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Abstract

As feature sizes on semiconductor chips continue to shrink plasma etching is becoming

a more and more critical process in achieving low cost high-volume manufacturing.

Due to the highly complex physics of plasma and chemical reactions between plasma

species, control of plasma etch processes is one of the most difficult challenges facing the

integrated circuit industry. This is largely due to the difficulty with monitoring plasmas.

Optical Emission Spectroscopy (OES) technology can be used to produce rich plasma

chemical information in real time and is increasingly being considered in semiconductor

manufacturing for process monitoring and control of plasma etch processes. However,

OES data is complex and inherently highly redundant, necessitating the development

of advanced algorithms for effective feature extraction.

In this thesis, three new unsupervised feature extraction algorithms have been proposed

for OES data analysis and the algorithm properties have been explored with the aid

of both artificial and industrial benchmark data sets. The first algorithm, AWSPCA

(Adaptive Weighting Sparse Principal Component Analysis), is developed for dimension

reduction with respect to variations in the analysed variables. The algorithm gener-

ates sparse principle components while retaining orthogonality and grouping correlated

variables together. The second algorithm, MSC (Max Separation Clustering), is devel-

oped for clustering variables with distinctive patterns and providing effective pattern

representation by a small number of representative variables. The third algorithm,

SLHC (Single Linkage Hierarchical Clustering), is developed to achieve a complete and

detailed visualisation of the correlation between variables and across clusters in an OES

data set.

The developed algorithms open up opportunities for using OES data for accurate pro-

cess control applications. For example, MSC enables the selection of relevant OES

variables for better modeling and control of plasma etching processes. SLHC makes it

possible to understand and interpret patterns in OES spectra and how they relate to

the plasma chemistry. This in turns can help engineers to achieve an in-depth under-

standing of underlying plasma processes.
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Chapter 1

Introduction

The semiconductor industry has experienced exceptional growth since the invention of

integrated circuits in 1960. As predicted by Moore’s law [122], the number of transistors

on an integrated circuit has doubled roughly every 2 years. Semiconductor devices con-

stitute the foundation of the electronics industry, which is currently one of the largest

industries in the world. An important characteristic of the semiconductor industry is

the rapid pace of improvement in its products [117], stimulated by the sustained and

substantial research and development (R&D) investment. Efficient capital investment

in R&D is therefore vital for companies to remain competitive when faced with global

economic competition, especially from major electronic firms located in US, Japan,

Europe, Korea and Taiwan.

To promote competition and guide research to the areas that need most breakthroughs,

a technology roadmap has been provided by the International Technology Roadmap

for Semiconductors (ITRS) and updated every two years. According to the 2007 ITRS

roadmap [24] for wafer design parameters over an 8-year period, the wafer diameter

is required to increase from 300 to 450mm while the critical dimensions are required

to decrease from 80 to 22nm, to meet the industry historical 30% cost-per-function

reduction and 50% cycle time improvement in manufacturing per decade.

In the past cost reductions were obtained via yield improvement, but when yield lim-

its are reached, further improvements must come from increased capital equipment

1



CHAPTER 1. INTRODUCTION 2

utilization [33], that is, maximizing throughput of products with reduced setup and

maintenance costs. This objective was achieved in the late 1980’s and early 1990’s

[145] by the wide application of statistical process control (SPC) techniques to monitor

process faults. With the aid of SPC charts, values outside of the control limits can be

taken as indicators of possible process failure. As the semiconductor industry moved

into nano-scale manufacturing, traditional SPC was unable to deal adequately with

the resulting tighter operating tolerances and increased process complexities, leading

to substantial increases in undetected process errors and false alarms. Undetected pro-

cess errors in semiconductor can lead to the destruction of an entire batch or batches

of wafers with no hope of recovering the product through further processing, causing

serious rises in manufacturing cost. In a modern manufacturing plant, the average cost

for making a chip is US $40 dollars. If the chip size were 140mm2, damaging a 300mm

wafer with 430 gross dies will cost US$17,200 dollars.

In seeking possible alternatives to SPC, a broad advanced process control (APC)

methodology has been adopted. APC is employed to maximise the use of available in-

formation about material, processes, diagnostic data and desired targets, select model

and control strategies, estimate the feasibility of the desired targets and generate the

necessary alarms for process faults [33].

A typical semiconductor manufacturing process often involves several hundred unit op-

erations, among which, plasma etching has been recognised as one of the main unit

operations that has a decisive effect on product yield [33]. The main focus of exist-

ing modeling and control studies has been on plasma etching, photolithography and

deposition [33]. However, due to the high complexities of plasma physics and etch-

ing chemistry and plasma sensitivity to subtle process variations, the plasma etching

process still poses great difficulty with respect to achieving effective APC.

1.1 Plasma Etching

Plasma is considered as a gas containing an electrically neutral medium of ions and

electrons, dissociated from a proportion of the atoms or molecules. Plasma is achieved



CHAPTER 1. INTRODUCTION 3
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Figure 1.1: A diagram showing the basic features of a plasma etching chamber:

MF=Microwave Frequency; RF=Radio Frequency.

by supplying sufficient microwave energy to a gas to allow significant numbers of elec-

trons to break free from their atoms, forming free moving electrons and coexisting with

equally charged ions. The diagram of a typical plasma etching chamber is shown in Fig.

1.1. Gas is pumped into the chamber under vacuum and ionised using a high power

Microwave Frequency (MF) source to create a plasma. By applying a Radio Frequency

(RF) external electrical field to the plasma, the ions can be accelerated towards the

wafer surface, where they interact both chemically and physically with the silicon wafer,

etching away the exposed surface. Physical etching occurs when the wafer surface is

bombarded by the positive ions which travel at high speeds. Material on the target

surface is removed due to collisions with the incoming ions. By adjusting the external

bias voltage on the wafer, the direction and speed of ions can be controlled, yielding a

highly directional etch. However, pure mechanical collisions have very little selectivity.

Chemical etching occurs when chemical compounds on the wafer surface are exposed to

the chemically reactive species in the plasma. By appropriate selection of the chemical

species in the plasma, chemical etching can target specific compounds on the target

surface, thus producing a ‘selective’ etch.

Plasma etching is a form of plasma processing used for integrated circuit (IC) manufac-

turing. Plasma etching emerged as an alternative to acid bath chemical etching (wet
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Figure 1.2: Difference between plasma and chemical etching: (a) Chemical etching

with undercutting, which is characterized by not clearing out completely the film being

etched; (b) Ideal plasma etching.

etching) in the late 1960s, as a result of increasing demand for smaller feature sizes

and tighter tolerances. The main advantage of plasma etching is that the direction

of etching can be controlled. In contrast, wet etching using acid baths proceeds in

all directions with similar speed (isotropic etching) [106]. As feature sizes continue to

shrink, it is crucial to have etching with high directionality to guarantee product quality

[106]. As an example, when the feature size is less than trench depth, the trench can-

not be removed completely using chemical etching while retaining the desired feature

size, leading to problems such as short circuits. This is illustrated in Fig. 1.2 (a). In

contrast, plasma etching can be directed to remove material at the bottom of a trench

while leaving the same material on the sidewalls unaffected, as shown in Fig. 1.2 (b).

Generated etch by-products are volatile at room temperature and can be easily cleared

by the flowing gases.

1.2 Plasma Monitoring

Control of plasma etch processes is one of the most difficult challenges that faces the IC

industry. This is due to the highly complex physics of plasma and chemical reactions

between plasma species. In industrial practice, most silicon chip manufacturers rely

on the rigorous adherence to a process ‘recipe’ for the various etch processes, which

are often operated empirically with little understanding of the underlying physics and

chemistry. With the continuing drive towards smaller feature sizes (nanometer scale
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presently), this lack of understanding becomes a significant problem [33]. As such, the

development of new and better plasma sensors becomes essential for successful appli-

cation of APC to nanometer-scale manufacturing.

In industry, the most widely used plasma etching monitors are the Langmuir probe,

plasma impedance monitor and optical emission spectrometer.

1.2.1 Langmuir Probe

A Langmuir probe is a small device that can be used to determine the electron temper-

ature, electron density and electric potential of a plasma. It works by inserting one or

more electrodes into a plasma. The electric potential between the various electrodes is

varied, leading to changes in the ion or electron currents that flow to a plasma [19]. The

relationship between the resulting current and voltage are recorded in the so-called I-V

characteristic curve, which can be used to determine the physical properties of a plasma.

A Langmuir probe is able to provide direct measurements of plasma properties [19].

However, the placement of the Langmuir probe is intrusive to the production environ-

ment and since it interacts directly with the plasma, it can significantly impact on the

operating conditions of the chamber and the uniformity of interaction of the plasma

with the wafer surface. Thus, the measurements obtained by the Langmuir probe are

not reliable.

1.2.2 Plasma Impedance Monitor

A Plasma Impedance Monitor (PIM) is a non-intrusive plasma diagnostic sensor, used

to measure the currents, voltages and phases of the RF power supply delivering power

to the plasma chamber.

A typical plasma etching chamber with a PIM is illustrated in Fig. 1.3. The plasma

behaves as a variable impedance in the RF circuit. This impedance is a complex

and nonlinear function of chemistry and energy of the plasma and as such reflects the

underlying properties of the plasma etch. A match box is used to adjust the input
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Figure 1.3: The diagram of a typical plasma etching chamber with the PIM; MF =

Microwave Frequency, RF = Radio Frequency.

impedance to be equivalent to the impedance produced by the plasma to maximise the

power transferred from the RF source to the plasma chamber. Under these settings, a

PIM is placed between the match box and the electrode.

Along with the voltage, current and phase measured at the fundamental frequency,

modern PIM sensors can record many harmonics of these signals. The SmartPIM,

developed by the Scientific Systems Incorporation, for example, measures the funda-

mental frequency and 52 Harmonics. These high frequency harmonic signals have been

found to be very sensitive to the subtle changes in a production environment and hence

can be used for monitoring plasma etching processes. The experiments conducted by

Dewan et al [30], for example, showed that it is feasible to use PIM signals to detect

etch end point in a plasma etch process where SF6 is used to etch a SiO2/Si layer.

1.2.3 Optical Emission Spectrometer

An important characteristic of plasmas is that they emit light. This optical emission

occurs because excited electrons are continually falling from higher to lower energy lev-

els, releasing energy in the form of a photon emitted at a particular wavelength which

is a function of the change in energy levels [154]. The measured optical emissions,

often referred to as the fingerprints of species, can be used to indicate the changes of a

particular species in an etching process.
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Optical Emission Spectroscopy (OES) is an non-intrusive plasma diagnostic technique

and has been widely employed in industry for measuring the chemical changes in a

plasma [151]. OES data contains rich chemical information and has the potential to be

used to track the root causes of process variations and realise an in-dept understanding

of underlying plasma physics and chemistry, the foundations of APC. OES measures

the optical emission intensities as a function of wavelength, time and location. As an

example, Fig. 1.4 (a) shows the OES footprint of a plasma at a particular sample

instant in a wafer etch step. The time evolution of the footprint over the full etch step

is illustrated in Fig. 1.4 (b). This is a 3-D plot with emission intensity on the z-axis

and time and channel index (wavelength) on the x and y axes, respectively.
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Figure 1.4: Plasma etch OES data for a single wafer: (a) Recorded at a single

instant; (b) Recorded over a complete etch step.

The existing applications of OES mainly rely on engineers having a detailed knowledge

of the underlying process chemistry and dynamics so that the most relevant wave-

lengths can be identified and used to achieve etch process control. This approach is

problematic. The learning process is time consuming, the selection of the key wave-

lengths based on engineers’ personal experience is subjective and the effectiveness of

the approach is limited to a particular process (given changes in the process recipes or

etching products, the effectiveness of the selected wavelengths can be destroyed).
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As feature sizes continue to shrink, OES sensors have been designed to be more and

more sensitive to subtle changes in the process. The generated OES data sets consist

of thousands of variables, measured over tens or hundreds of time samples. OES data

is inherently highly redundant with the result that it is difficult to recognise useful

features and key wavelengths by direct visualisation. It thus, becomes necessary to

employ automated feature extraction algorithms.

1.3 Feature Extraction

Feature extraction, as a technical term, originated in the fields of pattern recognition

and image processing. As stated in [102], feature extraction should focus on extracting

from raw data the information which is crucial for classification purposes. With the

continuing expansion of the application of feature extraction techniques towards more

diversified fields, nowadays, it has become impossible to provide an unified and accurate

definition of feature extraction [155], or an effective categorization of the theories and

algorithms for tackling these feature extraction issues [103]. As Selfridge and Neisser

[138] pointed out, feature extraction algorithms have to be designed individually to

effectively tackle an unknown issue.

In the context of our research, we define the features as the extractable patterns con-

tained in the sensor measurements that can be used to indicate plasma etch process

characteristics, such as etch rate, process variations, faults, etch endpoint, etch change

point, etc. Feature extraction is defined as applying effective methods to extract useful

features while excluding any uncorrelated/corrupted features from the data.

Feature extraction algorithms can be divided into three categories: supervised feature

extraction, semi-supervised and unsupervised feature extraction. In supervised feature

extraction, examples of the target outputs are available to guide the selection of the

effective algorithm. If the features selected cannot match the target features, new al-

gorithms need to be explored. The selection process is conducted repeatedly until the

algorithm can identify the features as targeted. In this way, the available information

can be transferred to the feature extraction algorithm through iterative selection. In
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unsupervised feature extraction, there is no available information to supervise the se-

lection process. The actual features extracted cannot be compared with any existing

target features and hence, the selection is free of guidance. In semi-supervised feature

extraction, both supervised and unsupervised feature extraction are employed, typi-

cally a large amount of unsupervised feature extraction used in conjunction with a

small amount of supervised feature extraction [192]. When the acquisition of the su-

pervised information is expensive, semi-supervised learning can be of great advantage

with respect to cost and algorithm effectiveness.

In our research, the acquisition of in situ measurements is unreliable and the offline

methodology is costly. In a practical production environment, the in situ measurements

of the process parameters such as trench depth, etch rate and wafer surface thickness

must be obtained by directly inserting the diagnostic devices into an etching chamber,

which can disturb the plasma, making the measurements unreliable. To obtain the

offline metrology data, the testing has to be conducted after the actual process is

finished, so it is time consuming and expensive. Considering these existing problems in

practice, there is a need for the development of new feature extraction algorithms that

can operate effectively on OES data in an unsupervised manner.

1.4 Aims and Scope of Thesis

This thesis will focus on the development of unsupervised feature extraction algorithms

applied to extract different patterns and identify representative variables in complex

OES data, in order to provide effective variable selection for further modeling and

control. The developed algorithms should be able to achieve effective low-dimensional

reconstruction and summarisation of the high-dimensional data, be able to achieve

feature classification based on feature differences and feature representation by a small

number of variables. Moreover, the developed algorithms should be able to capture

and show the different levels of similarity between variables with similar features.
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1.5 Contributions of This Thesis

The major contributions of this thesis are as follows.

1. Two data summarisation methods based on the use of PCA (Principal Component

Analysis) are proposed that provide more efficient computation when dealing with

the high-volume and high-dimensional OES data sets. One is implemented as an

improvement on conventional data unfolding approaches and the other is realised

by monitoring changes in the directions of the PC loading vectors. The two

proposed methods can provide effective identification of plasma etching process

variations across wafers and across lots.

2. The recently proposed Sparse Principal Component Analysis (SPCA) algorithm

[196] has been applied to OES data analysis for the first time. The properties of

the algorithm have been fully investigated, with the aid of artificial data sets and

OES data and the strengths and weaknesses of the approach highlighted.

3. A new adaptive weighting SPCA (AWSPCA) algorithm is proposed and the al-

gorithm numerical solutions developed. As an improvement on the recently pro-

posed SPCA and adaptive LASSO algorithms, AWSPCA can provide more flex-

ible control of component sparsity. In addition, the grouping effect and loading

orthogonality properties that are possessed by some existing algorithms are also

encouraged in AWSPCA.

4. A new clustering algorithm, Max Separation Clustering (MSC), is developed.

As compared to many existing non-hierarchial clustering algorithms, MSC does

not require a priori specification of the number of clusters and is not subject to

inter-run variability.

5. A customised single linkage hierarchical clustering (SLHC) algorithm is developed

for application to OES data and a new method for estimating the appropriate

number of clusters, B-index, is proposed. The effectiveness of B-index is high-

lighted as compared to a number of existing best performers, with the aid of

simulated data sets. Experiments on OES data show that the joint use of the
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SLHC and B-index methods can help to recognise the similarity between intra-

cluster objects and across clusters.

Other contributions in the thesis include:

1. A review of the methodology for feature extraction for plasma etching process

control.

2. A new and systematic method for selecting noise filter bandwidth for OES signal

filtering.

3. A new method for estimating OES sensor resolution.

4. An improved method for quantifying the estimation accuracy of SPCA.

5. A derivation of the relationship between the similarity threshold in MSC and

OES data signal-to-noise ratio.

6. An in-depth discussion of the characteristics and properties of K-means, SOM and

QT and the challenges when using these methods for OES data feature extraction.

1.6 Thesis Structure

Chapter 2 provides a technical description of plasma and plasma etching and a review

of the methodology for feature extraction for plasma etching process control. This

chapter also introduces experimental benchmark data sets that are used throughout

the thesis to estimate the performance of the various algorithms developed.

In Chapter 3, the application of PCA to the analysis of OES data from plasma etch pro-

cesses is explored. Conventional methods of plotting the PC scores are applied to the

OES data with experimental results presented. A novel low cost method for monitor-

ing changes in PC loadings is proposed. Experimental results show that the proposed

methods are effective in identifying and capturing the process variations across wafers

and across lots.
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In Chapter 4, a thorough description of the theoretical frameworks of SPCA is pro-

vided. With the aid of simulated and OES data sets, the feasibility of using SPCA

as a variable selection tool for identifying key variables from a large data set is ex-

amined. Experimental results demonstrate SPCA lacks flexibility in controlling model

sparsity. Addressing this issue motivates the development of adaptive weighting SPCA

(AWSPCA).

In Chapter 5, a novel AWSPCA algorithm and algorithm numerical solutions are pro-

posed and developed in detail. Experimental results of applying AWSPCA to simulated

and OES data sets show that AWSPCA combines many desirable properties possessed

by existing PCA, SPCA and adaptive LASSO algorithms.

In Chapter 6, a survey of non-hierarchical clustering methods is provided, followed by

a detailed discussion of the properties of K-means, SOM and QT, three of the most

powerful and widely used non-hierarchical clustering algorithms. The insufficiency of

these algorithms for the analysis of OES data is highlighted. As a solution, a novel

Max Separation Clustering (MSC) algorithm is proposed and described in detail. Ex-

perimental results for the application of MSC to clustering of OES data sets are used

to confirm that MSC can extract and classify the different patterns in different clus-

ters and the newly proposed maxoid in MSC is effective for representing the patterns

contained in each cluster.

In Chapter 7, a review of hierarchical clustering is provided, followed by the descrip-

tion of a custom single linkage hierarchical clustering (SLHC) implementation for the

analysis of OES data sets. A new cluster number selection method, B-index is also

proposed. Experimental results on the OES data sets show the consistency of the clus-

tering results obtained by SLHC/B-index and MSC and as such, provides a form of

validation for both methods.

Chapter 8 provides a concluding summary on the advantages and disadvantages of the

proposed methods, as well as possibilities for future research.



Chapter 2

Background

This chapter provides an introduction to plasma techniques and feature extraction ap-

plications in plasma etching. To begin with, technical details on plasma generation,

plasma etcher and process diagnostic devices that haven’t been covered in the general

introduction in Chapter One are provided. Then existing work on supervised and unsu-

pervised feature extraction techniques used for plasma etching diagnostics is reviewed.

This provides the methodology background for the thesis. The final section of the chap-

ter is devoted to the introduction of the experimental benchmark data sets that are

used throughout the thesis to illustrate the properties and estimate the effectiveness of

proposed algorithms.

2.1 Plasma Etching

This section provides an overview of the mechanism of plasma generation, the Electron

Cyclotron Resonance plasma etcher used for generating plasma and achieving plasma

etching, and the Optical Emission Spectrometer used for plasma diagnostics.

2.1.1 Plasma Generation

Plasma is an electrically neutral gas mixed with atoms, molecules, free moving elec-

trons and equally charged ions. The generation of the electrons and ions results from

a series of collisions in a plasma, which are referred to as electron impact ionization,

excitation, relaxation and recombination [17].

13
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Ionization: When an incoming ion or electron with enough energy collides with an

atom, the outermost electron of this atom can absorb energy to break the electric

potential barrier that originally bound it to the atom, resulting in a free moving electron

and equally charged ion. Defining A as the atom, the ionization of A can be expressed

as:

e− + A → 2e− + A+. (2.1)

Excitation: Excitation refers to the process of a plasma atom being activated to a

higher energy level when colliding with a free moving electron, but where the absorbed

energy is not enough, to break the electric potential barrier to form a free moving

electron. The process can be summarised as

e− + A → A∗ + e−. (2.2)

where A∗ represents the activated atom.

Relaxation: Relaxation refers to the process of the electron in an electronically excited

atom transiting from a higher energy level to a lower energy level with excess energy

released in the form of a photon.

A∗ → A + E (photon). (2.3)

The wavelength of the emitted light corresponds to exactly the energy difference be-

tween the two energy levels with

E = hc/λ, (2.4)

where λ denotes the wavelength of the photon, c denotes the speed of light and h is

Planck’s constant. Thus, an atom emits light at only certain discrete wavelengths (Fig.

2.1). This phenomenon leads to the characteristic light emission of a plasma which

is used in Optical Emission Spectrometry (OES) (discussed later in Section 1.3.3) to

indicate the existence of the gaseous species in a plasma.

Recombination: Recombination refers to the process of an electron being combined

with an ion to form a neutral atom. However, a third body is required to take part

in the process to allow the recombination to satisfy the conservation of energy and

momentum requirements [17]. The recombination process can be expressed as

e− + A+ + A → A + A (2.5)
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Figure 2.1: (a) Mechanism of plasma light emission. Excess energy, E, is released

as the electron decays from a higher energy level to a lower one; (b) Light emission

spectra of Ne and Hg.

2.1.2 Electron Cyclotron Resonance Plasma Etcher

In physics, Electron Cyclotron Resonance (ECR) refers to a phenomenon in which elec-

trons in a static and uniform magnetic field rotate around the magnetic lines of force.

The ECR plasma etcher makes use of microwave energy and a strong magnetic field

to produce a low pressure and high density plasma and provides the necessities for

achieving plasma etching.

The main components of an ECR etcher include a gas supply system, a magnetic field

generation system, a microwave oscillator, a RF (radio frequency) generator, and an

etch chamber. The diagram of an ECR etching chamber is shown in Fig. 2.2, where

the OES monitor is included for ease of explanation of the OES measurements in the

later text.

The 2.45GHz microwave power is oscillated by a magnetron, transmitted along a waveg-

uide and injected into a quartz bell jar. The microwaves produce a dynamic electric

field, which is perpendicular to the static magnetic field, which is generated as a DC

current flowing through the solenoid coils. The interaction of these two fields generates

Lorentz Force, which causes the electrons to spiral in a helical motion. In this way, the

microwaves transfer the energy to free electrons which in turn accelerate and collide
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Figure 2.2: A diagram of ECR plasma etcher with the OES monitor included.

with the atoms or molecules in the gas and produce ionization. The low gas pressure,

which helps to reduce electron impact recombinations, is achieved by controlling the

flow rates of the gases supplied to the chamber. A separate RF bias is applied to the

wafer electrode to independently control ion energy at the wafer surface. A 2MHz gen-

erator is connected to the powered electrode to create a negative DC bias on the ground

electrode. This makes the plasma more positive with respect to the powered electrode,

leading to an increased ion bombardment on the wafer surface, thereby achieving faster

etching. Helium is pumped to the backside of a wafer to cool the wafer temperature,

which is an important factor influencing the uniformity of etch across the wafer surface.

An important feature of the ECR etcher is that ion energies can be controlled separately

by the RF supply, allowing much greater control of etch rate due to bombardment.
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Figure 2.3: The diagram of an optical emission spectrometer.

2.1.3 Optical Emission Spectrometer

The optical emission spectrum of each individual chemical atom or molecule is unique.

As such, analysis of plasma emission spectra can be used to estimate the instantaneous

composition of a plasma and track the density changes of the chemical species over-

time. An Optical Emission Spectrometer is an optical device used to detect the optical

emissions of plasma species, providing direct information on plasma chemistry.

In Optical Emission Spectroscopy (OES), visible light is collected by a lens and focused

onto a grating. The grating then redirects the light onto a Charged Coupled Device

(CCD) detector with different wavelengths dispersed to different CCD pixels as shown

in Fig. 2.3. The key component of a typical Optical Emission Spectrometer is the CCD

detector. CCDs are a type of quantum detectors, which are used to measure the flux

of photons. In contrast to thermal detectors, which are used to measure the optical

power, quantum detectors have a faster response time and are more sensitive to small

photon fluxes and therefore, have been widely employed in modern optical detection

devices.

In CCD detectors, the photons are detected by a photoactive detection area and con-

verted to an electrical signal by a photoelectric device. Applying the added external

voltage supply, the produced electrical signal or electron is then moved to a capacitor.

Accumulation of charge proceeds as more electrons are stored in the capacitor until the
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capacitor is discharged for the readout. The readout analog signals are converted to

digital signals through an A/D (analog-to-digital) convertor and recorded. The main

advantages of CCD detectors are that they are small and have a high photon-to-electron

ratio. Our OES data is collected using an Ocean Optics USB2000 spectrometer with a

CCD detector consisting of 2048 pixels (corresponding to 2048 wavelengths). As shown

in Fig. 2.2, the OES monitor is normally connected to the exhaust plasma leaving the

chamber as this allows etch byproducts in the plasma to be detected.

2.2 Survey of Existing Work

While the relevant literature is reviewed in each chapter, a brief survey of existing work

on the application of feature extraction (supervised and unsupervised) to the analysis

of complex plasma etching diagnostic data sets is documented in this section, so that

the contributions of the thesis can be placed in context.

2.2.1 Unsupervised Feature Extraction Algorithms

The objectives of unsupervised feature extraction methods are to extract distinctive and

representative information from the data. Due to the lack of a teacher’s knowledge,

the usefulness of the obtained information cannot be estimated. Hence, unsupervised

feature extraction techniques are mainly drawn from the statistical analysis domain. In

this section, a survey of unsupervised feature extraction algorithms used for analysing

plasma etching diagnostic data sets is provided.

Principal Component Analysis

Principal component analysis (PCA), as a linear multivariate data projection technique,

has been widely employed for data compression and visualisation. [69]. PCA provides

low dimensional representations of high dimension data sets while retaining the most

information in the data in terms of variance explained [109].

The main application of PCA in etch process analysis has been in the detection of

etch endpoint. Etch endpoint refers to the transition of etching between two layers

of material on a wafer signifying that etching should be stopped. Yue et al. [185]
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proposed that the sharp changes in the amplitude of the second and third PCA scores

can be used to indicate the etch endpoint. PCA can also be used for key wavelength

selection. As an example, Yue et al. [186] proposed a ‘sphere criterion’ method, which

aims to select wavelengths based on the joint use of a few principal components (PCs).

Suppose that the first l PCs are employed; According to the ‘sphere criterion,’ the ith

wavelength can be selected if it satisfies
l∑

j=1

p2
ij ≥ r2 (2.6)

where pij denotes the amplitude of the ith wavelength in the jth loading and r is a

threshold or the so-called radius of the sphere. One advantage of the ‘sphere criterion’

method is that the wavelength selection is based on its performance w.r.t. all the PCs

that are used to represent the data and hence, can more truly reflect the importance of

selected wavelengths. In addition, the ‘sphere criterion’ gives users some control over

the selection of the number of key wavelengths through the use of different values of r.

Direct visualisation of the 2-D plots of PC scores was shown to be useful for spotting

changes in process states, such as power [170], different percentage of gas composition

[170] and changes across lots [174]. In [165], PCA is used as a signal filtering method

to have better use of OES data for end point detection. Koh et al [89] reported that if

PCA is applied to PIM data, changes in the 2-D plots of PC loadings can also be used

to indicate etch endpoint.

To determine the number of principal components in a PCA model for best reconstruc-

tion, a typical method is to set up a threshold of variance explained. Han et. al. [52]

proposed that if one PC can explain over 10% of the total variance, then that PC should

be considered as a significant PC. Joint application of this PC number selection method

and the ‘sphere criterion’ shows that the selected wavelengths can work efficiently in

finding the etch endpoint for wafers with etch open area of 10% or less.

Toprac et al. [161] and White et al. [171] proposed a simpler way to select the number

of PCs. For plasma etch processes, they found that the first four PCs were sufficient

for representing the patterns that exist in OES data. As another example, Qin and
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Dunia [125] proposed the so-called variance of reconstruction error (VRE) method,

which guarantees that the reconstruction has a minimum error over the number of

PCs. When applying PCA to analyse complex data sets, one important issue is how to

rearrange the data sets for further analysis. For OES data sets, methods of unfolding

the 3-D measurements into 2-D along different dimensions have been widely discussed

in [178, 44, 144, 174, 175].

Independent Component Analysis

As another multivariate statistical process method, Independent Component Analysis

(ICA) is used to separate mixed signal sources into a few factors that are mutually

independent. Although ICA has found considerable application in areas such as blind

source separation [14], the application to semiconductor etch processes has been lim-

ited [100]. A recent application of ICA [100] has been reported to outperform PCA in

fault detection and diagnosis in conjunction with Hotelling’s T2 and Sum of Predicted

Error (SPE) methods. He et al. [57] proposed a new method which jointly uses inde-

pendent component analysis (ICA) and multi-way PCA. The method has been shown

to have significant benefits when the time-series variables are not subject to Gaussian

distributions.

Segmental Semi-Markov Model

In a stable system, the continuity of measured signals can often be interrupted by

change events, leading to segments in the measured time sequences. The corresponding

segmental points are defined as change points. As an example, a change point is shown

in Fig. 2.4. Detecting change points from Interferometry sensor measurements, Ge and

Symth [42, 43] proposed a segmental semi-Markov model, which is an extension of the

standard hidden Markov model. Segmental semi-Markov models allow the variables to

have different distribution models in different time segments. Sudden change in the

variable distribution is regarded as occurrence of the change point. Experimental re-

sults on both simulated and real semiconductor manufacturing data show the accuracy

of the proposed framework in change point detection [42, 43].
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Figure 2.4: An illustrative example of a change point problem [43].

The drawback of the semi-Markov model is that the method focuses on the change-point

detection for a single variable. For multivariate and multiple change-point detection

problems where the time-series distribution of the variables is unknown, Eruhimov et al.

[35] and Li et al. [104] proposed a supervised learning method, which can be expressed

as

t = g(x1, · · · ,xp), (2.7)

where g(·) is the supervised learning function, x1, · · · ,xp are the p process variables

and t is the model output, which represents the estimate of the time of the change

point.

Fourier Series Decomposition and Discrete Wavelet Transform

Fourier analysis is a typical signal analysis method. Rietman et al. [133] showed that

Fourier series decomposition of etch process variables (RF power, gas flow rate, etc.)

is effective for etch endpoint detection. The authors reported that plotting the Fourier

components under different coordinates can give different curve shapes, which can help

in the recognition of the shape of the endpoint signature. Kim and Choi [83] proposed

using Discrete Wavelet Transform (DWT) to analyze the plasma impedance match

data. The results show that DWT can effectively detect the signal variations and helps

to recognize process abnormalities.
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Other Statistical Techniques

More recently, many advanced statistical techniques drawn from the data mining do-

main have been applied to advanced process control in semiconductor manufacturing.

Cheery and Qin [21] proposed that fisher discriminant analysis can be used to differ-

entiate sensor data from different tools and chambers and is shown to be useful for

identifying process faults.

Non-Negative Matrix Factorisation (NMF) was employed by Ragnoli et al [127] on a

case study involving optical emission spectroscopy data from a plasma etch process. By

comparison analysis with PCA, the properties of NMF have been highlighted. Forward

selection component analysis has been proposed in [126] for the analysis of OES data

and found to be more effective for feature selection due to the selection of fewer OES

lines to summarise key variations in the process data.

2.2.2 Supervised Feature Extraction Approaches

Supervised feature extraction refers to the implementation of feature extraction algo-

rithms which use a priori information about how the features related to desired targets

to enhance the selection process. This priori information can be for example which data

corresponds to normal and abnormal operations, target responses that the features to

be selected can be used to predict, or simply knowledge of the underlying systems and

characteristics of the features that are of interest, e.g. a well defined change point.

In this section, methods drawn from the supervised statistics and artificial neural net-

works are reviewed. These methods are employed either to directly implement feature

extraction or to build up models of key features which are subsequently used for process

control.

Experience-based Single Variable Selection

The experience-based single variable selection is the simplest method of achieving super-

vised feature extraction and hence, has been widely employed in the early application

of plasma diagnostic data for etching process control. Selection of the single variable,

which contains the process signature features, such as etch end point and process varia-
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tion, is determined by the engineers having a detailed knowledge of underlying process

chemistry and dynamics. In this subsection, the discussion of single variable selection

is categorised based on the different sensor techniques used for collecting the data.

Optical Emission Spectroscopy

Single wavelength OES measurement has seen great success in detecting the etch end-

point and faults for various plasma etch processes. The authors in [25], for example,

reported that the optical emission of a plasma at wavelengths of 405nm, 520nm or

706nm can be used to spot the etch endpoint for SF6 etching of Nitride in an Oxide

film stack. They showed the effectiveness of these variables for detecting end point for

different plasma etchers. In an another experiment, Manos and Flamm [113] reported

that 297.7nm, 483.5nm, 519.5nm (CO), 308.9nm (OH), 615.5nm (O) and 656.6nm (H)

can be used to monitor the Oxygen etching of photoresist and that 279nm (CCl) is

effective for monitoring Chlorine etching of photoresist.

A summary of individual wavelengths that have been identified for endpoint detection

for different etch chemicals is given in Table 2.1. The data is compiled from information

provided in [48], [139] and [142]. This summary attempts to provide a collection of the

single OES wavelengths used for detecting endpoint. However, one has to be aware

that in practice, the effectiveness of selected single variables should always be verified,

because any tiny variations in the etch conditions (e.g. pressure, temperature, power

supply, gas flow rate etc.) could greatly change the plasma performance and eventually

change the optical emissions. As such, it is strongly suggested that Table 2.1 is used a

reference rather than the final solution for single variable selection.

Successful application of selected wavelengths for endpoint detection has been reported

in [159], [129], [6], [173] and [182], with simple algebraic operations such as addition,

subtraction, multiplication and division used to improve the signal strength of selected

single variables. However, according to Yue et al. [185], single wavelength endpoint

detection fails for etch open areas under 0.5%.
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Etched Film Etchant Species Species Monitored Wavelength(nm)

Polysilicon CxFy, SF6, NF3 F 685.4, 703.7, 712.8

SiF 777

Si 288.2

S 469.5

Polysilicon Cl2, HBr Cl 725.6, 741.4

H 486.1, 656.5

Br 827.5

SiCl 287.1

SiHxBryClz 300-350

Si 288.2

Silicon Dioxide CxFy/O2 CO 292.5, 302.8, 313.8

325.3, 483.5, 519.8

O 777.2, 844.7

CF2 251.9

SiF 777

Silicon Nitride O2, CxFy F 703.7

CN 387.1

N 674

N2 315.9, 337.1

O 777.2, 844.7

Aluminum/Cu CCl4 AlCl 261.4

Al 308.2, 309.3, 396.1

Cu 325

Aluminum SiCl4/Cl2/BCl3 AlCl 261band, 522band

Si F2 F 704

photoresist O2 CO 297.7, 483.5, 519.5

OH 308.9

O 615.5

H 656.6

Cl2 CCl 279

Table 2.1: Monitored single OES wavelengths for endpoint detection for various

substrate film/etchant species combinations.
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Plasma Impedance Monitor

The feasibility of using PIM for endpoint detection was demonstrated in [123] for SF6

reactive ion etching of polysilicon and Si3N4. According to Malone et al. [112], PIM

can provide more robust measurements than OES, especially in cases where the etch

open area is under 0.3%. When the number of measured PIM signals is small, say 15 as

an example, the simplest method of achieving signal selection, as proposed in [3], is to

visualise the signal patterns for each individual signal. Yang et al. [181] reported that

the plasma impedance can have more obvious changes around the etch endpoint than

direct PIM measurements and hence, is more effective for endpoint detection. Dewan

et al. [30, 29] proposed the plasma impedance can be determined as a function of RF

power, chamber pressure and gas flow rate, key parameters for generating a plasma.

Process State Monitor

Process State Monitor (PSM) is used to monitor the changes of process states that

engineers or researchers are concerned about, so PSM variables can be diversified for

different experiments. When Chang et al. [16] investigated the performance of PSM

measurements, they found that the direct current (DC) signal had superior perfor-

mance to univariate OES measurements, with an order of magnitude improvement in

the signal-to-noise ratio. Single PSM variables has been used to capture features for

endpoint and process variations. Fortunato [39], as an example, reported that reflected

power supply signal contained a feature that can be used for detecting etch endpoint,

given a polysilicon and silicon nitride stack etch. Roland et al [136] proposed using the

measurement of chamber pressure to detect etch variations, which can also be achieved

via the measurements of wafer pad temperature [168] and cross resistor voltage [66].

Supervised Statistical Techniques

Supervised statistical techniques, such as Partial Least Squares (PLS) and principal

component regression (PCR) are also widely employed for dimensionality reduction,

with the attempt to extract multi-dimensional relationship between inputs and out-

puts. The feasibility of applying PCA, PCR and PLS to a semiconductor etch process

is discussed in [169]. The overview of the effectiveness of PCA, PCR and PLS for fault
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detection and diagnosis is presented in [92].

Applying Hotelling’s T2 for high-dimensional data analysis has received increased at-

tention in multivariate statistical process control [93]. Data with normal and abnormal

process operations is required as priori information for calculating the control thresh-

old. White et al. [171], for example, proposed using the Hotelling’s T2 in conjunction

with PCA and the Q-statistic to improve the sensitivity of endpoint detection at an

extremely low etch open area (1%). In this algorithm, the Q-statistic is used to investi-

gate the effectiveness of a PCA model (by analyzing the residual data). As a result, the

first three PCs are justified for reconstructing the original OES data set and the corre-

sponding Hotelling’s T2 values for each of the PC scores. The usefulness of Hotelling’s

T2 for detecting outliers in different operations for batch processes is presented in [115].

Methods for improving the robustness of Hotelling’s T2 for fault detection are proposed

in [150]. Joint use of Hotelling’s T2 and Q-statistics is proposed by Yue and Qin [184] as

the so-called combined index method, as a means of extracting useful information from

historical fault data and helping to improve the prediction accuracy for fault detection.

Recently, Forward Selection Regression (FSR) [126] has been proposed as a competitor

to PCA and PLS for identifying key features in OES data. Whereas PCA and PLS

employ linear combinations of all input variables, FSR attempts to use only a few vari-

ables to capture the observed variation. Hence, FSR is more effective than PCA/PLS

for parsimonious feature selection. Experimental results in [126] show that with a com-

parable number of components/variables involved, FSR can give better performance

than PCR/PLS when predicting etch rate using OES data.

The joint use of PCA and other available priori information has led to the development

of a series of different algorithms for achieving statistical process control. Weighted

PCA (WPCA) is proposed by Yue et al. [188] to improve the long-term validity of

a PCA model. Two different forms of WPCA have been proposed: sample-wise and

variable-wise WPCA. Sample-wise WPCA is used to address issues with model up-

dating by adapting models with process changes and variable-wise WPCA is used to
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incorporate engineers’ experience and knowledge about processes and sensors. PCA

models built in these ways require less maintenance and result in better fault detection

and classification performance. In [183], the authors reported that WPCA was also

effective for selecting the key wavelengths.

Modified Principal component analysis (PCA) was proposed by Han et al. [53] for

real-time endpoint detection of small open area SiO2 plasma etching. As a contrast to

the regular way of using PCA, the model loadings are obtained from training data sets,

while the model scores are computed based on the real-time data set. The modified

PCA method is shown to be effective in detecting endpoint under 0.4%-0.8% open area.

Multiblock PCA [22] has been proposed as a method for identifying the subset of vari-

ables in etch process fault detection applications. The original variables are separated

into a set of subset blocks for further analysis, but the algorithm effectiveness greatly

relies on the availability of the prior knowledge about variable separation and hence is

not suitable for cases where such information is not available.

Recursive PCA (RPCA) [105] has been recently proposed to tackle the time-varying

behavior of semiconductor manufacturing processes due to equipment aging, sensor and

process drifts, preventive maintenance, and cleaning. The behavior, which is considered

part of normal process operation, is often reported as process faults when using a static

PCA model. RPCA is proposed to compensate for normal changes and has been shown

to be more effective for detecting process faults.

Artificial Neural Networks

ANNs have great flexibility in synthesizing nonlinear relationships from process data.

Even relatively simple ANNs, such as feed forward preceptron neural networks with

one hidden layer can approximate any continuous function [41].

Applications of nonlinear ANNs have been seen in time-series feature extraction and

multivariate data projection. The authors in [114] gave a discussion of the effectiveness
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of different nonlinear ANNs for feature extraction from data sets with various features.

In plasma etch applications, ANNs have been widely used in the prediction of etch rate,

uniformity, fault detection and classification, end point detection, etc.

The work of Kim [86, 87, 82, 84] has demonstrated that etch rate can be determined

from manipulated inputs, such as gas flows, power, pressure and bias, using ANNs.

Building up the models using off-line measurements and subsequently using them for

real-time predictions, 5-7% prediction errors are reported [86, 87, 82]. Himmel and

May [59] reported that ANN model using the PSM variables (RF power, pressure, elec-

trode gap, CCl4, He flow rate and O2 flow rate) as model inputs can provide more

accurate prediction of etch rate than manual operations. However, Lee and Spanos

[101] reported that no improvement on etch rate prediction can be distinguished when

comparing ANNs to a variety of statistical techniques such as PCA, PLS and least

squares regression.

Uniformity is referred to as a measure of the spatial variation in etch across the wafer.

Kim et al. [86] proposed using RF power, pressure and CF3 flow rate as ANN inputs to

predict the uniformity of oxide via etching in a CHF3/CF4 plasma and found that RF

power is the key input. In addition, faster etch is found to lead to less etch uniformity.

Kim and Kim [85] found that the addition of DC bias as an input only served to reduce

the accuracy and increase the model complexity. Kim et al [84] proposed using an ANN

model to predict the discrepancy in the sidewall bottom etch rate with respect to the

center etch rate, namely DSE. A neural network model was successfully constructed

to model the etching characteristics of DSE and the experiments show that a uniform

surface etching can be achieved, using the proposed ANN model. In addition, the re-

search also found that a large DC bias can produce a smaller DSE.

Fault detection and classification for plasma etch is a significant application area. Time

series neural network (TSNN) models were employed by Hong and May [62] to achieve

malfunction diagnosis of reactive ion etching. Employing two types of in situ mea-

surements: OES and residual gas analysis, the TSNN models have been shown to be

effective in achieving malfunction diagnosis with only a single missed alarm and a single
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false alarm occurring over 21 test runs. Similarly, the TSNN models are used to predict

the manipulated inputs (RF power, pressure and two gas flows) based on the variations

in seven OES lines, six atomic mass signals from a residual gas analyser and the sample

time index [61]. The sample time index is used to measure the aging of the chamber

and hence, an indicator of process drifts due to chamber residue build up. The system

demonstrated a sensitivity to performance deviations down to 10%.

ANNs have also been shown to be effective in addressing the issues of endpoint de-

tection [118]. Rietman et al. [132] showed that a back propagation neural network

with a structure of 24 inputs, 5 neurons and 1 output can provide robust detection of

etch rate of oxide etching in the polysilicon etch chamber. The ability to predict final

film thickness measurements from manipulated variables has been presented with more

precision than standard processing techniques [131]. Moreover, the DC bias was found

to be an important input variable affecting the resulting prediction accuracy. When we

assume that more input variables can help to improve model effectiveness, Allen et al.

[2] pointed out that the number of inputs are not a key factor in deciding the model

prediction effectiveness. By employing four OES variables, the proposed ANN model

gave an effective prediction of the etch endpoint.

When using full spectral OES data for ANN modeling, PCA is often performed as data

preprocessing step to reduce the data dimensions. Hong et al. [64] compared PCA

and ANNs for feature extraction from OES data and reported that a 226 wavelength

(chosen from the 2048) based ANN returned 7 features, while PCA returned 5, with

both giving prediction errors as low as 0.2%. Methods for selecting key variables as

ANN inputs vary with the choice of sensor data. Maynard et al. [118], for example,

proposed using a mean-variance-ratio based method for selecting the key variables from

PSM data, where the ratio is defined as:

M xi

σi
(2.8)

where i is the index of the signals. M xi and σ2
i can be expressed as:

M xi =
1
N

N∑

j=1

(xep
ij − xt

ij) (2.9)
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and

σ2
i =

1
N − 1

N∑

j=1

(xep
ij − xt

ij − M xi)2 (2.10)

for N wafers and j is the index of the wafer number, xep
ij denotes the signal at endpoint

and xt
ij denote the signal before endpoint. As a result, signals with large mean-variance-

ratio can be taken as sensitive signals w.r.t. endpoint and therefore, useful as model

inputs. Lin et al [107] showed the effectiveness of using stepwise regression to select

the key variables from a variety of sensor variables. Stepwise regression is also reported

useful for selecting the variables as inputs for multi-layer perceptron and radial basis

ANN models for chemical vapor deposition processes [38].

Closely-related to ANNs, support vector machine (SVM) has recently become a popu-

lar tool in time series forecasting. In plasma etching, SVM has seen successfully used

to detect endpoint with OES data, with PCA as a feature extraction method for re-

ducing the number of SVM inputs. Han et al. [51] reported that a PCA based SVM

method is effective for endpoint detection for BCl2/Cl2 etching of Al-Cu alloy stack.

In [13], a variety of methods such as PCA, kernel PCA and ICA have been compared

for key feature extraction. Results demonstrated that kernel PCA and ICA are better

than PCA and the joint use of feature extraction with SVM shows better prediction

than directly using SVM on the tested data sets. Sarmiento et al [137] proposed using

one-class SVMs to detect faults in a reactive ion etching system using optical emission

spectroscopy data. Results demonstrated that using normal operation data to train

the the one-class SVM, the model can provide a 100% detection of the process faults

occurring in their experiments.

While the supervised methods discussed above are promising, a key requirement is the

availability of metrology data, i.e. measurements of the targets that are of interest.

When such metrology data is not available, as is often the case due to cost and time

involved, the only option is unsupervised feature selection, which is the focus of this

thesis.
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Poly1
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Figure 2.5: Distribution of the polysilicon layers in the etching stack (Poly1 = The

first Polysilicon layer; Poly2 = The second Polysilicon layer).

2.3 Experimental Benchmark Data Sets

To estimate the effectiveness of the various unsupervised feature extraction algorithms

investigated in this thesis, a number of benchmark data sets are used, namely, three

OES data sets collected from plasma etch processes at a semiconductor manufacturing

factory and one simulated data set. These are referred to as IDS1, IDS2, IDS3 and

SDS1, respectively. Filtered and pre-processed versions of IDS1 and IDS2 are also used

as benchmark data sets and these are denoted as IDS1Filt and IDS2Filt, respectively.

2.3.1 Industrial Data Sets

IDS1 and IDS2

Silicon layer etch data were collected for a Hitachi ECR etch system used to etch the

poly-silicon layer on a 300mm wafer. As shown in Fig. 2.5, the etching stack contains

two polysilicon layers. Optical emission measurements for Poly1 and Poly 2 were col-

lected using an Ocean Optics USB2000 spectrometer connected to the process exhaust.

The generated data sets are referred to as IDS1 and IDS2, respectively.

The primary etchants used to etch the first polysilicon layer (Poly1) are HBr, Cl2 and

O2. The etching step takes 70 seconds, generating an OES data set having dimensions

of 91 × 2048, namely IDS1. To etch the second polysilicon layer (Poly2), HBr and

O2 are used. The resulting etch step takes 90 seconds, generating the OES data set

having dimensions of 101× 2048, namely IDS2. IDS1 is known to contain an end-point

signature while IDS2 does not.
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(a) (b)

(c) (d)

Figure 2.6: Data set visualisation (data mean-centered): (a) IDS1; (b) IDS1Filt; (c)

IDS2; (d) IDS2Filt.

Methods for data preprocessing, filtering and noise removal are discussed in detail in

Section 3.7.8 and Section 3.7.10, resulting in the generation of cleaned-up data IDS1 and

IDS2, namely IDS1Filt and IDS2Filt, respectively. IDS1Filt has dimensions of 91×1354

and IDS2Filt has dimensions of 101 × 572. Visualization of the four benchmark data

sets, IDS1, IDS1Filt, IDS2 and IDS2Filt is provided in Fig. 2.6.

IDS3

Metal layer etch data were collected for a Hitachi ECR etch system used to etch an

Aluminium alloy on a 300mm wafer. Transistors are the most basic units in a semicon-

ductor chip and metals are layered to connect these transistors to achieve the desired

functionality. The first metal layer (M1), the Aluminium-Copper alloy stack, is used to

connect the chip and the external circuit. Proper aligning M1 to the substrate layers is

important to avoid faulty functioning of a chip. A typical M1 stack consists of 5 layers,
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Figure 2.7: Components in a M1 stack.

Titanium (Ti), Titanium Nitride (TiN), Aluminium-Copper (Al-Cu) alloy, TiN and Ti

layers as shown in Fig. 2.7.

The primary etch gases used in the M1 etching were Boron Chlorine (BCl3) and Chlo-

rine (Cl2). To protect the side walls of the M1 stack from being etched, Oxygen (O2)

is used. Chlorine is Aluminium active and reacts spontaneously on contact with Alu-

minium, generating etch by-product AlCl3 as

2Al + 3Cl2 − > 2AlCl3. (2.11)

AlCl3 is the volatile product. The reaction between Aluminum and Oxygen occurs,

generating a surface Oxide (Al2O3) as

4Al + 3O2 − > 2Al2O3. (2.12)

Under the protection of a surface oxide (Al2O3), Chlorine cannot etch the Aluminium.

Hence, it is necessary to add BCl3. BCl3 is a known scavenger of O2 and reacts actively

with any Oxide, leaving a Boron Oxide film on the newly formed side walls of the M1

stack, protecting them from the mechanical etching and thereby improving the isotropy

of the etch. The released Aluminium can be etched away by Chlorine. The addition

of BCl3 also generates large Boron ions which enhances the mechanical etching. He-

lium (He), the cooling gas, is pumped to the backside of the wafer to control the wafer

temperature. Effective heat transfer across the wafer is critical to guaranteeing etching

uniformity across the wafer surface.
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(a)

Figure 2.8: A plasma etch OES data set for a single wafer for IDS3.

Optical emission measurements were collected using an Ocean Optics USB2000 spec-

trometer connected to the process exhaust. These measurements consisted of 2048

spectral channels over a wavelength range from 175 to 875 nm with a sampling interval

of 0.76s. Using this setup OES data was collected for 17 lots of 24 wafers, with each

wafer undergoing a two step etch process lasting 45s. The resulting data set is referred

to as IDS3. A sample data set for a single wafer is shown in Fig. 2.8.

2.3.2 Simulated Data Set

The simulated data set is generated to imitate OES data (having patterns in the time

domain) while using a small number of variables. The simulated data set is used in the

thesis to illustrate the properties of the algorithms investigated. The simulated data is

constructed from 5 signals defined as follows:

d1 = 200× sin(x)

d2 = 650× (1
8)x

d3 = 200× cos(x)

d4 = 150× |x− π|
d5 = 200× (1− 1

1+e(−8+2x) )

(2.13)
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Figure 2.9: (a) Plot of the 5 noise free signals, d1 to d5, used to generate SDS1; (b)

Plot of the complete set of noisy SDS1 features.

where the variates, x(∈ R1×100), are ranged from 0 to 2π with a sampling interval of

π/50. Within the given range of x, the features defined by d3 and d4 are similar, so in

effect there are only 4 distinctive features contained in the data (Fig. 6.5 (a)).

To generate 20 signals, each of the 5 signals is repeated 4 times with different noise

realisations. The data set is generated as

zi = α× d1 + (1− α)× d2 + 20× e1
i , i = 1, 2, 3, 4,

zi = (1− α)× d1 + α× d2 + 20× e2
i , i = 5, 5, 7, 8,

zi = d3 + 20× e3
i , i = 9, 10, 11, 12,

zi = d4 + 20× e4
i , i = 13, 14, 15, 16,

zi = d5 + 20× e5
i , i = 17, 18, 19, 20,

(2.14)

where ej
i , (j = 1, 2, 3, 4, 5) are independent identically distributed noise sequences,

drawn from a normal distribution function N(m, v) with mean, m = 0, and variance,

v = 1. α is a tuning parameter used for adjusting the similarity between the first eight

objects. When α = 0.5, without counting the effect of noise, all the first eight objects

are identical. The data set, Z ∈ R20×100 with α = 0 is referred to as SDS1. The

features contained in SDS1 are displayed in Fig. 6.5 (b).
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2.4 Conclusions

In this chapter, an introduction to plasma and plasma etching techniques and process

diagnostic devices has been given to provide an in-depth understanding of the technical

background of this research. Extensive literature on the feature extraction techniques

applied to plasma etching has been reviewed, which highlights the fact that due to

the lack of process metrology data, only unsupervised feature extraction techniques

are selected as the research focus of this thesis. Experimental benchmark data sets

have been introduced to estimate the effectiveness of the various unsupervised feature

extraction algorithms investigated in this thesis.



Chapter 3

Principal Component Analysis

3.1 Introduction

The technique of principal component analysis (PCA) was first proposed by Pearson

in 1901 [124] and Hotelling in 1933 [65]. Pearson’s and Hotelling’s papers adopted two

different approaches. Pearson’s approach focuses on seeking the best-fit straight line

or plane to represent the points in a p-dimensional space. In this framework, PCA

is equivalent to a geometric optimization problem [78]. Hotelling’s approach was con-

cerned with finding a smaller ‘fundamental set of independent variables’ that can be

used to determine the values of the original p variables. The resulting variables are

referred to as ‘components’. Hotelling chose his ‘components’ to maximise the total

variance of the original variables explained by the components, leading to a singular

value decomposition problem.

However, both these approaches require considerable computing power. Before the

era of the computer, it was not feasible to do PCA for more than four variables [78].

Nowadays, PCA is widely used in areas such as agriculture, biology, chemistry, clima-

tology, demography, ecology, economics, food research, genetics, geology, meteorology,

oceanography, psychology, quality control, etc [78] for multivariate data analysis, com-

pression and visulisation [67].

OES has been widely used to monitor the chemistry of plasma to achieve different ob-

jectives of process control, e.g. plasma modeling [20, 63, 128] and etch point detection

37
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[187, 172]. With the OES footprint of each wafer having over 2000 dimensions, direct

visualisation and monitoring of variations in the plasma chemistry across wafers and

across lots is impractical. Fortunately, optical emission spectra are inherently highly

redundant with the result that PCA based methods prove to be effective at achieving

substantial data compression without losing valuable information on plasma changes.

Considering the ability of using PCA in summarising the OES data, Toprac et al [161]

and White et al [171] proposed that it is adequate to use the first four PCs, while

Han et. al [52] proposed that any PC that can explain over 10% of the whole variance

should be considered. Yue et al [185] proposed that the second and third PC scores are

effective for spotting etch end points and the corresponding PC loadings can be used

to select the key variables that cause the changes. Other application like Hotelling’s

T-square calculated based on PC scores and Q-statistics have been widely employed

in the control of process variations [94, 95, 110, 171]. Direct visualisation of the 2-D

plots of PC scores is also proposed useful in spotting the changes in process states, such

as power, different percentage of gas composition [170] and the changes across lots [174].

In this chapter, the application of PCA to the analysis of OES data from plasma

etch process is explored. The basic theory of PCA is first introduced, followed by the

discussion of numerical solutions. Conventional methods of plotting the PC scores are

applied to the OES data with experimental results presented. A novel low cost method

for monitoring changes in PC loadings is then proposed. The effectiveness of using

the proposed method for exploring the process variations contained in the high-volume

OES data is demonstrated. Finally, the noise level in OES data is investigated and an

approach developed to estimate the appropriate noise filter bandwidth.

3.2 Basic PCA Theory

Among the numerous books and articles written about PCA, the book by Jolliffe [78]

has achieved the most popularity. This book provides the first comprehensive de-

scription of the history, existing and potential applications of PCA, theoretically and

practically. Another useful work is the toolbox developed by Wise and Gallagher [176],
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which has been widely employed as the computer realization of the PCA technique.

3.2.1 Definition

The objective of PCA is to provide a low-dimensional representation of a high dimension

data set, while retaining the maximum amount of the variance observed in the original

data. Given a data set X ∈ Rm×n (m observations of the n variables) and unit length

direction vector p1 ∈ Rn×1, the projection of X onto p1 is given by

t1 = Xp1, (3.1)

where t1 ∈ Rm×1 are the coordinates of each data point on the p1 axis. If X is mean

centered, then the variance of the data in the direction p1 can be expressed by

var(t1) =
tT1t1

m− 1
=

pT
1(X

TX)p1

m− 1
. (3.2)

In PCA the direction p1 is chosen to maximise var(t1), i.e.

p̂1 =arg max
p1

pT
1(X

TX)p1

m− 1
, s.t. ||p1||2 = 1

=arg max
p1

pT
1(X

TX)p1, s.t. ||p1||2 = 1

=arg max
p1

pT
1(X

TX)p1

pT
1p1

, s.t. ||p1||2 = 1

(3.3)

Note that the expression pT
1(XTX)p1

pT
1p1

is the well known Rayleigh Quotient which is max-

imised when p1 is the eigenvector of XTX associated with the largest eigenvalue of

XTX. Thus the direction of largest variation in data X is given by the largest eigen-

vector of its covariance matrix XTX. To calculate the direction with the next largest

data variation, the contribution to X in the direction p1 needs to be removed, leading

to the generation of the residual data matrix X1,

X1 = X− t1pT
1. (3.4)

Correspondingly, the maximum variance of t2,

var(t2) =
pT

2(X
T
1X1)p2

m− 1
(3.5)

occurs when p2 is the eigenvector of XT
1X1 associated with its largest eigenvalue. By

repeating the same procedure, additional pi can be obtained until the residual matrix
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becomes zero. Since the largest eigenvector of XT
1X1 is the same as the second largest

eigenvector of XTX and so on, it follows that all the eigenvectors of XTX can be com-

puted simultaneously and sorted in descending eigenvalue order to give pi ranked in

order of significance.

Various names are used in the literature to refer to pi and ti [78]. In this thesis pi and

ti are referred to as principal component loadings and scores, respectively and each

pair of pi and ti is referred to as one principal component (PC).

Given X with rank r, the PCA decomposition of X can be expressed as a sum of r

matrices with rank 1 [69]:

X =
r∑

i=1

tipT
i = TPT, (3.6)

where P(∈ Rn×r) is an orthogonal matrix with columns pi defined as:




pT
i pj = 0, ∀ i 6= j

pT
i pj = 1, i = j

(3.7)

and T(∈ Rm×r) = [t1, · · · , tr]. It follows that

ti = Xpi and T = XP. (3.8)

PCA can be viewed as projecting data points from the original X-space to a new space

spanned by the principal components. The projection between the spaces is defined by

pi. As illustrated in Fig. 3.1 for a 2-D example, the elements of p1 are the projections

of a unit vector along p1 on the axes of the original X-space, i.e. the cosine and sine

of angle θ. The perpendicular projection of the data onto the PC direction given by p1

is expressed in t1. Thus each element of t1 corresponds to the new coordinate of the

individual point along p1.

3.2.2 Singular Vector Decomposition

Singular vector decomposition (SVD) is another popular multivariate analysis method,

which underpins PCA. When PCA is calculated using the data covariance matrix, SVD

provides a computationally efficient and numerically robust method of finding PCs [55].
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Figure 3.1: Illustrating PCA in a 2-D example

Given a m× n matrix X, the SVD of X can be expressed as [121]:

X = UΣVT =
r∑

i=1

σiuivT
i (3.9)

where U ∈ Rm×r = [u1,u2, · · · ,ur] and V ∈ Rn×r = [v1,v2, · · · ,vr] are the left

singular matrix and right singular matrix, respectively, UTU = I and VTV = I. Σ is

a r × r diagonal matrix with diagonal elements σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0 known as the

singular values.

Using SVD to compute PCA, the matrix ill-conditioning problem is avoided. The

relationship between SVD and PCA is investigated as follows. Consider the covariance

matrix XTX,

XTX = VΣUTUΣVT = VΣ2VT. (3.10)

Since V is orthogonal, Eq. (3.10) can be rewritten as

XTXvi = σ2
i vi, (3.11)

where vi is the ith column vector of V and σi is the ith element in the diagonal of

Σ. This shows that vi is simply an eigenvector of XTX and σ2
i is the corresponding

eigenvalue. Thus the square root of the eigenvalues of XTX are the singular values of

X and the column eigenvectors are the right singular vectors of X. Equivalently it can

be shown that ui can be calculated as the eigenvector of XXT, i.e.

XXTui = σ2
i ui, (3.12)
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where ui is the ith column vector of U. Thus comparing the definition of PCA, X = TPT

with that of the SVD of X, X = UΣVT, it follows that

P = V and T = UΣ, (3.13)

where PTP = In, P are the eigenvectors of XTX and the right singular vectors of X.

3.2.3 Nonlinear Iterative Partial Least Squares

Another popular method for calculating PCs is the so-called nonlinear iterative partial

least squares (NIPALS) algorithm [45]. SVD can be used to calculate all r PCs in one

step, while NIPALS can be used to calculate them one at a time in order of significance.

Thus, when only a few PCs are needed, NIPALS is computationally much more efficient

and requires less memory than SVD. The algorithm details can be described as follows

[45]:

Step 1: Initialisation. i = 1 and X is mean centred or standardised, depending on

the problem.

Step 2: Randomly take a column vector x (∈ Rm×1) from X and assign

ti = x. (3.14)

Step 3: Calculate pi (∈ Rn×1) :

pi =
XTti

tTi ti
(3.15)

Step 4: Normalize pi :

pi =
pi

‖pi‖2
(3.16)

Step 5: Calculate tinew :

tinew = Xpi (3.17)

Step 6: Compare tinew and ti.

(a) If they are the same, then store ti and pi in T and P, respectively and

go to Step 7.

(b) Otherwise, ti = tinew and go back to Step 3.
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Step 7: Stop condition. Check if the required number of PCs has been obtained.

(a) If yes, exit the algorithm and return P and T as the result.

(b) Otherwise, deflate X and increasing the PC count,

X = X− tipT
i

i = i + 1.
(3.18)

and go back to Step 2.

The operation of NIPALS can be seen by substituting Eq. (3.17) into Eq. (3.15), giving

pi =
XTXpi

tTi ti
= cXTXpi, (3.19)

where c is a scalar and pi are the eigenvector of XTX. Equivalently ti is the eigenvector

of XXT. Thus NIPALS and SVD are in essence equivalent in terms of calculating

principal components.

3.3 Selecting the Number of PCs

An important issue with PCA is how to choose the number of PCs. No doubt, the

more PCs selected, the more information in the data can be retained. However, if the

data is corrupted by noise then additional components may have little or no useful

information. Meanwhile, the ability of using PCs to summarise data is destroyed.

There are a few typical methods dealing with this issue. One is the so-called cumu-

lative percentage of total variation. Given a preset threshold, say 90% or 95%, the

required number of PCs is the smallest value for which the accumulative percentage

of variance exceeds the threshold. The scree graph, [15] another commonly used ap-

proach, involves looking at a plot of accumulated percentage of variance explained by

PCs against the number of PCs and deciding the number of PCs that corresponds to

the ’scree’ point in the plot. Cross validation [177] can be used to select the minimum

number of PCs necessary for adequate prediction. The data points in the original data

set are randomly selected and separated into training and test data. The model is built

using training data and validated by the test data. Model prediction is measured by

the prediction error sum of squares as a function of the number of PCs. Using this
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Figure 3.2: (a) Accumulative variance explained as a function of the number of PCs;

(b) Variance explained by each PC.

method, the selected model avoids including noise only PCs.

For OES, the simple method of identifying the scree point of the accumulative percent-

age of variance plot is normally employed to select the number of PCs. Taking lot 10

of the IDS3 benchmark data set, lot10-IDS3, as an example, the accumulative variance

explained as a function of the number of PCs for all 24 wafers is shown in Fig. 3.2 (a)

(each line corresponds to one wafer) and the variance explained by each PC is shown

in Fig. 3.2 (b). The ‘elbow point’ in Fig. 3.2 (a) occurs when the number of PCs is

equal to 3, corresponding to about 99% variance explained. The other PCs (from the

4th PC onwards) are omitted due to the low level of significance (less than 1% variance

explained by each PC as shown in Fig. 3.2 (b)).

3.4 Monitoring PC-Loading Direction

If PCA is performed on the OES data as a whole process, trends can only be observed by

monitoring the time evolution of the scores. However, if PCA is applied on a wafer-by-

wafer or lot-by-lot basis, very effective monitoring of process variation can be achieved

by tracking the changes in the directions of the PC loadings. Changes can be expressed

either in terms of the angle difference between vectors or the magnitude of the vector
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Figure 3.3: Measuring changes in loading vector directions

difference between them [190]. The angle θ (in radians) is given by

θ = arccos(
v1vT

2

||v1||2||v2||2 ), (3.20)

while the magnitude of the vector difference 4v is simply defined as

|4v| = ||v1 − v2||1. (3.21)

Since, by definition, loading vectors are unit length, it follows that for small θ the two

measures are approximately equivalent, i.e. |4v| ≈ θ.

As illustrated in Fig. 3.3, v1 and v2 denote the two loading vectors, respectively. As a

summarization of changes in vector directions, either θ or |4v| can be used.

3.4.1 Lot-by-lot Analysis

Lot-by-lot analysis refers to the analysis on the variations that takes places across lots.

Because we are concerned with tracking process changes over time, the lot data is un-

folded along wavelength direction. Details are illustrated in Fig. 3.4.
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Figure 3.4: Unfolding of the 3-way OES data block along wavelength direction. Each

block corresponds to a lot of 24 wafers.

Having unfolded the OES data along wavelength direction, PCA can be performed by

treating each lot of 24 wafers as a single data matrix. Mean centering is applied to

each lot. We will refer to the resulting PCs as lot-PCs, consisting of lot-PC loadings

and lot-PC scores. The variance explained by each lot-PC is plotted as a function of

lot number in Fig. 3.5 (a) for the 17 lots in the IDS3 benchmark. Fig. 3.5 (b) shows

the accumulated variance explained by the lot-PCs. As can be seen, the first lot-PC

captures over 85% of the data variation observed across all 2045 wavelengths and the

first three principal components together can explain over 99% of the variance across

all lots. Therefore, it is feasible to use the first three lot-PCs to represent the OES data

for each lot.

A closer look at Fig. 3.5 (a) shows that a sharp change at lot13-IDS3 occurs for the

variance explained by each of the lot-PCs. Analysis of the variation in the direction of

lot-PCs across lots, as shown in Fig. 3.6, reveals that the sharp change is linked to the

significant change in the orientation of lot-PCs from lot13-IDS3 onwards. Switching the

comparison reference from lot1-IDS3 to lot10-IDS3 leads to the results shown in Fig.

3.7, which demonstrate that the sharp change at lot13-IDS3 is not reference-dependent.

Further analysis of the difference in the absolute values of the first PC loadings between

lot12-IDS3 and lot13-IDS3 (Fig. 3.8) shows that the channels in the range 200-600 and
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Figure 3.5: (a) Variance explained by each lot-PC; (b) Accumulated variance ex-

plained by the lot-PCs.

1300-1400 have an increased contribution to the pattern contained in the PC score,

while the channels in the range 600-1200 and 1700-2000 have a reduced contribution.

Because the number of channels involved is large, it is difficult to establish which

channels are the main factors contributing to the difference between lot12-IDS3 and

lot13-IDS3, but at least the difference between channels from different areas has been

spotted. Following investigation it was determined that the plasma change was as a

result of a small drift in the flow rate of a cooling gas applied to the backside of the

wafers during etching, a change that was not detected by the existing plasma chamber

process monitoring schemes.
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Figure 3.6: Variation in lot-PC

(loading) direction across lots (with re-

spect to lot1-IDS3): (a) The first lot-

PCs; (b) The second lot-PCs; (c) The

third lot-PCs.
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Figure 3.7: Variation in lot-PC

(loading) direction across lots (with re-

spect to lot10-IDS3): (a) The first lot-

PCs; (b) The second lot-PCs; (c) The

third lot-PCs.
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Figure 3.8: (a) The first PC loading of lot12-IDS3 and lot13-IDS3; (b) A plot of the

difference between the absolute values of these two loadings.

3.4.2 Wafer-by-wafer Analysis

Wafer-by-wafer analysis allows us to explore the variation that takes place across wafers.

Here, we simply perform PCA analysis on individual wafer OES data sets and refer

to the resulting PCs as wafer-PCs, consisting of wafer-PC loadings and wafer-PC scores.

Comparing the changes in the loading directions, it is necessary to select a reference.

Here, the first lot-PC from lot1-IDS3 is chosen. Fig. 3.9 shows the variation in the

wafer-PC1 directions over all wafers. The sharp change arises from wafer 267 onwards.

A further investigation of the number of wafers contained in each lot (Table 3.1) shows

that wafer 267 corresponds to lot13-IDS3. Hence, the plasma change at lot13-IDS3

observed in the lot-PC analysis is clearly present in the wafer-PC analysis as well.

lot index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

No. of wafers 24 24 24 24 7 19 24 24 24 24 24 24 24 24 24 24 18

Table 3.1: Number of wafers contained in each lot.

Another feature can be observed is that large spikes are evident throughout Fig. 3.9

(a). These occur at the first wafer in each lot. This is highlighted in Fig. 3.9 (b) which

shows variance over a two lot interval. These sharp changes were attributed to changes
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Figure 3.9: Variation in wafer-PC (loading) direction across wafers (with respect to

the first lot-PC loading): (a) The first wafer-PCs; (b) Zoomed version of (a) for wafers

from 120 to 170; (c) The second wafer-PCs; (d) The third wafer-PCs.
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Figure 3.10: Variation in wafer-PC (loading) direction across wafers (with respect

to the first lot-PC loading in each lot): (a) The first wafer-PCs; (b) The second wafer-

PCs; (c) The third wafer-PCs.
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in the absorption characteristics of the plasma chamber wall as a result of a cleaning

cycle that is performed between lots. While a dummy etch cycle is performed following

each clean cycle to counter this affect, it is clear from Fig. 3.9 (b) that cleaning still

has a significant impact on plasma characteristics for the first and to a lesser extent,

the second wafer etch of each lot. A closer look at Fig. 3.9 (a) also shows that the

spikes occur at the last wafer in lot1-IDS3, lot2-IDS3 and lot10-IDS3. These changes

reflect the deterioration in plasma etcher performance due to the accumulation of etch

by-products on the chamber wall, which necessitates the use of cleaning cycles in the

first instance.

Variation in the second and third wafer-PC directions is shown in Fig. 3.9 (c) and (d),

respectively. The across-wafer changes are also evident. To analyse the intra-lot wafer

performance, the lot-PCs are selected as the reference for comparing the variation in

the wafer-PCs for all intra-lot wafers. As shown in Fig. 3.10, the over-lot changing

trends are removed and the large spikes are only evident for the first wafer in each lot.

To investigate which channels mainly contribute to the wafer-to-wafer differences, a

comparison analysis of the PC loadings from the outlier and normal wafers is developed.

As a comparison benchmark, the average of the first PC loadings for the normal wafers

(defined as the fifth to the tenth wafers in each lot) is calculated as:

p̄N
1 =

14∑

i=1

10∑

j=5

(pij
1 )/(14× 6), (3.22)

where p̄N
1 denotes the average of the first PC loadings for the normal wafers, pij

1 denotes

the first PC loading for the jth wafer in the ith lot. Note that only the lots having 24

wafers are employed, leading to 14 lots in total. To provide a robust comparison, the

average of the first PC loading of the outlier wafers, p̄K
1 , is defined as:

p̄K
1 =

14∑

i=1

pK
1 /14, for K = 1, 2, 24, (3.23)

where pK
1 denotes the first PC loading of the Kth wafer in each lot. This is used as the

measure of the outlier wafers, K = 1, 2 and 24.
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Figure 3.11: Difference in the absolute values of the first PC loading: (a) Between

the first and normal wafers; (b) Between the second and normal wafers; (c) Between

the last and normal wafers; (d) Between the tenth and normal wafers.

The differences between p̄1
1, p̄

2
1, p̄

24
1 and p̄N

1 are demonstrated in Fig. 3.11 (a), (b)

and (c), respectively. A plot of the difference between p̄10
1 and p̄N

1 is also included in

Fig. 3.11 (d) as a control to indicate the normal level of variability between wafers.

It is obvious that the channels contributing to the wafer-to-wafer changes are similar

for the first two wafers, though the differences are less significant in the second wafer.

Comparing Fig. 3.11 (a), (b) and (c) shows that the loading pattern of the last wafer

is different from that of either of the first two wafers, indicating that between the

start and end of etching of a lot of wafers, significant changes occur in the plasma

etch chamber. However, it is difficult to identify the critical variables that cause the

differences directly using PCA.
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Figure 3.12: The first three PC scores of each wafer in lot10-IDS3: (a) t1 vs t2; (b)

t1 vs t3; (c) t2 vs t3; (d) t1 vs t2 vs t3.

3.5 Score Pattern Trends Across Wafers

As an illustration of the data compression and pattern visualisation capabilities of

PCA, the score patterns generated by the OES data for all wafers in lot10-IDS3 are

investigated. As a reference model, the lot-PC loadings for lot10-IDS3 were used and

the PC-scores for each wafer were obtained according to Eq. (3.8). As shown in Fig.

3.12, it is evident that the evolution of the OES data for the first, second and last wafers

(highlighted by the red color and labels) is substantially different from the remaining

wafers. This trend is detected in each of the 2-D score plots, but the 3-D plot provides

the best visualisation of the trends.
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Figure 3.13: Method for unfolding a 2-D OES data matrix into a vector for a batch

of wafers (v denotes the wavelengthes and t denotes the time samples).

3.6 Conventional PCA Analysis

The advantage of using time series data (PC scores as shown above) to detect the

trends across wafers is that the difference between individual wafers can be highlighted

in time. However, when comparisons are required over a large number of wafers, 2-D and

3-D visualisation becomes ambiguous and computationally intensive. An alternative

solution is to reduce each time series data to a small number of features, or even to

a single point. In this section, methods of achieving single point score representation

of wafers using PCA are described. Essentially these methods are designed to transfer

the 2-D OES data into 1-D vector format.

3.6.1 Unfolding Two Dimensional OES into One Dimension

One approach for unfolding is to rearrange the 2-D OES data along the time direction.

As shown in Fig. 3.13, each wavelength (vertical direction) is measured over a number

of time samples (horizontal direction). For unfolding, each wavelength time series is

appended to its neighbour, resulting in a single vector with v× t sample points (v and

t denoting the number of wavelengthes and time samples, respectively) for each wafer.

Using this approach a lot of w wafers of OES data can be represented as a w× (v × t)

matrix, (here w = measurements and v × t = number of variables) allowing direct

application of PCA. The obtained data is referred to as the unfolded-1 data.
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Figure 3.14: Applying PCA to the unfolded-1 OES data for wafers in lot 10: (a)

The first vs the second score; (b) The second vs the third score.

Applying PCA to the unfolded-1 data for lot10-IDS3, the variance captured by each of

the first three PCs is 61.27%, 18.22% and 10.33%, respectively (89.8% accumulatively

for the first three PCs), justifying the use of the first three PCs to represent the OES

data for lot10-IDS3. As shown in Fig. 3.14, the distinctive performance of the first two

and last wafers are recognised from the plot of t1 against t2, while in the plot of t2

against t3, only the first and last wafers show up as outliers.

Further investigating the intra-lot wafer patterns, 6 lots (lot7-IDS3 to lot12-IDS3) are

examined. PCA analysis on these data shows that 56.56%, 16.55% and 12.15% of the

variance are captured by each of the first three PCs, respectively (85.28% accumula-

tively by the first three PCs). The 2-D plots of the first three PC scores (in Fig. 3.15)

show that the performance of the first and last wafers is distinct from the other wafers

in the same lot.
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Figure 3.15: Applying PCA to the unfolded-1 OES data for wafers in 6 lots (from

lot7-IDS3 to lot12-IDS3): (a) The first vs the second score; (b) The second vs the

third score.

Extending the PCA analysis to all 380 wafers in the IDS3 data set, a high accumulative

percentage (94.53%) of variance is captured by the first three PCs (87.99%, 3.79% and

2.76% of the variance by each of the first three PCs, respectively). As can be seen in Fig.

3.16 (a), the sharp change occurs at lot13-IDS3 in the first score, which is consistent

with the pattern shown by the wafer-by-wafer monitoring of PC-loading directions,

described in section 3.4.2. In Fig. 3.16 (b), the big spike occurs at every first wafer in

each lot and in Fig. 3.16 (c), the big spikes occur at every first wafer and to a lesser

extent at the last wafer. These patterns are more clearly captured in the 2-D plots of

PC scores as shown in Fig. 3.17.
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Figure 3.16: Applying PCA to the

unfolded-1 OES data for all wafers: (a)

The first score; (b) The second score;

(c) The third score.
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Figure 3.17: Applying PCA to the

unfolded-1 OES data for all wafers: (a)

The first vs the second score; (b) The

first vs the third score; (c) The second

vs the third score.
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3.6.2 Time Series Data Summarised by Standard Deviation

Time series information contained in OES data can also be summarised by data statis-

tics, such as mean, standard deviation, kurtois and skewness, etc. As an example,

standard deviation is employed with the result that each wafer can be represented by

a single score point using PCA. As illustrated in Fig. 3.18, the information contained

in the time series for each wavelength is summarised by the standard deviation. The

obtained data is referred to as the unfolded-2 data.

v

t

…
… v

…
…

std

Figure 3.18: Method for unfolding a 2-D OES data matrix into a vector for a batch

of wafers, std=standard deviation.

Applying PCA to unfolded-2 data for lot10-IDS3, 65.4%, 27.2% and 4.14% of the vari-

ance are captured in the first, second and third PC, respectively (96.7% accumulatively

by the first three PCs). The first two and last wafers show up as outliers in the 2-D

plots of the PC scores as shown in Fig. 3.19 and the pattern is confirmed by extending

the examined data to 6 lots (from lot7-IDS3 to lot12-IDS3) as shown in Fig. 3.20.

Extending the PCA analysis to all 380 wafers in IDS3, 91.12%, 4.75% and 2.49% of

the variance are captured by each of the first three PCs, respectively (98.36% accumu-

latively by the first three PCs). The 1-D and 2-D plots of the first three PC scores

are shown in Fig. 3.21 and Fig. 3.22, respectively. As can be observed a sharp change

occurs at lot 13 and the first two and last wafers show up as outliers. Hence there are

no more new patterns found in the analysis of unfolded-2 data than the previous anal-

ysis, while as compared to the unfolded-1 data, the unfolded-2 data is computationally



CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS 59

−250 −200 −150 −100 −50 0 50 100 150 200
−50

0

50

100

150

200

t
1

t 2

1

2

3
4

5678

9

10
11

12
13

14

1516 17
18

19

20
21

22

23

24

(a)

−50 0 50 100 150 200
−40

−30

−20

−10

0

10

20

30

40

t
2

t 3

1
2

3

45
6

7

8

9
10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

(b)

Figure 3.19: Applying PCA to the unfolded-2 OES data for wafers in lot10-IDS3:

(a) The first vs the second score; (b) The second vs the third score.
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Figure 3.20: Applying PCA to the unfolded-2 OES data for wafers in 6 lots (lot7-

IDS3 to lot12-IDS3): (a) The first vs the second score; (b) The second vs the third

score.
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more efficient. To investigate which variables are the main factors contributing to the

difference in the scores, the PC loadings are employed. As shown in Fig. 3.23, the

obvious difference between the first two loadings occurs at channels ranged from 400-

600, 1300-1400 and 1550-2000, while to a less extent, the difference occurs at channels

ranged from 200-400, 600-800 and 1100-1300. However, it is still difficult to identify

the vital variables directly using PCA.
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Figure 3.21: Applying PCA to the

unfolded-2 OES data for all wafers in

IDS3: (a) The first score; (b) The sec-

ond score; (c) The third score.
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Figure 3.22: Applying PCA to the

unfolded-2 OES data for all wafers in

IDS3: (a) The first vs the second score;

(b) The first vs the third score; (c) The

second vs the third score.
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Figure 3.23: (a) The first two PC loadings for the PCA analysis of unfolded-2 data

set; (b) Difference between these two loadings.

3.7 Noise Analysis

In the practice of measuring OES signals, noise is inevitably included in the mea-

surements. Noise level or strength dictates the quality of measured signals. When

significant noise is present, the signals can be completely destroyed by noise, and even

to a less extent, noise makes the identification and interpretation of the signal patterns

unreliable. Therefore, appropriate filtering is needed to clean up the signals. PCA

analysis shows that the main OES variations are captured in the first few PCs, while

in the residual data, no evident features are observable, which helps to confirm the

existence of noise.

3.7.1 Noise Sources

Before we present the noise analysis, it is beneficial to have an awareness of different

noise generation sources in OES. Normally, we consider the noise as being the high

frequency variations in the signals. However, in our data, not all the variations are

caused by noise. As such, we divide different variation sources into two categories:

process variation and sensor noise, where the process variation refers to any variations

occurring in the plasma emission system and sensor noise refers to the noise occurring

in the plasma measuring system. The inspiration for this categorization can be found
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in [48].

Process variations can be categorized as follows:

• recipe changes, which are set according to different etching process and different

manufacturing product requirements (low frequency changes);

• controlled variable fluctuations, such as pressure, gas flow rate, power, etc (fre-

quency range determined by closed loop bandwidth);

• plasma interaction with the wafers, which can cause variations in the wafer tem-

perature (low frequency);

• exchange of chemicals due to the etching process itself (low frequency);

• plasma sputtering or deposition on the chamber walls; This refers to the phys-

ical interaction between plasma and the etching chamber walls, which affects

the chemistry of the plasma, i.e. a combination of leaching of chemicals into

the plasma from the chamber walls and absorption of plasma chemicals by the

chamber walls;

• external disturbances; This refers to environmental changes around the etch

chamber. In practice, these circumstances are insignificant as the chamber wall

is sufficiently thick to insulate the plasma from external temperature changes;

• process transients; i.e. the transients between different process steps or different

wafers, where the plasma is ignited, builds up and becomes stable and the chamber

wall gradually heats up to its operating temperature;

• instability of etch by-products; Plasma generates volatile etch by-products at

room temperature. The interactions between the molecules and atoms of differ-

ent etch by-products are unpredictable, causing great uncertainty in the chemical

optical emissions (high frequency).

Some of the process variations are identifiable, for example, the recipe changes, which

can lead to obvious phase changes in the signals. Another example is the process
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transients which can normally be observed in the first few samples of the signals af-

ter startup. However, other process variations such as those caused by the plasma

interaction with the wafers and plasma sputtering on the chamber walls are not easily

identified. This is largely due to the instability of the plasma, the performance of which

is generally unpredictable.

For a better understanding of the sensor noise, we will firstly give a brief description

of the OES detection mechanism, as shown in Fig 3.24. The light intensity emitted by

the plasma, I(λ), is considered as a function of wavelength and the output at a certain

wavelength, O(λ), is measured as the number of photons emitted in a given time, t.

The relationship between the input and output can be formulated as follows [48]:

O(λ) = K · f · I(λ) · tr(λ) · q(λ) · t (3.24)

where K is the gain of the CCD, f is the view factor of the plasma, tr is the transmis-

sion function of the OES transmission system, and q is the quantum efficiency of the

detector. Note that tr and q are both frequency-sensitive.

Based on the form of the OES measurement system (shown in Fig. 3.24), the sources

of sensor noise can be itemized as follows:

• the view factor, f , which can be affected by the location of observation and the

reduction in the clarity of the OES viewing window due to sputtering,

• quantum efficiency, the percentage of photons being converted into a photoelec-

tron, when the photon hits the CCD detector,

• the CCD integration time, t,

• shot noise, caused by the random fluctuations in photon arrival times. The

strength of shot noise increases with signal strength. Thus, for large signals,

shot noise generally dominates the noise.

• thermal noise (or dark noise), generated by thermal agitation of electrons in a

conductor; By cooling the CCD detector, dark noise can be dramatically reduced;
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Figure 3.24: Diagram showing the OES measuring system

• and readout noise, including the conversion from an analogue signal to a digital

number (the conversion is not perfectly repeatable even for the case of reading

out the same pixel twice and each time with the same charge, the value could be

slightly different) and the random fluctuations in the electronics.

From the list of the sensor noise sources, we can see that most noise can be regarded as

white noise (broadband noise). Low pass filtering of the signal can be used to suppress

the noise, but only at the expense of also suppressing the contributions of the high

frequency process variations. However, this is not a concern as we are only interested

in patterns generated by recipe changes, phase transitions and process transients that

operate at a much lower frequency.

3.7.2 Selecting the Filter Bandwidth Based on Single Channels

To obtain a clearer representation of the signal patterns, we have to consider using

filtering to remove the high frequency noise. Here, a low-pass Butterworth filter is used

in preference to other widely used filters such as the Chebyshev Type I/Type II filter

and the elliptic filter [10], as it is characterized by having a flat gain in its pass band

and hence, provides minimal distortion of the filtered signals. Due to the slow roll-off

into the stop band, a high-order Butterworth filter is needed to obtain faster roll-off.

Here we employ a 4th-order Butterworth filter. To determine the cut-off frequency of

the low-pass filter, we begin by employing the DFT (Discrete Fourier Transform) [9] to

view the signal frequency distribution.
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Taking the strongest OES signal as an example, Fig. 3.25 (a) and (b) show the DFT

and the cumulative PSD (Power Spectral Density) analysis of the signal, respectively.

The cumulative PSD analysis shows that 76.3% of the signal power is contained in

the bandwidth of 0.1Hz and 88.2% of the signal power contained in the bandwidth

of 0.3Hz. As a second example, the DFT and the cumulative PSD (Power Spectral

Density) analysis of the signal with the third highest power is shown in Fig. 3.26.

Let xi(Rm×1) denote the raw signal from the ith OES channel, for a given a low-pass

Butterworth filter, the filtered signal (xf
i) is obtained by

xf
i = filt(xi) (3.25)

where filt(·) is the butterworth filtering function and

xr
i = xi − xf

i, (3.26)

where xr
i denotes the residual. To select the best low-pass filter (LPF) bandwidth, fB,

out of the set of sample frequencies, f, tested, we define

fB = arg min
f
|corr(xf

i,x
r
i)|, ∀f ∈ f (3.27)

where corr(·) denotes the correlation function. Eq. (3.27) defines the optimum cut-off

frequency as the one that gives the lowest correlation between the filtered signal (xf
i)

and the residual signal (xr
i). A correlation analysis of the filtered signal and residual

signal, as a function of LPF bandwidth is shown in Fig. 3.27 for the two selected

signals.

In Fig. 3.27 the shaded area shows the 95% confidence interval for the correlation co-

efficient estimates. Fig. 3.27 (a) shows that the minimal correlation is obtained when

f = 0.09Hz and that the correlation is statistically insignificant for f ≥ 0.0755Hz.

Using the same method, fB ≥ 0.0708Hz for the second signal.

To evaluate the consistency of this approach, fB was computed for each of the OES

signals. Based on a DFT and cumulative PSD analysis, the search range for fB is set

between 0.001Hz and 0.2Hz. A plot of fB for all the OES channels is shown in Fig. 3.28
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Figure 3.25: Analysis of the strongest signal (IDS1): (a) DFT analysis; (b) Cumu-

lative PSD analysis
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Figure 3.26: Analysis of the signal with the third highest power (IDS1): (a) DFT

analysis; (b) Cumulative PSD analysis
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Figure 3.27: Correlation between the filtered signal and residual signal (IDS1),

obtained by using different filter cut-off frequencies (shaded area showing the 95%

confidence interval for the correlation coefficient estimates): (a) Strongest signal; (b)

The signal with the third highest power
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Figure 3.28: fB for all the OES signals (IDS1): (a) Channel ordered sequentially;

(b) Channel sorted in descending power order

(a), which shows that there is significant uncertainty in the value of fB across channels

and that there is some local correlation in values. Fig. 3.28 (b) reveals that the value

of fB varies as a function of signal power with the value of fB at which correlation

becomes insignificant, decreasing as the power in the signal decreases. In addition the

spread in fB increases substantially as signal power decreases (from 0.06-0.08Hz for

high power signals to 0.01-0.12Hz for low power signals).

Since fB estimates in Fig. 3.28 (b) are lower bounds on suitable LPF bandwidths and

the values computed for the largest signal powers are the most reliable, fB ≥ 0.09Hz

represents a good compromise (96.2 % of channels) and choosing fB = 0.1Hz achieves

minimal correlation for most channels (98.1 % of channels).

3.7.3 Principal Component Analysis of the Residual Signals

The single channel analysis in the previous subsection suggests that an appropriate

low-pass filter (LPF) bandwidth is 0.1Hz. In this section, PCA is used to look at the

patterns contained in the residuals across channels.

The residuals obtained from filtering all channels with a 0.1Hz bandwidth LPF are

shown in Fig. 3.29 (a). A PCA analysis of the residuals reveals that the first PC

explains 12.61% of the variance, with 4.48% and 3.98% variance explained by the second
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Figure 3.29: (a) Residual signals, obtained by subtracting the filtered signals from

the original signals (LPF bandwidth = 0.1Hz); (b) Variance explained by each PC in

a PCA analysis of the residual signals; (c) White noise signals, having the same size

as the OES residual signals; (d) Variance explained by each PC

and third PCs, respectively. The variance explained by the first 20 PCs is shown in

Fig. 3.29 (b). This confirms that inter-channel patterns exist in the residual data (i.e.

some of the residual signals are correlated). If the residual signals were independent

and identically distributed random noise, then the variance explained by each PC will

be nearly the same, as shown in Fig. 3.29 (d). As such, 0.1Hz may not be the optimum

choice for the filter bandwidth.

Table 3.2 and Fig. 3.30 show the variance explained by the first three PCs of a PCA

analysis of the residuals, obtained with different filter bandwidths. As one can see,

when the cut-off frequency exceeds 0.2Hz, variance explained by each of the first three
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Figure 3.30: Variance explained

by the first three PCs by PCA

analysis of the residual data.
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Figure 3.31: Variance explained

by the first 20 PCs (the cut-off

frequency equals to 0.2Hz).

PCs is nearly equal. However, the variance explained by the first PC (5.89%) is still

a lot bigger than the variance explained by the 20th PC (1.51%), as shown in Fig.

3.31. No matter what filter bandwidth is selected, inter-channel correlation still exists

in the residuals. This suggests that there may be an intrinsic correlation in the signals.

In fact, because of the limited spectral resolution of OES spectroscope, the optical

emission at a given wavelength will be detected over a number of adjacent channels,

leading to local correlation. In the next subsection, an analysis of the extent of this

local correlation is given. Note that the existence of local correlation in the residuals

corroborates the existence of high frequency process variations.

3.7.4 Local Correlation

Due to the limited OES spectroscope resolution, the optical emission signals are de-

tected simultaneously by a number of adjacent OES channels. Taking the channels

between 1300 and 1305 as an example, the over-time intensity changes of these chan-

nels, as shown in Fig. 3.32 are quite similar.

To assess the extent of this spectral spread, the local correlation between channels is

investigated. The local correlation, rL
j , is defined as the correlation between the signal

(xi) from channel i and the signal from the channel, j channels away from channel i,
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LPF Bandwidth Variance Explained by the

(Hz) First 3 PCs (%)

0.05 43.4515, 5.5774, 4.5752

0.06 31.4501, 4.8652, 3.5872

0.07 23.0399, 4.6428, 3.5641

0.08 17.6652, 4.3772, 3.8517

0.09 14.5262, 4.3616, 3.9650

0.10 12.6803, 4.5093, 3.9789

0.11 11.4298, 4.6479, 3.9970

0.12 10.3979, 4.7516, 4.0246

0.13 9.4913, 4.8215, 4.0525

0.14 8.6842, 4.8688, 4.0793

0.15 7.9504, 4.9032, 4.1117

0.16 7.2819, 4.9247, 4.1475

0.17 6.7072, 4.9284, 4.1747

0.18 6.2770, 4.9146, 4.1890

0.19 6.0164, 4.8969, 4.2134

0.20 5.8945, 4.8913, 4.2532

0.21 5.8570, 4.8995, 4.2946

0.22 5.8624, 4.9146, 4.3324

0.23 5.8870, 4.9298, 4.3659

0.24 5.9187, 4.9413, 4.3958

0.25 5.9517, 4.9481, 4.4233

0.26 5.9833, 4.9506, 4.4496

0.27 6.0128, 4.9549, 4.4748

0.28 6.0390, 4.9632, 4.4995

0.29 6.0603, 4.9786, 4.5243

0.30 6.0751, 5.0025, 4.5498

Table 3.2: Variance explained by the first three PCs of the residuals for different

LPF bandwidths.
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Figure 3.32: Intensity changes

of OES channels from 1300 to

1305 (IDS1).
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Figure 3.33: Local correlation,

rL
j , for the 0.1Hz LPF residual

(IDS1).

(i.e. xi+j) averaged over all channel positions, that is:

rL
j =

1
n− j

n−j∑

i=1

corr(xr
i ,x

r
i+j), for j ≥ 0 (3.28)

=
1

n + j

n∑

i=1−j

corr(xr
i ,x

r
i+j), for j ≤ 0. (3.29)

A plot of rL
j for the 0.1Hz LPF residual is given in Fig. 3.33. It can be seen that the

spectral spread is ±5 on either side of a given channel. The shaded area shown in Fig.

3.33 denotes the 95% confidence interval associated with each rL
j .

3.7.5 Crosscorrelation of the Residual Signals

To estimate the inter-channel correlation between the residual signals, the following

average crosscorrelation is used:

r̄C =
1

n− l

n−l∑

i=1

(

∑n
j=i+l corr(x

r
i ,x

r
j)

n− i− l + 1
), (3.30)

where xr
i and xr

j are the ith and jth residual signals, respectively and l denotes the

number of adjacent channels that are correlated due to spectral leakage. From the

analysis in Section 3.7.4, l = 6. By omitting the locally correlated channels, the value

of r̄C better reflects the filter bandwidth dependent correlation in the residual signals.

Fig. 3.34 shows a plot of r̄C as a function of LPF bandwidth and the shaded area
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Figure 3.34: Changes of r̄C as a function of LPF bandwidth

denotes the 95% confidence interval. The value of r̄C decreases with increasing LPF

bandwidth and drops below 0.1 for fB ≥ 0.05Hz and 0.05 for fB ≥ 0.1Hz.

3.7.6 Crosscorrelation between the Residual Signals and Filtered Sig-

nals

Crosscorrelation analysis is used to estimate the correlation between the filtered signals

and residuals. Denoting r̄i as the correlation between xf
i and xr

i (as defined in Eq.

(3.25) and Eq. (3.26), respectively), the averaged correlation coefficient (r̄) for all the

channels is defined as

r̄ =
1
n

n∑

i=1

r̄i, (3.31)

where r̄i = corr(xf
i,x

r
i) and n is the number of channels. Fig. 3.35 shows the change of

r̄ as a function of LPF bandwidth. It can be seen that the averaged correlation between

the filtered signals and residuals is insignificant for fB ≥ 0.1Hz.

3.7.7 Autocorrelation of the Residual Signals

Autocorrelation analysis is employed to estimate the correlation between the residual

signal and its time-lagged values. If the residual signal is noise, then no significant

correlation should exist. To measure the autocorrelation for all the residual signals, we

define a new function, r̄A:

r̄A =
1

2(m− 1)n

m−1∑

j=−m+1,j 6=0

|
n∑

i=1

corr(xr
i ,x

r
i (j))|, (3.32)
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Figure 3.35: Changes of r̄ for

different LPF bandwidths
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Figure 3.36: Changes of r̄A as a

function of LPF bandwidth

Method LPF Bandwidth, fB , (Hz)

Single signal based fB ≥ 0.09

r̄C fB ≥ 0.1

r̄ fB ≥ 0.1

r̄A fB ≥ 0.05

Table 3.3: LPF bandwidth selected by different methods

where n is the number of OES channels and xr
i (j) is the jth lagged signal of xr

i , (xr
i ∈

Rm×1). Hence, r̄A measures the averaged correlation levels between the residual signal

and its lagged signals over all channels. The smaller the value of r̄A, the lower the

correlation in the residuals. Fig. 3.36 shows the variation in r̄A as a function of LPF

bandwidth and the shaded area denotes the 95% confidence interval. The value of r̄A

decreases with increasing LPF bandwidth and drops below 0.05 for fB ≥ 0.05Hz and

close to 0 for fB ≥ 0.1Hz.

3.7.8 Selection of the LPF Bandwidth

While the analysis in the previous sections cannot provide an exact optimal solution

to the LPF bandwidth, it is clear that there is no method that can be universally

applicable. As shown in Table 3.3, the lower bounds on fB identified using the different

techniques are relatively consistent. Thus, 0.1Hz is selected as the LPF bandwidth.
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(a) (b)

Figure 3.37: The raw OES data filtered by a 4th order low-pass Butterworth filter

with cut-off frequency set at 0.1Hz: (a) Filtered signals; (b) Residuals

3.7.9 Filtering Result Visualization

The results of filtering the raw IDS1 OES signals using a 0.1Hz bandwidth 4th order

low-pass Butterworth filter are shown in Fig. 3.37. Plot (a) shows the filtered signals

and plot (b) the residuals, respectively. To observe the effect of filtering on individual

channels, the results for three channels are shown in Fig. 3.38 (b), (c) and (d), respec-

tively. These channels correspond to the 33.33%, 66.67% and 98.85% division points

of the cumulative signal power plot (sorted in descending order) as shown in Fig. 3.38

(a). This confirms that the selection of 0.1Hz as the LPF bandwidth is reasonable for

filtering the OES signals.

3.7.10 Signal to Noise Ratio

Signal-to-noise ratio (SNR) is the standard method for measuring the strength of a

signal relative to the noise. Here, SNR of a given signal (xi) is estimated as

SNRi =
pow(xf

i)
pow(xr

i)
, (3.33)

where pow(·) denotes the signal power. For a signal x ∈ Rn×1, this is computed as

pow(x) =
1
n

n∑

i=1

(xi)2. (3.34)

Patterns in low SNR signals will be seriously corrupted by noise and cannot be detected

reliably. Therefore, as a final pre-processing step, these channels should be removed.
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Figure 3.38: Filtering results for three selected signals: (a) Cumulative signal power

plot for signals sorted in descending power order; (b), (c) and (d) show the filtering

results for the signals corresponding to the 33.33%, 66.67% and 98.85% division points

of the cumulative signal power plot
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Figure 3.39: (a) SNR across channels; (b) Noise power across channels (The channels

are sorted in descending power order.)
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Here, 9 is selected as the cut-off point for SNR, leading to the removal of 691 channels

for IDS1. A plot of SNR (sorted in descending power order) and a plot of the noise

power across channels are shown in Fig. 3.39 (a) and (b), respectively. It can be seen

that the signals with SNR < 9 correspond to the low power OES signals.

Using the same method filtering IDS2 leads to the removal of 1473 channels. As noted

in Section 2.3.1, the resulting filtered and preprocessed data sets are referred to as

IDS1Filt and IDS2Filt, respectively. The selection of 9 as the SNR is determined by

the requirements of the max separation clustering algorithm and will be discussed in

Section 6.6.6.

3.8 Discussion and Conclusions

PCA, one of the most widely used multivariate data analysis algorithms has been intro-

duced in this chapter and a detailed description of the theory and numerical solutions

is given. Graphical displaying of the score patterns in 2-D format has shown to be

effective in disclosing the process variations across wafers, while computationally ex-

pensive.

As low cost alternatives, two methods have been proposed, conventional PCA analy-

sis of unfolded data and a simple method for monitoring changes in the directions of

the PC loading vectors. The basic concepts involved in these two methods are not

new. What is shown in this chapter is that the methods are of great practical use for

summarizing the information contained in high-volume OES data and are effective for

easy visualization of the process variations across wafers and lots. However, the issue

with PCA is that since the PCs are linear combination of all underlying variables, it

cannot be used to identify key process variables and hence cannot be used to spot the

root reason that causes the variations. As such, sparse principal component analysis,

a modification of PCA which attempts to address this deficiency, is investigated in the

next chapter.

Another important contribution made in this chapter is the noise analysis. A detailed
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description of noise sources in etch processes is presented. The method proposed for se-

lecting the noise filter bandwidth is new, achieved systematically by the auto-correlation

and cross-correlation analyses of the filtered signals and residual data, respectively. In

addition, a new method for estimating the local correlation has been proposed to pro-

vide an effective way for estimating the OES spectroscope resolution.



Chapter 4

Sparse Principal Component

Analysis

4.1 Introduction

The success of principal component analysis (PCA) lies in the fact that as a dimension

reduction tool, it can reconstruct high dimensional data via a limited number (2 or 3

in general) of principal components and retain most of the variation in the data. How-

ever, the loadings obtained by PCA are linear combinations of all variables and the

variable coefficients are typically nonzero. This makes it difficult to use PCA directly

for variable selection.

Research on obtaining sparse solutions (solutions with zero coefficients) has been con-

ducted for over five decades. The earliest method, proposed in 1958, is referred to

as varimax [80]. Using varimax rotation, a number of the coefficients of the loading

vectors can be adjusted to have greater values than the remaining coefficients. Such

adjustment can help in the selection of key variables, but it is hard to quantify the

distinction between small and large coefficients.

Jeffers [74] proposed a straight-forward method for achieving PCA sparsity. For each

loading, any coefficients that are less than 70% of the greatest one are set to zero,

regardless of their sign. This method can lead to a selection deficiency in two cases,

78
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one where the variables have small coefficients and the other where the variables have

high mutual correlations [11].

In [163], the ‘simple principal components’ is proposed. This focuses on restricting the

coefficients of the loadings to have integer values, such as -1,0 and 1, to help simplify

variable selection.

The first true algorithmic method for achieving sparse loadings was proposed in 2003

by Jolliffe et al. [79] and is known as SCoTLASS (Simplified Component Technique for

Least Absolute Shrinkage and Selection). This employs a penalty term referred to as

the Least Absolute Shrinkage and Selection Operator (LASSO) [160] to force loadings

to be sparse. Nevertheless, it is not practical due to the relatively high computational

cost [195].

A recently proposed algorithm, known as semidefinite programming, is described in

[27]. Using this method, the normal loadings are constrained by a cardinality condi-

tion, that is, a limit on the number of the nonzero elements in each loading. By relaxing

this constraint, the problem is converted into a convex optimization problem and hence,

can use semidefinite programming as a solution. The generated PCs are shown to be

able to explain larger variance than competing algorithms, but the computational cost

is high.

In 2004 Zou et al. [195] proposed an alternative approach to solve the sparse principal

component analysis (SPCA) problem, which they refer to as elastic net for SPCA (EN-

SPCA). EN-SPCA can be implemented in two forms. One is similar to an approach

used to solve the LASSO problem and the other is the so called soft thresholding algo-

rithm, designed for handling large data sets (thousands of variables). Both EN-SPCA

implementations are computational alternatives to semidefinite programming, but the

latter implementation has the key advantage that it can scale to much larger problems

than the semidefinite programming algorithm.

Another alternative algorithm for solving SPCA is proposed in [141], known as sparse
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PCA via regularised SVD (sPCA-rSVD). sPCA-rSVD is implemented based on the

close connection between PCA and singular value decomposition (SVD) and promotes

sparsity in PC loadings via the introduce of regularization penalties. The key advantage

of the sPCA-rSVD algorithm is that the matrix ill-conditioning problem is effectively

avoided using element-based calculation. Details of sPCA-rSVD are presented in the

next chapter, with respect to its close relationship with our new proposed adaptive

weighting SPCA algorithm.

This chapter focuses on EN-SPCA. In the first part, the theoretical framework involved

in EN-SPCA is introduced. This includes the introduction of least squares, ridge, least

absolute shrinkage and selection operator and elastic net regression problems and the

formulation of SPCA in an elastic net regression framework. In the second part, the

numerical solution is provided, followed by the discussion of the variance explained by

the sparse components. With the aid of artificial data, the properties of EN-SPCA

are illustrated. Finally, the application of EN-SPCA to OES data is investigated using

IDS1 and IDS1Filt.

4.2 Theoretical Framework

This section gives a theoretical description of the EN-SPCA algorithm and an overview

of relevant background theory (supporting proofs are included in Appendix A.1). For

a complete treatment of the theory, please consult [195, 194, 196, 193].

4.2.1 Least Squares Regression

The regression methods covered in this chapter all originate from least squares (LS)

approximations. Given an m× n data matrix X, m being the number of observations

and n being the number of variables, X can be expressed as X = [x1, . . . ,xn], where

xi = [x1i, . . . , xmi]T.

In regression analysis, X is used as the input data set. The output data set, y(∈ Rm×1)

can be expressed as

y = Xb + ε (4.1)
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where b(∈ Rn×1) are called the regression coefficients or parameters and ε (∈ Rm×1)

is the random disturbance or error [18]. The expected value and variance of ε can be

expressed as

E(ε) = 0 and E(εεT) = σ2Im. (4.2)

The LS estimate of b can be defined as

b̂ = arg min
b
||y−Xb||22, (4.3)

where || · ||2 denotes the L2-norm. The solution for b is given by

b̂ = (XTX)−1XTy, (4.4)

where (XTX)−1XT is the pseudoinverse of X. The least square estimate minimises the

mean square error (E(εTε)) and is the best linear unbiased estimate of b [60].

If XTX is singular (its inverse does not exist), the LS estimator cannot be used to

calculate the regression coefficients. Furthermore, when XTX is close to singular, the

coefficients estimates become very unstable, varying greatly for small changes in X.

Practically, these situations occur when the problem is under determined (m < n) or

there is significant amount of collinearity in the data. A typical way of addressing this

issue is the so-called ridge regression.

4.2.2 Ridge Regression

Ridge regression solves the singularity problem by regularising the parameter estimates.

Defining bR as the ridge estimate of b, the ridge regression problem can be expressed

as [60]:

b̂
R

= arg min
b
||y−Xb||22 + γ2||b||22, (4.5)

where γ2 is the tuning parameter. The solution to Eq. (4.5) can be expressed as

b̂
R

= (XTX + γ2I)−1XTy. (4.6)

The ridge estimate optimisation problem Eq. (4.5) can also be formulated as:

b̂
R

= arg min
b
||y−Xb||2, s.t. ||b||22 ≤ c2, (4.7)
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where c2 is the upper bound of the L2-norm of the regression coefficients. For every

γ2, there exists a c2 that gives the same constraint on the regression coefficients. Eq.

(4.5) is referred to as the penalised formulation while Eq. (4.7) is referred to as the

constrained formulation.

According to Eq. (4.4) and Eq. (4.6), the relationship between ridge and LS can be

expressed as

b̂
R

= [In + γ2(XTX)−1]−1b̂ = Kb̂. (4.8)

In the special case of an orthogonal X matrix, Eq. (4.8) reduces to

b̂
R

=
1

1 + γ2
b̂ = kb̂, (4.9)

where k is a scalar. Equation (4.6) shows that in ridge regression, the singular problem

is actually solved by adding a fixed positive value to all the elements in the main

diagonal of XTX. The effect of this adjustment is that parameter estimates are shrunk

towards zero, as highlighted by Eq. (4.9), leading to biased estimates. Despite this

bias, when XTX is ill-conditioned, the ridge estimator can provide better ‘prediction

accuracy’ than the LS estimator. This can be demonstrated by expressing prediction

accuracy as the mean squared error (MSE) in parameter estimates, that is, JMSE(γ2) =

E[(b̂
R − b)T(b̂

R − b)]. Substituting for b̂
R

and expanding gives

JMSE(γ2) =E[(b̂− b)TKTK(b̂− b)] + (Kb− b)T(Kb− b))

=J1(γ2) + J2(γ2),
(4.10)

where K is a function of γ2 as defined in Eq. (4.8). Thus, two terms contribute to the

MSE. The first term, J1(γ2), is the variance of the parameter estimates and the second

term, J2(γ2), is the squared distance from Kb to b (squared bias). Hence we have a

bias-variance trade-off controlled by γ2.

Fig. 4.1 presents a comparison of the MSE as a function of ridge and LS estimates.

The dashed line shows the overall MSE for the ridge estimate, and the horizontal line

is the LS estimate (which is constant since it is not a function of γ2.) Also shown on the

graph are the variance and bias squared terms which contribute to the ridge estimate
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Figure 4.1: Mean squared error in ridge and LS estimates [60].

MSE. As can be seen if γ2 is appropriately chosen, then

JMSE(γ2) < JMSE(0). (4.11)

Hence, the ridge estimate is superior to the LS estimate.

4.2.3 Least Absolute Shrinkage and Selection Operator

Least absolute shrinkage and selection operator (LASSO) is a method that tries to

obtain the minimum of the residual sum of squares subject to a constraint on the sum

of the absolute values of the regression coefficients [160]. Defining bL as the LASSO

estimate of b, the LASSO problem can be expressed as

b̂
L

= arg min
b
||y−Xb||22 + γ1||b||1, (4.12)

where γ1 ≥ 0 is the tuning parameter and || · ||1 denotes the L1-norm, that is

||b||1 =
n∑

i=1

|bi|. (4.13)

Eq. (4.12) can also be expressed as a constrained optimisation problem, that is:

b̂
L

= arg min
b
||y−Xb||22, s.t. ||b||1 ≤ c1, (4.14)

where c1 is the upper bound on the L1-norm of the regression coefficients. For every

γ1, there exists a c1 that gives the same constraint on the regression coefficients.
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Figure 4.2: An example showing that zero coefficients can be produced by LASSO

[160].

Unlike LS or ridge regression the LASSO estimate does not have a linear solution and

cannot in general be expressed in closed form. However, when X is an orthogonal

matrix, the LASSO solution can be expressed as

b̂
L

i = sign(̂bi)max(0, ψ)

ψ = |̂bi| − γ1

2
,

(4.15)

for i = 1, · · · , n [196]. sign(·) denotes the sign of the measured variable and max(0, ψ)

acts as threshold operator on ψ. Provided ψ > 0, max(0, ψ) = ψ; otherwise, max(0, ψ) =

0. Eq. (4.15) shows that when γ1 is large, (|̂bi| − γ1

2 ) is more likely to be negative and

therefore, more coefficients are likely to be shrunk to zero. Thus the larger the tuning

parameter in LASSO, the more sparsity will be brought to the solutions. The effect

of the LASSO constraint is illustrated graphically in Fig. 4.2. This property makes

LASSO a valuable tool for variable selection [194].

Thus, while the ridge penalty shrinks parameters toward zero, the LASSO penalty

has a tendency to force certain coefficient to be exactly zero. Fig. 4.3 provides a

graphical illustration of how LASSO can yield sparse solutions, while ridge generally

does not. The elliptical contours correspond to different values of the LS quadratic cost

function and the central point represents the LS estimate of the regression coefficients.

The shaded area shown in Fig. 4.3(a) represents the feasible region that satisfies the
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Figure 4.3: Comparison between LASSO and ridge estimators. The shaded regions

correspond to the feasible region defined by (a) the LASSO constraint (||b||1 < c1); (b)

the ridge constraint (||b||22 < c2). The elliptical contours correspond to different values

of the LS quadratic cost function and the central point represents the LS estimate of

the regression coefficients.

LASSO constraint, ||b||1 ≤ c1. The LASSO solution is achieved when the contours first

touch the boundary of the feasible region and will often correspond to the corner points,

i.e. the coordinate points. This means that some coefficients of the parameter vector

will be zero. For ridge regression, the feasible region is defined by ||b||22 ≤ c2, which

corresponds to the circle area shown in Fig. 4.3 (b). In this case, the contours and

feasible region generally do not intresect on the coordinate axis. Hence zero coefficients

are much less likely to be obtained.

4.2.4 Elastic Net

The elastic net regression method uses a combination of the constraints from ridge

regression and LASSO to simultaneously address the matrix singularity problem and

bring sparsity to the resulting solutions. Defining bN as the naive elastic net estimate

of b, the naive elastic net problem can be expressed as

bN = arg min
b
||y−Xb||22 + γ2||b||22 + γ1||b||1. (4.16)
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The reason why the solution of Eq. (4.16) is referred to as naive is because bias is

introduced twice, while the estimation variance is not reduced as compared to either

the LASSO or ridge estimate. As proposed in [194], the excessive shrinkage can be

compensated by re-scaling the naive elastic net estimator, i.e. elastic net. The elastic

net estimate, bEN, can be expressed as

bEN =(1 + γ2)bN

=(1 + γ2) arg min
b
||y−Xb||22 + γ2||b||22 + γ1||b||1,

(4.17)

which is equivalent to (detailed proof in [194])

bEN = arg min
b

bT(
XTX + γ2I

1 + γ2
)b− 2yTXb + γ1||b||1. (4.18)

4.2.5 Grouping Effect

In the ‘large n, small m’ problem, i.e. when there are many more variables than mea-

surements [167], the ‘grouped variables’ issue is an especially important concern [194].

The grouping effect refers to the property of variables that are highly corrected being

assigned similar regression coefficient values by a regression estimator. In extreme sit-

uations, if the variables are exactly identical, identical regression coefficients should be

assigned to the identical variables [194]. Mathematically, the grouping effect can be

expressed as follows. For the proofs, please refer to [194] for a a complete treatment.

A generic penalization method can be defined as

b̂ = arg min
b
||y−Xb||22 + γJ(b), (4.19)

where J(b) > 0 for b 6= 0.

Lemma 1 Assume that xi = xj , i, j ∈ 1 . . . n.

(a) If J(b) is strictly convex, then b̂i = b̂j , ∀γ > 0.

(b) If J(b) = ||b||1, then b̂ib̂j ≥ 0.

Lemma 2 The elastic net penalty is strictly convex, i.e.

γ2||b||22 + γ1||b||1 (4.20)
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is strictly convex.

Lemma 1 shows a clear distinction between strictly convex penalty functions and the

LASSO penalty. As shown in Lemma 2, the elastic net penalty is strictly convex, so

it is guaranteed to produce identical regression coefficients for identical variables. In

contrast, while grouping can occur with LASSO, it is not guaranteed.

4.2.6 Formulating Principal Component Analysis in a Ridge Regres-

sion Framework

In PCA, the PCs can be obtained by singular value decomposition of matrix X, with

pi = vi, where vi is the ith right singular vector of X. Equivalently, the PC loadings

can be computed as a ridge regression problem by solving the regression cost function

[195]

J(a,b) =
m∑

i=1

||zi − abTzi||22 + γ2||b||22, s.t. aTa = 1 (4.21)

where zi is the ith column of matrix Z, Z = XT and the product of abT is an n × n

matrix, which defines a rotation of zi. Specifically, Theorem 1 proposed by Zou [195]

establishes that if

(âR, b̂R) = arg min
a,b

J(a,b), (4.22)

the first loading can be obtained as

p1 = b̂
R
(1 +

γ2

σ2
1

), (4.23)

where σ1 is the largest singular value of X. An independent proof of this theorem is

attached in the Appendix A.1.

Theorem 1 can be extended to the simultaneous computation of multiple PCs. If the

first k PCs are required, the ridge regression cost function is expressed as [195]

J(A,B) =
m∑

i=1

||zi −ABTzi||22 + γ2

k∑

j=1

||bj ||22, s.t. ATA = I. (4.24)

where A ∈ Rn×k, A ∈ Rn×k and bj is the jth column of matrix B. Computing the

ridge estimate of A and B

(Â, B̂) = arg min
A,B

J(A,B), (4.25)
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the required PC loadings are obtained as

pj = b̂j(1 +
γ2

σ2
j

), (4.26)

where σj is the jth largest singular value.

4.2.7 Formulating Sparse Principal Component Analysis in the Elas-

tic Net Regression Framework

The most direct approach to achieve sparse PCs using the elastic net regression frame-

work is to exploit the regression relationship between scores and loadings in PCA, i.e.

ti = Xpi [143]. Letting ti represent the output vector, a sparse loading, bi, can be

computed as

b̂i = arg min
bi

||ti −Xbi||22 + γ2||bi||22 + γ1||bi||1. (4.27)

The drawback of this approach is that all solutions are constrained to be close to reg-

ular PCA.

An alternative and more general approach is to employ the regression formulation of

PCA as outlined in Section 4.2.6 and to add a LASSO penalty to obtain sparsity. This

was proposed as the elastic net for sparse PCA by Zou and Hastie [194] and is defined

as:

(Â
EN

, B̂
EN

) = (1 + γ2) arg min
A,B

{
m∑

i=1

||zi −ABTzi||22+γ2

k∑

j=1

||bj ||22 +
k∑

j=1

γ1j ||bj ||1},

s.t. ATA = I.

(4.28)

The ith sparse loading, p̂S
i , equals to

p̂S
i =

b̂
EN

i

||b̂EN

i ||2
, (4.29)

and the sparse scores, T̂
S
, equals to

T̂
S

= XP̂
S
. (4.30)

In Eq. 4.28, Z = XT (Z ∈ Rn×m), Z = [z1, . . . , zm], and zi = [z1i, . . . , zni]T. B(∈
Rn×k) = [b1, · · · ,bk] and A ∈ Rn×k. In Eq. (4.28), BTzi yields the projection of zi
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Figure 4.4: Solution for different estimators: γ1 = 2 and γ2 = 1

onto the principal axes (loading vectors) of B. ABTzi takes the scores of BTzi and

transforms them back into the original space. The orthogonality constraint on A tries

to force B to be near orthogonal. The term ||zi −ABTzi||22 measures the reconstruc-

tion errors for all zi. The functions of the LASSO and ridge constraints are the same

as discussed in the elastic net regression, driving B to be sparse and avoiding the ma-

trix singularity problem. γ2 is selected for all loadings and γ1j may be set to different

values to allow more flexibility of penalisation to each individual loading. Note that if

γ1j = 0 ∀j, the normalised columns of B̂
EN

are identical to the loadings obtained by

regular PCA. A detailed mathematical proof of this result can be referred to [195].

Sparsity in the solutions is mainly achieved in two steps: ridge-type scaling followed

by LASSO-type thresholding. As shown in Fig. 4.4, the ridge estimator (marked by

a dashed line) is a scaled solution of the LS estimator (marked by a solid line). The

LASSO estimator (marked by a dotted line) is a soft-thresholding solution of the LS

estimator. The naive elastic net estimator (marked in the green line) combines the

effect of ridge and LASSO estimators.
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4.3 Numerical Solutions

The solutions of least squares and ridge regression, b̂ and b̂
R
, can be expressed as

matrix algebra functions of X, y and γ2. This is not true for LASSO and elastic net.

Efron et al. [34] proposed a new regression method called least angle regression (LARS)

to solve the LASSO problem, where S refers to its close relation to stagewise regres-

sion and LASSO. LARS starts with all coefficients at zero and successively adds more

variables into solutions until variables are all included in which case, the least squares

solution is obtained. Thus LARS provides solutions for all possible γ1 for a given γ2. A

proper solution can for example be selected using cross validation or a priori selection

of the number of variables [143].

LARS-EN is a computationally efficient algorithm for solving the elastic net regression

problem. Instead of using all quantities as in LARS, LARS-EN records only the non-

zero coefficients and the active variable set and uses them for calculation. To solve

the elastic net principal component problem, Zou et al. proposed the general SPCA

algorithm. Assuming A is known, B can be obtained by solving k independent elastic

net problems. After B is obtained, A can be calculated using a singular value decom-

position, i.e. if ZZTB = UΣVT, then A = UVT. These two steps are repeated until B

converges. As proposed in [194], A is initiated as the first k loadings of regular PCA.

Details of the general SPCA algorithm are as follows.

4.3.1 General SPCA Algorithm

The key to understanding the general SPCA algorithm is its relationship to the elastic

net problem, which can be expressed as

min
B
{

m∑

i=1

||zi −ABTzi||22 + γ2

k∑

j=1

||bj ||22 +
k∑

j=1

γ1j ||bj ||1}. (4.31)

If A is specified, the problem can be converted to solving k independent elastic net

problems

b̂j = arg min
bj

{||Zaj − Zbj ||22 + γ2||bj ||22 + γ1j ||bj ||1}, for j = 1, 2, · · · , k. (4.32)
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or

b̂j = arg min
bj

bT
j (ZZT + γ2)bj − 2aTjZZTbj + γ1j ||bj ||1, for j = 1, 2, · · · , k. (4.33)

If instead B is given, A can be obtained according to the following theorem.

Theorem 1. Let A and B be n×k matrices and B has rank k. Given the constrained

maximization problem

Â = arg max
A

Tr(ATZZTB) s. t. ATA = I, (4.34)

if the SVD of ZZTB is UΣVT, then A = UVT.

The proof of Theorem 6 can be found in [195, 196]. The general SPCA algorithm can

be expressed as follows:

Step 1: Initiate A as P[, 1 : k], the loadings of the first k ordinary principal compo-

nents of X and set Z = XT.

Step 2: Given fixed A, solve the naive elastic net problem for j = 1, 2, · · · , k

b̂j = arg min
bj

bT
j (ZZT + γ2)bj − 2aTjZZTbj + γ1j ||bj ||1. (4.35)

Step 3: With B fixed, compute the SVD of ZZTB = UΣVT, then update A = UVT.

Step 4: Repeat Steps 2 and 3, until B converges.

Step 5: Rescaling:

p̂j =
bj

||bj ||2 , j = 1, 2, . . . , k.

Step 6: The sparse PCs are obtained as P̂
S

= [p̂1, · · · , p̂k] and T̂
S

= XP̂
S
.

Some remarks:

1. In Step 2, bj is estimated using LARS-EN.

2. γ2 is used to address the matrix singularity problems. Hence, it can be set to

zero if there is no need to do so. The authors in [195, 196] show that b̂j changes

slowly with changes in γ2.
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3. γ1j is the key parameter for determining the sparsity in the jth loading. The larger

the value of γ1j , the more coefficients of the loading are restricted to zero, that

is, a higher level of sparsity is achieved. At the expense of sparsity, less variance

can be captured in each sparse component. Therefore, there exists a trade-off

between sparsity and variance explained, which must be taken into account when

determining the approximate level of sparsity for a given problem.

4.3.2 Soft Thresholding SPCA Algorithm

Theoretically, the general SPCA algorithm is applicable to all kinds of data. However,

when the number of the variables is much larger than the number of the observations

(n À m), the computational cost is very high. The soft thresholding SPCA algorithm

in [196] is proposed as a simplified implementation for this class of problem.

The special case of the elastic net occurs when γ2 →∞. By Eq. (4.18), b̂ → b̂(∞) as

γ2 →∞, where

b̂(∞) = arg min
b

bTb− 2yTXb + γ1||b||1. (4.36)

The solution to Eq. (4.36) can be expressed as

b̂(∞)i = (|yTxi| − γ1

2
)+sign(yTxi), i = 1, 2, · · · , n, (4.37)

where yTxi is the univariate regression coefficient of the ith predictor. Comparing Eq.

(4.36) and Eq. (4.35), it can be shown that the soft thresholding solutions of the sparse

components [195] are equal to

b̂ij = (|aTjXTxi| − γ1j

2
)+sign(aTjX

Txi), i = 1, 2, · · · , n. (4.38)

The soft-thresholding algorithm provides a gentle transition-in of the function from one

stage to the other as illustrated in Figure 4.5. A consequence of employing this special

case is that correlation between variables is ignored in computing the sparse components

[194]. However, empirical evidence suggests that this does not significantly impact on

performance [196].
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Figure 4.5: An illustration of soft-thresholding estimation y = (|x| − ∆)+sign(x)

with ∆ = 2.

4.4 Variance Explained by the Sparse Principal Compo-

nents

4.4.1 Adjusted Variance Explained

SPCA employs a similar approach to PCA, known as adjusted variance [195], to measure

the estimation accuracy. However, unlike PCA, P̂
S

is not orthogonal, so the variances

explained by individual PCs are not independent of each other. Consequently the

approach normally used for calculating the variance in PCA is not valid for SPCA.

To address this issue, the sparse scores matrix needs to be orthogonalised. Thus the

complete variance estimation algorithm can be expressed as follows [46, 143].

• Orthogonalize t̂j
S

(the jth column vector of T̂
S

defined in Eq. (4.30)) by applying

the recursion

t̂j
S*

= t̂j
S − T̂

S

(j−1)[(T̂
S

(j−1))
T(T̂

S

(j−1))]
−1(T̂

S

(j−1))
Tt̂j

S
,

for j = 1, . . . , k (k is the number of sparse principal components), where T̂
S

(j) =

[̂t
S
(1), . . . , t̂

S
(j)].

• Collect the orthogonalized vectors into a matrix T̂
S*

, i.e.

T̂
S*

= [t̂1
S*

, . . . , t̂j
S*

, . . . , t̂p
S*

]. (4.39)
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• Compute the variance explained (Ve) by the k sparse components as

Ve = trace{(T̂S*
)TT̂

S*}. (4.40)

The jth diagonal entry of (T̂
S*

)TT̂
S*

corresponds to the variance explained by the jth

sparse component.

4.4.2 SPMSE

When using sparse PCs to reconstruct a data set, many columns of the reconstructed

data are in fact zero, because of the zero elements in the sparse loadings. Therefore, a

fairer assessment of the accuracy of reconstruction is to only compare the reconstruction

against the original data over the regions where the reconstruction exists. Here, a sparse

mean square error measure is proposed, denoted SPMSE, where S stands for sparse, P

for percentage and MSE for mean square error. This is given by

SPMSE =
||X̂s −Xs||2f
||Xs||2f

× 100%, (4.41)

where || · ||f is the Frobenius norm, X̂s consists of the nonzero columns of the recon-

structed data matrix X̂ and Xs is the corresponding subset of the original data matrix

X. Based on SPMSE, SVe, variance explained by the sparse components, is proposed

as

SVe = 100%− SPMSE. (4.42)

In contrast to Ve (Eq. 4.40), SVe only calculates the variance for the non-zero re-

constructed channels, so SVe can more effectively reflect the reconstruction accuracy.

Note, that since the sparse components are not orthogonal, the reconstruction of X is

defined as

X̂ = T̂
S
(P̂

S
)T[P̂

S
(P̂

S
)T]−1. (4.43)

4.5 Study of SPCA Properties on Artificial Data

In this section, the properties of EN-SPCA, sparsity and the grouping effect, are dis-

cussed with the aid of artificial data sets. Note that when applying EN-SPCA to analyse

data sets different solution methods can be employed for different problem dimensions
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leading to different representations of the tunable L1 and L2 parameters. Specifically

when using the general SPCA algorithm, the L1, L2 parameters are expressed as γ2, c1j

while for the soft thresholding SPCA algorithm, they are expressed as ∞, γ1j .

4.5.1 Generation of Data Set

The idea for constructing an artificial data set comes from Zou et al. [195]. Here, we

will employ similar datasets to test the properties of SPCA. The designed data set,

denoted by Z, consists of 1000 observations of 10 variables. Let

d1 ∼ N(0, 100), d2 ∼ N(0, 121), and d3 = −0.2d1 + 0.9d2,

where d1,d2,d3 ∈ R1000×1 and N(m, v) indicates that the samples are drawn from a

normal distribution with mean, m, and variance, v. The data set is then constructed

as three groups of highly correlated variables as follows

zi = d1 + e1
i , i = 1, 2, 3, 4 (4.44)

zi = d2 + e2
i , i = 5, 6, 7, 8 (4.45)

zi = d3 + e3
i , i = 9, 10 (4.46)

where ej
i (j = 1, 2, 3) are independent identically distributed noise sequence, ej

i ∼
N(0, 1). Thus, {zi, i = 1, 2, 3, 4} are uncorrelated with {zi, i = 5, 6, 7, 8}. By design,

{zi, i = 9, 10} are highly correlated with {zi, i = 5, 6, 7, 8}, apart from the high corre-

lation between themselves. The reason for designing the variables to be correlated in

this fashion is to examine the grouping effect.

4.5.2 Sparsity

Because the generated artificial data matrix is non-singular, γ2 can be assigned to zero.

As such, only the tuning parameter for LASSO needs to be specified. Considering the

size of the data set is small, the general SPCA algorithm is employed, leaving c1j to

be specified. In table 4.1, the upper bounds of the LASSO constraint (c1j) are set to

2, 1,8 and 1.3 for the first three loadings, respectively. The sparsity is measured as

the number of the nonzero elements in each loading. As can be observed the number

of nonzero elements in the first three sparse loadings are 4, 4 and 2, respectively, as
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SPCA (γ2 = 0) PCA

Order of Variables PC1 PC2 PC3 PC1 PC2 PC3

1 0 -0.5642 0 0.0719 0.4929 0.6392

2 0 -0.4769 0 0.0707 0.4912 0.1096

3 0 -0.4945 0 0.0724 0.4911 -0.4620

4 0 -0.4580 0 0.0721 0.4902 0.0027

5 -0.4902 0 0 -0.4125 0.0893 -0.2555

6 -0.4828 0 0 -0.4134 0.0950 0.1768

7 -0.5453 0 0 -0.4139 0.0908 -0.3624

8 -0.4788 0 0 -0.4127 0.0932 0.0861

9 0 0 -0.7054 -0.3846 -0.0115 0.3599

10 0 0 -0.7089 -0.3859 -0.0177 0.0346

Number of

Nonzero Elements 4 4 2 10 10 10

Variance Explained (%) 46.74 32.21 0.13 67.03 32.24 0.10

Cumulated Variance (%) 46.74 78.95 79.08 67.03 99.27 99.37

Table 4.1: Comparison between PCA and SPCA: Loadings, Sparsity and Variance.

The upper bounds of the LASSO constraint for the sparse PCs are 2, 1.8 and 1.2,

respectively.

compared to 10, 10 and 10 for the regular PC loadings.

The variance explained by the first sparse component (46.74%) is much less than that

(67.03%) of the first regular PC. For the second PC, the variance explained is nearly

equal and for the third PC, more variance is in fact explained by the corresponding

sparse component. Thus it is possible that individual sparse PCs may have greater

variance explained than corresponding PCA components, but the accumulative vari-

ance explained is much less.

Table 4.2 shows that relaxing the constraint on the upper bound of the LASSO con-

straint (i.e. larger c1j), more nonzero coefficients are obtained and as a consequence,

more variance is captured, accumulative variance in particular. Note that since γ2 = 0,

i.e. the penalty term is not strictly convex, the grouping effect is not fully guaranteed.
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SPCA (γ2 = 0)

Upper bound of LASSO constraint for the first 3 PCs

c11 c12 c13 c11 c12 c13

Order of Variables 2 1.8 1.3 2.3 2.1 1.8

1 0 -0.5642 0 0 -0.5070 -0.1496

2 0 -0.4769 0 0 -0.4967 0.0074

3 0 -0.4945 0 0 -0.4983 0

4 0 -0.4580 0 0 -0.4935 0.0618

5 -0.4902 0 0 -0.4624 0 0

6 -0.4828 0 0 -0.3857 -0.0141 -0.2468

7 -0.5453 0 0 -0.5867 0 0.4247

8 -0.4788 0 0 -0.4609 -0.0025 0

9 0 0 -0.7054 -0.0840 0.0265 -0.8414

10 0 0 -0.7089 -0.2715 0.0588 -0.1566

Number of

Nonzero Elements 4 4 2 6 8 7

Variance Explained (%) 46.74 32.21 0.13 57.70 32.64 0.11

Cumulated Variance (%) 46.74 78.95 79.08 57.70 90.34 90.45

Table 4.2: Effect of the LASSO constraint on Sparsity. Increasing the upper bound,

c1j , (i.e. relaxing the constraint) allows more variables to be included in each PC.
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Figure 4.6: Elastic net solution paths (γ2 = 0.1): (a) Changes in the first sparse

loading coefficients as a function of c11; (b) Changes in the second sparse loading

coefficients as a function of c12 (c11 = 2) (the three groups of variables are marked by

‘.’,‘+’ and ‘ 4 ’, respectively).

4.5.3 Grouping Effect

An effective way to investigate the grouping effect is to explore the solution path as

function of the sparsity constraint. As is required for guaranteeing the grouping effect,

γ2 is set to 0.1. The solution path for the first sparse loading as a function of c11

is shown in Fig. 4.6 (a), for the range 0 to 3. The figure shows a clearly ‘grouped

selection’, i.e. variable 7, 5, 8 and 6 in the first group, variable 9 and 10 in the second

group and variable 3, 1, 2 and 4 in the last group. When c11 = 3, the constraint is too

relaxed to restrict the coefficients, leading to the solution equivalent to regular PCA.

Setting c11 = 2, the solution path for the second sparse loading as a function of c12 is

shown in Fig. 4.6 (b). As can be observed, the second sparse component shows the

same ‘grouped selection’ as the first sparse component.

To further highlight the grouping effect, it is useful to consider the case where the data

set contains identical variables. As such, the artificial data is revised so that the noise is

removed from the first four variables making them identical, i.e. zi = d1, i = 1, 2, 3, 4.

Table 4.3 gives the experimental results of applying EN-SPCA to the artificial data,

where as an example, the tuning parameters are set as γ2 = 1 and c11 = 3.5, c12 =
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SPCA (γ2 = 1)

Upper bound of

LASSO constraint

PC1 PC2 PC3

Order of Variables c11 = 3.5 c12 = 3.5 c13 = 0.1

1 0 -0.5 0

2 0 -0.5 0

3 0 -0.5 0

4 0 -0.5 0

5 0.5098 0 0

6 0.2808 0 1

7 0.6782 0 0

8 0.4487 0 0

9 0 0 0

10 0 0 0

Number of

Nonzero Elements 4 4 1

Variance Explained (%) 39.94 37.48 0.001

Accumulated Variance (%) 39.94 77.42 77.52

Table 4.3: Grouping effect with identical variables contained in the data set

3.5, c13 = 0.1 for the first three sparse components, respectively. As can be seen, in the

second sparse component, identical coefficients are assigned to the first four variables,

while for variable 5, 6, 7 and 8, although selected at the same time, the obtained

coefficients are not identical.

4.6 EN-SPCA Applied to SDS1

4.6.1 PCA, A Special Case of SPCA

Theoretically, when giving no constraint to the LASSO penalty term, SPCA should be

equivalent to PCA. Provided the sparse loadings are scaled to unit length, the solutions

of PCs should be identical. The experimental results shown in Table 4.4 provides a

comparison between PCA and SPCA in terms of variance and the number of nonzero
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Variance Number of

Explained (%) Nonzero Elements

Order of PCs PCA SPCA PCA SPCA

PC1 47.27 47.27 20 20

PC2 39.6 39.6 20 20

PC3 10.89 10.89 20 20

Table 4.4: PCA, a special case of SPCA (γ2 = 1, c11 = c12 = c13 = 4)

elements. As can be seen, each PC explains the same variance and contains the same

number of nonzero elements. Plotting the first three PCs (in Fig. 4.7) also shows that

there is no difference between the PCs obtained by either SPCA or PCA.

4.6.2 Selecting the Tuning Parameters

In this section, the L2 penalty tuning parameter (γ2) is set to 1 (to guarantee the group-

ing effect) leaving only the L1 penalty parameters (c1j - one for each sparse component,

j=1 . . . k) to be determined experimentally. These parameters essentially determine

the sparseness of the corresponding components.

As an example, Fig. 4.8 (a) demonstrates the relationship between the number of

nonzero elements (NNE) and variance explained (Ve) for the first sparse component for

SDS1. It provides a useful guide for making a judgment call on the trade-off between

sparsity and variance explained. As can be seen, in this instance there is a significance

increase in variance in the graph at NNE = 8 and Ve = 33.31%. This corresponds to

choosing c11 as 4.91. Similarly, for the second sparse component, as shown in Fig. 4.8

(b), there is a more rapid increase in variance at NNE = 5 than any other points. This

corresponds to choosing c12 as 3.91 and Ve = 18.05%.

One difficulty that arises when selecting the constraints for each component is that

they cannot be done independently. When selecting the second sparse component, the

solution to the first component varies even though the parameter for the first sparse

component is fixed. This is illustrated in Fig. 4.9 which shows the changes in the

number of nonzero elements and variance explained by the first sparse component as
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Figure 4.7: The first 6 loadings of PCA and SPCA (γ2 = 1, c11 = c12 = c13 = 4): (a)

The first loading; (b) The first score; (c) The second loading; (d) The second score;

(e) The third loading; (f) The third score.
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a function of the tuning parameter for the second sparse component with the tuning

parameter for the first sparse component fixed (c11 = 4.91). The same happens with

the selection of the third sparse component, that is, even if the tuning parameters for

the first two parameters are fixed, the solutions for the first two also vary. This was

not highlighted by Zou et. al. [196] in their work. This makes EN-SPCA difficult to

tune and unreliable for practical applications.

4.7 Experiments on OES Data

In this section, IDS1 and IDS1Filt, are employed to explore the application of EN-

SPCA to the analysis of OES data. In the OES data sets, the number of variables

is much bigger than the number of observations (m = 90, n = 2046). The general

SPCA algorithm can be applied in this situation if a positive γ2 is selected, but the

computational cost is very high. As an alternative, soft thresholding is proposed [196].

Soft thresholding is in essence the general SPCA algorithm with γ2 = ∞. However, soft

thresholding is computationally efficient. Thus when applying EN-SPCA to OES, soft

thresholding is the preferred implementation. In this form only the tuning parameters

for LASSO, i.e., γ1j need to be specified.

4.7.1 Selecting the LASSO Tuning Parameters

Table 4.5 shows how the number of nonzero elements (NNE) varies as a function of

γ11, for the first sparse component for IDS1. The table also shows how the variance

explained by the first sparse component changes as measured by the adjusted variance

(Ve) and SPMSE (SVe). As might be expected, Ve decreases as more and more coeffi-

cients are forced to zero. In contrast, the SVe value remains large for all values of γ11

demonstrating that the sparse component achieves good accuracy for those channels

where a reconstruction exists.
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Figure 4.8: Selection of c1j according to the relationship between the variance and

number of nonzero elements: (a) The first sparse component; (b) The second sparse

component.
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Figure 4.9: An illustration of constraint parameter selection dependency: (a)

Changes in the number of nonzero elements for the first sparse component as a function

of the tuning parameter for the second sparse component; b) Changes in the variance

explained for the first sparse component as a function of the tuning parameter for the

second sparse component.
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γ11 NNE Ve(%) SVe(%)

640000 144 47.85 79.05

650000 129 47.38 80.49

660000 116 46.97 81.84

670000 100 46.60 83.99

680000 90 46.29 85.31

690000 83 46.03 86.40

700000 77 45.79 87.18

750000 60 44.73 89.13

800000 50 43.94 90.39

850000 43 43.32 91.41

900000 41 42.73 90.93

950000 38 42.16 91.01

1000000 35 41.67 91.44

1050000 35 41.12 90.24

1100000 34 40.52 89.51

1150000 34 39.86 88.06

1200000 29 39.29 90.39

Table 4.5: NNE , Ve and SVe, corresponding to different γ11 values for the first sparse

PC

Fig. 4.10 (a) demonstrates the corresponding relationship between NNE and Ve and

provides a useful guide for making a judgment call on the trade-off between sparsity

and variance explained. As can be seen, in this instance there is a ‘knee’ in the graph

at NNE = 50, beyond which there is a marked decrease in the rate of variance increase

with included variables. This corresponds to choosing γ11 as 800000. The solution path

of the regression coefficients as a function of γ11 is shown in Fig. 4.10 (b). As can be

seen as γ11 is increased, more coefficients are constrained to zero.

The variance explained by the sparse component with γ11 = 800000 is 43.94%, which

compares to 95.82% for the unrestricted principal component. The corresponding
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SVe value, which measures the reconstruction accuracy on the non-zero reconstructed-

channels, is 90.39%.
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Figure 4.10: Selecting γ11 for IDS1: (a) The relationship between NNE and Ve; (b)

The solution path as a function of γ11.
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Figure 4.11: Selecting γ11 for IDS1Filt: (a) The relationship between NNE and Ve;

(b) The solution path as a function of γ11.

The corresponding relationship between NNE and Ve for IDS1Filt is shown in Fig. 4.11

(a). A ‘knee’ in the graph occurs at NNE = 58, beyond which there is a marked decrease

in the rate of variance increase with included variables. This corresponds to choosing



CHAPTER 4. SPARSE PRINCIPAL COMPONENT ANALYSIS 106

γ11 as 750000 and Ve = 45.07%. The solution path of the regression coefficients as a

function of γ11 is shown in Fig. 4.11 (b). As can be seen, the results for IDS1 and

IDS1Filt are similar.

4.7.2 Grouping Effect

Figure 4.12 shows the distribution of the first sparse component computed with γ11 =

800000 for IDS1. For comparison purposes the distribution of the first regular PC is

included in Figure 4.13. The PCA loading elements are all non-zero with several clus-

ters of large values centered on the active OES channels. These clusters arise because

of the spectral bleed between adjacent channels. In contrast, the SPCA loading has

only 50 non-zero entries and these are in seven distinct clusters of points. Analysis of

these seven sets of points show that they are all highly correlated as can be seen in Fig.

4.15 (a) (|correlation coefficient| > 0.925). This is a direct consequence of the grouping

effect that is a feature of EN-SPCA.

The first sparse component for IDS1Filt is shown in Fig. 4.14. The sparse loading

has 58 non-zero elements, distributed in nine distinct clusters. The patterns of these

58 variables are shown in Fig. 4.15 (b). Correlation analysis of these variables shows

that the absolute value of the lowest correlation coefficient between any two variables

is 0.9044. Table 4.6 gives a comparison of the channel distribution of the nonzero el-

ements in the first sparse component between IDS1 and IDS1Filt. The channels that

are not present in both components are highlighted in bold.
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Figure 4.12: The first sparse principal component obtained for IDS1 using soft

thresholding with γ11 = 800000: (a) Sparse loading; (b) Sparse score.
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Figure 4.13: The first principal component of IDS1: (a) PC loading; (b) PC score.
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Figure 4.14: The first sparse principal component obtained for IDS1Filt using soft

thresholding with γ11 = 800000.
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Figure 4.15: Intensity changes of the

nonzero loadings (over time) for the

first sparse PC for IDS1.
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Figure 4.16: Intensity changes of the

nonzero loadings (over time) for the

first sparse PC for IDS1Filt.

Data Nonzero channels in the first sparse component

IDS1 939, 940, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348, 1631, 1632

1633, 1634, 1635, 1724, 1725, 1871, 1872, 1873, 1874, 1875, 1876, 1877, 1878, 1879

1895, 1896, 1897, 1906, 1907, 1908, 1909, 1910, 1911, 1928, 1929, 1930, 1931, 1932

1933, 1934, 1935, 1993, 1994, 1995, 1996, 1997

IDS1Filt 937, 938, 939, 940, 941, 942, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1346

1347, 1348, 1349, 1631, 1632, 1633, 1634, 1635, 1724, 1725, 1871, 1872, 1873, 1874

1875, 1876, 1877, 1878, 1879, 1895, 1896, 1897, 1906, 1907, 1908, 1909, 1910, 1911

1912, 1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1941, 1942, 1993, 1994

1995, 1996, 1997

Table 4.6: Comparing the distribution of nonzero channels in the first sparse com-

ponent of IDS1 and IDS1Filt.

The above analysis on IDS1 and IDS1Filt shows that EN-SPCA has a tendency to give

equal weighting to strongly correlated variables and, as such, selects all the correlated

variables as a group, rather than selecting a single representative example. This is

useful when trying to identify groups of related variables, but is not ideal for a variable

selection algorithm. Note that although the variables are highly reversely correlated,

they still occur in the same sparse loading. Thus EN-SPCA is not effective for sepa-

rating variables with reverse patterns.
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4.8 Discussion and Conclusions

This chapter has introduced SPCA as a variable selection tool for the identification of

key variables in large data sets. EN-SPCA, one of the true algorithmic methods for

calculating sparse loadings has been introduced, together with a series of relevant top-

ics namely least squares, ridge, LASSO and elastic net regressions. SPMSE has been

proposed as a measure that better reflects the estimation accuracy of SPCA, given the

sparse structure of the model and the issue of selecting the tuning parameters has been

proposed as a tradeoff between variance explained and a sparse representation.

With the aid of an artificial data set and SDS1, the main properties of SPCA have been

illustrated, particularly in relation to how it is able to provide sparse solutions to PC

loadings and at the same time maintain the grouping effect. Results show that SPCA

is useful for key variable extraction and is able to identify the variables that are highly

correlated. However, one flaw in EN-SPCA has been spotted. In particular, it is high-

lighted that the sparse solutions are not stable, given changes to the tuning parameters

of the following sparse components, the solution for the existing sparse component will

be altered. Applying EN-SPCA to OES data from a plasma chamber shows that a

small number of variables can be recognised using SPCA, making it easier for variable

interpretation (relating variables to process chemicals) and data visualisation. How-

ever, it is not effective at separating the variables with reverse patterns and hence is

not ideal for variable selection based on pattern differences.



Chapter 5

Adaptive Weighting SPCA

5.1 Motivation

As discussed in the last chapter, it is clear that the LASSO penalty (L1 penalty) can

provide a sparse solution to loadings in regular PCA. However, the problem is that

using the same tuning parameter to penalize all coefficients in the same loading ignores

the intrinsic difference between loading coefficients. Addressing this issue, Zou [193]

and Wang and Leng [164] have proposed the adaptive LASSO penalty. The drawback

of the adaptive LASSO is that it cannot guarantee the grouping effect, a key attribute

of EN-SPCA, or the loading orthogonality, a key attribute of regular PCA. These two

properties are important for appropriate variable selection. Tackling these problems

leads to the proposal of adaptive weighting SPCA (AWSPCA).

The rest of the chapter is organized as follows. First, the methodology of AWSPCA is

described. Topics covered include designing the adaptive weightings, the optimization

criterion for achieving AWSPCA, numerical solutions and selecting tuning parameters.

Then, experiments based on a simulated data set are used to illustrate the properties of

AWSPCA. Finally, experimental results are presented for the application of AWSPCA

to semiconductor OES data.

110
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5.2 Methodology

5.2.1 Adaptive LASSO Penalty

The adaptive LASSO estimate provides the possibility of introducing more flexibility

to the control of loading sparsity, The adaptive LASSO estimate of the regression

coefficients can be expressed as

b̂
AL

j = arg min
bj

||y−Xbj ||22 + γ1j

n∑

i=1

wij ||bij ||1, (5.1)

where X ∈ Rm×n and y ∈ Rm×1 are the regression inputs and outputs, respectively.

bj ∈ Rn×1 is the regression coefficient vector with the ith element denoted as bij . In

the framework of EN-SPCA, bj corresponds to the jth loading. γ1j is a nonnegative

tuning parameter of the adaptive LASSO penalty for the jth loading and wij is the

adaptive weighting, used to penalize bij . According to [193], wij can be designed as

wij = 1/|pij |, (5.2)

where pij denotes the ith element in the jth loading in regular PCA. Hence, there is

an inverse relationship between wij and pij . For example, given large pij , wij is small,

leading to less penalisation to the corresponding regression coefficient. The advantage

of such a design is that wij can be easily obtained as a reverse value of pij , leaving

only the value of γ1j to be specified for each loading. This greatly simplifies the tuning

parameter specification. However, the adaptive LASSO estimate cannot guarantee the

grouping effect (selecting or removing high correlated variables at the same time) or

the orthogonality of loadings (guaranteeing the independence of loadings).

5.2.2 Re-Designing wij

The objective of re-designing wij is to incorporate the grouping effect and loading

orthogonality into the AWSPCA estimates. To achieve this, the wij are designed to

satisfy the following conditions:

• Produce similar penalization for loading elements that have similar values in

regular PCA.
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• Assign every variable to only one loading thereby achieving orthogonality between

loadings.

• Produce a trade-off between loading sparsity and model accuracy.

Mathematically, wij can be defined as:

wij =
N2Mi

|pij | Ri
, (5.3)

to penalise the ith element in the jth loading, where

Mi =
j−1∑

k=1

p̂S
ik, (5.4)

N = max(m,n), (5.5)

SF = {1, · · · , n}, (5.6)

Sk = {i|p̂S
ik 6= 0, for i = 1, · · · , n}, (5.7)

Sj = SF −
j−1⋃

k=1

Sk, (5.8)

Si = {q| |corr(xi,xq)| ≥ τ, q ∈ Sj}, (5.9)

Ri = card(Si), (5.10)

where p̂S
k (∈ Rn×1), k = 1, · · · , j − 1 denotes the kth sparse loading in the existing

j−1 loadings. Mi measures if the ith variable has appeared in the existing j−1 sparse

loadings. If so, Mi records the number of appearances; otherwise, Mi = 0. Because

N is large for a given large data set, when Mi = 0, wij is much smaller than that

when Mi 6= 0, leading to less constraint to the ith element in the jth loading. Hence,

when one coefficient already occurs in the existing loadings, it is very unlikely to be in-

cluded in the incoming (the jth) loading, forcing the obtained loadings to be orthogonal.

m and n denote the number of observations and variables, respectively. SF denotes

the set of indices for all variables, Sk is the set containing the indices of the variables

that do not occur in the kth sparse loading and Sj is the set of indices of the variables

that do not occur in the existing j − 1 loadings (unassigned variables). Si denotes

the set of indices of unassigned variables that are high correlated with the ith variable.

card(·) denotes the number of elements in the set. Ri is thus a count of the number of

unassigned variables that are highly correlated with the ith variable. If the ith variable
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is highly correlated with many of the unassigned variables, Ri is large and hence, wij

is small (Eq. (5.3)), leading to less penalisation to the ith coefficient. Since Ri (≥ 1) is

greater than |pij | (≤ 1), Ri has a much bigger effect on wij than pij . As a consequence,

variables that are highly correlated with other variables are more likely to be included

in the sparse loadings.

5.2.3 Optimization Criterion

Following the design of wij , the next question is how to calculate AWSPCA. Before

answering this question, it is necessary to define an optimization criterion. The existing

sPCA-rSVD algorithm [141] provides a good indication. Denoting the first PC score and

loading in the regular PCA as u and v, respectively, the best rank-one approximation

of the data matrix X can be expressed as uvT, subject to ||v||2 = 1 [141]. According

to sPCA-rSVD, for a given u, v can be obtained as:

v̂ = arg min
v
||X− uvT||22 s.t. ||v||2 = 1 (5.11)

where X ∈ Rm×n, u ∈ Rm×1 and v ∈ Rn×1. The penalised regression estimation of v

to achieve sparse solutions can be expressed as:

v̂ = arg min
v
||X− uvT||22 + λ

n∑

i=1

||vi||1, s.t. ||v||2 = 1, (5.12)

where λ is the tuning parameter of the LASSO penalty, used to control the shrinkage

level of the regression coefficients.

As discussed in [141], sPCA-rSVD is valid for solving any type of data matrix, even

if the data matrix is ill-conditioned, an important superiority over EN-SPCA, under

which the ill-conditioning problem can only be tackled by introducing the ridge penalty

into the estimate regression framework. This inspired us to investigate if AWSPCA can

be defined in a similar format so that the corresponding solutions can share the same

superiority over EN-SPCA. As such, the optimization criterion of AWSPCA can be

expressed as

v̂ = arg min
v
||X− uvT||22 + 2λ

n∑

i=1

wi||vi||1, s.t. ||v||2 = 1 (5.13)
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where v denotes the first sparse loading and wi = wi1, as defined in Eq. 5.3. The reason

for setting j = 1 is that the calculation is performed for one loading at a time. To obtain

additional loadings, the same calculation procedure can be applied repeatedly to the

residual data that remains after the contribution of the already computed loadings is

removed.

5.2.4 Numerical Solution

In sPCA-rSVD, calculation of the regression coefficients is element-based, so even if

the data matrix is ill-conditioned, it won’t affect the validity of the algorithm. Inspired

by sPCA-rSVD, AWSPCA can be solved by a similar method. To achieve this, the

following two Lemmas are introduced, which are extensions of the Lemmas presented

for solving sPCA-rSVD in [141].

Lemma 1 For a given v, the solution of u that minimizes Eq. (5.13) can be expressed

as:

ûj =
∑n

i=1 xjivi∑n
i=1 v2

i

. (5.14)

Proof 1 Define J as a scalar cost function of u and v, J = ||X−uvT||22+2λ
∑n

i=1 wi||vi||1.
This can be expressed as

J =
m∑

j=1

n∑

i=1

(xji − ujvi)2 + 2λ

n∑

i=1

wi||vi||1, (5.15)

=
∑

j

[
∑

i

x2
ji − 2

∑

i

xjiujvi +
∑

i

u2
jv

2
i ] + 2λ

∑

i

wi||vi||1 (5.16)

Minimising J for a given v (wij are known) is equivalent to minimising

∑

i

x2
ji − 2

∑

i

xjiujvi +
∑

i

u2
jv

2
i , (5.17)

which is a quadratic function of uj and the minimum occurs at the vertex where

ûj =
2

∑n
i=1 xjivi

2
∑n

i=1 v2
i

=
∑n

i=1 xjivi∑n
i=1 v2

i

. (5.18)

Lemma 2 For a given u, the solution of v that minimizes Eq. (5.13) can be expressed

as

v̂i =
sign(

∑m
j=1 xjiuj)[|

∑m
j=1 xjiuj | − λwi]+∑m

j=1 u2
j

. (5.19)
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Proof 2 As defined in proof 1, the cost function can be expressed as

J =
m∑

j=1

n∑

i=1

(xji − ujvi)2 + 2λ

n∑

i=1

wi|vi|, (5.20)

=
∑

j

∑

i

[x2
ji − 2xjiujvi + u2

jv
2
i ] + 2λ

∑

i

wi|vi|, (5.21)

=
∑

i

[
∑

j

(x2
ji − 2xjiujvi + u2

jv
2
i ) + 2λwi|vi|], (5.22)

=
∑

i

[
∑

j

x2
ji − 2

∑

j

xjiujvi +
∑

j

u2
i v

2
i + 2λsign(vi)viwi] (5.23)

=
∑

i

[
∑

j

x2
ji − 2[

∑

j

xjiuj − λsign(vi)wi]vi +
∑

j

u2
jv

2
i ], (5.24)

Minimising J for a given u (wij are known) is equivalent to minimising

∑

j

x2
ji − 2[

∑

j

xjiuj − λsign(vi)wi]vi +
∑

j

u2
jv

2
i , (5.25)

which is a quadratic function of vi. It is equivalent in format to minimising

aβ2 − 2bβ + 2λc|β|+ d. (5.26)

The minimizer of Eq. (5.26) can be expressed as

β̂ =
sign(b)(|b| − λc)+

a
. (5.27)

As such, the minimizer of Eq. (5.25) is given by

v̂i =
sign(

∑m
j=1 xjiuj)[|

∑m
j=1 xjiuj | − λwi]+∑m

j=1 u2
j

. (5.28)

According to Lemma 1 and Lemma 2, the proposed algorithm for solving AWSPCA

can be described as follows.

• Step 1: Initialization: Apply the standard SVD to X and obtain the best rank-one

approximation of X as u∗v∗T. Set v = v∗ and u = u∗.

• Step 2: Update v̂new = [v̂1, · · · , v̂i, · · · , v̂n] and ûnew = [û1, · · · , ûj , · · · , ûm] as

(a)

v̂i =
sign(

∑m
j=1 xjiuj)[|

∑m
j=1 xjiuj | − λwi]+∑m

j=1 u2
j

. (5.29)

(b)

ûj =
2

∑n
i=1 xjivi

2
∑n

i=1 v2
i

=
∑n

i=1 xjivi∑n
i=1 v2

i

. (5.30)
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• Step 3: Repeat Step 2 with u = ûnew and v = v̂new until convergence.

• Step 4: Standardize v̂new as p̂S = v̂new/||v̂new||, where p̂S is the sparse loading

in AWSPCA.

The computation cost of each iteration is O(nm).

The iterative produce of the proposed algorithm is used to obtain the first sparse

loading vector. Subsequent sparse loadings can be obtained sequentially via rank-one

approximation of the residual data. The number of sparse loadings can be specified in

advance, but once all variables have been included, the algorithm will be terminated,

even if the achieved number of loadings is less than that specified.

Given vi = 0, it can be obtained from Eq. 5.19 that

λi = |
m∑

j=1

xjiuj |/wi. (5.31)

Since wi is nonnegative, λi is also nonnegative. If setting all λi to zeros, the proposed

algorithm is equivalent to solving PCA in the least-squares regression framework. When

λmax = max
i

(|
m∑

j=1

xjiuj |/wi), (5.32)

all loading coefficients will be penalized to zero, while when

λmin = min
i

(|
m∑

j=1

xjiuj |/wi), (5.33)

only one loading element will be penalized to zero. Hence the solutions of AWSPCA

can be obtained by setting λ in the range of [0, λmax]. This is superior to EN-SPCA,

which has no method for determining an upper bound on λ.

5.2.5 Variance Explained by the Sparse Principal Components

In EN-SPCA, the obtained sparse loadings are not orthogonal, leading to the difficulty

in calculating the variance explained by the sparse principal components. To address

this issue, Zou et al. [196] proposed the matrix orthogonalization for removing the

correlation occurring in the PC scores (details have been discussed in section 4.4). In
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contrast, Shen and Huang [141] proposed to project the data matrix X onto the p-

dimensional subspace spanned by the k sparse components. The projected data matrix

can be expressed as:

X̂ = XPS[(PS)TPS]−1(PS)T, (5.34)

where PS denotes the matrix with sparse loadings. Then, the variance explained by

the first k sparse principal components can be expressed as tr(X̂
T
X̂).

Due to the orthogonality of sparse loadings obtained by AWSPCA, the total variance

explained by the first k sparse principal components (PCs) can be expressed as

Ve = tr[(TS)TTS], (5.35)

where

TS = XPS. (5.36)

5.3 Study of AWSPCA Properties on Artificial Data

In this section, the application of AWSPCA to an artificial data set is used to illustrate

the properties of AWSPCA. The artificial data set used is the one introduced in Chapter

4 (section 4.5.1) for investigation of the EN-SPCA algorithm. This consists of 10

variables measured over 1000 observations.

5.3.1 Sparsity

One of the key properties of AWSPCA is that it provides sparse solutions to the loadings

in regular PCA. The key parameter in AWSPCA is λ, which affects the solution sparsity.

As an example, Table 5.1 shows that how the changes in λ affect the resulting sparsity

in the first loading. As can be observed, when λ = 0, there is no constraint added

to the regression coefficients, leading to a solution identical to that of regular PCA.

When λ is increased to λmin (defined in Eq. 5.33), one loading coefficient is penalised

to zero. As λ increasing, λ = 105 for example, more loading coefficients are shrunk to

zero. When λ reaches λmax (defined in Eq. 5.32), the constraint level is so high that

all loading coefficients are penalised to zero. Hence, λ is an important parameter for

determining the solution sparsity.
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Order of AWSPCA PCA

Variables λ = 0 λmin = 1.7247× 104 λ = 105 λmax = 6.639× 105

1 -0.0834 -0.0046 0 0 -0.0834

2 -0.0812 0 0 0 -0.0812

3 -0.0818 -0.0013 0 0 -0.0818

4 -0.0813 -0.0002 0 0 -0.0813

5 0.4103 0.4164 0.4228 0 0.4103

6 0.4093 0.4153 0.4212 0 0.4093

7 0.4112 0.4173 0.4236 0 0.4112

8 0.4103 0.4163 0.4227 0 0.4103

9 0.3877 0.3922 0.3788 0 0.3877

10 0.3866 0.391 0.3771 0 0.3866

Table 5.1: The first loading obtained by AWSPCA as a function of λ and that

obtained by PCA.

5.3.2 Grouping Effect

The grouping effect is one important property in EN-SPCA. However, as proved in

[196], the grouping effect is only guaranteed when the penalty function is strictly con-

vex. In AWSPCA, the LASSO penalty is not strictly convex, but as an alternative, it

is implemented in the design of the adaptive weighting (details have been discussed in

section 5.2.2).

The experimental results shown in Table 5.2 demonstrate that when τ = 0.9, variable

{1, 2, 3, 4} and variable {5, 6, 7, 8, 9, 10} are separated in the two sparse loadings.

Increasing the value of τ to 0.98, i.e. strengthening the definition of high correlation,

variable {5, 6, 7, 8} and variable {9, 10} are separated into two loadings. Hence, the

grouping effect is achievable in AWSPCA.

5.3.3 Orthogonality

Experiments in this section focus on demonstrating the solution orthogonality of AWSPCA,

so manual selection of the tuning parameters, λi (i = 1, 2, 3) for the first three sparse

components is applied. An automated method for tuning parameter selection is dis-
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Order of τ = 0.9 τ = 0.98

Variables PC1 PC2 PC1 PC2 PC3

1 0 -0.4991 0 -0.4991 0

2 0 -0.4990 0 -0.4990 0

3 0 -0.5021 0 -0.5022 0

4 0 -0.4998 0 -0.4997 0

5 0.4197 0 0.5007 0 0

6 0.4184 0 0.4967 0 0

7 0.4202 0 0.5022 0 0

8 0.4195 0 0.5004 0 0

9 0.3855 0 0 0 -0.7080

10 0.3843 0 0 0 -0.7062

Table 5.2: Grouping effect contained in AWSPCA.

cussed in detail in Section 5.4.2. Given τ = 0.9, λ1 and λ2 are set to 8.623 × 103

and 3.9167 × 104, respectively. Increasing τ to 0.98, three sparse components can

be obtained. The corresponding tuning parameters are set to λ1 = 1.9565 × 105,

λ2 = 2.538× 104 and λ3 = 1.956× 104.

The sparse loadings obtained using AWSPCA are shown in Table 5.3. Because the dis-

tribution of non-zero coefficients in the sparse loadings is not overlapped, orthogonality

between the sparse loadings is guaranteed. Denoting the sparse loading matrix by P̂
S
,

(P̂
S
)
T

P̂
S

returns an identity matrix, confirming that the sparse loadings are orthogonal

to each other.

5.3.4 Variance Explained

As shown in Table 5.3, the first sparse PC obtained using AWSPCA (τ = 0.9) captures

nearly as much variance as the first regular PC, while using 40% less variables. In

addition, the accumulative variance captured by the first two sparse loadings is also

close to that captured by the first two regular PCs. One more example is presented in

Table 5.3, where τ is set to 0.98. The experimental results show that three loadings can

be obtained and the number of non-zero elements is 4, 4 and 2 for the first three sparse
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AWSPCA PCA

Order of τ = 0.9 τ = 0.98

Variables PC1 PC2 PC1 PC2 PC3 PC1 PC2 PC3

1 0 -0.4991 0 -0.4991 0 0.0834 0.4883 0.5245

2 0 -0.4990 0 -0.4990 0 0.0812 0.4889 -0.1555

3 0 -0.5021 0 -0.5022 0 0.0818 0.4916 -0.4947

4 0 -0.4998 0 -0.4997 0 0.0813 0.4895 0.0531

5 0.4197 0 0.5007 0 0 -0.4103 0.1030 0.4093

6 0.4184 0 0.4967 0 0 -0.4093 0.1012 0.2983

7 0.4202 0 0.5022 0 0 -0.4112 0.0994 -0.2876

8 0.4195 0 0.5004 0 0 -0.4103 0.1020 -0.0942

9 0.3855 0 0 0 -0.7080 -0.3877 -0.0073 -0.0349

10 0.3843 0 0 0 -0.7062 -0.3866 -0.0083 -0.3223

VE (%) 61.40 37.29 43.35 37.29 18.68 62.08 37.15 0.1094

Accumulative

VE (%) 61.40 98.69 43.35 80.64 99.33 62.08 99.23 99.34

Table 5.3: The loadings obtained using AWSPCA and PCA.

loadings, respectively. The variance explained by the first sparse PC is substantially

less than that for PCA, but the accumulative percentage of variance explained over 3

PCs is 99.33%, compared to 99.34% for regular PCA. Hence, the sparse PCs obtained

using AWSPCA are efficient at summarising the information contained in the data.

5.4 AWSPCA Applied to SDS1

5.4.1 PCA, A Special Case of AWSPCA

Theoretically, if the adaptive weighting LASSO penalty is set to zero, AWSPCA should

be equivalent to PCA. Provided that the sparse loadings are scaled to unit length,

the solutions of PCs should be identical. The experimental results shown in Table

5.4 provides a comparison between PCA and AWSPCA in terms of variance and the

number of nonzero elements for the SDS1 data set. As can be seen, the same amount

of variance is captured in each PC and the number of nonzero elements in each PC is

identical. Plotting the first three PCs (in Fig. 5.1) shows that there is no difference
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Variance Number of

Explained (%) Nonzero Elements

Order of PCs PCA AWSPCA PCA AWSPCA

PC1 47.27 47.27 20 20

PC2 39.6 39.6 20 20

PC3 10.89 10.89 20 20

Table 5.4: PCA, a special case of AWSPCA (λ1 = λ2 = λ3 = 0.)

between the PCs obtained by AWSPCA and by PCA.

5.4.2 Selecting the Tuning Parameters

As discussed in section 5.2.4, different levels of component sparsity (number of zero vari-

ables in the component) can be achieved when setting λi in the range of [λmin, λmax]

using AWPSCA. When λi = λmin, only one variable in the component is shrunk to

zero. Increasing λi to λmax, all variables in the component are shrunk to zero. However,

the analysis does not tell which λi to choose to obtain the optimal component sparsity.

In this section, a method for selecting λi is proposed. Using the selected λi, variables

with distinctive patterns can be separated into different components, while variables

with similar patterns can be selected in the same component.

According to Eq. 5.31, λi is tied to each variable. Variables with similar patterns

yield similar λi. As such, the difference between λi can be used as an indicator of the

difference between the corresponding variables. Arranging λi in increasing order, the

most significant difference between the adjacent λi indicates that the corresponding

variables are the most distinctive. Denoting λa (λa = [λmin, · · · , λa
j−1, λ

a
j , · · · , λmax])

as the arranged sequence of λi, then the possible solution of λ, λ∗, can be expressed as

λ∗ = λa
J , (5.37)

where

J = arg max
j

(λa
j − λa

j−1). (5.38)

However, as the criterion for selecting λ, the condition defined in Eq. 5.37 is not

complete. The reason is that it cannot guarantee the variables selected in the same
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Figure 5.1: The first 3 loadings of PCA and AWSPCA components (λ1 = λ2 = λ3 =

0): (a) The first loading; (b) The first score; (c) The second loading; (d) The second

score; (e) The third loading; (f) The third score.
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component have sufficient similarity. A statistical method, Pearson’s correlation coef-

ficient, is employed here as a measure of the similarity/correlation between variables.

Denoting pS as the obtained sparse component, pS = [pS
1 , · · · , pS

i , · · · , pS
n ] (n: data

dimensions) and I as the set of non-zero variables, I = [i|pS
i 6= 0, i = 1, · · · , n], the

average correlation between these non-zero variables can be defined as

ρ = avei,j∈I, i6=j [corr(xi,xj)], (5.39)

where ave(·) and corr(·) denote the function of average and Pearson’s correlation coef-

ficient, respectively. Supposing ξ is the similarity threshold, the variables included are

considered as highly correlated, as long as

ρ ≥ ξ. (5.40)

The proposed method of selecting λ is a combination of the above discussed criteria.

The condition defined in Eq. 5.37 is considered first. If the result cannot guarantee that

the average correlation between these non-zero variables is higher than the threshold

(ξ), then the average correlation criterion is employed as the only criterion for selecting

λ. The complete method of selecting λ is given as follows.

Step 1: Checking the effectiveness of λa
J . Given λ∗ = λa

J , if the condition of ρ ≥ ξ

can be satisfied, then

λ = λa
J ; (5.41)

otherwise, go to Step 2.

Step 2: Selecting λ according to the similarity level. For each λa
j , calculate the av-

erage correlation, ρj . Select the smallest λa
j that can satisfy ρj ≥ ξ as the final

solution of λ, i.e.

λ = min
j

(λa
j |ρj ≥ ξ). (5.42)

To illustrate the effectiveness of the proposed method, SDS1 is used. Experimental

results showing the selection of λ for the first four sparse components are shown in Fig.

5.2 with ξ set to 0.9. As can be observed, the big change in the λa
j curve (Fig. 5.2 (a))

occurs at j = 13 or λa
j = 744.36, which can be more clearly observed in the curve of

λa
j − λa

j−1 (Fig. 5.2 (b)). The change in ρj as a function of λa
j is shown in Fig. 5.2
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(c), which shows that when λ = 744.36, the average correlation between the non-zero

variables in the sparse component is above 0.9. Hence, λ selected for the first sparse

component is 744.36.
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Figure 5.2: Selecting λ for the first four sparse components: (a) λa
j for the first

component; (b) λa
j − λa

j−1 for the first component; (c) ρj as a function of λa
j for

the first component; (d) λa
j for the second component; (e) λa

j − λa
j−1 for the second

component; (f) ρj as a function of λa
j for the second component; (g) λa

j for the third

component; (h) λa
j − λa

j−1 for the third component; (i) ρj as a function of λa
j for

the third component; (j) λa
j for the fourth component; (k) λa

j − λa
j−1 for the fourth

component; (l) ρj as a function of λa
j for the fourth component.
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Note that according to Fig. 5.2 (c), for any value of λa
j greater than 153, ρj is above

the threshold set at 0.9. However, λa
j is given the priority for selecting λ. The rea-

son is that λi (defined in Eq. 5.31) is a direct measure of the variable features and

is thereby more reliable than the statistical average, ρj . Using a similar approach

to the first component, the λ selected for the second, third and fourth components

are 157.58, 186.57 and 0.37, respectively. Note that in the calculation of the fourth

component, all the residual variables are highly correlated (very similar), resulting in

no significant difference in λa
j−λa

j−1 and ρ, as shown in Fig. 5.2 (k) and (i), respectively.

Table 5.5 shows the sparse loadings obtained when AWSPCA is applied to SDS1 us-

ing the selected tuning parameters. As one can see, the distribution of the non-zero

elements in each loading does not overlap, so the sparse loadings are orthogonal. For

comparison, the loadings obtained using regular PCA are also listed in Table 5.5. Al-

though fewer variables are used in each sparse loading, the percentage of accumated

variance explained by the four sparse components is comparable to that obtained with

regular PCA. The patterns of the scores for the first four sparse components and regular

PCs are shown in Fig. 5.3. It can be observed that the scores of sparse components are

representative of the patterns contained in SDS1, while the scores of regular components

don’t have such a feature.
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Order of AWSPCA PCA

Variables PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

1 0 0 0 -0.5128 0.0223 0.3173 0.286 0.2369

2 0 0 0 -0.5106 0.0193 0.3202 0.277 0.1896

3 0 0 0 -0.4718 0.0047 0.3204 0.2757 0.2821

4 0 0 0 -0.5037 0.0155 0.3161 0.2892 0.2715

5 0 -0.5015 0 0 -0.2041 0.1868 -0.3744 0.1854

6 0 -0.4942 0 0 -0.2026 0.1954 -0.3625 0.1222

7 0 -0.5077 0 0 -0.2049 0.1863 -0.3759 0.2005

8 0 -0.4964 0 0 -0.2023 0.1884 -0.3782 0.1743

9 -0.3445 0 0 0 -0.3166 -0.0074 0.1176 -0.181

10 -0.2412 0 0 0 -0.3153 -0.0112 0.1227 -0.2383

11 -0.2985 0 0 0 -0.3158 -0.0055 0.1253 -0.2292

12 -0.3301 0 0 0 -0.3161 -0.0033 0.1275 -0.1843

13 -0.3616 0 0 0 -0.3169 -0.008 0.1206 0.034

14 -0.3800 0 0 0 -0.3176 -0.0006 0.1094 0.046

15 -0.3943 0 0 0 -0.3172 -0.0144 0.119 0.0106

16 -0.4409 0 0 0 -0.3180 -0.0018 0.1129 -0.0222

17 0 0 0.4955 0 -0.0881 -0.3350 0.0438 0.3410

18 0 0 0.5139 0 -0.0911 -0.3341 0.0650 0.3534

19 0 0 0.4883 0 -0.085 -0.3358 0.06443 0.3804

20 0 0 0.5020 0 -0.0875 -0.3374 0.0378 0.2587

VE (%) 38.21 19.62 19.68 19.7 47.29 39.6 10.89 0.59

AVE (%) 38.21 57.84 77.52 97.22 47.29 86.87 97.76 98.34

Table 5.5: The first four loadings obtained using AWSPCA and PCA on SDS1

(VE=Variance Explained; AVE=Accumulated Variance Explained), the λ selected for

the first four sparse components are 744.36, 157.58, 186.57 and 0.37.
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Figure 5.3: The patterns of the scores of the first four sparse components and regular

PCs: (a) The score of the first sparse component; (b) The score of the second sparse

component; (c) The score of the third sparse component; (d) The score of the fourth

sparse component; (e) The score of the first regular PC; (f) The score of the second

regular PC; (g) The score of the third regular PC; (h) The score of the fourth regular

PC.
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5.5 AWSPCA Applied to OES Data

In this section, the application of AWSPCA to OES data is investigated using the

benchmark data sets IDS1 and IDS1Filt. As a pre-processing step, each OES channel

is mean centered for IDS1 and normalised for IDS1Filt. The reason for not scaling the

channels in IDS1 is to avoid amplifying the noise signals.

The method discussed in Section 5.4.2 is employed here for selecting the tuning param-

eters for IDS1 and IDS1Filt. As an example the tuning parameter selection for the first

AWSPCA component on IDS1Filt is shown in Fig. 5.4. The maximum of λa
j − λa

j−1

occurs at λ = 2.8226 × 104 and the corresponding ρ equals to 0.972, indicating the

high level of similarity between the non-zero variables in the component. As such, the

selected λ for the first sparse component is 2.8226 × 104 and the number of non-zero

variables contained in the first component is 1064. Using this method, the other 7 com-

ponents are obtained. The number of non-zero variables included in the 8 components

is accumulatively, equal to the total number of variables in IDS1Filt.
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Figure 5.4: Selecting the tuning parameter for the first sparse component: (a) λa
j ;

(b) λa
j − λa

j−1; (c) ρj as a function of λa
j .

The tuning parameters selected for the first 8 sparse components are shown in Table

5.6, where the number of non-zero variables contained in each loading and the variance

explained are also included. As can be seen, most of the variance (75.78%) is captured

in the first sparse component and includes 78.75% of the variables (1064 over 1354).

The second component capture 18.16% of the variance and uses 250 variables. Hence,

the first two component together capture 94.93% of the variance, which is comparable

to that explained by the first PC in regular PCA. Relative to the first two components,



CHAPTER 5. ADAPTIVE WEIGHTING SPCA 129

the residual 6 components are less significant in terms of variance explained.

Similarly, the tuning parameters selected for IDS1 are shown in Table 5.6. It can

be seen that the number of non-zero variables contained in each component and the

corresponding variance explained are small. The reason is that because the intensity

amplitude is not scaled, the weighting of the variable with high intensity is much

larger than the counterpart with small intensity. As a result, the variables with high

amplitude are selected. The tuning parameter selection is in effect signal amplitude

based for IDS1. For illustration, the intensity changes of the non-zero variables selected

in each component are shown in Fig. 5.5. As can be seen, the variables included in

the 1st, 2nd, 5th, 6th and 8th have similar patterns, but different amplitudes. A similar

pattern occurs with the 3rd, 4th and 7th components.
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Figure 5.5: Intensity (mean-centered) changes of the nonzero variables in each com-

ponent for IDS1: (a) First Component; (b) Second Component; (c) Third Component;

(d) Fourth Component; (e) Fifth Component; (f) Sixth Component; (g) Seventh Com-

ponent; (h) Eighth Component.
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PC AWSPCA PCA

i λi Non-zero elements VE Non-zero elements VE

in each PC (%) in each PC (%)

IDS1Filt

1 2.8226× 104 1064 75.78 2045 94.93

2 1.5827× 104 250 18.16 2045 4.13

3 6.95× 102 24 1.56 2045 0.65

4 1.48× 102 6 0.43 2045 0.1

5 1.51× 102 3 0.2 2045 0.06

6 44 3 0.22 2045 0.05

7 21 1 0.07 2045 0.03

8 21 2 0.15 2045 0.02

IDS1

1 1.42× 108 4 10.6 2045 95.817

2 3.75× 107 17 23.8 2045 3.007

3 3.55× 107 4 0.386 2045 0.42

4 2.71× 107 17 1.81 2045 0.043

5 2.72× 107 1 0.6 2045 0.038

6 2.64× 107 2 0.96 2045 0.031

7 1.93× 107 175 15.7 2045 0.028

8 1.56× 107 6 0.77 2045 0.027

Table 5.6: Tuning parameters selected for the first 8 sparse components of IDS1 and

IDS1Filt and the corresponding number of non-zero variables and variance explained

by each component. PCA results are also included for comparison.

The loadings and scores of the eight sparse components obtained for IDS1Filt are shown

in Fig. 5.6. The scores of the first two components seem similar. However, because the

signs of the non-zero variables in their corresponding loadings are reverse, the patterns

shown in those two scores are in fact reverse, indicating two different patterns. The

plots of the intensity changes of the non-zero variables in each component are shown

in Fig. 5.7. As can be observed, the variables with different patterns are separated in

different components.
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Figure 5.6: The loadings and scores of the sparse components obtained using

AWSPCA on IDS1Filt: (a) Loading of the first component; (b) Score of the first

component; (c) Loading of the second component; (d) Score of the second component;

(e) Loadings of the residual components; (f) Scores of the residual components.
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Figure 5.7: Intensity (normalised) changes of the nonzero variables in each of eight

sparse components: (a) First Component; (b) Second Component; (c) Third Compo-

nent; (d) Fourth Component; (e) Fifth Component; (f) Sixth Component; (g) Seventh

Component; (h) Eighth Component.
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5.6 Discussion and Conclusions

A new adaptive weighting SPCA (AWSPCA) algorithm has been proposed in this chap-

ter as an improvement of the recently proposed EN-SPCA and the adaptive LASSO

algorithm. The AWSPCA provides a solution that gives more control over the spar-

sity and distribution of channels in PCs, while enjoying good prediction accuracy and

retention of the grouping effect. In addition, the AWSPCA encourages loading orthog-

onality, the key attribute possessed by regular PCA. A new numerical solution has

been proposed for calculating AWSPCA, which is superior to LARS-EN for EN-SPCA

in dealing with ill-conditioning data set.

With the aid of the artificial and simulated data sets, the properties of AWSPCA,

e.g. sparsity, grouping effect, solution orthogonality and variance explained, have been

completely investigated, provides empirical evidence of the properties of AWSPCA. In

addition, the effectiveness of the proposed tuning parameter selection method has been

explored and estimated.

The application of AWSPCA to OES has shown the potential of the algorithm as a

variable selection method, AWSPCA is effective in selecting a subset of variables with

similar patterns, while maintaining the grouping effect. Used in conjunction with the

proposed tuning parameter selection method, variables with different profiles can be

separated into different components, indicating that AWSPCA can be used for variable

selection based on pattern differences. This is a significant improvement over the EN-

SPCA algorithm.



Chapter 6

Non-Hierarchical Clustering

6.1 Introduction

The area of cluster analysis originated outside the mainstream of statistics, in fields

such as psychology and numerical taxonomy (taxonomy refers to the theory and prac-

tice of classifying organisms in biology) [47]. In recent decades, cluster analysis has

received considerable attention in the area of statistics, although a number of names

have been employed depending on the area of application e.g. numerical taxonomy

in biology, Q-analysis in psychology, unsupervised pattern recognition in the artificial

intelligence field and segmentation in market research [37].

Nowadays, cluster analysis is used as a generic term referring to all these kinds of

numerical methods used in multivariate data analysis for classifying objects/variables

into the groups that have similar patterns, while retaining the distinctive patterns in

different groups. The process of clustering is unsupervised [111, 71], i.e. one can clas-

sify the objects according to the rules made for a particular problem. This is distinct

from the approaches known as discriminant analysis and decision analysis that aim at

extracting features from the objects that are known to belong to certain groups. As

such, one must be aware that using cluster analysis, different rules can produce dif-

ferent clustering results even for the same data set and that in the absence of other

‘supervised’ information the results are equally valid.

The approaches to searching for clusters can be divided into the so-called hierarchical

135
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and non-hierarchical methods. Hierarchical methods seek to organize all the objects in

a structured hierarchical tree, while non-hierarchical methods, such as well known K-

means clustering and self organizing maps, seek to separate the objects into distinctive

clusters.

A detailed discussion of hierarchical clustering approaches will be provided in Chap-

ter 7. In this chapter, the focus is on non-hierarchical clustering approaches. Typical

non-hierarchical clustering approaches can be divided into K-means (and its deriva-

tives such as fuzzy c-means), quality threshold clustering, self organizing maps (SOM),

graph-theoretical approaches, model-based clustering and density-based clustering.

Graph-theoretical approaches refer to a series of approaches that convert the problem

of separating objects into distinctive clusters into such graph theoretical problems as

finding the maximal separation of the objects, according to the so-called proximity

graph [76]. In the proximity graph, each object is assigned to a vertex and every pair

of objects are connected by so-called edges. For some clustering methods, edges are

defined as the proximity values between two objects [140, 180]. For other clustering

methods, proximity between two objects is mapped only to either 0 or 1, according to

a specified threshold, and edges only exist where the proximity equals to 1 [5, 54]. So

far, graph-theoretical approaches have seen wide use in gene data analysis [189].

Model-based clustering seeks to recover the original models from the data and classify

each object into a cluster whose objects have the same probability distribution. A key

feature of model-based clustering is that it provides a calculation of the probability of

an object belonging to a given model [76, 40].

Density-based clustering includes a few recently developed density-based approaches,

such as DBSCAN (density based spatial clustering of applications with noise) [36], OP-

TICS (ordering points to identify the clustering Structure) [108] and CLIQUE (clus-

tering in quest) [1]. In this context, the density is defined as the number of objects

contained in a given clustering area. Among these methods, DBSCAN has a wider

use. Two main features of DBSCAN are that it is effective at discovering clusters of
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arbitrary shape and is able to discriminate noise in the data.

The K-Means clustering, self organizing maps and quality threshold clustering are the

techniques investigated in this chapter and are discussed in detail in the following sec-

tions, as a precursor to the main contribution of the chapter, a new clustering algorithm

for OES data analysis, referred to as max separation clustering. The remainder of the

chapter is structured as follows. First, experimental results for the application of K-

Means, self organizing maps and quality threshold clustering approaches to simulated

data and OES benchmark data sets, are provided, followed by a discussion of the moti-

vation for developing a new max separation clustering (MSC) algorithm. The proposed

MSC is described in detail and evaluated for clustering on the simulated data and OES

data. Advantages and disadvantages of MSC are provided as a summary at the end.

6.2 K-Means Algorithm

6.2.1 Algorithm Description

One of the most common and widely applied, partition-based clustering algorithms is

the so-called K-Means algorithm [120]. Using K-means, n objects can be clustered into

K non-overlapping clusters. The algorithmic steps for the classical K-means algorithm

can be summarized as follows:

Step 1: Set the number of clusters, K.

Step 2: Initialize K centroids. Randomly select data points as cluster centroids (one

point for each cluster).

Step 3: Assign objects to the clusters according to the so-called minimum distance

rule, which assigns the objects to their nearest centroids.

Step 4: Recalculate the K centroids, as the statistical mean values of the objects in

the corresponding clusters, defined in Eq. (6.4).

Step 5: Repeat from Step 3, until the K centroids do not change any more.
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Given a set of objects X (X = {x1, . . . ,xn}, xi ∈ Rm×1), K-Means can classify the n

objects into K groups or clusters (K ≤ n) while minimizing the total intra-cluster sum

squared error, TIC(G, C), which is defined in [120] as:

TIC(G, C) =
K∑

k=1

IC(Gk, ck). (6.1)

where G is the set of clusters (G = {G1, . . . , GK}), C is the set of the centroids (C =

{c1, . . . , cK}) and IC(Gk, ck) is the intra-cluster sum squared error for the kth cluster,

Gk:

IC(Gk, ck) =
∑

xi∈Gk

dist(xi, ck) (6.2)

where ck denotes the centroid of Gk and dist(·) is a distance function. The reason for

using sum squared error instead of mean squared error is to account for the effect of the

size of each cluster. Otherwise, the effect of the outliers on the clustering performance

will be exaggerated, leading to an unfaithful measure of the resulting clustering.

As discussed in [88] from the various possible choices of dist(·) and ck, a popular

definition of dist(xi, ck) is selected:

dist(xi, ck) =
m∑

j=1

(xij − ckj)2, (6.3)

with ck defined as the mean value of the objects contained in cluster k, i.e.

ck =
1

Nk

∑

xi∈Gk

xi, (6.4)

with Nk = card(Gk), where card(·) is the cardinality of Gk.

6.2.2 Choosing the Number of Clusters

A series of key issues associated with K-Means algorithms have not been fully ad-

dressed. These issues are choosing the pre-specified number of clusters (K) and the

initialization of the centroids, which is known to cause inconsistency in the clustering

results. A simple example is used here to highlight these two issues. A two-dimensional

artificial data set with 80 objects is presented in Fig. 6.1, where, as can be observed

visually, the intrinsic number of clusters is designed to be 4.
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Figure 6.1: An artificial data set with 80 objects, designed to have 4 clusters.

Using classical K-means to cluster the data, as shown in Fig. 6.2, different initializa-

tions of the centroids leads to different clustering results. The number of clusters, K,

is arbitrarily set to three, an attempt to imitate the case where the intrinsic number

of cluster contained in the data is not known. As one can see, the objects contained in

G2, as shown in Fig. 6.2 (a) in the first clustering run are clustered into two groups,

G1 and G3, as shown in Fig. 6.2 (b) in the second clustering run. Given K = 4, the

objects contained in G2 in the first clustering run are clustered into G2 and G4 in the

second clustering run, while the objects contained in G3 and G4 in the first clustering

run are clustered into G3 in the second clustering run, according to Fig. 6.2 (c) and

(d). Similarly, given K = 5, the clustering results also vary between different clustering

runs, as shown in Fig. 6.2 (e) and (f), respectively. Thus, the outcome of clustering is

determined by the initial centroid selection, no matter what value is chosen for K, be

it less than, equal to or greater than the intrinsic number of clusters.

Due to the variations introduced by initialization, the value of TIC(G,C) is not unique

for a given K. One solution is to run K-means repeatedly (100 times in our exper-

iment) and to select the minimum of TIC(G,C) as the clustering performance for a

given K. Fig. 6.3 shows the resulting values of TIC(G, C) as a function of K. Ac-

cording to our prior knowledge of the data, K = 4 should be the solution and this

corresponds to the ‘elbow point’ shown in Fig. 6.3. The so-called ‘elbow point’ in fact
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Figure 6.2: Clustering results using classical K-means on artificial data: (a) First

clustering run, K = 3; (b) Second clustering run, K = 3; (c) First clustering run,

K = 4; (d) Second clustering run, K = 4; (e) First clustering run, K = 5; (f) Second

clustering run, K = 5.
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Figure 6.3: TIC(G, C) changes as a function of K for classical K-means clustering

on the artificial data. (a) Artificial data (b) Changes in TIC(G, C) as a function of K
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Figure 6.4: TIC(G, C) changes as a function of K for classical K-means clustering

on random data. (a) Random data (b) Changes in TIC(G,C) as a function of K
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Figure 6.5: TIC(G, C) changes as a function of K for classical K-means clustering

on SDS1. (a) SDS1 data (standardized) (b) Changes in TIC(G,C) as a function of K
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has its theoretical origin in factor analysis, where it is termed as the scree test criterion,

proposed by Cattell [15]. A scree test is a visual method that is used to look for the

disjunctions in the patterns of eigenvalues to determine the number of dominant factors.

To illustrate the validity of using the ‘elbow point’, we can use a special case when there

are no intrinsic clusters in the data, e.g. random data. If the ‘elbow point’ method is

effective, a clear ‘elbow point’ should not exist in the curve of TIC(G, C) for this data.

This is confirmed in Fig. 6.4, where the random data is displayed in Fig. 6.4 (a) and

the changes in TIC(G, C) as a function of K is shown in Fig. 6.4 (b). It can be seen

that there is no such sharp change in the TIC(G, C) curve in Fig. 6.4 (b). As a final

example, the performance of the ‘elbow point’ method is illustrated for SDS1 in Fig.

6.5. The data is standardised to zero mean and unit variance for K-means to focus on

shape difference rather than the amplitude. As can be seen, it correctly predicts 4 as

the number of clusters. Setting K = 4, the obtained clusters are displayed in Fig. 6.6

and Fig. 6.7. Obviously, different clustering results are obtained for different clustering

runs.

6.2.3 Application of K-Means to OES Data

The experimental results of applying the ‘elbow point’ method to IDS1 and IDS1Filt

are shown in Fig. 6.8 (a) and (b), respectively. The estimated number of clusters are

3 for IDS1 and 2 for IDS1Filt. Correspondingly, the obtained clusters represented by

the centroids are displayed in Fig. 6.9 and Fig. 6.10, respectively. Standard deviation

is employed to measure the variation in the objects contained in each cluster. As can

be seen in Fig. 6.10, the variation increases towards the end of each etch run (between

sample 70 to 90) indicating some inconsistency in the patterns of the objects contained

in the cluster. Based on the patterns extracted by MSC, discussed later in the chapter,

it can be concluded that classical K-means clustering will generally only extract the

most dominant patterns.
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Figure 6.6: Data distribution in each cluster for the first clustering run (thicker line

represents the centroid): (a) Cluster 1; (b) Cluster 2; (c) Cluster 3; (d) Cluster 4.
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Figure 6.7: Data distribution in each cluster for the second clustering run (thicker

line represents the centroid): (a) Cluster 1; (b) Cluster 2; (c) Cluster 3; (d) Cluster 4.
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Figure 6.8: TIC(G, C) changes as a function of K for classical K-means clustering.

(a) IDS1 data (b) IDS1Filt data
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Figure 6.9: Centroid of each cluster for K-means clustering on IDS1 (thinner lines =

the standard deviation measures of the intensity changes for the objects contained in

each cluster, N = the number of objects): (a) Centroid 1; (b) Centroid 2; (c) Centroid

3.
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Figure 6.10: Centroid of each cluster for K-means clustering on IDS1Filt (thinner

lines = the standard deviation measures of the intensity changes for the objects con-

tained in each cluster, N = the number of objects): (a) Centroid 1; (b) Centroid

2.
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6.3 Self Organizing Maps

A self organizing map (SOM) [90] is a class of artificial neural network that is trained

using competitive learning to produce a low dimensional representation of high dimen-

sional data. Competitive learning employs a winner-takes-all policy [56]: for each input,

the output neurons of the network compete among themselves to be activated. The

output neurons are placed at the nodes of a lattice (usually one or two dimensions).

During the competitive learning process, the locations of the output neurons continue

to be ordered according to the various patterns of the inputs until a self organizing

map is formed.

The most important applications of the SOM are in the visualization of complex pro-

cesses and systems, which are otherwise difficult or even impossible to be detected by

direct human observations [72]. The SOM algorithm is unsupervised, i.e. the training

process is entirely data-driven, without the requirement of any prior knowledge. As

compared to artificial neural networks based on supervised learning (e.g. back prop-

agation neural networks), this is a clear advantage. Typical processes for achieving a

self organizing map involve competition, cooperation and synaptic adaptation [56].

6.3.1 Algorithm Description and Basic Operation

Competitive Process

For each input, the output neurons in the network compute their value of a discrimi-

nation function and only the output neuron achieving the maximum value is activated.

Let x denote an input vector

x = [x1, x2, . . . , xm]T (6.5)

and wj denote the weight vector of output neuron j

wj = [wj1, wj2, . . . , wjm]T, for j = 1, 2, . . . , l, (6.6)

where l is the total number of output neurons in the network. The output neuron, i,

that best matches the input vector x can be described as

i(x) = arg min
j
‖x−wj‖2, for j = 1, 2, . . . , l. (6.7)
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Cooperative Process

SOMs are different from other neural networks in that SOMs use neighbourhood func-

tions to preserve the topological neighbourhood centered on winning neuron i [56].

Suppose hij denotes the topological neighbourhood of i,

hij = exp(− d2
ij

2σ(n)2
), (6.8)

where dij denotes the L2-norm distance between winning neuron i and its neighbour-

hood neuron j in the output space,

dij = ‖ri − rj‖2, (6.9)

ri and rj define the discrete position of winning neuron i and excited neuron j in the

lattice, respectively. The parameter σ(n) defines the neighbourhood radius [135],

σ(n) = σ0 exp(− n

τ1
), (6.10)

where n denotes the number of iterations. The neighbourhood radius shrinks or de-

creases with the number of iterations, leading to the decrease of hij for a given dij .

By definition, hij attains its maximum when dij = 0. hij decreases monotically with

increasing dij and tends to zero as dij →∞.

Synaptic Adaptation

Using SOM, the synaptic weight vector wj of neuron j is required to be updated

according to the input vector x from iteration n to n + 1, according to

wj(n + 1) = wj(n) + η(n)hij(n)(x−wj(n)), (6.11)

where η(n) is called the learning rate,

η(n) = η0 exp(− n

σ2
), n = 0, 1, 2, . . . . (6.12)

The adaptation of synaptic weights can be decomposed into two phases: ordering phase

and convergence phase. In the first phase, the learning rate and neighborhood radius

are large resulting in a fast training. The values of these two parameters decay with

the number of iterations and slow down the tuning process, so the second phase is also
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called a fine tuning phase. A detailed discussion of how these two phases are achieved

by the synaptic weighting update is given in [91].

As training proceeds, patterns of output neurons around activated neuron i are adapted

to become more like the pattern of neuron i. At the end of training, every object is

mapped with an output neuron and the neighbour output neurons tend to have similar

patterns.

Here, the SOM toolbox developed by Vesanto et al is employed [162]. The basic steps

of a SOM algorithm can thus be summarised as follows [56]:

Step 1: Initialization. Choose random values for wj , j = 1, · · · , l.

Step 2: Sampling. A training sample is randomly selected from the set of input

vectors.

Step 3: Similarity Matching. Find the best matching (winning) neuron at iteration

n for an input neuron, x, according to Eq. (6.7).

Step 4: Updating. Update the synaptic weight vectors for all output neurons, ac-

cording to Eq. (6.11).

Step 5: Continuation. Go back to Step 2 until no noticeable changes are observed

in the self organizing map. In practice, the algorithm is terminated when a

predefined maximum number of clusters have taken place.

When applying the SOM for clustering, the output neurons are equivalent to the cluster

centroids in K-means and the samples for which a neuron is the winner are the objects

contained in the corresponding cluster.

6.3.2 Estimating Algorithm Effectiveness on Simulated Data

The data is standardised to have zero mean and unit variance to focus on shape dif-

ference. The experimental results of applying the SOM to clustering of the SDS1
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Figure 6.11: Experimental results of using SOM on the SDS1 data: (a) Synaptic

weight vectors for 4 output neurons; (b) Synaptic weight vectors for 5 output neurons;

(c) Synaptic weight vectors for 6 output neurons; (d) Synaptic weight vectors for 7

output neurons (N denotes the number of samples for which a neuron is a winner.)

benchmark demonstrate that the more output neurons used, the more patterns can

be explored. When the number of output neurons is arbitrarily set to 4, as Fig. 6.11

(a) shows, there are 2 different patterns shown in the output neurons (represented by

the synaptic weight vectors). Increasing the number of output neurons to 5, one more

pattern is included (as shown in the last cell in Fig. 6.11 (b)). When the number

reaches to 7, all patterns contained in the SDS1 are recognized.

One intrinsic feature of the SOM refers to the so-called topological-ordering property

[56], which shows that the output neurons of the SOM feature map are ordered topo-

logically based on the similarity between neurons patterns. This is in fact, a direct

consequence of the method used to update the synaptic weighting as defined in Eq.

(6.11). In order to include all the patterns in output neurons, the number of neurons

needs to be set bigger than the number of distinctive patterns contained in the data to

allow for the gradual transition between patterns.

6.3.3 Application of SOM to OES Data

IDS1 and IDS1Filt are used to test the effectiveness of the SOM in clustering high-

dimensional OES data. Without any prior knowledge, the selection of the structure
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of the feature map is arbitrary. For ease of visualisation and taking into account the

desire to achieve data reduction, the number of output neurons is selected to be 16 and

25, respectively. Iteration times for training and fine tuning processes are set to 1000

and 100, respectively, as suggested in [56] for dealing with large data sets.

Fig. 6.12 shows the synaptic weight vectors (patterns) of the output neurons arranged

in a lattice size of 1 × 16 for IDS1 and IDS1Filt, respectively. As one can see, output

neurons with similar patterns are located near each other and the neurons with the

most distinctive patterns are the furthest apart. For IDS1Filt, the patterns of some

output neurons are destroyed by the noise (as in Fig. 6.12 (a)), making it hard to

estimate the number of different patterns contained in the feature map.

The patterns obtained when the lattice geometry is changed to a 4 × 4 structure are

shown in Fig. 6.13 (a) and (b) for the SOM on IDS1 and IDS1Filt, respectively. As

can be observed, roughly 3 different patterns are extracted for IDS1 (Fig. 6.13 (a))

and IDS1Filt (Fig. 6.13 (b)). Comparing Fig. 6.12 (a) with Fig. 6.13 (a) and Fig.

6.12 (b) with Fig. 6.13 (b), one can find that the number of objects that the output

neurons with similar patterns can represent varies if the neurons are arranged in the

lattice of different geometry. Because the selection of the lattice geometry is generally

arbitrary, this drawback really reduces the reliability of the results obtained by the

SOM. As one more example, more output neurons are employed. Fig. 6.14 show the

patterns of 25 output neurons arranged in a lattice size of 5× 5 for IDS1 and IDS1Filt,

respectively. As compared to Fig. 6.12, the patterns of output neurons and the times

that each neuron gets hit are quite different even for the same data set. Thus the SOM

is sensitive to the setting of lattice geometry (lattice structure and size).

Based on the analysis of using the SOM for classifying the SDS1, IDS1 and IDS1Filt

data sets, it can be concluded that the SOM is not an appropriate method for recog-

nising the distinctive patterns in the data. Moreover, for dealing with data sets with a

large number of objects, say 2000, the number of output neurons may be required to

be at least a few hundreds due to the topological-ordering property, which is computa-

tionally impractical.
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Figure 6.12: Synaptic weight vectors for 16 output neurons in 1-D lattice: (a) SOM

on IDS1; (b) SOM on IDS1Filt
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Figure 6.13: Synaptic weight vectors for 16 output neurons in 2-D lattice size of

4× 4: (a) SOM on IDS1; (b) SOM on IDS1Filt.

(a) (b)

Figure 6.14: Synaptic weight vectors for 25 output neurons arranged in 2-D lattice

size of 5× 5: (a) SOM on IDS1; (b) SOM on IDS1Filt.
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6.4 Quality Threshold Clustering Algorithm

A common problem with the K-means clustering and SOM is that the number of

clusters needs to be set in advance. Moreover, for the SOM, the lattice geometry is

also required and for the K-means clustering, the clustering result is unstable. Quality

threshold (QT) clustering [58] has been developed to avoid many of these problems,

but is specialised for clustering gene expression data.

6.4.1 Basic Operation

The focus of QT clustering is to find large clusters that have a so-called quality guaran-

tee [58], which is defined in terms of a similarity measure for the objects in the cluster.

A cluster is said to have a quality value or diameter of ε, if for every object in the

cluster, there is at least one other object such that the similarity between them is less

than ε. The quality of cluster, G, can thus be expressed as

Q(G) = 1− min
xi∈G

{ max
xj∈G,xi 6=xj

[jcorr(xi,xj)]}, (6.13)

where jcorr(·) denotes the jackknife correlation coefficient [58]. The QT algorithm

works as follows:

Step 1: Each object is taken in turn as a cluster starting point, and a cluster is built

up to contain all those objects for which the cluster quality is satisfied (Q ≤ ε).

Step 2: The cluster with the largest number of objects is selected and the corresponding

objects are removed from the data set.

Step 3: The process is repeated from Step 1 on the remaining data, until no objects

are left.

The pseudocode for the algorithm is given as follows [58].
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while card(X) > 0 do

for i = 1 to card(X) do

Gi = xi, (object xi is taken as a starting object for candidate cluster Gi.)

flag = true

while flag do

xp = arg maxxj∈X/xi
[Q(Gi ∪ xj)]

if Q(Gi ∪ xp) ≤ ε then

Gi = Gi ∪ xp

else

flag = false;

end if

end while

end for

G∗
i = arg maxGi{card(Gi)}. (find the cluster with maximum cardinality)

X = X/G∗
i . (remove selected cluster from X)

end while

QT clustering is customised in this work with Pearson’s correlation coefficient used

as the dissimilarity measure. In comparison to existing clustering algorithms such as

the classical K-means and SOM, the QT clustering has a few advantages. First, as is

defined in the algorithm, each object initiates a candidate cluster, so the clustering is

not affected by the order in which the similarity data appears. Secondly, the number of

clusters is not required at the start of the algorithm. Moreover, the algorithm always

returns the same result no matter how many times it is run and finally, the solution

obtained is the global solution [58].

One key issue with QT clustering is how to select the threshold. Here, the total intra-

cluster sum squared error, TIC(G, C) (as defined in Eq. (6.1)), is employed as a metric

to compare threshold values. As QT does not produce representative objects for each

cluster, as a post-processing step, the object having the biggest correlation with the

other intra-cluster objects is selected, used for calculating TIC(G, C). Fig. 6.15 shows
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Figure 6.15: TIC(G,C) changes as a function of ε for QT clustering on SDS1.

TIC(G, C) changes as a function of ε for SDS1. The minimum of TIC(G,C) is obtained

when ε = 0.01, which corresponds to the case where every single object is assigned

to a cluster. The ‘elbow point’ occurs when ε = 0.03 (any TIC(G,C) values for ε ∈
[0.03 0.47] are equal). Fig. 6.16 shows the corresponding clustering results. 4 clusters

are obtained and the objects with similar patterns are correctly separated in different

clusters.

6.4.2 Application of QT to OES Data

To further explore the operation of QT clustering, it is applied to the high-dimensional

IDS1 and IDS1Filt data sets. TIC(G, C) changes as a function of ε for IDS1 and

IDS1Filt are shown in Fig. 6.17. The ‘elbow point’ occurs at ε = 0.04 and ε = 0.03 for

IDS1 and IDS1Filt, respectively.

Using ε = 0.04 for QT clustering on IDS1, 320 clusters are obtained, among which,

275 clusters are single-object. It is not feasible to visualise the patterns in each cluster,

given the number involves, hence only the big clusters are considered. Here, the first

8 clusters are selected with each containing no less than 9 objects. The patterns of

the objects contained in these 8 clusters (with data standardised) are shown in Fig.

6.19. As can be seen from Fig. 6.19, the first cluster contains 1464 objects, while the

patterns included are distinct. Because of the existence of noise, the clusters obtained

are not effective in summarising the patterns contained in the data set.

Applying QT to IDS1Filt with ε = 0.03 returns 4 clusters. The patterns of objects
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Figure 6.16: Patterns of the 4 clusters obtained by applying the QT clustering to

SDS1 (the threshold set to 0.1): (a) Cluster 1 (object 9 to 16); (b) Cluster 2 (object

1 to 4); (c) Cluster 3 (object 5 to 8); (d) Cluster 4 (object 17 to 20).
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Figure 6.17: TIC(G, C) changes as a function of ε for QT clustering: (a) IDS1; (b)

IDS1Filt.
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Figure 6.18: The 4 clusters obtained by QT clustering on IDS1Filt (ε = 0.03): (a)

Cluster 1, size 1068; (b) Cluster 2, size 279; (c) Cluster 3, size 5; (d) Cluster 4, size 2.

contained in these 4 clusters (with data standardised) are shown in Fig. 6.18). As can

be observed, the patterns of intra-cluster objects contained in Cluster 1 and Cluster 2

are distinct. The reason is that the objective of QT clustering is to seek large clusters,

rather than the distinctive patterns. Thus as long as the pattern of a new object is

similar to that of an assigned object, the new object can be included in the cluster that

contains this assigned object. Therefore, for pattern recognition, the QT clustering is

not effective.
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Figure 6.19: The patterns of the 8 largest clusters obtained by applying QT cluster-

ing to IDS1 (ε = 0.04): (a) Cluster 1, size 1464; (b) Cluster 2, size 49; (c) Cluster 3,

size 44; (d) Cluster 4, size 24; (e) Cluster 5, size 13; (f) Cluster 6, size 11; (g) Cluster

7, size 10; (h) Cluster 8, size 9.
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6.5 Max Separation Clustering Algorithm

When dealing with a data set with over 2000 dimensions and without complete knowl-

edge of the data patterns, clustering is a candidate method for exploring and defining

the data patterns. Ideally, the clustering should be designed to find the most distinctive

set of features so that each cluster is maximally different from all previous clusters.

Our proposed algorithm, the Max Separation Clustering (MSC), is in principle a

correlation-based clustering algorithm. Clustering by employing correlation as the sim-

ilarity function can group the OES signals that evolve similarly over time into the same

cluster and avoids the issues with the scale ambiguity/uncertainty associated with OES

signals. A key point for this algorithm is how to select the representative object for

each cluster. Here, a joint use of the MaxMin criterion [120] and the single LINK-age

method [7] is employed.

The MaxMin criterion stresses that a new centroid should be the farthest object from

the existing clusters, when compared with the other unassigned objects and the sin-

gle LINK-age method gives a way of defining the distance between two clusters (the

shortest distance between any two elements in the two clusters). Details of the joint

use of these two methods are described in Step 5 of the MSC algorithm. Because the

representative object is not a centroid (average of all the objects in a cluster), nor a

so-called medoid [120] (the closest object to the centroid), the object is named as max-

oid in our algorithm. The maxoid is the object in a given cluster which is the furthest

from all objects in the existing clusters.

A complete description of the algorithm follows

Step 1: Identify the maxoid candidates.

For a given set of objects X, identify the objects x∗i and x∗j which are farthest

apart, i.e.

(x∗i ,x
∗
j ) = arg max

xi,xj

{dist(xi,xj)}, (6.14)
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where dist(·) is the L2 norm.

Step 2: Select x∗i as the new maxoid, where by definition pow(xi) > pow(xj) (where

pow(·) denotes the signal power) and

mnew = x∗i . (6.15)

The set of maxoids, M, is initiated as M = {mnew}.

Step 3: Assign all objects xi ∈ X to a new cluster, Gnew, according to the condition

Gnew = {xi ∈ X | corr(xi,mnew) ≥ ξ, ∀ xi ∈ X}. (6.16)

Note that corr{·} is a function that measures the similarity between xi and

mnew and ξ is the similarity threshold, which defines the desired similarity level.

Here, corr(·) is chosen as the Pearson product-moment correlation coefficient

[26],

corr(x,y) =
1

m− 1

m∑

i=1

(
xi − x

σx
)(

yi − y

σy
) (6.17)

where x = {x1, . . . , xm}, y = {y1, . . . , ym}, the means of the x-value and the

y-value are x and y and their standard deviations are σx and σy.

Add this new cluster into G, G = {G1, . . . , Gnew}.

Step 4: Check the stop condition.

(a) If there are no objects left, the algorithm has finished.

(b) Otherwise, allocate the unassigned objects to X̃ and continue.

Step 5: Find the next new maxoid.

Select the new maxoid as the object that is the furthest away from the existing

set of clusters (G). Thus,

mnew = arg max
xi∈X̃

{dist(xi,G)}, (6.18)

where dist(xi, G) is defined as the distance from the object xi to the closest

object in G:

dist(xi,G) = min
Gj∈G

min
q∈Gj

{dist(xi,q)}. (6.19)

Add this new maxoid into M, M = {m1, . . . ,mnew}.
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Step 6: Let X = X̃ and return to Step 3.

The main operations in this algorithm can be summarized as follows. At each itera-

tion, one unassigned object which is the furthest away from the objects in all existing

clusters is selected to be the maxoid of a new cluster. Then, all unassigned objects

that are similar to the new maxoid are allocated to this new cluster. The iteration is

terminated when there are no unassigned objects left.

One thing to be stressed is that the threshold ξ, as defined in Eq. (6.16) is the only

parameter that needs to be specified in this algorithm. A larger value of ξ imposes a

stronger requirement for similarity between the objects in each cluster and as a result,

leads to the generation of more clusters, i.e. as ξ → 1, the number of clusters K → n

(if the n objects are distinct).

An important property of MSC is that it is robust to outliers. In terms of data pat-

terns, the outliers are distinct from the ‘normal’ objects, so most likely the outliers are

discriminated and grouped in separate clusters. Thus MSC is more robust to outliers

than the classical K-means and the SOM.

By design of SDS1, the similarity level between objects is known, making the selection

of ξ = 0.8 applicable. In practice, such priori knowledge is rarely known, leading

to the proposal of the threshold-selection method discussed in the next section. The

application of MSC to SDS1 shows that there are 4 clusters in the data. The details

about the number of objects, channel distributions, channel index of each maxoid,

pattern of each maxoid and the range of power changes for the intra-cluster objects are

given in Table 6.1. As one can see, MSC is effective at extracting the patterns contained

in SDS1 and clustering the data having similar patterns. Moreover, the maxoid is an

effective representative of the patterns contained in each cluster.
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Table 6.1: Clustering results of MSC on SDS1.

6.6 Experiments on OES Data

6.6.1 Selecting the Clustering Threshold

A simple correlation analysis of our OES data, as shown in Fig. 6.20, reveals that a

high level of correlation exists among the OES channels, and is as high as 0.99 for some

channels. The goal of clustering is to group the highly correlated channels together. In

our algorithm, the task of allocating the channels to different clusters reduces to one of

selecting the similarity threshold. A simple solution is to try different threshold values

and then to pick one with good clustering performance.

Here, the total intra-cluster sum squared error, TIC(G, M), as defined in Eq. (6.1), is

employed to measure the clustering performance, that is,

TIC(G,M) =
K∑

k=1

IC(Gk,mk). (6.20)

Fig. 6.21 (a) shows the changes in TIC(G,M) as a function of the similarity threshold.

As can be observed, the ‘elbow point’ occurs when the similarity threshold equals to 0.9.

Fig. 6.21 (b) shows the changes in the number of clusters as a function of the similarity
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Figure 6.20: Correlation between the OES channels for IDS1: (a) The color at each

point represent the correlation coefficient between the signals recorded at two channels;

(b) The correlation between channel 1000 and the other OES channels.

threshold and the ‘elbow point’ occurs when the similarity threshold is 0.91. Switching

the axis of the similarity threshold to the number of clusters, the rapid decrease in

the clustering performance (occurring when the similarity threshold equals to 0.9) is

offset by the fast increase in the number of clusters, leading to the resulting linear

relationship as shown in Fig. 6.21 (c). The result demonstrates that the higher the

value of similarity threshold, the lower TIC(G,M), but one should be aware that the

lowest cost (zero) is obtained when every single channel is assigned to its own cluster, in

which case the clustering is in fact meaningless. Therefore, the ‘elbow point’ criterion

is employed to select the approximate similarity threshold of 0.9.

6.6.2 Clustering Results Using the Selected Threshold

As we have discussed, a value of 0.9 is selected as the similarity threshold for differ-

entiating the different features in the OES data. Applying our proposed clustering

algorithm to the OES data shows that the 2045 channels can be divided into 264 clus-

ters (Fig. 6.22).

However, many details cannot easily be seen from Fig. 6.22, such as the number of

channels in each cluster and the strength of the signals in each cluster. While it is not

practical to show the details about the channel distribution for all the 264 clusters,
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Figure 6.21: Selecting the similarity threshold: (a) Clustering performance changes

as a function of the similarity threshold; (b) Number of clusters changes as a function

of the similarity threshold; (c) Clustering performance changes over the number of

clusters.

(a)

1 21 41 61 81 101 121 141 161 181 201 221 241 264
1

201

401

601

801

1001

1201

1401

1601

1801

2045

cluster index

ch
an

ne
l i

nd
ex

(b)

Figure 6.22: MSC of IDS1 with ξ = 0.9: (a) Mean centered IDS1; (b) Channel

distribution in each cluster.
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NO. of channels contained Average power of the channels No. of clusters

in each cluster in each cluster

1081 88.1 1

261 475.8 1

21 132.6, 13.4 2

11 3.4 1

8 1.9, 1.5 2

7 5.3,2.7,2.4,1.5 4

6 3.5,1.6 2

5 0.52-23.46 21

4 0.48-21.42 21

3 0.17-5.77 78

2 0.16-7.58 40

1 0.16-10.28 91

Table 6.2: Simple statistics of the channel distribution in each cluster

some simple statistics on the channel distribution in each cluster are shown in Table

6.2. As an example, the 3rd entry shows that two of the clusters contain 21 channels

and the average power of the channels in each cluster is 132.6 and 13.4, respectively

(The power is unitless because the measure of the optical density is unitless). When

there are a large number of clusters, e.g. 21, 78, 40 and 91 with the same number of

channels, it is more useful to use plots (Fig. 6.23) to describe the power distribution

across clusters, while showing the range of powers in the table.

6.6.3 Further Analysis of the Main Clusters

The term main clusters, is used here to refer to the clusters that contain a large num-

ber of channels and in our experiment, the large numbers are 1081, 261 and 21. To

present an analysis for the main clusters, we firstly start with the cluster containing

1081 channels. A 3-D visualization of the data is displayed in Fig. 6.24 (a), while a

2-D visualisation of all channels is given in Fig. 6.24 (b), followed by the displaying of

the maxoid in Fig. 6.24 (c).
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Figure 6.23: Average power distribution for the clusters having the same number

of channels: (a) Clusters containing 5 channels in each one; (b) Clusters containing

4 channels in each one; (c) Clusters containing 3 channels in each one; (d) Clusters

containing 2 channels in each one; (e) Clusters only containing 1 channel.
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Since the similarity threshold is set to 0.9, the 1081 selected channels are highly cor-

related. Nevertheless, the high correlation may not be sufficient to guarantee that the

intensity changes of the channels over time are similar or even the same. Hence, it is

necessary to further check if the signal patterns in each cluster are similar.

Given that the different signals having different strength, as shown in Fig. 6.24 (d), we

will first employ the normalization method (mean-centered and amplitude scaled) to

eliminate the effect of signal strength. A 3D and 2D display of the normalized channels

can be seen in Fig. 6.25 (a) and Fig. 6.25 (b), respectively. Fig. 6.25 (c) shows mean

± one standard deviation of the intensity changes over the 1081 channels. The results

confirm that the signal patterns within the same cluster are quite similar, despite dif-

ferent signal strengths. Note that the mean profile is essentially the centroid of the

cluster and the standard deviation gives an indication of the spread. A plot of the

maxoid, centroid and medoid is shown in Fig. 6.25 (d).
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Figure 6.24: Cluster containing 1081 channels: (a) 3-D visualisation of the channels

(b) 2-D visualisation of the channels; (c) The maxoid; (d) Channel power.

So far, the data patterns of the cluster containing 1081 channels have been examined.

In what follows, we will apply the same method to examine the data patterns of the

other main clusters. Fig. 6.26 summarises the data patterns for the cluster containing

261 channels, while Fig. 6.27 shows the two 21-channel clusters.

According to all the above analysis, it can be concluded that all the inter-cluster channel

patterns are similar and different patterns can be preserved in different clusters. As

such, the idea of using the correlation function as the similarity measurement function

to differentiate different clusters is correct and the use of 0.9 as the threshold is also

justified.
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Figure 6.25: Normalized channels in the 1081-channel cluster: (a) 3D visualisation;

(b) 2-D visualisation (c) Mean and standard deviation (std) measuring the range of

the normalised intensity changes; (d) A plot of the maxoid, centroid and medoid.
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Figure 6.26: Cluster containing 261 channels: (a) 3-D visualisation of the channels

(b) 2-D visualisation of the channels; (c) 2-D visualisation of the normalized channels;

(d) Mean and standard deviation (std) measuring the range of the normalised intensity

changes; (e) Channel power; (f) A plot of the maxoid, centroid and medoid (data

normalised).
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Figure 6.27: (a) 2D visualisation of the first 21-channel cluster; (b) 2D visualisation

of the second 21-channel cluster; (c) Mean and standard deviation (std) measuring

the range of the normalised intensity changes in the first 21-channel cluster; (d) Mean

and standard deviation (std) measuring the range of the normalised intensity changes

in the second 21-channel cluster; (e) Channel power for the first 21-channel cluster;

(f) Channel power for the second 21-channel cluster.
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Figure 6.28: 2D display of the 11 channels in the same cluster

6.6.4 Further Analysis of the Sub-Clusters

As we have demonstrated in Table 6.2, in addition to the main clusters, there are still

some other clusters containing a relatively smaller number of channels, e.g. from 2

to 11. We refer to these clusters as sub-clusters. There are 169 sub-clusters, which

represents 64% of the total cluster count. Hence, it is important to analyze these sub-

clusters as well. The clusters containing only one channel will be discussed separately.

We start with the analysis of the sub-clusters from the cluster containing 11 channels.

The intensity changes of these 11 channels with time are displayed in Fig. 6.28. One

probably has noticed that the changes in these channels happen nearly at the same

time, which leads us to wonder if these channels are adjacent in frequency, since due

to its finite resolution, the OES sensor tends to detect one wavelength emission over a

number of adjacent channels, leading to redundancy in the OES measurements. To get

the answer, we check the channel index and the result shows that the channel indices for

these 11 channels are 372-382. To check if this is the case for all the other sub-clusters,

we give the list of channels in each cluster in Table 6.3.

In fact, although there are some exceptions (marked by ‘+’ in Fig 6.29), most of the

channels that belong to one cluster are adjacent to each other. Another finding is that

nearly all of these sub-cluster channels are located at channels below 400 or above 1400,

which are actually the two ends of the OES sensor spectra.
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Figure 6.29: Channel index of the channels in each cluster, if the channels are

adjacent to each other, then they are represented by ‘.’; otherwise they are represented

by ‘+’: (a) Cluster containing 5 channels; (b) Cluster containing 4 channels; (c) Cluster

containing 3 channels; (d) Cluster containing 2 channels.
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Figure 6.30: Strongest one-channel cluster
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Number of channels contained Number of clusters Channel index

in each cluster

11 1 372,373,374,375,376,377,378,379,380,381,382

8 2 321,322,323,324,325,326,327,328

336,337,338,339,340,341,342,343

7 4 305,306,307,308,309,310,311

1620,1621,1622,1623,1624,1625,1626

1671,1672,1673,1674,1675,1676,1677

329,330,331,332,333,334,335

6 2 1748,1749,1750,1751,1752,1753

210,211,212,213,214,215

5 21 Fig. 6.29 (a)

4 21 Fig. 6.29 (b)

3 78 Fig. 6.29 (c)

2 40 Fig. 6.29 (d)

Table 6.3: Channel index of the channels in each of the sub-clusters and Fig. 6.29

shows the case when the ‘number of clusters’ is too big.

6.6.5 Further Analysis of the Single-Channel Clusters

According to Table 6.2, there are 91 single-channel clusters in total, containing one

channel in each cluster. The strongest one-channel cluster is shown in Fig. 6.30, where

one can see that there is a pattern in the signal, but it has been corrupted by noise.

When the signal to noise ratio (SNR) is very low, it is very difficult to match signal

patterns as they are swamped by the noise signals, which are uncorrelated. This could

explain why there are so many single-channel clusters existing in our data. Thus, this

suggests that an analysis of how noise impacts the MSC results is needed.

6.6.6 Effect of Noise on MSC

The issue of noise on OES signals was discussed in Section 3.7 and a method of esti-

mating the signal to noise ratio (SNR) defined. In fact, there exists a strong relation

between SNR and correlation coefficient (Pearson product-moment). Consider two

mean-centered signals, denoted by x and y respectively. Let x̃ and ỹ be the two signals
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corrupted by independent noise n1 and n2:

x̃ = x + n1, ỹ = y + n2, (6.21)

where E(n1) = E(n2) = 0 and E(n2
1) = E(n2

2) = σ2. Then, it follows that

corr(x̃, ỹ)
corr(x, y)

=

√
SNRx

1 + SNRx

SNRy

1 + SNRy
. (6.22)

A complete derivation is given in the Appendix A.2. If the two signals are identical

(i.e. x = y and corr(x, y) = 1), then Eq. A.7 reduces to

corr(x̃1, x̃2) =
SNRx

1 + SNRx
, (6.23)

where x̃1 and x̃2 are used to differentiate the noise effect on the same signal.

Eq. 6.23 shows that even if two signals are perfectly correlated (identical), the presence

of noise can make them appear less correlated. This has a significant impact on the

performance of the MSC algorithm. For example if the similarity threshold is set to

0.9, then identical channels will be misclassified as belonging to different clusters if

their SNR < 9. Thus, an important pre-processing step for MSC is to remove channels

where the

SNR <
ξ

1− ξ
. (6.24)

Applying this step to IDS1 leads to 691 OES channels being discarded, leaving 1354

for further analysis.

6.6.7 Clustering on the Filtered OES Data

Applying max separation clustering to the IDS1Filt data set shows that the 1354 OES

channels can be divided into 8 clusters, as shown in Fig. 6.31. Here, Cluster zero is

used to represent all the discarded low SNR channels. A detailed channel distribution

in each cluster is shown in Table 6.4, where one can see that there are two major clus-

ters, each containing more than 200 OES channels. A detailed power distribution for

the two major clusters is shown in Fig. 6.32.
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Figure 6.31: Clustering on the preprocessed OES data

CI Number of Channel distribution Channel index RPC

1 1061 388-393,406-472,474-522,526-739,744-752, 940 4.08-392.17

757-845,852-1216,1222-1276,1282-1337,1356-1360, 10 20 30 40 50 60 70 80 90

−10

0

10

20

30

40

50

60

time sample

in
te

ns
ity

1366-1408,1415-1471,1485-1507,1513-1514,1536-1548,

1566-1573,

2 249 1339-1351,1475-1478,1551-1557,1579-1586,1600-1608, 1875 4.3-8622

1629-1647,1695-1709,1721-1734,1762-1773,1777-1797, 10 20 30 40 50 60 70 80 90
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1812-1818,1828-1831,1834-1839,1849-1862,1870-1882,

1891-1915,1923-1946,1970-1982,1989-2002,2012-2018,

3 25 359-368,1352-1353,1558,1710-1720,1761 1715 8.55-545.15

4 4 847-850, 849 16.91-23.97

5 5 306-310, 308 4.26-7.39

6 5 846,851,1355,1472,1484, 851 6.69-40

7 4 358,369-371, 371 4.88-9.7

8 1 1338 1338 23.16

Table 6.4: Channel distribution in each of the 8 clusters (CI = cluster index; RPC

= range of power changes for the intra-cluster channels).
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Figure 6.32: Channel power: (a) Channels in Cluster 1; (b) Channels in Cluster 2.

Visualization of the two major clusters is provided in Fig. 6.33 and Fig. 6.34, respec-

tively. In each figure, the three-dimensional display of the intra-cluster channel distri-

butions, two-dimensional display of the standardized channels and mean and standard

deviation analysis of the intensity changes of the standardized channels are provided

in sequence. The mean and standard deviation analysis provides an indication of the

similarity of the intra-cluster channels.
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Figure 6.33: Data distribution in Cluster 1: (a) 3D display of Cluster 1 channels; (b)

3D display of the standardized channels in Cluster 1; (c) 2D display of the standardized

Cluster 1 channels; (d) Mean and standard deviation of the standardized channels in

Cluster 1.
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Figure 6.34: Data distribution in Cluster 2: (a) 3D display of Cluster 2 channels; (b)

3D display of the standardized channels in Cluster 2; (c) 2D display of the standardized

Cluster 2 channels; (d) Mean and standard deviation of the standardized channels in

Cluster 2.

The maxoids for all eight clusters are shown in Fig. 6.35, where both the mean-

centered data and filtered data are shown. As one can see, the maxoids representing

each cluster can capture quite different patterns in the data, which reflects the design

of the algorithm.
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Figure 6.35: Intensity changes of the maxoids for all eight clusters (rough line: raw

channel data with mean removed; smooth line: filtered channel): (a) Maxoid 1; (b)

Maxoid 2; (c) Maxoid 3; (d) Maxoid 4; (e) Maxoid 5; (f) Maxoid 6; (g) Maxoid 7; (h)

Maxoid 8.
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6.7 Discussion and Conclusions

K-means, SOM and QT, three of the most powerful and widely used non-hierarchical

clustering methods have been introduced in this chapter. With the aid of simulated

data sets, the characteristics and properties of each method have been discussed. The

results of applying K-means, SOM and QT on the raw and filtered OES benchmark

data sets show the insufficiency of these methods in distinguishing and summarizing

the patterns in OES data.

In this chapter, a new clustering algorithm, Max Separation Clustering (MSC), has

been developed. MSC does not require a priori specification of the number of clusters

and is not subject to inter-run variability. The application of MSC to clustering of

OES data sets has been explored in detail. The results confirm that MSC is able to

extract and summarise the different patterns contained in OES data and that the newly

proposed maxoid in MSC is an effective representation of the patterns in each cluster.

Another contribution in this chapter is the analysis of the noise effect on MSC. This

analysis highlights the relationship between the similarity threshold and SNR and the

need to omit low SNR signals to improve MSC performance. With low SNR signal

removal, the number of clusters obtained by MSC is greatly reduced, leading to more

effective summarization of the dominant patterns in the data.



Chapter 7

Hierarchical Clustering

As discussed in Chapter 6, there are two basic ways of searching for clusters, cate-

gorized as hierarchical and nonhierarchical clustering. Nonhierarchical clustering has

been covered in Chapter 6 and a novel MSC algorithm has been developed. This chap-

ter focuses on the hierarchical clustering approach and develops a custom single linkage

hierarchical clustering (SLHC) implementation for OES data analysis.

Hierarchical clustering accomplishes classification by a series of merging (for agglom-

erative hierarchical clustering) or divisions (for divisive hierarchical clustering) of the

clusters. In agglomerative methods, the clustering starts by assigning every single ob-

ject as a separate cluster. Then at each step the two most similar clusters are merged

until all objects are merged into a single cluster. For this reason, agglomerative methods

are sometimes referred to as bottom-up methods. In divisive methods the clustering

starts with all objects assigned to a single cluster. Then at each step a cluster is split in

two. Divisive methods proceed in the direction opposite to agglomerative methods and

thus, are sometimes referred to as top-down methods. Since agglomerative methods

are the most widely discussed in literature and used in computer packages, and divi-

sive methods can generally be viewed as agglomerative methods in reverse [68], further

discussion of hierarchical clustering in this chapter is focused on agglomerative methods.

The chapter is organized as follows. First, an overview of the hierarchical clustering

approaches is given. This is followed by a description of the customized SLHC algo-

180
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rithm. Experimental results illustrating the operation of SLHC on both simulated and

OES data sets are presented and compared with the results obtained by MSC. Then, a

novel method for determining the number of clusters is developed. This is followed by

an algorithm evaluation and comparison with other cluster number selection methods

for SDS1 and IDS1 data sets.

7.1 An Overview of Hierarchical Clustering

Different hierarchical clustering approaches arise as a result of different choices of dis-

similarity measure and methods for linking clusters. An introduction to dissimilarity

measures and linkage methods is given in this section, with an emphasis on discussing

and comparing the resulting algorithm properties.

7.1.1 Dissimilarity Measures

Dissimilarity measures, as the name implies, measure the dissimilarity/distance be-

tween objects. Equivalently, one can also use similarity measures or so-called proximity

measures [76] to quantify the similarity between objects.

A number of dissimilarity measures have been proposed and by a more generalized

definition, these measures can be divided into distance measures and correlation mea-

sures. A list of dissimilarity measures is given in Table 7.1, where the first four can be

regarded as distance measures and the rest as correlation measures. A good discussion

of some of these measures is given in [37]. In Table 7.1, xik and xjk denote the kth

observation value of the m-dimensional objects i and j, respectively, and wk denotes

the weighting for the kth observation.

Among distance measures, Euclidean distance, defined as

dist(xi,xj) = ||xi − xj ||2, (7.1)

is possibly the most widely used. The Euclidean distance (also known as the L2 norm)

can be interpreted as the physical distance between two objects. The city block dis-

tance (L1 norm) was originally used to measure the distance between city blocks when
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Measure dis(xi,xj)

Weighted Euclidean distance (
∑m

k=1 w2
k(xik − xjk)2)

1
2

Weighted city block distance
∑m

k=1 wk|xik − xjk|
Weighted Minkowski distance (

∑m
k=1 wp

k|xik − xjk|p)
1
p (p ≥ 1)

Canberra distance





0 for xik = xjk = 0
∑m

k=1 |xik − xjk|/(|xik|+ |xjk|) for xik 6= 0 or xjk 6= 0

Pearson’s correlation (1− corr(xi,xj))/2 where

based measure corr(·) denotes the Pearson’s correlation function.

Cosine function cos(xi,xj) = xT
ixj

||xi||2||xj ||2
Jackknife correlation 1−min{φ1

ij , . . . , φ
l
ij , . . . , φ

p
ij}

where φl
ij denotes the Jackknife correlation coefficient with

the lth observation left out.

Spearman’s correlation 1− 6
∑m

k=1 d2
k/(m(m2 − 1))

where dk = rik − rjk with rik denoting the ranking order of xik

in the series of xik for k = 1, · · · ,m.

Table 7.1: A list of dissimilarity measures (dis(xi,xj) denotes the dissimilarity be-

tween xi and xj .)

following the street layout. It is also referred to as taxicab distance [96], rectilin-

ear distance [8] and Manhattan distance [99]. Both the Euclidean (p = 2) and city

block (p = 1) distances are in fact special cases of the Minkowski distance (Lp norm

= ||x− y||p = (
∑

i |xi − yi|p)
1
p ).

The Canberra distance [97] is designed to measure the sum of an array of scaled differ-

ences between coordinates of a pair of objects. The Canberra distance is very sensitive

to small changes when both coordinates are near zero. According to [37], when the

object coordinates are binary, the Canberra distance can better reflect the dissimilarity

between objects than other dissimilarity measures.

Despite the fact that distance measures are more often employed in clustering as dis-

similarity measures, correlation measures are also widely used [153, 23, 191].

Pearson’s correlation is a typical correlation measure that aims at exploring the linear
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relationship between two objects. By definition, the correlation coefficient can change

only in the interval [−1 1], where the value 1 represents the strongest possible positive

relationship between two objects and the value −1 the strongest possible negative or

reverse relationship. The effectiveness of using Pearson’s correlation as a dissimilarity

measure has been proven in [75, 156, 157, 158] for gene expression data analysis.

One drawback of Pearson’s correlation is that the correlation between two objects can

be dominated by outliers in the object observations [58]. Solving the problem led to

the development of so-called Jackknife correlation [58]. Jackknife correlation can be

regarded as a leave-one-out Pearson’s correlation coefficient, that is, it is computed for

the data with one observation at a time omitted. Thus there are m values computed

for a m-dimensional object. The minimum value is then selected as the Jackknife cor-

relation coefficient between two objects. By doing so, the Jackknife correlation avoids

the effect of single outliers. However, it is computationally expensive and is rarely used.

Another drawback of Pearson’s correlation coefficient is that it assumes an approxi-

mately Gaussian distribution of the observations of an object, and may not be robust

for non-Gaussian distribution [189]. Addressing this problem, Charles Spearman pro-

posed the Spearman’s rank correlation [149]. By definition, the observation values of an

object are replaced by the ranking orders. For example, if xik is the third highest value

in xiq for 1 ≤ q ≤ m, then rik equals to 3. Spearman’s correlation does not make any

assumptions about the data distribution, but the ordering of values cannot represent

the complete information contained in the observations. Jiang et at [76] confirmed that

Spearman’s correlation is a worse performer on average than Pearson’s correlation in

measuring the relationship between objects.

Correlation measures are often used in situations where the clustering is based on object

profiles rather than object amplitudes/scales. Similar situations can also be measured

using the cosine function [191]. The smaller the value of the cosine function the less

similar the two objects are.

In fact, Euclidean distance, cosine function and Pearson’s correlation are intrinsically
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equivalent under certain conditions. If the data is mean centered,

cos(xi,xj) = corr(xi,xj). (7.2)

i.e., the cosine function equals to the Pearson’s correlation. If the data is standard-

ized (mean centered and scaled to unit variance), the relationship between Pearson’s

correlation coefficient and the Euclidean distance can be expressed as [76]

dist(xi,xj) =
√

2m(1− corr(xi,xj)), (7.3)

where dist(·) denotes the Euclidean distance and m denotes the object dimension. Note

that to prove Eq. (7.3), the sample standard deviation is calculated using the biased

format.

7.1.2 Different Linkage Methods

Dissimilarity measures are used to quantify the differences between objects. To merge

the most similar clusters at each step, it is also vital to define the dissimilarity between

clusters, which is achieved by defining the dissimilarity between objects from different

clusters. In this way, the relationships between clusters can be identified and used to

determine at each step which clusters should be linked and hence, decide the resulting

cluster structures. Some typical linkage methods are discussed as follows.

Single linkage clustering [146], the most widely known agglomerative method and also

known as the nearest neighbor method, measures the distance between clusters as the

distance between their two closest member objects. The drawback of single linkage is

that it tends to produce clusters with unbalanced sizes and ignores the cluster structure

at each merging step.

Complete linkage, also known as the furthest neighbour method [148] calculates the

distance between clusters as the distance between their two furthest member objects.

As a result, complete linkage tends to produce clusters with equal diameters (maximum

dissimilarity between intra-cluster objects).
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Average linkage [147] calculates the averaged distance between all possible pairs of

intra-cluster objects. As a result, it tends to join the clusters with small variances. The

advantage of average linkage is that the objects contained in the same cluster are more

likely to be similar.

Centroid linkage [147] calculates the inter-cluster distance as the distance between

cluster centroids, while median linkage [50] calculates the inter-cluster distance as the

distance between cluster medians. Centroid and median linkages are both robust to

the cluster outliers.

A more complex linkage method is the so-called Ward method [166]. Ward distance

defines the inter-cluster distance, dist(Gi, Gj), as

dist(Gi, Gj) =
NiNj

Ni + Nj
dist(ci, cj) (7.4)

where Gi and Gj denote the ith and jth clusters, respectively, dist(ci, cj) denotes the

Euclidean distance between cluster centroid ci and cj and Ni and Nj denote the cardi-

nalities of Gi and Gj , respectively. Given Gi and Gj merged into a new cluster (Gnew),

the new cluster centroid cnew is defined as

cnew =
Nici + Njcj

Ni + Nj
. (7.5)

Given the intra-cluster distance, IC(Gi, ci), as defined in Eq. (6.2), then it can be

shown that

IC(Gnew, cnew) = IC(Gi, ci) + IC(Gj , cj)) + dist(Gi, Gj). (7.6)

According to Eq. (7.6), IC(Gnew, cnew) will be greater than either IC(Gi, ci) or

IC(Gj , cj)), since the terms on the right-hand side of Eq. (7.6) are all positive. Thus,

using Ward’s definition, the intra-cluster distance is a monotonically increasing func-

tion. One feature of Ward’s method is that it tends to join small clusters, since small

clusters in general, have small intra-cluster distances.

The flexible beta method, proposed by Lance and Williams [98], is often regarded as

a generalized distance measure in which each of the above measures are special cases.
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Cluster Method α1 α2 β γ

Single linkage 1/2 1/2 0 −1/2

Complete linkage 1/2 1/2 0 1/2

Average linkage Ni/Ni + Nj Nj/Ni + Nj 0 0

Centroid Ni/Ni + Nj Nj/Ni + Nj −NiNj/(Ni + Nj)2 0

Median 1/2 1/2 −1/4 0

Ward’s Method Ni+Nnew

Ni+Nj+Nnew

Nj+Nnew

Ni+Nj+Nnew
− Nnew

Ni+Nj+Nnew
0

Table 7.2: The relationship between the flexible beta method and different linkages

Suppose the cluster Gi and Gj are merged into a new cluster Gnew (cardinality Nnew),

the inter-cluster distance between Gnew and Gk, dist(Gk, Gnew), is defined as

dist(Gk, Gnew) = α1dist(Gk, Gi) + α2dist(Gk, Gj)

+ βdist(Gi, Gj) + γ|dist(Gk, Gi)− dist(Gk, Gj)|.
(7.7)

Taking θ ≡ {α1, α2, β, γ} as the parameter set, different specifications of θ correspond

to different linkage methods [130, 49]. Simplifying the definition given in Eq. (7.7),

Lance and Williams [98] suggested a constraint condition:

α1 = α2 = (1− β)/2,

γ = 0,

β < 1.

(7.8)

Within this framework, all the linkage methods we have discussed before can be con-

sidered as special cases of the flexible beta method. More details of the parameter

specifications are given in Table (7.2) [130].

7.2 Custom Single Linkage Hierarchial Algorithm

In this section, a custom single linkage hierarchical clustering (SLHC) algorithm is

developed, aiming at providing detailed information on the relationship between clus-

ters and intra-cluster objects that cannot be obtained using MSC. For example, given

a cluster generated by MSC for a similarity threshold of 0.9, MSC does not provide

information (at least not directly) on the correlation/similarity structure within the

cluster. The ability to examine the data at different similarity levels is important,
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because the patterns of objects contained in the same cluster can still vary from each

other, although possibly in a subtle way. A detailed look at the distributions of these

objects can help to discriminate these patterns and thus, help to translate the objects

into corresponding chemicals or at least limit the selection of the possible chemicals.

Moreover, according to Johnson [77], exploring the natural clusters in the data by only

one clustering method is in general not reliable, so several methods should be employed

to verify the correctness of results. If different methods produce similar clustering

results, then we can have more confidence in their validity.

Detailed Algorithm Description

Single linkage is one of the simplest agglomerative hierarchical clustering methods. By

definition, single linkage merges the two closest clusters at each stage, where closeness is

measured as the shortest distance between their member objects. This method matches

our target of classifying similar OES channels into the same cluster. The other reason

for using single linkage is that similarity can be measured based on the raw data, rather

than on summary statistics, such as average, centroid, etc., which makes estimation of

the relationship between objects more reliable.

A complete description of the algorithm is as follows:

Step 1: Cluster initialization.

For a given set of objects X (X = {x1, . . . ,xn}, xi ∈ Rm×1), assign each indi-

vidual object to a cluster:

Gi = xi, , i = 1, . . . , n. (7.9)

Set the cluster count n̂ = n.

Step 2: Find the two clusters from the set of existing clusters that have the least dis-

similarity.

Firstly, define the dissimilarity between object xi and object xj as

dis(xi,xj) = 1− |corr(xi,xj)|, (7.10)
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where corr(·) denotes the Pearson’s correlation coefficient. The dissimilarity

between Cluster m and Cluster n is then defined as:

dis(Gi, Gj) = min
xi∈Gi,xj∈Gj

dis(xi,xj), (7.11)

Step 3: Merge the two most similar clusters, Gp and Gq into one.

(Gp, Gq) = arg min
Gi,Gj

dis(Gi, Gj), (7.12)

Merging Gp and Gq results in a new cluster Gnew, that is

Gnew = {Gp ∪Gq} (7.13)

and the cluster count becomes

n̂ = n̂− 1. (7.14)

Thus, all the objects belonging to Gp and Gq are assigned to Gnew and Gp and

Gq are deleted.

Step 4: Check the stop condition.

(a) If n̂ = 1, the clustering is complete.

(b) Otherwise, return to Step 2.

In our version of single linkage, the similarity between objects is measured as the abso-

lute value of the Pearson’s correlation coefficient, which shows that even if two objects

are strongly negatively correlated, the similarity between these two objects is still con-

sidered as high. This choice reflects the fact that the intensity decrease of one chemical

in plasma etch process leads to a corresponding intensity increase of its by-products. In

OES measurements, each channel (object) has a unique correspondence to an optical

wavelength that can be taken as the fingerprint of a certain chemical. Therefore, even

if the objects show reverse trends, in essence, they probably represent the fingerprints

of the same chemicals.

SLHC clusters objects with reverse trends in the same group, but it is also important to

know when such groupings have taken place. Thus to establish if positive and negative
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objects are contained in the same group, additional checks have to be performed on

each cluster. The algorithm for doing this can be expressed as:

for i = 1 to k do

select xi ∈ Gi at random, G+
i ← xi

for j = 1 to Ni do

if corr(xi,xj) > 0 then

G+
i ← xj

else

G−
i ← xj

end if

end for

end for

As shown in Fig. 7.1 (a), clustering is therefore a two-step process. The first step is

to cluster the objects using SLHC, followed by separation of each cluster into posi-

tive/negative object trends. In contrast the MSC implementation described in Chapter

6 can achieve the separation directly (Fig. 7.1 (b)). However, with MSC further checks

are needed to determine if any of the clusters are inversely related. Given the MSC

clusters G1, · · · , Gk with maxoids m1, · · · ,mk, the checking procedure can be expressed

as:

for i = 1 to k − 1 do

for j = i + 1 to k do

if corr(mi,mj) < −0.9, Gi, Gj are inversely related then

set G+
i = Gi, G

−
i = Gj

end if

end for

end for

In fact, MSC and SLHC can both be set up to either combine objects with reverse trends

or allocate them to separate clusters. In the former, an additional step is required to

split the resulting clusters into the positive/negative components, but in doing so the
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Data

G1 G2 G3 

G1+ G1- G2+ G2- G3+ G3- 

step 1: SLHC 

step 2: divide by +/-

(a)

Data

G1+ G1- G2+ G2- G3+ G3- 

step 1: MSC 

(b)

Figure 7.1: A comparison between SLHC and MSC for clustering of objects with

reverse patterns: (a) SLHC; (b) MSC.

companion clusters are automatically obtained.

7.3 Experimental Results

In this section, experimental results are presented for the SLHC algorithm applied

to the SDS1, IDS1 and IDS1Filt data sets. The SDS1 allows the operation of the

customized single linkage to be illustrated, aiming at providing further understanding

of clustering on the IDS1 and IDS1Filt.

7.3.1 SLHC Applied to Simulated Data

To illustrate how SLHC works, a simplified version of SDS1 will be considered. This

consists of only 5 objects one for each of the patterns in the data set. A plot of the 5

features numbered with 1 to 5 is shown in Fig. 7.2.

For the initial clustering, each individual object is assigned to a cluster, which gives

the initial set of clusters, G, as

G(0) = {[1], [2], [3], [4], [5]}. (7.15)

Applying the dissimilarity function defined in Eq. 7.10, the dissimilarity matrix, a

matrix recording the dissimilarity between clusters, can be computed as:
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Figure 7.2: Plot of the 5 features.

1 2 3 4 5

1 0.8031 0.9827 0.9903 0.1748

2 0.5013 0.4996 0.6485

3 0.0230 0.7119

4 0.7068

5

The smallest entry in the matrix is 0.0230, so a new cluster is generated by the merging

of object 3 and 4. The G becomes

G(1) = {[1], [2], [3, 4], [5]}. (7.16)

Then, the dissimilarity between [3, 4] and the other clusters changes to

d(34)1 = min[d13, d14] = 0.9827

d(34)2 = min[d23, d24] = 0.4996

d(34)5 = min[d35, d45] = 0.7068.

(7.17)

As such, the dissimilarity matrix for G changes to

1 2 [3, 4] 5

1 0.8031 0.9827 0.1748

2 0.4996 0.6485

[3, 4] 0.7068

5
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Then, the least dissimilarity is between [1] and [5], so [1] and [5] are joined together to

form G and the updated set of clusters becomes

G(2) = {[1, 5], [2], [3, 4]}. (7.18)

Correspondingly, the dissimilarity matrix changes to

[1, 5] 2 [3, 4]

[1, 5] 0.6485 0.7068

2 0.4996

[3, 4]

Using the same principle, [3,4] and [2] are joined, which produces the following cluster-

ing:

G(3) = {[1, 5], [2, 3, 4]}, (7.19)

and dissimilarity matrix

[1, 5] [2, 3, 4]

[1, 5] 0.6485

[2, 3, 4]

In the final iteration, all the objects are joined together to form a single cluster.

G(4) = {[1, 2, 3, 4, 5]}. (7.20)

The complete clustering procedure can be illustrated using a dendrogram plot, or the

so-called tree diagram, which is a widely used pictorial representation of the clustering

procedure [37]. The dendrogram for the example considered above is shown in Fig. 7.3

(a). The number shown at the bottom of the figure represents the object indexes in

the designed data set. The heights of the stems represent the dissimilarity at which

clusters are joined. Taking object [1] and [5] as an example, since the dissimilarity

between them equals to 0.1703, they are connected at this height in the dendrogram.

A connection between the stems shows the generation of a new cluster. A complete

dendrogram represents the whole clustering process and allows direct visualisation of

the relationship between objects in the data set.
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Figure 7.3: Dendrogram of applying SLHC on the simulated data: (a) 5 objects

from the SDS1; (b) The whole SDS1.

The clustering results obtained when SLHC is applied to the full SDS1 data set is

shown in Fig. 7.3 (b). The additional objects are simply noisy copies of the original 5

patterns (4 copies for each pattern) and this can be seen by the clusters formed.

7.3.2 SLHC Applied to OES Data

The SLHC dendrogram for the IDS1 and IDS1Filt data sets are shown in Fig. 7.4

and Fig. 7.5, respectively. The x-axis in these figures is meant to show the indices of

objects, but because of the large number of objects, it ends up as a solid black block

lying under the figure. In addition, the cluster structure is lost as well. Even in the

case of IDS1Filt, where the number of objects has been reduced due to the discarding

of the noise signals, the number of residual objects (1354) is still too big to be presented

visually. This is the main disadvantage of the dendrogram plot.
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Figure 7.4: Dendrogram of applying SLHC on the IDS1: (a) Full dendrogram; (b)

Zoomed dendrogram around the middle.
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Figure 7.5: Dendrogram of applying SLHC on the IDS1Filt: (a) Full dendrogram;

(b) Zoomed dendrogram around the middle.

To explore how SLHC extracts the patterns contained in the OES data, the IDS1Filt

data set will be used as an example. Based on the MSC analysis in Chapter 6, the

number of clusters is set to 8 for the SLHC. Fig. 7.6 presents all the objects contained

in each of the eight clusters (data is standardised). As can be seen, two of the clusters,

6 and 8, have reverse patterns. The clusters obtained from splitting these reverse pat-

terns are shown in Fig. 7.7.

Fig. 7.8 shows the range of intensity changes of the objects contained in different
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Cluster index Number of channels Channel distribution RSNR RC

1 1 1338 17.47 1338

2 1 1353 16.85 1353

3 1 1355 9.8 1355

4 2 848-849 10.16,10.67 848

5 2 847,850 15.17, 16.2 847

6 15 306-310,1711-1720 10.38-295.57 1716

7 14 358-371 11.1-80.14 364

8 1318 388-393,406-472,474-522,526-739 9.05-1575.2 1343

744-752,757-846, 851-1216

1222-1276, 1282-1337, 1339-1352

1356-1360, 1366-1408, 1415-1472

1475-1478 , 1484-1507,1513-1514

1536-1548, 1551-1558,1566-1573

1579-1586, 1600-1608, 1629-1647

1695-1710, 1721-1734, 1761-1773

1777-1797, 1812-1818,1828-1831

1834-1839 , 1849-1862,1870-1882

1891-1915 , 1923-1946,1970-1982

1989-2002, 2012-2018

Table 7.3: Channel distribution in each of the 8 clusters obtained by SLHC

(RSNR=range of SNR; RC=representative channel).

clusters (reverse patterns are adjusted to have the same trends) by the mean and

standard deviation. The channel distributions of all clusters obtained by SLHC are

listed in Table 7.3.

7.4 Comparison with Max Separation Clustering

Both the max separation clustering (MSC) and single linkage hierarchical clustering

(SLHC) methods aim at grouping the objects with similar patterns into the same clus-

ter, while keeping distinctive patterns in different clusters. Thus, clustering results

obtained by these two methods on the same data set are expected to share some simi-

larity. Otherwise, the obtained clustering results by either method are unreliable.



CHAPTER 7. HIERARCHICAL CLUSTERING 196

10 20 30 40 50 60 70 80 90

−1.5

−1

−0.5

0

0.5

1

1.5

time samples

in
te

ns
ity

N=1, SNR=17.47

(a)

10 20 30 40 50 60 70 80 90
−1

−0.5

0

0.5

1

1.5

time samples

in
te

ns
ity

N=1, SNR=16.85

(b)

10 20 30 40 50 60 70 80 90

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

time samples

in
te

ns
ity

N=1, SNR=9.8

(c)

10 20 30 40 50 60 70 80 90

−1

−0.5

0

0.5

1

1.5

2

2.5

time samples

in
te

ns
ity

N=2, SNR=10.67

(d)

10 20 30 40 50 60 70 80 90

−1

−0.5

0

0.5

1

1.5

2

2.5

3

time samples

in
te

ns
ity

N=2, SNR=16.2

(e)

10 20 30 40 50 60 70 80 90
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time samples

in
te

ns
ity

N=15, SNR=295.57

(f)

10 20 30 40 50 60 70 80 90

−1

−0.5

0

0.5

1

1.5

2

2.5

3

time samples

in
te

ns
ity

N=14, SNR=80.14

(g)

10 20 30 40 50 60 70 80 90

−3

−2

−1

0

1

2

3

time samples

in
te

ns
ity

N=1318, SNR=1575.2

(h)

Figure 7.6: Objects contained in each of the eight OES clusters (N=the number

of objects; SNR=SNR of the object having the strongest power): (a) Cluster 1; (b)

Cluster 2; (c) Cluster 3; (d) Cluster 4; (e) Cluster 5; (f) Cluster 6; (g) Cluster 7; (h)

Cluster 8.
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Figure 7.7: Splitting the intra-cluster objects with reverse trends: (a) Cluster 6+;

(b) Cluster 6−; (c) Cluster 8+; (d) Cluster 8−
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Figure 7.8: Summary of the range of intensity changes of the objects contained in

different clusters using mean and standard deviation: (a) Cluster 6; (b) Cluster 7; (c)

Cluster 8.
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Method SLHC

Original cluster index 8+ 8− 7 6+ 6− 5 4 3 2 1

New cluster index 1 2 3 4 5 6 7 8 9 10

Cluster size 1065 253 14 10 5 2 2 1 1 1

Method MSC

Original cluster index 1 2 3 5 6 4 7 8

New cluster index 1 2 3 4 5 6 7 8

Cluster size 1061 249 25 5 5 4 4 1

Table 7.4: Reordering the clusters according to cluster size for SLHC and MSC.

For ease of comparison of the cluster patterns across methods, the clusters obtained

are reordered according to cluster size. The corresponding relationship between the

original cluster index and the new index is listed in Table 7.4. To represent each clus-

ter, the object with the highest power in each cluster is used. Fig. 7.9 and Fig. 7.10

show the patterns of the representative objects for all clusters obtained by the SLHC

and MSC, respectively. As can be observed, the data patterns explored by both MSC

and SLHC are quite similar, which confirms the effectiveness of the clustering results

by either method. Note that Fig. 7.9 (c) and (d) have the similar patterns to that in

Fig. 7.10 (c), and Fig. 7.9 (g) and (h) have the similar patterns to Fig. 7.10 (f). The

only pattern that is captured by MSC which is not evident in the SLHC clusters is the

one shown in Fig. 7.10 (g). This in fact has been included in cluster 7 (original index)

obtained by SLHC (Fig. 7.6 (g)). The reason is that SLHC compares the similarity

between unassigned object and any assigned objects contained in a cluster, giving more

chance for the unassigned object to be included in this cluster. For completeness, the

channel distribution for each cluster obtained by MSC and SLHC are provided in Table

7.5.

Recall that one of the motivations for exploring SLHC is that MSC cannot provide

direct information on how similar clusters are to each other. This information is avail-

able with SLHC and can be easily visualized using a dendrogram plot, as shown in Fig.

7.11. Plot (a) is a zoomed version focusing on the top end of the dendrogram. The
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Figure 7.9: Object with the highest power in each of the 10 clusters, obtained by

the SLHC (new cluster index is used): (a) Cluster 1; (b) Cluster 2; (c) Cluster 3; (d)

Cluster 4; (e) Cluster 5; (f) Cluster 6; (g) Cluster 7; (h) Cluster 8; (i) Cluster 9; (j)

Cluster 10.
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Figure 7.10: Cluster maxoid of each of the 8 clusters, obtained by the MSC (new

cluster index is used): (a) Cluster 1; (b) Cluster 2; (c) Cluster 3; (d) Cluster 4; (e)

Cluster 5; (f) Cluster 6; (g) Cluster 7; (h) Cluster 8.
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Method Cluster index NC Channel distribution

SLHC 1 1 1338

2 1 1353

3 1 1355

4 2 848-849

5 2 847,850

6 15 306-310,1711-1720

7 14 358-371

8 1318 388-393,406-472,474-522,526-739,744-752,757-846,851-1216

1222-1276, 1282-1337,1339-1352,1356-1360,1366-1408,1415-1472

1475-1478, 1484-1507,1513-1514,1536-1548,1551-1558,1566-1573

1579-1586, 1600-1608,1629-1647,1695-1710,1721-1734,1761-1773

1777-1797, 1812-1818,1828-1831,1834-1839,1849-1862,1870-1882

1891-1915, 1923-1946,1970-1982,1989-2002,2012-2018

MSC 1 1061 388-393,406-472,474-522,526-739,744-752,757-845,852-1216

1222-1276,1282-1337,1356-1360,1366-1408,1415-1471,1485-1507

1513-1514,1536-1548,1566-1573

2 249 1339-1351,1475-1478,1551-1557,1579-1586,1600-1608,1629-1647

1695-1709,1721-1734,1762-1773,1777-1797,1812-1818,1828-1831

1834-1839,1849-1862,1870-1882,1891-1915,1923-1946,1970-1982

1989-2002,2012-2018

3 25 359-368,1352-1353,1558,1710-1720,1761

4 4 847-850

5 5 306-310

6 5 846,851,1355,1472,1484

7 4 358,369-371

8 1 1338

Table 7.5: Channel distribution for each cluster obtained by MSC and SLHC (NC:

the number of channels)
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resulting merged clusters are highlighted by unique colors, as shown in plots (b), (c)

and (d).
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Figure 7.11: Zoomed version of dendrogram plot showing the inter-cluster relation-

ship and the intra-cluster similarity between objects: (a) On the top end level showing

the inter-cluster relationship; (b), (c) and (d) showing the dissimilarity level between

intra-cluster objects for (cluster 1,2,3,6), (cluster 4,5,7) and (cluster 8), respectively.

Note that in Fig. 7.11 the object index is converted to the index of OES channels for all

the sub-figures to allow comparison with the channel distribution shown in Table 7.5.

According to these sub-figures, for the smaller clusters, one can easily see the channels

in each cluster and the level of similarity between channels. Taking channel 307 as an

example, according to Fig. 7.11 (b), the most related channel to channel 307 is channel

308. Channel 309 is the most related channel to both Channel 307 and 308, followed by

channel 306 and channel 310. At a slightly higher level, it can be seen that the group

of channels most related to the cluster 306-310 is the group 1711-1720. Hence, if we

know that channel x represents an important wavelength, for a particular species, we
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might be interested in identifying which other channels show similar behavior. Using

SLHC, such information can be obtained. For the cluster that contains a large number

of channels (Fig. 7.11 (d)), visualisation of patterns is more difficult, but by interactive

zooming on the dendrogram the detailed relationships can be explored.

One issue that has yet to be discussed is how to determine the appropriate number

of clusters when using SLHC, i.e. the appropriate cut-off level in the dendrogram. In

the following section, a review of the existing methods for cluster-number selection is

provided first and then a novel method for automatic selection of the number of clusters

is presented.

7.5 Selecting the Number of Clusters

Selecting the number of clusters is an important consideration in hierarchical cluster-

ing. The reason is that hierarchical clustering itself does not generate a set of clusters.

What hierarchical clustering can do is to provide an ordering of the relationship between

objects, typically represented in the form of cluster trees, starting with each object

in separate clusters and ending with all objects in a single cluster. Thus, determin-

ing the appropriate number of clusters (the clustering resolution) is a post-processing

step. However, cluster-number selection methods, also referred to as stopping rules,

are heuristic and ad hoc procedures, so one must be critical about using these rules.

Comprehensive experiments on estimation of the effectiveness of over 30 existing cluster-

number selection measures were carried out by Milligan and Cooper [119] on a series of

simulated data sets. The results show that one method can be better than another for

certain data structures, but no single method outperforms the others across all data

structures. Thus, there are no methods which are in general good at selecting the

correct number of clusters. However, the study is still very valuable, as it identifies

which methods are unreliable for certain types of data. In this sub-section, five typical

methods are introduced, namely the Calinski-Harabasz index, the Duda and Hart Index,

the Beal’s F -type Index, the Index I and the silhouette index.
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7.5.1 Calinski-Harabasz Index

The Calinski-Harabasz (CH) index, one of the best performers in Milligan and Cooper’s

study, is designed to measure the clustering performance as a function of the number of

clusters (k). When the function, CH(k), obtains its maximum, the optimum clustering

resolution is achieved. CH(k) is defined as [12]

CH(k) =
B

k − 1
/

W

n− k
, (7.21)

where B and W denote the inter-cluster dispersion and intra-cluster dispersion, respec-

tively, that is

B =
∑k

i=1 Ni(ci − x)T(ci − x)

W =
∑k

i=1

∑Ni
l=1(x

i
l − ci)T(xi

l − ci),
(7.22)

where xi
l denotes the lth object in cluster i, ci is the centroid of cluster i, x denotes the

sample mean for all objects and Ni denotes the number of objects contained in cluster

i. Given that the total number of objects is n, it follows that

n =
k∑

i=1

Ni. (7.23)

In principle, the CH index tries to select a situation where the inter-cluster performance

is most different from the intra-cluster performance. Similar ideas are also employed in

the design of the Davies-Bouldin index [28], Dunn’s Index [32] and the Xie-Beni index

[179].

7.5.2 Duda and Hart Index

Duda and Hart proposed an index that can be used to judge if a cluster should be

divided into two sub-clusters for divisive clustering. Let IC denote the clustering

performance measured as the intra-cluster sum of squared distances between the objects

and the centroid. Then the DH index, another best performer in Milligan and Cooper’s

study, is defined as [31] :

DH = {1− IC2
2

IC2
1

− 2
πm

}{ nm

2[1− 8/(π2m)]
}1/2, (7.24)

where IC1 denotes the clustering performance for one cluster, say cluster A, IC2 denotes

the summed clustering performance when cluster A is separated into cluster A1 and
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cluster A2. m denotes the dimensionality of the object and n denotes the number of

objects in cluster A. The null hypothesis of one cluster is rejected if the ratio exceeds

a certain significance level, specified according to the standard normal distribution

function. Whereas CH can be thought as an absolute or global performance measure

computed for each value of k, DH is a relative or local measure which looks at the

change in performance as the number of clusters change from k to k + 1. The DH

index employs a local criterion. As highlighted in [119], the DH index performs well in

most cases, but it cannot provide an overall measure of the clustering performance as

a function of the number of clusters. Thus, as a cluster-number selection method, the

DH index has its limitation.

7.5.3 Beal’s F -type Index

Another popular index measure is the so-called Beale’s F -type index. Beale proposed

using a pseudo F -distribution statistic to test whether the existing clustering G2 (con-

sisting of k2 clusters) is better than clustering G1 (containing k1 clusters with k2 > k1).

Beale’s F -tpye index is defined as [4, 77]:

f =
(w1 − w2)

w2

1
[n−k1
n−k2

][k2
k1

]2/ρ − 1
, (7.25)

where ρ is set to 2, in general, n is the number of objects and

w1 =
k1∑

i=1

Ni∑

l=1

(xi
l − ci)T(xi

l − ci), (7.26)

where Ni denotes the cardinality of cluster i, ci is the centroid of cluster i and xi
l

is the lth object contained in cluster i. Similarly, w2 is defined in the case where the

number of clusters is k2. Beale argued that when f exceeds a certain significance level,

clustering G1 is better than clustering G2. Beale’s F-type index tries to combine the

local and global criteria into one index, but it does not define how to calculate the

differences in clustering performance between two successive iterations, so it cannot

be used to indicate the natural structures of clusters [70]. Moreover, the drawback of

Beale’s index, as well as the DH index is that the significance value needs to be specified

for each individual experiment.
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7.5.4 Index I

Index I [116] is a clustering resolution method developed recently that defines the

appropriate number of clusters as the number which maximises the I-index, defined as

I(k) = (
1
k
× TIC1(G,C)

TICk(G, C)
×Dk)2. (7.27)

Here, k denotes the number of clusters, TIC1(G,C) is the TIC(G, C) (defined in Eq.

(6.1)) for the clustering where all objects are in a single cluster, and TICk(G, C) is the

TIC(G, C) when there are k clusters. Scaling factor Dk is defined as

Dk =
k

max
i,j=1

‖ci − cj‖2, (7.28)

where ci and cj are the centroid of cluster i and j, respectively. For a given data

set, TIC1(G, C) is constant, hence I(k) varies as a result of k, TICk(G, C) and Dk

competing and balancing with each other.

7.5.5 Silhouette Index

Silhouette index (SI) [81] is a widely used method for interpreting and validating the

clusters in data. For object xi
l (object l in cluster i), the average similarity of object

xi
l to all objects in cluster j, Gj , can be defined as

aj(xi
l) =

∑
x∈Gj

corr(x,xi
l)

Nj
. (7.29)

Let aw(xi
l) denote the average similarity between xi

l and the other objects within its

own cluster, Gi, and let an(xi
l) denote the average similarity between xi

l and the other

objects contained in its nearest cluster, Gn, that is

w = i and n = arg max
j 6=i

aj(xi
l). (7.30)

The silhouette value for object xi
l is then defined as

s(xi
l) =

aw(xi
l)− an(xi

l)
max{an(xi

l), aw(xi
l)}

. (7.31)

A value of s(xi
l) close to 1 shows that object xi

l is more similar to the objects contained

in its own cluster than the objects contained in its nearest cluster, so the classification

of xi
l to Gi is justified. Accordingly, if s(xi

l) is close to -1, object xi
l is more similar
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to the objects contained in Gn, so the classification is wrong. However, a value near 0

cannot be used to estimate whether the classification of xi
l is right or wrong. This is

the drawback of the silhouette index.

The silhouette value for cluster i is then defined as

Si =
1
Ni

Ni∑

l=1

s(xi
l), (7.32)

where Ni is the cardinality of Gi and the overall or global clustering performance across

all k clusters can be defined as [73]

GSk =
1
k

k∑

i=1

Si. (7.33)

Hence, GSk is a measure of the clustering performance for a given number of clusters,

and will be referred to as the silhouette index.

7.6 B-Index

Hierarchical clustering usually does not require any parameters to be specified before

the clustering process is completed. However, to make the clustering meaningful, it is

necessary to determine the appropriate level of separation i.e. to estimate the intrinsic

number of clusters in the data. In the previous section, a number of approaches for

estimating the appropriate clustering level have been presented. Here, a new B-index

is proposed.

7.6.1 Theoretical Description

The index is designed to explore the differences in clustering performance between

two successive iterations, while at the same time taking into account the clustering

performance for the single cluster and all clusters. The index, referred to as the B-

index, is defined as follows:

B(k) = |N
∗
k+1 −N∗

k

Nk∗ × D

Dk
×4Dk|, (7.34)

where

D = max
xi,xj

dis(xi,xj), (7.35)
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Dk = max
xi,xj∈G∗k

dis(xi,xj), (7.36)

Dk+1 = max
xi,xj∈G∗k+1

dis(xi,xj), (7.37)

4Dk =
wkDk − wk+1Dk+1

max(wk, wk+1)
, (7.38)

wk = stdxi,xj∈G∗k(dis(xi,xj)), (7.39)

wk+1 = stdxi,xj∈G∗k+1
(dis(xi,xj)). (7.40)

std(·) is the standard deviation function and dis(·) is the dissimilarity function, as de-

fined in Eq. 7.10. G∗
k is the new cluster formed in the creation of Gk with k clusters,

Gk = {G1, · · · , G∗
k} (i.e. where two of the clusters in Gk+1 are combined to produce

a single cluster, reducing the cluster count by 1). Similarly, G∗
k+1 is the new cluster

formed in the creation of Gk+1 with k +1 clusters, Gk+1 = {G1, · · · , G∗
k+1}. In agglom-

erative hierarchical clustering, SLHC for example, Gk+1 is the clustering prior to Gk.

N∗
k and N∗

k+1 denote the cardinality of G∗
k and G∗

k+1, respectively.

D measures the greatest dissimilarity between objects (global criterion). For a given

data set, D is constant. Dk measures the intra-cluster dissimilarity in Gk (local cri-

terion) and decreases with increasing k. 4Dk measures the weighted difference of the

clustering performance for the two clusters generated in the two successive iterations

(between iterations). The basic idea is if the clusters generated in the two successive

iterations are similar, the value of 4Dk is small and hence, as a clustering performance

measure, B(k) is small. Otherwise, B(k) is big. The clustering performance is weighted

by the dispersion level of the intra-cluster objects (measured by wk and wk+1). This

is included to deal with the case where outliers are merged into the newly generated

cluster.

B(k) measures the changes in
N∗

k+1−N∗
k

N∗
k

, D
Dk

and 4Dk. The maximum of B(k) corre-

sponds to a case where the two clusters with the most distinctive features are merged

together, so the clustering should be stopped in the previous iteration. Thus the

selected number of clusters, ks, is given by

ks = arg max
k

B(k) + 1. (7.41)
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Figure 7.12: Selecting the number of clusters using the B-index for SDS1 (α = 1):

(a) Plot of SDS1; (b) Clustering Dendrogram; (c) B-index.
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Figure 7.13: Selecting the number of clusters using the B-index for SDS1 (α = 0.5):

(a) Plot of SDS1; (b) Clustering Dendrogram; (c) B-index.

7.6.2 B-Index Applied to Simulated Data

The operation of the B-index will be illustrated using the SDS1 data set, which consists

of 20 objects with 4 distinct patterns (α = 1).

A plot of the standardised SDS1 data is shown in Fig. 7.12 (a). The SLHC dendrogram

is shown in Fig. 7.12 (b), from which one can see that the 20 objects can be clustered

into 4 groups. In the B-index curve (shown in Fig. 7.12 (c)), when k = 3, B(k) achieves

its maximum, which indicates that the merged two clusters have the most distinctive

patterns. Hence, the clustering should be stopped in the previous iteration, i.e. when

number of clusters is 4 (Eq. (7.41)).

Using the SDS1 data set with α = 0.5, the distinct number of patterns is reduced to
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3. The plot of the standardised data and the corresponding clustering dendrogram are

shown in Fig. 7.13 (a) and (b), respectively. The changes in B(k) as a function of the

number of clusters (k) is shown in Fig. 7.13 (c), where one can see that when k = 2,

B(k) reaches the maximum. Hence, the number of clusters obtained is 3 (Eq. (7.41)).

These two case studies show that the B-index is effective at revealing the intrinsic

structures in the data. When dealing with data containing a large number of objects,

for example, greater than 100, methods such as direct observation of the distributions

of objects in the dendrogram are not feasible. It is in these situations that the use of

the B-index is advantageous.

7.6.3 B-Index Applied to OES Data

IDS1 and IDS1Filt, the two OES data sets, used as benchmarks, each contains more

than 1000 objects. Direct observation of the dendrogram is not feasible as a means of

determining a solution for the number of clusters. Hence, the B-index is employed. Fig.

7.14 shows the result of using the B-index on IDS1. When k = 86, B(k) reaches its

maximum, so the number of clusters is predicted as 87. Fig. 7.15 (a) shows the channel

distribution in each cluster. A more detailed description of each cluster is presented in

Table 7.6. The average power analysis shows that weak signals are contained in most

of the clusters. Visual observation of each cluster shows that the weak signals are more

likely to correspond to noise signals. As an example, the channels contained in cluster

7 (with 10 channels) are presented in Fig. 7.15 (b).

The application of the B-index to IDS1Filt is shown in Fig. 7.14 (c). Fig. 7.14 (d)

shows the interval k ∈ [1, 20] of Fig. 7.14 (c) in more detail. It can be seen that when

k = 6, B(k) reaches its maximum, suggesting 7 as the intrinsic number of clusters.

As discussed in sub-section 7.3.2 where the number of clusters was set to 8, the result

obtained by B-index simply corresponds to the result obtained when cluster 1 and

2 (Fig. 7.6 and Table 7.3) are merged into a single cluster. As such, the detailed

comparison with MSC is given in section 7.4. However, rather than achieving data

clustering in one step as MSC does, SLHC has to be used jointly with the B-index,
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Figure 7.14: B-index applied to OES data: (a) B(k) for the IDS1 (b) Zoomed version

of Fig. 7.14 (a); (c) B(k) for the IDS1Filt; (d) Zoomed version of Fig. 7.14 (c).

with SLHC providing the linkage between objects and the B-index determines the

appropriate level of separation.

7.7 Comparison Between B-index and Other Cluster-Number

Selection Methods

In this section, the B-index is compared with a number of competing indices, namely

the I-index, CH index and silhouette index. The I-index was selected for comparison as

it provides the inspiration for the design of the B-index, while the CH and silhouette

indices were selected as they are the best performers and most widely used clustering

performance measures [119, 81].
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Figure 7.15: (a) Channel distribution in each cluster; (b) Channels in cluster 7.

7.7.1 Performance On Simulated Data

Here the performance of the selected indices for the SDS1 data set with α = 1 and

α = 0.5 is presented. Fig. 7.16 shows a comparison of the indices on the SDS1 data

set with α = 1. The changes in I(k) as a function of the number of clusters is shown in

Fig. 7.16 (b), where the maximum value of I(k) is obtained when k = 19. In fact, it is

not surprising, because according to Eq. (7.27), TICk(G,C) decreases as k increases,

while Dk, which measures the inter-cluster dissimilarity, may have very small values,

especially when each object is assigned to a single cluster. As such, the ratio between

Dk and TICk(G,C) could be very big. There is a local maximum at k = 4, and this

point indicates the correct cluster number. Fig. 7.16 (c) shows the changes in CH(k).

The maximum value is obtained when k = 4, so the number of clusters can be correctly

predicted by the CH index. For the silhouette index (shown in Fig. 7.16 (d)), the max-

imum value of Sk is achieved when k = 4, so the silhouette index is effective in this case.

All these four methods are applied to the SDS1 set with α = 0.5. The global maximum

for the B-index and CH index is obtained at k = 3 (Fig. 7.17). The local maximum is

achieved at k = 3, for the I-index and for the silhouette index, the first local maximum

is achieved at k = 3. Comparison between different computing indices shows that the

B-index, I-index, CH index and silhouette index are all effective in determining the

number of clusters for the simple cases, where data contains distinct patterns.
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Figure 7.16: Comparison between the different clustering performance measures for

SDS1 (α = 1): (a) B-index; (b) I-Index; (c) CH index; (d) Silhouette index.
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Figure 7.17: Comparison between the different clustering performance measures for

SDS1 (α = 0.5): (a) B-index; (b) I-Index; (c) CH index; (d) Silhouette index.
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No. of channels contained Average power of the channels No. of clusters

in each cluster in each cluster

1798 124.32 1

40 1.9 1

20 0.26 1

16 2.03 1

13 3.16 1

11 0.22 1

10 0.87 1

9 0.9 1

8 0.28 1

7 2.18, 0.23 2

6 0.22 1

5 0.23, 0.25, 0.93 3

4 0.66 1

3 0.21 1

2 0.45, 3.86, 0.22, 0.19, 0.18, 2.13, 0.18, 0.17 8

1 0.156-6.6372 62

Table 7.6: Simple statistics of the channel distribution in each cluster

7.7.2 Performance On OES Data

The results of applying the B-index, I-index, CH index and silhouette index to the SLHC

clusters for IDS1 and IDS1Filt are shown in Fig. 7.18 and Fig. 7.19, respectively. The

number of clusters selected by these four indexes for the IDS1 data set are 87, 2, 60

and 19, respectively. For IDS1Filt, the corresponding selected number of clusters are

7, 2, 4 and 6. Although the number of clusters selected by different computing indices

varies for the IDS1 data set, the result is relatively consistent for the IDS1Filt data set.

According to the results given by MSC, the IDS1 and IDS1Filt data sets can be divided

into 264 and 8 clusters, respectively. This confirms the effectiveness of the B-index at

detecting the appropriate clustering resolution, especially for high dimensional OES

data sets.
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Figure 7.18: Comparison between the different clustering performance measures for

IDS1: (a) B-index; (b) Interval k ∈ [0, 200] of (a); (c) Index I; (d) Interval k ∈ [0, 50]

of (c); (e) CH index; (f) Interval k ∈ [0, 200] of (e); (g) Silhouette index; (h) Interval

k ∈ [0, 200] of (g).
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Figure 7.19: Comparison between the different clustering performance measures

for IDS1Filt: (a) B-index; (b) Interval k ∈ [0, 200] of (a); (c) Index I; (d) Interval

k ∈ [0, 50] of (c); (e) CH index; (f) Interval k ∈ [0, 200] of (e); (g) Silhouette index;

(h) Interval k ∈ [0, 200] of (g).
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7.8 Discussion and Conclusions

In this chapter a review of the typical hierarchical clustering approaches and the meth-

ods for selecting the number of clusters has been presented. To deal with OES data,

a custom SLHC algorithm has been implemented. The main advantage of the SLHC

is that it can be used to disclose the relationship between clusters and between intra-

cluster objects. For example, when one channel (object) is known to be important, the

related channels from the same species can be captured by SLHC and the inter-channel

relationship can be visualised in dendrogram in order of similarity level. This is a useful

feature for practical use.

To estimate the appropriate number of clusters, a novel B-index measure has been

developed. The ability of the B-index to predict the number of clusters has been

demonstrated with the aid of a simulated data set and the effectiveness of the B-index

has been confirmed by comparison with other computing indices, namely the I-index,

CH index and silhouette index. The clusters obtained by using SLHC with the B-index

and MSC on IDS1Filt are quite consistent and thus confirm the effective of either

method in clustering the high-dimensional OES data sets.



Chapter 8

Concluding Summary and Future

Work

8.1 Concluding Summary

The research presented in this thesis was dedicated to the development of algorithms

for effective unsupervised feature extraction from complex and highly redundant semi-

conductor plasma etching sensor data sets. These newly proposed methods can be

clearly divided into two categories as follows:

1. statistical transformation

• Principal Component Analysis based data summarisation;

• Sparse Principal Component Analysis;

• Adaptive Weighting Sparse Principal Component Analysis;

2. clustering

• Max Separation Clustering;

• Single Linkage Hierarchical Clustering/B-Index.

Existing feature extraction techniques employed in semiconductor plasma etching were

reviewed in Chapter 2. This provides important methodology background for further

algorithm development. As the most widely applied multivariate analysis method in

218



CHAPTER 8. CONCLUDING SUMMARY AND FUTURE WORK 219

plasma etch, PCA (Principal Component Analysis) was employed in Chapter 3 to anal-

yse the high-volume OES data sets. Graphical display of the results obtained using

PCA is computationally expensive. As a low cost alternative, two PCA-based data

summarisation methods were proposed. One is implemented as an improvement on

conventional data unfolding approaches and the other is realised by monitoring changes

in the directions of the PC loading vectors. Experimental results show that the two

proposed methods are effective for identifying plasma etching process variations across

wafers and lots. However, the issue with PCA is that since the PCs are linear combi-

nation of all underlying variables, it cannot be used to identify the key wavelengths,

which are important when trying to determine the chemistry underlying causes of pro-

cess changes. Moreover, the objective of PCA is to maximise the variance explained by

low dimension representations of the data, and hence is not tailored to, or optimised

for, relevant feature extraction.

Seeking possible solutions, the recently proposed Sparse Principal Component Anal-

ysis (SPCA) algorithm was employed and applied to OES data analysis for the first

time. As experimental results showed, SPCA is useful for variable selection and is

able to identify the variables that are highly correlated (variable grouping). However,

it is not effective at separating the variables with reverse patterns and hence is not

ideal for variable selection based on pattern differences. Since the variables in different

components are not mutually exclusive, SPCA is not effective for variable classification.

As an improvement on SPCA, AWSPCA (Adaptive Weighting Sparse Principal Com-

ponent Analysis) was proposed. AWSPCA can achieve effective selection of variables

with different features, variable grouping and classifications. However, AWSPCA is

unable to identify representative variables, nor the similarity levels between different

variables. These are the common drawbacks of data transformation methods targeting

at information summarisation rather than feature extraction.

Variable classification based on pattern differences is the objective of clustering. As a

consequence methods drawn from the clustering domain were examined. The charac-
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teristics and properties of three of the most powerful and widely used non-hierarchical

clustering methods, K-means, SOM (Self-Organizing Map) and QT (Quality Threshold)

were explored and discussed in detail. Addressing the issues of using these methods for

feature extraction from OES data led to the development of the MSC (Max Separation

Clustering) algorithm. MSC is effective for extracting and summarising the different

patterns contained in OES data and the newly proposed maxoid in MSC is effective

in representing the distinctive patterns. Moreover, MSC is not subject to inter-run

variability and has no requirement for a priori knowledge of the number of clusters.

However, MSC cannot provide detailed information on the levels of similarity between

intra-cluster objects (variables) or across clusters.

Addressing this problem motivated us to develop the SLHC/B-Index (Single Linkage

Hierarchical Clustering and B-Index) algorithms. The main advantage of the SLHC

is that it can be used to disclose the relationship between clusters and intra-cluster

objects. Used in conjunction with B-index, SLHC can provide effective clustering of

objects with distinctive patterns. However, simply using SLHC itself does not provide

information on the appropriate level of clustering (number of clusters). This is the

function of the B-index metric. Whereas MSC naturally identifies representative vari-

ables for each cluster generated, SLHC does not.

For clarity, a summary of the strengths and weaknesses of the new algorithms proposed

in this thesis is provided in Table 8.2 and the algorithm running time for different data

sets is shown in Table 8.1. As can be seen, each method has advantages, but no meth-

ods stands out as having all the desired properties in terms of feature extraction. While

SHLC provides the most complete information on a data set, it is computationally very

expensive compared to other methods. Hence, in practice, the appropriate choice of

algorithm will depend on problem requirements and time available. For the algorithms

developed in this thesis, it is recommended that if the target is to achieve effective

dimension reduction with respect to variations in the analysed variables, AWSPCA is

applicable. If instead, the target is to achieve effective clustering of distinctive patterns

within the data and pattern representation by a small number of variables within a

limited time, then MSC is the appropriated choice. If computational time is not a
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Data Set PCA SPCA AWPCA MSC SLHC

SDS1 3.93× 10−3 6.29× 10−2 9× 10−2 1.19× 10−2 3.6× 10−1

IDS1Filt 1.96× 10−1 2.4× 10−1 6.54 6.03 1.996× 104

Table 8.1: The algorithm running time for different data sets (unit: second), when

running on a computer with 1.6GHz single core Intel Pentium processor and 752MB

of memory.

concern and the goal is to achieve a detailed visualisation of the correlation between

each individual variable and to a large extend, across all groups containing variables

with different patterns, then SLHC should be considered.

In this thesis, MSC provides an effective summarisation and representation of the pat-

terns contained in OES data, opening up possibilities of using OES data for accurate

process control for semiconductor chip manufacturing. Moreover, SLHC provides a

complete and detailed exploration and visulisation of the insight relationship between

variables and across clusters, making it possible to achieve correct interpretation of

complex plasma chemicals. In industry, this will help engineers to achieve a complete

understanding of the underlying plasma chemistry, impossible presently but signifi-

cantly important for the future accurate manufacturing with tiny features.
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Table 8.2: Summary of the strengths and weaknesses of the new algorithms proposed

in this thesis for feature extraction from OES data.



CHAPTER 8. CONCLUDING SUMMARY AND FUTURE WORK 223

8.2 Future Work

The algorithms proposed in this thesis open up new possibilities for future work. Some

suggestions are discussed below, which are certainly not an exhaustive list.

Sensor Data Fusion

As discussed in Section 1.2.3, OES data contains rich chemical information and has the

potential to be used to track the root causes of process variations. However, from the

whole plasma etching process standpoint, the generated chemical species which OES

measures are only process outputs. Inputs such as RF power supply, gas flow rate,

plasma chamber pressure, wafer temperature that determine the plasma physics and

chemistry were not considered.

From general data fusion theory, the use of various diagnostic data can reduce the effect

of measurement noise and improve algorithm robustness. As such, it is worth exploring

the relationship between variables measured by OES and other diagnostic sensors, such

as Plasma Impedance Monitors and Process State Monitors. Analysing the combined

data set, statistical modeling techniques, e.g. Partial Least Squares (PLS) and Factor

Analysis (FA) are applicable. PLS attempts to model the relationship between input

and output variables, while FA attempts to model the relationship between all variables

included in the data set. If successful, the modeling process can then be followed by

further information extraction processes to remove data redundancy introduced by the

merging of data, leading to a complete implementation of data fusion.

Process Spatial Modeling

Modeling techniques such as artificial neural networks have been widely used in plasma

etching process control, finding application in the prediction of the average etch rate or

etch completion [33]. This kind of modeling is problematic, because it ignores the fact

that significant spatial variations occur in etch across the wafer, known as the uniformity

problem [134]. White et. al. [170] have shown that it is feasible to model line width

reduction across the wafer based on the use of spatially resolved OES (placing three

independent OES beams to resolve the spectral data across the wafer). The technique
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of constructing 3D modeling based on spatially resolved 2D images is reasonably mature

in the computer vision and image processing domains. If applicable, it may be feasible

to construct a 3D model for simulating the spatial and temporal distribution of the

optical emissions of chemical species in an etch chamber, enabling complete quality

control at the wafer scale.

Microarray Data Analysis

The newly proposed algorithms, AWSPCA, MSC and SLHC/B-Index, open up poten-

tial opportunities to extend the existing techniques to microarray data analysis.

DNA microarrays are devices used to measure the expression of many thousands of

genes in parallel [152]. Microarrays can be used diagnostically to determine the dis-

ease that an individual is suffering from and to predict the effectiveness of a course of

therapy. The last decade has been seen a rapid growth in the use of microarray tech-

nology in medicine and pharmaceutical industries. The principal characteristics that

microarray data has in common with OES data is that they are both high-volume, high

dimension and highly redundant data sets. The SPCA technique, in fact, originated

from microarray data analysis. In addition, many of the existing clustering techniques

have been identified as typical algorithms in Bioinformatics for microarray data analy-

sis. Due to rapid development of microarray technology, there are increased needs for

more sophisticated and complete microarray data analysis techniques. The algorithms

developed in this thesis can definitely be used to meet such needs.
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Appendix A

Mathematical Proofs

A.1 Proof of Theorem 1 in Section 4.2.6

Theorem 1 provides a self-contained ridge regression model for computing PCA.

Theorem: Given ridge regression estimates of a and b, denoted as âR and b̂R, com-

puted as

(âR, b̂R) = arg min
a,b

{
m∑

i=1

||zi − abTzi||22 + γ2||b||22}, s.t. aTa = 1 (A.1)

then

p1 = b̂
R
(1 +

γ2

σ2
1

), (A.2)

σ1 is the largest singular value of X. zi is the ith column of matrix Z, Z = XT.

To prove this theorem, some properties of vectors and matrices will be referred to as

follows.

Properties:

1. A = [a1, . . . ,am],A ∈ Rn×m and B = [b1, . . . ,bm], B ∈ Rq×m, then
m∑

i=1

aibT
i = ABT;

2. a ∈ R, then Tr{a} = a;

3. A ∈ Rm×m, then Tr{A} = Tr{AT};

4. a ∈ Rn×1,b ∈ Rn×1, then

aTb = Tr{abT} = Tr{bTa} = Tr{aTb} = Tr{baT};
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Define J as a scalar cost function of a and b, J =
∑m

i=1 ||zi − abTzi||22 + γ2||b||22. This

can be expressed as

J =
m∑

i=1

||zi − abTzi||22 + γ2||b||2

=
m∑

i=1

[(I− abT)zi]T[(I− abT)zi] + γ2bTb

=
m∑

i=1

Tr{[(I− abT)zi]T[(I− abT)zi]}+ γ2bTb

=
m∑

i=1

Tr{zTi (I− baT)(I− abT)zi}+ γ2bTb

=
m∑

i=1

Tr{(I− baT)(I− abT)zizTi }+ γ2bTb

= Tr{(I− baT)(I− abT)
n∑

i=1

(zizTi )}+ γ2bTb

= Tr{(I− baT)(I− abT)ZZT}+ γ2bTb

= Tr{ZZT} − Tr{baTZZT} − Tr{abTZZT}+ Tr{bbTZZT}+ γ2bTb

= Tr{ZZT} − Tr{aTZZTb} − Tr{abTZZT}+ Tr{bbTZZT}+ γ2bTb

= Tr{ZZT} − Tr{aTZZTb} − Tr{aTZZTb}+ Tr{bTZZTb}+ γ2bTb

= Tr{ZZT} − aTZZTb− aTZZTb + bTZZTb + γ2bTb

Thus, finally J can be rewritten as follows

J = Tr{ZZT} − 2aTZZTb + bTZZTb + γ2bTb. (A.3)

Minimize J for a given a (taking a as a known parameter), gives

∂J
∂b

= 0.

Substituting J by Eq. (A.3), gives

∂(Tr{ZZT} − 2aTZZTb + bTZZTb + γ2bTb
∂b

= 0.

−2(aTZZT)T + 2(ZZTb) + 2γ2b = 0

ZZTb− ZZTa + γ2b = 0.

245



Therefore,

b = (ZZT + γ2I)−1ZZTa. (A.4)

Applying this result to replace b in Eq. (A.3) gives

J = Tr{ZZT} − aTZZT(ZZT + γ2I)−1ZZTa, s.t. aTa = 1.

Since Tr{ZZT} is constant, minimising J is equivalent to maximising

aTZZT(ZZT + γ2I)−1ZZTa, s.t. aTa = 1.

According to the Rayleigh quotient theory, a should be the first eigenvector of ZZT(ZZT+

γ2I)−1ZZT. In fact, the eigenvectors of ZZT(ZZT+γ2I)−1ZZT are the same as the eigen-

vectors of ZZT. It is notable that the introduction of γ2 only causes changes to the

values of elements in the main diagonal of ZZT. Therefore, the eigenvalues of ZZT are

changed, but not the eigenvectors.

Therefore,

â = v1.

Using this result and noting that ZZT = XTX = VΣ2VT (X = UΣVT, SVD of X), Eq.

(A.4) can be rewritten as

b̂ = (VΣ2VT + γ2I)−1VΣ2VTv1

= (VΣ2VT + γ2VVT)−1VΣ2VTv1

= [V(Σ2 + γ2I)VT]−1VΣ2VTv1

= V(Σ2 + γ2I)−1Σ2VTv1 (V = V−1,VTV = I)

= VΦVTv1,

where

Φ =




σ2
1

σ2
1+γ2

0

. . .

0 σ2
p

σ2
p+γ2




Therefore,

b̂R =
σ2

1

σ2
1 + γ2

v1 =
σ2

1

σ2
1 + γ2

p1.
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That is

p1 = b̂
R
(1 +

γ2

σ2
1

). (A.5)

This completes the proof. This theorem can be extended to the case of the first k

loadings. The corresponding mathematical proof follows the same proof procedures as

shown above and can be found in [194].

A.2 Relationship Between SNR and Correlation Coeffi-

cient

Consider two mean-centered signals, x and y. Let x̃ and ỹ be the corresponding signals

corrupted by independent noise n1 and n2, respectively:

x̃ = x + n1, ỹ = y + n2, (A.6)

where E(n1) = E(n2) = 0 and E(n2
1) = E(n2

2) = σ2. Then, it follows that

corr(x̃, ỹ)
corr(x, y)

=

√
SNRx

1 + SNRx

SNRy

1 + SNRy
. (A.7)

The signal mean and variance, x and σ2
x, can be expressed as:

x = E(x̃) =
1
m

m∑

i=1

(x̃i) (A.8)

and

σ2
x = E(x̃− x)2 = E(x̃2)− x2, (A.9)

respectively. The Pearson’s correlation between x̃ and ỹ can be expressed as:

corr(x̃, ỹ) =
E[(x̃− x)(ỹ − y)]√
E(x̃− x)2E(ỹ − y)2

(A.10)

Because x̃ and ỹ are mean-centered, there is E(x̃) = E(ỹ) = 0. Then,

corr(x̃, ỹ) =
E(x̃ỹ)√

E(x̃2)E(ỹ2)
=

E(xy + n1y + n2x + n1n2)√
E(x2 + 2n1x + n2

1)E(y2 + 2n2y + n2
2)

(A.11)

With the assumption that noise signals are independent, there is E(n1) = E(n2) =

0, E(n1n2) = 0, so

corr(x̃, ỹ) =
E(xy)√

[E(x2) + σ2
n1

][E(y2) + σ2
n2

]
(A.12)
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Similarly, there is

corr(x, y) =
E(xy)√

E(x2)E(y2)
(A.13)

Therefore

corr(x̃, ỹ)
corr(x, y)

=

√
E(x2)E(y2)√

[E(x2) + σ2
n1

][E(y2) + σ2
n2

]
(A.14)

=

√
pow(x)pow(y)√

[pow(x) + pow(n1)][pow(y) + pow(n2)]
(A.15)

=

√
SNRx

1 + SNRx

SNRy

1 + SNRy
. (A.16)
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