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Abstract 

This thesis originates with the development and characterisation of polypyrrole 

(PPy), formed in the presence of a large protein, bovine serum albumin (BSA).  The 

BSA was incorporated into the polymer film during electropolymerisation from an 

aqueous solution of pyrrole monomer, BSA and NaCl as a supporting electrolyte.  

The presence of the BSA within the polymer film was confirmed using cyclic 

voltammetry, electrochemical impedance spectroscopy and scanning electron 

microscopy (SEM) coupled with electron dispersive X-Ray analysis (EDX).  

Optimum conditions for the growth of the polypyrrole-bovine serum albumin film 

(PPy-BSA) were obtained by varying the concentration of the monomer and BSA, 

the applied potential and the polymerisation charge.  Highly adherent polymers were 

formed at 0.70 V vs. SCE in a 0.10 mol dm
-3

 NaCl supporting electrolyte  with high 

concentrations of pyrrole (0.5 mol dm
-3

) and low concentrations of BSA (< 200 µL).  

The presence of the BSA within the polymer film greatly reduced the electroactivity 

of the film.   

The urease enzyme was also immobilised in the polypyrrole film.  The modified 

polypyrrole film was formed at 0.70 V vs. SCE from an aqueous solution of pyrrole 

and urease (4000 mg dm
-3

) in the presence of 0.10 mol dm
-3

 NaCl as a supporting 

electrolyte.  The presence of urease within the polypyrrole-urease (PPy-Urs-Cl) film 

was confirmed using SEM and EDX and the PPy-Urs-Cl was then investigated as a 

sensing material for urea.  The PPy-Urs-Cl film exhibited a reasonable sensitivity 

towards urea of 5.41 µC µM
-1

 in the 1.0 x 10
-5 

to 1.0 x 10
-3

 mol dm
-3

 urea 

concentration range.  Sulphonated-β-cyclodextrin (SCD) was then incorporated into 

the polymer to give a PPy-Urs-SCD film.  This PPy-Urs-SCD polymer film was 

investigated as a sensing material for urea in a phosphate buffer solution.  It was 

found that the SCD dopant greatly enhanced the detection of urea, with detection of 

urea in the 1.0 x 10
-10

 mol dm
-3

 region and a sensitivity of 46.09 µC µM
-1

.   

A wide variety of interfering compounds was examined to establish their effect, if 

any, on the detection of urea using the modified PPy-Urs-SCD.  The interference 

from the common biological interfering compound, ascorbic acid, was effectively 

blocked and no interference was observed in the presence of common salts, such as 

ammonium chloride.  Interference was observed in the presence of uric acid, 
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hydroxyurea, thiourea and creatinine.  The urease enzyme and the SCD are large, 

giving rise to porous PPy-Urs-SCD films and this allows access of the interfering 

compounds to the electrode surface.  However, this interference was reduced by 

depositing a layer of the more compact PPy-Urs-Cl followed by the PPy-Urs-SCD 

film.   

A detailed investigation into the host-guest complexation properties of SCD with 

urea, and the interfering compounds, was performed using cyclic voltammetry.  

Clear evidence for complexation between SCD as the host molecule and urea as the 

guest molecule was obtained, which accounts for the high sensitivity in the detection 

of urea.  No inclusion complex was formed between urea and the α-SCD or between 

SCD and the interfering compounds.   
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“The whole problem with the world is that fools and fanatics are 

always so certain of themselves, but wiser people so full of doubts.” 

- Bertrand Russell 
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1.1 Introduction  

The objective of this thesis is to develop a polypyrrole based sensor for the detection 

of urea.  Urea is an important molecule in both the medical and agricultural 

industries, and enhanced levels of urea in the body can be an indication of renal 

failure, hence, it is important to be able to monitor urea concentrations simply and 

readily.   

In this chapter, an introduction to conducting polymers, primarily polypyrrole, and 

their uses is given.  This is followed by an introduction to supramolecular systems 

with a particular emphasis on cyclodextrins and their inclusion complexation.   

Finally, an overview of serum albumins and a detailed introduction to urea and the 

sensing devices used to detect urea is supplied.  The second chapter details the 

relevant experimental techniques and apparatus employed, along with an overview 

of the theories and related equations used in this thesis.   

The results and main findings are presented and discussed in Chapters 3 – 6.  In 

Chapter 3, the formation and characterisation of a polypyrrole modified film doped 

with a large protein, bovine serum albumin (BSA), is investigated.  The PPy-BSA 

film is successfully formed and the optimum parameters are obtained by varying the 

polymerisation potential, concentration of pyrrole and concentration of BSA.  The 

PPy-BSA film is then examined as a sensor for the amino acid tryptophan and, 

additionally, for ascorbic acid.   

In Chapter 4, results are presented on the incorporation of the urease enzyme into the 

polymer matrix during electropolymerisation in a chloride-containing solution, 

forming PPy-Urs-Cl.  This was then investigated as a sensor for urea, giving 

reasonable detection limits in the 5.0 x 10
-5

 mol dm
-3

 region.  In order to investigate 

the effects of the dopant anion on urea detection, the dopant was altered from a 

simple chloride anion to a sulphonated-β-cyclodextrin (SCD), forming PPy-Urs-

SCD.  The SCD is a large anionic species which contains between 7-11 sulphonated 

(SO3
-
) groups.  The SCD dopant greatly enhances the detection of urea, with 

detection of urea in the 1.0 x 10
-10

 mol dm
-3

 region.   

In Chapter 5, an investigation into the effects of interfering compounds on the 

detection of urea using the PPy-Urs-SCD polymer film is carried out.  Two common 
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interfering compounds in biological systems are ascorbic acid (AA) and uric acid 

(UA); these are investigated along with the biological molecule, creatinine.  

Additionally, the effects of two compounds that are structurally similar to urea, i.e., 

hydroxyurea and thiourea, are investigated.  The PPy-Urs-SCD polymer film 

successfully repels the anionic ascorbic acid; hence, no interference occurs in the 

presence of AA.  However, the other interfering compounds cause an increase in the 

oxidation charge arising from the detection of urea, which is surprising as most 

interfering compounds tend to foul or block the electrode surface, thus diminishing 

the obtained currents and oxidation charges.   

Finally, in Chapter 6, results are presented and discussed on the formation of a 1:1 

inclusion complex between urea and the sulphonated-β-cyclodextrin.  The formation 

of an inclusion complex between urea and the sulphonated-α-cyclodextrin is also 

investigated.  Additionally, the formation of inclusion complexes between 

sulphonated-β-cyclodextrin and each of the interfering compounds is examined.  An 

inclusion complex only appears to form between urea and the sulphonated-β-

cyclodextrin and, not with the sulphonated-α-cyclodextrin.  This indicates that the 

cavity diameter is very important in the formation of inclusion complexes.  No 

inclusion complex is formed between the sulphonated-β-cyclodextrin and the 

interfering compounds.   

 

1.2 Conducting Polymers  

1.2.1 What is a Conducting Polymer?   

Everyday polymers, which are more commonly known as plastics, are composed of 

simple repeating molecule units called monomers.  These names come from the 

Greek words ‘poly’ meaning ‘many’, ‘mono’ meaning ‘single’ and ‘mer’ meaning 

‘part’.  Polymers are well known for their insulating properties, indeed it is this 

characteristic that has led to their wide usage in the electronics and packaging 

industries
1
.   

Conducting polymers, on the other hand, differ greatly from these insulating 

polymers because, as their name suggests, they are intrinsically conducting
2
.  The 

development of these polymers is largely due to the work of three scientists:  A. J. 
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Heeger, A. G. MacDiarmid and H. Shirakawa, who received the Nobel Prize in 

Chemistry in 2000 for their work on polyacetylene, Figure 1.1, and other conducting 

polymers.  Conducting polymers date back to the early 1900s with reports on ‘aniline 

black’ and ‘pyrrole black’.  However, at this time the synthetic routes only produced 

black powders and much of this early work was discarded
3
.  Significant 

developments came about in 1977 when MacDiarmid et al.
4
 reported a 10

6
-fold 

increase in the conductivity of polyacetylene doped with iodine.  Although the first 

polymerisation of acetylene was performed earlier in 1958 by Natta and co-workers
5
,
 

this material had poor processability and attracted little interest, until the work of 

MacDiarmid and co-workers
4
.  Despite the metal-like conductivity of polyacetylene, 

it has poor thermal stability and accordingly other conducting polymers with better 

stability and processability have received more attention.   

Conducting polymers are made up of carbon and hydrogen, along with heteroatoms 

such as nitrogen or sulphur.  All conducting polymers have π-conjugation across the 

polymer backbone; typical conducting polymers include polyaniline (PANi), 

polypyrrole (PPy), polythiophene and polyacetylene.  These are shown in Figure 1.1.   

 

 

(a)         (b)  

 

 

 

 

(c)      (d)  

 

 

 

Figure 1.1:  Structures of (a) polyaniline, (b) polypyrrole, (c) polythiophene and (d) 

polyacetylene all in their dedoped states.   
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A number of approaches have been used to explain the origin of the conductivity in 

conducting polymers.  Bredas and Street
6
 used the band theory of solids to initially 

determine the conductivity classification of conducting polymers back in 1985.  In 

general, materials can be classified into three categories depending on their electrical 

conductivity: non-conductors/insulators, semi-conductors and conductors, based on 

the band gap energy model.  In this analysis there are two energy bands, a valence 

band and a conductance band.  A valence band corresponds to the occupied 

electronic energy levels and a conductance band is equivalent to the unoccupied 

energy levels.  The difference in energy between the top of the outermost valence 

band and the bottom of the conduction band is referred to as the band gap, Eg, as 

shown in Figure 1.2.   

Conductivity arises due to the transition of electrons from the valence band to the 

conductance band.  For conductors, the valence band overlaps with the conduction 

band, i.e., Eg ≈ 0 eV, and so the conduction band is now partially filled with 

electrons.  For semi-conductors there is a small gap between the valence and 

conduction bands, where Eg ≈ 1.0 eV; as a result the electrons can be excited from 

the valence band into the conduction band at room temperature.  However, for 

insulators, the electrons in the valence band are separated from the conduction band 

by a large band gap, where Eg ≥ 10 eV, and consequently it is difficult to excite the 

electrons from the valence band into the conduction band.  Bredas and Street
6
 

established that the band gap, Eg, for conducting polymers was in the region of 1.0 

eV, and as such, conducting polymers were classified as semi-conductors.  However, 

the conductivity associated with conducting polymers cannot be explained entirely 

using this band theory model.   
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Eg 
No Eg 

Eg 

 

 

 

 

 

 

  

 Insulator  Semi-conductor  Conductor  

Figure 1.2:  A schematic illustrating the band gap energy model, showing the band gap 

energy, Eg, for insulators, semi-conductors and conductors.    

It is now generally accepted that the conducting nature of the polymers arises from 

the formation of various redox states upon oxidation of the conjugated backbone.  

This is due to the formation of mobile charge carriers, which are termed polarons 

and bipolarons
6,7,8

.  In the case of polypyrrole, a polaron is formed upon removal of 

an electron from the conducting polymer chain.  This occurs as the polymer is 

oxidised giving a free radical and a positive charge, which are coupled together via 

local resonance of the charge.  The combination of the radical and the charged site is 

known as a polaron.  These charges are further stabilised and localised on the chain 

by interacting with an added dopant, a charged species of opposite sign that interacts 

electrostatically with the polaron.  In this way, the polymer oxidation can be viewed 

as p-doping, giving a radical cation and a negatively charged dopant.  As the 

oxidation continues, bipolarons are formed, which are lower in energy than two 

separate polarons
9
.  The formation of a bipolaron is possible because the stabilisation 

energy gained by the interaction with the distorted lattice is larger than the Coulomb 

repulsion between the two polarons.  These polarons and bipolarons are mobile due 

to the conjugated polymer backbone, and it is the movement of these charges along 

the backbone that gives rise to the electrical conductivity of the polymer.  In 

particular, the polarons and bipolarons can move along the polymer chains 

(intrachain transfer) if surrounded by an electrostatic field of closely distributed 

Conduction 

band 

Valence 

band 

Conduction 

band 

Conduction 

band 

Valence 

band 

Valence 

band 
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ionic dopants.  However, interchain transfer is also possible where the charge 

carriers transfer from chain to chain in order to cover distances longer than an 

average molecular bond length
9
.   

In terms of the band gap energy model, the polaron is equivalent to the generation of 

localised energy states in the forbidden energy gap, with the lower energy state being 

occupied by single unpaired electrons.  When a bipolaron is generated this gives rise 

to more electronic energy states and, as more of these are generated, the upper and 

lower bipolaron bands eventually merge with the conductance band and valence 

band to produce partially filled bands that are approaching metallic-like 

conductivity.  As a result, the smaller the energy gap is, the more conducting the 

polymer becomes.   

As already stated, in order to maintain polymer neutrality, the charges generated 

along the polymer backbone during the oxidation or reduction of the polymer are 

compensated for by the incorporation of anionic or cationic species into the polymer 

matrix, as shown in Equations 1.1 and 1.2.  Here P represents the polymer in its 

neutral state, P
n+

 is the polymer in the oxidised state, P
n-

 is the polymer in the 

reduced state, X
+
 is any cation, F

-
 is any anion, and n is the number of moles of the 

salt.  The anionic and cationic species that are incorporated into the polymer are 

referred to as dopants.   

Anionic Doping nXnFPnXFP n  1.1  

 

Cationic Doping nFPnXnXFP n  1.2  

 

Both the anionic and cationic doping processes enhance the conducting properties of 

the polymer since the conductivity increases with the doping level due to the creation 

of more mobile charges along the polymer backbone3.  However, there is a 

maximum doping level that varies for the different conducting polymers, and also 

with different dopants.  For example, the dopant may contribute to 20% to 60% by 

mass in polypyrrole, depending on the dopant used
10

.  As a result, the conductivity of 

the polymer is not only dependent on the redox state of the polymer but also on the 

degree of doping.   
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1.2.2 Formation of Conducting Polymers 

The synthesis of conducting polymers can be carried out in two main ways, using 

either chemical synthesis or electrochemical methods
9,11

.  In either case, the initial 

step of the polymerisation involves the oxidation of the monomer to generate a 

radical cation.  These highly reactive radical cations then react with each other, or 

with a neutral monomer, to form a radical dimer, which in turn is transformed to a 

trimer and longer chain lengths.   

Chemical synthesis is achieved when the monomer is exposed to a relatively strong 

oxidising agent such as ammonium peroxydisulphate, permanganate or dichromate 

anions, ferric ions or hydrogen peroxide
12

.  This is typically carried out in solution, 

although it can also be carried out directly onto a surface, using a technique known 

as vapour phase polymerisation
13

.  This involves coating the desired surface with the 

oxidising agent and then subsequently treating the surface with the vapour of the 

monomer, which results in the deposition of the polymer film exclusively at the 

surface of preference.  The chemical synthesis of a polymer in solution requires the 

polymer to be precipitated from a monomer solution upon the addition of an 

oxidising agent.  This typically results in bulk polymerisation.  The rate of 

polymerisation can be controlled by varying the reaction conditions, for example, 

varying the concentration of oxidant and monomer, varying the reaction temperature, 

and appropriately treating the surface to be coated by the polymer
14

.   

Electrochemical polymerisation differs from chemical polymerisation, in that 

following radical generation upon oxidising the monomer, propagation occurs by 

radical-radical recombination, which causes the loss of two electrons and hence the 

formation of a dimer.  Oxidation of this dimer then generates an oligomeric radical 

which combines with other oligomeric radicals to generate a polymeric structure.  

Electrochemical polymerisation occurs when a suitable anodic potential or current is 

applied to a conducting substrate that has been immersed in a monomer electrolyte.  

A schematic representation of the electrochemical cell set up required for 

electropolymerisation is given is Section 2.5.  A wide range of electrochemical 

techniques can be used for electropolymerisation, but galvanostatic (constant 

current), potentiostatic (constant potential) and potential sweeping techniques, such 

as cyclic voltammetry, are the methods that are generally employed
15

.  Depending on  
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the technique used, a range of polymer morphologies can be achieved.   

Electrochemical polymerisation, particularly potentiostatic and galvanostatic modes, 

has several advantages over chemical polymerisation because the precipitated 

polymer is deposited onto a conducting surface.  Hence, an adherent polymer can be 

grafted directly onto an electrode surface in one simple step.  The film thickness can 

be controlled by monitoring the charge passed during deposition, resulting in more 

reproducible films
16

, and the films formed have fewer impurities as harsh oxidising 

agents are not used.  In addition to this, it is also possible to perform in situ 

characterisation of the polymer while it is growing
17

.  However, electrochemical 

polymerisation is limited to monomers which can be oxidised on the application of a 

potential to form the radical ion intermediates for polymerisation
18

, whereas all 

polymers can be prepared using chemical synthesis.   

 

1.2.3 Applications of Conducting Polymers  

There has been a growing interest in conducting polymers in the last number of years 

due to their wide range of potential applications in areas such as rechargeable 

batteries
19,20

, electronics, electrochromic displays
21

 and optics, to name just a few.  

More recently, the ion exchange properties of conducting polymers have been 

utilised to develop sensors.  Conducting polymers doped with small mobile anions 

are known to have anion exchange properties, whereas conducting polymers doped 

with large immobile anions have cation exchange properties.  This has resulted in the 

formation of not only sensors, but actuators
22,23,24,25

, drug delivery systems
26

 and 

metal ion transporters
27

.  In addition to this, conducting polymers have also been 

used as sensors in environmental applications, in both aqueous and gaseous based 

systems, and they are also known for their use in amperometric sensing to detect 

hazardous gases and vapours.  Conducting polymers have also been used extensively 

for various electrochromic and optoelectronic devices.  This is due to the optical 

properties of the polymer changing in the ultraviolet-visible (UV-Vis) and the near 

infrared (NIR) regions upon the introduction of dopants into the polymer.  In 

addition to this the electrical properties of the polymer are also increased
28

.   
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1.3 Polypyrrole  

Polypyrrole (PPy), Figure 1.3, is synthesised from the pyrrole monomer, which 

consists of a 5-membered ring, containing a nitrogen (N) heteroatom.  As with other 

organic molecules, pyrrole polymerisation occurs upon oxidation of the monomer, 

which forms a conjugated polymer chain with overlapping π-orbitals and a positive 

charge along the polymer backbone
29

.  PPy was first synthesised chemically in 1916 

by the oxidation of the pyrrole monomer using hydrogen peroxide
30

, which yielded 

an amorphous black powder known as ‘pyrrole black’.  It wasn’t until many years 

later that the first electrochemical synthesis of polypyrrole was reported by 

Dall’Ollio et al.
 31

 in 1968.  Dall’Ollio et al.
31

  used an aqueous solution of pyrrole 

and sulphuric acid to electrosynthesise a layer of PPy on a platinum electrode.  Since 

then, a wide variety of substrates and solutions have been used to deposit polypyrrole 

electrochemically
32,33,34

.   

There have been a lot of investigations into polypyrrole as it has a large surface area 

owing to its fibrous structure and it is a high capacity electrode material
33

.  Its ease 

of preparation, inherent electrical conductivity and high stability in both aqueous 

systems and in air make PPy a promising interfacial material
33,34

.  As a result, it is 

one of the most intensively used and studied polymers and accordingly it is an ideal 

candidate for a number of advanced technologies such as sensors
35,36

.  An additional 

feature of PPy is that it forms a biologically compatible polymer matrix
37

, which has 

led to its use in a broad number of biomedical fields including biosensors
38,39

, tissue 

engineering
40,41 

and implantable biodevices
42

.  Another interesting and prominent 

property of PPy is its ability to switch its redox behaviour.  This has resulted in the 

design of ion-selective electrodes, electrochromic displays, solar cells, drug delivery 

systems and actuators
43,44,45,46,47,48,49

.   

 

 

 

Figure 1.3:  Structure of PPy in the neutral state.   
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1.3.1 Synthesis of Polypyrrole  

Like all conducting polymers, polypyrrole can be synthesised by either chemical or 

electrochemical methods.  One of the easiest and most common ways of chemically 

synthesising PPy in large quantities is in solution.  This involves exposing the 

pyrrole monomer to a strong oxidising agent, which yields a black precipitate.  In 

chemical polymerisation, the propagation step is controlled by the fact that the 

monomer is in large excess of the radical cation that is formed upon oxidation, which 

then attacks another monomer molecule generating a dimer radical cation which 

becomes further oxidised.  Because of this, and coupled with the loss of hydrogen, 

the polymer chain grows until termination, Figure 1.4.   

Common oxidants that have been used for pyrrole polymerisation include ferric 

chloride, ferric perchlorate and ammonium peroxydisulphate
12

.  Several other 

oxidising agents, including organic acids, have been employed; however, films 

generated from these oxidants tend to exhibit lower conductivity
50

 and as such, the 

salts of transition metal ions are generally used instead.  A major disadvantage of 

polymerising pyrrole in this way is that the PPy is produced in the bulk of the 

solution and hence, only some of the PPy will cover the surface of any material that 

is introduced into the solution.   

Another way of chemically synthesising PPy is by directly depositing the polymer 

film onto a surface.  This can be achieved using a process known as vapour phase 

polymerisation.  This involves applying the oxidant to the surface using a solvent 

coating process, then exposing the coated surface to the vapour of the monomer.  

This vapour phase polymerisation was initially described by Mohammadi et al.
51

, 

where the authors used FeCl3 or H2O2 as oxidants in order to form PPy films.  Since 

then the method has been altered slightly, with Fe(III) p-toluenesulphonic acid and a 

range of other Fe(III) sulphonates now generally being used as the oxidising 

agents
52,53

.   
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Figure 1.4:  The mechanism for the chemical synthesis of polypyrrole.   

The electrochemical polymerisation of pyrrole occurs on the application of an anodic 

potential or current to a conducting substrate that has been immersed in a suitable 

electrolyte containing the monomer and the desired doping salt.  This can be 

achieved using various electrochemical methods, e.g., potentiostatic
54

, 

potentiodynamic
55

 or galvanostatic
56

 methods.   

There is still some debate on the exact mechanism of electropolymerisation
57,58,59

, 

but the mechanism proposed initially by Diaz and Castillo
60

 and later explained by 

Henry et al.
61

 is generally taken to be the accepted mechanism, and is the most 

commonly encountered mechanism in the literature.  This mechanism is summarised 

in Figure 1.5.  This process involves the one-electron oxidation of the pyrrole 

monomer (1a), by which a radical cation is generated.  This takes place at the 

electrode or substrate surface.  The oxidation of pyrrole at the electrode surface is 

considered to be faster than the diffusion of the monomer from the bulk of the 

solution to the interface.  In this way the monomer at the interface is predominantly 

present as a radical cation formed at potential E1.  This high concentration of radical 

cations gives rise to radical-radical coupling.  This occurs at the α-position of each 

radical, forming a radical dication (1b), which subsequently loses two protons to 

generate a neutral dimer (1c).  This dimer becomes further oxidised to generate 

another radical species (2a), which then couples with another radical monomer to 
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form a trimer (2b and 2c).  The propagation (ia, ib and ic) is continued via this 

sequence until the final polymer product is obtained.  The chain growth is terminated 

either by reaction (t1) of the macromolecular radical cation with water or hydroxide 

anions, or by lack of reactivity of the radical cation (t2) due to delocalisation over a 

greater length as the polymer chain grows.   

The preferred bond formation is between the rings at the carbons in position 2 and 5 

(α-coupling); however bonding at positions 3 and 4 (β-coupling) is also possible
62,63

.  

When β-coupling occurs, it gives rise to a widening of the band gap and a decrease 

in the conductivity of the polymer through the formation of branches that break the 

planarity and linearity of the PPy chains
64

.   

It is important to note that the final electrosynthesised polymer is oxidised.  Intrinsic 

conductivity results from the formation of charge carriers upon oxidising the 

conjugated backbone, as discussed previously.  Indeed, the final PPy chain is in an 

oxidised/doped state due to the incorporation of dopants that are present in order to 

maintain charge balance within the polymer
65

.  The number of electrons taken from 

each monomer is equal to 2+p, two electrons for the polymerisation and p electrons 

for the oxidation of the polymer chain.  For PPy the value of p is usually 0.25 to 0.33 

corresponding to one positive charge delocalised over every 3 to 4 monomeric units 

and accordingly one anionic dopant for every 3 to 4 monomeric units
66

.  The overall 

stoichiometry for the electropolymerisation of the pyrrole monomer is depicted in 

Figure 1.6.   
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Figure 1.5 Electropolymerisation mechanism of pyrrole as proposed by Diaz
60

.   

 

 

 

Figure 1.6:  Stoichiometry of the electropolymerisation of pyrrole, where A
-
 and B

+
 are 

the anion and cation from a simple AB salt dissolved in a suitable solvent with the 

monomer, pyrrole.  

 

 

1.3.2 Factors Affecting Electropolymerisation 

The electrochemical polymerisation of pyrrole is affected by a number of parameters 

used in the synthesis.  These parameters can include, but are not limited to, the 

nature of the electrode
67

, the concentration and nature of the electrolyte
65

, the 

solvent
68,69,70,71

, the applied potential or current density
72

, the reaction temperature
73
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and pH and the mode of electropolymerisation. These will all have a strong effect on 

the rate of electropolymerisation and on the properties of the resulting polymer.   

The electrode surface at which electrodeposition of polypyrrole occurs must not be 

oxidisable as this would compete with the oxidation of the pyrrole monomer.  If this 

were to happen the oxidation and polymerisation of pyrrole would be severely 

hindered; because of this most studies have focused on using inert anodes such as 

platinum, gold or glassy carbon
74,75,76

.  Apart from these metals, pyrrole has also 

been electropolymerised on a wide range of other substrates, which include silicon
77

 

and the transparent indium tin oxide glass (ITO)
78

, which is useful for spectroscopic 

applications.   

The nature of the supporting electrolyte plays an important role in the 

electropolymerisation process.  This is because the chosen electrolyte determines the 

type of dopants that will be incorporated into the polymer during 

electropolymerisation.  The size of the anion will influence various characteristics of 

the polymer film, including the redox properties and the porosity of the film
65

.  The 

concentration of the electrolyte is also important as the doping degree increases with 

increasing electrolyte concentration, which produces different induction times, 

mechanisms of nucleation and polymer growth
79

 and as such, the 

electropolymerisation rate varies with each dopant.  In addition to this, the higher the 

concentration of the electrolyte, the greater the conductivity and tensile strength of 

the polymer film, as shown by Li and Yang
80

.  A PPy film that has initially high 

conductivity is less prone to attack by oxygen
69

 thus, the polymer matrix is 

increasingly stable with increasing doping levels and increasing conjugation.   

Another parameter that has a very strong influence on the electrochemical 

polymerisation of pyrrole is the nature of the chosen solvent.  The main requirement 

of the solvent is that it has good ionic conductivity and a good electrochemical 

resistance against decomposition at the potentials at which the monomer becomes 

oxidised
81

.  PPy films have been prepared using aqueous, organic and ionic liquid 

solutions
82,83,84

.  Aqueous solutions generally require a reasonably high concentration 

of supporting electrolyte to achieve the desired conductivity, whereas organic 

solutions usually require a suitable organic salt.  Carquigny et al.
85

 have investigated 

the characteristics of PPy grown from aqueous, non-aqueous and mixed solutions 
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and the authors found that thinner films were deposited from the pure 

acetonitrile/LiClO4 solutions in contrast to the thicker PPy films formed from the 

water/LiClO4 solutions and the mixed water/acetonitrile/LiClO4 solutions.  Similarly, 

Sutton and Vaughan reported that the addition of methanol into water leads to a drop 

in the conductivity of PPy films
86

.  In addition to this, the films formed from the 

water/LiClO4 and the mixed water/acetonitrile/LiClO4 solutions were more porous, 

which is consistent with Ko et al.
87

 who also found that PPy films prepared in 

acetonitrile/tetraethylammonium perchlorate had superior electron transfer 

characteristics and conductivities to those prepared in the aqueous medium.   

The applied potential is also very significant in the electropolymerisation of pyrrole.  

Electropolymerisation can be carried out using cyclic voltammetry, potentiostatic or 

galvanostatic methods
15

.  It is well known that the electrochemical method controls 

the structural form of the electrodeposited polypyrrole films
74,88,89

.  Polymer films 

that are prepared using potentiostatic or cyclic voltammetry methods are usually 

smooth and compact.  Hernandez-Perez et al.
89

 showed that potentiostatic methods 

give rise to smooth surfaces.  The authors used atomic force microscopy (AFM) to 

investigate the surface morphology of PPy films prepared at platinum electrodes by 

potentiostatic and voltammetric methods.  They concluded that the potentiostatic 

mode of growth was better for obtaining thin films with a smooth surface 

morphology.  Furthermore, the PPy film growth was easier to control using this 

method, whereas galvanostatically prepared polymer films are more rough and 

porous
89

.  Li et al.
67

 investigated the effect of using various electrochemical 

techniques for the formation of PPy on the redox properties of PPy, and found that 

the galvanostatic deposition of PPy produced polymer films of higher 

electrochemical reactivity in comparison to those prepared using either potentiostatic 

or cyclic voltammetry methods.   

In addition to this, the applied potential can be used to overoxidise the polymer and 

decrease the polymer conductivity.  Asavapiryanont et al.
58

 showed that pyrrole 

oxidises between 0.65 V and 0.90 V vs. SCE, but oxidation at potentials higher than 

this leads to overoxidation of the deposited PPy film which is an irreversible process 

that occurs gradually with increasing potential
90

.  To date, the mechanism for 

overoxidation is still unclear, but the most commonly accepted mechanism is the 

nucleophillic attack of PPy by strong aqueous nucleophiles such as OH
-
, Br

-
 and 
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H2O
90 

which in turn causes the formation of carbonyl groups on the α-carbons of the 

pyrrole ring which breaks the conjugation of the polymeric chain
91

.  Overoxidation 

of PPy can also occur with increased oxygen content within the polymer, which 

disturbs the conjugation and lowers the conductivity.  Diaz and Clarke
92

 reported 

that the oxidation potential for the oxidation reaction of PPy shifts towards more 

negative values as PPy growth proceeds from the initial stages.  This is related to the 

reactivity of each species with air, which increases as the oxidation potential 

becomes more positive and the corresponding conjugation length becomes shorter.  

However, as reported by Thieblemont et al.
93

, PPy shows good stability and 

undergoes only slow degradation in ambient atmosphere.   

The electropolymerisation temperature has a considerable influence on the kinetics 

of the polymerisation, as well as on the conductivity, redox properties and 

mechanical characteristics of the polymer films
65

.  In general, as the temperature 

increases the rate of polymerisation will also increase, but there is a decrease in the 

conductivity and redox properties of the polymer.  As a result, the higher 

conductivities are obtained at lower temperatures
94

; however, the films produced at 

these low temperatures are generally of a lower quality
65

.   

The pH of the monomer solution also has a significant influence on the conductivity 

and electropolymerisation of pyrrole.  Asavapiryanont et al.
58

 investigated the 

electrodeposition of PPy onto platinum electrodes from acidic, neutral and basic 

aqueous solutions and found that polymerisation favours a neutral or weakly acidic 

pH.  This is in close agreement with the work of Zhou and Heinze
95

, who also found 

this to be the case when they investigated the effect of pH on the 

electropolymerisation of pyrrole from an acetonitrile solution.  At high pH values, 

i.e., pH values greater than 7.0, the electropolymerisation of pyrrole is hindered due 

to the cation radicals being deprotonated to form neutral radicals; this interferes with 

radical-radical coupling and hence, the conductivity of the polymer film drops 

significantly
58,95,96,97

.  On the other hand, the electropolymerisation of pyrrole 

prepared in a highly acidic/low pH solution produces polymers with weak 

conductivity due to the acid catalysed formation of non conjugated trimers which 

react further to form a partly conjugated polypyrrole film
65

.   
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1.3.3 Redox Properties of Polypyrrole 

The most important electrochemical property of polypyrrole is its ability to be 

electrochemically switched between its conducting and insulating states, as shown in 

Figure 1.7.  In its reduced state, PPy is insulating and maintains a neutral state, but in 

its oxidised form the polymer is highly conducting and positively charged.  This is 

due to the neutral form of PPy being oxidised whereby an electron is removed from 

the polymer backbone.  It is at this stage that the polymer is said to be in its oxidised 

state, Figure 1.7(b).  In order to counterbalance the formation of these positive 

charges on the polymer backbone, anions are incorporated into the polymer from the 

solution, Figure 1.8(a).  These anions are referred to as dopants, as they literally dope 

the polymer with negative charges.   

 

 (a) 

 

 

 

 

 

(b) 

 

 

 

Figure 1.7:  The insulating and conducting forms of PPy where (a) is the neutral PPy and 

(b) is the oxidised PPy.   
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On the reduction of the polymer back to its neutral state, the dopant anions are 

subsequently expelled from the polymer again, Figure 1.8(b).  However, this 

scenario only works with small mobile dopants such as chlorides
98

.  When larger 

anions are used to dope the polymer, they become permanently anchored into the 

polymer matrix. These anions include large sulphonate groups, such as 

polyvinylsulphonate, p-dodecylbenzene sulphonate
99

 and polystyrenesulphonate
100

, 

and the reduction of the polymer doped with these will not result in the release of 

these dopants
101

. Instead, in this situation, the electroneutrality of the polymer is 

maintained by the influx of mobile cations from the electrolyte solution into the 

polymer.  This cation exchange must take place in order to counterbalance the now 

overall negatively charged PPy matrix, Figure 1.9(b).  In the case of medium sized 

anions, such as p-toluene sulphonate and dodecyl sulphate, these can exhibit both 

anionic and cationic exchange, as reported by Wallace and co-workers
99

.  It is 

important to note that the ion-exchange properties of PPy are dependent on both the 

dopant present in the polymer and the ionic nature of the electrolyte in solution.  PPy 

can also exchange OH
–
 ions when electrochemically switched in basic solutions.  

However, the hydroxyl anions have a deactivating effect on the conductivity of the 

polymer. This is due to the N-H···OH hydrogen bonding which inhibits the 

generation of polaronic positive charges on the nitrogen sites.  This is the origin of 

the observed dramatic decrease in the conductivity of PPy after treatment in base
102

.  

In general, the rate-determining step in the doping/dedoping process in PPy is the ion 

migration.  The rate of the electron transfer is usually much faster during the redox 

switching
103

.   

 

 

⇌ 

 

 

 (a) (b) 

Figure 1.8:  (a) The incorporation of anions into the PPy film and (b) the release of anions 

from the PPy film.   
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⇌ 

 

 

 (a) (b) 

Figure 1.9:  (a) The incorporation of immobile anions into the PPy film and (b) the cation 

incorporation into the PPy film where + is the charge on the PPy, - is the anions and + is the 

cations.   

 

1.4 Supramolecular Systems 

While traditional chemistry focuses on the covalent bond, supramolecular chemistry 

examines the weaker and reversible non covalent interactions between molecules.  

As such, a supramolecular system consists of two or more molecular entities held 

together and organised by means of inter-molecular, non covalent binding 

interactions
104,105

.  One such system is a host-guest interaction, whereby an inclusion 

complex is formed.  Generally, host molecules are cyclic structures and the guest 

molecules are favourably inserted into the ring structure as a result of a particular 

driving force.  These forces can include hydrogen bonding, metal coordination, 

hydrophobic forces, Van der Waals forces, π-π interactions and electrostatic 

effects
106

.  Examples of well known host molecules in supramolecular chemistry are 

cryptates, crown ethers, calixarenes and cyclodextrins (CD)
107

.   

 

1.4.1 Cyclodextrins 

Cyclodextrins (CD) are a series of naturally occurring macrocyclic oligosaccharides 

formed from α-1,4-linked-D-glucopyranose units
108

 as shown in Figure 1.10.  They 

can consist of six, seven and eight glucopyranose units, which correspond to α-, β- 

and γ-cyclodextrins, respectively, as shown in Figure 1.11.   

+ne
- 
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- 
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The earliest discovery of cyclodextrins was by Villiers, in 1891
109

, when a small 

amount of crystalline material was obtained in addition to reducing dextrins during 

the starch digest of Bacilus amylobacter.  Research continued to isolate and identify 

the macrocylic structures
110,111

; and the α- and β- cyclodextrins were determined by 

X-Ray crystallography in 1942
112

.  It was some years later, in 1948, that the γ-

cyclodextrin structure was determined
108

.    

Bender and Komiyama showed that cyclodextrins can be produced via a relatively 

simple enzymatic conversion, whereby the addition of the enzyme to an aqueous 

solution of starch causes the linkages of the starch to split forming maltodextrinyl 

radicals
113

.  These radicals then react with their own non-reducing end to produce a 

crude mixture of the α-, β- and γ-cyclodextrins, along with a small amount of 

cyclodextrins with more than eight glucopyranose units
114

.  Due to advances in 

technology, the cyclodextrins can be readily isolated and purified in large 

amounts
115

.  The cyclodextrins with more than eight glucopyranose units have been 

purified and characterised from enzymes
116

.  However, their low solubility implies 

that they are not suitable for important applications such as solubilisers for drugs
117

; 

whereas CD containing less than six glucopyranose units have been synthesised 

chemically as it is not possible to produce these enzymatically
118

.   

 

  

Figure 1.10:  The 1,4 link that joins the D-glucopyranose units to form the macrocyclic 

oligosaccharides.   
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Figure 1.11:  Molecular structures of (a) α-cyclodextrin, (b) β-cyclodextrin and (c) γ-

cyclodextrin.   

 

1.4.2 Structural Features of Cyclodextrins 

Although all the cyclodextrins have an identical height of 7.9 Å, the variation in the 

number of linked glucopyranose units determines the size of their interior cavity
110

.  

Del Valle
108

 stated that the cavity diameters are 4.7, 6.0 and 7.5 Å for α-, β- and γ-

cyclodextrins, respectively.  On the basis of the X-Ray crystal structures it was 

deduced that cyclodextrins adopt a hollow truncated cone structure with all 

glucopyranose units in the 
4
C1 chair conformation, as depicted in Figure 1.12

119
.  

Song et al.
107

 stated that the secondary hydroxyl groups (C2 and C3) are located on 

the wide edge of the cyclodextrin ring, which is termed the secondary rim, while the 

primary hydroxyl groups (C6) are found on the other edge of the ring, known as the 

primary rim, of the cyclodextrin.  The cavity of the cyclodextrin is then lined with C3 

and C5 hydrogens and ether-like oxygens
108

.  The primary and secondary hydroxyl 

groups on the exterior of the cyclodextrin are polar, while the hydrogens inside of 

the cyclodextrin are apolar.  As a result, the cyclodextrins are soluble in water whilst 

retaining the hydrophilic exterior, and their hydrophobic interior cavity matrix
120

.  It 

is this distinctive property of cyclodextrins that gives rise to their exceptional 

complexation ability in aqueous media.  This is discussed further in Section 1.4.3.   

 

 

 

http://en.wikipedia.org/wiki/File:Cyclodextrin.svg
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Figure 1.12:  (a) The hollow truncated cone structure and (b) geometric dimensions of the 

α-, β- and γ-cyclodextrins.   

A wide variety of cyclodextrin derivatives can be prepared from the α-, β- and γ-

cyclodextrins, but the most derivatives arise from the β-cyclodextrin.  A total of 21 

hydroxyl groups on the β-cyclodextrin can be substituted by replacing the hydrogen 

or the hydroxyl groups with appropriate substituting groups such as alkyls or thio 

groups
111

.  β-cyclodextrin contains 21 hydroxyl groups, seven on the primary face 

and 14 on the secondary face.  Many of these 21 hydroxyl groups can be chemically 

modified in order to enhance the solubility of the cyclodextrin and the hydrophobic 

properties of the interior cavity matrix.  In addition to this, substituting the hydroxyl 
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Face 

7.9 Å 
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groups on the cyclodextrin can either improve or inhibit the binding affinity of the 

complexation, depending on the substitute groups that are used
121

.   

For the purpose of this study, the cyclodextrin that was chosen was a commercially 

available sulphonated-β-cyclodextrin, which has between 7 and 11 sulphonated 

(SO3
-
) groups per cyclodextrin.  The structure of this sulphonated cyclodextrin, SCD, 

is shown in Figure 1.13.  Amini et al.
122 

and Chen et al.
123

 investigated the structure 

of SCD; both authors found that complete sulphonation occurs at the C6 position, 

with the C2 secondary hydroxyls becoming partially sulphonated, and no 

sulphonation occurring at the C3 position.  This gives rise to the primary face being 

fully sulphonated, with seven SO3
-
 groups on the primary face.  This preferential 

sulphonation at the C6 position over the C2 position is expected due to the higher 

reactivity of the primary alcohol at the C6 position
123

.  Along with this, the higher 

acidity of the hydroxyl groups in the C2 position mean that the C2 position is 

preferentially sulphonated over the C3 position
124

, but the preferential sulphonation 

of the C6 position may stereochemically prevent or reduce the accessibility of the C3 

hydroxyl.   

 

 

Figure 1.13:  The chemical structural representation of the sulphonated-β-cyclodextrin, 

SCD.   

Sulphonated-β-cyclodextrins have been used in a wide variety of applications, 

including the biomedical industry, due to the non toxicity of the complex
125

 and in 

capillary electrophoresis as chiral separating agents
122,123,126

.  One important feature 

of cyclodextrins is their ability to form inclusion complexes with a wide range of 

compounds in the solid, liquid or gaseous phases
127

.  This feature makes them very 

useful in the area of sensing, whereby the cyclodextrin can bind to a suitable guest 

molecule to form inclusion complexes, whilst the negatively charged sulphonated 
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groups can repel any anionic interferants, thus enhancing the sensitivity of the 

sensor.  This is discussed in greater detail in Section 1.4.3.   

 

1.4.3 Inclusion Complexation  

The inclusion chemistry of cyclodextrins can be broken down into two categories.  

These categories are aqueous complexation and solid state complexation.  The 

former, aqueous inclusion complexation, is prominent given the unique hydrophobic 

and hydrophilic properties of cyclodextrins.  It is generally accepted that 

cyclodextrins bind with suitable guest molecules in an aqueous medium to form 

inclusion complexes
115

.  The formation of such inclusion complexes occurs without 

the formation or breaking of any covalent bonds
108,116

.  The complex formed 

between a cyclodextrin (CD) and a guest molecule (G) is typically a 1:1 association, 

which is the simplest scenario, but other more complicated associations are also 

known to exist
128

.  The inclusion complex formed for the 1:1 complexation is 

governed by a dynamic equilibrium process with a complex formation constant, K, 

as depicted in Equations 1.3 and 1.4, whereby CD is the host molecule and G is the 

guest molecule.  The complex formation constant, K, describes the stability of the 

inclusion complex, which is governed by a thermodynamic equilibrium as illustrated 

in Equation 1.4
110,119

.  As a result, large guest molecules give rise to a slower 

formation and dissociation of the inclusion complex.  This process is energetically 

favoured by the interaction of the guest molecule with the hydrophobic cavity of the 

host
119

.   

 GCD ⇌ GCD.  1.3  
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The formation of cyclodextrin complexes in aqueous solutions has been studied 

using a wide variety of both electrochemical and spectroscopic methods.  The most 

common techniques used include nuclear magnetic resonance (NMR)
129,130

, UV-

Vis
131,132

 and fluorescence spectroscopy
133,134

, cyclic voltammetry
135,136

 and rotating 
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disc voltammetry
137,138

.  Because cyclodextrins alter the electrochemical and spectral 

behaviour of the guest molecule on the formation of an inclusion complex, the 

easiest and most straightforward way of determining complexation is to carry out a 

titration
106

.  This involves varying the concentration of the cyclodextrin while 

keeping the concentration of the guest molecule constant, which can also be used in 

order to determine the value of the complex formation constant, K.  When an 

inclusion complex is formed there will be a significant and easily measurable 

difference in the behaviour of the guest molecule, which becomes more evident as 

the concentration of the cyclodextrin is increased.   

There are two main factors which can affect the formation and stability of 

complexation in aqueous solutions: steric factors and thermodynamic factors.  It is 

well known that the relative size of the cavity to the size of the guest molecule is a 

key factor in the complexation process; however, the manner in which 

thermodynamic factors influence complexation is still a matter of debate.  As such, 

several hypotheses have been put forward in order to explain the driving force for the 

formation of cyclodextrin inclusion complexes
116

.  These include electrostatic 

interactions, hydrogen bonding interactions, Van der Waals forces and hydrophobic 

interactions
139,140,141,142,143

.  However, the formation of the inclusion complex cannot 

be explained by any one of these factors alone, as several of these are evident in the 

inclusion complex
128,140

.   

The influence of electrostatic interactions on the formation of inclusion complexes 

has been studied by Liu and Guo
144

, who described an electrostatic interaction as the 

energy of interaction between the undistorted charge distribution of two molecules.  

There are three important types of electrostatic interactions:  ion-ion interactions, 

ion-dipole interactions and dipole-dipole interactions.   

Ion-ion interactions occur only when the cyclodextrin has been appropriately 

substituted and both the host and guest are charged
145

.  Okimoto and Matsui
145

 have 

shown that the binding between a neutral or positively charged guest molecule and 

an anionically charged cyclodextrin is superior to the binding of the same neutral or 

positively charged guest molecule with a neutral cyclodextrin, whereas the neutral 

cyclodextrin exhibits enhanced binding with the anionically charged guest 

molecules.   



Introduction and Literature Review                                                                                   Chapter 1 

27 
 

The second electrostatic interaction that could take place is the ion-dipole 

interaction.  This is the interaction of an ion with a polar molecule and would be 

expected to occur because neutral cyclodextrins are naturally polar molecules.   In 

general, the ion-dipole interaction increases with the size of the ion, hence 

complexation should increase with increasing ion size.  However, this can be very 

difficult to observe in aqueous solutions because there is also a strong interaction 

between the guest molecules and the water molecules.  As a result, ion-dipole 

interactions are not significant in complexation
144

.   

The final electrostatic interaction is the dipole-dipole interaction; this occurs between 

molecules that have a dipole moment.  In contrast to the ion-dipole interactions, this 

interaction has a significant influence on both the stability and the orientation of the 

complex that is formed
144

.  This is due to the dipoles of the guest molecules always 

being antiparallel to that of the host molecules.  In addition to this, as the magnitude 

of the guest dipole increases, so does the value of the cyclodextrin dipole but in the 

opposite direction, as demonstrated by Chujo et al.
146

 in 1988.   

Another factor which may influence the stability and formation of the inclusion 

complex is hydrogen bonding.  A hydrogen bond may also be regarded as a type of 

dipole-dipole interaction, whereby a hydrogen atom attached to an electronegative 

atom would be attracted to a neighbouring dipole on an adjacent molecule
147

.  In 

aqueous systems in particular, there is some controversy as to the contribution that 

this would have on complexation.  However, as hydrogen bonds can form with the 

guest and water molecules they would inhibit the formation of an inclusion 

complex
148

.  Therefore, it has been proposed that it is the hydrogen at the C6 position 

that would be involved in hydrogen bonding as it is flexible and can also rotate 

around the C5 bond
144

.   

The factor that plays a more important role in the binding of cyclodextrins and guest 

molecules is Van der Waals forces.  Van der Waals interactions describe induction 

(dipole induced dipole interaction) and dispersion forces
128

.  The involvement of 

these forces in cyclodextrin complexes is unsurprising due to the relatively large 

dipole moment that cyclodextrins have.  A vast majority of these claims are based on 

the fact that a negative enthalpy change in complexation is observed, which verifies 

the theoretical calculations stating that Van der Waals forces are indeed the main 
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driving force in the formation of cyclodextrin complexes.  However, these 

calculations were mainly carried out in the gas phase and did not take into account 

actual solvent effects
144

.   

The induction and dispersion forces depend on polarisability, which is related to the 

molecular size and electron density
147

.  Hence, these forces can result in weak 

electrostatic interactions as, in an aqueous environment, both the cyclodextrin and 

the water molecules are polar.  However, the polarisability of the water is much 

lower than that of the organic components within the cyclodextrin cavity, thus it is 

expected that the Van der Waals forces should be stronger between the cyclodextrin 

and the guest in contrast to the water molecules and the guest.  Casu and Rava 

reported experimental evidence that has shown that the stability of complexation 

increases as the factors which contribute to polarisability are increased
149

.   

The final factor that has been put forward in order to explain the driving force for the 

formation of cyclodextrin inclusion complexes is the role of hydrophobic effects.  

Hydrophobic effects relate to the association of non-polar molecules in water; 

however, the thermodynamics that give rise to this association are complex and are 

not fully understood.  Consequently, the influence of hydrophobic effects on 

cyclodextrin complexation is debatable.  This interaction is usually associated with a 

positive enthalpy and positive entropy due to the association of the non-polar 

molecules in the water but, according to Equation 1.5, the inclusion complex will 

only be formed if there is a net driving force, i.e., ∆G < 0.  The association is said to 

be ‘entropy driven’ and this entropic hydrophobic effect arises because the hydration 

shells of the two molecules are destroyed when they combine.  The structured 

hydration water is then released and stabilised by other water molecules.   

 

 STHG  1.5  

 

The experimental observation in most cases for cyclodextrin complexation is that the 

entropy and enthalpy changes are negative
150

.  This implies that the hydrophobic 

effect has little or no impact on the inclusion complex.  However, several other 

methods have shown that the hydrophobic interactions play a significant role.  It is 

widely stated in the literature that the strength of the inclusion complex will also 
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increase as the hydrophobicity of the guest molecule is increased
151,152,153

.  Indeed, 

Alvira et al.
153 

reported that the interaction energy between the β-cyclodextrin and an 

acrylic ester increased as the hydrophobicity of the alkyl group in the ester was 

increased.   

In addition to this, the complex formed is usually weakened upon the addition of an 

organic co-solvent and strengthened when an inorganic co-solvent is added
144

.  This 

further supports the evidence of hydrophobic effects since the addition of an 

inorganic salt to the solvent makes the bulk solution more polar, thus strengthening 

the binding.  On the other hand, the addition of an organic salt will decrease the 

binding as the organic salt will be in competition with the guest molecule.  

Viernstein et al.
154

 studied the equilibrium constant of a triflumizole β-cyclodextrin 

complex during the addition of a number of alcohols to the solvent.  The authors 

found that the equilibrium constant decreases as the number of co-solvents and the 

apolar nature of the alcohol increase.  This further highlights the importance of the 

hydrophobic effect in cyclodextrin complexation.   

 

1.4.4 Applications of Cyclodextrins 

Cyclodextrins have been applied to a wide variety of products and processes due to 

their ability to encapsulate guest molecules
115

 and also due to their excellent 

biocompatibility.  Cyclodextrins have been used extensively in the pharmaceutical 

industry due to their ability to form inclusion complexes with active ingredients, i.e., 

drugs.  This gives rise to enhanced stabilisation and solubility of the drug and as a 

result, cyclodextrins are very popular ingredients in the area of drug formulations
155

.  

In addition, cyclodextrins are potential drug delivery candidates in many applications 

because of their ability to alter the physical, chemical and biological properties of 

guest molecules through the formation of inclusion complexes
156

.   

Cyclodextrins are also used in the food industry, particularly as food stabilisers.  

Cyclodextrins act as molecular encapsulants
115

 and can protect the flavour of the 

food throughout food-processing methods such as freezing and thawing.  This allows 

the quality of the food to be preserved and thus provides longevity to the food.  In 

addition to this, cyclodextrins are known for their ability to reduce unpleasant odour 

and taste by capturing malodorous molecules within their cavities
115

.  It is this 
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technique that was employed by Febreeze
®
, a commercially successful household 

odour eliminator, which contains a modified β-cyclodextrin as its active ingredient.  

Because the malodorous molecule is encapsulated within the cyclodextrin cavity, it 

can no longer be detected.  Cyclodextrins have also found applications in cosmetic, 

chemical, agricultural
157

, coatings, adhesives, plastics and photographic 

industries
108,110,111,114

.   

 

1.4.5 Methods for Determining Inclusion Complex Association Constant 

As previously mentioned in Section 1.3.3, the simplest scenario for the complex 

formed between a host molecule and a guest molecule is a 1:1 association, however, 

some inclusion complexes that are formed have a more complex association.  The 

inclusion complex formed for the 1:1 complexation is governed by a dynamic 

equilibrium process, which involves an inclusion complex association constant, K, as 

stated in Equations 1.3 and 1.4.  There are many methods that have been employed 

in order to evaluate this K value, which yield important information regarding the 

type of binding interaction that is taking place.   

In order to quantify the association constant value, the stoichiometry of the 

interaction is firstly required.  This can be obtained using the Job’s method, which is 

a continuous variation method
158,159

.  Job’s method involves the preparation of a 

series of solutions of host and guest molecules, whereby the sum of the total host and 

guest concentration remains constant while changing the mole fraction
160

.  This is 

achieved by mixing different volumes of the two components such that the overall 

volume remains the same.  A variety of methods can be used in order to obtain a 

Job’s plot, these include both spectroscopic methods and electrochemical methods.   

Spectroscopic techniques are used based on the changes in fluorescence
161,162,163,164

, 

absorbance
161,165,166,167

 and chemical shifts as acquired from NMR 

spectroscopy
168,169,170,171

.  Electrochemical techniques such as cyclic voltammetry
135

 

and rotational disc voltammetry
172

 can also be used, providing that some measurable 

property value changes during the formation of the host-guest complex.  The 

maximum of this property is related to the stoichiometric ratio
160

, hence the value of 

K can easily be determined from the data obtained by carrying out a host-guest 

titration.  This involves keeping the concentration of one of the species (usually the 
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guest) constant, while varying the concentration of the other species (generally the 

host).  Upon addition of increasing amounts of host concentration, there will be a 

significant and easily measurable difference in the behaviour of the guest molecule.  

These changes arise as the inclusion complex is formed due to the shift in 

equilibrium from uncomplexed to complexed species, as depicted in Equation 1.3, 

and this becomes more evident as the concentration of the host molecule is 

increased.   

 

1.5 Serum Albumins 

Bovine serum albumin, commonly referred to as BSA, is a large (66.4 kDa) globular 

protein derived from the albumin of bovine animals.  Albumin is generally regarded 

as the serum albumin or plasma albumin, which differs from albumen, which refers 

to egg white.  The word albumin is used to describe a protein or a group of proteins 

defined by their solubility in water.  It is the most abundant protein in the circulatory 

system and contributes to over 80% of the colloidal osmotic blood pressure
173

.  It has 

been determined that serum albumin is chiefly responsible for the maintenance of the 

blood pH
174

.  Because of this, a lot of research has been carried out in order to 

identify the structure and properties of serum albumin and, to investigate the effect 

serum albumin has on the functionality of foods in which it is included, as well as 

other novel applications.  Albumin is synthesised initially as preproalbumin by the 

liver of mammals.  After the cleavage of the signal peptide, the resultant proalbumin 

is further processed by the removal of the six-residue propeptide from the new N-

terminus, Figure 1.14.  The albumin released into circulation possesses a half-life of 

19 days
175

.   
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Figure 1.14:  A schematic of the synthesis of albumin from preproalbumin in the liver.   

Serum albumin is comprised of a single peptide chain containing approximately 600 

amino acid residues, which is held in three homologous domains (I, II, III) and 

divided into nine loops (L1-L9) by 17 disulphide bonds as shown in Figure 1.15.  

The loops in each domain are made up of a sequence of long-short-long loops 

forming a triplet.  Each domain in turn is the product of two sub-domains.  The 

disulphide (S-S) bonds provide stability while the intervening peptide strands allow 

for flexibility, Figure 1.16.   

 

Figure 1.15:  A schematic of the amino acid sequence in serum albumins showing the three 

homologous domains and the 9 loops that are held in place by 17 disulphide bonds.   



Introduction and Literature Review                                                                                   Chapter 1 

33 
 

 

 

 

 

 

Figure 1.16:  A schematic of serum albumin showing the locations of the disulphide bonds.   

The albumin is not uniformly charged within the primary structure.  Peters and co-

workers
176

 calculated a net charge of -10, -8, and 0 for domains I, II, and III of 

bovine serum albumin, respectively, at a neutral pH.  The surface charge distribution 

of the frontal view of the BSA is shown in Figure 1.17.   

Serum albumins are amphoteric
177

 due to the charge distribution; hence, serum 

albumin can act either as an acid or as a base at varied pHs.  In addition to this, 

serum albumins can form negatively charged nanospheres.  The cross-linking rate of 

protein particles can be determined by a measurement of turbidity, in which the 

transmitted light, after a beam of incident light of a certain wavelength passing 

through the solution of light path length, l, is measured.   

 

Figure 1.17:  The surface charge distribution of the bovine serum albumin with the basic 

residues coloured in blue, the acidic residues in red, and the neutral areas in yellow.   

http://www.friedli.com/research/PhD/ref1.html#peters
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Although human serum albumin (HSA) and BSA share 80% of their sequence 

homology, have identical isoelectric points of 4.77
177

 and their molecular weights 

differ by less than 1%
178

, HSA has a unique tryptophan at position 132, whereas 

BSA contains two tryptophan moieties at positions 134 and 212 as well as tyrosine 

and phenylalanine
179

.  Because of this, and due to its water-soluble nature, BSA is 

used as a model protein for interaction studies.   

Serum albumins are the principal carriers of fatty acids that are otherwise insoluble 

in circulating plasma.  They also perform many other functions in the plasma, such 

as, sequestering oxygen free radicals and inactivating various toxic lipophilic 

metabolites such as bilirubin
180

.  Albumin has a high affinity for fatty acids, bilirubin 

and hematin and a broad affinity for small negatively charged aromatic compounds.   

Fasano et al.
181

 have shown how albumin acts as a sponge in ligand binding, 

whereby numerous ligands can bind at different sites in the three domains.  As a 

result, albumin can provide a depot for ligands, while holding toxins in strained 

orientations leading to metabolic charges along the molecule.  In addition, albumins 

have a high affinity for Cu(II) whereby they bind Cu(II) at the N-terminal Asp-X-His 

site.  Rozga et al.
182

 have measured this affinity as 1 pM.  The interactions between 

serum albumin and Zn(II) have also been studied
183

.   

 

1.5.1 Binding Interactions of BSA 

The binding of several different categories of small molecules to BSA has been 

studied for many years to elucidate details of the protein structure and binding 

mechanism.  Included in these categories are ionic surfactants such as sodium 

dodecyl sulphate (SDS), cethyltrimethylammonium chloride (CTAC) and N-

hexadecyl-N,N-dimethyl-3-ammonium-1-propanesulphonate (HPS). Indeed, Gelamo 

et al.
184

 and, more recently, Tabak and co-workers
185

 have modelled the interaction 

of ionic surfactants with BSA using fluorescence and electron paramagnetic 

resonance (EPR) spectroscopy.   

In addition, the effect of protein adsorption onto various hydrophobic and 

hydrophilic surfaces has been extensively studied using BSA.  BSA has been 
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considered as a soft protein, as it has a high potential to undergo structural 

rearrangements upon adsorption onto surfaces
186

.  Tantipolphan and co-workers
186

 

used ATR-FTIR spectroscopy to investigate the adsorption of BSA to lecithin and 

Larsericsdotter et al.
187

 investigated the structure, stability and orientation of BSA 

adsorbed onto silica particles using DSC and limited proteolysis in combination with 

mass spectrometry. This gave a fundamental insight into the process of adsorption-

induced structural changes in proteins.   

 

1.5.2 Applications of BSA 

Because of its abundance and functional properties, along with its ability to 

reversibly bind to a wide variety of ligands and other proteins
178

, BSA has numerous 

biochemical applications.  It has been used as a blocking agent during western 

blotting to reduce background and non-specific binding and 

immunohistochemistry
188

.  It has also found applications in protein microarray 

technology, lysate microarray technology, ELISA, enzymatic reactions and as a 

carrier protein in many vaccines and medicines.  Given its immunogenicity and 

ability to bind to other proteins, it has been used as an adjuvant to enhance the 

immune response to other proteins and carbohydrates.  In addition, BSA is also used 

as a nutrient in cell and microbial cultures and it has been demonstrated to be useful 

in separating the optical isomers of drugs, small molecules and especially amino 

acids
189

.   

It is these unique binding properties of BSA that make it promising in the area of 

sensors and biosensors.  The first crucial issue for BSA sensors is the attachment or 

immobilisation of the BSA onto the electrode
189

.  The most commonly used method 

of immobilisation is the covalent binding technique as it can artificially bind the 

target which forms an ordered and dense monolayer
189

.  In recent years however, sol-

gel chemistry has been used as a more effective method for the immobilisation of 

proteins due to the low temperature mechanism required for immobilisation in 

contrast to the traditional covalent binding mechanism, which can often denature the 

proteins.  The covalent immobilisation of functional, biological species such as BSA 

into a sol-gel matrix or onto a suitable surface such as titanium dioxide provides 

numerous applications for in vitro studies on the behaviour of biological structures 
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and biosensors
190

.  Along with this, BSA can be incorporated into hydrogels
191

 and 

nano-composites
192,193

, which has led to numerous applications in both drug delivery 

systems and in the area of biosensors.   

Other immobilisation methods that have been used to immobilise BSA have been 

investigated by Soldatkin et al.
194

 whereby a biologically active membrane on the 

transducer surface was formed by protein cross-linking in saturated glutaraldehyde 

vapour.  Similarly, Im and co-workers
195

 electrodeposited a mixture of glucose 

oxidase and BSA onto a Pt electrode and subsequently cross-linked with 

glutaraldehyde to form a glucose amperometric biosensor with good sensing 

behaviour.  Another method of immobilising BSA is to incorporate it into self-

assembled monolayers (SAMs)
188

.  Ignat et al.
188

 have investigated the organisation 

of SAMs of functionalised thiols and the incorporation of various proteins onto gold 

and silicon substrates for their potential integration in nanoscale sensors/biosensors 

and optical devices.  The authors claim that the biomolecule immobilisation of the 

proteins by covalent chemistry allows for the fabrication of reproducible, protein-

modified surfaces, which is in good agreement with the literature
189

.   

Amperometric immunosensors have become one of the most powerful methods for 

the quantification of immunological moieties in clinical samples due to the 

employment of the innate amplification properties of enzymes
196

.  However, the 

conventional methods used in the fabrication of enzyme amperometric 

immunosensors usually involve enzyme labelling, which is relatively expensive and 

time consuming as it requires sample pre-treatment.  Because of this, the 

immobilisation of enzymes and the entrapment of mediators (electrochemically 

active compounds) onto the electrode surfaces have attracted great interest, since 

most immune protein analytes are not intrinsically able to act as redox partners in an 

electrochemical reaction
196

.  BSA has free NH2 groups that are capable of enhancing 

the immobilisation of an enzyme
197

.  The NH2 groups provide stability to and thus 

decrease the denaturation of the enzyme.   

Because of their unique binding properties, albumins have proven to be very useful 

in the area of sensors and biosensors; however, they are also used in a variety of 

other applications.  One of the major biological functions of albumins is their ability 

to carry drugs as well as endogenous and exogenous substances
179

.  BSA is widely 
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used for the preparation of proteinaceous microspheres due to its availability in a 

pure form and its biodegradability, non-toxicity, and non-immunogenicity
198

. In 

addition to its functionality for transporting different macromolecules in the 

bloodstream to target organs, it was also found that albumin accumulates in solid 

tumours, making it a potential macromolecular carrier for the site-directed delivery 

of anti-tumour drugs
198

.   

Another application of BSA is in chiral recognition. Chirality is a determinative 

property of most biological molecules and, as a result, the development of techniques 

for the precise determination of bioactive chiral molecules is of great interest.  The 

interactions between BSA and other molecules such as tryptophan have been studied 

in order to investigate the chiral recognition properties of BSA
189

.   

 

1.6 Urea 

Urea, also known as carbamide, is a relatively small nitrogen-containing compound 

that serves a vital role in the metabolism of nitrogen-containing compounds by 

animals.  The structure of urea is given in Figure 1.18.  Its primary function in the 

body is nitrogen excretion, whereby it is dissolved in the blood and then excreted by 

the kidneys as a component of urine.  A small amount of urea is also excreted from 

the body via perspiration, along with water and salts.   

 

 

Figure 1.18:  The chemical structure of Urea.   

Urea is a colourless, odourless solid which is primarily neutral and highly soluble in 

water
199

.  When dissolved in water, urea can break down to form ammonia, which 

has a strong odour.  Ammonia is more mobile due to its smaller size and, if allowed 

http://www.wisegeek.com/what-is-carbamide.htm
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to accumulate, ammonia can raise the pH in cells to toxic levels.  For this reason, the 

majority of organisms convert ammonia to urea, even though this synthesis has a net 

energy cost.  However, urea is practically a neutral compound, thus it is a safe 

vehicle for the body to transport and excrete excess nitrogen.   

Urea also plays an important role in the agricultural industry
200,201

.  Because of its 

ability to release ammonia and therefore nitrogen, it has a vital role in the fertiliser 

industry.  Annual world production of urea exceeds 100 million metric tonnes, the 

majority of which is produced as fertiliser.  Since excessive nitrogen fertiliser 

applications can lead to pest problems by increasing the birth rate and overall 

longevity of certain pests, urea estimation is extremely important during 

environmental monitoring.   

Many methods are already available for urea estimation; these include 

calorimetry
202

, fluorimetry
203

 and gas chromatography
204

 to name but a few.  

However, these methods are unsuitable for on-site monitoring as they suffer from 

complicated sample pretreatment steps and, as such, sensors have been developed to 

overcome these difficulties.   

 

1.7 Urea Sensors 

Urea is one of the most extensively studied and analysed compounds due to its wide 

distribution in nature and its impact in clinical and agricultural chemistry as 

described in Section 1.6.  Urea is known to be an important marker for the evaluation 

of uremic toxin levels.  The normal blood level of urea is from 2.5 to 7.5 mmol dm
-3

.  

However, in patients suffering from renal insufficiency, the urea concentrations in 

serum vary from 25 to 70 mmol dm
-3

.  At these high levels, i.e., above 25 mmol   

dm
-3

, hemodialysis is required in order to reduce the build up of ammonia in the 

body, which would lead to cell toxicity and eventually to death.   

As previously mentioned in Section 1.6, many techniques for urea estimation are 

available; however, this section will focus only on the biosensors that have been 

designed and developed in order to estimate the amount of urea in the blood serum.  

Enzymatic biosensors utilise the biospecificity of an enzymatic reaction; hence, in 
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the fabrication of urea biosensors, the enzyme urease is commonly chosen as the 

biosensing element.  The urea and urease enzyme bind together in an enzyme-

substrate complex which produces the ammonium ion as a product, as shown in 

Equation 1.6.  The ammonium ion can be readily detected and quantified using a 

transducer.  The transducer can be optical/thermal/piezoelectric/amperometric or 

potentiometric.  Many matrices have been used to provide support and stability to the 

biomolecules that make up the biosensors; these include polymers, sol-gels, 

Langmuir-Blodgett films, nanomaterials and self-assembled monolayers
205

.   

 OHHCONHOHCONHNH
Urease

34222 23  1.6  

 

 

1.7.1 Polymer Modified Electrodes 

The development of urea sensors based on electrodes modified with polymeric films 

has been widely investigated due to the polymers ability to have their chemical and 

physical properties tailored
205

.  The polymer films used can be either conducting or 

non-conducting, as both are found to be biocompatible, flexible and cost-effective.  

In addition, they can be obtained in the form of free-standing films for the 

fabrication of biosensors.   

 

1.7.1.1 Urea Biosensors based on Non-conducting Polymer Matrices  

Multiple efforts have been made in order to fabricate urea biosensors from various 

polymer matrices including polyurethane-acrylate
206

, polyvinyl alcohol (PVA)
207

, 

polyvinyl chloride (PVC)
208,209,210

 and chitosan
211

.  These materials provide 

mechanical strength and long-term stability as supports for the immobilisation of the 

enzymes.  There are a variety of methods by which enzymes can be immobilised, 

ranging from covalent chemical bonding to physical entrapment.   

Natural polymers, for example, the polysaccharides chitin and cellulose, are 

biocompatible and non-toxic and, as such, they have become the materials of choice 

for recent technological advances in biosensor fabrication
212,213

.  Enzymatic sensors 
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with chitin and its deacetylated product, chitosan, supports have been reported for 

the determination of glucose, lactate, ethanol and urea.  Most research papers 

reported in the literature toward urease immobilisation on chitosan are dominated by 

the use of beads
211

; however, a lot more work must be done in this field to obtain a 

commercial urea biosensor based on natural polymers.   

In addition to the natural polymers, there has been a lot of research into utilising 

PVC polymers for the development of potentiometric urea biosensors.  These 

biosensors are based on the principle of being able to detect slight changes in pH due 

to the formation of hydrogen or ammonium ions during an enzymatic 

reaction
214,215,216,217,218,219

.  However, these also suffer from having a narrow dynamic 

range and fast loss in sensitivity
214

.  More recently, functionalised PVC polymers 

have been investigated for use as electrode membrane materials to facilitate efficient 

enzyme immobilisation
216,220

.  In addition, suitable ionophores have been utilised 

with PVC ion electrodes to enhance response characteristics including response time 

and reproducibility of the biosensor
221,222

.  However, more efforts must be made in 

order to minimise the influence of interferants and, as such, the idea of using 

conducting polymer matrices as biosensors has gained more interest in recent years.   

 

1.7.1.2 Urea Biosensors based on Conducting Polymer Matrices  

Various conducting polymers have been used for the fabrication of urea 

biosensors
223,224,225,226

.  These matrices are biocompatible and, they are ideal supports 

for biomolecules, resulting in biosensors that have enhanced sensitivity and 

versatility.  The greatest advantage of conducting polymers over non-conducting 

polymers is that conducting polymers can be synthesised both chemically and 

electrochemically.  Electrochemical deposition can be used to deposit uniform 

polymer films at electrodes of any shape and size
227,228

.  In addition to this, 

biological entities, such as enzymes, can be trapped during electropolymerisation in 

one simple step into the polymer matrix.  Also, the interactions of analytes and 

analyte recognition sites can be readily transduced into electrical signals that can be 

easily monitored.   
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The conducting polymers used in the fabrication of biosensors include polyaniline 

(PANi), polypyrrole (PPy) and polythiophene
229

.  Polyaniline is often used as an 

immobilising substrate for biomolecules and as an efficient catalyst.  However, the 

necessity to detect bioanalytes in neutral pH ranges leads to electro-inactivity of the 

deposited polymer film, hence polypyrrole is the most extensively used conducting 

polymer in the preparation of urea biosensors
230,231

.   

Amperometric, flow injection urea biosensors have been developed by the 

entrapment of the urease enzyme during the polymerisation of pyrrole and the 

influence of flow rate, applied potential and polymerisation time has been 

investigated
231

.  The sensitivity and detection range were further improved by 

increasing the enzyme loading and utilising pulsed amperometric detection.   

However, these sensors suffer from the necessity of pretreatment steps.  Osaka et 

al.
232

 developed a potentiometric urea sensor using composite films with polyion 

complexes.  The sensitivity of these biosensors was found to be significantly 

enhanced due to the effective immobilisation of high amounts of urease by treatment 

of the electrode with a pre-coated polyion complex, but reproducibility studies of 

this sensor were not reported.   

Various approaches and immobilisation methods have been investigated in order to 

improve the stability, sensitivity and reproducibility of conducting polymer based 

biosensors.  These approaches include using copolymers and composites, for 

example, polyaniline-nafion composites have been used to develop amperometric 

urea biosensors
231,233

, and different immobilisation methods including inclusion 

during electropolymerisation and casting methods.  However, obtaining good 

sensitivity, reproducibility and long-term stability of the conducting polymer urea 

biosensors is still a significant challenge.   

 

1.7.1.3 Urea Biosensors based on Sol-Gel Matrices 

Sol-gel matrices have been used in the fabrication of chemical opto-electronic 

sensors due to their chemical inertness, thermal and photochemical stability and 

optical transparency
234

.  More recently, they have also been investigated as 

biosensors owing to the attractive low temperature process of immobilisation for 
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various biomolecules such as enzymes and antibodies, which tend to lose activity at 

higher temperatures
234

.   

Another advantage of using sol-gel matrices as biosensors is that the fabrication of 

multi-analyte detection electrodes is quite simple; which leads to shorter response 

times.  In addition, the biological species can be easily entrapped into the matrix 

without leaching, leading to longer biomolecule stability and an enhanced life-time 

of the biosensor.  Disadvantages, as with other biosensors, include loss in sensitivity 

and poor reproducibility.  Also, sol-gel matrices have diffusional limitations and 

unknown catalyst-matrix interactions and kinetics, which pose a challenge to 

researchers as these are difficult to overcome
235

.   

 

1.7.2 Urea Biosensors based on Langmuir-Blodgett Films 

Langmuir-Blodgett films have also been used as a means of sensing urea.  Langmuir-

Blodgett technology is a tool for designing artificial systems with biological 

functions, such as biosensors.  The Langmuir-Blodgett films are ultra-thin, thus 

preserving high enzymatic activity of the incorporated biomolecules, hence, various 

biosensors have been designed using Langmuir-Blodgett films as the biosensitive 

part
236,237

.   

Urea biosensors based on Langmuir-Blodgett films have been developed by 

immobilising highly stable urease monolayers onto a substrate using the Langmuir-

Blodgett deposition technique
238,239

.  These biosensors were found to have a 

relatively good sensitivity; however, the detection limit of these sensors does not 

cover the physiological range of urea.  In addition to this, the influence of 

interferants on the biosensor was not investigated.   

 

1.7.3 Urea Biosensors based on Nanomaterials 

Nanostructured materials are found in a large variety of applications such as catalytic 

reactions, fluorescent tags and smoke/fog screens, owing to their characteristic 

properties including high surface areas, good optical properties and light scattering 

effects.  Nanomaterials have also found applications in the areas of drug delivery, 

pesticide delivery and, more recently, in the area of biosensors
240,241,242,243

.   
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Biological species can retain their activity when adsorbed onto nanomaterials, such 

as gold nanoparticles
244

.  Gold nanoparticles can also be used to immobilise enzymes 

based on chemical adsorption onto self-assembled monolayers
245,246

.  Biological 

sensors have also been produced from nanostructured metal oxides, which enable 

higher catalytic activity, faster responses and possibly longer life-times
247

.   
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2.1 Introduction 

In this chapter the experimental techniques and apparatus employed during the 

course of this research are outlined.  The procedures for the experiments undertaken 

are also detailed.  In addition, an overview of the theories and related equations are 

described.   

 

2.2 Experimental Techniques  

The electrochemical and analytical techniques employed throughout this study were 

cyclic voltammetry, potentiostatic measurements, impedance measurements, 

ultraviolet-visible spectroscopy (UV-Vis), differential scanning calorimetry (DSC) 

and scanning electron microscopy (SEM) coupled with energy dispersive X-Ray 

analysis (EDX).  A brief overview of each technique is given in this chapter.   

 

2.2.1 Cyclic Voltammetry  

Cyclic voltammetry (CV) is a very useful electroanalytical technique that can be 

used to obtain information about both simple and complicated electrode reactions.  It 

is often one of the first experiments that is performed in an electroanalytical study 

and it is one of the most useful and widely applied techniques
1
.  Cyclic voltammetry 

is performed by applying a sweeping potential to the working electrode between two 

chosen potential limits.  This is done at a constant rate known as the scan rate, and 

the change in current is recorded.  The initial applied potential, Ei, is swept to a 

vertex potential, Ev, then the scan is reversed and swept back to a final potential, Ef, 

which generally equates with the original (initial) potential, Ei.  This process creates 

a cyclic effect and is usually repeated multiple times.   

For a simple redox reaction, Equation 2.1, where only R is present, the current 

response of the forward scan is the linear potential sweep voltammogram as R is 

oxidised to O which produces an anodic peak.  On the reverse scan, the reduction of 

O to R occurs, resulting in a cathodic peak.  A plot of applied potential versus current 

is used to depict such generated cyclic voltammograms, Figure 2.1.   
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 O + ne
-
 ⇌ R 2.1  

 

 

 

 

 

 

 

 

 

 

Figure 2.1:  Typical current-potential profile for a cyclic voltammogram of a reversible 

redox species.   

Cyclic voltammetry was used primarily in the study of the electrochemical behaviour 

of the polymers under various conditions, i.e., thickness and pH, in order to 

investigate the stability of the polymers under these parameters.  The scan rate was 

varied from 5 to 300 mV s
-1

, and the electrochemical window was generally in the 

range of -0.60 to 0.80 V vs. SCE.  Further details on the kinetic information provided 

by the CV technique are provided in Section 2.7.   

 

2.2.2 Potentiostatic Measurements   

Potentiostatic measurements were utilised for a variety of different processes in this 

study.  A potentiostatic mode was employed in order to grow the polypyrrole films 

doped with chloride anions (PPy-Cl), the polypyrrole films with bovine serum 

albumin (PPy-BSA) and the polymer films with the incorporated urease enzyme and 

the sulphonated-β-cyclodextrin (PPy-Urs-Cl, PPy-Urs-SCD and PPy-SCD).  This 

was carried out by applying a constant potential to the working electrode in the 

monomer-containing electrolyte, initially for a fixed period of time, and then until a 

R – e
-
         O   

O + e
-
         R   
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desired charge/thickness of the polymer film was reached.  The polymer was 

adherent to the electrode until a film thickness greater than 30 μm was reached.  The 

growth of the polymer films was recorded by monitoring the current response         

(A cm
-2

) as a function of time (s).   

Both CV and potentiostatic techniques are routinely used in depositing polymer 

films and it is generally stated in the literature that the CV technique forms smoother 

polymer films
2
.  However, in this experiment it was found that potentiostatic 

measurements were better for growing the polymers. By employing the 

potentiostatic mode, the polymers formed were smooth and the films were much 

more adherent to the working electrode in comparison to the films grown using the 

cyclic voltammetry method.  The electrodeposition of polypyrrole using a potential 

step technique gives a well-defined chronoamperometric response, with a rising 

current-time transient during the initial stage, followed by decay in the current, to a 

near constant value
3
.  These transients have been explained in terms of the nucleation 

of the polymer at the surface followed by three-dimensional growth
3
.  It has also 

been shown that the initial polypyrrole nodules deposited at the electrode are isolated 

and randomly dispersed
3
.  With continued time, the nodules grow in a three-

dimensional manner to give an increasing number of grains on the surface.  

Depending on the potential applied a large number of nucleation sites can be 

generated to give a highly adherent polymer film.   

In contrast, with cyclic voltammetry, the potential is swept across a large window, 

and the monomer becomes oxidised over a range of potentials to form the polymer.  

Hernandez-Perez et al.
4
 followed, using AFM measurements, the formation of nano-

sized polypyrrole nodules and their transformation into larger surface aggregates 

during CV measurements.  This forms a rough surface and the polymer is less 

adherent to the electrode as it is being repeatedly oxidised and reduced.  Indeed, 

Hernandez-Perez et al.
4
 concluded that the potentiostatic method allows better 

control over the polymer growth giving a well-defined smooth surface.   
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2.2.3 Impedance Measurements   

Electrochemical Impedance Spectroscopy (EIS) is a very useful method used to 

examine multiple factors at the surface of the working electrode.  These factors can 

include the stability, kinetics and double layer capacitance of the working electrode, 

to name but a few
5
.  Impedance measurements involve the application of a small 

perturbing sinusoidal voltage of 1 to 10 mV, which is superimposed on the fixed 

baseline potential or versus the open-circuit potential.  Any shift that may occur in 

the phase and amplitude of this sinusoidal voltage will result in an AC current, which 

is as a result of variations occurring within the electrochemical cell.   

The various components of the electrochemical cell are the determining factors in the 

overall impedance of a system.  These components can include diffusion, passivating 

layers, electron-transfer kinetics and the solution resistance
5
.  The relative 

contributions of these components tend to exhibit a variation with frequency; for 

example, diffusion may dominate at lower frequencies whereas electron-transfer 

kinetics can dominate at higher frequencies
5
. Electrochemical impedance 

spectroscopy is extremely useful as it allows measurements to be recorded over a 

wide frequency range, thus allowing multiple processes with varying time scales to 

be detected within the same experiment.   

EIS results are expressed in two parts, real and imaginary, resulting from the shift in 

phase that arises as a result of the phase shift that occurs between the applied AC 

potential and the AC current response on the application of an AC potential to the 

electrochemical cell.  These components are plotted on a vector diagram known as a 

Complex Plane or “Nyquist” plot, with the real component (Z') on the x-axis and the 

imaginary component (Z'') on the y-axis, as depicted in Figure 2.2 (a)
5
.   
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(a) (b)  

Figure 2.2:  Example of a typical Complex Plane (or Nyquist) plot (a), Bode plot (b) and (c) 

with Z in units of Ω cm
2
.   

The experimental data may also be presented in the form of a Bode plot, as 

illustrated in Figure 2.2 (b) and (c).  This displays the total impedance of the system, 

|Z|, on a logarithmic scale, typically in units of Ω and the phase angle, θ, as a 

function of the logarithmic of frequency.  The total impedance, |Z|, is related to the 

real and imaginary components through Equation 2.2.   

  2.2  

 

For the purpose of this work, EIS measurements were carried out in order to obtain 

information on the capacitance and charge transfer resistance of the polymer films.  

The exact experimental conditions are described in detail in Section 3.3.2.8.  

However, in general, the polymer was conditioned for 30 min either at the open-

circuit potential (OCP) or at a fixed applied potential, to ensure that a steady state 

was reached before measurements were performed.  This was tested further by 

recording the impedance data from high to low frequencies, then reversing the sweep 

and recording the data from low to high frequencies.  If no hysteresis was observed it 

was then concluded that steady-state conditions had been attained.  A potential 

perturbation of 5 mV was used to ensure a pseudo-linear response of the system, 

while the frequency was varied from 65 kHz to 100 mHz.   

(c) 
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The impedance response was modeled using Zview, a data modeling software 

package that is capable of modeling the data to appropriate equivalent electrical 

circuits using a non linear least squares fitting routine that considers both the real and 

the imaginary components of the data.  The purpose of fitting the data to these 

equivalent circuit models is to mimic the actual impedance measurements with an 

equivalent electrical circuit which consists of resistors, capacitors and constant phase 

elements (semi-capacitors).  The Zview software is designed to accurately model 

impedance data, whereby each circuit element in the model is selected to correspond 

to a real physical component in the electrochemical cell.  In this work, estimated 

initial values were generated and these were used to build an electrical circuit, then 

the Zview software was used to refine these estimates using an iterative process to 

select alternative values that best fitted the experimental data.   

The main electrical circuit elements used to model data were constant phase 

elements (CPE) and resistors (R).  A resistor has no imaginary component; hence its 

value is equal to the impedance for the real component.  The total resistance value is 

a combination of the value for the resistance elements in the electrolyte solution, 

which usually includes the solution resistance, (RS) and the charge transfer resistance 

(RCT).  Constant phase elements (CPE) were used to determine the capacitance 

and/or the diffusional processes at the interface.  In particular, the CPE was used 

instead of a pure capacitor as this allows for the inhomogeneity of the surface of the 

electrode to be taken into account.  Equation 2.3 defines the impedance of a constant 

phase element, where ω is the angular frequency (2πf).  The CPE is defined using 

two parameters; a magnitude term (T) and an exponent value (p).  The exponent 

gives information on the physical processes that are occurring within the 

electrochemical cell; if the exponent value is equal to 1.0, it is correct to assume that 

the CPE is behaving as an ideal capacitor, however, values of 0.9 and higher are also 

acceptable capacitance components.  The higher exponent values, n > 0.95, point to a 

relatively high degree of surface homogeneity, while lower values, 0.85 < n < 0.95, 

indicate poor surface homogeneity, which may be related to a porous surface 

structure. On the other hand, an exponent value of 0.5 is consistent with a diffusion 

process; this coincides with a phase angle of 45°.   

  2.3  
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By using various components in series or in parallel it is possible to create an 

appropriate equivalent electrical circuit model based on the physical system.  Figure 

2.3 shows the models that were designed in order to evaluate the data presented in 

this thesis.  When this approach is used, it is very important that each element in the 

equivalent circuit element corresponds to an actual component of the electrochemical 

cell; otherwise the equivalent circuit has little or no meaning.   

For this analysis, the simulated impedance was calculated based on the initial circuit 

parameters and values.  This fit was then compared to the experimental data and the 

values of the circuit parameters modified, then the fit between the experimental and 

simulated data was re-evaluated.  This iterative process was continued until there 

was a minimum difference between the simulated and experimental data.  The 

percentage errors shown in Figure 2.3 give the percentage by which the circuit 

element can be modified without any loss in fit between the simulated and the 

experimental data, which, in turn, gives the actual errors in the values of each circuit 

component.  For simple circuits the error was maintained at 2% or lower.  If higher 

errors were achieved, then an alternative circuit was considered.  A higher 

percentage error of 5% was accepted for more complex models that contained a 

greater number of circuit elements.   

 

Element Value Error Error % 

Rs  192 1.70 0.88 

CPE1-T 5.55 x 10
-5

 5.12 x 10
-6 

4.22 

CPE1-P 0.585 0.014 2.10 

R1 565 13.6 2.40 

CPE2-T 7.66 x 10
-4

 1.32 x 10
-5 

1.73 

CPE2-P 0.984 0.012 1.22 

 

Figure 2.3:  Typical equivalent circuit parameters and the data fitting routine, values and 

errors used to fit impedance data.   
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2.2.4 Ultraviolet-Visible Spectroscopy  

Ultraviolet-visible (UV-Vis) spectroscopy is a very useful analytical technique as it 

can be used to determine the amount of substance present in a sample, and also to 

identify some chemical species.  This is because the UV-Vis spectrometer measures 

the amount of ultraviolet and visible light that is transmitted or absorbed by a 

sample.  The wavelength at which a chemical absorbs light is a function of its 

electronic structure and the intensity of this absorption is related to the amount of the 

sample between the light source and the detector.  The measured absorbance is 

proportional to the concentration of the absorbing species given by the Beer-Lambert 

law, Equation 2.4; hence UV-Vis is also a well suited technique for the quantitative 

study of association constants.   

 A = εbc 2.4  

 

Here, A is the absorbance, ε is the molar absorbtivity, b is the path length and c is the 

concentration of the absorbing species.  For the purpose of this study, UV-Vis 

spectroscopy was employed using a Varian Cary series spectrophotometer to 

investigate the stability of BSA in solution.  For each measurement, a quartz crystal 

cuvette with a length of 1 cm, containing 3.0 mL of the sample solution, was used.  

The resolution of the spectrometer was 0.3 nm and the wavelength was scanned from 

200 to 800 nm or from 200 to 400 nm at 300 nm min
-1

.   

 

2.2.5 Differential Scanning Calorimetry  

Differential scanning calorimetry (DSC) is a very useful technique used to study the 

thermal properties and transitions of polymers.  These transitions include the melting 

interval, decomposition, crystallisation and even the purity of the polymers
6
.  The 

apparatus for DSC analysis is shown in Figure 2.4, whereby an aluminium pan 

containing the polymer is placed in the heating chamber close to an empty pan which 

acts as a reference.  The furnace is set to increase or decrease the temperature at a 

fixed rate and the arrangement of the aluminium pans ensures that they are both at an 

identical temperature at all times.  The DSC measures the energy that is required to 
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keep both aluminium pans at an identical temperature; hence the amount of heat 

absorbed or released by the polymer sample is recorded as the temperature is varied.   

The measured data were recorded as the heat change expressed as heat flow (mW) as 

a function of the temperature (°C).  For the purpose of these experiments, 

approximately 2.0 mg of polymer sample was heated from 25 °C up to 450 °C, at a 

constant rate of 10 °C min
-1

, under an inert nitrogen atmosphere.  The samples were 

then cooled from 450 °C back to 25 °C, again at a constant rate of 10 °C min
-1

, using 

liquid nitrogen as the cooling agent, and a cyclic pattern was obtained.  The 

instrument used was a Perkin Elmer Pyris 6.0 apparatus and the results were 

recorded and analysed using Pyris Data Analysis software; this depicts exothermic 

peaks as well shaped curves and endothermic peaks as bell shaped curves.  This 

technique was utilised in order to investigate the thermal behaviour of the polymer 

doped with chloride anions and with the biological agents.   

 

Figure 2.4:  Schematic of the differential scanning calorimetry apparatus.   

 

2.2.6 Scanning Electron Microscopy and Energy Dispersive X-Ray Analysis  

The scanning electron microscope (SEM) is a microscope that uses electrons instead 

of light to form an image.  It is generally used in order to generate high-resolution 

images of objects to reveal information about their surface morphology and 
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topography.  These high-resolution images are generated by bombarding the surface 

of the sample under investigation with a high energy beam of primary electrons.  

This in turn causes the electrons from the sample to dislodge as secondary electrons.  

These secondary electrons are attracted to and detected by a positively charged 

detector and are then translated into signals which are amplified and analysed before 

being translated into understandable images.  The sample preparation for SEM 

analysis is relatively easy as most SEM measurements only require the sample to be 

conductive, this can be done by coating the sample to be analysed with gold using a 

sputter coater
7
.  The thickness is monitored using the principle of the quartz crystal 

microbalance; when sputtered material is deposited on an oscillating quartz crystal 

its frequency is decreased in relation to the mass of material deposited.  In this way 

an exact thickness of material can be deposited onto the sample, which prevents the 

sample from becoming charged during SEM analysis.   

The SEM is usually equipped with an energy dispersive X-Ray analysis (EDX) 

system in order to enable it to perform compositional analysis on specimens.  This is 

done by measuring the omitted X-Rays from the sample when it is being bombarded 

with the primary electrons.  The X-Ray energy is characteristic of the element from 

which it was emitted and as a result EDX analysis is very useful in identifying the 

chemical components of a sample
7
.  The resolution of the EDX probe is given by the 

size of the volume of interaction between the electron beam and the sample.  The 

size is usually a few microns. The EDX analysis can be affected by the surface 

roughness.  The interaction of the electrons with the surrounding zones of the probed 

point can cause the emission of X-Rays that add to the signal belonging to the point 

of analysis.  The extent of such interference is a major limitation that compromises 

the precision of any quantitative analysis.  A quantitative EDX analysis is possible 

but only with high-quality flat-polished sample surfaces, and standards prepared and 

analysed in the exact same way.  Semi-quantitative analysis is possible by comparing 

the relative peak heights from the sample and a standard of known composition 

measured under the same conditions.   

For the purpose of this study, EDX was used to prove the presence of the BSA and 

urease in the PPy-BSA and PPy-Urs polymer films, respectively.  The samples for 

SEM and EDX were prepared by growing the polymers onto a flat platinum 

electrode at varied potentials for different times, then dried in air overnight.  The 
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non-conducting samples were sputter coated with gold using an Agar auto sputter 

coater until a layer of 50-100 nm in thickness was applied.  The acceleration voltage 

applied during SEM and EDX analysis was 20 keV.   

 

2.3 Instrumentation, Software and Ancillary Equipment 

Potentiostatic and cyclic voltammetry experiments were carried out using a Solartron 

Potentiostat Model 1287.  This used Scribner Associates CorrWare for Windows 

Version 3.0, and the resulting data were analysed using Scribner Associates 

CorrView for Windows Version 3.0.  The impedance experiments were carried out 

using a Solartron Frequency Response Analyser Model 1255B, in conjunction with 

the Solartron Potentiostat Model 1287.  The impedance data were recorded using 

Scribner Associates ZPlot for Windows Version 3.0 and analysed using Scribner 

Associates ZView for Windows Version 3.0.  The remaining apparatus information 

is outlined in Table 2.1.  General analysis of data and plotting of calibration curves 

were performed in Microsoft Excel 2007 and an overview of the ancillary equipment 

used throughout this study is given in Table 2.2.   

 

Table 2.1:  Analytical techniques used with model information.   

Analytical Technique Model 

UV-Vis Spectroscopy Varian Cary 50 UV-Vis Spectrometer 

Differential Scanning Calorimetry Perkin Elmer Pyris 6.0  

SEM 
Leica Stereoscan 440 / Joel 840 SEM / 

Hitachi S400 

EDX Tescan Mira XMU VPFE 
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Table 2.2:  Ancillary equipment used with model information.   

Equipment Model 

Sonicator Branson 1510  

Electronic Balance Sartorius Models TE612 and TE124S 

pH Meter Orion Model 720A 

Conductivity Meter Jenway 4510 

Gold Sputter Coater  Emitech K550x / Agar Scientific 

 

 

2.4 Chemicals and Solutions 

The chemicals used throughout this study were purchased from Sigma-Aldrich or its 

subsidiary company Fluka.  All chemicals were used as supplied expect for pyrrole 

which was vacuum-distilled and stored in the dark at -20 C prior to use, and the 

bovine serum albumin solution which came pre-prepared as a 30 % BSA in a saline 

solution.  In order to use this BSA solution, all the experiments were recorded using 

a fixed volume of BSA solution (ranging from 25 μL to 200 μL) in a 10 mL 

monomer solution, unless otherwise stated.  The concentration of the BSA is then 

expressed as a volume, being μL of BSA (30%)/10 mL of solution.  This is kept 

constant for all the results that are presented, keeping in context with the literature
8
 

that presents the concentration of BSA as a volume and in a similar way.  All other 

solutions were made from stock solutions of 0.10 mol dm
-3

 NaCl or 0.05 mol dm
-3

 

phosphate buffer, pH 7.0, which were initially prepared using distilled water, as 

stated in the figure captions or the main text.  All the amino acid and interfering 

compound solutions were prepared freshly before each experiment. Where 

necessary, the pH of the solutions was altered using concentrated HCl or NaOH.  All 

experiments were performed at room temperature.   

 

2.5 The Electrochemical Cell Setup    

A standard three-electrode electrochemical cell configuration was employed for all 

electrochemical experiments.  This consists of a working electrode (WE), a reference 

electrode (RE) and finally a counter/auxiliary electrode (CE), as shown in Figure 2.5.  
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The WE used was generally a commercial platinum (Pt) disc supported inside a 

Teflon
®
 holder, the CE consisted of a high surface area Pt wire, and the RE was a 

saturated calomel electrode (SCE).  This cell was then connected to a potentiostat 

and the results were recorded by a computer in the manner shown in Figure 2.6.  In 

general, the potential is measured between the RE and the WE and the current is 

measured between the WE and the CE.   

Care was taken to ensure that all electrodes were free from impurities and that all 

connections had negligible resistance.  The working electrodes were prepared from a 

1.5 cm length of the Pt rod (purity 99.99 %) obtained from Goodfellow Cambridge 

Ltd.  This was set in a Teflon
®
 holder with epoxy resin.  The electrical contact was 

made with a copper wire attached using a highly conducting silver-loaded resin.  The 

quality of the electrical contact was checked with a multimeter to ensure that the 

resistance between the surface of the electrodes and the connection to the 

potentiostat was lower than 1 Ω.  Prior to each experiment, the working electrodes 

were polished to a mirror finish using 30, 15, 6 and 1 μm diamond suspensions on 

microcloth (Buehler), sonicated in distilled water and then in ethanol, and finally 

rinsed with distilled water.  The reference electrodes were serviced regularly by 

changing the internal filling solution with a saturated solution of super-purum KCl 

(99.999+ %), and by checking the open-circuit potential against an unused SCE.  

Unless otherwise stated, all potentials in the figures are relative to the SCE reference 

electrode.  The counter electrodes were brushed regularly with silicon carbide based 

abrasive paper (Buheler P2500), smoothed, cleaned and sonicated in distilled water.   
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Figure 2.5:  A schematic of the three-electrode cell used for electrochemical measurements.   

 

 

 

Figure 2.6:  A schematic of the experimental setup used to record all electrochemical 

measurements.   
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2.6 Fabrication and Characterisation of the Polypyrrole Films  

In general, the PPy films were electrosynthesised at the working electrode at 0.70 V 

vs. SCE from an aqueous solution of 0.50 mol dm
-3

 pyrrole monomer and 0.10 mol 

dm
-3

 NaCl or 0.02 mol dm
-3

 sulphonated-β-cyclodextrin, typically until a charge of 

0.74 C cm
-2

 was reached.  Any variation in the potentials, charge passed or polymer 

forming electrolyte is presented in the figure captions or corresponding text in the 

results section.  The morphology and chemical composition of the PPy films were 

analysed using scanning electron microscopy (SEM) and energy dispersive X-Ray 

analysis (EDX).  The samples were sputter-coated with gold prior to SEM imaging 

only where stated.   

 

2.7 Kinetic Analysis 

The cyclic voltammetry technique is a very useful tool as mentioned in Section 2.2; 

however, in addition to this it can also provide information on the kinetics of a 

system. The voltammogram response at varied scan rates can reveal kinetic 

information concerning the electrocatalytic process, including diffusion and 

adsorption effects, and it can also be used to determine the reversible behaviour of a 

system.  For a reversible system, the factors that can influence the behaviour and 

magnitude of the peak current can be described by the Randles-Sevcik equation, 

Equation 2.5.   A reversible cyclic voltammogram will only be observed when both 

the oxidation and reduction species are uniquely stable and if the electron-transfer 

occurs at a fast rate
9
.   

 ip = (2.69 x 10
5
)n

3/2
D

1/2
v

1/2
co 2.5  

 

Here, ip is the peak current (A cm
-2

), n is the electron stoichiometry, D is the 

diffusion coefficient (cm
2
 s

-1
), v is the scan rate (V s

-1
) and co is the concentration 

(mol cm
-3

).   

It can be seen from the Randles-Sevcik equation that the peak current, ip, is directly 

proportional to the concentration of the electroactive species in the system and also 

to the square root of the scan rate and diffusion coefficient.  Therefore, a linear 
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relationship between the current and the square root of the scan rate is indicative that 

the redox reaction conforms to the Randles-Sevcik equation and hence is governed to 

some extent by a diffusion-controlled process.  As a result, the redox reaction 

process is considered to be adsorption free.  If a plot of the peak current against the 

square root of the scan rate yields a straight line, the diffusion coefficient can then be 

determined from the slope of this line when the electron stoichiometry, concentration 

and area of the electrode are known.  This equation was used in Section 6.3.1 in 

order to determine the diffusion coefficient of urea at a glassy carbon electrode.   

When a straight line is obtained from the Randles-Sevcik equation which correlates 

with a reversible system, it can then be assumed that the reversible system will 

follow other patterns also.  Assuming that the system is reversible, there are tests that 

can be applied to the system that should be satisfied over a wide range of scan rates.  

For example, the ratio of the forward and reverse peak currents for a reversible 

system should be equal to unity, i.e., 1, Equation 2.6, and they are independent of 

scan rate.  The peak separations should comply with Equation 2.7 and the difference 

in the peak potentials and the half-wave peak potentials should satisfy Equation 2.8.  

If any of these equations are not satisfied, this means that the electron transfer is not 

reversible under the conditions of the experiment and that the process is more 

complex
9
.   

 
 

2.6  

 

 ∆Ep = E =  mV 2.7  

         

 Ep - Ep/2 =  mV 2.8  

 

Here,  is the oxidation peak current,  is the reduction peak current, E  is the 

peak potential of the oxidation peak, E  is the peak potential of the reduction wave, 

Ep/2 is the half-wave potential and n is the number of electrons transferred
9
.  If the 

electron transfer is not taking place within the timescale of the experiment, i.e., the 
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rate of electron transfer is too slow, the system can be said to be irreversible.  The 

main characteristic of an irreversible system is the absence of a reverse peak in the 

cyclic voltammogram.  The peak current of an irreversible system can be described 

by Equation 2.9, where nα is the number of electrons transferred up to and including 

the rate-determining step and αc is the charge-transfer coefficient of the reverse 

reaction.   

 ip = (2.99 x 10
5
)n(αcnα)

1/2
coD

1/2
v

1/2
 2.9  

 

In addition to this, for an irreversible system, although the oxidation peak currents 

are proportional to the square root of the scan rate, the peak potentials shift by 

30/αcnα mV for each decade change in v.  Also, the difference in the peak potentials 

and the half wave peak potential comply with Equation 2.10
9
.   

 
mV

n
EE pp

c

2/

48
     

2.10  

When the system is neither totally reversible nor irreversible, a quasi-reversible 

system can exist between these two extremes.  The kinetics of a quasi-reversible 

system are not very fast or very slow and both the forward and reverse reactions 

make a contribution to the peak current, which increases with the square root of the 

scan rate, as shown in Equation 2.5.  However, at high scan rates where the standard 

rate constant, k
θ
, is slow, the peak current is no longer proportional to the square root 

of the scan rate.   

Just as with a totally reversible system, the ratio of the peak oxidation and reduction 

currents of a quasi-reversible system should equate to unity, provided that αC and αA 

are both equal to 0.5.  The anodic and cathodic peaks are separated by more than 

59/n mV and this separation increases with increasing scan rate, as the peak potential 

shifts
9
.  These characteristics are summarised in Table 2.3.   
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Table 2.3: Reversible and quasi-reversible systems.  

Reversible Quasi-reversible 

 

 

 

Ip  υ
1/2

 Ip not always proportional to υ
1/2

 as υ increases  

Ep independent of υ Ep  increases as υ increases 

Ep = 59/n mV Ep > 59/n mV 

 

 

2.8 Complexation Studies  

In order to evaluate complexation between the cyclodextrins and the urea and 

interfering compounds and to determine the stoichiometric values of these 

complexes, the formation constant and Job’s method were employed using CV
10

.  

The related theory behind each of the equations used in this analysis is described in 

detail in this section.   

 

2.8.1 Job’s Method  

It is imperative to determine the stoichiometry of the complex before any structural 

or associative measurements are performed on a host-guest interaction.  A well 

known method of determining the stoichiometry of the complex is the commonly 

known continuous variation method or Job’s method
11,12

.  This is an experimental 

mixing technique widely used in the determination of stoichiometric ratios of each 
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constituent involved and can be applied to various techniques such as fluorescence, 

UV-Vis, NMR and electrochemical techniques, provided that either the guest or host 

molecule are electrochemically active
13,14,15

.   

The Job’s plot method involves the preparation of a series of solutions whereby the 

sum of the guest and host concentrations is kept constant, but the mole fraction is 

changed
16

.  This is achieved by mixing different volumes of equal concentrations of 

the guest and host molecules so that the overall volume remains the same, as shown 

in Table 2.4.  The physicochemical parameter whose value changes when the guest 

and host molecules form a complex is measured in each solution.  For example, the 

absorbance values may change for either the guest or host molecule when monitored 

using UV-Vis, there may be chemical shifts in the NMR spectra, or peak potential 

shifts in cyclic voltammetry.   

Table 2.4:  Solutions used in Job’s analysis where the sum of the guest and host 

concentrations is kept constant, but the mole fraction is changed.  Concentration of both the 

guest and host stock solution is 1.0 x 10
-2

 mol dm
-3

.   

Solution number Volume of host 

molecule (mL) 

Volume of guest 

molecule (mL) 

Mole fraction of 

guest 

1 10.0 0.0 0.0 

2 9.0 1.0 0.1 

3 8.0 2.0 0.2 

4 7.0 3.0 0.3 

5 6.0 4.0 0.4 

6 5.0 5.0 0.5 

7 4.0 6.0 0.6 

8 3.0 7.0 0.7 

9 2.0 8.0 0.8 

10 1.0 9.0 0.9 

11 0.0 10.0 1.0 

 

For the purpose of this analysis, cyclic voltammetry was used to generate the Job’s 

plots for urea in the presence of the sulphonated-β-cyclodextrin (SCD).  The change 

of the property, i.e., the change in the electrochemical behaviour in the presence and 

absence of the sulphonated-β-cyclodextrin host, was calculated by subtracting the 
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currents recorded at a fixed potential from those of an equal concentration of free 

guest, Equation 2.11.  This product is then plotted as a function of the mole fraction 

to generate the Job’s plot.  The stoichiometry of the complex is determined from the 

x-coordinate at the maximum value of the Job’s curve
17

.   

  2.11 

 

Cyclic voltammetry was also used to investigate the formation of an inclusion 

complex between urea and the sulphonated-α-cyclodextrin.   

 

2.8.2 Formation Constants  

Cyclodextrins are well known to form inclusion complexes in aqueous 

solutions
18,19,20

.  The equilibrium that is established between the host and guest 

molecules is expressed as the complex formation, equilibrium, stability or binding 

constant and is denoted as Kf
21

.  In complexation studies, the simplest method for the 

determination of the formation constant for a 1:1 inclusion complex is based on the 

equilibrium equation shown in Equation 2.12.   

  2.12 

 

Here, G represents the guest molecule, CD represents the host molecule and CD.G 

represents the inclusion complex formed.  From Equation 2.12, the formation 

constant can be defined as:   

  2.13 

 

where [G] and [CD] are the equilibrium concentrations of the guest and host 

molecules, respectively.   
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The formation of an inclusion complex between a guest and host molecule can be 

monitored electrochemically or spectroscopically, as the encapsulation of the guest 

inside the cyclodextrin cavity leads to alterations in the physical and chemical 

properties of the guest.  Consequently, it is possible to calculate the formation 

constant by monitoring these changes.  However, this depends on approximations; in 

this case, the two main approximations are that the host is always in excess of the 

guest and, that the stoichiometric value is a 1:1 ratio for the guest:host inclusion 

complex.  The simplest way of calculating the formation constant is by keeping the 

concentration of the guest constant while changing the concentration of the host.  

This allows the host to be always in excess of the guest, and allows for this 

approximation to then be valid.   

The formation of an inclusion complex between the cyclodextrin and a redox-active 

guest molecule can be monitored using an electrochemical approach such as CV or 

RDV.  In this study, Chapter 6, the currents at a fixed potential were measured in the 

presence and absence of a large excess of the sulphonated-β-cyclodextrin (SCD). As 

the cyclodextrin is large in comparison to the guest, the included guest will diffuse 

more slowly than the free guest which, in turn, gives rise to a reduction in the 

currents at a fixed potential.  The formation constant for the inclusion complex was 

calculated by monitoring the changes in the currents and then the data were fitted to 

Equation 2.14
10,14

.   

 
 

2.14 

 

Here, [SCD] is the concentration of the sulphonated-β-cyclodextrin,  and  are the 

currents recorded at a fixed potential in the absence and presence of SCD, 

respectively and  is a constant. Each experiment was performed a minimum of six 

times (n = 6). 
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“Personally, I'm always ready to learn, although I do not always like 

being taught.” - Sir Winston Churchill 
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3.1 Introduction  

There is much interest in the use of conducting polymers, such as polyaniline and 

polypyrrole, as supporting matrices for biological species
1,2

.  As the monomer that 

forms the conducting polymer is oxidised, a lattice type structure is created whereby 

the oxidised positively charged polymer incorporates a negative ion to 

counterbalance the charge produced upon oxidation.  This continues as the monomer 

becomes further oxidised, forming layer upon layer of positively charged polymer 

and negative anions.  This lattice type matrix is therefore highly suitable to the 

incorporation of other species, such as proteins and enzymes.  This is important in 

the fabrication of biosensors as the biological recognition element can easily be 

incorporated into the conducting polymer matrix and then used as a biosensor
3,4,5

.   

In order to investigate the suitability of conducting polymers as supporting matrices 

towards a biological element, polypyrrole (PPy) was chosen as the conducting 

polymer.  This chapter describes the growth of polypyrrole using a common dopant 

anion, Cl
-
, which gives a polypyrrole film doped with chloride anions, PPy-Cl.  In 

addition, the effect of introducing a biological element into the monomer solution 

was investigated.  The protein, bovine serum albumin (BSA), was chosen for this 

investigation as BSA is a relatively large protein of 66,000 Da containing over 630 

amino acid residues
6
.  Furthermore, BSA contains disulphide bonds, which make 

detection of the protein relatively simple using energy dispersive X-Ray (EDX) 

analysis, as the presence or absence of sulphur in the polymer film can be used to 

provide direct evidence of the presence or absence of the BSA.  Finally, BSA was 

chosen as it is used as a model protein and it is readily available and reasonably 

inexpensive
7,8

.   

 

3.2 Experimental  

The instrumentation and software employed for the experiments detailed in this 

chapter and their analysis are described in Section 2.3. The chemicals used 

throughout this study were purchased from Sigma-Aldrich or its subsidiary company 

Fluka.  All chemicals were used as supplied expect for pyrrole which was vacuum-

distilled and stored in the dark at -20 C prior to use.  All other solutions were made 
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from a stock solution of 0.10 mol dm
-3

 NaCl, which was initially prepared using 

distilled water.  The bovine serum albumin solution as provided was very viscous, as 

such, this was diluted down using a 0.10 mol dm
-3

 NaCl solution; all concentrations 

of BSA are hence given as the volume of BSA (in μL) in 10 mL of 0.10 mol dm
-3

 

NaCl.  All of the solutions were freshly prepared before each experiment.  Where 

necessary, the pH of the solutions was altered using concentrated HCl or NaOH.  All 

experiments were performed at room temperature.  Electrochemical impedance 

spectroscopy (EIS) measurements were carried out in a solution of 0.10 mol dm
-3

 

NaCl, whereby the polymer film was initially conditioned for 30 min either at the 

open-circuit potential (OCP) or at a fixed applied potential, to ensure that a steady 

state was reached before measurements were performed.  The impedance data were 

then recorded, initially from high to low frequencies, then reversing the sweep and 

recording the data from low to high frequencies.  A potential perturbation of 5 mV 

was used to ensure a pseudo-linear response of the system, while the frequency was 

varied from 65 kHz to 100 mHz.  The data were finally fitted to equivalent circuit 

models to mimic the actual impedance measurements with an equivalent electrical 

circuit which consists of resistors, capacitors and constant phase elements.   

 

3.3 Results and Discussion 

Polypyrrole is used extensively in the development of sensors due to it being 

biocompatible, redox active, easy to form, readily available and inexpensive to 

manufacture
 9,10,11,12,13

.  Because of the unique properties of the polymer, it is 

possible to incorporate biological species, such as enzymes and proteins, into the 

polymer matrix
3,14

.  The first biological species that was incorporated into the 

polypyrrole film was the protein, bovine serum albumin (BSA).  For comparative 

purposes, polypyrrole-chloride (PPy-Cl) was also studied.  Polypyrrole-chloride 

(PPy-Cl) and polypyrrole-bovine serum albumin (PPy-BSA) were grown in a typical 

three-electrode electrochemical cell, as shown in Chapter 2, Figure 2.6, using a 

platinum (Pt) working electrode, a Pt wire counter electrode and a saturated calomel 

reference electrode.   
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3.3.1 Factors Affecting the Growth of PPy-Cl and PPy-BSA  

A number of parameters affect the growth of polypyrrole
15,16,17,18

.  Consequently, 

various experiments were carried out to investigate the growth of the biological-

modified polymer film, PPy-BSA. These experiments included varying the 

concentration of the pyrrole monomer in solution, the concentration of the biological 

species, the applied potential, and the electropolymerisation charge.  The presence of 

a supporting electrolyte in the monomer solution was also explored to investigate 

what effect, if any, it had on the growth of the polymer films.   

 

3.3.1.1 Influence of the Concentration of Pyrrole  

As BSA is a large globular protein, the first set of experiments involved selecting the 

appropriate concentration of the pyrrole monomer.  In the absence of BSA, it is well 

known that an increase in the pyrrole concentration gives rise to an increase in the 

rate of electropolymerisation
19

.  This is clearly shown in Figure 3.1, where current-

time plots, recorded at 0.70 V vs. SCE in a 0.10 mol dm
-3

 NaCl solution with pyrrole 

concentrations varying from 0.02 to 0.60 mol dm
-3

, are presented and compared.  It 

can be seen that the concentration of the pyrrole monomer has a significant influence 

on the growth of the polypyrrole (PPy) films in the presence of Cl
-
 ions.  On 

application of the potential, there is an initial rapid decrease in the current, which 

arises from the charging of the double layer.  This charging current decays rapidly, 

being governed by the RC time constant, which is related to the size of the electrode 

and the conductivity of the solution
20

.  This is then followed by a slower rise, at 

about 2 - 5 s, as the polypyrrole film begins to nucleate and deposit at the surface of 

the working electrode.  At longer times, greater than 250 s, the current reaches a 

steady state for the lower pyrrole concentrations.  However, there is a further more 

gradual increase in the current as the polymer becomes deposited onto the working 

electrode, with pyrrole concentrations higher that 0.30 mol dm
-3

.  Furthermore, the 

rate of this increase and the measured currents are higher with higher concentrations 

of monomer, Figure 3.2, which is consistent with higher deposition rates and larger 

surface areas
8,21

.   
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Figure 3.1:  Current-time plots for the formation of PPy-Cl on a Pt electrode at 0.70 V vs. 

SCE from a solution containing 0.10 mol dm
-3

 NaCl, and ▬ 0.60 mol dm
-3

 pyrrole ▬ 0.50 

mol dm
-3

 pyrrole ▬ 0.40 mol dm
-3

 pyrrole ▬ 0.30 mol dm
-3

 pyrrole ▬ 0.20 mol dm
-3

 

pyrrole
 
▬ 0.10 mol dm

-3
 pyrrole ▬ 0.05 mol dm

-3
 pyrrole and ▬ 0.02 mol dm

-3
 pyrrole.  

 

 

Figure 3.2:  Current measured at 600 s plotted as a function of the concentration of pyrrole 

for the formation of PPy-Cl on a Pt electrode at an applied potential of 0.70 V vs. SCE.  
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This is clearly shown in Figure 3.2 and Table 3.1, where the current measured at  

600 s, reaches 16.20 mA cm
-2

 with a pyrrole concentration of 0.60 mol dm
-3

, but is 

lower for the lower pyrrole concentrations and continues to decrease as the pyrrole 

concentration is lowered.  At the higher concentrations, the polymer forms rapidly 

and may contain multiple defects or deformities, leading to a loss in the sensing 

ability
21,22

.  However, the currents recorded during the electropolymerisation in 0.02 

mol dm
-3

 pyrrole are significantly lower, indicating inefficient formation of the 

polymer.  This is probably connected with the formation of short chain oligomers, 

due to the low concentration of the monomer at the electrode surface.  This, in turn, 

will give a polymer film with low conductivity.  The formation of these short chain 

oligomers, resulting from an inadequate concentration of monomer in solution, has 

been well documented in the growth of conducting polymers, particularly in the case 

of polyaniline
8,22,23

.   

On addition of BSA to the electropolymerisation solution, the rate of 

electropolymerisation was altered, decreasing as the concentration of BSA was 

increased.  Although these high pyrrole concentrations, > 0.30 mol dm
-3

, are not 

suitable for the growth of PPy-Cl, giving very high rates of electropolymerisation, 

Figure 3.1, these concentrations were suitable in the presence of BSA, giving 

efficient and reproducible electropolymerisation conditions.   

Table 3.1:  Current at time, t = 600 s for the formation of PPy-Cl on a Pt electrode at 0.70 V 

vs. SCE as a function of the monomer concentration. 

Concentration of pyrrole (mol dm
-3

) Current at time, t = 600 s (mA cm
-2

) 

0.60 16.20 

0.50 13.29 

0.40 12.74 

0.30 8.85 

0.20 6.75 

0.10 2.71 

0.05 1.08 

0.02 0.44 
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3.3.1.2 Influence of the Concentration of BSA  

The stability of BSA in the 0.10 mol dm
-3

 NaCl solution was explored prior to any 

electropolymerisation reactions.  The concentrated BSA solution was diluted with 

0.10 mol dm
-3

 NaCl to give 200 µL of BSA in 10 mL of 0.10 mol dm
-3

 NaCl and 

then the absorbance of the BSA-containing solution was monitored as a function of 

time, by recording a UV-Vis spectrum every 30 min for 13 h. The absorbance, 

recorded at 280 nm, was plotted against time, and is shown in Figure 3.3.  The 

absorbance remains constant at 0.69 for about 4 h and then there is a slight increase 

for the remaining 9 h.  However, this increase is small and there are no indications 

that the BSA is denatured during this 13 h period.  It was not possible to monitor the 

absorbance of BSA in the presence of pyrrole, as the pyrrole monomer absorbs at 

similar wavelengths; however, it is clear that the BSA is stable for extended periods 

in the 0.10 mol dm
-3

 NaCl solution.   

 

Figure 3.3:  Absorbance of BSA, at 280 nm, dissolved in 0.10 mol dm
-3 

NaCl, plotted as a 

function of time. 

The PPy-BSA films were electrosynthesised on a platinum working electrode by 

applying a constant potential of 0.70 V vs. SCE from monomer solutions where the 

concentration of pyrrole was kept constant at 0.50 mol dm
-3

 and the concentration of 

BSA was varied.  In Figure 3.4, current-time plots are shown for increasing 

concentrations of BSA, while for comparative purposes, the plot recorded in the 

absence of BSA, is included.  It can be seen from Figure 3.4 that as the BSA 

concentration is increased, the current density recorded during electropolymerisation 
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is reduced.  This is due to the size and viscosity of the BSA.  The BSA is a large 

globular protein that inhibits access of the monomer to the electrode surface
24

.  This 

is very evident during the first few seconds of electropolymerisation, where the rate 

at which the current increases is considerably reduced in the presence of the BSA.  

Indeed, for the higher BSA concentrations, the current only increases after a 

considerable time period, typically 50 s, giving an induction period.  This is 

consistent with a reduction in the concentration of the radical cations, dimers and 

other short chain oligomers that are generated during the oxidation of the pyrrole
24

.  

Longer time periods are required to generate a sufficient concentration of the cations 

and dimers and the deposition of the conducting polypyrrole film with increasing 

concentrations of BSA.   

 

Figure 3.4: Current- time plots for the formation of PPy-Cl and PPy-BSA on a Pt electrode 

at 0.70 V vs. SCE from a solution containing 0.10 mol dm
-3

 NaCl and ▬ 0.50 mol dm
-3

 

pyrrole ▬ 0.50 mol dm
-3

 pyrrole/25 μL BSA ▬ 0.50 mol dm
-3

 pyrrole/50 μL BSA ▬ 0.50 

mol dm
-3

 pyrrole/100 μL BSA ▬ 0.50 mol dm
-3

 pyrrole/200 μL BSA.   
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It is also evident from Figure 3.4 that the presence of the BSA in the monomer 

solution decreases the current density at longer times.  This is shown in Table 3.2, 

where the current density measured at 600 s is reduced from 13.29 to 5.25 mA cm
-2

 

with the presence of 100 µL/10 mL BSA, this corresponds to a significant reduction 

in the rate of electropolymerisation.   

The charge-time plots recorded with different concentrations of BSA are shown in 

Figure 3.5.  Linear plots were observed with the BSA-containing solutions.  

However, the rate of electropolymerisation is very high in the 0.50 mol dm
-3

 pyrrole 

solution with chloride anions as the dopant, giving different rates of 

electropolymerisation during the 600 s period.  The slopes of the linear plots were 

calculated and plotted as a function of BSA concentration, as shown in Figure 3.6.  

There is a clear reduction in the rate of electropolymerisation with increasing 

concentrations of BSA.  For example, the rate of electropolymerisation of pyrrole in 

the presence of 100 µL BSA is found to be 0.004 C cm
-2

 s
-1

, compared to a rate of 

approximately 0.006 C cm
-2

 s
-1

 with 25 µL BSA.   

 

Table 3.2: Current at time, t = 600 s for the formation of PPy-Cl and PPy-BSA on a Pt 

electrode as a function of the BSA concentration.   

Concentration of BSA (μL/10 mL) Current at time, t = 600 s (mA cm
-2

) 

0  13.29 

25  7.05 

50  5.83 

100  5.25 

200  3.16 
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Figure 3.5: Charge plotted as a function of time for the formation of PPy-Cl and PPy-BSA 

on a Pt electrode at 0.70 V vs. SCE from a solution containing 0.10 mol dm
-3

 NaCl and         

▬ 0.50 mol dm
-3

 pyrrole, ▬ 0.50 mol dm
-3

 pyrrole/25 μL BSA, ▬ 0.50 mol dm
-3

 pyrrole/50 

μL BSA, ▬ 0.50 mol dm
-3

 pyrrole/100 μL BSA and ▬ 0.50 mol dm
-3

 pyrrole/200 μL BSA.  

 

 

Figure 3.6:  The rate of electropolymerisation obtained from the charge-time plots recorded 

with different concentrations of BSA as a function of BSA concentration.   
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3.3.1.3 Influence of the Applied Potential  

In order to investigate the effect of the applied potential on the growth of the 

polymer films, the polymers were electrosynthesised at potentials ranging from 0.70 

V to 0.90 V vs. SCE.  This potential range was chosen as only potentials above 0.52 

V vs. SCE will achieve adequate synthesis of the polymer.  At lower potentials, 

pyrrole is not oxidised, or the rate of oxidation is too low, to generate the insoluble 

PPy.  Instead, only the soluble oligomers are formed during the oxidation process
25

.  

Potentials higher than 0.90 V vs. SCE lead to overoxidation of the polypyrrole film 

and a considerable loss in the conductivity of the film
26

.   

Typical data are shown in Figure 3.7 with a fixed concentration of pyrrole at 0.50 

mol dm
-3

, and BSA, 50 µL/10 mL.  The transients have similar characteristics, an 

initial drop in the current, followed by a gradual rise and finally a very slow increase 

in the current with increasing surface area as higher amounts of conducting 

polypyrrole is deposited.  It is clear that the rate of polymer growth increases rapidly 

with increasing applied potential, reaching a current density of 1.98 mA cm
-2

 at 0.90 

V vs. SCE, as shown in Table 3.3.  Under these conditions reproducible current 

densities were difficult to obtain, while highly reproducible plots were obtained at 

the lower potential of 0.70 V vs. SCE.  This potential was selected as the best 

applied potential for polymer growth giving consistent and reproducible data, and the 

final polymer was very smooth and stable which is consistent with reports in the 

literature
25

.   
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Figure 3.7: Current plotted as a function of time for the formation of PPy-Cl and PPy-BSA 

on a Pt electrode from a solution containing 0.50 mol dm
-3

 pyrrole/0.10 mol dm
-3

 NaCl ▬ at 

0.70 V vs. SCE and 0.50 mol dm
-3

 pyrrole/50 μL BSA/0.10 mol dm
-3

 NaCl at ▬ 0.70 V,      

▬ 0.75 V, ▬ 0.80 V, ▬ 0.85 V, and ▬ 0.90 V vs. SCE.  

 

Table 3.3: Current recorded at time, t = 250 s for the formation PPy-BSA on a Pt electrode 

from a solution containing 0.50 mol dm
-3

 pyrrole/50 μL BSA/0.10 mol dm
-3

 NaCl.  

Applied potential (V vs. SCE)  Current at time, t = 250 s (mA cm
-2

) 

0.70 0.35 

0.75 0.64 

0.80 1.00 

0.85 1.26 

0.90 1.98 
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3.3.1.4 Rate of Electropolymerisation  

The rate of electropolymerisation at a constant applied potential can be related to the 

monomer and dopant concentrations by using the rate law given in Equation 3.1.  For 

this analysis, R represents the rate of the electropolymerisation reaction, [Py] 

represents the pyrrole monomer concentration, [BSA] represents the BSA 

concentration, k represents the rate constant, and α and β are the partial orders of the 

reaction.   

 R = k[Py]
α
[BSA]

β
  3.1  

 

The charge consumed during the growth of the polymer, Q, can be related to the 

amount of polymer deposited and accordingly, the rate of the electropolymerisation 

reaction can be given in terms of dQ/dt.  Thus, Equation 3.1 can be expressed in 

terms of Equation 3.2 and modified to give Equation 3.3.   

 dQ/dt = k[Py]
α
[BSA]

β
 

 

3.2  

 log (dQ/dt) = logk + αlog[Py] + βlog [BSA] 

 

3.3  

 

In these experiments, the applied potential was fixed at 0.70 V vs. SCE, and the 

concentration of pyrrole monomer, in both the presence and absence of BSA, was 

varied. The rate of electropolymerisation, dQ/dt, was found by plotting the 

electropolymerisation charge as a function of time.  These values were then plotted 

as a function of the logarithm of the pyrrole concentration (in the presence and 

absence of BSA) to obtain α, while β was obtained from the slope of the logarithm of 

the rate as a function of the logarithm of the BSA concentration. The resulting plots 

are given in Figures 3.8, 3.9 and 3.10, respectively.    
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Figure 3.8:  A plot of the logarithm of the rate of electropolymerisation, dQ/dt, as a function 

of the logarithm of the concentration of the pyrrole monomer in the absence of BSA.   

 

 

Figure 3.9:  A plot of the logarithm of the rate of electropolymerisation, dQ/dt, as a function 

of the logarithm of the concentration of the pyrrole monomer in the presence of 100 µL 

BSA.   
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Figure 3.10:  A plot of the logarithm of the rate of electropolymerisation, dQ/dt, as a 

function of the logarithm of the concentration of the BSA.   

The partial order of the reaction with respect to the monomer concentration, α1, was 

found to be 0.99 in the absence of BSA, while a somewhat higher value of 1.38 was 

obtained for the partial order of the reaction for the monomer concentration, α2, in 

the presence of BSA.  The partial order close to unity calculated for the growth of 

the film in the absence of BSA is in good agreement with previous literature 

values
27

.  For example, Iroh and Wood
27

, obtained partial orders close to 1.0 on 

studying the kinetics of electropolymerisation in simple sulphate solutions.  The 

higher value of 1.38 computed in the presence of BSA shows that the addition of 

BSA to the electropolymerisation solution has a significant influence on the rate-

determining step, giving a higher dependence on the pyrrole concentration.  

Furthermore, the value of the partial order of the reaction with respect to the BSA 

concentration was found to be negative, indicating a complex electropolymerisation 

process whereby the BSA inhibits the electropolymerisation process and decreases 

the rate of electropolymerisation.   

The partial order of the reaction with respect to the BSA, β, has an extremely low 

value of -0.17.  Negative values have not been reported in the literature for any 

dopant species in the electropolymerisation of pyrrole. Generally, the ratio of the 

partial orders with respect to the monomer and the dopant is close to 1:1
28

.  The ratio 

between the partial orders in the presence of BSA is 1.38:0.17 giving an approximate 

ratio of 8:1.  Ratios this high have not been reported for the electropolymerisation of 
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pyrrole. This low and negative partial order with respect to BSA is consistent with 

the decrease in the rate of electropolymerisation with increasing concentrations of 

BSA, as clearly evident in Figure 3.10 and also indicates that BSA has little 

influence in the rate-determining step.   

 

3.3.2 Characteristics and Properties of PPy-BSA 

3.3.2.1 Morphology and Surface Characterisation  

Optical microscopy measurements were carried out to examine the surface 

morphology of the PPy-Cl polymer, Figure 3.11, and the PPy-BSA polymer, Figure 

3.12.  From these it can be seen that the PPy-Cl polymer film is very smooth in 

comparison to the PPy-BSA polymer which is much rougher, and contains globular 

entities on its surface.  These globular entities are due to the viscosity of the bovine 

serum albumin solution
24

.   

 

 

Figure 3.11:  Optical micrograph of a PPy-Cl film electrosynthesised at 0.70 V vs. SCE 

from a solution containing 0.50 mol dm
-3

 pyrrole and 0.10 mol dm
-3

 NaCl until a charge of 

10.48 C cm
-2

 was reached (magnification x 50).   

 

20 µm 
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Figure 3.12:  Optical micrograph of a PPy-BSA film electrosynthesised at 0.70 V vs. SCE 

from a solution containing 0.50 mol dm
-3

 pyrrole, 50 μL BSA and 0.10 mol dm
-3

 NaCl until 

a charge of 10.48 C cm
-2

 was reached (magnification x 50).   

SEM measurements were also carried out on the PPy-Cl polymer, Figure 3.13, and 

the PPy-BSA polymer, Figure 3.14, to further investigate the surface morphology of 

the films.  From these it can be seen that the PPy-Cl polymer film is much more 

structured and smooth with the typical cauliflower morphology of polypyrrole
29

. 

Even though the pyrrole concentration is much higher than that normally used to 

form PPy-Cl films
30

, the cauliflower morphology is maintained.  In comparison, the 

surface morphology of the PPy-BSA polymer is very different; the morphology is 

rough with multiple globular entities on the surface.  In addition, the PPy-BSA 

contains fibrous structures throughout the film, which are consistent with a protein 

incorporated into the polymer structure
24

.   

 

 

 

20 µm 
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Figure 3.13:  Scanning electron micrograph of a PPy-Cl film electrosynthesised at 0.70 V 

vs. SCE from a solution containing 0.50 mol dm
-3

 pyrrole and 0.10 mol dm
-3

 NaCl until a 

charge of 10.48 C cm
-2

 was reached.   

 

Figure 3.14:  Scanning electron micrograph of a PPy-BSA film electrosynthesised at 0.70 V 

vs. SCE from a solution containing 0.50 mol dm
-3

 pyrrole, 50 μL BSA and 0.10 mol dm
-3

 

NaCl until a charge of 10.48 C cm
-2

 was reached.   

EDX measurements were also performed on the PPy-Cl and PPy-BSA films.  The 

EDX spectrum of the PPy-Cl polymer, Figure 3.15, shows the presence of a large 

quantity of chloride anions at ~ 2.85 keV in the polymer film.  The absence of a 

sodium signal shows that the chloride anions are present as dopants.  The EDX 

spectrum of the PPy-BSA film, Figure 3.16, shows that although some chloride is 

present in the polymer film, sulphur is also present at ~ 2.35 keV.  Again, no sodium 

is observed and this provides direct evidence for the incorporation of the BSA as the 

signal is due to the presence of disulphide bonds in the BSA
31,32

.  The oxygen signal, 

which arises from the amino acids, is also consistent with the incorporation of BSA 
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within the polymer matrix.  The presence of the chloride in the PPy-BSA film proves 

that the chloride ions from the 0.10 mol dm
-3

 NaCl used as the supporting electrolyte 

are incorporated into the polymer film as dopants during polymerisation to 

counteract the positive charge that is generated on the oxidised polypyrrole 

backbone
33,34

.   

 

 

Figure 3.15:  Energy-dispersive X-Ray spectrum of a PPy-Cl film electrodeposited from a 

solution containing 0.50 mol dm
-3

 pyrrole and 0.10 mol dm
-3

 NaCl with an applied potential 

of 0.70 V vs. SCE until a charge of 10.48 C cm
-2

 was reached.  Cl is observed at ~ 2.85 keV.    

 

 

Figure 3.16:  Energy-dispersive X-Ray spectrum of a PPy-BSA film electrodeposited from 

a solution containing 0.50 mol dm
-3

 pyrrole, 50 μL BSA and 0.10 mol dm
-3

 NaCl with an 

applied potential of 0.70 V vs. SCE until a charge of 10.48 C cm
-2

 was reached.  Cl is 

observed at ~ 2.85 keV and S is observed at ~ 2.35 keV 
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3.3.2.2 Electroactivity of PPy-Cl and PPy-BSA  

The electroactivity of the PPy-Cl and PPy-BSA films was studied using cyclic 

voltammetry in a 0.10 mol dm
-3

 NaCl solution.  The PPy-Cl and PPy-BSA films 

were deposited at 0.70 V vs. SCE in solutions containing 0.50 mol dm
-3

 pyrrole/0.10 

mol dm
-3

 NaCl and 0.50 mol dm
-3

 pyrrole/25 µL of BSA/0.10 mol dm
-3

 NaCl for the 

PPy-Cl and PPy-BSA polymer films, respectively.  The polymer films were 

deposited to different charges ranging from 0.01 to 0.74 C.  The films were then 

rinsed with distilled water and transferred to the chloride-containing electrolyte.  The 

voltammograms were recorded at different scan rates, ranging from 100 to 5 mV s
-1

.  

The polymer films were initially cycled at the higher scan rates in order to eliminate 

or reduce any effects arising with cycling the electrode repeatedly in the electrolyte 

solution.  The cyclic voltammograms recorded for the PPy-BSA film are shown in 

Figure 3.17, where it is clear that the scan rate has a prominent influence on both the 

anodic and cathodic currents.  There is a clear increase in the current as the scan rate 

is increased, in agreement with previous studies
35

.   

 

Figure 3.17:  Cyclic voltammograms recorded for PPy-BSA (0.74 C) grown at a constant 

potential of 0.70 V vs. SCE in 0.50 mol dm
-3

 pyrrole/25 μL BSA/0.10 mol dm
-3

 NaCl 

showing the 20
th
 cycle for ▬ 100 mV s

-1
, ▬ 70 mV s

-1
, ▬ 50 mV s

-1
, ▬ 25 mV s

-1
,              

▬ 10 mV s
-1

 and ▬ 5 mV s
-1

.   
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Although it is difficult to identify the oxidation peak, particularly at the higher scan 

rates, where the oxidation peak is centred at potentials higher than the vertex 

potential, a broad, but well defined, reduction peak is observed at all scan rates.  This 

peak corresponds to reduction of the PPy-BSA film and the expulsion of chloride 

anions from the polymer film.  The broad reduction peak indicates a slow conversion 

of the PPy-BSA film from the oxidised to the reduced state.  This is consistent with 

literature reports on the redox properties of polypyrrole
36

 and can be explained by 

the fact that the polymer layers adjacent to the electrode surface are reduced first to 

give an insulating interface, making the overall reduction process more difficult and 

slower.  During the oxidation reaction, the layers next to the electrode surface are 

oxidised first, giving a conducting layer which facilitates oxidation of the adjacent 

layers until the conducting zone reaches the solution.  At the slower scan rates, 

where the oxidation wave is observed, it is indeed clear that the oxidation wave is 

not as broad as the corresponding reduction wave.   

In order to further investigate the electroactivity of the polymers, the PPy-BSA and 

PPy-Cl films were freshly electrodeposited onto a platinum working electrode and 

immediately placed into an electrolyte solution of 0.10 mol dm
-3

 NaCl.  Cyclic 

voltammetry measurements were then recorded, from a high scan rate of 300 mV s
-1

 

to a relatively slow scan rate of 5 mV s
-1

, as shown in Figure 3.18.  These 

voltammograms have lower currents than those shown in Figure 3.17 due to the 

different thicknesses of the polymer films.  Again, lower currents are observed at the 

slower scan rates.  On comparing the cyclic voltammograms recorded for the PPy-

BSA and PPy-Cl films, it is clear that the PPy-Cl films are more electroactive with 

higher currents and more pronounced oxidation and reduction waves.  Lower 

currents are recorded for the PPy-BSA film.  This is probably connected with the 

fact that the large globular BSA inhibits the incorporation and expulsion of the 

chloride anion from the polypyrrole matrix, hence, the electroactivity of the PPy-

BSA polymer film differs from that of the PPy-Cl polymer film
24

.  In addition, the 

presence of the BSA within the polymer matrix may block any pores within the 

polypyrrole matrix, thus increasing the resistance of any solution trapped within the 

porous network.  In the PPy-Cl film the open porous network provides easy access to 

solution species, giving a highly electroactive film, however, transport of the 

solution species is significantly inhibited if these pores are blocked with BSA
37

.   
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The current obtained at a fixed potential of 0.50 V vs. SCE was plotted as a function 

of the scan rate, for both the PPy-Cl and PPy-BSA films and these data are compared 

in Figure 3.19. The slopes of the linear regions were calculated as 2.81 x 10
-2

 and 

2.23 x 10
-2

 A V
-1

 s for the PPy-Cl and PPy-BSA films, respectively.  Although the 

higher slope for the PPy-Cl polymer is indicative of a more electroactive film, the 

presence of the BSA within the polymer does not have much effect on the 

electroactivity of the polymer films.   

(a) 

  

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

Figure 3.18:  Cyclic voltammograms of the (a) PPy-Cl (0.017 C) and (b) PPy-BSA      

(0.017 C) polymer films at different scan rates: ▬ 300 mV s
-1

, ▬ 200 mV s
-1

,                        

▬ 150 mV s
-1

, ▬ 100 mV s
-1

, ▬ 50 mV s
-1

, ▬ 25 mV s
-1

 and ▬ 10 mV s
-1

.  
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Figure 3.19:  Current recorded at a fixed potential of 0.50 V vs. SCE as a function of the 

scan rate for both the ▬ PPy-Cl (0.017 C) and ▬ PPy-BSA (0.017 C) films.  

 

3.3.2.3 Capacitance Measurements  

The capacitance of both the PPy-Cl and PPy-BSA films was calculated using 

Equation 3.4, where C is the capacitance,  I is the current density (A cm
-2

) and dV/dt 

is the scan rate (Vs
-1

)
37

.   

  3.4 

   

To obtain a more realistic and correct capacitance, the PPy-Cl and PPy-BSA films 

were cycled in 0.10 mol dm
-3

 NaCl solution at various scan rates, but with a small 

electrochemical window.  The electrochemical window was reduced to a lower 

potential limit of 0.10 V vs. SCE and an upper potential limit of 0.20 V vs. SCE, in 

order to avoid the effects of any faradic currents, and the current was obtained at a 

fixed potential of 0.17 V vs. SCE.  The resulting cyclic voltammograms, shown in 

Figure 3.20, have a completely different profile from those recorded in a larger 

potential window. The currents are considerably lower as the faradic currents have 

been reduced dramatically
26

, Figure 3.20.   
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(a) 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

Figure 3.20:  Cyclic voltammograms of the (a) PPy-Cl (0.017 C) and (b) PPy-BSA      

(0.017 C) polymer films at varied scan rates: ▬ 200 mV s
-1

, ▬ 150 mV s
-1

, ▬ 100 mV s
-1

,   

▬ 50 mV s
-1

 and ▬ 25 mV s
-1

.   

A plot of the current, I, versus the scan rate, dV/dt yields a straight line as shown in 

Figure 3.21 and correlation coefficients of 0.999 and 0.998 were obtained for the 

PPy-Cl and PPy-BSA films, respecively, on fitting the data to Equation 3.4.  The 

capacitance was found to be in the region of 2.25 x 10
-3

 and 1.47 x 10
-3

 F cm
-2

 for 

the PPy-Cl and PPy-BSA polymer films, respectively.  This is typical of the high 

capacitance values recorded for conducting polymers
38

, and is in good agreement 

with the values reported in the literature
26,35,37

.   
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Figure 3.21:  Current recorded at 0.17 V vs. SCE plotted as a function of the scan rate for 

the ▬ PPy-Cl (0.017 C) and ▬ PPy-BSA (0.017 C) films.   

 

3.3.2.4 Electrochemical Window  

The electrochemical window, i.e., the upper and lower potential limits chosen during 

cyclic voltammetry, also plays an important role in the oxidation and reduction of the 

polymer and, correspondingly, the currents measured
,39

.  If a high upper potential 

limit is chosen, the polymer film may become overoxidised
40

.  It is well known that 

overoxidation of polypyrrole results in a loss of conductivity and this gives rise to a 

sharp decrease in the corresponding current
40

. It is known that polypyrrole becomes 

overoxidised at potentials greater than 1.00 V vs. SCE
40

. As a result, the lower 

potential limit was fixed at -0.60 V vs. SCE and the upper potential limit was varied 

in order to investigate the effect of the electrochemical window on the polymer 

films.   

It is apparent from Figure 3.22 that increasing the potential window has little or no 

effect on the observed oxidation current. A clear oxidation wave, corresponding to 

the oxidation of the PPy-BSA film and the incorporation of chloride anions as 

dopants, is seen, particularly in the electrochemical window extended up to 1.20 V 

vs. SCE.  However, the stability of the polymer films is greatly affected by the more 

extended potential window.  Figure 3.23 shows the oxidation charge plotted as a 

function of cycle number.  At the higher potential window, i.e., up to 1.20 V vs. 
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SCE, the polymer degrades rapidly.  After about 70 cycles, there is a 50% loss in the 

charge.  This can be explained in terms of overoxidation of the PPy-BSA films at 

these high potentials, as it is well known that polypyrrole is overoxidised at 

potentials greater than 1.00 V vs. SCE and, as the polymer is repeatedly cycled to 

these high potentials, overoxidation occurs.  Alternatively, good stability is observed 

in the smaller electrochemical window, there is no change in the measured charge for 

more than 160 cycles and then the loss in charge is only of the order of 2.5 % after 

200 cycles.  As a result, the smaller potential window was used for all subsequent 

cyclic voltammetry measurements.   

 

Figure 3.22:  Cyclic voltammograms (5
th
 cycle) recorded for the PPy-BSA (0.017 C) 

polymer film in a 0.10 mol dm
-3

 NaCl solution from ▬ -0.60 to 1.20 V vs. SCE and ▬ -0.60 

to 0.80 V vs. SCE.  
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Figure 3.23:  Oxidation charge recorded as a function of cycle number for PPy-BSA cycled 

in a 0.10 mol dm
-3

 NaCl solution, from ▬ -0.60 to 1.20 V vs. SCE and ▬ -0.60 to 0.80 V 

vs. SCE.  

 

3.3.2.5 Effect of pH on the PPy-Cl and PPy-BSA Polymers 

The effect of pH on the stability of both the PPy-Cl and PPy-BSA polymer films was 

investigated.  The polymers were grown in the usual manner, at a constant potential 

of 0.70 V vs. SCE, then rinsed in distilled water and transferred to a solution of 0.10 

mol dm
-3

 NaCl at pH values ranging from a pH of 2.0 to a pH of 12.0.  The pH of the 

solutions was altered by adding, dropwise, a solution of HCl to make the solution 

more acidic, or NaOH to make the solution more alkaline.  The final NaCl solutions 

were adjusted to pH values of 2.1, 4.0, 7.0, 9.0 and 12.0, enabling a full pH study to 

be undertaken for both the PPy-Cl and PPy-BSA films.   

The cyclic voltammograms recorded at a pH of 7.0 are shown in Figure 3.24 for the 

PPy-Cl and PPy-BSA films formed from solutions containing 25 to 200 μL BSA.  It 

is evident from Figure 3.24 that the PPy-Cl film has a higher current density than the 

PPy-BSA films at a neutral pH, which is in good agreement with the voltammetry 

shown in Section 3.3.2.2 and is consistent with the more insulating nature of the 

PPy-BSA
12

.  Indeed, as the BSA concentration in the electropolymerisation solution 

is increased to give higher loadings of BSA within the polymer matrix, there is a 

further decrease in the measured currents.  This is clearly evident in the vicinity of 
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the oxidation wave, where the peak oxidation currents decrease with an increase in 

the BSA concentration.  This is also very apparent in Figure 3.25, where the 

oxidation current measured at a fixed potential of 0.60 V vs. SCE is plotted as a 

function of the cycle number for PPy-Cl and PPy-BSA prepared from 50 and 200 μL 

BSA.  The current is significantly higher for the PPy-Cl film.  It is also evident that 

the three polymer films are stable at this pH, there is no or little change in the 

current.  The current increases slightly from the first to the third cycle, but then 

remains constant.   

 

Figure 3.24:  Cyclic voltammograms recorded in 0.10 mol dm
-3

 NaCl solution, pH 7.0, from 

-0.70 up to 0.70 V vs. SCE for the PPy-Cl (0.74 C) and PPy-BSA (0.74 C) films 

electropolymerised on a Pt electrode at 0.70 V vs. SCE from a solution containing 0.10 mol 

dm
-3

 NaCl and ▬ 0.50 mol dm
-3

 pyrrole, ▬ 0.50 mol dm
-3

 pyrrole/25 μL BSA, ▬ 0.50 mol 

dm
-3

 pyrrole/50 μL BSA, ▬ 0.50 mol dm
-3

 pyrrole/100 μL BSA and ▬ 0.50 mol dm
-3

 

pyrrole/200 μL BSA.  
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Figure 3.25:  The current obtained at a fixed potential of 0.60 V vs. SCE plotted as a 

function of cycle number, for cycling the ▬ PPy-Cl (0.74 C), ▬ PPy-BSA (0.74 C, 50 µL 

BSA) and ▬ PPy-BSA (0.74 C, 200 µL BSA) polymer films in 0.10 mol dm
-3

 NaCl at a pH 

of 7.0.   

In order to investigate the properties and stability of the polymer films across the 

entire pH range, the PPy-Cl and PPy-BSA (prepared from 50 and 200 µL BSA) films 

were electrodeposited as described previously, then cycled in 0.10 mol dm
-3

 NaCl at 

pH values ranging from 2.1 up to 12.0.  The oxidation current measured at a fixed 

potential (0.60 V vs. SCE) was recorded and plotted as a function of the cycle 

number for each pH value.  These plots are shown in Figures 3.26, 3.27, 3.28 and 

3.29 for solutions of pH 2.1, 4.0, 9.0 and 12.0, respectively.   

A similar trend is seen at all pH values, with higher currents observed for the PPy-Cl 

films.  Again, good stability is observed at pH values of 2.0, 4.0 and 9.0 and the 

cyclic voltammograms and current densities are similar, with the pH having little 

influence from a pH of 2.0 to 9.0.  However, at a pH of 12.0, the currents are 

considerably lower and after cycle 5 there is evidence of a further drop in the current 

indicating poor stability in this highly alkaline solution and a loss in 

conductivity
41,42

, to give more insulating polymer films
43,44

.   
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Figure 3.26:  The current obtained at a fixed potential (0.60 V vs. SCE) plotted as a function 

of cycle number, by cycling the ▬ PPy-Cl (0.74 C), ▬ PPy-BSA (0.74 C, 50 µL BSA) and  

▬ PPy-BSA (0.74 C, 200 µL BSA) polymer films in 0.10 mol dm
-3

 NaCl at a pH of 2.1.   

 

 

Figure 3.27:  The current obtained at a fixed potential (0.60 V vs. SCE) plotted as a function 

of cycle number, by cycling the ▬ PPy-Cl (0.74 C), ▬ PPy-BSA (0.74 C, 50 µL BSA) and  

▬ PPy-BSA (0.74 C, 200 µL BSA) polymer films in 0.10 mol dm
-3

 NaCl at a pH of 4.0.   
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Figure 3.28:  The current obtained at a fixed potential (0.60 V vs. SCE) plotted as a function 

of cycle number, by cycling ▬ PPy-Cl (0.74 C), ▬ PPy-BSA (0.74 C, 50 µL BSA) and       

▬ PPy-BSA (0.74 C, 200 µL BSA) polymer films in 0.10 mol dm
-3

 NaCl at a pH of 9.0.   

 

 

Figure 3.29:  The current obtained at a fixed potential (0.60 V vs. SCE) plotted as a function 

of cycle number, by cycling ▬ PPy-Cl (0.74 C), ▬ PPy-BSA (0.74 C, 50 µL BSA) and       

▬ PPy-BSA (0.74 C, 200 µL BSA) polymer films in 0.10 mol dm
-3

 NaCl at a pH of 12.0.   
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3.3.2.6 Overoxidation of the PPy-BSA Polymer Films 

It has already been observed in Section 3.3.2.4, that the electrochemical window 

plays an important role in the stability of the polymer films.  However, a further 

investigation into the effects of overoxidation of the polymers was carried out.  The 

PPy-BSA film was electropolymerised as before, by applying a constant potential of 

0.70 V vs. SCE.  The polymer was then cycled in a 0.10 mol dm
-3

 solution of NaOH, 

at a pH of 12.0 up to a vertex potential of 1.40 V vs. SCE, as polypyrrole is well 

known to overoxidise above 1.00 V vs. SCE and this is further facilitated in alkaline 

solutions
40

.  It is evident from Figure 3.30 that, with continued cycling up to these 

high potentials, the PPy-BSA film becomes insulating and overoxidised.  This is 

accompanied by a rapid decrease in the current density with repeated cycling in the 

NaOH solution.  After only four cycles, highly insulating polymers are obtained and 

the currents are very low.  Similar data were recorded with the PPy-Cl films.   

 

Figure 3.30:  Cyclic voltammograms of the PPy-BSA (0.017 C) polymer film recorded in a 

0.10 mol dm
-3

 NaOH solution: ▬ cycle 1, ▬ cycle 2, ▬ cycle 3 and ▬ cycle 4.   
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3.3.2.7 Temperature Analysis of the Polymers using DSC  

The PPy-Cl and PPy-BSA polymer films were characterised using differential 

scanning calorimetry
45

.  This involved investigating the thermal properties and the 

transitions of the polymer films by heating them in an aluminium pan along with an 

empty aluminium pan as a blank sample in a furnace and recording the energy that is 

required to keep the aluminium pans at an identical temperature
46

.  This determines 

the amount of heat absorbed or released by the polymer sample as the temperature is 

varied, i.e., during heating or cooling.  Consequently, the transitions of the polymer 

films that are recorded can include their melting interval, decomposition, 

crystallisation and even their purity
46

.  For the purpose of these experiments, the 

PPy-Cl and PPy-BSA samples were heated from 25 °C up to 450 °C, then cooled 

from 450 °C back to 25 °C, creating a cyclic pattern as shown in Figure 3.31.   

It is evident from Figure 3.31 that the same cyclic pattern is obtained for both the 

PPy-Cl and PPy-BSA films upon varying the temperature by heating and cooling the 

polymer films.  It is also apparent that there are no endothermic or exothermic 

transitions indicating that both polymer samples are stable for temperatures lower 

than 450 
o
C.  This is not surprising, as polypyrrole only starts to decompose above 

650 °C
47,48

.  Furthermore, there are no endothermic or exothermic transitions from 

the BSA incorporated within the polypyrrole matrix; however, the concentration of 

BSA may be too low in comparison to the large mass of polymer to observe the 

thermal properties of BSA.  The thermal properties of BSA have been reported in 

several papers
49,50,51

 and involve an irreversible denaturation, when the BSA is 

present in solution.  As the BSA comprises of three different structural domains, 

three transitions in the thermal denaturation might be expected, however only one 

transition is normally observed and this occurs at about 57 – 60 
o
C with an enthalpy 

of 11 J g
-1

.  However, when the BSA is adsorbed at a surface this thermal transition 

is not observed
32

.  This is more comparable to the BSA incorporated and trapped 

within the polymer matrix, suggesting that the BSA is stabilised when trapped within 

the polymer matrix.   
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Figure 3.31:  DSC thermograms of ▬ PPy-Cl and ▬ PPy-BSA. The temperature was 

scanned from 50 
o
C to 450 

o
C and back again at a rate of 10 

o
C min

-1
.  

 

3.3.2.8 Impedance Analysis of the Polymers  

Electrochemical impedance spectroscopy, EIS, is a technique that is used to 

distinguish and describe the dominant processes that evolve with time in an 

electrochemical system.  Fast processes are sampled only at high frequency, while 

slow processes dominate the response at low frequency
52

.  EIS measurements were 

carried out on the PPy-Cl and PPy-BSA polymer films at applied potentials from      

-0.10 to 0.90 V vs. SCE.  Prior to the measurements, the films were preconditioned 

for 30 min at the applied potential in the same solution.  This conditioning period 

was sufficiently long to achieve steady-state conditions.  The steady-state condition 

was verified by recording the impedance data from high to low frequencies and then 

from low to high frequencies.  Although not shown here, identical impedance 

responses were observed during the forward and reverse scans, indicating steady-

state conditions.  Representative Nyquist and Bode plots are presented in Figure 3.32 

(a) and (b) for the PPy-Cl and PPy-BSA films recorded in 0.10 mol dm
-3

 NaCl at 

0.50 V vs. SCE.  The modulus of the impedance, Z, and the phase angle, presented 

as a function of the frequency, gives the Bode plot, while the imaginary and real 

components of the impedance are plotted to give the Nyquist or complex plane.  In 

all cases, the impedance data were recorded as a function of the immersion time at 

the fixed potential.   
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Figure 3.32:  The Nyquist and Bode plots (with Z in units of Ω cm
2
) recorded for the            

▬ PPy-Cl (0.74 C) and ▬ PPy-BSA (0.74 C) films in 0.10 mol dm
-3

 NaCl at an applied 

potential of 0.50 V vs. SCE.   

It is evident from Figure 3.32 that the PPy-Cl and PPy-BSA polymer films have 

similar impedance profiles, however the diameter of the depressed semicircle is 

higher for the PPy-BSA film, indicating a higher film resistance.  At lower 

frequencies, a sharp increase in the imaginary impedance is observed, giving a 

diffusion-like tail.  However, the phase angle approaches 90
o
 indicating a process 

that is not purely diffusion controlled, but is more complex.  The impedance data 

were fitted to the equivalent circuit depicted in Figure 3.33, which corresponds to a 

two-time constant model.  The model contains the solution resistance, Rs, the 

charge-transfer resistance, R1, and two constant phase elements, CPE1 and CPE2.  

As described in Chapter 2, Section 2.2.3, the CPE has a magnitude and exponent 

term, where exponent values of 0.5 represent diffusional processes and values close 

to 1.0 represent an ideal capacitor.  The exponent of the constant phase elements 

were higher than 0.98 for CPE2 and varied from 0.70 to 0.85 for CPE1, indicating 

that CPE2 corresponds to a pure capacitor and that CPE1 describes a distorted 

capacitance.   

The impedance data were collected as a function of time and fitted to the circuit in 

Figure 3.33 to extract the charge-transfer resistance, R1, and the capacitance and 

distorted capacitance.  These are plotted as a function of time for the PPy-Cl and 

PPy-BSA films in Figures 3.34, 3.35 and 3.36.  The time-dependent behaviour of the 
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charge-transfer resistance is illustrated in Figure 3.34.  Very good reproducibility 

was obtained for the PPy-Cl system, but there was some variation in the behaviour of 

the PPy-BSA films, although the resistance at short times is reproducible.  At an 

applied potential of 0.50 V vs. SCE, the PPy-Cl and PPy-BSA films are oxidised.  

PPy is well known to have high electronic conductivity in the oxidised or even 

slightly oxidised states
37

.  Accordingly, the electronic resistance is negligible under 

these conditions and the resistance denotes the resistance to ion transfer at the 

polymer boundary and the intrinsic charge transfer resistance.  Interestingly, the 

resistance remains essentially constant for the PPy-Cl films; however, there is a 

significant increase in the resistance of the PPy-BSA with continued polarisation at 

0.50 V vs. SCE in the chloride-containing electrolyte.  These increasing resistance 

values may be related to conformational changes, solvent and electrolyte uptake 

within the film and indicate the evolution of the film to a more insulating state.   

 

Figure 3.33:  The equivalent electrochemical circuit used to fit impedance data for the PPy-

Cl and PPy-BSA polymer films.   

In Figure 3.35 the distorted capacitance, CPE1, is plotted as a function of time for 

the PPy-Cl and PPy-BSA films polarised at 0.50 V vs. SCE.  A high capacitance of 

the order of 5 mF cm
-2

 is seen for the PPy-Cl film during the early stages of 

polarisation, but there is a significant decay in this capacitance with continued 

polarisation to reach values of the order of 0.50 mF cm
-2

 at 500 min.  This high 

capacitance is in good agreement with the capacitance recorded for polypyrrole in 

the oxidised state
26,35,37

.  A lower capacitance is observed for the PPy-BSA film and 

again this decays to values in the vicinity of 0.30 mF cm
-2

 after a 500 min 

polarisation period.  The pure capacitance term, CPE2, is shown as a function of 

time for the PPy-Cl and PPy-BSA films polarised at 0.50 V vs. SCE in Figure 3.36.  

Again, higher values are observed for the PPy-Cl films consistent with the more 

conducting nature of the PPy-Cl films compared to the PPy-BSA films.  In this case, 
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the capacitance remains essentially constant as a function of the polarisation period.  

Similar data were recorded at applied potentials from 0.20 to 0.80 V vs. SCE, while 

at an applied potential of 0.90 V vs. SCE overoxidation of the polymers was 

observed.  In all cases, the PPy-Cl films were more conducting with lower charge-

transfer resistance values and higher capacitance.   

 

Figure 3.34:  A plot of the charge transfer resistance recorded as a function of time at 0.50 

V vs. SCE for the ▬ PPy-Cl (0.74 C) and ▬ PPy-BSA (0.74 C) polymer films.   

 

 

Figure 3.35:  A plot of the capacitance, CPE1, recorded as a function of time at 0.50 V vs. 

SCE for the ▬ PPy-Cl (0.74 C) and ▬ PPy-BSA (0.74 C) polymer films.   

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800

R
es

is
ta

n
ce

, 
R

 (
Ω

 c
m

2 )
  

Time, t (min)  

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0 200 400 600 800

C
ap

ac
it

an
ce

, C
 (

F 
cm

-2
) 

Time, t (min)  



Interactions between PPy-BSA and Trp and AA                                                               Chapter 3 
 

122 
  

 

Figure 3.36:  A plot of the capacitance, CPE2, recorded as a function of time at 0.50 V vs. 

SCE for the ▬ PPy-Cl (0.74 C) and ▬ PPy-BSA (0.74 C) polymer films.   

 

3.3.3 Favourable Conditions for the Formation of PPy-BSA  

Considering the parameters that may affect the growth of the PPy-BSA films, 

favourable conditions were obtained and these are summarised in Table 3.4.  An 

applied potential of 0.70 V vs. SCE gave consistent current-time plots and highly 

reproducible conditions for the growth of PPy-BSA.  A high monomer concentration 

was required and 50 µL of BSA dissolved in 10 mL NaCl gave a sufficient 

concentration of BSA and a solution that was not too viscous.  The optimum 

electrochemical window for long-term stability of the PPy-BSA films was also 

determined and this is included in Table 3.4.   

Once the favourable conditions for the growth of the PPy-BSA polymer film had 

been determined, and the polymer films characterised, the next step was to 

investigate the sensing ability of the BSA entrapped within the polymer matrix.   
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Table 3.4:  The favourable conditions for the growth of the PPy-BSA polymer 

Parameter Favourable conditions 

Applied potential  0.70 V vs. SCE  

Volume of BSA  50 µL in 10 mL of 0.10 mol dm
-3

 NaCl  

Pyrrole concentration  0.50 mol dm
-3

  

Electrochemical window -0.60 V to 0.80 V vs. SCE 

 

 

3.3.4 Interactions of PPy-BSA with Tryptophan 

Tryptophan, (Trp) is a vital constituent of proteins and an essential amino acid for 

humans and animals due to its physiological roles
53,54

.  Trp is indispensable in 

human nutrition for establishing and maintaining a positive nitrogen balance
55

.  

However, Trp cannot be synthesised directly in the human body and, consequently, it 

is often added to dietary, food products and pharmaceutical formulae as its presence 

in vegetables is scarce
56

.  Tryptophan is a precursor for the neurotransmitter 

serotonin, the neuro-hormone melatonin, niacin and other relevant biomolecules
57

 

and has been implicated as a possible cause of schizophrenia in people who cannot 

metabolise it properly
58

.  When Trp is improperly metabolised, a toxic waste product 

is created in the brain that can cause hallucinations and delusions
59,60

.  In addition, 

the level of Trp in plasma is closely related with the extent of hepatic disease
61,62

.  

Consequently, a simple, sensitive and selective method of monitoring Trp is indeed 

necessary.   

Bovine serum albumin is a well known complexing agent in the separation of chiral 

molecules such as racemic tryptophan
63

, with different binding sites for the D- and L- 

enantiomers of Trp
64,65

.  At a pH of 7.0, a hydrophobic interaction between Trp and 

BSA has been observed
66

.  However, at higher pH values, the binding of L-Trp on 

BSA increases up to a maximum at a pH of 9.0
67

.  At lower pH values, i.e., between 

pH 3.5 and 5.0, BSA undergoes conformational changes in which its three domains 

physically separate due to slight expansion of the BSA
68

.  This is described in more 

detail in Chapter 1, Section 1.5.   



Interactions between PPy-BSA and Trp and AA                                                               Chapter 3 
 

124 
  

Tryptophan is known to be electroactive at a variety of electrodes, including 

platinum
69

, graphite
70

 and glassy carbon
71

.  Consequently, Trp was chosen and using 

cyclic voltammetry possible interactions between the Trp molecule and the BSA 

incorporated within the polypyrrole matrix were explored. The PPy-BSA films were 

deposited at 0.70 V vs. SCE to a fixed charge of 0.10 C cm
-2

 and cycled in 0.10 mol 

dm
-3

 NaCl to obtain a background current. Then, the PPy-BSA was transferred to a 

solution containing 0.10 mol dm
-3

 NaCl and 0.01 mol dm
-3

 Trp and the 

voltammograms were recorded. Both solutions were adjusted to a pH of 7.0, as the 

PPy-BSA film is stable at this pH and it is also close to the isoelectric point of Trp
72

.  

Similar studies were carried out with the PPy-Cl films.  As the oxidation of Trp has 

been observed at potentials close to 0.70 V vs. SCE
73

, the electrochemical window 

was extended to 0.90 V vs. SCE, and furthermore to -0.90 V vs. SCE in an attempt to 

lower the background current arising from the conducting properties of the polymers.  

These limits are somewhat different to those presented in Table 3.4, but nevertheless 

the PPy-Cl and PPy-BSA showed good stability under these conditions.  

Representative cyclic voltammograms are shown in Figure 3.37; these have much 

higher currents than those in Figure 3.24 that were recorded in the absence of 

tryptophan.   

 

Figure 3.37:  Cyclic voltammograms recorded for ▬ PPy-Cl and ▬ PPy-BSA polymer 

films in a 0.10 mol dm
-3

 NaCl solution containing 0.01 mol dm
-3

 Trp at a pH of 7.0.   
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There is no evidence of any peak arising from the oxidation of Trp.  Slightly higher 

currents are recorded for the PPy-Cl films; however this is probably related to the 

higher conductivity of the PPy-Cl.  As the pH of the solution may play an important 

role in the binding characteristics of BSA and Trp, the pH was varied from 2.1 to 

12.0.  In addition to the optimum BSA concentration, Table 3.4, the BSA 

concentration was increased to 200 μL to give PPy-BSA films with higher loadings 

of BSA.  The PPy-Cl and PPy-BSA films were initially cycled in a background 0.10 

mol dm
-3

 NaCl solution at the required pH and then cycled in 0.01 mol dm
-3

 Trp, 

0.10 mol dm
-3

 NaCl at the same pH.  Voltammograms similar to those presented in 

Figure 3.37 were obtained at pH 2.1, 4.0, 7.0 and 9.0 and only at a pH of 12.0 did the 

voltammograms differ, and this can be related to the loss in stability of the films in 

this highly alkaline solution, as shown earlier in Figure 3.29.  The current observed 

at a fixed potential of 0.70 V vs. SCE, which is close to the potential where the 

oxidation of Trp has been reported
73

, was recorded.   In all cases, the background 

current was subtracted and this value was plotted as a function of the cycle number 

for the PPy-Cl, PPy-BSA (50 μL) and PPy-BSA (200 μL) films.  These data are 

presented in Figure 3.38 (a) and (b), and Figure 3.39 (a) and (b) for pH values of 2.0, 

4.0, 7.0 and 12.0, respectively.   

It is clearly evident that higher currents are obtained with the PPy-Cl films regardless 

of the pH of the solutions.  The concentration of BSA exerts a significant influence 

with lower currents been observed with the high loading of BSA (200 μL).  For 

example, at a pH of 4.0 the current density is approximately 5 mA cm
-2 

for PPy-BSA 

(200 μL), 15 mA cm
-2

 for PPy-BSA (50 μL) and 20 mA cm
-2

 for PPy-Cl.  A similar 

trend is seen at pH 7.0, with slightly lower currents recorded at pH 2.1 and 12.0. This 

is more clearly shown in Figure 3.40, where the background-corrected current at 

0.70 V vs. SCE is plotted as a function of the pH for the PPy-Cl, PPy-BSA (50 μL) 

and PPy-BSA (200 μL) films.  This suggests a clear interaction between the BSA 

incorporated within the polypyrrole matrix and the Trp in solution and this 

interaction appears to be stronger at pH 4.0 and 7.0.   
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(a) 

 

 

 

(b) 

 

Figure 3.38:  The current densities (obtained at a fixed potential of 0.60 V vs. SCE) less the 

background obtained from cycling the ▬ PPy-Cl (0.74 C), ▬ PPy-BSA (0.74 C, 50 μL) and 

▬ PPy-BSA (0.74 C, 200 μL) polymer films from -0.90 V to 0.90 V vs. SCE in a 0.01 mol 

dm
-3

 Trp, 0.10 mol dm
-3

 NaCl solution at a pH of (a) 2.1 and (b) 4.0.   
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(a)  

 

 

 

(b)  

 

Figure 3.39:  The current densities (obtained at a fixed potential of 0.60 V vs. SCE) less the 

background obtained from cycling the ▬ PPy-Cl (0.74 C), ▬ PPy-BSA (0.74 C, 50 μL) and 

▬ PPy-BSA (0.74 C, 200 μL) polymer films from -0.90 V to 0.90 V vs. SCE in a 0.01 mol 

dm
-3

 Trp, 0.10 mol dm
-3

 NaCl solution at a pH of (a) 7.0 and (b) 12.0.   
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The percentage loss in the current density is summarised in Table 3.5.  This was 

computed by calculating the difference in the currents of the PPy-Cl and PPy-BSA 

polymer films.  This was then expressed as a percentage of the current measured for 

the PPy-Cl polymer film.  This further highlights that the BSA is indeed binding to 

the tryptophan as the higher concentration of BSA yields a greater percentage loss in 

the signal and again this loss is more pronounced at pH 4.0 and 7.0.    

 

     

Figure 3.40:  The current densities (obtained at a fixed potential of 0.70 V vs. SCE) of the 

fifth cycle of the ▬ PPy-Cl, ▬ PPy-BSA (50 μL) and ▬ PPy-BSA (200 μL) polymer films 

in a 0.01 mol dm
-3

 Trp, 0.10 mol dm
-3

 NaCl solution plotted as a function of pH.   

 

Table 3.5:  The percentage loss in the current recorded for the PPy-BSA films after cycling 

in 0.10 mol dm
-3

 NaCl and 0.01 mol dm
-3

 Trp.   

pH % loss in the current of PPy-BSA 

(50 μL) 

% loss in the current of PPy-BSA 

(200 μL) 

2.1 54.9 % 48.1 % 

4.0 22.1% 72.6 %  

7.0 51.3 %  75.2 %  

12.0 26.9 % 70.1 %  
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3.3.5 Interactions of PPy-BSA with Ascorbic Acid 

Ascorbic acid (AA), commonly known as Vitamin C, is an essential vitamin and thus 

a vital component in the diet of humans.  Insufficient intake of AA leads to scurvy 

and AA is also used for the prevention and treatment of common colds, mental 

illness, infertility, cancer and AIDS
74,75

.  Ascorbic acid is also a well known 

interfering compound in biological systems
76,77

.  AA is a compound of significant 

biomedical interest because of its antioxidant properties and significant role in the 

functioning of the human metabolism, central nervous system and renal system
78

.  

Additionally, a number of studies have investigated the function of AA in gene 

expression and as a co-substrate of many important dioxygenases
75

.   

The structure of ascorbic acid is given in Figure 3.41.  AA exists in the body at high 

concentrations
79,80

 of up to 1.0 x 10
-4

 mol dm
-3

.  Due to its high concentration, AA 

often interferes with the detection of other important biological compounds such as 

dopamine, an important neurotransmitter
81

, and uric acid, a primary end product of 

purine metabolism
82

.  Consequently, many techniques have been developed in order 

to detect and eliminate ascorbic acid from interfering with the detection of other 

compounds
83

; these include electrochemical techniques as AA is electrochemically 

active and can be easily oxidised.  The E½ values of AA lie between -100 to 400 mV 

vs. SCE on most solid electrodes.  However, the products of AA oxidation generally 

foul the electrode surface and cause a decrease in the peak currents
84

.   

 

Figure 3.41:  The structure of ascorbic acid.   

The PPy-BSA polymer film and the PPy-Cl film as a comparison were grown as 

described previously, by applying a fixed potential of 0.70 V vs. SCE until the 

polymer reached a fixed charge of 0.10 C, i.e., approximately 3.55 µm in thickness.  

The polymer films were then cycled in a pH of 9.0, 0.10 mol dm
-3

 NaCl solution to 

obtain the background currents.  The polymers were subsequently cycled in a 
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solution with a pH of 9.0, 0.01 mol dm
-3

 AA and 0.10 mol dm
-3

 NaCl.  This was then 

repeated at a pH of 4.0 to investigate the effect of pH on AA detection; the resulting 

cyclic voltammograms are shown in Figure 3.42 and Figure 3.43 for the pH 9.0 and 

4.0 solutions, respectively.  These voltammograms are very different to those 

presented in Figure 3.37, which were recorded under similar conditions, but in the 

presence of Trp.  In particular, a broad reduction wave is evident, extended from 

about -0.25 V to -0.90 V vs. SCE and an oxidation wave is also observed, centred at 

approximately -0.55 V vs. SCE.  These waves were not present in the background 

voltammograms and can be related to the presence of AA.  On reducing the 

concentration of AA, these waves decreased in magnitude.  The oxidation current 

recorded at -0.55 V vs. SCE in the vicinity of the peak potential of the oxidation 

wave was recorded and plotted as a function of the cycle number.  The resulting 

plots are shown in Figure 3.44 and Figure 3.45 for the pH 9.0 and 4.0 solutions, 

respectively.   

 

Figure 3.42:  Cyclic voltammograms recorded for the ▬ PPy-Cl and ▬ PPy-BSA polymer 

films cycled in a 0.01 mol dm
-3

 ascorbic acid in 0.10 mol dm
-3

 NaCl solution at a pH of 9.0.   



Interactions between PPy-BSA and Trp and AA                                                               Chapter 3 
 

131 
  

 

Figure 3.43:  Cyclic voltammograms recorded for the ▬ PPy-Cl and ▬ PPy-BSA polymer 

films cycled in a 0.01 mol dm
-3

 ascorbic acid in 0.10 mol dm
-3

 NaCl solution at a pH of 4.0.   

 

 

Figure 3.44:  Oxidation current obtained at a fixed potential of -0.55 V vs. SCE (with 

subtraction of background current) plotted as a function of the cycle number for the               

▬ PPy-Cl and ▬ PPy-BSA polymer films at a pH of 9.0.   

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0 2 4 6 8 10

C
u

rr
en

t,
 I 

(A
 c

m
-2

) 

Cycle number 



Interactions between PPy-BSA and Trp and AA                                                               Chapter 3 
 

132 
  

 

Figure 3.45:  Oxidation current recorded at a fixed potential of -0.55 V vs. SCE (with 

subtraction of background current) plotted as a function of the cycle number for the               

▬ PPy-Cl and ▬ PPy-BSA polymer films at a pH of 4.0.   

With the exception of the first cycle, higher currents were observed for the PPy-Cl 

film.  This is particularly evident in Figures 3.44 and 3.45, whereby the background 

currents were subtracted for each cycle.  It is also apparent that the currents increase 

with increasing cycle number for both the PPy-Cl and PPy-BSA films at a pH of 9.0.  

However, at the more acidic pH of 4.0, the currents are observed to initially decrease 

with increasing cycle number, before a quasi-steady state is achieved, Figure 3.45.  

However, there is no clear evidence to suggest that the PPy-BSA film, or indeed the 

PPy-Cl film, can be used in the detection of AA.   

 

3.4 Conclusions 

In summary, the BSA protein was successfully incorporated into the polypyrrole 

matrix.  The optimum conditions for PPy-BSA polymer growth were found to be a 

high concentration of pyrrole monomer, i.e., 0.50 mol dm
-3

 pyrrole, with low 

concentrations of BSA dissolved in a 0.10 mol dm
-3

 NaCl solution.  The 

concentrations of BSA used were typically less than 200 µL in 10 mL of 0.10 mol 

dm
-3

 NaCl.  The polymer was grown by applying a fixed potential of 0.70 V vs. SCE 
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and characterised using SEM and EDX analysis, cyclic voltammetry, differential 

scanning calorimetry and electrochemical impedance spectroscopy.  The PPy-BSA 

polymer film was then investigated as a sensing material for the amino acid 

tryptophan over a pH range of 2.1 to 12.0; a clear interaction between the BSA 

incorporated within the polypyrrole matrix and the tryptophan in solution was 

observed.  The polymer film was subsequently investigated as a sensor for ascorbic 

acid but there was no evidence found to suggest that it could be used in the detection 

of ascorbic acid.   
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“The one important thing I have learned over the years is the 

difference between taking one's work seriously and taking one's self 

seriously. The first is imperative and the second is disastrous.”          

- Margot Fonteyn 
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4.1 Introduction  

There is much interest in the development of urea sensors due to urea being such an 

important component in both the medical and agricultural industries
1,2

.  This section 

focuses on the importance of urea in the medical sector.  Urea is an important 

substance in both blood serum and urine
3
; in addition, urea is also a clinical variable 

that provides useful information of decompensated heart failure
4
 and, abnormal urea 

concentrations are indicative of renal and hepatic failures
5
.   

Urea, also known as carbamide, is a nitrogen-containing compound with the 

chemical formula of NH2CONH2.  It is a colourless, odourless solid with an overall 

neutral charge and is highly soluble in water, upon which it breaks down to form 

ammonia (NH3).  Ammonia is a much more mobile and volatile compound than 

urea
6
 with a very strong odour.   

Excess nitrogen in the form of urea is dissolved in the blood and then excreted by the 

kidneys as a component of urine.  In addition, a small amount of urea is also excreted 

via sweat/perspiration, along with salts and water.  If this excess nitrogen is not 

excreted, ammonia can build up in the body to high levels which leads to cell 

toxicity and eventually to death.  Hence, urea is an important marker for the 

evaluation of uremic toxin levels
7
.  As described in Chapter 1, Section 1.7, the 

normal blood levels of urea range from 2.5 to 7.5 mmol dm
-3

, depending on the build 

and relative health of the body
7
.  Above 7.5 mmol dm

-3
, the patient is said to be 

suffering from renal deficiency, and the kidneys fail to excrete the excess nitrogen 

successfully.  Hence, it is very important to monitor the level of urea to determine 

the health of the kidneys in the human body
8,9

.   

This chapter is focused on the development of a novel urea sensor formed by the 

entrapment of the urease enzyme within a polypyrrole matrix.  This has been carried 

out previously
7,10

, however, poor detection limits were obtained.  To further enhance 

the detection of urea in solution, while repelling common interferants, such as uric 

acid and ascorbic acid, an anionic cyclodextrin was incorporated into the polypyrrole 

matrix together with the urease enzyme.   
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4.2 Experimental  

The instrumentation and software employed for the experiments are detailed in 

Chapter 2 and their analysis are described in Section 2.3.  The chemicals used 

throughout this study were purchased from Sigma-Aldrich or its subsidiary 

company, Fluka.  All chemicals were used as supplied expect for pyrrole which was 

vacuum-distilled and stored in the dark at -20 C prior to use.  All solutions were 

made in distilled water.  Most of the electrochemical characterisation experiments 

and calibration curves were carried out in a 0.05 mol dm
-3

 phosphate buffer, pH 7.0, 

while the sulphonated cyclodextrin-based polymers were formed in 0.02 mol dm
-3

 

sulphonated-β-cyclodextrin and the chloride-doped polymers were prepared in 0.10 

mol dm
-3 

NaCl.  The urease enzyme was dissolved in the electropolymerisation 

solution to give a concentration of 4000 mg dm
-3

.  All the solutions were prepared 

freshly before each experiment.  All experiments were performed at room 

temperature.  The polymers were formed in the presence and absence of the urease 

enzyme, in order to test the characteristics and sensitivity of the films.  The polymers 

were formed at a constant applied potential in a typical three-electrode 

electrochemical cell as shown in Figure 2.5, Chapter 2.  The working electrode 

comprised of a platinum (Pt) disk encased in Teflon with a surface area of 0.0706 

cm
-2

; this was used in conjunction with a Pt wire counter electrode and a saturated 

calomel reference electrode.  The electroactivity and redox properties of the PPy 

films were investigated using cyclic voltammetry, while scanning electron 

microscopy and energy dispersive X-Ray analysis was used to gain information on 

the surface morphology and composition of the polymer films.   

 

4.3 Results and Discussion 

Polypyrrole (PPy) is a common polymer used in the development of sensors.  It is 

biocompatible, easy to form, readily available and inexpensive to manufacture.  In 

addition, it is redox active and can be easily oxidised and reduced
11

.  It is possible to 

incorporate biological species such as enzymes and proteins into the polymer by 

trapping the biological entities between the matrix structure of the polymer
8
.  As a 

result, polypyrrole can be used in the formation of biosensors.  After the successful 

incorporation of the biological entity, BSA, into PPy, which is described in detail in 
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Chapter 3, the next step was to incorporate the enzyme urease for the enhanced 

detection of urea
10

.  Urease catalyses the conversion of urea to ammonia, as depicted 

in Equation 4.1.  In addition, hydroxide and bicarbonate anions are formed as by-

products of this reaction
10

.   

 OHHCONHOHCONHNH
Urease

34222 23  4.1  

 

 

4.3.1 Formation of the PPy-Urs-Cl   

As detailed in Chapter 3, a number of experimental parameters influence the 

electropolymerisation of pyrrole in the presence of a biological species
12

.  These 

include the concentration of the pyrrole monomer in solution, the concentration of 

the biological species and the applied potential
13,14,15

.  The concentration of the 

pyrrole monomer has a significant influence on the growth of the polypyrrole (PPy) 

film in the presence of Cl
-
 ions, as shown in Chapter 3.  If there is not enough 

monomer in solution, then the film will not form.  Alternatively, if there is an excess 

of monomer in the solution the polymer will form very quickly and may contain 

multiple defects or deformities, leading to a loss in sensing performance
16,17,18

.  

However, the addition of a biological entity, such as BSA, increases the viscosity of 

the monomer-containing solution.  As a result, access of the monomer to the 

electrode interface is greatly inhibited
19

.  In order to overcome this, high 

concentrations of pyrrole monomer were used in the growth of the PPy-BSA films, 

i.e., 0.50 mol dm
-3

 pyrrole.  Again, this concentration was employed in the presence 

of 4000 mg L
-1

 urease and 0.10 mol dm
-3

 NaCl to form a polypyrrole film with 

incorporated urease, PPy-Urs-Cl.  A constant applied potential of 0.70 V vs. SCE 

was used as this produced the most adherent PPy-BSA films, which is consistent 

with reports in the literature
20

.  Figure 4.1 shows the growth profiles of both the PPy-

Cl and PPy-Urs-Cl films.   
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Figure 4.1:  Current plotted as a function of time for the formation of PPy-Cl and           

PPy-Urs-Cl on a Pt electrode at 0.70 V vs. SCE from a solution containing ▬ 0.50 mol dm
-3

 

pyrrole/0.10 mol dm
-3

 NaCl and ▬ 0.50 mol dm
-3

 pyrrole/4000 mg L
-1

 urease/0.10 mol dm
-3

 

NaCl.   

These current-time plots are similar to those shown for the PPy-BSA system in 

Figure 3.4.  Initially, there is a rapid decrease in the current, which arises from the 

charging of the double layer.  This is then followed by a fast rise in the current, 

which corresponds to the nucleation and growth of the polymer film
16

.  There is a 

further more gradual increase in the current as the polymer is deposited onto the 

working electrode to give a higher surface area.  It is evident from Figure 4.1 that the 

presence of the urease enzyme in the monomer solution decreases the current density 

and the rate of electropolymerisation.  The urease blocks access of the pyrrole 

monomer to the electrode, which is evident in the first few seconds of the current-

time plot, Figure 4.1, by the lower current density.  Accordingly, it takes more time 

for the critical concentration of radical cations to develop, which in turn gives rise to 

the dimers and oligomers that are necessary in the deposition of the polymer
16

.   
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4.3.2 Characteristics and Properties of the PPy-Cl and PPy-Urs-Cl Films  

After electrochemical polymerisation, the PPy-Cl and PPy-Urs-Cl films were 

characterised using SEM and EDX and cyclic voltammetry.   

 

4.3.2.1 SEM and EDX Analysis 

The surface morphology of the PPy films was investigated using scanning electron 

microscopy (SEM), as described in Chapter 2, Section 2.2.7.  The polymers were 

electrodeposited as described in Figure 4.1 at 0.70 V vs. SCE onto a flat platinum 

disc electrode encased in Teflon (0.1256 cm
2
) to a charge of 10.48 C cm

-2
.  Typical 

SEM micrographs recorded for the PPy-Cl film are shown in Figure 4.2, while the 

micrographs obtained for the PPy-Urs-Cl film are presented in Figure 4.3.  A clear 

difference in the surface morphology of the polymers is evident.  The urease 

containing polymer film has a fibrous morphology due to the incorporated enzyme
8
, 

whereas the PPy-Cl film without urease is very different and does not show any 

evidence of this fibrous morphology.  In addition, the PPy-Cl has the typical 

cauliflower morphology of polypyrrole owing to the nuclei forming quickly in the 

presence of the small doping chloride ion and the bulk polymer subsequently 

growing preferentially around the nucleation sites
21

.   

EDX measurements were also carried out on the PPy-Cl and PPy-Urs-Cl polymer 

films, as shown in Figures 4.4 and 4.5, respectively.  The EDX spectra of the two 

polymer films clearly show the presence of chloride at ~ 2.7 keV in both polymer 

films.  This is due to the chloride being incorporated as a dopant anion during the 

electropolymerisation of pyrrole at 0.70 V vs. SCE, to generate the oxidised PPy 

which has a positive charge.  The dopant anion is important in the growth of 

polypyrrole films as different sized ions lead to different dopant levels within the 

polypyrrole film
22,23

.  The significant difference between the EDX spectra in the 

presence and absence of urease is the presence of the nickel at ~ 0.9 keV in the PPy-

Urs-Cl film, which is absent in the PPy-Cl film.  This nickel is contained in the 

active site of the Jack Bean urease enzyme
8
, and its presence in the EDX spectrum of 

PPy-Urs-Cl is clear evidence and proof that the urease is indeed incorporated 

successfully.   
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Figure 4.2:  Scanning electron micrograph of PPy-Cl electrodeposited on a Pt electrode at 

0.70 V vs. SCE from 0.50 mol dm
-3

 pyrrole/0.10 mol dm
-3

 NaCl to a charge of 10.48 C cm
-2

.   

 

 

Figure 4.3:  Scanning electron micrograph of PPy-Urs-Cl electrodeposited on a Pt electrode 

at 0.70 V vs. SCE from 0.50 mol dm
-3

 pyrrole/4000 mg L
-1

 urease/0.10 mol dm
-3

 NaCl to a 

charge of 10.48 C cm
-2

.   
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Figure 4.4:  Energy-dispersive X-Ray (EDX) analysis of a PPy-Cl film electrodeposited 

from a solution containing 0.50 mol dm
-3

 pyrrole and 0.10 mol dm
-3

 NaCl with an applied 

potential of 0.70 V vs. SCE to a charge of 10.48 C cm
-2

.  Cl is observed at ~ 2.85 keV.   

 

Figure 4.5:  EDX analysis of a PPy-Urs-Cl film electrodeposited from a solution containing 

0.50 mol dm
-3

 pyrrole, 4000 mg L
-1 

urease and 0.10 mol dm
-3

 NaCl with an applied potential 

of 0.70 V vs. SCE until a charge of 10.48 C cm
-2

 was reached.  Cl is observed at ~ 2.85 keV 

and Ni is observed at ~ 0.90 keV.   

 

4.3.2.2 Electroactivity of the PPy-Cl and PPy-Urs-Cl Polymers   

As shown in Chapter 3, the electroactivity of the polymer films can be altered by 

changing different parameters such as the scan rate and electrochemical window.  

Both of these parameters were altered and the electroactivity of the polymers was 

investigated using cyclic voltammetry.  The polymers were freshly electrodeposited 

onto a platinum working electrode and immediately placed into an electrolyte 

solution of a 0.05 mol dm
-3

 phosphate buffer solution at a pH of 7.0.  Cyclic 
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voltammetry measurements were then recorded at various scan rates and in different 

electrochemical windows.   

In order to investigate the effect of varying the scan rate on the polymer films, cyclic 

voltammetry measurements were performed at scan rates ranging from relatively 

high scan rates of 300 mV s
-1

 to quite slow scan rates of 5 mV s
-1

.  The resulting 

cyclic voltammograms are shown in Figure 4.6 for the PPy-Cl and PPy-Urs-Cl films.  

Similar voltammograms were obtained for the PPy-Cl and PPy-Urs-Cl films in this 

phosphate buffer solution.   

It is evident from Figure 4.6 that on decreasing the scan rate lower currents arising 

from the polymer film, i.e., a decrease in the peak currents, are observed.  This is in 

good agreement with previous studies
24

.  With the higher scan rates a broad 

oxidation wave is observed from -0.10 V vs. SCE up to the upper potential limit of 

0.80 V vs. SCE.  This corresponds to oxidation of the polypyrrole backbone and the 

incorporation of anions from the electrolyte solutions.  However, as the scan rate is 

decreased this oxidation wave shifts in potential in the negative direction and the 

wave is observed to begin at approximately -0.50 V vs. SCE at 10 mV s
-1

.  This 

behaviour is not connected to the presence of the urease, as similar variations in the 

potential were seen with the PPy-Cl films.  The onset potential of this oxidation 

wave is shown as a function of the scan rate in Figure 4.7.  There is a near linear 

increase in the onset potential of the oxidation wave with increasing scan rate from 5 

to 100 mV s
-1

, and then the position of the peak is nearly independent of scan rate 

from 100 to 300 mV s
-1

.  It is clear from Figures 4.6 and 4.7 that variations in the 

scan rate have a significant influence on both the electroactivity of the PPy-Cl and 

PPy-Urs-Cl films.  These results are different to those shown for the PPy-BSA films, 

Figure 3.17, Chapter 3, and may be connected to the relatively low concentration of 

ions in the phosphate buffer solution and the neutral pH, in comparison to the 0.10 

mol dm
-3

 NaCl solution used to record the cyclic voltammograms for the PPy-BSA 

films.   
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(a) 

 

 

(b) 

 

Figure 4.6:  Cyclic voltammograms of  (a) PPy-Cl and (b) PPy-Urs-Cl recorded in 0.05 mol 

dm
-3

 phosphate buffer solution, pH of 7.0, at scan rates of  ▬ 300 mV s
-1

, ▬ 200 mV s
-1

,      

▬ 100 mV s
-1

, ▬ 50 mV s
-1

, ▬ 25 mV s
-1

 and ▬ 10 mV s
-1

.  
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Figure 4.7:  Onset potential of the oxidation wave plotted as a function of scan rate for the 

PPy-Urs-Cl films cycled in 0.05 mol dm
-3

 phosphate buffer, pH of 7.0 at 50 mV s
-1

.   

Typically in cyclic voltammetry an upper and lower potential limit is chosen and the 

potential is cycled between these two limits
25,26

.  Selection of the upper limit is 

important with conducting polymers as the polymer may be subjected to 

overoxidation, which results in a considerable loss in conductivity
27

.  In order to 

investigate the effect of the electrochemical window, the PPy-Cl and PPy-Urs-Cl 

films (0.10 C cm
-2

) were cycled in a 0.05 mol dm
-3

 phosphate buffer solution, at a 

pH of 7.0 between -0.60 V vs. SCE and two upper potential limits of 0.80 and 1.20 V 

vs. SCE.  Representative cyclic voltammograms recorded at 50 mV s
-1

 are shown in 

Figure 4.8.   
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Figure 4.8:  Cyclic voltammograms (5th cycle) recorded for PPy-Urs-Cl in a phosphate 

buffer solution, 0.05 mol dm
-3

, pH 7.0, from ▬ -0.60 to 1.20 V vs. SCE and ▬ -0.60 to 0.80 

V vs. SCE at 50 mV s
-1

.  

Although there is little difference in these voltammograms, except for the additional 

current with the extended window, repeated cycling between -0.60 and 1.20 V vs. 

SCE has a significant effect on the stability of the film as shown in Figure 4.9.  In 

this plot the oxidation charge is plotted as a function of the cycle number.  There is 

an initial decay in the oxidation charge over the first 10 to 30 cycles, but then the 

charge reaches a near steady-state value for the polymer cycled between -0.60 and 

0.80 V vs. SCE.  This indicates good stability as there is no change in the oxidation 

charge from 25 to 300 cycles.  However, at the higher potential, i.e., up to 1.20 V vs. 

SCE, the polymer degrades rapidly.  There is a sharp reduction in the charge after 

150 cycles.  This is consistent with overoxidation of the polymer at these high 

potentials, as it is well known that polypyrrole overoxidises at potentials greater than 

1.00 V vs. SCE
27

.  Accordingly, this smaller potential window was used for all 

subsequent cyclic voltammetry measurements.   



Development of a novel urea sensor                                                                                   Chapter 4 
 

152 
 

 

Figure 4.9:  Oxidation charge plotted as a function of cycle number for PPy-Urs-Cl cycled 

in a phosphate buffer solution, 0.05 mol dm
-3

, pH 7.0, from ▬ -0.60 to 1.20 V vs. SCE and  

▬ -0.60 to 0.80 V vs. SCE at 50 mV s
1
.  

 

4.3.2.3 Capacitance Measurements  

It is evident from Figures 4.6 and 4.8 that the PPy-Cl and PPy-Urs-Cl films have 

high background currents.  This is typical of a conducting polymer system with a 

high capacitance
24,28

.  In order to determine the capacitance, the PPy-Cl and PPy-

Urs-Cl polymers were cycled in 0.05 mol dm
-3

 phosphate buffer solution, pH 7.0, at 

different scan rates, but in a small electrochemical window to avoid the effects of 

faradic currents
27

.  The electrochemical window was reduced to 0.10 V up to 0.20 V 

vs. SCE, and the current was obtained at a fixed potential of 0.14 V vs. SCE.  The 

resulting cyclic voltammograms have a completely different shape from those 

obtained in a larger potential window as the faradic currents have been reduced, 

Figure 4.10.   
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(a) 

 

(b) 

 

Figure 4.10:  Cyclic voltammograms of (a) PPy-Cl and (b) PPy-Urs-Cl polymer films 

(0.017 C) cycled in 0.05 mol dm
-3

 phosphate buffer at scan rates of ▬ 300 mV s
-1

, ▬ 200 

mV s
-1

, ▬ 100 mV s
-1

, ▬ 50 mV  s
-1

, ▬ 25 mV s
-1

 and ▬ 10 mV s
-1

.  
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The capacitance was calculated using Equation 4.2, where C represents the 

capacitance (F cm
-2

), I is the current density (A cm
-2

) and dV/dt is the scan rate       

(V s
-1

)
27,28

.   

 
 

 

4.2  

A plot of the current, I, versus the scan rate, dV/dt, yields a straight line as shown in 

Figure 4.11.  Correlation coefficients of 0.978 and 0.979 were obtained for the PPy-

Cl and PPy-Urs-Cl polymers, respectively, on fitting the data to Equation 4.2, 

indicting very good linearity.  The capacitance of the polymers was found to be in 

the region of 1.33 x 10
-3 

F cm
-2

, and 6.70 x 10
-4 

F cm
-2

 for the PPy-Cl and PPy-Urs-

Cl films, respectively.  This high capacitance is typical of the capacitance recorded 

for conducting polymers, and is in good agreement with the values reported in the 

literature
27,29

.  The PPy-Urs-Cl film has a slightly lower capacitance which is 

connected with the presence of the urease enzyme.   

 

 

Figure 4.11:  Current recorded at a fixed potential of 0.140 V vs. SCE plotted as a function 

of the scan rate for the ▬ PPy-Cl and ▬ PPy-Urs-Cl polymer films.  
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4.3.3 Detection of Urea Using the PPy-Cl and PPy-Urs-Cl Films  

Once the growth of the PPy-Urs-Cl films was optimised and the presence of the 

urease enzyme in the film was confirmed, the next step was to investigate the 

sensing performance of the polymer and its sensitivity to urea.  The PPy-Urs-Cl 

films were electrodeposited onto a Pt electrode, as detailed in Figure 4.1. The 

modified electrode was rinsed using distilled water to remove any monomer 

adhering to the surface of the electrode and then placed into a phosphate buffer 

solution.  The film was then cycled between -0.60 and 0.80 V vs. SCE in the 

phosphate buffer until a steady state was reached.  The electrode was removed and 

placed into a low concentration of urea in phosphate buffer.  Again, the film was 

cycled for a fixed number of cycles (usually 10 cycles) and then placed into the next 

phosphate buffer solution with a slightly higher concentration of urea.  This was 

repeated over a large concentration range, with rinsing of the modified electrode 

carried out between each solution in order to avoid transfer and contamination of the 

solutions.  Similar experiments were carried out with the PPy-Cl films.   

Although most sensors are amperometric
10

, where the current at a fixed potential is 

monitored, or potentiometric
8
, where the potential is recorded, a different approach 

was taken in this study.  On examining the cyclic voltammograms of the modified 

electrode in the absence and presence of urea (Figure 4.12), it is evident that there is 

an increase in the current in the presence of urea but this extends over the entire 

electrochemical window, with no well-defined peak in the current.  Accordingly, the 

entire potential range (-0.60 to 0.80 V vs. SCE) was used and the oxidation charge 

over this potential was computed, producing a coulombometric sensor. As the 

presence of urea significantly increases the oxidation charge, Figure 4.12, the charge 

arising in the absence of urea, from the background phosphate buffer, can be easily 

subtracted.  Hence, all the results presented are given with the background charge 

subtracted, and thus represent the true charge arising from the urea.   
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Figure 4.12:  Cyclic voltammograms recorded for the PPy-Urs-Cl polymer film in the          

▬ presence and ▬ absence of urea.  

Typical calibration curves recorded for the PPy-Cl and PPy-Urs-Cl films with the 

oxidation charge plotted as a function of the urea concentration are presented in 

Figure 4.13.  There is a considerable difference between the PPy-Cl and PPy-Urs-Cl 

films, with the PPy-Cl showing a poor response to the urea.  It is evident from Figure 

4.13 that the calibration curve has two linear regions.  The slopes of these linear 

regions were obtained for both the PPy-Cl and PPy-Urs-Cl polymer films.  The 

linear region corresponding to the lower urea levels for the PPy-Cl polymer film was 

found to have a slope of 2.68 C cm
-2

 mol
-1

 dm
3
, whereas the same linear region for 

the PPy-Urs-Cl film has a slope of 5.41 C cm
-2

 mol
-1

 dm
3
.  This can be equated to the 

sensitivity of these films, giving the PPy-Cl film a sensitivity of 2.68 µC µM
-1

 in this 

region and the PPy-Urs-Cl film a sensitivity of 5.41 µC µM
-1

 in this same region.  

The same analyses were performed on the second linear regions; again, the PPy-Cl 

film was found to have a lower sensitivity to urea of 0.43 µC µM
-1

, whereas the  

PPy-Urs-Cl film was found to have a good sensitivity of 0.76 µC µM
-1

 in this higher 

urea concentration region.   
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Figure 4.13:  A calibration curve (n = 6) obtained from the oxidation charge plotted as a 

function of urea concentration for ▬ the PPy-Urs-Cl and ▬ the PPy-Cl films.   

It is clearly evident that the addition of the urease to the polypyrrole film greatly 

enhances the sensitivity of the sensor.  The limit of detection (LOD) was found to be 

1.0 x 10
-3

 mol dm
-3

 urea for the PPy-Cl film, but for the PPy-Urs-Cl film it was 

measured as 5.0 x 10
-4

 mol dm
-3

 urea.   

For the higher urea concentrations, the slope of the linear region is much lower 

compared to that computed at the lower concentrations, making it relatively 

straightforward to differentiate between low and elevated levels of urea.  Although 

the PPy-Urs-Cl film exhibits reasonable sensitivity, especially at the lower urea 

concentrations, the limit of detection is poor when compared to other techniques, 

such as chromatography.  For example, Clarke et al. found a limit of detection in the 

region of 5.0 x 10
-8

 mol dm
-3

 urea
30

.  As no further modifications could be made to 

the PPy-Urs-Cl film, another dopant anion was considered with a view to enhancing 

the performance of the sensor in the detection of urea.   
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4.3.4 Formation of the PPy-Urs-SCD and PPy-SCD Polymer Films 

As mentioned previously, the PPy-Urs-Cl film provides sufficient detection for urea 

in the 0.001 to 0.010 mol dm
-3

 urea concentration region.  Although this complies 

with the normal and elevated blood urea levels, higher sensitivity and better 

detection limits can be reached using other techniques.  Clarke et al.
30 

describe a urea 

sensor using high performance liquid chromatography (HPLC) with a LOD of 5.0 x 

10
-8

 mol dm
-3

 urea.  Accordingly, further investigations into the modification of the 

sensor with an anionic species were carried out as the dopant anion plays an 

important role
31,32

.  In addition, increasing the anionic charge on the polymer film 

may reduce the interference from common anionic interfering substances such as 

ascorbic acid (AA)
33,34

, which exists in the body at high concentrations of up to 1.0 x 

10
-4

 mol dm
-3

, and uric acid (UA), which also exists at high concentrations
35,36

.   

The sulphonated-β-cyclodextrin (SCD) was chosen to provide the anionic charge, as 

each SCD has between 7 and 11 sulphonated (SO3
-
) groups

29
.  As described in 

Chapter 1, the most common commercially available cyclodextrins include the α- β- 

and γ- cyclodextrins
37

.  These differ due to the number of glucose units present, i.e., 

α-cyclodextrin has 6 glucose units, the β-cyclodextrin has 7 and γ-cyclodextrin has 8 

glucose units
38

.  As the cavity size is dependent on the number of glucose units, this 

leads to vast differences in the cavity sizes between the cyclodextrins
39

.  The β-

cyclodextrin was used as the α-cyclodextrin has a small diameter, and the γ-

cyclodextrin is very expensive.  In addition, there has been very little research 

reported on the electrochemical synthesis of polypyrrole doped with sulphonated-β-

cyclodextrin
40,41 

and, to the best of our knowledge, the literature reviewed shows that 

the formation of PPy-SCD films was attained in the presence of a supporting 

electrolyte, such as lithium perchlorate, as described by Temsamani and co-

workers
42

.  Furthermore, the polymer was cycled to very high potentials of 1.80 V 

vs. SCE
42

 where polypyrrole films are well known to overoxidise
27.

  This is an 

irreversible process which leads to the degradation of the polymer film, thus, the 

redox activity, conductivity and overall electroactivity of the polymer film is greatly 

reduced
27

.  Also, at these high potentials, overoxidation of the polymer film leads to 

an increased porosity in the film.  In analysing the data presented by Temsamani and 

co-workers
42

, the cyclic voltammograms presented illustrate redox activity which 

could be attributed to the gold substrate used
12

.   
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The PPy-Urs-SCD polymer films, and the PPy-SCD films as a comparison, were 

grown by applying a constant potential of 0.70 V vs. SCE to deposit the polymer 

film at the working electrode.  The PPy-SCD films were prepared in 0.50 mol dm
-3

 

pyrrole in the presence of 0.02 mol dm
-3

 SCD, while the PPy-Urs-SCD films were 

deposited from a solution containing 0.50 mol dm
-3

 pyrrole, 0.02 mol dm
-3

 SCD and 

4000 mg L
-1 

urease.  Figure 4.14 shows the growth profiles recorded for the PPy-

SCD and PPy-Urs-SCD films at an applied potential of 0.70 V vs. SCE.  These 

current-time transients are very different to those presented in Figure 4.1.  The 

currents are slightly higher in the presence of the SCD anions; however, it is the 

shape of the current-time transients that is significantly different, showing the 

influence of the SCD anions on the rate of the electropolymerisation reactions.   

 

Figure 4.14:  Current plotted as a function of time for the formation of PPy-SCD and     

PPy-Urs-SCD on a Pt electrode at 0.70 V vs. SCE from solutions containing ▬ 0.50 mol 

dm
-3

 pyrrole/0.02 mol dm
-3

 SCD and ▬ 0.50 mol dm
-3

 pyrrole/4000 mg L
-1

 urease/0.02 mol 

dm
-3

 SCD.  
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Again, on application of the potential, there is an initial decrease in the current as the 

charging of the double layer is achieved.  This is followed by a relatively sharp 

increase in the current, which corresponds to the nucleation and growth of the 

polymer film.  This current reaches a maximum value within a number of seconds, 

typically 20 s, which is characteristic of the SCD electrolyte
43

, at which time the 

current begins to decrease again.  This is then followed by a further more gradual 

increase in the current as the polymer becomes deposited onto the working 

electrode
20,43

.  One possible explanation for these current-time transients may be the 

polyelectrolyte properties of the SCD
43

.  As no other supporting electrolyte was 

used, these polyanions will migrate to the positively charged platinum surface on 

application of the potential.  This gives rise to a high local concentration of the SCD 

anions during the initial stages of electropolymerisation. Once the monomer 

oxidation is initiated, the electropolymerisation reaction proceeds at a very high rate 

in the presence of the high concentration of SCD. However, as the 

electropolymerisation reaction proceeds, the concentration of the SCD anions is 

reduced as they are doped within the polypyrrole layers deposited onto the electrode, 

and the rate of the electropolymerisation reaction is now dominated by the transport 

and diffusion of the large SCD anions to the interface.  The diffusion of the SCD 

anions is slow due to the size of the SCD with 7-11 sulphonate groups and this gives 

rise to a drop in the rate of electropolymerisation which is consistent with the slight 

dip in the current at approximately 20 s, Figure 4.14.   

It is evident from Figure 4.14 that the presence of the urease enzyme in the monomer 

solution decreases the current density; this is similar to that observed with the 

formation of the PPy-Urs-Cl films and the PPy-BSA films.  Again, the urease 

appears to block access of the pyrrole monomer to the electrode, this is similar to the 

results discussed in the literature
44

.  It therefore takes more time for the radical 

cations created by the oxidation of pyrrole to form and generate the dimers and 

subsequently the oligomers and polymer films
43

.  Nevertheless, the current-time 

transients have similar characteristics in the absence and presence of urease with the 

diffusion of the SCD anions giving rise to a dip in the current after about 20 s.   
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4.3.5 Characteristics and Properties of PPy-SCD and PPy-Urs-SCD 

A combination of SEM, EDX and cyclic voltammetry was used to characterise the 

PPy-SCD and PPy-Urs-SCD films.   

 

4.3.5.1 SEM and EDX Analysis  

Micrographs were obtained for the PPy-SCD and PPy-Urs-SCD films using the 

scanning electron microscope (SEM) as described in Chapter 2, Section 2.2.6.  The 

polymers were electrodeposited as described previously, onto a flat platinum disk 

electrode at 0.70 V vs. SCE, to a charge of 10.48 C cm
-2 

from an aqueous solution 

containing 0.50 mol dm
-3

 pyrrole and 0.02 mol dm
-3

 SCD in the presence and 

absence of the urease enzyme.  SEM micrographs are shown for the PPy-SCD film 

in Figure 4.15, and the PPy-Urs-SCD film in Figure 4.16.  From these it can be seen 

that the surface morphology is very different in the absence and presence of the 

urease.  The PPy-SCD film has the typical cauliflower morphology of polypyrrole
21

 

and is much smoother than the PPy-Urs-SCD films.  A much rougher surface 

morphology and evidence of fibrous regions are seen in the micrograph recorded for 

PPy-Urs-SCD.  However, the surface morphology of the PPy-Urs-SCD film is very 

different to the morphology of the PPy-Urs-Cl film, Figure 4.3, indicating that the 

morphology is not entirely dominated by the urease enzyme, but also depends on the 

nature of the supporting electrolyte.   
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Figure 4.15:  Scanning electron micrograph of PPy-SCD electrodeposited on a Pt electrode 

at 0.70 V vs. SCE from a solution containing 0.50 mol dm
-3

 pyrrole/0.02 mol dm
-3

 SCD.  

 

Figure 4.16:  Scanning electron micrograph of PPy-Urs-SCD electrodeposited on a Pt 

electrode at 0.70 V vs. SCE from a solution containing 0.50 mol dm
-3

 pyrrole/4000 mg L
-1

 

urease/0.02 mol dm
-3

 SCD.  

Energy dispersive X-Ray (EDX) analysis was also carried out on the PPy-SCD and 

PPy-Urs-SCD polymers, as shown in Figures 4.17 and 4.18, respectively.  Both of 

these EDX spectra show the presence of sulphur at 2.305 keV, which indicates the 

presence of the SCD anion as a dopant.  However, only the urease-containing film 

shows evidence of nickel (Ni) at 0.851 keV; this is the nickel that is contained in the 

active site of the urease from Jack Bean enzyme
8
 and provides clear evidence for the 

incorporation of the urease enzyme within the polymer matrix.   
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Figure 4.17:  EDX analysis of a PPy-SCD film electrodeposited from a solution containing 

0.50 mol dm
-3

 pyrrole and 0.02 mol dm
-3

 SCD at an applied potential of 0.70 V vs. SCE until 

a charge of 10.48 C cm
-2

 was reached.  S is observed at ~ 2.30 keV.   

 

Figure 4.18:  EDX analysis of a PPy-Urs-SCD film electrodeposited from a solution 

containing 0.50 mol dm
-3

 pyrrole, 4000 mg L
-1

 urease and 0.02 mol dm
-3

 SCD at an applied 

potential of 0.70 V vs. SCE until a charge of 10.48 C cm
-2

 was reached.  S is observed at ~ 

2.30 keV and Ni is observed at ~ 0.90 keV.   

 

4.3.5.2 Electroactivity of the PPy-SCD and PPy-Urs-SCD Polymer Films 

The electroactivity of the PPy-SCD and PPy-Urs-SCD films was studied and 

compared by cycling the polymers in two different electrochemical windows and by 

varying the scan rate.  The influence of the upper potential limit is shown in Figure 

4.19, where voltammograms are presented for the PPy-Urs-SCD film cycled 

repeatedly from -0.60 to 0.80 V vs. SCE, Figure 4.19 (a) and from -0.60 to 1.20 V 

vs. SCE, Figure 4.19 (b) in a phosphate buffer, at a pH of 7.0.  Very good stability is 

observed when the polymer is cycled in the smaller electrochemical window, with 
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nearly identical voltammograms recorded for cycles 1, 20, 50, 100, 200 and 300.  

However, a significant decay in the electroactivity of the polymer, corresponding to 

overoxidation of the polymer film
27

, is observed at the higher potential of 1.20 V vs. 

SCE.   

(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

Figure 4.19:  Cyclic voltammograms recorded for PPy-Urs-SCD in buffer solution at a pH 

of 7.0 ▬ cycle 1, ▬ cycle 20, ▬ cycle 50, ▬ cycle 100, ▬ cycle 200 and ▬ cycle 300    

(a) cycled from -0.60 V to 0.80 V vs. SCE and (b) cycled from -0.60 V to 1.20 V vs. SCE.   
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In the larger electrochemical window, the faradic currents decrease rapidly with 

increasing cycle number, this is more clearly evident in Figure 4.20, where the 

charge, consumed during oxidation of the polymer, is presented as a function of the 

cycle number.  Again, at the higher potential window, i.e., up to 1.20 V vs. SCE, the 

polymer degrades and the charge is negligible after 50 cycles; however, the charge 

increases slightly when the polymer is cycled in the smaller electrochemical window 

showing no evidence of overoxidation.   

These results are similar to those presented in Figure 4.9 for the PPy-Urs-Cl films.  

On comparison of the charge-time plots presented in Figure 4.9 and the data 

recorded in Figure 4.20 for the PPy-Urs-SCD, it is evident that the PPy-Urs-SCD 

film is overoxidised at a faster rate when exposed to potentials in the vicinity of 1.20 

V vs. SCE.   

 

Figure 4.20:  Oxidation charge recorded as a function of cycle number for PPy-Urs-SCD 

cycled in a phosphate buffer, 0.05 mol dm
-3

, pH 7.0, from ▬ -0.60 V to 1.20 V vs. SCE and 

▬ -0.60 V to 0.80 V vs. SCE.  

The effect of scan rate on the polymer signal was also investigated.  The PPy-SCD 

and PPy-Urs-SCD polymers were cycled in a 0.05 mol dm
-3

 phosphate buffer 

solution at a pH of 7.0, at scan rates from 300 mV s
-1

 to 5 mV s
-1

.  The resulting 

cyclic voltammograms are shown in Figure 4.21.  Similar voltammograms were 

recorded for the PPy-SCD and PPy-Urs-SCD films and with an increase in the scan 

rate higher currents were recorded.  It is also evident that the scan rate has a 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 50 100 150 200 250 300

O
xi

d
at

io
n

 c
h

ar
ge

, Q
 (

C
 c

m
-2

) 

Cycle number 



Development of a novel urea sensor                                                                                   Chapter 4 
 

166 
 

significant influence on the electroactivity of the films
28

.  At the higher scan rates an 

oxidation wave, which extends from about -0.30 V to 0.50 V vs. SCE, is clearly 

evident.  This corresponds to oxidation of the film, while the reduction wave is at 

potentials below -0.60 V vs. SCE and is not visible in the figure.  Indeed, when the 

electrochemical window was extended to -1.10 V vs. SCE, a broad reduction wave 

with a maximum current centred at about -0.65 V vs. SCE was observed.  As the 

sulphonated cyclodextrin is large and immobile it is not lost during reduction of the 

polymer film.  Instead, reduction of the polymer is accompanied by the ingress of 

Na
+
 cations from the phosphate buffer.  This potential is considerably lower than that 

observed for the reduction of PPy-Cl
11

, where the expulsion of chloride anions 

occurs, and can be explained by the fact that the applied potential must be further 

lowered to facilitate the reduction of the polymer backbone and the ingress of Na
+
.  

Interestingly, the presence of the urease enzyme exerts some influence on the 

oxidation of the polymer.  Again, at the higher scan rates, where the oxidation waves 

are clearly visible, somewhat broader oxidation waves are seen in the presence of 

urease.  For example, the peak potential of the oxidation wave is approximately 0.20 

V vs. SCE for the PPy-SCD film and slightly higher at 0.40 V vs. SCE for the PPy-

Urs-SCD films.  Oxidation of the polymer is accompanied by the release of the Na
+
 

cations as the polypyrrole backbone is converted from a neutral to a positively 

charged structure.  It appears that the release of the Na
+
 ions is slightly inhibited by 

the incorporated urease.   
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(a) 

 

 

 

 

 

 

 

 

(b) 

 

Figure 4.21:  Cyclic voltammograms recorded in 0.05 mol dm
-3

 phosphate buffer solution, 

pH of 7.0, at scan rates ▬ 300 mV s
-1

, ▬ 200 mV s
-1

, ▬ 100 mV s
-1

, ▬ 50 mV s
-1

,               

▬ 25 mV s
-1 

and ▬ 10 mV s
-1

 of (a) PPy-SCD and (b) PPy-Urs-SCD.   
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Finally, the capacitance of the PPy-Urs-SCD and PPy-SCD films was determined by 

cycling the polymer films in a pH 7.0, 0.05 mol dm
-3

 phosphate buffer solution 

between 0.10 V and 0.20 V vs SCE as a function of the scan rate, as detailed earlier 

in Section 4.3.2.3 for the PPy-Urs-Cl and PPy-Cl films.  The current was plotted as a 

function of the scan rate in accordance with Equation 4.2, to give linear plots, with 

correlation coefficients greater than 0.98, as shown in Figure 4.22.  From these data 

the capacitance of the polymer films was computed as 1.59 x 10
-3

 and 2.00 x 10
-3

 F 

cm
-2

 for the PPy-SCD and PPy-Urs-SCD polymer films, respectively.  The presence 

of the urease enzyme has little influence on the capacitance of the films in the 

presence of the sulphonated-β-cyclodextrin.   

 

 

Figure 4.22:  Current plotted as a function of the scan rate for the ▬ PPy-SCD and               

▬ PPy-Urs-SCD polymer films.  

 

4.3.6 Stability of the PPy-Urs-SCD Polymer Films 

In order to further explore and probe the stability of the PPy-SCD and PPy-Urs-SCD 

polymer films, other parameters such as film thickness, reusability, reproducibility, 

shelf life and the storage conditions of the polymer film were investigated.  These 

parameters are discussed in detail in the following sections, and are well known to be 

important in the development of a urea sensor
 45
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4.3.6.1 Thickness of the PPy-Urs-SCD Polymer Films 

The effect of varying the thickness of the polymer films on their stability was 

investigated using three different polymer thicknesses.  The polymer films were 

grown to a fixed charge to keep the thicknesses relatively constant and the charges 

chosen were 0.24, 1.42 and 10.48 C cm
-2

 which correspond to an approximate 

polymer thickness of 0.60 µm, 3.55 µm and 26.20 µm, respectively.  This thickness 

was theoretically calculated using the charge thickness ratio derived by Diaz et al.
46

 

for a simple chloride dopant.  In this analysis it is assumed that 1 C cm
-2

 of charge 

passed is equivalent to 2.5 µm of polymer film.  It is important to mention that the 

theoretical values of thickness obtained for the PPy-SCD and PPy-Urs-SCD films 

are only an approximation, as the films doped with the large anionic groups may not 

have the same charge to polymer thickness ratio as the PPy-Cl films
47

.  Indeed, this 

has been confirmed by Schmidt and co-workers
48

, who have shown that PPy-Cl 

forms thicker films than PPy doped with tosylate or polystyrene sulphonate.   

In order to investigate the stability of the polymer films deposited to different 

thickness, the oxidation charge for the polymer films cycled in phosphate buffer 

solution from -0.60 V up to 0.80 V vs. SCE was plotted over 300 cycles, as shown in 

Figure 4.23.  It is evident from this plot that the thinner polymer, with a thickness of 

approximately 0.60 µm, decays or decomposes rapidly and the charge drops to 

negligible values after 65 cycles.  In contrast, the polymer films approximated as 

3.55 µm and 26.20 µm appear considerably more stable.  There is an initial decay in 

the charge during the first 50 cycles for the polymer deposited to 3.55 µm, but the 

charge then increases to reach a near constant value of about 0.04 C cm
-2

.  Likewise, 

the polymer with a thickness of about 26.20 µm appears to be reasonably stable, in 

this case the charge increases over the first 100 cycles, before a steady-state is 

reached.  Accordingly, the medium thickness polymer film of 3.55 µm was chosen 

for all further measurements.   
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Figure 4.23:  Oxidation charge plotted as a function of cycle number for PPy-Urs-SCD 

films cycled from -0.60 to 0.80 V vs. SCE, at 0.10 V s
-1

  in a phosphate buffer solution, 0.05 

mol dm
-3

, at a pH of 7.0 with approximate polymer thickness of ▬ 26.20 µm, ▬ 3.55 µm 

and ▬ 0.60 µm.   

 

4.3.6.2 Reusability of the PPy-Urs-SCD Polymer Films 

The reusability of the PPy-Urs-SCD films was investigated by growing the polymer 

films at a constant potential of 0.70 V vs. SCE to a charge of 1.42 C cm
-2

 which 

corresponds to a thickness of approximately 3.55 µm.  The electrode was rinsed well 

with distilled water to remove any excess monomer from the surface of the electrode 

and the electrode was placed into a background solution of 0.05 mol dm
-3

 phosphate 

buffer at a pH of 7.0.  A cyclic voltammogram was obtained by cycling the polymer 

film from -0.60 to 0.80 V vs. SCE, for 10 cycles.  Then the polymer film was 

transferred to a solution containing 0.003 mol dm
-3

 solution of urea in 0.05 mol dm
-3

 

phosphate buffer at a pH of 7.0, and cycled in the same window.  The oxidation 

charge was recorded and the background subtracted to obtain the true oxidation 

charge.  This process was repeated a total of ten times and the corresponding data are 

presented in Figure 4.24, with the oxidation charge plotted as a function of the 

number of uses.   
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There is a clear loss in the oxidation charge with repeated use.  Indeed, there is a 

25% loss in the charge from the first to the second use.  This indicates that the    

PPy-Urs-SCD polymer film is not suitable for re-use as the charge obtained 

decreases significantly with each use.  This is comparable with studies done by 

Pandey, et al.
49

 and Adeloju, et al.
50

 on other polymer-based urea sensors, such as 

polyaniline, and polypyrrole.  In contrast, Syu and Chang
8
 reported excellent 

reusability of a polypyrrole based urea sensor with 80% of the signal remaining after 

40 uses, while Osaka et al.
51

 found a 10% loss from the first to the 10
th

 use, again 

with a polypyrrole modified sensor.   

 

Figure 4.24:  Oxidation charge of the PPy-Urs-SCD film recorded in 0.003 mol dm
-3

 urea 

plotted as a function of the number of uses.  
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background solution of 0.05 mol dm
-3

 phosphate buffer solution, pH 7.0, and then in 

a 0.003 mol dm
-3

 urea in 0.05 mol dm
-3

 phosphate buffer solution, pH 7.0.  The 

oxidation charge was computed and these charges are presented in Figure 4.25.   

 

 

0.000

0.005

0.010

0.015

0.020

0 2 4 6 8 10

O
xi

d
at

io
n

 C
h

ar
ge

, Q
 (

C
 c

m
-2

) 

Number of uses 



Development of a novel urea sensor                                                                                   Chapter 4 
 

172 
 

It is obvious from Figure 4.25 that the oxidation charges obtained for six different 

PPy-Urs-SCD polymer films are very similar, giving very good reproducibility.  This 

compares very favourably with other urea sensors, such as those described by 

Dhawan, et al.
7
, and Chen, et al.

3
; however, these materials are more prone to 

enzyme leaching and, consequently, this leads to a lack of reproducibility of the urea 

sensor
3
.  This is not the case with the PPy-Urs-SCD sensor, Figure 4.25.   

 

Figure 4.25:  Oxidation charges obtained for six different PPy-Urs-SCD polymer films by 

cycling in a 0.003 mol dm
-3

 urea in 0.05 mol dm
-3

 phosphate buffer solution, pH 7.0, and 

subtracting the background oxidation charge.   

 

4.3.6.4 Shelf-life of the PPy-Urs-SCD Polymer Films 

The shelf-life of the PPy-Urs-SCD films was investigated by cycling a PPy-Urs-SCD 

film in a background 0.05 mol dm
-3

 phosphate buffer solution, pH 7.0, and then in a 

0.003 mol dm
-3

 urea in 0.05 mol dm
-3

 phosphate buffer solution, pH 7.0.  The 

oxidation charge was computed.  The PPy-Urs-SCD film was then stored in a 

solution of pH 7.0, 0.05 mol dm
-3

 phosphate buffer for 10 weeks, after which it was 

cycled in the background solution again, followed by a 0.003 mol dm
-3

 urea in 0.05 

mol dm
-3

 phosphate buffer solution, pH 7.0.  The oxidation charge was obtained and 

recorded for the initial (Week 0) and final (Week 10) PPy-Urs-SCD films, and this is 

shown in Figure 4.26.   
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Figure 4.26:  Oxidation charge of PPy-Urs-SCD films recorded on the initial (Week 0) and 

after the final (Week 10) in 0.003 mol dm
-3

 urea in 0.05 mol dm
-3

 phosphate buffer solution, 

pH 7.0.   

It is evident from Figure 4.26 that storing the PPy-Urs-SCD film over 10 weeks has 

little effect on the oxidation charge.  This indicates that the PPy-Urs-SCD polymer 

film is quite stable when stored in a solution of pH 7.0, 0.05 mol dm
-3

 phosphate 

buffer.  Accordingly, the shelf-life of the polymer film is greater than 10 weeks.  

This is comparable to the work done by Singh, et al.
10

 and Dhawan, et al.
7
 who 

investigated the shelf life of various urea sensors and found a range of shelf life 

times from 24 h up to 99 days, depending on the mode of urease immobilisation.   
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the polymer films was stored at room temperature, at approximately 25 °C, and the 

other in a refrigerator at 4 °C in identical solutions of pH 7.0, 0.05 mol dm
-3

 

phosphate buffer.  The polymer films were removed at weekly intervals and cycled 

in the background electrolyte and then in the urea-containing solution and the 

oxidation charge was computed.  These results are highlighted in Figure 4.27.   
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Figure 4.27:  Oxidation charges obtained for the PPy-Urs-SCD polymer films stored at        

▬ 4 °C and ▬ 25 °C.   

It is obvious from Figure 4.27 that the oxidation charges decrease with increasing 

cycling of the polymer films.  Indeed these data are similar to that presented in 

Figure 4.24, indicating that the loss in signal is related to cycling of the polymer 

films.  However, it is also apparent from Figure 4.27 that the storage conditions have 

little effect.  The loss in the charge is similar for the film stored at 4 and 25 
o
C.  It is 

evident that the polymer film stored at 4 °C has a slightly higher oxidation charge 

compared to the film stored at 25 °C; however, this difference is negligible and it can 

be concluded that the storage temperature does not play a significant role in the 

stability of the sensor.  Research reported by Dhawan and co-workers
7
 implies that 

the temperature plays an important role on the stability and shelf-life of urea sensors.  

However, the work carried out by Singh and co-workers
10

 and Chen et al.
52

 shows 

little diminution in sensitivity while storing the urea sensors at a lower temperature, 

i.e., at 4 °C.  However, a comparison at room temperature was not made.  Rajesh, et 

al.
53

, did present results on the storage conditions of a urea sensor at both 25 °C and 

at 4 °C and, found a loss of approximately 70 % of the initial enzyme activity within 

two weeks at 25 °C, compared to a retention of approximately 80% of the initial 

enzyme activity for over two months when the urea sensor was stored at 4 °C
54

.   
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The effect of pH on the stability of the sensor was not investigated as the urease 

enzyme becomes denatured at pH values below 6.0 and above 8.0
50

.  In addition, the 

polypyrrole film losses stability at very alkaline pH conditions
54,55,56,57

.  

Consequently, the pH of all the experiments described in this chapter was maintained 

at a pH of 7.0 using a pH 7.0, 0.05 mol dm
-3

 phosphate buffer solution
50

.   

 

4.3.7 Urea Detection using the PPy-SCD and PPy-Urs-SCD Polymers 

The sensitivity of both the PPy-Urs-SCD and PPy-SCD films to a range of urea 

concentrations was investigated.  In order to accurately determine the oxidation 

charge, the background charge recorded in the phosphate buffer solution was 

subtracted as mentioned previously.  The resulting oxidation charge from the urea 

was then plotted against increasing urea concentration and a calibration curve was 

obtained, as shown in Figure 4.28 for the PPy-SCD and PPy-Urs-SCD films.  The 

data recorded at the lower urea concentrations is highlighted again in Figure 4.29.   

 

 

Figure 4.28:  Calibration curve (n = 6) with the oxidation charge plotted as a function of the 

urea concentration for ▬ PPy-Urs-SCD and ▬ PPy-SCD films.   
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Figure 4.29:  Calibration curve (n = 6) with the oxidation charge of the PPy-Urs-SCD film 

plotted as a function of the urea concentration for urea concentrations below 1.0 x 10
-8

 mol 

dm
-3

. 

It is evident from Figure 4.29 that the presence of the sulphonated cyclodextrin in the 

polypyrrole film greatly enhances the sensitivity of the sensor and in addition, it 

gives a better limit of detection (LOD).  The LOD value for PPy-Urs-Cl was found 

to be 5.0 x 10
-4

 mol dm
-3

 urea, whereas the LOD for the PPy-SCD and PPy-Urs-SCD 

polymer films are in the region of 1.0 x 10
-10

 mol dm
-3

 urea.   

Again, the calibration curve obtained for the detection of urea using the sulphonated 

cyclodextrin polymers has two linear regions.  The slopes of these linear regions 

were obtained for both the PPy-SCD and PPy-Urs-SCD polymer films.  The linear 

region corresponding to the lower urea levels for the PPy-SCD polymer film (Ι) was 

found to have a slope of 18.04 C cm
-2

 mol
-1

 dm
3
, whereas the same linear region for 

the PPy-Urs-SCD film (A) has a slope of 46.09 C cm
-2

 mol
-1

 dm
3
.  This can be 

equated to the sensitivity of these films, with the sensitivity of the PPy-SCD film at 

18.04 µC µM
-1

 and the PPy-Urs-SCD at 46.09 µC µM
-1

.  Clearly, these films have a 

better sensitivity than the PPy-Urs-Cl polymer, which has a sensitivity to urea of 

only 5.41 µC µM
-1

.   

The same analysis was applied to the second linear region, which is the region in 

which the normal blood urea levels lie.  This region is very important in the 

biomedical industry as higher urea concentrations are indicative of renal failure.  The 
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PPy-SCD film was found to have a higher sensitivity to urea of 2.29 µC µM
-1

 (ΙΙ) 

compared to the PPy-Urs-Cl film which had a sensitivity of 0.76 µC µM
-1

.  Again, 

the PPy-Urs-SCD film has the best sensitivity of 5.79 µC µM
-1

 in this higher urea 

concentration region (B).  A comparison of the sensitivity of the four polymer films 

at the higher urea concentrations is given in Figure 4.30, where it is evident that the 

PPy-Urs-SCD film yields the best sensitivity towards urea detection.   

 

Figure 4.30:  Calibration curve (n = 6) with the oxidation charge plotted as a function of the 

urea concentration for ▬ PPy-Urs-SCD, ▬ PPy-SCD, ▬ PPy-Urs-Cl and ▬ PPy-Cl films 

at the higher urea concentration levels.   

It is evident that the slopes of the two linear regions change significantly with the 

increased urea concentration from the lower urea levels to the higher levels.  For the 

lower urea concentrations, the slope of the linear region is much higher than that of 

the higher urea concentrations.  It is also apparent that the anion used to dope the 

polymer film plays an important role in the sensitivity of the film towards the urea
58

.  

The anionic sulphonated group leads to better urea detection, even without the 

presence of the urease enzyme.  Obviously, having the urea enzyme present 

increases the sensitivity of the polymer film to urea
59

.  As a result, the PPy-Urs-SCD 

film was chosen for further detection of urea, as described in Chapter 5.   
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4.4 Conclusions 

In summary, the urease enzyme was successfully incorporated within the 

polypyrrole-chloride matrix; this was characterised using SEM, EDX and cyclic 

voltammetry.  The presence of the nickel in the EDX spectra is proof that the urease 

enzyme was included in the PPy-Urs-Cl polymer film.  This film was then 

investigated as a coulombometric sensor for urea detection, along with the PPy-Cl 

film as a comparison.  The addition of the urease greatly enhances the detection of 

the film, with detection in the region of 5.0 x 10
-4

 mol dm
-3

 for urea and a sensitivity 

of 5.41 µC µM
-1

 for the lower urea level region using the PPy-Urs-Cl film.  In 

comparison, the PPy-Cl film exhibited a sensitivity of 2.68 µC µM
-1

 towards urea, 

with a limit of detection of 1.0 x 10
-3

 mol dm
-3

.  Although the PPy-Urs-Cl film 

exhibited reasonable sensitivity towards urea, the limit of detection was found to be 

poor in comparison to other techniques such as chromatography, which yields LODs 

in the region of 5.0 x 10
-8

 mol dm
-3

 for urea.  Consequently, the dopant anion was 

changed to the sulphonated-β-cyclodextrin as increasing the ionic charge would 

possibly enhance the performance of the sensor in the detection of urea.  

Subsequently, the PPy-Urs-SCD film and the PPy-SCD film, as a comparison, were 

formed and used in the detection of urea.  The PPy-Urs-SCD film had a good 

sensitivity of 46.09 µC µM
-1

 towards urea in the lower concentration regions and 

detection in the region of 1.0 x 10
-10

 mol dm
-3

, whereas the PPy-SCD film had a 

sensitivity of 18.04 µC µM
-1

 towards urea and detection in the region of 1.0 x 10
-10

 

mol dm
-3

.  Additionally, the PPy-Urs-SCD film has excellent sensitivity towards 

urea in the higher concentration regions, which correspond to the blood urea levels.  

Obviously, the anion used to dope the polymer film plays an important role in the 

sensitivity of the film towards urea, with the more anionic group leading to better 

detection, even in the absence of the urease enzyme.  Additionally, an investigation 

into the stability, reusability, shelf life, storage conditions and reproducibility of the 

polymer films was carried out.  It was found that the thin polymer films decay 

rapidly; however, good stability was observed on increasing the thickness of the 

polymer film.  In addition, there was a clear loss in the oxidation charge with 

repeated use, implying that the PPy-Urs-SCD film is not suitable as a re-useable 

sensor.  However, good reproducibility was obtained from different polymer films 

and, the polymer films have a shelf life greater than 10 weeks.   
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An Investigation into the Effects 

of Interfering Compounds on the 

Detection of Urea  

 

 

 

 

 

 

 

 

“Learning is finding out what you already know. Doing is 

demonstrating that you know it. Teaching is reminding others that 

they know just as well as you. We are all learners, doers, teachers.”  

- Richard David Bach 
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5.1 Introduction  

One of the major difficulties in the detection of urea is the presence of a wide array 

of interfering compounds
1
.  There are many interfering compounds in biological 

systems that are known to influence the detection of urea and a selection of these 

compounds was studied as potential interferants, and the results of this study are 

presented in this chapter.  The chosen compounds include the main interfering 

compounds, ascorbic acid (AA), which was described in Chapter 3, Section 3.3.5, 

uric acid (UA) and creatinine (CR), as depicted in Figure 5.1.  In addition, 

compounds that are structurally related to urea may interfere with urea detection and 

these include thiourea and hydroxyurea
1
, as shown in Figure 5.2.  Finally, the 

ammonium (NH4
+
) ion was also considered as a potential interfering species.  The 

NH4
+
 ion, although not electroactive, is a product of the hydrolysis of urea and 

consequently, the detection of urea in the presence of NH4
+
 is important in the 

development of any urea sensor.   

(a)     (b)        (c)  

 

 

 

 

Figure 5.1:  Common biological interfering compounds in urea detection: (a) ascorbic acid, 

(b) uric acid and (c) creatinine.  

 (a)      (b)    

                                             

Figure 5.2:  Compounds that are structurally related to urea: (a) thiourea and (b) 

hydroxyurea.  
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5.2 Experimental  

The instrumentation and software employed for the experiments detailed in this 

chapter are described in Section 2.3.  All chemicals were purchased from Sigma-

Aldrich or its subsidiary company, Fluka and were used as supplied, with the 

exception of pyrrole which was vacuum-distilled and stored in the dark at -20 C 

prior to use.  Solutions of 0.10 mol dm
-3

 NaCl and 0.02 mol dm
-3

 sulphonated-β-

cyclodextrin, which were prepared using distilled water, were used to form the PPy-

Urs films.  All other solutions consisted of a 0.05 mol dm
-3

 phosphate buffer, pH 7.0, 

which was prepared using distilled water.  All the solutions were prepared freshly 

before each experiment and were used at room temperature.  A constant potential of 

0.70 V vs. SCE was used to deposit the polypyrrole films and a fresh polymer film 

was formed for each experiment.  The experimental conditions described in Chapter 

4, Section 4.2 were used to prepare the PPy-Urs-SCD, PPy-Cl and PPy-Urs-Cl 

polymer films.  The electrochemical response of the interfering compounds was 

initially studied using a glassy carbon electrode and then the response at the 

polymer-modified electrodes was recorded.  The experiments were performed a 

minimum of six times (n = 6) and it is the average result that is presented in the 

figures, while error bars are provided for calibration curves.   

 

5.3 Results and Discussion 

The interfering compounds were selected based on their concentrations in biological 

systems, electroactivity, charge and structure in solution.  Ascorbic acid (AA), uric 

acid (UA) and creatinine (CR) exist in relatively high concentrations in biological 

systems
1
, while thiourea and hydroxyurea, although at lower concentrations, are 

structurally related to urea.  Moreover, at a pH of 7.0 the interfering compounds 

range from neutral to anionic species in solution.  As previously highlighted in 

Chapter 4, urea is important in both the medical and agricultural industries
2,3

 and the 

influence of these potential interfering species on the detection of urea is important 

in the development of a urea sensor.   
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5.3.1 Ascorbic Acid as an Interfering Species  

Ascorbic acid (AA), Figure 5.1(a), more commonly known as Vitamin C, is a major 

interfering compound in biological systems
4,5

.  AA exists at concentrations of up to 

1.0 x 10
-4

 mol dm
-3

 in the body
6,7

.  It is also electrochemically active and can be 

easily oxidised between -100 and 400 mV vs. SCE on most solid electrodes
4
.  

Moreover, the products of the AA oxidation reaction have been shown to foul the 

electrode surface
8
.   

The electrochemical response of urea and AA at a glassy carbon electrode was 

initially investigated using cyclic voltammetry.  The electrodes were cycled at 50 

mV s
-1

 in a 0.05 mol dm
-3

 phosphate buffer solution, pH 7.0, from -0.60 to 0.80 V 

vs. SCE in the absence and presence of 0.01 mol dm
-3

 urea or 1.0 x 10
-4

 mol dm
-3

 

AA.  This electrochemical window was chosen as the PPy-Urs-SCD film is stable 

when cycled to 0.80 V vs. SCE, but at higher applied potentials, repeated cycling 

leads to overoxidation of the film, Section 4.3.2.2.  Typical cyclic voltammograms, 

recorded in the phosphate buffer solution in the presence and absence of urea, are 

shown in Figure 5.3.  In the presence of urea, there is a slight increase in the 

measured current between -0.10 and 0.80 V vs. SCE, indicating some oxidation of 

the urea.  However, there is no evidence to support a significant oxidation reaction at 

the glassy carbon electrode.  The oxidation of urea has been studied at several noble 

metal electrodes and the anodic oxidation is shown to depend on the applied 

potential, the composition of the electrolyte solution, the pH, urea concentration and 

the nature and properties of the electrode surface.  Wang et al.
9
, have shown that a 

large oxidation current, extending from about 1.00 to 1.20 V vs. SCE can be 

obtained for the oxidation of urea at a glassy carbon electrode modified with amino 

groups, however the signal at an un-modified glassy carbon electrode is much lower.  

The oxidation wave was explained in terms of the oxidation of the electroactive 

carbamic acid, which is produced during the hydrolysis of urea.  The data presented 

in Figure 5.3 are in good agreement with the results presented by Wang et al.
9
 at the 

un-modified glassy carbon electrode, showing some oxidation, but no significant 

oxidation wave.   
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Figure 5.3:  Cyclic voltammograms recorded at 50 mV s
-1

 at glassy carbon electrode in        

▬ pH 7.0 phosphate buffer solution and ▬ 1.0 x 10
-2

 mol dm
-3

 urea in a pH 7.0, phosphate 

buffer solution.  

The electroactivity of AA is shown in Figure 5.4.  It is clearly evident that AA is 

oxidised readily, with a large oxidation wave observed between approximately 0.10 

and 0.80 V vs. SCE.  This is in good agreement with literature reports on the 

electrochemical oxidation of AA at noble metal electrodes
10

.  On addition of the AA 

to a 1.0 x 10
-2

 mol dm
-3

 urea-containing phosphate solution, a considerable 

difference in the voltammograms is seen.  This is shown in Figure 5.5, which 

compares the voltammograms recorded in the buffered urea-containing solution in 

the presence and absence of the AA.  Clearly, the presence of AA in the urea-

containing solution alters both the voltammetry of the AA, Figure 5.4, and the 

voltammograms recorded in the buffered urea solution.  The currents are 

considerably higher, in the combined AA and urea solution compared to the urea 

solution.  Furthermore, when compared to the voltammogram recorded for the AA 

solution, Figure 5.4, there is a considerable decrease in the AA oxidation wave.  It is 

clear that the urea inhibits the oxidation of the AA.  However, the addition of AA to 

the buffered urea solution also alters the voltammograms recorded for urea, with a 

significant increase in the current from approximately 0.10 V to 0.08 V vs. SCE, 

Figure 5.5.  Based on these measurements, it is clear that AA is a potential 

interfering compound in the electrochemical detection of urea.   
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Figure 5.4:  Cyclic voltammograms recorded by cycling the bare glassy carbon electrode in 

a pH 7.0 phosphate buffer solution in the ▬ absence and ▬ presence of 1.0 x 10
-4

 mol dm
-3

 

AA.   

 

Figure 5.5:  Cyclic voltammograms recorded by cycling the bare glassy carbon electrode in 

1.0 x 10
-2

 mol dm
-3

 urea in a pH 7.0 phosphate buffer solution in the ▬ absence and              

▬ presence of 1.0 x 10
-4

 mol dm
-3

 AA.   
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It was shown in Chapter 4, Section 4.3.7, that the PPy-Urs-SCD film had excellent 

sensitivity in the electrochemical detection of urea and this polymer film was chosen 

and used in an attempt to eliminate the interference from AA.  Because SCD is a 

large anionic species
11

, as discussed in Chapter 1, Section 1.4.2, this anionic 

character may be sufficient to repel the anionic ascorbate species
12

.  Ascorbic acid 

has a pKa value of 4.10 and, at the pH of the phosphate buffer solution, dissociation 

of AA occurs to favour the ascorbate anion, as shown in Scheme 5.1
12

.  Indeed, 

using Equation 5.1, where [AA
-
] represents the concentration of the ascorbate anion, 

the plot in Figure 5.6 was obtained, which clearly shows that at pH values of 7.0 and 

slightly lower, it is the anionic species that is present in solution.   
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Scheme 5.1: The dissociation of AA.  
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Figure 5.6:  The percentage of anions as a function of pH for the AA molecule, which exists 

as the ascorbate anion at pH 7.0.   

The PPy-Urs-SCD polymer was deposited as detailed in Chapter 4, Section 4.3.4 and 

cycled in a urea solution in the presence and absence of ascorbic acid, AA.  The urea 

concentration was varied from 1.0 x 10
-10

 to 1.0 x 10
-2

 mol dm
-3

, while a fixed 

concentration of 1.0 x 10
-4

 mol dm
-3

 AA was added to give AA/urea concentration 

ratios ranging from 1.0 x 10
6
 to 1.0 x 10

-2
.  As detailed in Section 4.3.7, the 

oxidation charge was computed.  This charge was recorded in the urea solutions and 

then compared with the charge recorded in the mixed urea and AA solution.  These 

data are summarised in Figure 5.7, while the influence of AA on the calibration 

curve at low urea concentrations is presented in Figure 5.8.  It is clear from these 

data that the interference observed when adding AA to the urea solution at the glassy 

carbon electrode is eliminated at the PPy-Urs-SCD polymer films.  The oxidation 

charges obtained from cycling the polymer in a urea solution in the absence of AA 

are similar to those obtained on cycling the polymer film in a urea solution in the 

presence of AA.  Regardless of the ratio of AA to urea, which is in the vicinity of 1.0 

x 10
6
 at the low concentrations of urea, there is no evidence of any interference from 

the added AA.   
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Figure 5.7:  Charge plotted at different urea concentrations in the ▬ absence and                  

▬ presence of 1.0 x 10
-4

 mol dm
-3

 AA at the PPy-Urs-SCD polymer films.   

 

Figure 5.8:  Calibration curve (n = 6) with the oxidation charge plotted as a function of the 

urea concentration in the ▬ absence and ▬ presence of 1.0 x 10
-4 

mol dm
-3

 AA, at the    

PPy-Urs-SCD polymer films.  

These data can be explained in terms of the negative charges of the sulphonated 

groups on the β-cyclodextrin within the PPy-Urs-SCD film.  Although the charge on 

the sulphonated groups may be balanced by an equal and opposite charge from the 

oxidised polypyrrole backbone (PPy
+
), the –SO3

-
 pendants will provide a highly 

negative local charge.  In addition, free –SO3
- 
groups are likely to exist at the PPy-
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Urs-SCD surface
13

.  It appears that the negatively charged sulphonated groups on the 

β-cyclodextrin are successful in repelling the anionic ascorbate from the surface of 

the electrode and hence, the urea can be detected without any interference from AA, 

as clearly shown in Figures 5.7 and 5.8.   

   

5.3.2 Uric Acid  

Uric acid, UA, Figure 5.1(b) exists in conjunction with urea at concentrations of up 

to 1.0 x 10
-4

 mol dm
-3

 in the body
1
.  UA is the primary end product of purine 

metabolism in the human body
14

 and abnormal levels of UA are indicators of several 

diseases including gout, hyperuricemia and Lesch-Nyan disease
15 , 16

.  Increased 

ureate levels have also been linked with diseases such as leukaemia and 

pneumonia
17

.  The existence of several tautomeric forms of UA, which are depicted 

in Scheme 5.2, has been widely researched in order to account for its physiochemical 

and biological behaviour
18

.  UA is known to be electroactive with a range of E½ 

values lying between 0.30 and 0.40 V vs. SCE on most solid electrodes and it can be 

irreversibly oxidised in aqueous solutions to produce allantoin
19,20

.  Consequently, 

UA can interfere directly with urea detection as urea is also oxidised in this region.  

In order to investigate the effect of uric acid on urea detection, cyclic 

voltammograms were recorded for urea on a bare glassy carbon electrode in the 

presence and absence of uric acid.  The voltammograms recorded were similar to the 

data shown for the AA system in Figure 5.4.  An increase in the current from about 

0.20 to 0.80 V vs. SCE was observed in the presence of UA, which can be attributed 

to the oxidation of UA.  This shows that UA is indeed a potential interferant in the 

electrochemical detection of urea.   
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Scheme 5.2: The dissociation of UA.   

In an attempt to overcome this potential interference, the PPy-Urs-SCD polymer was 

used.  The polymer film was grown and cycled in a urea solution in the presence and 

absence of uric acid.  Typical cyclic voltammograms recorded in a 1.0 x 10
-2

 mol 

dm
-3

 urea solution and in a solution containing both 1.0 x 10
-2

 mol dm
-3

 urea and 1.0 

x 10
-4

 mol dm
-3

 UA are shown in Figure 5.9.  A significant difference in the two 

voltammograms is evident, with higher currents measured in the presence of UA, 

particularly from about -0.10 to 0.80 V vs. SCE.   
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Figure 5.9:  Cyclic voltammograms recorded by cycling the PPy-Urs-SCD polymer film in 

a 1.0 x 10
-2 

mol dm
-3

 urea solution in the ▬ absence and ▬ presence of 1.0 x 10
-4

 mol dm
-3

 

uric acid.   

It is clear that the current and the charge obtained from cycling the polymer in a urea 

solution are lower than that obtained from cycling the polymer film in a urea solution 

with uric acid present.  Hence, the uric acid is indeed interfering with urea detection, 

even in the presence of the PPy-Urs-SCD polymer film.  This is a surprising result 

given that uric acid, with a pKa value of 5.4
21

, is predominantly anionic at a pH of 

7.0, as shown in Figure 5.10, where the % of anions is plotted as a function of the 

pH, using Equation 5.1.  As discussed in Section 5.3.1, with the ascorbic 

acid/ascorbate anion, it is expected that the anionic nature of the SCD
22

, incorporated 

within the PPy-Urs-SCD polymer film, would be sufficient to repel the uric 

acid/ureate anion from the electrode surface.  However, this is clearly not the case, as 

shown in Figure 5.9.   
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Figure 5.10:  The percentage anions as a function of pH for the uric acid molecule, UA, 

which exists as the ureate anion at pH 7.0.   

The oxidation charge plotted as a function of urea concentration in the absence and 

presence of a fixed concentration of UA, at 1.0 x 10
-4

 mol dm
-3

, is shown in Figure 

5.11.  Again, it is clear that higher charges are recorded in the presence of UA, 

regardless of the urea concentration, or indeed the ratio of the UA to urea.  When the 

concentration of urea is 1.0 x 10
-2

 mol dm
-3

 to give a concentration ratio of urea:UA 

of 1.00:0.01, the charge is increased from 0.40 C cm
-2

 to 0.48 C cm
-2

, giving a 20% 

increase in the measured charge.  This increase is maintained when the ratio of 

urea:UA is varied.  For example, a 22% increase in the charge is observed when the 

concentration of urea is 5.0 x 10
-7

 mol dm
-3

 to give a urea:UA  ratio of 1:10
3
.  This 

suggests that the observed increase in the charge is not connected with the 

concentration of urea, but is related to the uric acid only.  This increase in the charge 

in the presence of UA is a surprising result since most interfering compounds tend to 

foul, adhere to and block the surface of the electrode
23

.  As a result, the signal is lost 

or lowered significantly; however this is not the case as shown in Figures 5.9 and 

5.11.   
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Figure 5.11:  Charge plotted as a function of urea concentration in the ▬ absence and          

▬ presence of 1.0 x 10
-4

 mol dm
-3

 UA.  

One possible explanation to account for these observations is the diffusion of UA 

through the polymer film to the polymer-electrode interface, where oxidation of UA 

occurs.  As detailed earlier, oxidation of UA occurs at the glassy carbon substrate 

and this oxidation reaction would contribute to the measured charges.  This 

possibility was explored by using polymer films deposited to different thickness.  

For this study, PPy-Cl and PPy-Urs-Cl polymer films were chosen.  The polymer 

films were deposited to different charges, ranging from 0.01 to 0.74 C cm
-2

.  Once 

deposited, the films were cycled in the buffered 0.01 mol dm
-3 

urea solution, in the 

absence and presence of 1.0 x 10
-4

 mol dm
-3 

UA.  It was found that the thickness of 

the polymer film had a significant influence on the measured oxidation charge.  

When relatively thin PPy-Cl films were used, the charges recorded in the presence of 

UA were significantly higher, as shown in Figure 5.12.  However, when the 

thickness of the PPy-Cl films was increased, the charges recorded in the urea 

solution were similar in the presence and absence of UA, as highlighted in Figure 

5.13.   
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Figure 5.12:  Charge recorded (5
th
 cycle) for the PPy-Cl and PPy-Urs-Cl polymer films 

grown to a charge of 0.017 C cm
-2

 cycled in a 0.01 mol dm
-3

 solution of urea in the                

▬ presence and ▬ absence of 1.0 x 10
-4

 mol dm
-3

 uric acid.   

 

 

  

Figure 5.13:  Charge recorded (5
th
 cycle) for the PPy-Cl and PPy-Urs-Cl polymer films 

grown to a charge of 0.74 C cm
-2

 cycled in a 0.01 mol dm
-3

 solution of urea in the                  

▬ presence and ▬ absence of 1.0 x 10
-4

 mol dm
-3

 uric acid.   
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Interestingly, the PPy-Urs-Cl film, although grown to the same charge as the PPy-Cl 

film, does not allow the UA to reach the electrode surface as readily.  This is clearly 

evident in Figure 5.12 where the presence of UA leads to a significant increase in the 

charge recorded at the PPy-Cl, but not at the PPy-Urs-Cl films.  This may be related 

to the fibrous morphology observed for the PPy-Urs-Cl film, compared to the 

cauliflower-like morphology of the PPy-Cl film, Section 4.3.2.1.  The pores in the 

PPy-Urs-Cl polymer film are blocked by the large enzyme and this may inhibit the 

diffusion of UA throughout the polymer film.  However, the morphology of the PPy-

Urs-SCD films is very different and more porous, enabling the diffusion of UA to 

the substrate interface.   

This clearly shows that while the anionic charge provided by the SCD is important in 

eliminating interference from AA, the porosity of the polymer film is also 

significant.  Although the PPy-Urs-SCD film gives the best sensitivity and detection 

limit and eliminates any interference from AA, the PPy-Urs-Cl film can eliminate 

interference from UA.  Consequently, a combination of these two polymer films, 

with a first layer of PPy-Urs-Cl deposited to a charge of 0.017 C cm
-2

, followed by 

the deposition of PPy-Urs-SCD is the ideal sensor, with excellent sensitivity, limit of 

detection and complete elimination of any interference from AA and UA.   

 

5.3.3 Thiourea 

Thiourea (TU), Figure 5.2(a), is a planar, organosulphur compound used as a reagent 

in organic synthesis.  Thiourea is structurally related to urea, except with a sulphur 

atom present in the position of the oxygen atom on the urea compound
24

.  Thiourea 

occurs in two tautomeric forms, a thione form and a thiol form, as shown in Figure 

5.14.  In aqueous solutions, the thione form predominates; however, with the thiol 

form, significant fouling of the sensor by the thiol group is likely.  Thiourea is 

electroactive and is readily oxidised above 0.30 V vs. SCE to form formamidine 

disulphide
25,26

.  However, upon electrochemical reduction of TU, sulphide ions are 

formed
27

 which can lead to significant fouling of the electrode surface.   
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(a)  (b) 

 

 

 

Figure 5.14:  The two tautomeric forms of thiourea (TU): (a) the thione and (b) the thiol 

form.   

In order to investigate the electroactivity of TU, cyclic voltammograms were 

recorded by cycling the bare glassy carbon electrode in a buffered 1.0 x 10
-4

 mol  

dm
-3

 TU solution from -0.60 to 0.80 V vs. SCE.  The resulting voltammogram is 

presented in Figure 5.15.  Shown for comparison is the voltammogram recorded in 

the buffer solution.  It is evident that TU oxidises readily at the bare glassy carbon 

electrode as there is a significant increase in the current in the presence of TU.  The 

oxidation of TU is observed from approximately 0.20 V to 0.80 V vs. SCE, as 

highlighted in Figure 5.15.  However, there is no reduction wave observed, which is 

indicative of the formation of formamidine disulphide
25,26

.  As TU is readily oxidised 

it is a potential interferant, but unlike AA and UA, it does not exist as an anionic 

species in the pH 7.0 phosphate buffer solution.   

Again, the influence of TU on the electrochemical detection of urea was investigated 

at the PPy-Urs-SCD polymer film.  The polymer was formed and cycled in a urea 

solution in the presence and absence of 1.0 x 10
-4

 mol dm
-3

 TU.  The concentration 

of urea was varied, while the concentration of TU was fixed at 1.0 x 10
-4

 mol dm
-3

 to 

give TU/urea ratios ranging from 1.0 x 10
6
 to 1.0 x 10

-2
.  The charge was computed 

and this is shown in Figure 5.16 where the charge is plotted as a function of the urea 

concentration in the absence and presence of TU.  At the lowest urea concentration 

of 1.0 x 10
-10

 mol dm
-3

, there is no evidence of any interference, but at the higher 

urea concentrations it is clear that the presence of TU gives higher charges.  The 

charge is increased by about 6 to 7% on addition of TU to the buffered solution.  

This increase is less significant than that observed with UA, Figure 5.11.  Again, this 

could be due to the diffusion of TU throughout the porous polymer film and its 

oxidation at the substrate electrode.  However, as discussed in Section 5.3.2, this 
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diffusion can be inhibited by increasing the film thickness and reducing the film 

porosity.   

Interestingly, there is no evidence of any surface fouling due to the presence of the 

thiol group.  Furthermore, there was no loss or reduction of the charge with 

continued cycling in the presence of TU.  This is significant as sulphur-containing 

compounds, such as thiourea, are well known to foul the surface of the electrode
27

.   

 

Figure 5.15:  Cyclic voltammograms recorded by cycling glassy carbon in a pH 7.0 

phosphate buffer solution in the ▬ absence and ▬ presence of 1.0 x 10
-4

 mol dm
-3

 TU.   
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Figure 5.16:  Charge plotted as a function of the urea concentration in the ▬ absence and    

▬ presence of 1.0 x 10
-4

 mol dm
-3

 TU.  
 

 

5.3.4 Hydroxyurea  

Hydroxyurea, HU, Figure 5.2(b), also known as hydroxycarbamide, is an 

antineoplastic
28

 and chemotherapy drug that is structurally similar to the urea 

compound.  Hydroxyurea was first synthesised by Dresler and Stein in 1869
29

, from 

the reaction of hydroxylamine and hydrogen cyanate.  Hydroxyurea has found 

widespread use in the treatment of sickle cell disease
30

 and as an anticancer agent
31

.  

Hydroxyurea increases the concentration of fetal haemoglobin
32

 by increasing the 

nitric oxide levels in the treatment of sickle cell disease.  It also inhibits the 

ribonucleotide reductase enzyme by scavenging tyrosyl free radicals which depletes 

the production of deoxyribonucleotides; hence its antiretroviral properties
33

.   

Hydroxyurea has been used primarily for the treatment of myeloproliferative 

diseases, which has an inherent risk of transforming to acute myeloid leukaemia
30

.  

There has been a longstanding concern that hydroxyurea itself carries a leukaemia 

risk, but a number of studies have shown that the risk is either absent or very small.  

Nevertheless, this concern has been a barrier for its wider use in patients with sickle-

cell disease
30

.   
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In order to investigate the electroactivity of HU, cyclic voltammograms were 

obtained by cycling the bare glassy carbon electrode in a phosphate buffer solution 

in the absence and presence of 1.0 x 10
-4

 mol dm
-3

 HU from -0.60 to 0.80 V vs. SCE.  

Typical voltammograms are presented in Figure 5.17.  It is evident that HU oxidises 

readily at the bare electrode, with the oxidation of HU observed at approximately 

0.25 V vs. SCE, as highlighted in Figure 5.17.  These data are similar to that 

presented for TU in Figure 5.15, suggesting that HU is a likely interferant.   

 

Figure 5.17:  Cyclic voltammograms recorded by cycling glassy carbon in a pH 7.0 

phosphate buffer solution in the ▬ absence and ▬ presence of 1.0 x 10
-4

 mol dm
-3

 HU.   

Again, the PPy-Urs-SCD film was used in an attempt to eliminate the detection of 

hydroxyurea.  The PPy-Urs-SCD polymer was deposited and cycled in a urea 

solution in the presence and absence of hydroxyurea.  The concentration of urea was 

varied from 1.0 x 10
-10

 to 1.0 x 10
-2

 mol dm
-3

, while the concentration of HU was 

fixed at 1.0 x 10
-4

 mol dm
-3

, giving significant variations in the ratio of HU to urea.  

Representative data are shown in Figure 5.18, where the charge is plotted as a 

function of the urea concentrations in the absence and presence of HU.  Again, it is 

clearly evident that the presence of HU gives rise to an increase in the charge.  The 

relative increase in the charge is higher than that observed with the TU system.  In 

Figure 5.18, the increase in charge on addition of HU to the urea-containing solution 

is close to 20%, indicating a higher degree of interference.  On a comparison of the 

voltammograms recorded at the bare glassy carbon electrode for the TU and HU, 
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Figures 5.15 and 5.17, it is evident that higher currents are measured with the HU.  

This may be connected to the higher level of interference observed with HU, Figure 

5.18.   

 

Figure 5.18:  Charge plotted as a function of the urea concentration in the ▬ absence and    

▬ presence of 1.0 x 10
-4

 mol dm
-3

 HU.  

 

5.3.5 Creatinine  

Creatinine, (CR), Figure 5.1(c), is a spontaneously formed cyclic derivative of 

creatine, and is a break-down product of creatine phosphate in muscle that is 

produced at a fairly constant rate within the body and released into the blood
34

.  

Several tautomers of creatinine exist and these are shown in Figure 5.19.  The 

normal serum physiological concentration range of creatinine and creatine is 

approximately 35 x 10
-6

 to 140 x 10
-6

 mol dm
-3

, while pathological values may rise 

to 1.0 x 10
-3

 mol dm
-3

 or higher 
35,36

.  Abnormal creatinine levels are indicative of 

renal, thyroid and muscle dysfunctions
37

.  Creatinine is filtered out of the blood via 

the kidneys, with little to no reabsorption.  In the case of renal deficiency or muscle 

disorder, the creatinine blood levels rise significantly
36

, whereas low levels of 

creatinine are indicative of muscular dystrophy and myasthenia
38

.  Creatinine levels 

in blood and urine may be used to calculate the creatinine clearance (CRCl), which 

reflects the glomerular filtration rate (the amount of fluid filtered per unit time), a 

measure of renal function
39

.   
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A more complete estimation of renal function can be obtained when the blood 

plasma concentration of creatinine is compared to the urea concentration.  The ratio 

of blood urea nitrogen to creatinine (the BUN-to-creatinine ratio) can indicate 

problems beyond those intrinsic to the kidney
40

.  High levels of urea concentration 

compared to creatinine concentrations may indicate a pre-renal problem, such as 

volume depletion.  It is important to note that diuretics, such as coffee and tea, cause 

more frequent urination, thus decreasing creatinine levels.  In addition, greater 

muscle content
41

 gives rise to higher concentrations of creatinine, while a decrease in 

muscle mass will cause a lower reading of creatinine
42

.   

Hence, like urea, creatinine is an important biological compound in the area of renal 

deficiency
43

.  In contrast to urea, however, the concentration of creatinine in the 

body fluids is not influenced by protein intake and therefore, the creatinine 

concentration is a more reliable indicator of renal function
44

.  Creatinine is generally 

present at lower concentrations than urea in biological systems.  Creatinine is found 

at concentrations of up to 1.0 x 10
-4

 mol dm
-3 

in the body
1
, whereas urea levels vary 

from 1.0 x 10
-3

 to 1.0 x 10
-2

 mol dm
-3

.  However, it is well known that creatinine can 

interfere with the detection of urea
45

.   
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Figure 5.19:  The structures of the contributing tautomers of creatinine.  
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The electroactivity of CR was investigated by cycling the bare glassy carbon 

electrode in 1.0 x 10
-4

 mol dm
-3

 CR in a phosphate buffer solution from -0.60 to 0.80 

V vs. SCE, as shown in Figure 5.20.  It is evident from these data that CR is oxidised 

to some extent at the bare glassy carbon electrode.  Although there is no significant 

oxidation wave, there is a slight increase in the oxidation current in the presence of 

CR over the entire potential window, as highlighted in Figure 5.20.  Again, this is in 

the region where the oxidation of urea occurs.   

 

Figure 5.20:  Cyclic voltammograms recorded at glassy carbon in a pH 7.0, phosphate 

buffer solution in the ▬ absence and ▬ presence of 1.0 x 10
-4

 mol dm
-3

 CR.   

The data recorded for the PPy-Urs-SCD polymer film are shown in Figure 5.21.  The 

PPy-Urs-SCD film was cycled in a urea solution in the presence of 1.0 x 10
-4

 mol 

dm
-3

 CR and the charge was computed and compared to the values recorded in the 

absence of CR.  Again, a significant increase in the charge, close to 30%, is observed 

when CR is added to the urea-containing solution, indicating considerable 

interference.  As detailed earlier, this may be related to the diffusion of CR to the 

substrate and oxidation at the substrate; however, as highlighted in Figure 5.20, the 

currents arising from the oxidation of CR at the glassy carbon electrode are relatively 

low.   
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Figure 5.21:  Charge plotted as a function of urea concentration in the ▬ absence and          

▬ presence of 1.0 x 10
-4

 mol dm
-3

 CR.   

 

5.3.6 Ammonium Chloride  

Ammonium chloride, NH4Cl, is a white, crystalline, inorganic compound; however, 

there are no reports in the literature to suggest that NH4Cl is electroactive or 

oxidised.  However, NH4
+
 is produced during the hydrolysis of urea and its influence 

on the electrochemical detection of urea is important in the development of a urea 

sensor.  As expected, there is no evidence for the oxidation of NH4Cl at the glassy 

carbon electrode, as shown in Figure 5.22.  The voltammograms recorded in the 

phosphate buffer solution are identical to the voltammograms recorded in a 1.0 x 10
-4

 

mol dm
-3

 NH4Cl buffered solution.   
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Figure 5.22:  Cyclic voltammograms obtained by cycling the bare GC electrode in a pH 7.0, 

phosphate buffer solution in the ▬ absence and ▬ presence of 1.0 x 10
-4

 mol dm
-3

 NH4Cl.   

The PPy-Urs-SCD polymer film was cycled in a urea solution in the presence and 

absence of NH4Cl and the charges were recorded and plotted, as shown in Figure 

5.23.  Clearly, there is no evidence of any interference from the NH4Cl.  

Furthermore, there was no evidence of any surface fouling in the presence of NH4Cl.  

These data clearly show that urea can be detected with the PPy-Urs-SCD film in the 

presence of NH4
+
 without any interference or surface fouling.  This proves that the 

PPy-Urs-SCD polymer film not only enhances detection of urea compared to the 

bare glassy carbon electrode, as discussed in Chapter 4, but indeed, it also inhibits or 

eliminates fouling of the electrode by common biological salts, such as NH4Cl.   
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Figure 5.23:  Charge plotted as a function of urea concentration in the ▬ absence and          

▬ presence of 1.0 x 10
-4

 mol dm
-3

 NH4Cl.   

 

5.4 Conclusions 

The PPy-Urs-SCD polymer film has proven to be successful in repelling the 

common interfering compound, ascorbic acid (AA), during the detection of urea, and 

is capable of detecting only urea in the presence of relatively high concentrations of 

AA, up to 1.0 x 10
-4

 mol dm
-3

.  It also successfully detects urea in the presence of 1.0 

x 10
-4

 mol dm
-3

 NH4Cl, without any interference or surface fouling.  However, in the 

case of the other interfering compounds, an increase in the charge is observed in the 

presence of the interfering compounds.  This is somewhat unusual as most 

interfering compounds tend to foul and block the surface of the electrode
23

 and thus 

diminish the electrochemical signal from the target analyte.   

This increase in charge was explained in terms of diffusion of the interfering species 

through the porous polymer film to the electrode surface and oxidation of the species 

at this surface.  The interfering species are electroactive at the bare glassy carbon 

electrode and are relatively small, facilitating diffusion.  This can be accounted for 

by the fact that the urease in the PPy-Urs-SCD film is a large, fibrous enzyme, while, 

the SCD is also large, to give a porous polymer network.  Indeed, the SEM 

micrographs recorded for the PPy-Urs-SCD film show that this film is more porous 

than the PPy-SCD polymer film or, indeed, the PPy-Urs-Cl and PPy-Cl films, 
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Chapter 4.  Interestingly, the interference from uric acid can be eliminated by 

increasing the thickness of the polymer film, clearly showing that the polymer 

thickness and porosity are important in the elimination of interfering species.   
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“I may not have gone where I intended to go, but I think I have 

ended up where I needed to be.” - Douglas Adams 

http://www.goodreads.com/author/show/4.Douglas_Adams
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6.1 Introduction  

It is evident from Chapter 4 that the PPy-Urs-SCD polymer gives the best sensitivity 

towards the electrochemical sensing of urea, with detection in the 1.0 x 10
-10

 mol   

dm
-3

 region, whereas the PPy-Urs-Cl polymer film has a limit of detection of 1.0 x 

10
-5

 mol dm
-3

.  Obviously, the presence of the urease enzyme enhances the detection 

of urea.  However, the SCD has an equally important role to play in enhancing the 

detection of urea.   

Cyclodextrins are well known to act as hosts for a variety of guest molecules
1
, as 

described in Chapter 1, Section 1.4.3. These guest molecules can be organic, 

inorganic or ionic; once they enter the cavity they can form non-covalent host-guest 

inclusion complexes
2 , 3

. This inclusion complexation depends on many factors 

including, but not limited to, the charge on the host and guest molecules and the size 

of the internal cavity of the host molecule. Upon the formation of host-guest 

inclusion complexes, the electronic and redox properties of both the host and the 

guest molecules may change. This allows the study of the host-guest interactions 

both spectroscopically and electrochemically
4,5,6

.   

This chapter is primarily concerned with an investigation into the formation of 

inclusion complexes between urea and the sulphonated-β-cyclodextrin (SCD).  

Additionally, an investigation into the formation of inclusion complexes between 

urea and the sulphonated-α-cyclodextrin, α-SCD, was carried out as a comparison. 

Finally, the inclusion complexation between the sulphonated-β-cyclodextrin and 

each of the interfering compounds, that were described in Chapter 5, was studied.   

The complexation was investigated using cyclic voltammetry
7

. The binding 

stoichiometry was determined by a continuous variation method or Job’s method
8
 

using voltammetry and this was also employed to evaluate the stability constant of 

the urea-SCD complex.   
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6.2 Experimental 

The instrumentation and software employed for the experiments detailed in this 

chapter and their analyses are described in Chapter 2, Section 2.3. The chemicals 

used throughout this study were purchased from Sigma-Aldrich or its subsidiary 

company Fluka.  All the solutions were made from a stock solution of 0.30 mol dm
-3

 

NaCl in a 0.05 mol dm
-3

 phosphate buffer, pH 7.0, which was initially prepared 

using distilled water.  The NaCl was added to the 0.05 mol dm
-3

 phosphate buffer in 

order to raise the conductivity of the solution, as the SCD has a very high 

conductivity of 21.40 mS, at room temperature, and an ionic strength of 2.25 mol 

dm
-3 

for a 0.05 mol dm
-3

 concentration.  All the solutions were prepared freshly 

before each experiment.  All experiments were performed at room temperature on a 

freshly polished glassy carbon (GC) electrode with a surface area of 0.125 cm
2
.  

Cyclic voltammetry was chosen as the analytical technique to probe the 

complexation.  The voltammograms were recorded at different scan rates, ranging 

from 300 to 5 mV s
-1

 and in solutions with increasing concentrations of sulphonated-

β-cyclodextrin, SCD.  Jobs plots were constructed using the voltammetry approach 

by recording the current measured at a fixed potential in solutions with different 

mole fractions of the sulphonated-β-cyclodextrin, SCD, and the guest molecule.  

Each experiment was performed a minimum of six times (n = 6) and the average was 

obtained.  It is this average that is presented and discussed in Section 6.3.   

 

6.3 Results and Discussion 

The compounds investigated in this chapter were described in detail in Chapter 5 and 

include urea, ascorbic acid (AA), uric acid (UA), hydroxyurea (HU), thiourea (TU), 

and creatinine (CR).  Results are presented and discussed on the possible interactions 

between each of these species, as guests, and the sulphonated-β-cyclodextrin, SCD, 

as the host.  The data were recorded at a pH of 7.0, and at this pH the AA and UA 

exist predominantly as the anionic species.  Additionally, an investigation into the 

formation of inclusion complexes between urea and the sulphonated-α-cyclodextrin, 

α-SCD, was carried out to determine if the size of the cavity influenced the 

formation of the inclusion complex.   
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6.3.1 Urea  

6.3.1.1 Urea with SCD  

Cyclic voltammetry is a technique that is commonly employed to investigate the 

interactions between a host and guest molecule, as long as either the host or guest is 

electroactive
9,10

.  The electroactivity of urea is described in detail in Chapter 5, 

Section 5.3.1, where there is evidence for the oxidation of urea at the glassy carbon 

electrode
11

.  This is shown again in Figure 6.1, where the cyclic voltammograms 

were recorded in the phosphate buffer solution in the absence and presence of 1.0 x 

10
-2

 mol dm
-3

 urea.  It is clearly evident that the oxidation of urea occurs over a very 

broad potential range and no significant oxidation or reduction peaks are observed.  

Although the peak oxidation or peak reduction currents cannot be plotted, the 

currents at a fixed potential may be recorded for the anodic and cathodic processes.  

The currents were obtained for both the anodic and cathodic reactions of 5.0 x 10
-4

 

mol dm
-3

 urea in a pH 7.0 NaCl-phosphate buffer solution, at 0.30 V vs. SCE and, as 

shown in Figure 6.2, the currents are directly proportional to the square root of the 

scan rate.   

 

 

 

 

 

 

 

 

 

Figure 6.1:  Cyclic voltammograms obtained by cycling a bare glassy carbon electrode in    

▬ pH 7.0 phosphate buffer solution and ▬ 1.0 x 10
-2

 mol dm
-3

 urea made in a pH 7.0 

phosphate buffer solution.   
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Figure 6.2:  Plot of the currents recorded at 0.30 V vs. SCE as a function of the square root 

of the scan rate on a GC disc electrode in a NaCl-phosphate buffer solution, pH 7.0, for     

5.0 x 10
-4

 mol dm
-3

 urea.   

Very good linearity was achieved and R
2
 values of 0.970 and 0.993 were obtained 

for the anodic and cathodic currents, respectively.  Figure 6.2 shows that the reaction 

is diffusion controlled.  This is significant as it has been reported in the literature that 

voltammetric methods, such as cyclic voltammetry and rotating disc voltammetry, 

are only suitable in the analysis of inclusion complexes if the guest is electroactive 

and under diffusion control
12

.  Consequently, this electrochemical approach is ideal 

for probing the complexation between urea and the SCD
13

.  Moreover, as the SCD is 

not electroactive, only the electrochemistry of the urea will be observed.   

The stoichiometry of the urea and the SCD complex was investigated using the Job’s 

plot or continuous variation method
14,15,16

.  To carry this out, 0.01 mol dm
-3

 stock 

solutions of urea and SCD were made up in the NaCl-phosphate buffer and mixed 

together in different ratios in order to keep the total concentration constant while 

varying the mole fractions of urea from 0.0 to 1.0 in increments of 0.1.  The volumes 

of each stock solution and mole fractions of urea employed for the Job’s method are 

given in Table 6.1.  In Figure 6.3 the cyclic voltammograms recorded in these 

solutions are presented.  It can be seen that the currents increase with increasing 

mole fractions of urea.  For example, the current recorded at a fixed potential of 0.30 

V vs. SCE for the solution with a 0.10 mole fraction of urea is 2.96 x 10
-5

 A cm
-2

, 

whereas this is increased to 3.42 x 10
-5

 A cm
-2

 at a mole fraction of 1.0.   

-0.0007

-0.0006

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.00 0.10 0.20 0.30 0.40 0.50 0.60

 C
u

rr
e

n
t,

 I 
(A

 c
m

-2
) 

Scan Rate, v½ ((V s-1)½) 



Complexation studies                                                                                                              Chapter 6 
 

219 
 

Table 6.1:  Volumes of the SCD and urea stock solutions and mole fractions of urea used 

for the Job’s plot measurements, where the total volume is 10.0  mL.   

Solution number Volume of SCD 

(mL) 

Volume of urea 

(mL) 

Mole fraction of 

urea 

1 10.0 0.0 0.0 

2 9.0 1.0 0.1 

3 8.0 2.0 0.2 

4 7.0 3.0 0.3 

5 6.0 4.0 0.4 

6 5.0 5.0 0.5 

7 4.0 6.0 0.6 

8 3.0 7.0 0.7 

9 2.0 8.0 0.8 

10 1.0 9.0 0.9 

11 0.0 10.0 1.0 

 

 

 

 

 

 

 

 

 

 

Figure 6.3:  Cyclic voltammograms recorded at GC in the presence of urea and SCD in a 

NaCl-phosphate buffer solution, pH 7.0, for mole fractions of urea from 0.1 to 1.0 in 

increments of 0.1.  Currents increase with increasing mole fraction.   



Complexation studies                                                                                                              Chapter 6 
 

220 
 

To generate the Job’s plot curve from the cyclic voltammograms, the currents 

recorded at a fixed potential were monitored i values, as 

shown in Equation 6.1
7
.   

 Δi = i0 – ix 6.1  

 

Here i0 and ix are the currents obtained at 0.30 V vs. SCE for urea in the absence and 

presence of SCD, respectively.  These Δi values were then multiplied by the 

corresponding mole fraction (Δi*mole fraction) and the product was plotted as a 

function of the mole fraction of urea.  Figure 6.4 shows the resulting Job’s plot 

generated from the data presented in Figure 6.3.  The Job’s plot has the characteristic 

shape and reaches a maximum value at a mole fraction of 0.50.  This provides 

evidence for the formation of an inclusion complex between the urea and the SCD 

with a 1:1 stoichiometry
17

.   

 

 

Figure 6.4:  Job’s plot curve where the change in the currents recorded at 0.30 V vs. SCE 

are plotted as a function of the mole fraction of urea in a urea and SCD solution in a NaCl-

phosphate buffer, at a pH of 7.0.   
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In order to further investigate the formation of an inclusion complex between urea 

and the SCD, cyclic voltammograms were recorded at varying scan rates for 5.0 x 

10
-4

 mol dm
-3

 urea in the absence and presence of 2.0 x 10
-2

 mol dm
-3

 SCD in the 

buffer solution.  The currents recorded at 0.30 V vs. SCE were plotted as a function 

of the square root of the scan rate, and the resulting plots are presented in Figure 6.5.  

Again, these plots show very good linearity with correlation coefficients of 0.988 

and 0.970 for urea in the absence and presence of SCD, respectively, for the anodic 

currents.  The diffusion coefficients were evaluated from the slopes of these plots 

using the Randles-Sevcik equation, Equation 6.2.   

   6.2  

 

Here, k has a value of 2.69 x 10
5
, I represents the current density recorded at a fixed 

potential of 0.30 V vs. SCE, c is the concentration of urea in mol cm
-3

 and v is the 

scan rate in V s
-1

. It is clear from this equation that I is directly proportional to both 

the bulk concentration, c, of the electroactive species and the square root of the scan 

rate, .   

 

 

Figure 6.5:  Plot of the current, I, recorded at 0.30 V vs. SCE as a function of v
1/2

 on a GC 

disc electrode in a NaCl-phosphate buffer solution, pH 7.0, for 5.0 x 10
-4

 mol dm
-3

 urea in 

the ▬ absence and ▬ presence of 2.0 x 10
-2

 mol dm
-3

 SCD.   
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From the linear relationships observed in Figure 6.5, it can be seen that the slopes of 

the linear plots are very different in the presence and absence of the SCD.  Although 

the anionic cyclodextrin may give rise to an increase in the viscosity of the solution, 

according to the literature, no significant change in the cyclodextrin viscosity is 

detected for concentrations up to 1.0 x 10
-2

 mol dm
-3

 SCD
18,19

.  Therefore, these data 

are consistent with a decrease in the diffusion coefficient of urea in the presence of 

the SCD.   This decrease can be attributed to the formation of an inclusion complex 

between urea and the SCD.  The sulphonated cyclodextrin is very large and bulky 

compared to urea and this will influence the diffusion of urea when urea is confined 

within the cavity of the cyclodextrin.  Indeed, it has been clearly shown that the 

diffusion coefficient of a guest molecule is reduced when included inside the cavity 

of a cyclodextrin
18

.   

The diffusion coefficients of urea were calculated for the oxidation of urea using an 

n value of 2
20

 in the absence and presence of SCD using the Randles-Sevcik 

equation, Equation 6.2.  These data are shown in Table 6.2, and are in reasonably 

good agreement with the values of 3.70 to 8.30 x 10
-6

 cm
2
 s

-1
 reported in the 

literature
21,22,23

.   

 

Table 6.2:  The diffusion coefficients obtained for the oxidation of urea in the absence and 

presence of SCD using the Randles-Sevcik equation.   

 Slope (A cm
-2

 V
-1/2

s
1/2

) Diffusion coefficient (cm
2
 s

-1
) 

Urea 6.27 x 10
-4

 2.72 x 10
-6

 

Urea + SCD 3.02 x 10
-4

 6.30 x 10
-7

 

 

Further evidence to support the formation of an inclusion complex was obtained by 

adding an excess concentration of the SCD to the urea-containing solution. Figure 

6.6 shows the cyclic voltammograms recorded for 1.0 x 10
-4

 mol dm
-3

 urea in the 

presence of increasing concentrations of SCD, up to a large excess of 2.0 x 10
-2

 mol 

dm
-3

.  There is a considerable reduction in the current with increasing concentrations 

of the SCD, and this effect is more clearly shown in Figure 6.7. These data indicate 

that the urea is more difficult to oxidise in the presence of the SCD, and again this 
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points to the formation of an inclusion complex.  In particular, the significant 

decrease in the recorded currents is consistent with the change in the diffusion 

coefficient of urea, where a lower diffusion coefficient is obtained when a guest in 

included within the host cavity
18,24

.   

 

Figure 6.6: Cyclic voltammograms recorded for 1.0 x 10
-4

 mol dm
-3

 urea in the ▬ absence 

and presence of increasing concentrations of SCD:  ▬ 1.0 x 10
-4

, ▬ 5.0 x 10
-4

, ▬ 1.0 x 10
-3

, 

▬ 5.0 x 10
-3

, ▬ 1.0 x 10
-2

 and ▬ 2.0 x 10
-2

 mol dm
-3

.   

The current recorded at a fixed potential of 0.30 V vs. SCE is plotted as a function of 

the SCD concentration in Figure 6.7.  Again, there is a significant decay in the 

current as the concentration of the SCD is initially increased.  Then the current 

reaches a near constant value when a large excess of the SCD is added to the 

solution.  A similar trend was observed for the current recorded at potentials ranging 

from -0.25 to 0.80 V vs. SCE.  Again this is consistent with the formation of an 

inclusion complex and indicates that the urea is included within the cavity when an 

excess of the SCD is present in the solution.   
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Figure 6.7:  Oxidation current for urea, recorded at 0.30 V vs. SCE, as a function of the 

SCD concentration.   

The Kf value for the inclusion complex was calculated from the cyclic voltammetry 

data using Equation 6.3.   

   6.3  

 

Here, io represents the current obtained in the absence of the SCD, i represents the 

currents recorded in the presence of the SCD, [SCD] is the concentration of the SCD, 

and Kf corresponds to the stability constant for the inclusion complex.  A linear plot, 

with an R
2
 value of 0.986, was obtained when the inverse of the SCD concentration 

was plotted as a function of 1/(1-i/io), as shown in Figure 6.8.  This linear 

relationship not only confirms the existence of a 1:1 inclusion complex but can also 

be used to calculate the stability constant
8,25

.  Accordingly, the Kf value for the 

inclusion complex was calculated as 2745.27  299.56 mol
-1 

dm
3
. This is quite high 

compared to stability constants ranging from 250 to 350 as found in the literature for 

inclusion complexes formed between β-cyclodextrins and other guest molecules
5
.   

It is clear from the data presented in Figures 6.4, 6.5, 6.6, 6.7 and 6.8 and the 

diffusion coefficients provided in Table 6.2 that an inclusion complex is indeed 

formed between the urea and the SCD.   
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Figure 6.8:  Plot of 1/[SCD] as a function of 1/(1-i/i0), for the evaluation of the stability 

constant, Kf, for urea in a NaCl-phosphate buffer solution at pH 7.0.   

 

6.3.1.2 Urea with α-SCD 

It is clear from Section 6.3.1.1 that an inclusion complex is indeed formed between 

urea and the sulphonated-β-cyclodextrin, SCD.  In order to investigate the effects of 

cavity size on the formation of this inclusion complex, the sulphonated-α-

cyclodextrin was used instead of the sulphonated-β-cyclodextrin as this has a much 

smaller diameter
26,27

.  Cyclic voltammograms were obtained for 1.0 x 10
-4

 mol dm
-3

 

urea in the absence and presence of increasing concentrations of α-SCD ranging 

from 1.0 x 10
-4

 to 2.0 x 10
-2

 mol dm
-3

.  The resulting cyclic voltammograms are 

given in Figure 6.9 and a plot of the oxidation current, recorded at a fixed potential 

of 0.30 vs. SCE, plotted as a function of the α-SCD concentration is presented in 

Figure 6.10.  It is clearly evident from Figures 6.9 and 6.10 that the increasing α-

SCD concentrations do not have a significant effect on the oxidation current 

recorded at a fixed potential for urea.  This is very different to the corresponding data 

recorded with the sulphonated-β-cyclodextrin, SCD, Figures 6.6 and 6.7.  These data 

presented for the α-SCD indicate little or no interaction between the α-SCD and the 

urea
28,29

.  Indeed, the measured current increases slightly as the concentration of the 

α-SCD is increased.  In order to verify this further, a Job’s plot analysis was carried 

out with increasing mole fractions of urea in α-SCD.  The characteristic curve, which 
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is evident in Figure 6.4, was not obtained.  Instead, there was no obvious relationship 

between the i and the mole fractions of urea.  This analysis, although not shown 

here, provides further evidence that an inclusion complex is not formed between urea 

and the smaller α-SCD.   

 

 

 

 

 

 

 

 

Figure 6.9:  Cyclic voltammograms recorded for 1.0 x 10
-4

 mol dm
-3

 urea in the ▬ absence 

and presence of increasing concentrations of α-SCD: ▬ 1.0 x 10
-4

, ▬ 1.0 x 10
-3

,                   

▬ 1.0 x 10
-2

 and ▬ 2.0 x 10
-2

 mol dm
-3

.   

 

 

Figure 6.10:  Oxidation current recorded for urea, at 0.30 V vs. SCE, in the presence of 

increasing concentrations of α-SCD.   
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The diameter of urea was calculated in order to investigate if it would structurally be 

able to fit inside the cavity of the α-SCD, as the α-CD has a cavity diameter of only 

4.70 Å compared to 6.00 Å for the β-CD
25,30

.  The diameter was calculated using 

density functional theory (DFT), which is a quantum mechanical calculation.  This 

considers the electron density at a point and thus optimises the geometry from which 

the diameter can be calculated.  An illustration of the geometry of urea is shown in 

Figure 6.11
31

.  The diameter between the two furthest points on the urea molecule 

was calculated as 4.03 Å.  This is illustrated in Figure 6.11.  Theoretically, as the 

diameter of the urea is smaller than that recorded for the cavity of α-CD, the urea 

should fit inside the cavity of the α-SCD.   

However, the diameter of the urea is quite close to the diameter of the cavity of the 

α-SCD.  In addition, this diameter is recorded for the neutral α-CD so there is the 

possibility that the sulphonated groups on the rim of the α-SCD are orientated in 

such a way that the diameter of the α-SCD is smaller than 4.70 Å.  As a result, the 

urea molecule may not be able to fit inside the cavity of the α-SCD.  This seems to 

be a reasonable explanation for the lack of any inclusion complex between urea and 

the α-SCD.    

 

Figure 6.11:  Illustration of the urea molecule and the intramolecular distance between its 

two furthest points.   
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6.3.2 Ascorbic Acid 

The same analysis was applied using ascorbic acid (AA) as the potential guest 

molecule.  Cyclic voltammograms were recorded for a 1.0 x 10
-4

 mol dm
-3

 ascorbic 

acid solution in the absence and presence of increasing concentrations of SCD, 

ranging from 1.0 x 10
-4

 to 2.0 x 10
-2

 mol dm
-3

.  Again, the NaCl-phosphate buffer 

solution was employed and under these conditions the AA exists as the anionic 

species, as shown in Section 5.3.1, Chapter 5.  The current was recorded at 0.30 V 

vs. SCE and this current is plotted as a function of the SCD concentration in Figure 

6.12.   

 

Figure 6.12 Oxidation current for AA, recorded at 0.30 V vs. SCE, as a function of the SCD 

concentration.  

It is evident from Figure 6.12 that the increasing SCD concentration has little or no 

effect on the currents obtained for ascorbic acid at a fixed potential of 0.30 V vs. 

SCE.  This indicates that there is no complexation occurring between the AA and 

SCD.   

This is not surprising as ascorbic acid is anionic at the pH of this experiment, pH 7.0 

and, as such, it should repel the highly anionic SCD because of the presence of the 

negatively charged sulphonated groups.  This is in good agreement with Harley
32

, 

who found that no inclusion complex was formed between AA and the SCD.  To the 

best of our knowledge, there are no further reports on the formation of an inclusion 

complex between AA and SCD.  However, there have been reports of an inclusion 
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complex between AA and the neutral-β-cyclodextrin, β-CD. For example, 

Manzanares et al.
33

 found that there was an inclusion complex formed between the 

β-CD and both the neutral and negatively charged AA, with the anionic AA having 

less affinity for the β-CD.  However, this is in contrast to the findings of Terekhova 

et al.
34

, who observed no inclusion complex between the β-CD and AA, despite the 

fact that the interaction of β-CD is favourable from an enthalpy point of view
35

.   

 

6.3.3 Uric Acid 

A similar analysis was carried out with uric acid (UA) as the potential guest 

molecule.  Again, cyclic voltammograms were recorded in solutions containing     

1.0 x 10
-4

 mol dm
-3

 uric acid and increasing concentrations of SCD, ranging from  

1.0 x 10
-4

 to 2.0 x 10
-2

 mol dm
-3

.  The resulting plot of the oxidation current, 

recorded at a fixed potential of 0.30 V vs. SCE, plotted as a function of the SCD 

concentration is presented in Figure 6.13.   

 

 

Figure 6.13:  Oxidation current for UA, recorded at 0.30 V vs. SCE, as a function of the 

concentration of SCD.   

 

0.0450

0.0455

0.0460

0.0465

0.0470

0.0475

0.0480

0.0485

0.0490

0.000 0.005 0.010 0.015 0.020

C
u

rr
e

n
t,

 I 
(m

A
 c

m
-2

) 

SCD concentration (mol dm-3) 



Complexation studies                                                                                                              Chapter 6 
 

230 
 

It is clear from Figure 6.13 that the increasing SCD concentrations have little effect 

on the measured currents for uric acid.  This is consistent with the ascorbic acid 

system.  At the pH of the experiment, the uric acid is essentially anionic (almost 100 

% anionic at a pH of 7.0) as shown in Section 5.3.2, Chapter 5 and it will be repelled 

from the anionic SCD.  A Job’s plot was carried out with increasing mole fractions 

of uric acid in the presence of the SCD in order to verify that no inclusion complex is 

formed. As expected, the characteristic curve, indicating the formation of an 

inclusion complex, was not obtained.  Although the data are not shown here, this 

study provides additional evidence that an inclusion complex between uric acid and 

the SCD is not formed.   

To the best of our knowledge, there have been no reports on the formation of an 

inclusion complex between uric acid and SCD.  However, there are reports in the 

literature which show the formation of inclusion complexes between uric acid and 

the neutral-β-cyclodextrin, β-CD
36,37,38

.  Ramirez-Berriozabal et al.
36 

found that the 

selective detection of uric acid was improved by the formation of an inclusion 

complex between uric acid and β-CD, which is in agreement with Wu and co-

workers
38

 who found that a 250-fold excess of ascorbic acid did not interfere with 

the determination of uric acid.   

 

6.3.4 Hydroxyurea 

Similar experiments were carried out with hydroxyurea as a potential guest 

molecule.  A 1.0 x 10
-4

 mol dm
-3

 concentration of hydroxyurea was prepared in the 

NaCl-phosphate buffer solution and cyclic voltammograms were recorded in the 

absence and presence of SCD.  The SCD concentration was varied from 1.0 x 10
-4

 to 

2.0 x 10
-2

 mol dm
-3

 to give solutions with a large excess of the SCD.  The current 

measured at a fixed potential of 0.30 V vs. SCE was then plotted as a function of the 

SCD concentration and the resulting plot is given in Figure 6.14.   
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Figure 6.14:  Oxidation current for HU, recorded at 0.30 V vs. SCE, plotted as a function of 

the SCD concentration.   

Again, it is clearly evident from Figure 6.14 that the currents are essentially 

independent of the SCD concentration.  This is very different to the data presented in 

Figure 6.7 for the urea system, and provides direct evidence that an inclusion 

complex is not formed between hydroxyurea and the SCD.  To the best of our 

knowledge, there are no literature reports that propose the formation of an inclusion 

complex between hydroxyurea and cyclodextrins.  However, cyclodextrins have 

previously been applied as sensor ionophores for potentiometric ion-selective 

electrodes for the determination of hydroxyurea
39

.   

 

6.3.5 Thiourea 

Thiourea was also considered as a potential guest molecule.  Again, cyclic 

voltammograms of 1.0 x 10
-4

 mol dm
-3

 thiourea in the absence and presence of 

increasing concentrations of SCD were obtained.  The resulting plot of the oxidation 

current recorded at a fixed potential of 0.30 V vs. SCE as a function of the increasing 

SCD concentration is given in Figure 6.15.   
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Figure 6.15:  Oxidation current for TU recorded at 0.30 V vs. SCE as a function of the SCD 

concentration.   

As evident from Figure 6.15, the currents have little or no relationship with the SCD 

concentration.  There is an initial drop in the current, but then with increasing 

concentrations of the SCD the current increases, indicating higher currents when the 

SCD concentration is in excess.  Again, there is no evidence to support the formation 

of an inclusion complex between thiourea and the SCD.  Indeed, the Job’s plot 

analysis confirmed that an inclusion complex was not formed.   

There are no reports in the literature on the formation of inclusion complexes 

between thiourea and SCD, or indeed between thiourea and the neutral β-

cyclodextrin.  However, an inclusion complex has been reported between sym-

diphenyl-thiourea and neutral β-CD, where the phenyl groups form a 2:1 inclusion 

complex within the β-CD cavity
40

.  Additionally, β-CD has been used as a catalyst 

for the asymmetric Michael addition of thiourea and other thiol groups to 

chalcones
41

.   

 

6.3.6 Creatinine 

Finally, the potential interactions between creatinine and the SCD were studied.  

Similar experiments were carried out with a 1.0 x 10
-4

 mol dm
-3

 solution of 

creatinine and increasing concentrations of SCD, ranging from 1.0 x 10
-4

 to 2.0 x   
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10
-2

 mol dm
-3

.  Cyclic voltammograms were recorded and the resulting plot of the 

oxidation current recorded at 0.30 V vs. SCE as a function of the increasing SCD 

concentration is given in Figure 6.16.  Again, there is no significant change in the 

current with the increasing SCD concentrations.  Hence, it can be concluded that an 

inclusion complex is not formed between the SCD and the creatinine molecule.   

There has been some evidence in the literature to support a weak binding between 

creatinine and β-cyclodextrins.  This is thought to arise via non-covalent interactions 

between the amide hydrogen of the creatinine molecule and the glucopyranose 

oxygen atom in the β-cyclodextrin
42

.  Additionally, β-cyclodextrins have been used 

for the specific binding of creatinine over creatine as shown by Tsai and Syu
43

 and, 

as with the hydroxyurea, they have been used as ionophores for the detection of 

creatinine
44

.  However, none of these studies show direct evidence to support the 

formation of an inclusion complex between creatinine and the cyclodextrin and, to 

the best of our knowledge, there is no evidence of complexation between the 

sulphonated-β-cyclodextrin, SCD, and these molecules.   

 

 

Figure 6.16:  Oxidation current for CR, recorded at 0.30 V vs. SCE, as a function of the 

SCD concentration.   
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6.4 Conclusions 

It has been clearly shown that the sulphonated-β-cyclodextrin, SCD, forms a 1:1 

inclusion complex with urea.  However, the sulphonated-α-cyclodextrin does not 

form inclusion complexes with urea.  This indicates that the diameter of the 

cyclodextrin cavity is important in determining what guest molecules can interact 

with the cyclodextrin to form inclusion complexes.  In addition, an investigation into 

the formation of inclusion complexes between the sulphonated-β-cyclodextrin and 

the interfering compounds was carried out.  Job’s plot analyses was done for 

increasing mole fractions of each of the interfering compounds in the presence of 

SCD; however, none of the interfering compounds appear to form inclusion 

complexes with the SCD.   
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“That's what learning is. You suddenly understand something you 

understood all your life, but in a new way.” - Doris Lessing 
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7.1 General Conclusions  

The objective of this thesis was to develop a polypyrrole based sensor for the 

detection of urea.  Although the pyrrole monomer is a known toxin, the 

corresponding polymer form, polypyrrole (PPy), is a highly biologically compatible 

polymer matrix
1
, which has led to its use in a broad number of biomedical fields 

including biosensors
2,3

, tissue engineering
4,5 

and implantable biodevices
6
.  Another 

interesting and prominent property of PPy is its ability to switch its redox behaviour, 

which has resulted in the design of ion-selective electrodes, electrochromic displays, 

solar cells, drug delivery systems and actuators.  The focus of this thesis, however, 

was to develop a sensor by incorporating biological molecules within the polypyrrole 

matrix.   

The results obtained in Chapter 3 describe the formation and characterisation of a 

polypyrrole film with a large protein, bovine serum albumin (BSA), incorporated 

within the polymer matrix.  These PPy-BSA films were fabricated on a platinum 

electrode, from a solution of pyrrole, BSA and NaCl using a potentiostatic mode of 

electropolymerisation.  In general, an oxidation potential of 0.70 V vs. SCE was 

applied to the electrode until a fixed charge was reached.  The presence of the BSA 

in the polymer films was confirmed using EDX analysis, while SEM micrographs 

showed that the films had the cauliflower morphology consistent with that of 

polypyrrole doped with a simple anion such as chloride.   

The kinetics of the electropolymerisation reactions showed that the partial order of 

the reaction with respect to the monomer concentration, α1, was found to be 0.99 in 

the absence of BSA, while a somewhat higher value of 1.38 was obtained for the 

partial order of the reaction for the monomer concentration, α2, in the presence of 

BSA.  The partial order close to unity calculated for the growth of the film in the 

absence of BSA is in good agreement with previous literature values
7
.  The higher 

value of 1.38 computed in the presence of BSA shows that the addition of BSA to 

the electropolymerisation solution has a significant influence on the rate-determining 

step, giving a higher dependence on the pyrrole concentration.  Furthermore, the 

value of the partial order of the reaction with respect to the BSA concentration was 

found to be negative, indicating a complex electropolymerisation process whereby 

the BSA inhibits the electropolymerisation process and decreases the rate of 
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electropolymerisation.  The optimum growth parameters for the PPy-BSA polymer 

film were determined; these were then used as a basis for incorporating the urease 

enzyme into the polypyrrole matrix for the detection of urea.   

In Chapter 4, the PPy-Urs films were fabricated on a platinum electrode, from a 

solution of pyrrole, urease and sulphonated-β-cyclodextrin (SCD) using a 

potentiostatic mode of electropolymerisation.  In general, an oxidation potential of 

0.70 V vs. SCE was applied to the electrode until a fixed charge was reached.  The 

presence of the SCD and urease in the polymer films was confirmed using EDX 

measurements.  The presence of sulphur in the EDX spectra proves that the SCD was 

indeed incorporated into the polymer films, while the presence of nickel in the EDX 

spectra confirms the incorporation of the urease enzyme.  Additionally, the urease-

containing polymer films had a very fibrous morphology compared to the films 

formed in the absence of urease.   

The PPy-Urs-Cl film exhibited reasonable sensitivity towards urea, however, the 

limit of detection was found to be poor in comparison to other techniques such as 

chromatography, which yields LODs in the region of 5.0 x 10
-8

 mol dm
-3

 for urea.  

Consequently, the PPy-Urs-SCD film and the PPy-SCD film, as a comparison, were 

formed and used in the detection of urea.  The PPy-Urs-SCD film displayed 

excellent sensitivity of 46.09 µC µM
-1

 towards urea and detection in the region of 

1.0 x 10
-10

 mol dm
-3

, whereas the PPy-SCD film had a sensitivity of 18.04 µC µM
-1

 

towards urea and detection in the region of 1.0 x 10
-10

 mol dm
-3

 also.  At the higher 

urea concentrations, the PPy-Urs-SCD film was found to have superior sensitivity 

towards urea compared to the other films investigated.   

Chapter 5 discusses how the presence of the SCD also aids in eliminating or 

reducing the effects of interfering compounds as SCD contains between 7 and 11 

negatively charged sulphonated groups.  The PPy-Urs-SCD polymer film was 

successful in repelling the common interfering compound, ascorbic acid (AA), 

during the detection of urea, and is capable of detecting only urea in the presence of 

relatively high concentrations of AA, up to 1.0 x 10
-4

 mol dm
-3

.  This is attributed to 

the fact that AA is also negatively charged at the pH of the experiments, pH 7.0.  The 

PPy-Urs-SCD film also successfully detects urea in the presence of 1.0 x 10
-4

 mol 

dm
-3

 NH4Cl, without any interference or surface fouling.  However, the urease in the 
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PPy-Urs-SCD film is a large, fibrous enzyme, while, the SCD is also large, which 

gives rise to a porous polymer network.  Thus, interference was observed with the 

other interfering compounds, giving rise to an increase in the oxidation charge.  This 

is somewhat unusual as most interfering compounds tend to foul and block the 

surface of the electrode
8
 and thus diminish the electrochemical signal from the target 

analyte.  This increase in charge was explained in terms of diffusion of the 

interfering species through the porous polymer film to the electrode surface and 

oxidation of the species at this surface.   

The excellent sensing ability of the PPy-SCD film compared to the PPy-Urs-Cl film 

was attributed to the fact that a 1:1 host-guest complex is formed between the SCD 

and the urea.  This was confirmed using cyclic voltammetry in Chapter 6, whereby a 

decrease in the oxidation current was observed with increasing SCD concentrations.  

This is a common feature of inclusion complexes; the urea becomes more difficult to 

oxidise when inside the SCD cavity and thus a decrease in the diffusion coefficient is 

observed in the presence of SCD.  Indeed, the diffusion coefficients for urea were 

found to be 2.72 x 10
-6

 cm
2
 s

-1
 and 6.30 x 10

-7
 cm

2
 s

-1
 in the absence and presence of 

SCD, respectively.  In addition, Job’s plot analysis confirmed the formation of a 1:1 

inclusion complex between urea and SCD, with a maximum of the curve obtained at 

0.5 and a formation constant of 2745.27  299.56 mol
-1

 dm
3
.   

 

7.2 Future Work/Potential Applications 

There are a number of potential applications that this urea sensor could be used for; 

however, the most promising application would be in the area of dialysis.  Currently, 

there are over 400 people in Ireland successfully receiving dialysis treatment and 

over half of these must attend major city hospitals to receive haemodialysis.  The 

remainder filter their blood at home through the use of peritoneal dialysis.  

Depending on the severity of the renal failure, patients receive dialysis between three 

times per week to daily, with each session lasting a number of hours or potentially 

overnight.  Presently, the time frame for a dialysis session is based on the weight, 

height and gender of the patient, rather than an accurate measurement of the 

concentration of urea and toxins that are removed from the body.   
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The urea sensor described in this thesis is quite sensitive to urea concentrations over 

a wide concentration range, including much lower levels than typically found in 

biological systems and higher concentrations which correspond to elevated urea 

levels, typically found in patients suffering from renal disease and undergoing 

dialysis.   

Although the urea sensor described has not been tested in blood or serum; if it was to 

be applied to the area of dialysis, the solution of dialysate is free from proteins or 

large biomolecules which would tend to foul the sensor.  In addition, it is possible to 

enhance the sensitivity of the urea sensor in the higher concentration regions by 

dampening the sensitivity at the lower urea concentrations.  This could be done in a 

number of ways but typically, using more compact/thicker films or applying a semi-

porous membrane to the sensor to decrease the rate of diffusion, would be advised.  

Additionally, the PPy-SCD sensor in the absence of urease has excellent sensitivity 

towards urea, which leads to the possibility of an enzyme-free biosensor which 

would be less expensive to form, readily available and not prone to enzyme leaching 

which diminishes the sensitivity of a biosensor.   

The pH at which the urea experiments were carried out was at pH 7.0, which is close 

to biological pH.  In addition, the interference from the main biological interfering 

compounds, ascorbic acid and uric acid, which are anionic at pH 7.0 and above, can 

be eliminated by applying a compact layer of PPy-Urs-Cl followed by a thicker layer 

of the negatively charged SCD-containing film, which repels the anionic interfering 

compounds.   
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“I wanted a perfect ending. Now I've learned, the hard way, that some poems don't 

rhyme, and some stories don't have a clear beginning, middle, and end. Life is about 

not knowing, having to change, taking the moment and making the best of it, without 

knowing what's going to happen next. Delicious Ambiguity.” - Gilda Radner 

http://www.goodreads.com/author/show/145047.Gilda_Radner

