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Abstract  —  A new behavioral model is proposed which can 

provide similar accuracy to the memory polynomial model 
(MPM) but is shown to have a more efficient architecture for 
digital hardware implementation. These features have been 
achieved by the proposed formulation, in which the nonlinear 
weights of the memory terms are a function of only the present 
input sample. The new approach is evaluated and compared with 
the conventional MPM using a Wideband Code Division Multiple 
Access (WCDMA) signal applied to two different amplifier 
circuits.  

Index Terms — behavioral modeling; memory polynomial; 
digital predistortion; linearization; memory effects. 

I. INTRODUCTION 

Modern wireless communication industries are developing 
at a rapid pace. The increasing demand for high data rates is 
resulting in increasing bandwidths of modulation schemes 
used in telecommunication standards. Very often widened 
signal bandwidths and efficient PA architectures lead to 
inevitable memory effects which considerably degrade the 
quality of the modulation on the transmitted signal. Moreover, 
these modern standards have highly varying envelope signals 
with high peak-to-average power ratios (PAPR), even more 
than 10 dB. This large variation makes it challenging to have 
both a linear and energy efficient system. 

One main approach to overcome the aforementioned 
problems is using digital predistortion to compensate for the 
memory effects and to linearize the system. The predistorter 
can be made by inverse modeling. The model should include 
memory and nonlinearity effects [1], [2]. For this purpose, 
numerous methods have been proposed in the literature [1]-
[3]. Among them, Volterra-based models have been 
extensively used, thanks to their simplicity and good 
performance [4]. One of the most well-established classes of 
Volterra-based models is the memory polynomial model 
(MPM) [5] and those originating from it [4]. MPM has been 
extensively used as the reference model for comparison with 
new methods, because of its relatively good accuracy and 
mathematically compact form. The model can be further 
improved by including cross terms at the cost of increased 
complexity [4]. 

In this paper, a novel model is proposed by a modification 
to the MPM. With the suggested formulation, the new cross-
memory polynomial model (CMPM) partly benefits from the 
effect of cross terms in the generalized memory polynomial 
model (GMPM), although it has the same number of 
coefficients as MPM. The model will be evaluated and 
compared with MPM. The results confirm its suitable 
performance for a wide bandwidth and over a wide range of 
power levels. Optimum architectures for both MPM and 
CMPM are also proposed to reduce the floating-operation per 
second (FLOPS) [6]. Based on this architecture the CMPM is 
more efficient in FPGA implementation than the MPM. 

The paper is organized as follows. In section II, the 
approach is introduced. Section III discusses the evaluation 
results, and the conclusion is made in section IV. 

II. MODELING APPROACH 

A conventional MPM is formulated as [5] 

 ( ) ( ) ( )
1

0
( )

M

m
m

y n g x n m x n m
−

=

= − −∑  (1) 

where ( )( )kg x n m−  is the nonlinearity term, and m is the 

memory depth. This equation shows that the output is the 
weighted sum of the input samples at recent time instants. The 
weight of each sample is a nonlinear function of the same 
sample, defined by 
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where K is the nonlinearity order, and ɑkm’s are the coefficients 
which should be identified. In this paper, gm is called the 
nonlinear weight. The nonlinear function indicates the 
nonlinearity of the memory effect. 

MPM yields very good results in modeling nonlinear circuits 
with memory. Its performance can even be improved if the 
cross terms are included in the formulation [4], [6]. The 
modified model is the generalized memory polynomial, 
denoted as follows 



 

( ) ( ) ( ) ( )( )
( )

1

0
, 1 , , ( 1)

.

M

m
m

y n g x n x n x n M

x n m

−

=

= − − −

− 

∑ 

 (3) 
( ) ( ) ( )( )( )

( ) ( )

( )( )

1 1(0) (1)

1 1

1( 1)

1

, 1 , , 1

1

1

m

K Kk k
km km

k k
K kM

km
k

g x n x n x n M

a x n a x n

a x n M

− −

= =

−−

=

− − − =

+ − +

+ − −

∑ ∑

∑




 (4) 

As can be clearly seen, the number of coefficients in the 
generalized formulation has been increased. This rise leads to 
a higher computational load. 

This paper proposes a new model, which has the simplicity 
of the memory polynomial formulation, but partly benefits 
from the cross terms, like in GMPM. The idea is to use the 
magnitude of the present input sample to compute the 
nonlinear weights of the memory terms. This modification is 
originated from the fact that the system has memory, and its 
recent samples are linked together. Evaluating the validity of 
this assumption is the subject of this paper. The suggested new 
model is written as 
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The number of coefficients is the same as in MPM. It should 
be mentioned that, although only the first order of the delayed 
input is used in the formulation, the method still models 
nonlinear memory effects. That is because the weight of each 
term is still nonlinear, even though it is now a nonlinear 
function of only the current sample. 

Since the memory term is at a different time from the variable 
of the nonlinear weight for m≠0, eq. (5) has cross terms which 
endow the model with an improved characterization 
performance compared to those found in eq. (3), and which 
can compensate for the simplification of the nonlinear function 
in eq. (6). This feature is discussed in the next section. 
Moreover, the absolute input value only at the present time is 
considered for the nonlinear gain computation. Hence the 
complexity, especially for FPGA implementation, can be 
reduced and the model is more computationally and energy 
efficient although the number of the coefficients is the same as 
the memory polynomial. This gain of efficiency can be 
illustrated by referring to table I [6] and Fig. 1. In all diagrams 
of Fig. 1, the complex-complex multipliers are illustrated in 
dark gray, while the light gray circles are complex-real 
multipliers and the white circles indicate real-real multipliers. 
If a standard architecture for the FPGA implementation is used 
as in Fig. 1a, more FLOPS will be utilized than if the proposed 

architecture in Fig. 1b is used. This is mainly due to the higher 
number of complex-complex multiplications in Fig. 1a. It is 
worth mentioning that the propagation delay difference due to 
the branch in Fig. 1b connecting the input to the last multiplier 
is not a critical issue and can be compensated, if required, by 
inserting a delay block in that branch.  
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(c) 
Figure 1.  Standard architecture of MPM, b) proposed architecture for MPM 

and c) proposed architecture for CMPM.  
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If the same optimized architecture is applied in CMPM, it 
can be easily seen that a lower number of delay blocks than in 
MPM is required, while the rest of the circuit remains the same 
as for MPM, as shown in Fig. 1c. Therefore the overall FPGA 
architecture complexity has been reduced by using the CMPM.   

Like the MPM, the equations for determining the 
coefficients are linear, and common methods like Recursive 
Least Square can be used to find them. 

TABLE I.  NUMBER OF FLOPS FOR DIFFERENT OPERATIONS [6] 

Operation Number of FLOPs 

Conjugate 0 
Delay 0 

Real addition 1 
Real multiplication 1 
Complex addition 2 

Complex-real multiplication 2 
|.|2 3 

Complex – complex multiplication 6 
Square-root 6~8 

III. EVALUATION RESULTS AND DISCUSSION 

The new model is evaluated by comparing its performance 
with MPM, as well as with a memoryless model which is 
defined by M=1 in eq. (5). The model has been identified by 
applying a WCDMA single-carrier signal to the amplifier. 
Only 3000 time samples were used for the parameters 
estimation. The performance is then evaluated using a much 
longer sequence comprising about 50000 samples. The carrier 
frequency in both cases is 2.14 GHz. The recursive least 
square method is used for solving the set of linear equations to 
find the coefficients of eq. (6). The performances of the 
models are examined by testing two amplifier evaluation 
boards. 

The first device under test, referred to as Amp #1, is a 
Sirenza amplifier evaluation board, and the second one, 
hereafter indicated by Amp #2, is a Freescale amplifier. Both 
devices are tested such that their instantaneous power exceeds 
the 1 dB compression point. The test setup is illustrated in Fig 
2. It consists of an arbitrary waveform generator (AWG) and a 
vector signal analyzer (VSA), both connected to a PC. The 
baseband digital signal is generated in the PC and uploaded 
into the AWG. Then the AWG converts the signal into an RF 
time-domain waveform with a 2.14 GHz carrier frequency. 
The generated AWG output signal passes through the 
amplifier and is detected and captured by the VSA. The VSA 
converts the waveform back into the baseband digital domain 
using its internal ADCs. The digitized output is fed back to the 
PC for processing in MATLAB. Note that in these 
experimental evaluations the aim is to show the suitable 
accuracy of the model. So a PC has been used for the 
computation 

 
 
 
 
 
 
 
 
 

 

Figure 2.  Measurement set-up for modeling. 

computations and the FPGA architectures have not been 
implemented yet. 

The measurement and its corresponding modeling results for 
a single carrier WCDMA signal applied to Amp #1 are shown 
in Fig. 3. In this evaluation, CMPM and MPM have the same 
memory depth and polynomial order of 4 and 7, respectively. 
The figure illustrates the highly suitable performance of the 
proposed models although the instantaneous power level of the 
amplifier is reaching the 2 dB compression point. 

To show the consistency of the CMPM, the Amp #2 output 
has been measured and modeled. The results are shown in Fig 
4. In this case both the MPM and CMPM have the same 
memory depth and polynomial order of 3 and 9, respectively. 
The convincing performance of the CMPM is also proved in 
this evaluation which uses a WCDMA signal reaching the 2 
dB compression point. 

The assessment of the performance can be made easier with 
table II. The criteria in table II for assessment is the 
normalized mean square error (NMSE), defined by 
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Figure 3.  Modeling performances of MPM and CMPM for Amp #1 with a 

measured 1xWCDMA signal reaching the 2 dB compression point of the 
DUT. 
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Figure 4.  Modeling performances of MPM and CMPM for Freescale Amp 
#2 with a measured 1xWCDMA reaching the 2 dB compression point of the 

DUT. 

 

 

 

 

 

 

Figure 5.  Modeling performances of MPM and CMPM for Freescale Amp 
#2 with a measured 1xWCDMA reaching the 2.5 dB compression point of the 

DUT. 

TABLE II.  PERFORMANCE OF CMPM AND MPM FOR MEASURED 
WCDMA SIGNAL RECHING THE 2 DB COMPRESSION POINT 

 NMSE (dB) 

Amp #1 
ML -27.4 

MPM -38.5 
CMPM -39.1 

Amp #2 
ML -27.8 

MPM -39.1 
CMPM -39.6 

in which ˆ( )y n  and ( )y n  are the estimated and the measured 
output, respectively. 

A quantitative comparison is shown in table II where ML 
stands for the memoryless model. According to the table, the 
CMPM has a slightly better performance than MPM. Note that 
the big differences between NMSE values of both MPM and 
CMPM, and the NMSE value of the memoryless model 
indicate the existence of memory. 

The modeling capability of both MPM and CMPM have 
upper limit for high output power. This fact can be seen when 
the output power of Amp # 2 for instance is increased to reach 
the 2.5 dB operating point. Although both models in this case 
have still NMSE values higher than -39 dB, their prediction of 
adjacent channel power levels start to degrade as shown in Fig. 
5. Therefore, like any other models care has to be taken when 
working with the CMPM and MPM at power levels close to 
saturation. 

All these results confirm the reliable performance of 
CMPM, although the nonlinear weight is simplified into a 
function of only the present input sample. The model has the 
capability to model the behavior of a microwave power 
amplifier with power levels close to saturation. 

IV. CONCLUSION 

A novel formulation for modeling RF circuits is proposed. It 
is a modification to the memory polynomial with memory 
weights as a nonlinear function of the present input sample, 
implying a simpler and more energy-efficient implementation 
in FPGA. The performance of the proposed model is assessed 
using WCDMA signals on two different devices. The 
experimental results show that the method can suitably model 
nonlinear circuits with memory effects in wideband 
applications and up to high power levels close to saturation.  
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