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ABSTRACT 

Cross modulation or Exponential FM is a sound synthesis tech-

nique associated with modular analog subtractive synthesizers. It 

differs from the more well-known linear FM synthesis technique 

in that the modulation is an exponential function of the control 

voltage. Its spectrum shape is more complex, thus giving it a lar-

ger bandwidth with respect to the modulation depth. Thus, the 

prevention of aliasing distortion requires different conditions 

than Carson’s rule as used with linear FM. A suitable equation 

will be presented in this paper.  

 

1. INTRODUCTION 

Research into virtual implementations of the structures of analog 

subtractive synthesizers has been a popular topic for the last few 

years. There have been a number of algorithms proposed to cre-

ate bandlimited versions of the classic analog oscillators [1]. 

Alongside this, there have been a number of papers that derive 

models for the Voltage controlled filters associated with particu-

lar analog synthesizers. The designs for these have been based on 

an explicit circuit analysis, [2] for example, or those that create a 

version of the original using standard digital filter elements [3]. 

However, other elements of subtractive synthesis systems have 

not received such in-depth treatment such as the Attack-Decay-

Sustain-Release (ADSR) envelope generators, Filter FM effects, 

and other oscillator modulation configurations. Although on 

modern analog synthesizers linear Frequency modulation (FM) 

between oscillators is sometimes a feature this was not always 

that case. In fact, Linear Frequency Modulation is really associ-

ated with digital synthesis and was viewed as the synthesis tech-

nology that overtook subtractive synthesis in the 1980s [4]. Lin-

ear Frequency modulation was unavailable in early modular sub-

tractive synthesis systems for two primary reasons: Firstly, it was 

difficult to implement because of the Volts/Octave control volt-

age concept on which the elements of these synthesizers were 

interconnected. This system creates a non-linear relationship be-

tween any change in signal voltage and the pitch [5]. Thus, to 

force it to behave in a linear manner was difficult. Secondly, the 

tuning instabilities associated with early analog synthesizers be-

cause of component drift and ambient temperature fluctuations 

would have resulted in inconsistent generation of stable linear 

FM signals [6]. This is particular important in the case when the 

linear FM signal is desired to be harmonic; to achieve this, the 

frequencies of the carrier and modulator signals must strictly be 

in an integer relationship. Any deviation from this can seriously 

affect the perception of the sound.  

The nonlinear Volts/Octave control voltage relationship of these 

analog synthesizers meant that modulation of one oscillator by 

another actually produced an Exponential FM waveform. One 

notable feature of this technique was that when the modulation 

depth was varied dynamically, a pitch shifting of the sound was 

perceived. This issue meant that for musicians Exponential FM 

was most often used to produce special effect sounds that were 

clangorous rather than for melodic lines. An excellent treatment 

of the theory of Exponential FM was written by [7]. This paper 

provided a description of the signal and its spectrum for sine-

wave modulators. It also offered a configuration of analog mod-

ules that introduced a pitch correction factor that could be used 

to produce a harmonic version of Exponential FM. However, the 

work in [7] was written for implementation on an analog synthe-

sizer system and thus assumed an infinite output bandwidth. This 

is not the case for digital implementations and algorithm design-

ers always have to be aware of limitations on signal bandwidth 

imposed by the sampling frequency so as to minimise aliasing 

distortion. Therefore, this paper will examine the implementation 

of Exponential FM from a digital perspective. It will examine the 

spectra produced by the Exponential FM system in an effort to 

produce a guideline for its digital implementation. Section 2 will 

introduce the theory behind Exponential FM and will provide the 

spectral bandwidth analysis. Section 3 will contain the conclu-

sions. 

2. THEORY OF EXPONENTIAL FM 

First of all, the Volts/Octave control signal representation in ana-

log synthesizers means that the pitch of a note doubles as the 

control voltage doubles [5]. Thus, the relationship can be ex-

pressed  

 
V

f 2∝     (1) 

 

where f is the note pitch and V is the control voltage. 

 
For example, if 2 volts produces a pitch of 110Hz, then 3 volts 

will produce a note an octave higher of 220Hz. 

Next, although the well-known equation for linear FM 

synthesis is actually phase modulation, on a modular synthesizer 

system Exponential FM is implemented as a true frequency 

modulation. The modulator signal voltage is interpreted as fre-
quency variation that is used to define the control voltage associ-

ated with frequency of the carrier. The modulator is thus an in-

stantaneous frequency signal that for exponential FM is defined 

as in [7] to be 
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 ( ) ( )tV

cft 2=θ&  (2) 

 

where fc and fm are the Carrier and Modulation frequencies in 
hertz respectively, and V(t) represents the modulating signal. 

Note that the dot on the term on the left hand side indicates that 

it is a differential (of the phase). 

The Modulating signal can be written as the combina-

tion of a DC term, V0 and a time-varying quantity, assumed to be 

a cosine here, of amplitude Vm,, which can also be termed as the 
Modulation Depth [7], 

 ( ) ( )tfVVtV mm π+= 2cos0
 (3) 

 

Substituting (3) into (2) and using logarithms to write the power 

term 

 

 ( ) ( )( ) ( )2ln2cos0 tfVV

c
mmeft

π+=θ&  (4) 

 

which can be rewritten 

 

 ( ) ( )( ) ( )2ln2cos tfV

ce
mmeft

π=θ&  (5) 

with 

 ( )2ln0V

cce eff =  (6) 

 

To convert the instantaneous frequency signal into a phase the 

exponential term in (5) must be integrated 

 

 ( ) ( )∫θ=θ tt &  (7) 

However, it is not possible to integrate the exponential term in 

(5) directly and instead it must be expanded as set of Modified 

Bessel functions [7] 

 

( ) ( ) ( )( ) ( )( ) ( )∑
∞

=

π π+=
1

0

2ln2cos
2cos2ln22ln

k

mmkm

tfV
tkfVIVIe mm  (8) 

 

Substituting (8) back into (5) 

 

( ) ( )( ) ( )( ) ( ) c

k

mmkcem ftkfVIfVIt 







π+=θ ∑
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=1

0 2cos2ln22ln&  (9) 

 

Integrating to obtain the phase as shown by (7) and assuming a 

sinusoidal carrier will produce the time domain signal [7] 
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The carrier frequency of (11) can be written as 

 

 ( )( ) cemE fVIf 2ln0=  (11) 

 

and the frequency deviation of each term is 

 

 ( )( )2ln
2

mk

m

c

k VI
kf

f
D =  (12) 

 

The expression in (10) is a multi-component complex FM signal.  

2.1. Carrier Frequency Analysis 

From (6) and (10) it can be seen that the final carrier frequency 

of the Exponential FM signal is a function of the exponent of the 

DC term V0  and the value of the zeroth modified Bessel function 

that has the Modulation Depth in its argument. This is different 

to the linear FM case where the carrier frequency is independent 

of the modulation. This relationship should be taken into account 

for the digital version of Exponential FM. For example, assum-

ing for convenience that the DC term V0 is zero it is possible to 

show graphically how the carrier frequency increases with in-

creasing modulation amplitude. This is illustrated in Figure 1 

where the input carrier frequency fc is plotted along the x-axis, 

the Modulation Depth Vm on the y-axis, and the actual carrier 

frequency given by (11) on the z-axis. The maximum possible 

value of the input carrier was assumed to be 8372Hz, corre-

sponding to midi-note #120. 

 

   

Figure 1: The relationship between the input carrier fre-

quency, the modulation depth and the actual carrier fre-

quency. 

From Figure 1 it can be seen the actual carrier frequency in-

creases quite rapidly as the Modulation Depth Vm reaches values 

of 8 or more. This illustrates the difference between linear FM 

and Exponential FM well. It also hints at the problems that can 

occur with the digital implementation of Exponential FM and 

warns that care must be taken when setting a sampling frequency 

for any implementation so that it is commensurate with the width 

of the Modulation Depth control. Lastly, looking at (11) it can be 

seen that including a DC term (V0) in the modulating signal adds 

further complications in that it can raise the carrier frequency 

significantly. For example, for V0=5 the carrier frequency will be 

scaled by a factor of 7.17.  

2.2. Computing the Spectrum of Exponential FM 

To obtain the spectrum of the Exponential FM signal in (10) 

there are a number of possible approaches. These can be numeri-

cal, analytical, or a hybrid of the two. Note though what is more 

useful here is the spectrum envelope rather than the actual spec-

trum itself. When attempting to compute the bandwidth it is 

much easier to work with the envelope because any gaps that ex-

ist between the partials in the signal that can disrupt an auto-
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mated spectral analysis process to find a significant low energy 

spectral region.  

The most obvious numerical technique to use is the 

Fast Fourier Transform (FFT). This is readily available in most 

software environments. However, this does not produce the enve-

lope itself and further processing is required for this. Methods to 

achieve this include autoregressive analysis or Cepstral tech-

niques. 

Another approach is to employ the semi-analytic 

method of [8] that expresses the frequency modulation itself as a 

piecewise linear function. The total spectrum of the modulated 

output is the summation of the spectra for each piecewise-linear 

modulated part of the entire waveform. In essence this models 

the modulated waveform as a succession of linear Chirp signals, 

and thus the spectrum is the combination of the spectra for these 

chirps. In [8] it is proposed that the spectrum of the chirp signal 

is obtained using a numerical evaluation of the Fresnel equations.  

A faster estimate can be obtained using a Stationary Phase Ap-

proximation (SPA) and it also does not have any associated nu-

merical integration issues [9]. However, efforts to apply this 

technique were not successful. It resulted in an approximate 

spectrum that had a blocky appearance which was not a particu-

larly good match to the FFT based spectrum. It neither captured 

the true height of the various spectral components or the com-

plete width of the spectrum. 

Aside from the quasi-static approach for spectral ap-

proximation that is allowable under very particular conditions 

[10], the most general analytical approach is to expand the modu-

lation term of (10) using Bessel functions [10]. Rewriting (10) by 

substituting (11) and (12) 

 

 
( ) ( ) 
















π+π= ∑

∞

=1

2sin2sin
k

mkE
tkfDtfty

 (13) 

 

It can be expanded as [10] 
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An example of using (14) to produce the magnitude spectrum is 

given in Figure 2 for fc=440Hz and fm=44Hz and Vm=2. In the 

figure the reflection of the negative frequencies back into the 

positive frequency region was not carried out as these always in-

troduce spectral zeros for this particular signal case, while what 

is required is a smooth spectral envelope. It can be seen in Figure 

2 that the envelope has a number of resonant peaks that become 

wider with respect to increasing frequency. The most significant 

component is below about half the carrier frequency. Although 

the higher frequency components are smaller than the carrier the 

spectrum does not have a true lowpass shape, but rather curves 

upwards at the last resonant peak. 
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Figure 2: Magnitude spectrum of an Exponential FM signal us-

ing a Bessel Function Analysis. 

 

There are two difficulties with the Bessel function based spectral 

analysis. Firstly, given that (14) is a complicated expression in-

volving product terms, it is only possible to evaluate it numeri-

cally. This means that it cannot provide an intuitive compact ex-

pression. Secondly, the complexity of the evaluation of the equa-

tion grows exponentially with each additional sinusoidal term in 

the modulation signal. Some savings can be made by eliminating 

the evaluation of low amplitude Bessel function terms from the 

computation, and using programming optimisations to avoid the 

nested loop implementation.  

2.3. Spectral Bandwidth Evaluation 

The spectral bandwidth such that aliasing components would be 

of sufficiently low magnitude was defined to be point at which 

the spectrum was 80dB below the peak value. This was a rea-

sonably strict criteria and much stronger than Carson’s rule [10]. 

The intention was to express the Bandwidth as a function of the 

carrier frequency and the Modulation Depth.  

First, using (14) the spectra of Exponential FM signals 

were computed for different values of carrier frequency and with 

fixed values for the modulation frequency and modulation depth. 

It was found that under these conditions the spectra were simply 

translated in relation to the carrier meaning shape invariant to the 

carrier frequency. 

Next, spectra were again generated with the modulation 

frequency was expressed as a ratio of the carrier frequency from 

0.1 up to 1 for a fixed value of Modulation Depth, and the band-

width measured by an automated analysis in each case. This was 

repeated for other values of Modulation Depth. Figure 3 shows a 

plot of the results for values of Modulation Depth Vm,=1, 2 and 3. 

The Bandwidth relative to the carrier frequency is shown on the 

y-axis as a multiple of the carrier frequency. From the plot it can 

be seen that the relationship between the Modulation frequency 

and relative Bandwidth is almost linear for all values of Vm,. 

Thus, a simple linear fit can be made to characterize the relation-

ship. 
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Figure 3: Spectral Bandwidth shown as a function of the Modu-

lation frequency expressed as a ratio of the carrier frequency for 

three different values of Modulation Depth. 

 

For the three different values of Vm in the figure the coefficients 

calculated are given in Table 1 

 

Vm p0 p1 

1 2.771 4.3030 

2 5.168 6.4606 

3 9.3841 9.2485 

 

Table 1: Coefficients linear fit to data in Figure 4 for different 

values of Modulation Depth. 

 

The equation for the relative Bandwidth (to be multiplied by fc 

for the value in Hz) was  

 

 ( ) ( )cmmmc ffppVffBW 10,, +=  (15) 

 

To create a more general expression that also includes Vm on the 

right hand side of (15) the values in Table I can be examined.  It 

can be seen that as Vm increases the value for p1 increases ap-

proximately by a factor Vm. Similarly, the value for p0 increases 

by about Vm -1 to the power of 2. Incorporating this along with 

possible scaling of fc by the DC term V0, (15) gives the final ex-

pression for the -80dB bandwidth in Hertz 

 

 ( ) ( ) ( ) mm

VV

cmcdBHz fVppefffBW m ++= −
− 1101

12ln

80 2, 0  (16) 

 

where 771.201 =p  and 3030.411 =p . 

Two examples are given in Figure 4 to illustrate the validity of 
this expression. These are shown in Figure 4. In the upper panel 

the values to generate the Exponential FM signal were fc=100Hz 

and fm=250Hz, V0=1 and Vm=4. Its actual spectrum was com-

puted using a Hanning windowed FFT and is displayed using a 

dB scale. The equation in (16) was used to find the bandwidth in 

Hz. This is plotted using the dashed vertical line in the figure. It 
clearly marks a point close to -80dB in front of the primary spec-

tral region. In the lower panel the values were fc=10Hz and 

fm=40Hz, V0=0 and Vm=7. Again, the dB magnitude FFT was 

found and the bandwidth was plotted using a dashed vertical line. 

In this case it actually estimates the -80dB to be at a greater loca-

tion in frequency. However, this error is acceptable as it is an 
overestimation rather than an underestimation. 
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Figure 4: Example plots of FFT spectra of Exponential FM 

signals with the -80dB Bandwidth in Hz highlighted using 

a dashed line in both panels. Upper panel parameters 

were fc=100Hz and fm=250Hz, V0=1 and Vm=4 and for the 

lower panel were fc=10Hz and fm=40Hz, V0=0 and Vm=7. 

3. CONCLUSIONS 

This paper has presented an expression to evaluate the -80dB 

bandwidth of a cosine modulated Exponential FM signal. Exam-

ples were given to demonstrate its effectiveness. It should be a 

useful formula for low-aliasing digital implementations of Expo-

nential FM. Future work aims to produce an exact analytical ex-
pression for the spectrum of the Exponential FM signal. It will 

also investigate bandwidth criteria for cases when the modulation 

is not sinusoidal, such as for sawtooth and square waves. 
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