predictands); in contrast, maximum correlations for specific humidity occurred 

when the data was propinquitous (i.e. in close proximity). Spak et al. (2007) compared 

the data downscaled using a multiple linear regression model with that from a 

dynamical model (MM5). In this case both models were used to downscale monthly 

(June, July and August) mean surface temperature over the eastern region of North 

America. It was shown that the domain size had little effect on the skill of the regression 

model under current climate conditions; however, it was found that the domain had a 

greater influence on the projected changes in surface temperature than any other factor 

considered - including the training period and predictor set used.  

One of the key weaknesses statistical approaches have (particularly regression and 

weather typing approaches) is that they tend to underestimate the variability of local 

climate, and as a result may fail to fully capture the changing nature of extreme events. 

The under prediction of variance is particularly evident when downscaling those surface 

variables which are to a lesser degree controlled by the large-scale atmospheric state, 

and are instead more strongly influenced by local scale forcings (e.g. precipitation, local 

winds). Essentially the inability of statistical approaches (particularly regression based 

models and circulation typing) to explicitly account for local or regional scale forcings 

(e.g. orographic enhancement) results in the downscaled series lacking the ónoiseô 

component originating from small-scale atmospheric processes. This component of the 

time series is essential for characterising local scale weather and patterns of climate 

variability. 

A number of techniques aimed at enhancing the variability of the downscaled data have 

been proposed. Variance inflation - as implemented by Karl et al. (1990) - uses a 

scaling factor to linearly rescale the downscaled series so that its variance better accords 

with that of the observations. Von Storch (1999) criticizes this approach for its 

assumption that all local-scale variability can be traced back to variability in the large-

scale predictors. It is argued that this assumption is not valid given that the predictors 

are based on synoptic scale fields, and thus hold no information on sub-grid scale 

variability. Von Storch (1999) advocates the use of an alternative method termed 

órandomizationô, whereby the variability not captured by the model is represented 

through the addition of ówhite noiseô (Buma & Dehn, 1998, 1999; Wilby et al. 1999; 

Kyselý, 2002). This approach can be represented as: 

„ „ „  
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Randomization has also been employed as a method for bias correcting RCM data 

(Jakob et al., 2011). Buma and Dehn (1998) state that autoregressive character of the 

observed (predictand) series should determine whether white (entirely independent) or 

red noise (dependent on the past) is added. Bürger (1996; 2002) developed a more 

complex technique based on canonical correlation analysis termed óexpanded 

downscalingô (e.g. Huth, 1999; Dehn et al., 2000, Müller-Wohlfeil et al., 2000). As 

explained by Cannon (2009) the method adds a constraint to the regression cost function 

which forces the observed and predicted variances to be similar. Bürger and Chen 

(2005) conducted a review of each method and found that no one optimal approach 

exists. Randomization was found to perform well with respect to present climate 

conditions, but was unable to represent local scale changes in atmospheric variability 

when used to model future climate. In contrast expanded downscaling was shown to be 

skillful at capturing atmospheric variability in a climate change context. When 

downscaling climate data to multiple sites variance inflation was found to misrepresent 

spatial correlations - resulting in a loss of the temporal coherence between climate series 

downscaled to individual sites. Expanded downscaling was also noted as being sensitive 

in instances where the predictors/predictands deviated from normality. Cannon (2009) 

proposes an additional method based on a multivariate ridge regression model (Hoerl & 

Kennard, 1970; Brown & Zidek, 1980) with negative parameters (Hua & Gunst, 1983). 

The technique is conceptually similar to expanded downscaling but is able to maintain 

the covariance structure between variables. 

As discussed above one of the most critical aspects of statistical downscaling is 

predictor selection. Ideally the atmospheric variables used as large-scale predictors 

should:  

Á have a strong and physically sensible relationship with the target variable 

Á explain low-frequency (i.e. multi-decadal) climate variability and observed 

trends in climate data 

Á have a stable and time invariant relationship with the predictand 

Á be at an appropriate scale (i.e. in relation to important physical processes and 

GCM performance) 

Á account for a significant proportion of the variability exhibited by the observed 

series 

Á be realistically simulated by the driving global (or regional) model 

Á adequately capture the climate change signal (e.g. humidity used to downscale 

precipitation) 
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Á maintain the covariance structure between climate variables  

Á maintain the spatial coherence between different target sites/areas  

 (after Wilby& Wigley, 1997; Giorgi et al., 2001; STARDEX Final Report 2005) 

The various techniques developed for statistical downscaling can be grouped into three 

main categories: regression models, weather generators and weather typing schemes. 

 

5.2.2.1 Classification schemes 

This synoptic type approach to downscaling seeks to establish a relationship between 

variations in local or regional climate and the occurrence of particular óweather typesô 

(Giorgi et al., 2001). Weather or circulation typing involves grouping days into discrete 

classes based on their synoptic similarity (Wilby et al., 2004). In a downscaling context 

weather classes have been defined using indices of air flow applied to sea level pressure 

(Conway et al., 1996) or by applying some type of cluster analysis to atmospheric 

pressure data (Enke & Spekat, 1997; Fowler et al., 2000; 2005). Similarly pressure data 

may be discretized using correlation analyses (Beck et al., 2000), eigenvector 

techniques (Goodess & Palutikof, 1998), optimization algorithms (Phillip et al., 2007; 

Küttel et al., 2009), fuzzy rules (Bárdossy et al., 2002; 2005; Wetterhall et al., 2009) or 

self-organising maps (Michaelides et al., 2007; Tumbo et al., 2010). Such methods 

come under the broad heading of objective classification schemes. Large-scale 

circulation data may also be classified subjectively using approaches such as the Lamb 

weather type (Lamb, 1972) and HessïBrezowsky Groswetterlagen (Hess & Brezowsky, 

1952, 1977). Such schemes employ a predefined set of rules and expert knowledge to 

classify circulation data; typically it is the objectivised versions of these schemes which 

are used (e.g. Jenkinson-Collison types) (Jenkinson & Collison, 1977; James, 2006).  

The application of weather typing in a downscaling context involves developing 

conditional probability distributions for observed statistics (e.g. mean wet-day amount) 

which describe the relationship between a particular weather class and the surface 

predictand. Once this relationship is established the same classification criteria is 

applied to the output from GCMs; local scale changes are then estimated by examining 

projected changes in the frequency of weather types (Hay et al., 1991; Corte-Real et al., 

1998; Goodess & Palutikof, 1998).  
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Huth et al. (2008) highlights different approaches for using circulation classifications in 

a downscaling context. This includes the use of an independent downscaling model for 

each respective circulation class (e.g. Enke et al., 1997) and employing monthly or 

seasonal frequencies of daily circulation types as predictors of monthly/seasonal mean 

values for the predictand (e.g. Goodess & Jones, 2002). The first approach is based on 

the fact that the predictand/predictor relationship may vary depending on the occurrence 

of a particular circulation pattern. Huth (1999) employed this approach to downscale 

temperature for Europe; in this study atmospheric data was classified into circulation 

patterns using PCA (Principal Component Analysis) and k-means clustering. A series of 

linear regression models were subsequently produced, each of which was specific to a 

particular circulation type. When using this downscaling approach the absence of other 

atmospheric variables from the driving data assumes that pressure patterns alone capture 

the main processes governing local scale weather and climate. In some cases this may 

weaken the connection between the surface predictand and changes in the large-scale 

atmospheric state - which is particularly important when estimating the predictand 

response to altered forcing conditions (e.g. humidity when modelling precipitation) 

(Karl et al., 1990; Murphy, 2000; Beckham & Buishand, 2002). Weather typing differs 

from circulation classifications in that the former may incorporate additional 

atmospheric variables (e.g. precipitable water). 

Weather typing has the benefit of being based on the sensible linkages between the 

large-scale atmospheric state and variations in climate at a local and regional scale. The 

approach also has the advantage of being able to downscale a range of environmental 

variables and can be employed in multiïsite applications. There is however a number of 

weaknesses associated with this approach. One of the main shortcomings shared by all 

weather typing and circulation classification schemes is their insensitivity to within-type 

variability (e.g. wet circulation types which include the occurrence of dry days) 

(Brinkmann, 1999; 2000). In addition, a number of assumptions are implicit when using 

synoptic typing as a downscaling tool, the most fundamental of which is that the 

characteristics of each type remain the same under altered forcing conditions. A study 

by Widmann and Schar (1997) found that changes in the nature of daily precipitation 

across Switzerland were not due to changes in the frequency of particular circulation 

patterns (based on sea level pressure), but were in fact the result of within-type changes 

in rain producing circulation types, whereby the amount of rainfall associated with wet-

types was found to have increased. The study was conducted using records for the 
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periods 1901-1990 (with 113 continuously operating rain-gauge sites) and 1961-1990 

(with 304 sites) respectively. This highlights the possible non-stationarity of empirically 

derived relationships between circulation types and surface weather; it also suggests that 

additional atmospheric descriptors may be required (e.g. humidity). A study by Wilby 

(1994) found that classification approaches had limited success in reproducing the 

persistence of wet and dry-spells at two sites in southern England. In this study Wilby 

(1994) identified the subjectivity introduced by the classification scheme and the non-

stationarity of the precipitation characteristics associated with individual types as 

important weaknesses in this approach. 

 

5.2.2.2 Stochastic Weather Generators 

Stochastic downscaling methods employ weather generators (WGs) - such as WGEN 

(Wilks, 1992), LARS-WG (Racsko et al., 1991; Semenov & Barrow, 1997) and 

EARWIG (Kilsby et al., 2007) - to produce multiple synthetic series of daily or sub-

daily weather data conditioned using large-scale GCM projections. The generated data 

series replicate the statistical attributes of local climate variables, but not the observed 

sequence of events (Wilks & Wilby, 1999; Hashmi et al., 2009). WGs are a versatile 

tool and have been employed for a range of tasks including generating data for use in 

hydrological and agricultural risk assessments (e.g. Mavromatis & Hansen, 2001), 

extending the simulation of daily weather to unobserved sites (e.g. Semenov & Brooks, 

1999) and producing site-specific climate scenarios for impact assessments (e.g. 

Dubrovsky et al. 2004, Evans et al., 2008; Semenov, 2009; Semenov & Halford, 2009; 

Semenov & Stratonovitch, 2010). 

Generally WGs firstly determine the occurrence of wet and dry days; this is done 

typically by employing variants of Markov chain models (e.g. two state first-order 

markov chain) with specified transition probabilities (Richardson, 1981) or by using 

empirical distributions of the wet/dry spell length (Semenov & Brooks, 1999). 

Secondary variables - including rainfall amounts, temperature, solar radiation and 

evaporation - are subsequently modelled conditional on precipitation occurrence. In the 

case of precipitation, a gamma distribution is typically used to model wet-day amounts. 

Although first order models are often employed when modelling rainfall occurrence, 

second and third order models have been used to improve performance at simulating 

both the occurrence and persistence of wet/dry spell lengths. Improvements in the 
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ability of WGs to reproduce both higher order events and the variability of a climatic 

time-series have been brought about by the development of the Neyman-Scott 

Rectangular Pulses (NSRP) stochastic precipitation model (Fowler et al., 2007; Kilsby 

et al., 2007; Burton et al., 2010). In the case of this model, rainfall (both occurrence and 

amounts) is simulated as a single continuous variable. Precipitation is modelled as a 

sequence of storm events (storm times are represented as a Poisson process) consisting 

of temporal clusters of raincells, each of which has an associated intensity. The amount 

of rainfall occurring for a given time step is calculated by accumulating the individual 

raincell intensities (Burton, et al., 2008). 

WGs are adapted for statistical downscaling by conditioning their parameters on 

variations in large-scale atmospheric predictors (Katz, 1996; Semenov & Barrow, 1997, 

Wilks, 1999; Wilby et al., 2004). WGs have also been used in-conjunction with 

circulation patterns (e.g. Corte-Real et al., 1999), whereby the model parameters are set 

conditional on the occurrence of different circulation types. Projected changes in the 

large-scale atmospheric state are then reflected in the stochastically generated local-

scale climate series. Corte-Real et al. (1999) found that when conditioned using four 

circulation patterns (identified using PCA and k-means clustering), a weather generator 

was able to simulate the important features of local precipitation (e.g. the distribution of 

wet and dry spell lengths, extreme precipitation) over southern Portugal with a high 

degree of skill - highlighting the applicability of this approach for downscaling future 

precipitation.  

Several studies comparing the performance of different weather generators have been 

conducted. Semenov et al. (1998) assessed the performance of the LARS-WG and 

WGEN; for the purposes of comparing model performance 18 sites in the USA, Europe 

and Asia - representative of different climatic regions - were selected. Whilst it was 

shown that both models were unable to capture some aspects of observed climate - 

including the annual variability in monthly means - the WGEN model performed better 

than the LARS-WG at simulating mean monthly temperature and precipitation. The 

authors attribute this to the WGEN having a greater number of parameters and allowing 

more complex distributions to be fitted.  

Stochastic downscaling techniques have the advantage of capturing the variability of 

local climate and thus allowing for a better representation of higher order events in the 

driving data for impact studies. In this respect WGs have an advantage over regression 

or weather type approaches which, as discussed above, tend to underestimate the true 
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variability of local-scale climate. WGs also have the advantage of allowing multiple 

variables to be modelled concurrently, thus ensuring that the temporal coherence 

between them is maintained. One of the key benefits of employing stochastic methods is 

the ability to generate large ensembles of climate data for use in risk assessments (e.g. 

crop modelling, water resources management). Similarly stochastically generated data 

can be used to represent natural climate variability - an issue of increasing importance 

given the need to address this source of uncertainty in climate impact studies. Weather 

generators also have the benefit of being able to produce climate series with a high 

temporal resolution (e.g. sub-daily rainfall data).  

The key weaknesses associated with employing stochastic models in a climate change 

context are related to the difficulties in modifying the model parameters. It has been 

found that altering the precipitation parameters can result in inconsistent changes in the 

secondary variables (Wilks, 1992). In addition, an assumption in the stationarity of 

inter-variable relationships under future climate forcing is implicitly associated with the 

downscaled datasets.  

 

5.2.2.3 Regression Models  

Regression models or transfer functions establish a direct statistical relationship 

between the observed local-scale predictand (e.g. point scale precipitation) and a suite 

of large-scale atmospheric predictors (e.g. mean sea level pressure, vorticity, meridional 

velocity). The coarse scale output from GCMs is then used to drive this relationship, 

allowing changes in the corresponding local scale variable to be estimated. Although the 

basic methodology remains the same, specific approaches differ according to the 

transfer function and predictor set employed; they also differ with respect to the 

statistical fitting procedure used. The often complex and non-linear predictor-predictand 

relationships which exist have necessitated the use of a wide range of regression models 

including, linear and non-linear regression (Huth, 1999; Hellström et al., 2001; Fealy & 

Sweeney, 2008), generalized linear models (Fealy & Sweeney, 2007)  artificial neural 

networks (ANNs) (Crane & Hewitson, 1998; Wilby et al., 1998), singular value 

decomposition (SVD) (Huth, 1999; Chu & Yu, 2010), multi-variate splines (Corte-Real 

et al., 1995) and canonical correlation analysis (CCA) (von Storch et al., 1993; Huth, 

1999). 
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Huth (1999) compared the performance of several linear models when used to 

downscale daily mean winter temperature for 39 stations across central Europe. The 

study considered CCA, SVD and three multiple regression models (stepwise regression 

of principal components (PCs) and regression of PCs with and without the stepwise 

screening of gridded values). The predictors used in the study included 500 hPa heights, 

MSLP, 850 hPa temperature and 1000ï500 hPa thickness. The model incorporating PCs 

with stepwise screening was found to perform best according to the evaluation criteria 

employed. Each of the other methods performed comparably but only when a large 

number of the predictorôs PCs were used; in addition Huth (1999) indicates that the 

SVD method performed worst. When evaluating the explanatory power of the 

predictors used Huth (1999) found that those models which employed temperature 

variables returned more accurate results than those using circulation variables alone. 

The best performing models were those using a combination of 850 hPa, temperature 

and 500 hPa. Huth (1999) indicates that the results may be different for other seasons, 

particularly summer when the link between surface weather and low-frequency 

circulation features is much weaker. It is noted however that by using GCM output 

rather that reanalysis data (as was used in this study) the models may produce different 

results. The author indicates that this is due to GCMs simulating atmospheric predictors 

and large scale climate features (e.g. teleconnections, modes of variability) - when 

compared with reanalysis data - with varying degrees of accuracy.  

Fealy and Sweeney (2007) employed a generalized linear modelling approach to 

downscale precipitation scenarios for 14 synoptic stations across Ireland. In this case a 

two step approach was taken, whereby precipitation occurrence was downscaled using 

logistic regression; rainfall amounts were subsequently modelled for wet-days only 

using a generalized linear model with a gamma distribution and log-link function. In a 

subsequent study Fealy and Sweeney (2008) employed a step-wise linear regression 

model to downscale temperature, radiation and potential evapotranspiration for multiple 

sites across Ireland. 

Regression methods have the benefit of allowing a direct and physically sensible 

relationship to be established between local-scale weather events and the large-scale 

atmospheric state (Wilby, 1997). As regression models incur minimal computational 

costs, the approach is suited for conducting uncertainty assessments. The key 

weaknesses associated with regression type downscaling are related to the 
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underestimation of variance. The results from regression models are also affected by 

uncertainty introduced by way of the predictors and model domain used.  

 

5.3 An inter-comparison of statistical downscaling methods 

A number of studies comparing the relative merits of different approaches in statistical 

downscaling have been conducted. Weichert and Bürger (1998) compared linear and 

nonlinear (Radial Basis Function) downscaling models using the same atmospheric 

circulation data. In this case the models were used to downscale temperature, 

precipitation and vapor pressure for a station located in central Europe. The results 

indicated that when downscaling precipitation both modelling approaches performed 

poorly, capturing only a small proportion of the observed variability (correlation ~40%) 

The authors state that despite this, clear differences in the applicability of both models 

were evident. The artificial neural network was better at capturing rainfall occurrence; 

in addition it was found that heavy precipitation events occurring during convective 

storms were often detected by the non-linear model only. However, while the model 

was able to detect these events, the amount of precipitation it simulated for them was so 

low as to be inconsequential in the overall model output. Weichert and Bürger (1998) 

highlight the underestimation of variance as a key weakness of (non-)linear models. The 

authors also highlight the limitations of analogue methods, pointing to their inability to 

model new and possibly unforeseen climatic changes which lie outside the bounds of 

what has occurred over the observed period of record.  

Huth (2008) also explored differences between linear and non-linear downscaling 

approaches; for this study temperature was downscaled to 8 stations across Europe. 

Huth (2008) compared seven models, including linear regression of grid point values 

and PC regression of predictorôs principal components; the other models used included 

variants of ANNs and regression models based on individual circulation types. 

Conditional on the evaluation criteria employed, pointwise linear regression appeared to 

be the best performing method. Both the pointwise neural network (NN) and linear 

regression models were better than the PC- based NN and linear models. It is noted by 

the author that using the principal components may result in a loss of critical 

information in the predictor fields. Huth (2008) indicates that the skill of the linear 

model used may be due to the predictand-predictor relationship being intrinsically 

linear, as a result of which little value is added by employing a non-linear approach. The 
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number of parameters which must be adjusted in neural networks, and the uncertainty 

associated with calibrating them (i.e. difficulties in determining a global optimum), is 

also cited as a possible reason for their relatively poor performance.  

Zorita and von Storch (1999) compared an analogue approach to more complex models 

(CCA, ANNs and classification and regression tree approach) based on their ability to 

downscale monthly and daily winter rainfall for 92 stations located across the Iberian 

Peninsula. The results indicated that the relatively simple analogue method performed 

as well as the more complex methods considered. It was found the analogue approach 

could be applied to non-normally distributed variables and was capable of reproducing 

the observed variability of the predictand; it also had the additional benefit of preserving 

inter-site correlations. In contrast the results indicated that the linear model and neural 

networks used underestimated the variability of observed precipitation; however, the 

authors state that the linear model offers a more physically sensible approach for 

capturing the relationship between local and large scale variability. This is in contrast to 

the more complex classification and neural network methods which, Zorita and von 

Storch (1999) indicate do not directly offer a physical interpretation of this relationship. 

The authors argue that this supports more strongly the validity of linear models under 

perturbed forcing conditions - provided that the variability of their output can be 

augmented to reflect the true variance of the target predictand.  

As highlighted by Fowler et al. (2007), ANNs have been reported to perform poorly in 

the simulation of daily precipitation - particularly with respect to the simulation of the 

wet day occurrence (e.g. Wilby & Wigley, 1997; Wilby et al., 1998; Zorita & von 

Storch, 1999; Khan et al., 2006). Schoof and Pryor (2001) compared the performance of 

multiple-linear regression to a series of ANNs when used to downscale daily (maximum 

and minimum) air temperature, precipitation and total monthly precipitation receipts for 

a site in Indianapolis (USA). The findings indicated that both approaches performed 

well when used to downscale temperature, but were found to underestimate the 

variability of precipitation, particularly over shorter time scales. The ANNs performed 

better when used to model total monthly precipitation as opposed to daily precipitation; 

in addition, when the models were used to downscale temperature, model performance 

was found to improve when an autoregressive term was included.  

Diaz-Nieto and Wilby (2005) compared the use of change factors to a statistical 

downscaling model using a case study of low flows in the River Thames - both baseline 

and future climate conditions were considered. The authors highlight that the 
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assumption implicit when using change factors - that the temporal structure of the future 

climate is the same as the baseline climatology - is a key weakness of this approach. 

The catchment response was found to be more complex and conservative when 

modelled using the statistically downscaled data as opposed to data derived using the 

change factor approach. Diaz-Nieto and Wilby (2005) attribute this to the differential 

treatment of multi-decadal natural variability and the temporal structuring of daily 

climate variables.  

Harpham and Wilby (2005) compared the performance of three different models (Radial 

Basis Function, Multi Layer Perceptron and SDSM) when used to downscale heavy 

precipitation for multiple sites in northwest and southeast England respectively. It was 

found that SDSM (Statistical DownScaling Model; Wilby et al., 2002) produced more 

spatially coherent inter-site correlations. This model was also shown to provide a better 

representation of daily precipitation quantiles; however, for individual sites, the ANNs 

were shown to be more skillful. All models considered had the greatest skill for those 

indices relating to the persistence of large-scale winter precipitation. 

A number of other studies have compared SDSM to alternative downscaling 

methods/models (e.g. Dibike & Coulibaly, 2005; Khan et al., 2006; Diaz-Nieto & 

Wilby, 2005). Chen et al. (2010) compared SDSM to a support vector machine (SVM) 

and multivariate analysis when used to downscale climate data for the Shih-Men 

Reservoir basin in Taiwan. It was found that SDSM performed better than the other 

models at capturing daily precipitation events less than 10 mm; however, the results 

indicated that the SVM method produced a more accurate simulation of daily 

precipitation when compared with either SDSM or the multivariate model. A study by 

Liu et al. (2008) compared SDSM with a time lagged feedforward neural network 

(TLFN) and an evolutionary polynomial regression (EPR) technique for downscaling 

numerical weather ensemble forecasts generated by a medium range forecast model. 

The selected methods were employed for downscaling daily precipitation and 

temperature data for the Chute-du-Diable basin located in northeastern Canada. The 

TLFN and EPR models were found to be more efficient techniques when applied to 

downscale daily precipitation and temperature respectively.  

Liu et al. (2011) compared the performance of SDSM and a nonhomogeneous hidden 

Markov model (NHMM) when used to downscale daily precipitation to the Tarim River 

basin located in northwest China. The NHMM showed greater skill at simulating 
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monthly precipitation and wet-day amounts, in addition SDSM performed relatively 

poorly at reproducing the higher quantiles of rainfall amounts - particularly for dry 

stations (those with an annual precipitation yield of <200 mm). Hashmi et al. (2010) 

compared the performance of SDSM and the LARS-WG when used to simulate the 

frequency of extreme precipitation events for the Clutha river catchment (located in 

South Island, New Zealand). Both models exhibited a comparable level of skill in 

reproducing the monthly mean and standard deviation of the observed series, 

additionally each model was found to reproduce present-day extreme events with a 

reasonable level of skill; however, when used to downscale data from the same GCM 

both produced diverging accounts of future extremes.  

Dibike and Coulibaly (2005) employed the LARS-WG and SDSM to downscale 

temperature and precipitation scenarios for a catchment system (Chute-du-Diable) in 

northern Quebec. Under observed conditions SDSM was found to underestimate the 

wet-spell length for most months of the year, in contrast the LARS-WG was more 

skillful at reproducing wet and dry spell lengths. Both models reproduced daily 

precipitation reasonably well, with little difference being evident in their respective 

performance. For the majority of months SDSM tended to overestimate temperature, 

while the LARS-WG both over and under estimated temperature during different 

periods of the year. Although the models reproduced observed climate conditions with a 

similar level of skill, each produced diverging projections of future change when forced 

using the same GCM data. While the regression model suggested an increase in both the 

mean and variability of daily precipitation, data downscaled using the LARS-WG did 

not suggest such a trend - this highlights the uncertainty introduced by way of the 

downscaling method used. Khan et al. (2006) conducted a similar study to that of 

Dibike and Coulibaly (2005) using the same catchment system - here the authors 

compared SDSM, an ANN and the LARS-WG. The study indicated that SDSM was the 

best performing model at capturing the statistical attributes (e.g. skewness, dry-spell 

lengths) of observed daily precipitation and temperature; the results indicated that the 

ANN was the worst performing model.  

Benestad (2001) compared empirical orthogonal functions (EOFs) to the more 

conventional approach of CCA for downscaling mean monthly temperature in Norway. 

The results suggested that the smallest errors were associated with scenarios derived 

using EOFs. Benestad (2001) state that EOFs have several advantages over using non-

transformed predictors; this includes the ability to filter out noise and provide predictor 
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fields with a high spatial resolution. In addition the EOFs have the benefit of limiting 

the potential for overfitting the statistical model. 

A study by Teutschbein et al. (2011) compared the performance of three different 

approaches (analog method, multi-objective fuzzy-rule-based classification and SDSM) 

used for downscaling precipitation to a meso-scale catchment in southwest Sweden. It 

was found that SDSM performed well at reproducing precipitation values for winter and 

spring, but slightly underestimated precipitation during summer and autumn. In contrast 

the analogue method was found to reproduce the annual cycle well. Based on the 

findings of the study Teutschbein et al. (2011) considered SDSM to be the most suitable 

approach for downscaling precipitation. 

Wetterhall et al. (2007) compared four different statistical downscaling methods (two 

analog methods, multi-objective fuzzy-rule-based classification and SDSM) based on 

their ability to reproduce the statistical characteristics of daily precipitation at seven 

stations in south-central Sweden. The results indicated that both SDSM and the 

classification method performed equally well or better than both analogue approaches; 

however, no one method was found to perform best for all seasons. It was also found 

that SDSM skilfully captured the interannual variability of the precipitation series, 

whilst the classification approach performed best at reproducing the persistence and 

distribution of dry spells - although it tended to overestimate precipitation amounts. 

Similar to Teutschbein et al. (2011), Wetterhall et al. (2007) state that SDSM may be 

best suited for downscaling precipitation under altered forcing conditions. The authors 

give reasons for this including that the analogue approach is based only on sampling 

historical data and therefore cannot factor in unobserved changes. In addition, 

Wetterhall et al. (2007) highlight that, when employing methods based on classification 

approaches, an assumption must be made that the identified circulation patterns have the 

same variability under future forcing as under present day climate. The authors state that 

although the assumption of stationarity is implicitly associated with each method, 

SDSM and the fuzzy rule based classification approaches have the potential to produce 

reliable results when applied under altered forcing conditions. 

Chiew et al. (2010) compared the performance of three models used to downscale 

precipitation for an area covering the head waters of the Murray River in south-east 

Australia. The models used included a daily scaling model, an analogue model and two 

stochastic models: GLIMCLIM (Generalised Linear Model for daily Climate time series 

software package) (Chandler, 2002), and NHMM (nonhomogeneous hidden Markov 
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model) (Hughes et al., 1999). Chiew et al. (2010) highlight the usefulness of the simpler 

scaling and analogue methods for impact studies focused over very large regions (i.e. 

where smoothed data has less potential to affect the results); however, the authors state 

that the parametric models offer potential improvements as they capture a fuller range 

of the daily precipitation characteristics.  

Frost et al. (2011) examined the performance of five statistical models when used to 

downscale multi-site daily precipitation to a set of thirty point locations across south-

eastern Australia. The methods used included a scaling and analogue model 

GLIMCLIM (Chandler, 2002) as well as two stochastic models: NHMM and MMM-

KDE (modified Markov model ï kernel probability density estimation). The models 

were assessed based on their ability to reproduce a range of statistics including the inter-

annual variability, spatial coherence and extremes. The study found that the relatively 

simple scaling approach provided robust results for a range of statistics; however, the 

stochastic models were better able to capture higher order statistics. The authors 

advocate the use of stochastic models in cases where capturing the full range of (day-to-

day) variability in the downscaled series is important. It is argued that in the case of 

macro-scale impact studies, where less detailed climate data is required, scenarios 

obtained using a scaling approach should suffice (Frost et al., 2011). In this respect the 

most appropriate statistical method to use can be, at least in-part, determined based on 

the intended application of the downscaled data. 

 

5.4 Relative skill of statistical and dynamical downscaling 

As outlined in Table 5.1 there are various strengths and weakness associated with both 

dynamical and statistical approaches. Given its low computational demands statistical 

downscaling is ideal in cases where multiple local-scale scenarios are required; as a 

result this approach may be more applicable when conducting uncertainty assessments. 

However, unlike dynamical methods, statistical downscaling cannot explicitly resolve 

the physical processes which condition regional-scale climate. Instead empirical 

methods seek only to quantitatively describe the relationship between large and local 

scale variability, without any requirement to necessarily understand this relationship ï 

albeit that there is an implicit assumption that the relationship would be physically 

sensible. 
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There is a broad consensus within the downscaling community that both dynamical and 

statistical approaches exhibit a comparable level of skill when applied under observed 

climate conditions (Kidson & Thompson 1998, Mearns et al. 1999, Murphy 1999, 

Hellström et al., 2001). Indeed it is suggested that there may be no single optimum 

approach to downscaling, and that the most appropriate method may depend more on 

the research question posed, the complexity of the target region and the variable(s) for 

which data is required.  

 

  Statistical Downscaling Dynamical Downscaling 

Strengths Á Can derive point-scale climate information from    

GCM-scale output 

Á 10-50 km resolution climate information from 

GCM-scale output 

 
Á Computationally inexpensive 

Á Responds to different forcing conditions in a 

physically consistent way 

 

Á Allows the easy production of climate ensembles for 

risk/uncertainty analyses 

Á Capable of resolving important physical processes 

dynamically (e.g. orographic rainfall) 

 
Á Easily transferable to other regions Á Consistency with GCM 

 

Á Can be used to downscale variables not available 

from RCMs  

   
Weaknesses Á Dependent on the realism of GCM boundary forcing; 

effected by biases in driving GCM 
Á Dependent on the realism of GCM boundary forcing 

 
Á Choice of domain size and location affects results 

Á Choice of domain size and location influences 

results 

 

Á Necessitates good quality data of a sufficient length 

to development and test statistical models 
Á Requires significant computing power 

 
Á Dependent upon choice of predictors 

Á Limited to producing few ensembles of climate 

scenarios 

 

Á Domain size, climatic region and season affects 

downscaling skill  

 

Á Fundamental assumption of model stationarity is not 

verifiable  
 

Despite having a similar level of skill under current climate, both statistical and 

dynamical models may produce significantly different results when employed under 

perturbed forcing conditions (Cubasch et al., 1996; Wilby & Wigley, 1997; Wilby et 

al., 1998; Mearns et al., 1999; Murphy, 2000). Hence the choice of downscaling method 

is one of the key sources of uncertainty in regionalized climate scenarios. One of the 

reasons suggested for this is that the statistical relationships established under present 

day climate may not hold true when used to extrapolate beyond conditions for which 

they were initially established (Collins, 2007). This must be prefaced with the caveat 

that dynamical models are themselves not exempt from making such assumptions.  

Regional models incorporate statistical approximations of important climate processes 

which occur on too small a spatial scale to be resolved dynamically. The 

parameterization schemes used to represent these processes are based on empirical 

Table 5.1 Summary of the relative strengths and weaknesses of statistical and dynamical approaches to downscaling (adapted from 
Wilby & Wigley, 1997). 
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relationships derived under present day climate, and as such may be invalid when 

applied under altered forcing conditions. However, as the core basis of dynamical 

models is immutable physical laws and not unverifiable assumptions, it is argued this 

provides a stronger foundation for their validity under perturbed forcing (Foley, 2010). 

A number of studies have compared the performance of statistical and dynamical 

methods under contrasting conditions (e.g. across different timescales, in diverse 

regions and under multiple future forcing conditions) using a range of evaluation 

criteria.  

Kidson and Thompson (1998) compared the performance of the Regional Atmospheric 

Modelling System (RAMS) to a regression based statistical downscaling model. In this 

study the models were assessed based on their ability to simulate observed daily 

precipitation and temperature recorded at 78 sites across New Zealand (covering the 

period 1980-1994). The statistical predictors used included five EOFs of pressure data 

(1000 & 500 hPa) and a series of local-scale secondary variables. The results indicated 

that both methods performed well at simulating the daily and monthly station anomalies 

of each variable; however, the regional model was found to be more skilful at 

reproducing convective precipitation. Although Kidson and Thompson (1998) highlight 

the low computational requirements of statistical downscaling as one of its strong 

points, the authors state that dynamical models may be more appropriate when 

modelling climate conditions which are beyond the range of what has been previously 

experienced.  

Murphy (1999) compared the skill of an RCM to that of a regression based statistical 

model when employed to downscale precipitation and temperature for 976 sites across 

Europe (covering the period 1983-1994). The performance of both the statistical and 

dynamical approaches was considered alongside the unaltered grid-scale output from 

the driving GCM ï as such this study highlighted the óadded valueô of employing a 

downscaling model. The skill of each approach was compared based on the correlation 

between the estimated and observed time series of monthly anomalies. Both the RCM 

and statistical model exhibited a similar level of skill; additionally both were superior to 

the grid scale GCM (without downscaling applied). The regression model was more 

skilful at capturing summer temperature while the dynamical approach was slightly 

better at downscaling winter precipitation. With respect to precipitation, Murphy (1999) 

highlights the greater skill levels of the RCM over areas with more complex 

topographical features (e.g. coastlines, mountainous areas). Applying the same 
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methods/models as Murphy (1999), Murphy (2000) produced climate scenarios for a 

European domain using GCM data (2080-2100). The results indicate that while the 

RCM and statistical models both simulated observed climate with a comparable level of 

skill, when forced using GCM data they produced diverging projections of future 

climate change. Changes in temperature suggested by the regression and dynamical 

models respectively were found to differ by 40-50%; differences were also apparent in 

the precipitation scenarios obtained using each model (RCM, GCM and statistical). To 

address uncertainty in the projections the author suggests attaching a measure of 

reliability to each method/model; however, it is highlighted that this would introduce a 

degree of subjectivity to the results. With regards to the statistical model used, Murphy 

(2000) found that the observed (based on reanalysis data) predictor-predictand 

relationship was not the same as the corresponding relationship estimated using GCM 

data. This highlights the influence which inconsistencies inherited from the driving 

GCM can have on the predictor-predictand relationship initially established using 

observed or reanalysis data. 

Differences in the climate projections downscaled using both a dynamical (RegCM2) 

and statistical (WG) approach is also a feature of a study by Mearns et al. (1999). 

Similar to the findings of Murphy (2000), both the statistical and regional models used 

performed comparably when employed to downscale observed climate series 

(temperature and precipitation); however, when the models were applied under 

perturbed forcing they were found to respond differently. The RCM simulated both 

increases and decreases in the probability of precipitation; in contrast the statistical 

model suggested increases only. In addition, for 40% of the locations and months 

considered, the models disagreed as to the direction of mean change. The requirement 

of the statistical model to extrapolate beyond observed conditions is cited as a possible 

reason for the apparent lack of convergence between the model projections. 

Hellström et al. (2001) compared precipitation downscaled for Sweden using the 

Rossby Centre RCM (RCA1) with data downscaled using a multiple-linear regression 

model. In this study circulation indices and atmospheric humidity were used as large-

scale predictors. Two different GCMs were considered (HadCM2 and ECHAM4) and 

each model (including the GCMs) was assessed based on its ability to reproduce the 

observed seasonal cycle. Each of the downscaling models brought about an 

improvement in the skill of the GCMs, highlighting the value added by employing an 

intermediate downscaling step. Hellström et al. (2001) indicate that both the statistical 
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and dynamical models exhibited equal skill in reproducing the annual precipitation 

regime. An assessment of the downscaled projections indicated that differences between 

those series derived using the regression models (i.e. forced by different GCMs) were 

greater than differences between those derived using the dynamical models. The 

seasonally averaged difference between the dynamical and statistical scenarios obtained 

using the ECHAM4 GCM was 12%; in contrast there was a 21% difference in the 

scenarios downscaled from the HadCM2.  

Wilby et al. (2000) found that a multiple-linear regression model performed better than 

an RCM (RegCM2) when used to downscale precipitation and temperature for a 

mountainous catchment in Colorado (Animas basin); in this study NCEP reanalysis data 

was used. A study by Hay and Clark (2003), which focused on three mountains 

catchments in the USA (located in Washington, Nevada and Colorado), produced 

similar results to Wilby et al. (2000). In this study NCEP reanalysis data was 

downscaled using the RegCM2 regional model; statistical downscaling was conducted 

using multiple-linear regression. It was found that both the statistical and dynamical 

models were able to capture gross aspects in the seasonal cycles of observed 

temperature and precipitation respectively; however, the authors highlight the 

requirement to bias correct the dynamically downscaled data as a key drawback of this 

approach, particularly as it is unknown whether the correction - empirically derived 

observed climate data - remains valid under perturbed forcing conditions (i.e. whether 

the correction is both time and state invariant). 

Spak et al. (2007) employed multiple-linear regression alongside a dynamical model 

(MM5) to downscale monthly mean surface temperature over the eastern region of 

North America. The predictors used in the regression models included mean sea level 

pressure (MSLP) and 2 m temperature (decomposed into EOFs). The models employed 

exhibited comparable skill levels when used to simulate observed conditions, in 

addition their projections suggested similar changes in mean temperature (2000-2087); 

however, the models produced significantly different spatial patterns in the climate 

response, highlighting that the projections may not only diverge on a temporal basis, but 

also spatially. 

Hanssen-Bauer et al. (2003) downscaled temperature and precipitation for a Norwegian 

domain using multiple-linear regression and a dynamical (HIRHAM) model. 

Temperature and MSLP were used as predictors in the statistical model for both 

variables. Differences in the projections from each model were found not to be 
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statistically significant; however, disparities in the spatial pattern of warming were 

found to occur. Hanssen-Bauer et al. (2003) indicate that the RCM projections for 

summer precipitation were more likely to be reliable when considered against the 

projections from the empirical model. In contrast to the dynamically downscaled data, it 

was found that the statistically downscaled projections did not suggest any change in 

summer precipitation. This was attributed to surface temperature not being included as a 

predictor when modelling summer precipitation. It is argued this resulted in a loss of the 

climate change signal, with the result that variations in MSLP only determined the 

extent of future change. This highlights the importance of predictor selection and the 

uncertainty which it can introduce.   

Schmidli et al. (2007) conducted a study to assess the performance of six statistical 

models and three RCMs when used to downscale precipitation for the European Alps. 

The statistical models used included: linear regression, CCA, weather typing, a weather 

generator, an analog approach and a model based on local intensity scaling. For each of 

the models considered the complexity of the terrain and time of year was found to 

influence performance. The results generally indicated that the RCMs performed best 

during winter over mountainous areas; in contrast, during the summer months, over 

flatter terrain disparities in the performance of the statistical and dynamical models were 

reduced. The scenarios downscaled from the dynamical and statistical models 

respectively were found to exhibit similar biases; however, the statistical methods 

strongly underestimated the interannual variability, particularly during summer. 

Schmidli et al. (2007) attributes this to the greater importance of stochastic processes 

during this season and the inability of the statistical models to consider the affects of 

local scale forcings. The study concludes that for this region, the methods used 

significantly contribute to uncertainty in the downscaled scenarios. This was 

particularly evident for summer where large differences between the individual 

statistical models, as well as between the projections from the statistical and regional 

models, were found to occur.  

Haylock et al. (2006b) compared the performance of six statistical (CCA, ANNs, 

SDSM) and two dynamical models (HadRM3, CHRM) when used to downscale 

precipitation for two station networks in southeast and northwest England respectively. 

The ability of each model to capture seven indices of heavy precipitation (e.g. mean, 

90
th
 percentile) was used to gauge model performance. It was found that the models 

performed best for winter as opposed to summer, and were better able to reproduce the 
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mean rather than extreme statistics. The ANNs were best at reproducing interannual 

variability but tended to underestimate the extremes. When used to downscale 

precipitation from the HadAM3P GCM, run using both the A2 and B2 SRES emission 

scenario, the results indicated that inter-model differences - with respect to projected 

changes in each of the indices considered - were at least as large as the differences 

evident between the emission scenarios. Thus, the results of the study highlight the 

uncertainty which can be introduced by way of the downscaling model/method used.  

In their study of the hydrological impact of climate change on the Seine river basin 

(France) Boé et al. (2007) compared data downscaled from the MétéoïFrance ARPEGE 

GCM using both a statistical and dynamical approach. The statistical downscaling 

method employed was based on weather typing and conditional resampling. It was 

found that the statistical approach was more skilful at reproducing the temporal and 

spatial autocorrelation properties of observed temperature and precipitation; however, 

the hydrological simulations produced using both sets of data were found to be 

relatively similar. In addition both were found to reproduce the seasonal cycle as well as 

the distribution of daily runoff with a high degree of accuracy.   

 

5.5 Conclusion 

Whilst it is clear that downscaling adds considerable value to GCM generated data, as 

highlighted by the various review studies undertaken (e.g. Wilby & Wigley, 1997; 

Murphy, 1999; STARDEX Final Report, 2005; Fowler et al., 2007; Maraun et al., 

2010), no one optimum approach to downscaling exists. There are strengths, 

weaknesses and assumptions implicit in all; furthermore, with respect to present day 

climates at least, dynamical methods appear to hold little advantage over the various 

statistical techniques available (Fowler et al., 2007). It would appear that the answer to 

the question of which is the best method is study specific - the most appropriate 

approach may depend on the study area (e.g. topographic complexity, availability of 

observational data) and datasets required (e.g. target variable, stochastic/deterministic, 

single/multiple sites); crucially it also depends on the nature of the study being 

undertaken (e.g. water balance studies, flood assessments). 

RCMs have the advantage of being able to resolve local scale forcings dynamically, and 

add considerable detail to coarse scale GCM data; this is exemplified by their notable 
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skill over topographically complex regions. Although their physical basis means they 

are potentially more reliable under perturbed forcing, the requirement to represent key 

physical processes parametrically means regional models are dependent on the 

stationarity of the empirically derived relationships under perturbed forcing. Maraun et 

al. (2010) highlight the sensitivity of dynamical downscaling to the model configuration 

(e.g. grid resolution, numerical scheme); they also highlight the requirement to 

represent sub-grid scale processes parametrically and the influence which biases 

inherited from the driving GCM can have as sources of uncertainty in the downscaled 

scenarios. 

Similarly statistical methods are subject to a range of uncertainties and are heavily 

dependent on the assumption of stationarity. Predictor selection is a critical step in the 

application of statistical models, and one which necessarily introduces uncertainty to the 

downscaled data. In a climate change context it is important that predictors which 

capture the warming signal are considered, even if under observed conditions they 

appear to add little explanatory power to the model. As highlighted above, there are 

various shortcomings associated with all statistical methods; for example, although 

linear-regression provides a direct link between local and large-scale variability, the 

propensity for regression models to underestimate the true variance of the local-scale 

predictand is an important weakness, particularly in terms of how extreme events are 

represented. In order to address the uncertainty introduced by way of the downscaling 

method used, Fowler et al. (2007) advocate employing a range of methods within a 

probabilistic framework, whereby the convergence/divergence in the projections from 

each can be accounted for. The following chapter discusses the various methods used to 

downscale climate scenarios for the Burrishoole catchment. 
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Chapter 6  

High resolution climate scenarios for the Burrishoole catchment 

 

6.1 Introduction 

The climate scenarios used in this study represent multiple combinations of driving 

GCMs, GHG-emission scenarios and statistical/dynamical downscaling models - each 

representing a different ómodel pathwayô. By considering multiple model pathways this 

study attempts to sample across the uncertainties encountered at each stage in the 

ócascade of uncertaintyô (Figure 4.2) (Schneider, 1983). Although it is common practice 

the over-reliance on a single realisation of future climate may lead to the suppression of 

key uncertainties in estimates of future climate change. The uncertainties which 

permeate the development of high resolution climate projections are manifest in the 

degree to which different climate models - when forced using the same driving data - 

produce conflicting projections of future change (Jenkins & Lowe, 2003). The 

inconsistencies between model projections apply not only to the magnitude but also the 

timing, spatial distribution and direction of change. Thus, where policy decisions are 

based on a single realisation of future climate, there is potential for an over- or under-

estimation of the true risk posed by climate change, increasing the likelihood of 

maladaption and the implementation of ineffective response decisions.  

Employing multiple climate models, along with different downscaling methods/models, 

is a more pragmatic approach which recognizes that all models or regionalization 

techniques are lacking in skill (with respect to how well they capture different aspects of 

observed system behaviour), and consequently it is not advisable to rely on any single 

method or model pathway in isolation. Adopting a multi-model approach allows the 

strengths of different models to be combined. In addition it recognizes that all model 

pathways represent a plausible future, and by utilizing the output from many different 

pathways a greater number of these plausible futures can be sampled - thus providing a 

more robust basis for climate change adaptation and policy decisions.  

Although the uncertainty inherent in local-scale climate projections is to a certain extent 

unavoidable, it is possible to quantify the uncertainty range using prior knowledge about 

the relative skill of the particular model pathways or methods used to develop them. 

Attaching a weighting to each ensemble member - based on model skill under current 

climate - has the advantage of constraining the influence which poorly performing 
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models have on the overall ensemble response. Weighting ensemble members is 

however a somewhat subjective process, and it is argued that the development and 

implementation of weighting systems - in terms of the particular aspects of model 

performance which are assessed, the metrics used to evaluate them and the weighting 

different metrics are themselves given in the final scheme - simply adds an additional 

layer of uncertainty which must be explored (Christensen et al., 2010). Furthermore, the 

implementation of a weighting scheme also comes with the assumption that model 

performance is both time and state invariant. Tebaldi and Knutti (2007) argue however 

that weighting schemes can be made more robust by using multiple diagnostics and by 

attempting to account for as much uncertainty as is possible. The converse of employing 

a weighting scheme is to treat the output from all models as being equally plausible, 

irrespective of performance under present day conditions. Although this negates the 

requirement to employ a weighting scheme, not attempting to attach some probability to 

model simulations implicitly assumes that all models produce equally reliable 

projections of future climate, despite the fact that some may be poor at capturing the 

(large and local scale) mechanisms which are important for determining climate 

variability across different temporal and spatial scales. 

With respect to the points raised above, concerning both the need to address uncertainty 

and the benefits of employing multiple climate scenarios, a climate ensemble consisting 

of both statistically and dynamically downscaled data from multiple GCMs was used in 

this study. In this case the dynamically downscaled projections were obtained from 

RCM experiments conducted as part of the EU funded ENSEMBLES project (van der 

Linden & Mitchell, 2009). The following sections discuss the statistical models used to 

downscale climate scenarios for the catchment, in addition details of the dynamically 

downscaled climate projections are provided; following from this the weighting scheme 

developed for use in the study is outlined.  

 

6.2 Statistical downscaling of GCM output: data and methods 

In order to address those uncertainties stemming variously from the emission scenario, 

GCM structure, model parameterization and climate sensitivity, the output from three 

different GCMs (HadCM3, CGCM2 and CSIROmk2), each run using two different 

emission scenarios (A2 and B2) were used as input data for the statistically downscaled 

scenarios. In this study linear regression was used when downscaling climate data to the 

catchment. The application of regression type methods involves five steps (Wilby et al., 
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2000; Wilby et al., 2002; Wilby et al., 2006): (1) predictor selection; (2) model 

calibration; (3) simulation of observed series using reanalysis data; (4) model 

validation; and (5) the generation of future time-series using GCM output. Daily data 

for the target variables was obtained from the catchmentôs weather station (Figure 3.2; 

Table 3.2). In cases where data for a particular variable was unavailable, records from 

the Belmullet synoptic station were used (Table 3.2).  

 

6.2.1 Datasets: Statistical Downscaling  

The datasets used for model training and validation were selected on the basis that they 

contained information on a range of contrasting conditions and were in some way 

representative of (likely) future climate. The years 1990-2000 are some of the warmest 

on record for the catchment and thus were considered to be representative of 

atmospheric conditions under future climate forcing; for this reason, where observed 

records were available for the years 1961-2000, the periods 1961ï1978 and 1994ï2000 

respectively were used for model calibration. These periods were also selected as they 

are consistent with the time periods used in the EU funded STARDEX project - one of 

the aims of which was to conduct an inter-comparison of statistical downscaling 

methods (STARDEX Final Report, 2005; Wetterhall et al., 2007). In order for the 

calibrated model to be applicable under perturbed forcing conditions, it is important that 

the statistical relationship was shown to remain valid for an independent validation 

period. To this end observed records for the years 1979-1993 were withheld for model 

testing.  

6.2.1.1 NCEP Reanalysis Data 

The gridded atmospheric data used to establish the predictor-predictand relationship 

was obtained from the UKSDSM data archive (Wilby & Dawson, 2004). The source of 

this data is the National Centers for Environmental Prediction (NCEP) reanalysis 

project (Kalnay et al., 1996). For downscaling purposes the NCEP data was previously 

regridded (i.e. interpolated onto a common grid) to conform to the 2.5ę latitude 3.75ę 

longitude grid of the Hadley Centreôs coupled atmosphere-ocean global climate model: 

HadCM3 (Harris, 2004). The UKSDSM archive contains daily predictors for the period 

1961-2000 which variously describe atmospheric circulation, airflow and vapour 

content at three different levels in the atmosphere (surface, 850 hPa and 500 hPa) (Table 
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6.1). Reanalysis data from the UKSDSM archive is available for nine regions or grid-

boxes covering the British Isles.  

The 1-day lead and lag of each predictor was also included in the dataset; this allowed 

for any temporal offset between the NCEP predictors (averaged over the period 00:00ï

24:00) and point-scale observations (e.g. precipitation is recorded daily over the period 

09:00ï09:00 h) (Wilby et al., 2002; Haylock et al., 2006b; Fealy & Sweeney, 2007). To 

ensure the downscaled scenarios were not compromised by systematic biases in the 

driving data, candidate predictors (both NCEP and GCM) were standardized with 

respect to their 1961-1990 climatology (after Karl et al., 1990) ï this was done by 

subtracting the long term mean value and dividing the difference by its standard 

deviation. It is common practice when developing local-scale scenarios to take climate 

information from the grid box directly overlying the study area, thus large-scale datasets 

for the Irish grid box only were considered in this study. 

Variable Abbreviation  

Mean temperature temp 

Mean sea level pressure  mslp 

500 hPa geopotential height  p500 

850 hPa geopotential height p850 

Near surface relative humidity  rhum 

Relative humidity at 500 hPa r500 

Relative humidity at 850 hPa  r850 

Near surface specific humidity  shum 

Geostrophic airflow velocity  f 

Vorticity  z 

Zonal velocity component  u 

Meridional velocity component v 

Wind direction th 

Wind Divergence zh 

 

 

6.2.1.2 Global Climate Model data for the Irish grid box  

Future climate scenarios were generated using predictor variables from three different 

GCMs, each run using both the medium-high A2 and medium-low B2 SRES (Special 

Report on Emission Scenarios) emissions scenarios (Nakicenovic et al., 2000). GCM 

data for the Irish grid box was obtained from the UKSDSM data archive (Wilby & 

Dawson, 2004) and covers the period 1961ï2100. The GCMs considered included: 

HadCM3, from the Hadley Centre for Climate Prediction and Research (Met Office, 

UK); CCGCM2, from the Canadian Centre for Climate Modelling and Analysis 

Table 6.1 Candidate (NCEP and GCM) predictor variables available from the UKSDSM data archive. Note: Italics indicate 

secondary airflow indices calculated from pressure fields (surface, 500 and 850 hPa). 
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(CCCMA; Canada); and CSIRO-Mk2 from the Commonwealth Science and Industrial 

Research Organisation (CSIRO, Australia). The same predictors available from the 

NCEP reanalysis dataset (listed in Table 6.1) were available for each of the three 

GCMs.  

6.2.2 Model Description: Linear Regression (SDSM) 

Linear regression was implemented through the statistical downscaling model SDSM 

(Statistical DownScaling Model) (Wilby et al., 2002; Wilby & Dawson, 2004) - a 

software package used for downscaling multiple-scenarios of surface weather variables 

at individual sites on a daily time-step using grid resolution re-analysis and GCM data. 

SDSM is best described as a óhybridô of the stochastic weather generator and regression 

based downscaling methods (Wilby et al., 2002). The model has previously been 

applied in a host of meteorological, hydrological and environmental assessments across 

diverse climatic regions (e.g. Hassan et al., 1998; Wilby et al., 1999, 2000; Hay et al., 

2000; Harpham & Wilby, 2005; Dibike et al., 2008; Chen et al., 2010; Souvignet & 

Heinrich, 2011; Liu et al., 2011).  

SDSM has both a deterministic and stochastic component which allows it to incorporate 

the strengths of both the regression and weather generator type approaches to 

downscaling. Linear regression comprises the core deterministic component of the 

model and is used to establish a direct relationship between a set of large-scale 

atmospheric predictors and the target variable. This relationship can be written as: 

ὣ  ό ‐ 

 

where ὣ is the local predictand on day t, j is the regression parameter optimized using 

ordinary least squares, ό  represents n large-scale atmospheric predictors, and ‐ is a 

random error term represented by the Gaussian distribution ὔπȟ„ .  

The underestimation of variance is one of the key shortcomings of regression type 

approaches to downscaling (see section 5.2.2). To address this SDSM incorporates an 

additional stochastic component which is used to artificially inflate the variance of the 

downscaled series. Variance inflation is conducted using a pseudo-random number 

generator which samples values from a normal distribution with a mean of zero and a 

standard deviation equal to the standard error (ὔπȟ„ . These values are added to the 
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deterministically derived output for each day. Variance inflation is necessary given the 

importance of representing extreme and higher quantile events in the downscaled series 

- particularly with respect to the data used in impact studies. Variance inflation is 

implemented by tuning the amount of white noise (Ὡ which is added to the 

deterministic model output using the following: 

 

Ὡ
ὠὍὊ

ρς
ᾀὛ ὦ 

 

where ᾀ are normally distributed random numbers, Ὓ is the standard error of the 

estimate (produced from the initial regression equation), ὦ is the model bias and VIF is 

the variance inflation factor. Both the VIF and ὦ parameters are adjusted so that the 

model output better accords with the observed series. In the equation above VIF is 

divided by a scaling factor which remains constant in the model. 

The weather generator element of SDSM enables multiple synthetic series or ensembles 

of daily weather data to be produced using a common set of grid-scale predictors. 

Ensemble members differ with respect to their individual time-series evolution but 

possess the same statistical attributes. The degree to which the respective series differ is 

dependent on the relative significance of the stochastic component in the model 

structure. For those variables which are to a greater degree determined by large-scale 

atmospheric forcing, a high proportion of the variance will be accounted for by 

regression alone; however, where the grid-scale predictors account only for a fraction of 

the observed variance, the stochastic element has a comparatively greater weighting. 

This applies to variables like precipitation which display more ónoiseô arising from 

localised factors not captured by the grid-scale predictor fields. Stochastically 

generating multiple climate realizations has the advantage of allowing the range of 

internal variability displayed by the local climate to be somewhat represented in the 

downscaled data. When using the SDSM model, where a variable did not conform to 

the conventions of linear regression, a transformation was applied. This ensured the 

datasets approximated to the required normal distribution. In this study SDSM was 

employed to downscale climate scenarios for the following variables:  

Á Temperature (minimum and maximum) (
o
C) 

Á Precipitation (mm) (occurrence and amounts) 
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Á Wind Speed (km h
-1
) 

Á Relative Humidity (%) 

Á Solar Radiation (Mj m
-2

) 

Á Potential Evapotranspiration (PET) (mm) 

 

6.2.3 Model Description: Generalized Linear Model (GLM) 

Whilst conventional linear regression requires the response variable to be normally 

distributed, generalized linear models (GLMs) have the advantage of being able to 

model data series which follow probability distributions from the exponential family 

(e.g. Gamma, Binomial, Poisson) (Mc Cullagh & Nelder, 1989). Thus, the use of GLMs 

avoids the need for data transformation, which is desirable given the loss of information 

which can occur when rescaling is employed. In addition the relationship between the 

response and explanatory variables may be more complex than the simple linear form 

required for standard regression; with respect to this, GLMs have the added benefit of 

allowing non-linear relationships to be modelled. As GLMs fit probability distributions 

to the target variable they should allow for a better representation of the higher 

quantiles; consequently they have a clear advantage over linear regression, particularly 

in cases where data transformation is required.  

GLMs have previously been employed to study different climatological series (e.g. 

precipitation occurrence and amounts, wind speed) (Coe & Stern, 1982; Stern & Coe, 

1984; Chandler & Wheater, 2002a, 2002b; Yan et al., 2002; Chandler, 2005; Yang et 

al., 2006); they have also been used for the purposes of downscaling precipitation. 

Abaurrea and Asín (2005) employed logistic regression and a GLM with a Gamma error 

distribution to downscale rainfall occurrence and amounts respectively. It was found 

that the models were skilful in reproducing certain aspects of seasonal and daily 

precipitation behaviour (e.g. wet and dry spell length), but were less successful at 

reproducing extreme events. Fealy and Sweeney (2007) also employed two different 

GLMs when downscaling precipitation (occurrence and amounts) for a number of 

synoptic stations across Ireland. Buishand et al. (2004) applied a separate logistic model 

for downscaling daily and monthly rainfall occurrence for three stations in the Rhine 

basin. Buishand et al. (2004) also used a GLM with a Gamma distribution to downscale 

individual wet-day and monthly rainfall amounts for the same stations. In this study 

GLMs were employed to downscale daily data for precipitation and wind speed - both 
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of which present highly skewed distributions. A logistic regression was used to model 

rainfall occurrence, whilst for both precipitation amounts and wind speed a Gamma 

distribution with a log link function was employed. Wet-day rainfall amounts have 

typically been described using the Gamma distribution (e.g. Katz, 1977; Buishand, 

1978). In this study the method of maximum likelihood was used to estimate the 

coefficeient values for each regression model.  

 

6.2.4 Predictor selection 

Predictor selection is critical for determining the character of the downscaled series 

(Winkler et al., 1997; Charles et al., 1999) and represents a key source of uncertainty in 

estimates of local climate change (Huth, 2004); however, despite the importance of this 

process, there is little consensus within the downscaling community as to an optimum 

predictor set or selection process. Past studies have employed a diverse array of 

selection criteria, downscaling techniques and predictor combinations (including 

climate data extracted from various predictor fields), covering a range of geographical 

and climate contexts. As a result interpretations of what constitutes the most appropriate 

set of predictors for a given predictand or region differs greatly. As noted in previous 

studies, selecting the most appropriate set of predictors, which are sensitive to the 

region and timescales considered, is more pragmatic than using a single predictor or 

standard predictor set (Wilby et al., 1998; Huth, 2004). Despite the differing and often 

subjective approaches taken to predictor selection, there are a number of points common 

to previous work which provides a guide to the selection process (listed in Section 

5.2.2). These criteria are however frequently at odds with one another, indicating that a 

balance must be struck when choosing the most suitable predictor set. For example, in 

comparison to surface climate variables, climate models generally provide a more 

realistic description of large-scale circulation (Murphy, 1999); however, a number of 

studies (e.g. Kidson & Watterson, 1995; Wilby & Wigley, 1997) have shown that 

climate scenarios downscaled using circulation predictors only are largely insensitive to 

alterations in climate forcing, thus warranting the inclusion of additional variables 

which may be less well simulated.  

In this study predictor selection was largely driven by the association shown between 

the candidate predictors and the target variable. Predictors were also chosen with the 

aim of capturing the key atmospheric mechanisms known to influence local-scale 
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events, even where the inclusion of such predictors appeared to add little explanatory 

power to the model; for example, when modelling precipitation some measure of 

atmospheric humidity was included for all seasons, despite humidity appearing to be 

generally non-informative. Care was taken to avoid multicollinearity and thus ensure 

stability in the model output. A separate model was developed for each season, for 

which the most appropriate set of predictors were selected. Modelling each predictand 

on a seasonal basis removed any influence which the annual cycle may have had on the 

coefficient values, it also allowed for temporal variations in the strength of the 

predictor-predictand relationship; however, where the downscaled series was shown to 

be sensitive to the selection of a particular variable, the same predictor was chosen for 

each season (e.g. the inclusion of mean sea level pressure when downscaling 

precipitation). This was to ensure there was some continuity in the driving data used to 

generate the seasonal scenarios.  

In addition to employing large-scale surface and atmospheric variables as predictors, 

potential radiation and delta temperature (i.e. diurnal temperature range; ȹT) were used 

to downscale daily solar radiation and potential evaporation respectively. This approach 

takes its cue from conventional weather generators, whereby the data series for both 

variables is typically estimated based on their relationship with other meteorological 

parameters (Donatelli et al., 2006; Fealy & Sweeney, 2008).  

The quantity of solar radiation received at a given point on the Earthôs surface is a 

function of potential radiation and some measure of atmospheric transmissivity. In this 

case transmissivity is related to cloud cover - for which ȹT is taken as a proxy. Bristow 

and Campbell (1984) demonstrated that a relationship exists between the radiation 

transmitted through the atmosphere and the diurnal range in near surface air 

temperature. Following Bristow and Campbell (1984) a modified version of ȹT was 

used in this study: 

ЎὝ Ὕάὥὼ
ὝάὭὲὝάὭὲ

ς
 

where ὝάὭὲ and Ὕάὥὼ represents point scale minimum and maximum temperature at 

time t. For the purposes of model calibration ȹT was calculated using observed records 

from the Furnace weather station (Figure 3.2). For each GCM and emissions pathway 

ȹT was calculated using the downscaled temperature scenarios for the catchment. 

Potential radiation was calculated using the following (Bristow & Campbell, 1984): 
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Distance from the sun: 

ὨὨς ρ πȢπσστzὅέίπȢπρχςρὨzέώπȢπυυς 

Declination:  

ὨὩὧίὭὲȢσωχψυὛzὭὲτȢψφωȢπρχςzὨέώȢπσστυὛzὭὲφȢςςτȢπρχςὨέώ 

Half day length:  

Ὤί  ὧέί ὝὥὲὨὩὧzὝὥὲὰὥὸ 

Potential Radiation: 

ὖέὸὙὥὨὨὥώ ρρχȢυz ὨὨςz
Ὤίz ὛὭὲὰὥὸzὛὭὲὨὩὧὅέίὰὥὸzὅέίὨὩὧzὛὭὲὬί

“
 

where doy is the day of year, and lat is the latitude in radians. Given the influence which 

solar radiation has on surface evaporation, ȹT and extraterrestrial radiation were 

included in the predictor set when downscaling this variable. Incoming solar radiation 

was found to have a significant influence on potential evaporation, particularly for the 

winter season where its inclusion as a predictor increased the percentage of explained 

variance from less than ~15% to over 55% - this was a finding common to both the 

calibration and validation periods.  

 

6.2.5 Temperature: calibration and validation 

Temperature is a relatively homogenous variable over large areas; consequently a 

significant proportion of the variance exhibited at a local-scale is determined by the 

large-scale atmospheric state. In this study the predictors used to model point-scale 

temperature included 2 m surface temperature and several variables which variously 

describe atmospheric circulation (Table 6.2).  

 

Maximum Temperature Minimum Temperature  

 Season Predictors 
Calibration ï 

(E %) 

Validation ï 

(E %) 
  Predictors 

Calibration ï 

(E %) 

Validation ï 

(E %) 

DJF temp, u, p500, zh5 72 73  temp, p500, f, zh5 67 65 

MAM  temp, u5, z,v5 74 79  temp, f8, z5, v5 69 66 

JJA temp, 8u, v 65 66  temp, f8, v 50 52 

SON temp, p500, v5,u5 82 81   temp ,f8, zh, z5 74 74 

 

 

This selection avoided the use of circulation variables alone which previous studies 

have indicated can lead to unrealistically low estimates of temperature change (Huth, 

Table 6.2 Predictors used to downscale daily minimum and maximum temperature. Also shown is the explained variance (E %) for 
the calibration (1961ï1978; 1994ï2000) and independent validation (1979-1993) period. 
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2004). The downscaled series captures a high proportion of the variance present in the 

observed data, thus within the SDSM model structure the deterministic component was 

dominant. Based on the explained variance and the slope of the best fit line, the 

seasonally downscaled series better accords with the observed data for the autumn and 

spring seasons (Figures 6.1 & 6.2). In contrast the lowest explained variance is 

associated with summer minimum temperature. Figure 6.3 and 6.4 indicate that the 

downscaled data captures the observed annual and inter-annual variability with a high 

degree of skill. Generally there appears to be no discernible difference in model skill 

over the validation and calibration periods. Table 6.3 compares the monthly statistics of 

the observed and model simulated (maximum and minimum) temperature series for the 

validation period. Based on this the downscaled NCEP data appears to underestimate 

the 5
th
 percentile, but captures well the 95

th
 percentile and monthly mean values. The 

coefficient of determination (R
2
) is lowest for June and July minimum temperature. 

 

Maximum Temperature Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Percentile 5th 33.3 -13.5 -11.3 -14.6 -8.8 -6.2 -7.3 -8.2 -10.5 -10.4 -3.0 19.0 

Mean 5.1 -2.5 2.1 -3.3 -2.7 -0.6 -1.1 0.0 -1.9 -1.6 2.9 3.4 

Percentile 95th 5.2 2.6 11.1 -3.5 -8.4 -5.8 -4.1 0.9 1.5 4.3 5.8 3.2 

Std Deviation -7.4 8.3 36.8 3.7 -3.0 0.0 0.0 17.4 20.0 31.6 19.0 -7.7 

Range -2.5 11.7 29.3 1.2 -10.1 -3.1 3.1 14.1 0.7 20.4 21.6 -12.1 

R2 0.77 0.70 0.64 0.67 0.68 0.62 0.64 0.65 0.66 0.62 0.65 0.75 

Minimum Temperature                         

Percentile 5th -18.2 8.3 0.0 -9.1 6.1 11.3 -5.4 1.2 10.5 10.3 16.7 0.0 

Mean 10.3 -3.4 2.4 -3.7 0.0 1.0 -1.6 0.0 2.9 0.0 3.8 4.9 

Percentile 95th 0.0 -6.4 0.0 4.4 2.5 0.7 3.3 -0.6 5.7 -0.8 3.1 -4.3 

Std Deviation -6.5 3.6 0.0 8.3 3.8 -4.5 10.5 -4.5 8.3 -3.6 0.0 -3.3 

Range 2.9 8.7 -1.3 31.0 3.0 -18.5 14.4 -1.6 11.3 4.8 11.1 -1.2 

R2 0.67 0.57 0.56 0.59 0.53 0.38 0.43 0.51 0.53 0.65 0.57 0.67 

 

 

 

 

 

 

Table 6.3 Percent bias for selected statistics calculated over the independent validation period (1979-1993) on a monthly basis for 

maximum and minimum temperature respectively; also shown is the coefficient of determination. The temperature series are 

downscaled from NCEP reanalysis data and compared to observations from the Furnace weather station (Figure 3.2). 
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 Figure 6.1 Seasonal scatter plots of downscaled versus observed (Furnace weather station) daily minimum temperature for the Furnace weather station. Temperature is downscaled using NCEP reanalysis data 

for the calibration (1961-1978; 1994-2000) (left panel) and validation (1979-1993) (right panel) periods respectively. Values for the explained variance, standard error and slope of the least squares fitted line are 
provided. 
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 Figure 6.2 Seasonal scatter plots of downscaled versus observed (Furnace weather station) daily maximum temperature for the Furnace weather station. Temperature is downscaled using NCEP reanalysis data 

for the calibration (1961-1978; 1994-2000) (left panel) and validation (1979-1993) (right panel) periods respectively. Values for the explained variance, standard error and slope of the least squares fitted line are 
provided. 
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Figure 6.3 Correspondence between observed (Furnace weather station) and downscaled temperature over the calibration (1961-1978; 1994-2000) and validation (1961-1978; 1994-2000) periods. Maximum 

(left panel) and minimum (right panel) temperature are downscaled for the Furnace weather station using NCEP reanalysis data. Datasets are averaged based on the day of year (1-366). 
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 Figure 6.4 Correspondence between the interannual variability of the observed (Furnace weather station) and downscaled maximum (left panel) and minimum (right panel) temperature series. Temperature is 

downscaled using NCEP reanalysis data for the calibration (1961-1978; 1994-2000) and validation (1979-1993) periods. 
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6.2.6 Precipitation: calibration and validation 

Precipitation is an extremely heterogeneous variable - both temporally and spatially - 

and is to a large degree influenced by localised forcings which, due to their sub-grid 

scale nature, are not fully captured in coarse resolution atmospheric datasets. 

Precipitation also presents a highly skewed discontinuous distribution where the series 

is punctuated by the occurrence of non-rain days. This precludes the direct application 

of well established and robust statistical methods which necessitate a normally 

distributed continuous response variable. The statistical distribution of precipitation also 

makes it difficult to properly characterise higher order statistics in the downscaled 

series.  

Using both SDSM and the GLM approach, precipitation was downscaled as a two-step 

process (performed automatically by the SDSM software). Firstly the sequence of days 

on which rainfall occurs was determined; subsequent to this the quantity of rainfall 

estimated to occur on a given ówet dayô was simulated using a second regression model. 

To fit the occurrence model the observed dataset was recoded into a binary sequence 

signifying the occurrence of wet/dry days (Ó0.2 mm). The predictors used to downscale 

precipitation are largely consistent with previous studies, being comprised of various 

circulation variables and some measure of atmospheric humidity. It is acknowledged 

that GCMs simulate those variables relating to atmospheric circulation with a high 

degree of skill, consequently circulation variables are frequently used when 

downscaling precipitation (Cavazos & Hewitson, 2005); however the use of circulation 

variables alone may be inappropriate as they fail to fully capture those atmospheric 

mechanisms - relating to thermodynamics and vapour content - which are conducive to 

local scale precipitation (Cavazos & Hewitson, 2005; Fowler et al., 2007). The moisture 

content of the atmosphere is likely to be sensitive to warming climate conditions and as 

such humidity is an important predictor in capturing the climate change signal; 

furthermore, it has been shown that the inclusion of some measure of atmospheric 

moisture can bring about a convergence in the projections from statistical and 

dynamical models (Charles et al., 1999). When using SDSM the same predictor set was 

employed when modelling wet-day occurrence as the wet-day rainfall amounts. In 

contrast, by allowing each parameter to be modelled independently using a different 

predictor set, the GLM models allowed a more flexible approach to downscaling 

precipitation (Table 6.4). When downscaling precipitation using SDSM those predictors 

which were shown to be most skilful at capturing rainfall amounts were used. In this 
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respect greater emphasis was placed on the modelôs ability to simulate receipts as 

opposed to the sequencing of rain/non-rain days.  

Season SDSM   GLM - Occurrence GLM - Amounts 

DJF mslp, u8, v8, shum  mslp, u8, v8, shum mslp, u8, v8, shum 

MAM  mslp, u, v, rhum  p500, u8, zh8,shum mslp, u, v, rhum 

JJA mslp, u, v, rhum  p500, u, zh, rhum mslp, u, v, rhum 

SON mslp, u, v, rhum   p850, u8, zh, rhum mslp, u, v, rhum 

 

6.2.6.1 Linear Regression (SDSM) 

The occurrence model in SDSM is described as (Wetterhall et al. 2005; Wilby et al. 

1999; 2003): 

  ό  

where t is the time in days,   is the conditional probability of a wet day occurring on 

day t, ό  is the standardized predictor, and  is the regression parameter optimized by 

ordinary least squares. A uniformly distributed random number ὶπ ὶ ρ is used 

to determine whether precipitation occurs on a given day; for each time step, a wet-day 

is projected to occur if  ὶ. Incorporating this stochastic element means the model 

is capable of producing multiple series of wet day occurrences where each series differs 

with respect to their sequencing of wet/dry days. On a wet day rainfall amounts is 

estimated using: 

ὙȢ  ό ‐ 

where which Ὑ is the standardized precipitation on day t,  is the calculated regression 

parameter estimated using ordinary least squares, and ‐ is a random error term 

represented by the normal distribution ὔπȟ„ Ȣ To ensure the data conformed to the 

(normal) distribution required for linear regression, a fourth root transformation was 

applied prior to model fitting. The suitability of this transformation was tested using the 

Kolmogorov-Smirnov test for normality. The regression model in SDSM accounted 

only for a small proportion of the variance present in the observed series; as a result 

variance inflation had a greater bearing on the character of the model output. The 

current structure of the SDSM model does not allow an independent set of predictors to 

be used when modelling precipitation occurrence and amounts respectively; however, it 

Table 6.4 Predictors used to downscale precipitation for each season. 
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is acknowledged that it may be possible to do so using SDSM in-conjunction with 

external software.  

6.2.6.2 Generalised Linear Model (GLM) 

Logistic regression was used to model the probability of rainfall occurring on a given 

day conditional on the large-scale atmospheric state. The model assumes that the 

logistic transformation of P is a linear function of the predictors, and can be written as: 

Ὣὖ  ÌÏÇ
ὖ

ρ ὖ
ὥ ὥὼ Ễ ὥὼ 

where Ὣό is the link function, ὖ is the probability of occurrence, ὥȟὥȟȣȟὥ are the 

regression coefficients, and ὼȟὼȟȣȟὼ are the predictors. In this study the regression 

coefficients were estimated using the method of maximum likelihood. When compared 

with multiple-linear regression this model is more appropriate for estimating the wet-

day occurrence. This is because the model output is constrained between zero and one, 

allowing it to be interpreted as a true probability. Using the observed dataset a threshold 

probability is determined above which a rain day is assumed to occur. This threshold is 

taken as the conditional probability and used to classify the occurrence of a wet/dry-day 

in the simulated data. Precipitation amounts were modelled by relating a linear 

combination of the atmospheric predictors to the expected value of the response variable 

(specified as having a gamma distribution) through a logarithmic link function. This 

model structure was chosen as wet-day precipitation approximates well to a gamma 

distribution; it also avoids unrealistic negative values for the estimated rainfall amounts. 

The model can be written as:  

ÌÏÇὉὣ ÌÏÇ‘  ὼ Ễ ὼ 

The GLM approach outlined above has the advantage of allowing two different 

predictor sets to be used. This acknowledges that the initiation of a rainfall event, and 

the ensuing intensity of that event, may be controlled by different atmospheric 

processes.  

6.2.6.3 Model comparison  

Table 6.5 shows the percentage explained variance for the GLM and SDSM amounts 

models described above. The explained variance - listed for the respective calibration 

and the validation periods - is calculated based on the modelled and observed datasets 
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rescaled using a fourth root transformation. Table 6.5 also shows the Heidke Skill Score 

(HSS) for the GLM occurrence model. This metric describes the modelôs ability to 

correctly simulate the occurrence of wet and dry days. As the wet-day occurrence series 

was stochastically generated in SDSM, the HSS metric could not be used to assess this 

aspect of model performance.  

The relatively low explained variance for wet day amounts - a finding common to all 

seasons - is consistent with previous studies and illustrates the difficulties associated 

with downscaling point-scale precipitation using coarse resolution atmospheric data. 

The percentage explained variance is greatest for winter, reflecting the stronger 

coupling which exists during this season between large-scale atmospheric circulation 

and the local-scale precipitation regime. This coupling is manifest in the greater 

dominance of zonal airflow and the more frequent occurrence of intense low pressure 

systems. In contrast, the explained variance was found to be lowest for summer, a 

finding which is commensurate with a general reduction in the frequency of frontal 

systems, a slackening in circulation and a weakening in the linkage between large-scale 

circulation and the local-scale response. Convective activity also makes a more 

significant contribution to receipts during this season, underlining the greater role local 

forcings play, and the inherent limitations of coarse resolution models in terms of 

capturing the influence which small scale perturbations in atmospheric conditions can 

have on the character of local precipitation. 

 

Season 
SDSM ï Precipitation Amounts (E %)  GLM ï Precipitation Amounts (E %) GLM - Wet Day Occurrence HSS 

Calibration Validation Calibration Validation Calibration Validation 

DJF 32 30 30 29 60 60 

MAM 26 27 24 25 67 63 

JJA 19 23 19 22 61 60 

SON  20 23 28 27 61 59 

 

 

Based on Figure 6.5 SDSM tends to underestimate the monthly wet day occurrence (%) 

while the GLM generally overestimates the proportion of wet days - this is particularly 

evident for the summer months over the calibration period. Both models do however 

capture the annual cycle well, particularly SDSM. The GLM consistently over-estimates 

the mean monthly wet (Figure 6.6(a)) and dry (Figure 6.6(b)) spell length, whilst SDSM 

consistently under-estimates both parameters.  

Table 6.5 Explained variance (%) for the calibration (1961-1978; 1994-2000) and validation (1979-1993) periods estimated on a 

seasonal basis. The explained variance is calculated for the linear component of SDSM (i.e. with the variance inflation disabled) 

and the GLM amounts model respectively. Prior to estimating the explained variance a fourth root transformation is applied to the 

modelled and observed precipitation data. Also shown is the HSS for the GLM occurrence model. Due to the stochastic modelling 

of wet days the HSS was not calculated for SDSM. 
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Figure 6.5 Monthly percent wet-days (Ó0.2 mm) for the downscaled and observed (Furnace weather station) precipitation series 

estimated over the calibration (1961-1978; 1994-2000) and validation (1979-1993) periods respectively. Precipitation is downscaled 
from NCEP reanalysis data using both the SDSM and GLM models. 

 

Figure 6.6(a) Mean monthly wet-spell length (Ó0.2 mm) for the downscaled and observed (Furnace weather station) precipitation 

series estimated over the calibration (1961-1978; 1994-2000) and validation (1979-1993) periods respectively. Precipitation is 
downscaled from NCEP reanalysis data using both the SDSM and GLM models. 
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Figure 6.7 and 6.8 illustrates the skill of both the SDSM and GLM models at 

reproducing the mean monthly, as well as inter-annual precipitation receipts for the 

calibration and validation periods respectively. Generally the GLM model tends to over-

estimate monthly amounts; this is particularly evident for the summer months where 

June precipitation receipts are ~20% greater than the observed. SDSM also over-

estimates June receipts for but not to the same degree (calibration 5%; validation 17%). 

In contrast SDSM tends to under-estimate the mean monthly values, this is most 

noticeable over the validation period for the months of May (14%), August (12%) and 

September (11%). The coefficient of determination - calculated using the observed and 

modelled mean monthly precipitation receipts - indicates that the GLM (calibration: 

0.95; validation: 0.94) is marginally better than SDSM (calibration: 0.93; validation: 

0.86) at reproducing the annual cycle. Similarly, the coefficient of determination - 

calculated using the observed annual precipitation amounts - indicates that the GLM 

(calibration: 0.65; validation: 0.61) is slightly better than SDSM (calibration: 0.64; 

validation: 0.60) at reproducing the observed pattern of inter-annual variability. The fact 

that both models exhibit similar skill at reproducing these aspects of the catchmentôs 

precipitation regime may be due to the same predictor sets (wet-day amounts) being 

used and the fact that both are essentially regression type models.  

Figure 6.6(b) Mean monthly dry-spell length (<0.2 mm) for the downscaled and observed (Furnace weather station) precipitation 

series estimated over the calibration (1961-1978; 1994-2000) and validation (1979-1993) periods respectively. Precipitation is 
downscaled from NCEP reanalysis data using both the SDSM and GLM models. 
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Figure 6.7 Monthly mean precipitation receipts for the downscaled and observed (Furnace weather station) series estimated over the 

calibration (1961-1978; 1994-2000) and validation (1979-1993) periods respectively. Precipitation is downscaled from NCEP 
reanalysis data using both the SDSM and GLM models. 

Figure 6.8 Interannual variability (total annual receipts) estimated for the downscaled and observed (Furnace) precipitation series 

over the calibration (1961-1978; 1994-2000) and validation (1979-1993) periods respectively. Precipitation is downscaled from 
NCEP reanalysis data using both the SDSM and GLM models. 
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Figure 6.9 shows the degree to which the GLM model, non-inflated SDSM and inflated 

SDSM series capture the monthly variance of the observed precipitation series over the 

calibration and validation periods respectively. There is a clear improvement in this 

aspect of model performance when variance inflation is applied. The inability of the 

GLM to capture the true variability of precipitation is reflected in the seasonal Q-Q 

plots shown in the Figure 6.10. These plots highlight that, irrespective of the season and 

period considered, the distribution of the rainfall data obtained using SDSM is closer to 

the observations than the downscaled GLM data. It is shown that the GLM 

underestimates the higher quantiles - particularly the 90
th
, 95

th
 and 99

th
. With respect to 

the GLM derived data, Figure 6.10 illustrates the degree to which the underestimation 

of variance leads to a corresponding under-estimation of higher quantiles ï thus 

highlighting the importance of applying some technique to enhance the variability of the 

downscaled series.  

 

 

 

Figure 6.9 Monthly variance of the downscaled and observed (Furnace weather station) precipitation series over the calibration 

(1961-1978; 1994-2000) and validation (1979-1993) periods respectively. Precipitation is downscaled from NCEP reanalysis data 
using both the SDSM and GLM models. Both the inflated and non-inflated downscaled SDSM data is plotted.  
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Figure 6.10 Seasonal Q-Q plots for the observed and downscaled (Furnace weather station) precipitation series over the calibration (1961-1978; 1994-2000) (left panel) and validation (1979-1993) (left panel) 

periods respectively. Precipitation is downscaled from NCEP reanalysis data using both the SDSM and GLM models. The plots are constructed using rainfall amounts only. The enlarged green dots are used to 
highlight those values relating to the following percentiles: 25

th
, 50

th
, 75

th
, 90

th
, 95

th
 and 99

th
. 
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It cannot however be argued that variance inflation is a panacea for the problem of 

inadequately capturing the true variability of precipitation or the influence of local-scale 

forcings, nor can it be assumed that variance inflation is capable of fully characterising 

changes in the variability of the catchmentôs precipitation regime under perturbed 

forcing. The use of inflation techniques in statistical downscaling have been questioned; 

von Storch (1999) argues that variance inflation - as applied by Karl et al. (1990) - 

erroneously assumes that all local-scale variability is driven by large-scale variability in 

the predictor fields. In its place von Storch (1999) proposes the use of órandomizationô, 

whereby the processes unresolved by the large-scale predictor(s) are accounted for by 

adding noise with some pre-defined properties to the downscaled series (see section 

5.2.2). Given the degree to which the GLM approach underestimates the true variance, 

coupled with the fact that both approaches reproduce other statistics with a similar level 

of skill, the climate scenarios downscaled using SDSM only were used when modelling 

changes in the catchment hydrology. The results of the GLM are discussed above in 

order to provide a comparison of two different regression type approaches to 

downscaling. 

 

6.2.7 Other meteorological parameters  

A number of additional meteorological variables were downscaled for the catchment 

which, although not employed directly in this study, were used as part of the RESCALE 

project discussed in Chapter one (Fealy et al., 2010). As instrumental records of 

sufficient length for these variables were not available from the Furnace weather station, 

the required observational datasets were obtained from the Belmullet synoptic station, 

which is located to the north-west of the catchment. Given that these variables were not 

used when modelling the catchment hydrology, they are not discussed in any great 

detail. However, they are included here as they provide additional information on the 

application of the downscaling method used in this study. 

6.2.7.1 Wind speed  

Wind speed distributions are typically positively skewed and generally approximate to 

either a Gamma or Weibull distribution; to accommodate this within the GLM 

framework a gamma distribution with a log link function was employed. SDSM was 

also used to downscale wind speed, in this case to conform to the distribution required 

for linear regression a square root transformation was applied. To reflect the processes 
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which govern local scale wind, predictors which describe atmospheric circulation only 

were employed (Table 6.6). For each season, as well as over both the calibration and 

validation periods, a relatively high proportion of the observed variance was accounted 

for in the downscaled series. The same predictor set was used in each model, this is 

reflected in the negligible differences in the explained variance for each; however, as 

with precipitation, the GLM tended the underestimate the variance of the observed 

series. 

 

 

6.2.7.2 Relative humidity 

Relative humidity was downscaled to the Belmullet synoptic station using the SDSM 

model only. Grid-scale relative humidity was included in the predictor set for each 

season. Incorporating this variable was considered important in order to represent the 

linkage between local and macro-scale atmospheric conditions. Given that they 

exhibited a strong correlation with point-scale humidity, a number of circulation 

variables were also included in the predictor set. A relatively low proportion of the 

variance exhibited by the observed series was captured by the downscaled data.  

Season Predictors 
Calibration -

 
(E %) Validation - (E %) 

DJF f, v, z5, rhum 31 36 

MAM  v, f, z5, rhum 30 34 

JJA u, v, z5, rhum 25 23 

SON  f5, z5, v, rhum 39 39 

 

 

6.2.7.3 Solar radiation and potential evaporation 

When downscaling data series for both solar radiation and potential evaporation a 

number of large-scale predictors, along with potential radiation and ЎὝ were used 

(Table 6.8; Table 6.9). Both variables were modelled using SDSM only. Due to the 

influence which solar radiation has on the rate of evaporation, both variables were 

   SDSM GLM  

Season Predictors Calibration (E %) Validation (E %) Calibration (E %) Validation (E %) 

DJF zh8, mslp, f8 49 51 51 47 

MAM  f8, p500, v 48 45 47 45 

JJA z, f8, v 46 41 47 42 

SON f8, zh5, z 47 47 45 45 

Table 6.6 Explained variance (%) calculated on a seasonal basis for the calibration (1961-1978; 1994-2000) and validation (1979-

1993) period respectively. Wind speed is downscaled to the Belmullet synoptic station using NCEP reanalysis data. The explained 

variance is calculated for the linear component of SDSM (i.e. with the variance inflation disabled) and the GLM respectively.  

 

Table 6.7 Explained variance (%) calculated on a seasonal basis for the calibration (1961-1978; 1994-2000) and validation (1979-

1993) periods respectively. Relative humidity is downscaled to the Belmullet synoptic station using NCEP reanalysis data. The 

explained variance is calculated for the linear component of SDSM (i.e. with the variance inflation disabled).  
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downscaled using similar predictor sets. The instrumental records available for solar 

radiation and evaporation cover the periods 1982-2000 and 1971-2000 respectively. To 

overcome the short length of the data available for model training, the coefficient values 

were averaged across 10,000 bootstrapped samples.  

 Season 
Predictors Calibration -

 
(E %) Validation - (E %) 

DJF Pot Rad, ȹT, v ,z5 ,u8,zh 65 60 

MAM  Pot Rad, ȹT, zh, z5, u5, rhum 65 66 

JJA Pot Rad, ȹT, rhum, u5, zh, z5 50 48 

SON  Pot Rad, ȹT, zh, u8, z5 73 72 

 

 

 

 

6.3  Dynamically downscaled datasets 

Dynamical downscaling adds high resolution detail to the sub-GCM-grid scale climate 

whilst preserving the large-scale climate features simulated by the driving global model 

(Giorgi & Mearns, 1991; 1999; Giorgi et al., 2003; Kjellström & Giorgi, 2010; 

Rummukainen, 2010). The strength of dynamical downscaling lies in the fact that the 

models are based on immutable physics and can resolve sub-grid scale processes 

dynamically. However, there are difficulties associated with integrating boundary 

conditions from the parent GCM, and there remains a need to parameterize key climate 

processes which occur at scales too small to be resolved explicitly. Biases in the driving 

data also introduce uncertainty to the model simulations, and it is argued that the 

resolution at which they are currently run remains too coarse for their output to be 

commensurate with point-scale observational data - thus necessitating the subsequent 

application of statistical downscaling. 

The dynamically downscaled data used in this study was obtained from RCM 

experiments conducted as part of the EU funded ENSEMBLES project 

(www.ensembles-eu.org) (van der Linden & Mitchell, 2009). It constitutes one of the 

Season       Predictors              Calibration - (E %)             Validation - (E %) 

DJF        Pot Rad, ȹT, v ,z5 ,f, rhum                          64                        55 

MAM         Pot Rad, ȹT, zh, z5, u5, rhum                          67                        65 

JJA        Pot Rad, ȹT, rhum, u5, zh, z5, rhum                          44                        45 

SON        Pot Rad, ȹT, v, u8, z5, rhum                          73                        70 

Table 6.8 Explained variance (%) calculated on a seasonal basis for the calibration (1981-1988; 1995-2000) and validation (1989-

1993) periods respectively. The explained variance is calculated for the linear component of SDSM. Solar radiation is downscaled 

to the Belmullet synoptic station using NCEP reanalysis data and point-scale temperature records. 

 

Table 6.9 Explained variance (%) calculated on a seasonal basis for the calibration (1971-1981) and validation (1982-1987) periods 

respectively. The explained variance is calculated for the linear component of SDSM. Potential evaporation is downscaled to the 

Belmullet synoptic station using NCEP reanalysis data and point-scale temperature records. 

 

http://www.ensembles-eu.org/
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largest regional climate change research projects undertaken; the work carried out for it 

builds on earlier EU projects such as PRUDENCE (Christensen et al., 2007b), 

STARDEX (STARDEX Final Report, 2005), MICE (Hanson et al., 2007) and 

DEMETER (Palmer et al., 2004). The main objective of ENSEMBLES was to produce 

high resolution probabilistic information on future changes in climate for Europe using 

a multi-model ensemble. In addition the project aimed to identify methods for 

quantifying, and where possible reducing, the uncertainties inherent in producing 

regional scale projections of future climate change. Throughout the project there was an 

onus on participants to evaluate model performance using quality controlled gridded 

datasets.  

6.3.1 ENSEMBLES 

To produce the dynamically downscaled climate scenarios used in this study, eleven 

different institutes (Table 6.10) ran a series RCMs for a common European domain at a 

horizontal spatial resolution of 25 km (0.22ę), taking lateral boundary conditions from 

one or more of five different AOGCMs (Table 6.11). The various model combinations 

employed - constituting different driving GCMs, GHG-emission scenarios and 

downscaling RCMs - were used to produce a multi-model ensemble of 19 dynamically 

downscaled climate scenarios (Figure 6.11).  

 

Acronym Institute  RCM  Reference 

 C4IRCA3 

 

The Community Climate Change Consortium for 

Ireland, Met Éireann 

 RCA3 Jones et al. (2004) 

CHMIALADIN Czech Hydrometeorological Institute ALADIN  Farda et al. (2010) 

CNRM-RM4.5   
Centre National de Recherches Meteorologique, 

Météo-France 
RM4.5 (ALADIN) Radu et al. (2008) 

DMI-HIRHAM5 Danish Meteorological Institute HIRHAM5 Christensen et al. (2006) 

ETHZ-CLM Swiss Federal Institute of Technology CLM Böhm et al. (2006) 

ICTP-REGCM3 
The Abdus Salam Intl. Centre for  

Theoretical Physics 
REGCM3 Giorgi & Mearns (1999) 

KNMI-RACMO2 The Royal Netherlands Meteorological RACMO2 Lenderink et al. (2003) 

METNOHIRHAM The Norwegian Meteorological Institute HIRHAM 
Haugen & Haakenstad 

(2006) 

METO-HadRM3Q0   
UK Met Office, Hadley Centre for   

Climate Prediction and Research 
HadRM3, (Q0) Collins et al. (2006, 2010) 

METO-HadRM3Q3   
UK Met Office, Hadley Centre for   

Climate Prediction and Research 
HadRM3, (Q3) Collins et al. (2006, 2010) 

METO-HadRM3Q16   
UK Met Office, Hadley Centre for   

Climate Prediction and Research 
HadRM3, (Q16) Collins et al. (2006, 2010) 

MPI-M-REMO   Max-Planck-Institute for Meteorology REMO Jacob (2001) 

OURANOSMRCC4.2.3   
Consortium on Regional Climatology  

and Adaptation to Climate Change 
CRCM Plummer et al. (2006) 

SMHI   
Swedish Meteorological and Hydrological 

Institute 
RCA Kjellström et al. (2006) 

RPN Recherche en Prévision Numérique GEMLAM Côté et al. (1998) 

Table 6.10 Institutions, model names and abbreviations of the ENSEMBLES RCM simulations used in this study. The Hadley 

Centre contributed a perturbed physics ensemble consisting of three different RCM simulations, each of which was tuned to have a 

different climate sensitivity: standard (HC-Q0), low (HC-Q3) and high (HC-Q16). The RPN (GEMLAM) and CHMI (ALADIN) 

institutes did not use their RCMs to downscale GCM data. 
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SRES A1B

BCM (NERSC)

HadCM3 

(Met Office)

ECHAM5 (MPI)

ARPEGE (CNRM)

CGCM3 (CCCma)

standard 

sensitivity (Q0)

high 

sensitivity (Q16)

low 

sensitivity (Q3)

HIRHAM (Met No.)

RCA (SMHI) 

HIRHAM (Met No.)

HadRM3 (Met Office)

CLM (ETHZ)

RCA3 (C4I)

HadRM3(Met Office)

REMO (MPI)

HIRHAM (DMI)

RACMO(KNMI)

RCA (SMHI)

REGCM3(ICTP)

RCA (SMHI)

HadRM3(Met Office)

ALADIN (CNRM)  

ALADIN (CNRM) 5.1

HIRHAM (DMI)

CRCM(OURANOS)

***  **

***  **

SRES A2 ECHAM5 (MPI) RCA3 (C4I)

SRES A2

HadCM3  (Met Office)

CSIROmk2(CSIRO)

CGCM2(CCCma)

SDSM ***

SDSM

SDSM ***

***

SRES B2

HadCM3  (Met Office)

CSIROmk2(CSIRO)

CGCM2(CCCma)

SDSM ***

SDSM

SDSM ***

***

Dynamically 
Downscaled Datasets

Statistically
Downscaled Datasets

**

***  **

***  **

***  **

***  **

***  **

***  **

***  **

***  **

***  **

*** 

***  **

**

**

**

**

Institute  Model Abb. Reference 

University of Bergen, Norway (NERSC) BCM Furevik et al. (2003) 

Canadian Meteorological Service (CCCma) CGCM3 Scinocca et al. (2008) 

Centre National de Recherches Meteorologique, Météo-France  

(CNRM) 
ARPEGE Gibelin & Déqué (2003) 

Max-Planck-Institute for Meteorology (MPI-M) ECHAM5 Roeckner et al. (2003) 

UK Met Office, Hadley Centre for Climate Prediction and Research  

(METO-HC ) 
HadCM3 (Q0) Gordon et al. (2000); Collins (2010) 

UK Met Office, Hadley Centre for Climate Prediction and Research  

(METO-HC ) 
HadCM3(Q3) Gordon et al. (2000); Collins (2010) 

UK Met Office, Hadley Centre for Climate Prediction and Research  

(METO-HC ) 
HadCM3 (Q16)  Gordon et al. (2000); Collins (2010) 

Figure 6.11 GCM-RCM/GCM-SDSM model combinations - or ómodel pathwaysô - (colour coded according to driving GCM) used to 

produce the downscaled data employed in this study. (***) mark those simulations which run until the year 2100. (** ) mark those 

scenarios for which the dynamical weighting scheme is formulated (Figure 6.24). Note that the HadCM3 GCM is run in three 

sensitivity configurations (Q0, Q16 and Q3). The abbreviations in brackets denote the main centre responsible for the corresponding 
model simulation. 

Table 6.11 Institutions, model names and abbreviations of the GCMs used as boundary conditions for the ENSEMBLES RCM 

simulations. The Hadley Centre contributed a perturbed physics ensemble consisting of three different versions of the HadCM3, each of 

which was tuned to have a different climate sensitivity: standard (HC-Q0), low (HC-Q3) and high (HC-Q16). 
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All institutes - with the exception of Met Éireann (C4I) - produced data for the A1B 

emission scenario only; this institute downscaled GCM data for both the A1B and A2 

SRES scenarios. As shown in Figure 6.11 not all of these model combinations or 

ómodel pathwaysô run up until the end of the current century - five model combinations 

run only to the year 2050. The RCMs used to dynamically downscale GCM data have 

also been forced using lateral boundary conditions from the ECMWF (European Centre 

for Medium Range Weather Forecasts) ERA-40 reanalysis dataset (1.125ę or 120 km) 

for the period 1961-2000 (Uppala et al., 2005).  

Where reanalysis data is employed the models are said to be forced using unbiased 

óperfect boundary conditionsô and generate data which is temporally consistent with 

observed climate series, allowing the sequencing of simulated and observed weather 

events to be compared (Maraun et al., 2010). Although a number of institutes ran their 

regional models at a resolution of both 25 and 50 km, the higher resolution simulations 

only were included in this study. In addition, only those climate scenarios downscaled 

using models which have also been run using ERA-40 reanalysis data were used. This 

was to ensure that model performance - with respect to the ability of each RCM to 

simulate the observed climate conditions of the study area - could be assessed. As a 

result the datasets used represent only a sub-set of the full suite of model simulations 

which are available from the ENSEMBLES data archive. With the exception of the 

RCM used by the Canadian based Consortium on Regional Climatology and Adaptation 

to Climate Change (OURANOS) (Laprise et al., 2003), a description of the models used 

in ENSEMBLES is provided by Jacob et al. (2007). 

The data produced by each model pathway shown in Figure 6.11 can be considered a 

plausible scenario of detailed regional change; by sampling across a range of different 

GCM-RCM combinations a comprehensive exploration of the model and uncertainty 

space can be conducted. The various model pathways employed allow different aspects 

of climate model uncertainty to be considered (e.g. model formulation, 

parameterization, climate sensitivity and GCM/RCM model combination); this is one of 

the key strengths of the ENSEMBLES dataset. Of note in Figure 6.11 is that the Hadley 

Centre ran three members from a perturbed physics ensemble (PPE) whereby the 

physical parameterizations in both their RCM (HadRM3) and GCM (HadCM3) were 

altered to reflect a different climate sensitivity (reference sensitivity: Q0; high 

sensitivity: Q16 and low sensitivity Q3). Also of note in Figure 6.11 is that in some 

instances different institutes have employed the same RCM. With respect to an 
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exploration of model uncertainty, this makes an allowance for the possibility that the 

same model may have had a different specification (e.g. number of levels, physics 

routines, and parameterization scheme) or have been optimized for use in a particular 

region. Differences in the model configuration may result in the same models producing 

contrasting projections of future change.  

There is however a number of limitations associated with the ENSEMBLES dataset. 

Firstly, the fact that the model projections are based on the A1B emission scenario 

means the usefulness of the dataset is limited when exploring this aspect of uncertainty. 

This is due to ENSEMBLES being focused primarily on addressing uncertainty in 

regional models rather than the full range of uncertainties which affect estimates of 

future climate change. Secondly, as shown in Figure 6.11, the individual model 

pathways are not entirely independent. In some instances the same RCM has been 

driven using boundary conditions from different GCMs (e.g. Met Éireann ran the RCA3 

model using the HadCM3 and ECHAM5 GCMs), conversely different RCMs have been 

forced using data from the same parent GCM (e.g. the Hadley centreôs HadCM3 GCM 

is used as boundary conditions for both the CLM and HIRHAM regional models). This 

lack of independence means an over-sampling of a particular region of the model space 

is likely to occur ï thereby introducing bias to the ensemble and any probabilistic 

projections of future change derived from it.  

Such bias may be addressed if every possible combination of a driving GCM and 

downscaling regional model were included in the ensemble; however, large gaps in the 

GCM-RCM matrix exist, a shortcoming related primarily to the computational costs 

associated with satisfying all model combinations. The dataset used in this study could 

be referred to as an ñensemble of opportunityò (Stone et al., 2007), whereby the model 

output is included simply by virtue of its availability rather than because it meets some 

predefined criteria. Ideally, models should be more systematically sampled with the aim 

of preserving independence; however, given the practical difficulties associated with 

producing large climate ensembles, this would be a difficult objective to achieve, 

particularly when trying to integrate the information from different institutes - as is the 

case with the ENSEMBLES dataset. Given that model projections represent such a 

valuable source of information, it is difficult to justify excluding certain ensemble 

members on the basis that they lack independence. The ability to factor in independence 

is one of the advantages perturbed physics ensembles have ï albeit that they are 

constrained to sampling a much narrower region of the uncertainty space. It must be 
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recognized that despite its shortcomings, the ENSEMBLES dataset does allow inter-

model variability to be considered and facilitates an exploration of different aspects of 

model and climate uncertainty; as such the dataset offers clear advantages over relying 

on a single realization of future climate. It also represents an advance over using climate 

ensembles which are limited in terms of what aspects of uncertainty they can address.  

For this study, downscaled (ERA-40 and GCM) daily precipitation (kg m
-2

 s
-1
) and 2 m 

temperature (K) (maximum and minimum) were obtained from the ENSEMBLES data 

distribution centre - accessed via www.ensembles-eu.org. Once downloaded the data for 

nine grid boxes, representing the model domain of interest, were re-projected onto a 

common grid projection and subsequently extracted. The catchment was found to be 

overlain by two separate grid-boxes (Figure 3.1). Following Leander and Buishand 

(2007) precipitation and temperature for the catchment were calculated as a weighted 

average of the values from each grid box, the weights were formulated based on the 

proportion of the catchment falling within a specific grid box. 

 

6.3.2 ERA-40 RCM evaluation  

Christensen et al. (2008) state that the inability of RCMs to simulate current-day 

climate accurately is one of the key sources of uncertainty in climate change impact 

studies. It is therefore important that some analysis of RCM skill is conducted using 

historical observations prior to employing their output in any impact assessment. 

Temperature and precipitation are both of critical importance for determining the 

potential hydrological response of the Burrishoole catchment to changes in climate, thus 

it is important that the regional models used are capable of simulating these variables 

under current-day climate with a certain degree of skill. To this end the RCMs listed in 

Table 6.10 were assessed based on their ability to simulate observed climate conditions 

in the catchment. Although some of the RCMs examined were not used to downscale 

GCM data, they are included in the analysis in order to provide a comparison of model 

skill. 

Examining the performance of regional models when driven using the same reanalysis 

data allows any bias in the RCMs to be isolated and ensures parity when assessing the 

performance of competing models. It also removes the potential for any biases inherited 

from the driving GCM to act as a confounding source of error when attempting to 

evaluate the performance of individual RCMs. Additionally, in a reanalysis driven 
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model the sequence of synoptic weather will be temporally consistent with observed 

weather patterns, as a result a direct comparison can be made between simulated and 

observed weather events. However, as highlighted by Maraun et al. (2010), 

discrepancies in how small scale variability is generated in RCMs - with respect to the 

true system processes - may lead to inconsistencies in the simulations.  

Given the wide range of criteria and model diagnostics which can be applied, providing 

an accurate and well rounded assessment of model performance is a challenging task. 

For example, regional models may be evaluated based on their ability to reproduce 

large-scale circulation patterns or different modes of variability (e.g. North Atlantic 

Oscillation). They may also be appraised based on their skill at reproducing spatial 

patterns of surface climate and/or their ability to capture the variability in observed 

climatological series over a range of time-scales (from the seasonal to the decadal) or 

frequencies. Models may also be evaluated based on whether they capture particular 

weather events or extremes of conditions.  

In this study the metrics used to assess model skill focused on the performance of each 

regional model at simulating observed precipitation and temperature in the catchment 

only; thus, how well they reproduced the spatial variability of either variable ï or indeed 

other variables ï was not examined. In this respect a model was considered skilful if it 

captured temporal patterns of variability in the observed catchment climatology; 

however, it may have performed poorly at simulating the temporal and spatial 

characteristics of climate for other regions. How well the models performed over larger 

spatial domains or their ability to simulate different modes of circulation and large-scale 

variability were aspects of model skill which were also not explored.  

For a model to be considered skilful it should ideally reproduce temporal and spatial 

patterns of variability in surface climate across disparate scales. It should also capture 

important aspects of atmospheric and climate system behaviour. In light of this the 

potential shortcomings of the evaluation criteria employed in this study are 

acknowledged; however, given that the catchment is taken as the sole bounded unit of 

most importance in this study, it takes precedence with respect to model performance 

over alternative regions or larger spatial domains. In addition, given that temperature 

and precipitation are the most significant variables in terms of climate change impacts, 

it was important that model skill in reproducing these variables was considered above 

all others.  
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Given that a model which is shown to be skilful in one aspect of performance cannot be 

assumed to be proficient in others, it is more pragmatic to assess each model 

performance using a range of different criteria; to address this several different 

evaluation metrics were employed in this study. It has been pointed out that when 

evaluating the performance of RCMs the observed dataset used should be of the same 

spatial resolution as the model output (Maraun et al., 2010). Comparing the gridded 

model data with point scale observations may lead to the misrepresentation of errors 

arising from the fact that the model output represents an areally averaged value of 

surface conditions and as such will have a lower variance. As a means of evaluating 

model performance the E-OBS gridded observational dataset was considered for use in 

this study (Haylock et al., 2008); however, when the gridded climate series overlying 

the catchment was examined it did not correspond well with point-scale observations 

from the Furnace weather station ï even allowing for the fact that the E-OBS data is 

spatially averaged. This may be because a small number of synoptic stations from 

Ireland were used when formulating the dataset. Hofstra et al. (2010) indicate that there 

are substantial biases in the E-OBS dataset over regions where the underlying station 

density is low. In addition, given the heterogeneous nature of precipitation in the 

catchment, and that point scale data is used to drive the hydrological models, it was 

important that a true, non-smoothed estimate of model performance was used as a 

benchmark. A number of studies have flagged the possibility of biases in the E-OBS 

data as a reason for some metrics returning low skill scores when the dataset is used for 

model evaluation. This is an issue which has been found to be of particular relevance 

when attempting to quantify how well models capture extreme events (Hofstra et al., 

2010; Kjellström 2010).  

In the field of short-term weather-forecasting a wealth of well tested and robust 

methodological approaches exist for validating model forecasts (e.g. Barnston, 1992; 

Murphy & Wilks, 1998; Jolliffe & Stephenson, 2003; Casati et al., 2008). Given that the 

downscaled reanalysis data is temporally consistent with the observations, many of 

these methods are directly transferrable to the assessment of regional model skill. It 

must be recognized that there is a degree of subjectivity surrounding which aspects of 

model performance to assess. In addition, given the wide range of evaluation metrics 

which are available, there is also a degree of ambiguity associated with which are the 

most appropriate metrics to employ. Whilst some tests are more widely used and held in 

higher esteem than others, in the field of numerical weather prediction (NWP) there are 

no universally recognized optimum set of metrics. Essentially the suitability of a 
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particular test must be determined based on the characteristics of the data available and 

the aspects of model performance which are considered most important. 

The metrics used to assess model performance in this study are outlined in Table 6.12. 

The criteria employed variously quantify model error, bias and association; Murphy 

(1993) highlights these as the most important indicators of forecast quality. As both 

have different connotations regarding model skill, care was taken to use metrics which 

drew a distinction between random and systematic model error. The statistical 

distribution of precipitation (i.e. dichotomous, skewed and discontinuous), along with 

the relatively high level of noise inherent in the data, pose a number of difficulties when 

attempting to accurately quantify a modelôs ability to simulate this variable. For 

example, many of the skill scores (typically involving squared errors) used to describe 

continuous variables are sensitive to data which is not normally distributed. To 

overcome this diagnostics used in NWP to verify quantitative precipitation forecasts 

(QPF) were employed. A number of these metrics are based on categorizing 

precipitation events based on predefined thresholds. Contingency tables are 

subsequently used to estimate model skill using the various categorical type metrics 

available (Table 6.12).  

 

Given that temperature is a continuous normally distributed variable, well established 

measures for assessing model performance with respect to this variable exist. It is 

Mean Error or Bias 

(Bias) 
ὓὉ  

ρ

ὔ
Ὓ ὕ  

Average difference between the simulated and observed values - a 

measure of systematic model error. 

Mean Absolute 

Error (MAE) 
ὓὃὉ  

ρ

ὔ
ȿὛ ὕȿ Average magnitude of the error 

Mean Squared 

Error (MSE) 
ὓὛὉ 

ρ

ὔ
Ὓ ὕ  

Average squared magnitude of the error - a measure of total model 

error. 

Root Mean 

Squared Error 

(RMSE) 
ὙὓὛὉ

ρ

ὔ
Ὓ ὕ  

Average squared magnitude of the error - gives greater weight to 

larger errors 

Pearsonôs 

correlation 

coefficient (r) 

Ò
В Ὓ ὛӶὕ ὕ

В Ὓ ὛӶ В ὕ ὕ

 
Measures the degree of linear association between the simulated and 

observed values, independent of the absolute bias. 

 

Standard Deviation 

of the Error (STD 

Error) 
34$ %ÒÒÏÒ

ρ

ὔ ρ
Ὡ ὩӶ 

Square root of the average squared difference between the model 

error Ὡ Ὓ ὕ  and the mean model error ὩӶ. A measure of 

random model error 

 

Variance of the 

Error (Var Error) 
6!2 %ÒÒÏÒ

ρ

ὔ ρ
Ὡ ὩӶ 

The average squared difference between the model error Ὡ Ὓ
ὕ  and the mean model error ὩӶ. A measure of random model 

error 

 

Frequency Bias (F 

Bias) ὊὄὭὥί
ὬὭὸίὪὥὰίὩ ὥὰὥὶάί

ὬὭὸίάὭίίὩί
 

Gives the ratio of the simulated rain frequency to the observed rain 

frequency. Perfect = 1; overestimating >1; underestimating <1. 

Probability of 

Detection (POD) 
ὖὕὈ

ὬὭὸί

ὬὭὸίάὭίίὩί
 

Measures the fraction of all observed events which were correctly 

predicted. Range 0 to 1 with 1 being a perfect score. 

Probability of  

False Detection 

(POFD) 

ὖὕὊὈ
ὪὥὰίὩ ὥὰὥὶάί

ὧέὶὶὩὧὸ ὶὩὮὩὧὸὭέὲίὪὥὰίὩ ὥὰὥὶάί
 

Measures the fraction of observed non-which were simulated to be 

events. Range 0 to 1 with 0 being a perfect score. 

Table 6.12 Metrics used to evaluate model performance. 
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widely acknowledged that model skill varies both on a temporal and regional basis, in 

addition some evaluation criteria (e.g. correlation coefficient) can be artificially inflated 

if they are applied to the annual series (i.e. capture annual trends), to address both of 

these issues model performance was assessed on a seasonal basis.  

A number of the metrics outlined in Table 6.12 quantitatively assess differences in the 

respective means of the observed and modelled data; a number of others examine how 

well the models reproduce observed patterns of variability. The former describes the 

systematic bias in the model output whilst the latter is indicative of the random or non-

systematic model error. Both systematic bias and random error contribute to the total 

error evident in model simulations. Using algebraic manipulation it can be demonstrated 

that the mean squared error - or the total model error - can be decomposed into:  

ὓὛὉ ώ έӶ ί ί ςίίὶ  

where ὶ  is product-moment correlation between the observed and model simulated 

series; ί and ί are the standard deviations of the marginal distribution estimated from 

the model output and observations respectively. Finally the first term in the equation 

refers to the square of the mean error (Murphy, 1988). This can be re-written in a way 

relative to the metrics outlined in Table 6.12, whereby the mean squared error (MSE) is 

simply the product of the square of the model bias (Bias) and the variance of the error 

(VAR Error) - calculated based on the differences between the simulated and observed 

series.  

ρ

ὔ
Ὓ ὕ  

ρ

ὔ
ȿὛ ὕȿ

ρ

ὔ ρ
Ὡ ὩӶ  

Here ὔ represents the number of elements in the series, Ὓ and ὕ are the simulated and 

observed series respectively, Ὡ is the error or difference between the modelled and 

observed datasets, and ὩӶ is the mean model error. Figure 6.12 illustrates how total, 

random and systematic errors are manifest in the simulated data. Systematic model error 

is characterised as being a constant offset or bias from a specified reference point - 

typically represented using an observed data series. Random error appears as an 

inconsistent variation in the model over time and/or space; it is manifest in the model 

being unable to reproduce observed patterns of variability. In NWP systematic errors - 

which are assumed to remain time-invariant - can be corrected using relatively simple 

post-processing techniques. This is in contrast to random errors which are considered to 

be unpredictable and difficult to correct. In this respect random error may be regarded 
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as less desirable and as such the metrics used to assess it may provide a more 

informative picture of model performance. In the context of modelling changes in the 

climate system, where forcing conditions are likely to change considerably over time, 

and model projections are made on timescales ranging from the decadal to the 

centennial, systematic error may be more difficult to remediate, particularly as an 

assumption in the stationarity of the model bias must be made if any correction is 

applied.  

 

 

The following sections document the ability of the RCMs listed in Table 6.10 to 

simulate observed temperature and precipitation in the catchment. Model performance 

is assessed based on a comparison between the output from ERA-40 driven model 

simulations and point-scale observational data from the Furnace weather station. For 

consistency model performance is generally assessed over a 30 year period; however in 

order to make full use of the information available a longer period (1961-2000) was 

chosen for this study. 

 

6.3.2.1 Minimum temperature  

Figure 6.13(a) and 6.13(b) show the MSE, squared Bias and variance of the error for 

each ERA-40 model simulation calculated on a seasonal basis. Of all models considered 

the ALADIN regional model run by Météo-France (abbreviated as CNRM-RM4.5) was 

generally the worst performing model. For each season it returned the highest values for 

the MAE and VAR Error. Figure 6.13(a) and 6.13(b) indicate that if the bias were to be 

used as the sole measure of model skill it would suggest that the Météo-France RM4.5 

model is among the best performing models, this illustrates the need to consider 

multiple aspects of performance when evaluating the overall model skill. In addition it 

highlights the bias which may be introduced if random model error is not considered as 

a measure of model skill.  

Figure 6.12 Total error is shown as the sum of the systematic and random components. Different metrics can be used to assess each 

type of model error. (Source: http://www.meted.ucar.edu/nwp/model_derivedproducts/navmenu.php?tab=1&page=4.4.0, accessed 

24/11/2011) 

 


