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ABSTRACT wheref[.] is an arbitrary nonlinear function calledwaa-

. ) ) _ veshaperThe well-known classic FM synthesis equation,
This paper focuses on phaseshaping techniqueshand t ¢, instance, can be rewritten as a waveshapingesxp
relation to classical abstract synthesis methotemén- sion

tary polynomial and geometric phaseshapers, such as

those based on the modulo operation and lineasfoan cosfa,n+ Ix(n)] = 3)
mations, are investigated. They are then appliethéo cosgu.n) cos{ | x(n)] - sin(e,n) sin[1 x(n)] ,
generation of classic and novel oscillator effdxtsising

nested phaseshaping compositions. New oscillagw-al Where w. is the carrier frequency and the waveshapers
rithms introduced in this paper include single-bator cos(.) and sin(.) act on the sinusoidal modulas@nal
hard sync, triangle modulation, efficient supersamu- ~ X(N) of Equation1. _

lation, and sinusoidal waveshape modulation effekite Similarly, it is possible to describe PD as a fooi
digital waveforms produced with phaseshaping tech_waveghapmg. Th.|s IS dgmonstrgted k.)y starting with
niques are generally discontinuous, which leadalies- following expression defining a sinusoidal oscalat

ing artifacts. Aliasing can be effectively redudsdmod- y(n) = cod27m(n)). )
ifying samples around each discontinuity using pihe-

viously proposed polynomial bandlimited step fuonti ~ The functiong(n) is the normalized phase defined by

(polyBLEP) method. ¢(n) =[g(n-1)+ £,/ f.] mod1, 5)

1.INTRODUCTION wheref, is the fundamental frequenciy,is the sampling

h . ; | cal timbres has been & andx mod 1 =x —| xJ, and|.x] is the floor function
The generation of complex musical timbres has beenyenqting the largest integer that is not greatan s To

approached f_rom various angles "? sound cpmpu@rrrga implement a PD oscillator, the phase is then agptea
elegant solution, which has provided a wide scape f nonlinear functiory(x):

research and implementation, has been that ofrt@to
techniques. Within this area, various techniqueseha y(n) = coq 271 g[¢(n)]}. (6)
been put forward, such as frequency modulation (FM) . . )
[3], phase distortion (PD) [5,9], nonlinear wavesing A linear g(x) would result in a S|nu§0|d whose frequency
[1,10,14,16], and discrete summation formulae (DSF)IS transposed. However, with nonlinggx), the shape of
[11]. These are in many cases equivalent and carsée  the output waveform is modified. _
as alternative ways to describe and implement angiv ~ From a waveshaping perspective, Equation 4 can be
algorithm, as discussed in [7]. described as a sinusoidal waveshaper acting omales

In particular, the waveshaping method provides a input waveforms(n) = 2rig(n):
computationally simple means to produce potentiadliy

spectra. Its principle is quite straightforwardarsng y(n) = f[s(n)]. (7)
with a discrete-time sinusoidal signal, This transforms the phase sigrsgh) into the output
x(n) = sin(an), (1) signaly(n) by means of a waveshapéx) = cosk). The

waveshaper can be implemented as a function or as a
where o is the angular frequency amtis the discrete  lookup table that acts on the normalized value haf t
sample index, a complex (i.e., non-sinusoidal) Bpet  phase signal. The typical phase generator produging

can be obtained via a mapping such as is the unipolar modulo countggn) of Equation 5, which
y(n) = f[x(n)] 2) is also a unipolar geometric non-bandlimited sawtoo
wave.

In this vein, Equation 6 can be seen as based on a
form of double waveshaping, where two functiogé)
and cos(), are applied to an input sawtooth wag@).
This is perfectly equivalent to the principle oidirting
the phase functiog(n) of a sinusoidal oscillator.
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In this paper, the term ‘phaseshaping’ [7] is used
describe the generalization of the phase functisiod
tion g@n)]. The aim here is to investigate elementary
polynomial and geometrical phaseshapers, and tien d
cuss their application in classic and novel ostifi@lgo-
rithms.

2.ELEMENTARY PHASESHAPERS

The investigation is began by proposing two fundatale
phaseshaping concepts, entitled nested phaseshamping
phaseshaper entitiedlested phaseshaping related to
function composition, in which the result of theném
function serves as the input to the outer functiequa-
tion 8 shows an example of nesting at three lewts,
pressed in the basic form in Equation 8a and itsveq
lent shorthand notation in Equation 8b.

y(n) = f{g[h(x)]}.
y(n) = f o goh(x).

For the purposes of this paperjs assumed to be a
signal which flows from the inner function towartise
outer ones, transforming at each step into thd §hape
given by the outmost function. The graphical reprea-
tion of this composition is thus a signal block gtam,
similar to the one shown in Figure 1.

(8a)
(8b)

x(n) g f =y

Figure 1. Graphical representation of Equation 8.

It is further assumed that the source of the cisthe
unipolar modulo counteg(n) of Equation 5, and that the
rightmost block is the waveshaper producing thelfin
output signal. The blocks or functions between ¢hige
extremes are called phaseshapers, because they tut
phase signag(n) and because the input of the final wave-
shaper is essentially a phase signal as well. Hasaid
this, note that in some cases the output of thendeahe
phase signal itself instead of the product of tleesha-
per.

Phaseshaper entitiegre frequently used phaseshapers
that have fixed predefined semantics. These include

mod,[x(n)] = x(n) mod1 (9a)
mod, [x(n),m| = x(n) modm (9b)
g, [x(m] = 2x(n) -1 (9¢)
g,[x(n)] = 05x(n) + 05, (9d)

where mod is the modulo-1 operation, mgds the real-
valued modulam operation i O R), g, is the bipolar
transformation converting a unipolar signal int® kipo-
lar form, andg, its opposite unipolar transformation.

2.1 Ramp-like Fractional Period Phase Signals

Phaseshaper entitigg andg, are linear transformations,
whose general expression is given by the phaseshape

g [ X(), 2] = ax(n) + 2, , (10)

wherea; anda, are the scaling and shifting factors, re-
spectively. Assuming thaqn) is given byg(n) — which is
restricted to values between 0 and 1 — one noticashe
output ofg;, is no longer constrained to the range [0,1],
which is the expected normalized phase range oft mos
waveshaper terminals of the shaper chain.

The output ofg;, should therefore be normalized. One
way of doing this is to apply the mpghaseshaper entity
to obtain

() = mode g, [x(n). a,, (h

The effect of this normalization is seen in Figwe
which plots the output of Equation 11 using paramnet
valuesa; = 1.5 andag = 0. The sampling ratg = 44.1
kHz is used in all examples of this paper. In gxample,
the modulo operation is activated first within #entext
of mod, (producing the full-height phase cycle) and then
within the context ofy;, (producing the fractional phase
cycle). Parametes, thus controls the length of the phase
period (whena; > 1) or the slope of the phase signal
(whena; < 1). The shifting ternag contributes to the DC
offset of the produced phase signal.
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Figure 2. Ramp-like phase signal with a fractional phase

period ;= 1.5 anda, = 0). The fundamental frequency

is fo = 441 Hz, as in all plots of this section.
2.2 Triangular Fractional Period Phase Signals

The unipolar modulo counter signa(n) can be trans-
formed into a bipolar sawtooth waveform by applythg
O» phaseshaper entity of Equation 9c. Then, by fegdin
this sawtooth waveform through the absolute valuef
tion, a unipolar triangular signal [20] is obtaineshich
can be further shaped gy, and mod to get phaseshaper
i [ x(n),alo] =mod o g, ° ab&{ gb[x(n)]} . (12)
Alternatively the abs{.} term of Equation 12 can tee
placed with the piecewise linear triangular wavefor
definition

Stri (X) :{

2X, when0<x< 05

13

2-2x, when05<x<1 (13)
The fractional period phase signal producedghyis
depicted in Figure 3, which shows that becausesliyee
of the triangle wave is two times steeper than tfah

! Here the ternphase cycldés adapted to describe the segment that
takes the phase value from 0 to 1, and the ferase periodo describe
the total period of the modulo counter sigy).



sawtooth, the frequency of the phase cycle is dmlibl
The phase period af;; therefore contains two complete
periods of Equation 11 and, as expected, the |pggod
is reversed in time. Because of this symmetxy,pro-
duces less dramatic effects on the output of trepesh
chain.
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Figure 3. Triangular phase signal with a fractional phase
period &, = 1.5 andy, = 0).

2.3 Rectangular Signals

The unipolar modulo counter signg(n) can also be
shaped into a unipolar square wave by first reptathe
abs{.} term of g;; with the signum function and then
applying the unipolar transformation entiy to the re-
sult. Unfortunately, this construction does nobwallfor
variable-width duty cycles.

Variable-width pulse signals can be generated ly su
tracting two out-of-phase ramp signals from eadteot
[19], and then by offsetting the difference witle tuty
width, it is possible to obtain their unipolar repenta-
tions. The generating phaseshaper is given by

Gpuse X, W] =X(0) —X(n+ WP +w,  (14)
wherew defines the pulse width @w < 1) andP = fJf,

is the period ok(n). Since Equation 14 is linear and does
not thus introduce aliasing, it is well suited &tuations
where x(n) is a bandlimited or an antialiased signal.
However, if aliasing problems are not a concerrg th
trivial unipolar pulse waveform definition

1 when0<x<w

Spusd ) { 0, whenws<x<1 (19)
is able to produce similar results more efficiently
Although a rectangular signal is not a useful plsge
nal by itself, it may be combined with other phdmgsers
for two-segment phase sequences. For instancegxhe
pression for the variable-slope phase signal ofifeigt is
X(M{1 + gousdX(n) — 1,w]}. Another application for rec-
tangular signalsis the algebraic sawtooth shifter de-
scribed in [4].
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Figure 4. Variable-slope phase signal £ 0.5).

2.4 Tilted Triangular Fractional Period Phase Signals

Instead of subtracting two sawtooth waveforms from
each other, subtracting two out-of-phase parabedice-
forms produces a variable-slope triangle wave [18§-
ing phaseshaping techniques, this can be implerdeste

S LX), W] = ] 9, 2X(M)] - 9,2 [x(n—w)] } +b, , (16)

wherew is the duty widthar = 1/[8(w — w?)], and by =
0.5. Although Equation 16 may be used as a standalo
phase generator, it can be further generalizedhbpiag

it with a g;, and mod sequence. This results in the phase-
shaper

gvlri[x(n)lw’ al.O] =mod, © g;, © Sy [X(n)] . (7)
Figure 5 plots a fractional period phase signalegan
ed bygwi. Comparing this with Figure 3, it is noted that
the slopes of the up- and down-ramp cycles are hiedh
by the duty widthw. As expected, withv = 0.5 the slopes

become equal in magnitude, at which pai and gy
produce identical results. Therefore, Equation &M be
seen as a generalization of Equation 12.
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Figure 5. Variable-slope triangular phase signal with a
fractional phase periocy(=1.5,a, = 0,w = 0.75).

2.5 Phase Signals with Ripples

The definition of the general modulo operation @fug-
tion 9b is
x(n) modm= x(n) —m| x(n)/m|, (18)
wherem [0 R is the real-valued wrapping modulus. For
efficiency reasons, practical applications usuabym =
1, making Equation 18 equal to the fractional péot(n).
In some applications, however, it is desirable eoagate
a phaseshaper whose output is decorated with small-
amplitude ripples. This can be achieved by utiligthe
phaseshaper entity mgdwith a low fractionaim value),
asin
gripple[x(n)'m] = X(n) + moqn[x(n)'m] : (19)

An example phase signal generated by this phasesha-

per is shown in Figure 6.
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Figure 6. Phase signal with ripplesE& 0.05).



3. OSCILLATOR ALGORITHMS

This section describes the application of the eldarg
phaseshapers in classic and novel oscillator dlguos.

3.1 Waveslices

The waveforms produced by physical analog oscilato
diverge from trivial piecewise linear sawtooth, g®jland
triangle waveshapes. Although these deviationsaide
in the spectral domain, they contribute to the abearis-
tic sound of the synthesizer [15].

These nonlinear waveshapes may be approximate

with higher order polynomial or sinusoidal wavesiap
For example, Figure 7a shows an approximation ef th
Minimoog Voyager sawtooth waveform, which was gen-
erated using

y(n) = g, esin{2ng,, [¢(n), a, = 025]}.  (20)
Parameteg, is set to a value smaller than unity so that

only a portion of the entire sine wave period isluded

in the output. The spectrum of the waveform producg

Equation 20 is shown in Figure 7b. As can be sden,

abrupt transition caused by the modulo operatiog(of

introduces a questionable amount of aliasing.
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Figure 7. Approximation of the Minimoog Voyager
sawtooth waveform. (a,b) Trivial and (c,d) aliasing
suppressed implementation. The thin lines of (&) @)
plot the phase signal, while the thick lines shdwe t
waveshaper outpufy(= 1245 Hz).
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3.2 Antialiasing

The amount of aliasing can be suppressed by snmapthi
the transition in the time domain. An efficient imed to
accomplish this is the polynomial bandlimited stepc-

tion (polyBLEP) [18], which is a simplification ahe
minBLEP method originally proposed by Brandt [2].
PolyBLEP modifies the values of two samples that ar
located before and after the modulo transition \gleat-
ing a second-order correction polynomial and addieg
result to the values of the two original waveforamples.

Figures 7c and 7d show the aliasing-suppressed-wave
form and spectrum of Equation 20 after applying the
polyBLEP method. The aliasing is suppressed coreide
bly at low and middle frequencies and, althoughatte
acts are still clearly visible in the spectrum tpltheir

ffect is greatly diminished because of the properof
human hearing. The effect of transition smoothmglso
visible in the time domain as the minima of the afavm
do not reach the level of —1. Interestingly, thmeaffect
is also observable in the original analog Minimoog
Voyager waveform.

This suggests yet another phaseshaper entity fhat a
plies the polyBLEP method to its input signal, tmr
performing a soft modulo-1 operation. This antsilig
phaseshaper is denoted as

mod.[x(n),T,,h] = polyBLEP[x(n), T.,h],  (21)

whereT =1, / f5 is the phase increment of sigméh) and

h is the maximum height of the discontinuity. Thgnsof

h should be negative for falling transitions. A dieidk
explanation of the polyBLEP is out of the scopettos
paper, but interested readers may consult Referfdigje
and the source code published in the companion phge
this papef.

3.3 Oscillator Synchronization

In classic oscillator hard synchronization (haragyrhe
phase of the slave oscillator is reset each tiraarhster
oscillator finishes its cycle [2,17]. As shown iig&re 2,
modulo-based phaseshaping is capable of producing
similar effects by first utilizing the linear trasmation
phaseshapeg;, and then processing the result with the
modulo-1 phaseshaper entity modhe latter operation
synthesizes the free-running cycles of the slaedlator,
while the former generates the hardsynced tramsito
computationally efficient trivial single-oscillatohard-
sync implementation is therefore given by the pblap-
ing composition

y(n) = g, °mod, o g,, [x(n), & | =2[a,x(n) mod1]-1. (22)

The synchronization rate between the master and the
slave oscillator is modeled k&, which is given in terms
of the classic hardsync implementation as

al = 1:slave/ fmaster' (23)

wherefgaye is the slave anl,.seris the master oscillator
frequency, respectively. Figure 8 shows the wavafor
and spectrum produced by the aliasing-suppressegtesi
oscillator hardsync algorithm feg = 2.5.

2 http://www.acoustics.hut.fi/go/smc2010-phaseshaping
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Figure 8. (top) Waveform and (bottom) spectrum of the
single-oscillator hardsync algorithm in which the-p
IlyBLEP method is used to suppress aliasimg=2.5,f,

= 1245 Hz).

Instead of resetting the phase of the slave, asuill
soft synchronization (softsync) inverts the phaserd-
ment of the slave oscillator at the points of syoaira-
tion. The trivial single-oscillator softsync implemtation
utilizes the output of the phaseshapgrof Equation 12
either directly or indirectly through a triangulaavesha-
per functions;{ x}:

(24a)
(24b)

y(n) = gy © Gy [x(n), a'.l]
y(n) =g, o s, { g [x), a,]}.
Figure 9 shows the phase siggal(thin line) on top of

0.0
the resulting waveshaping operation of Equation 24b-~ _ 5|

(thick line). The phase signal does not producésgnt
in a strict sense, because the slopes of both rarmgps
inverted after the synchronization instant. Howebis
does not have a profound effect on the producelrém

1.0
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0.0
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Figure 9. Trivial single-oscillator softsync effect. The
thin line plots the phase signal, while the thidkel

wheres,yise bis the bipolar transformation of Equation 15.
Both forms produce classic PWM when Gag=w < 1.
Whena; > 1, Equation 25b produces a trivial hardsynced
square wave.

3.5 Triangle Modulation

One of the first commercial virtual analog syntkess,

the Roland JP-8000, introduced three original tzoit
effects [15]. One of these effectstigangle modulation
(see Figure 10a), which can be implemented using a
scaled bipolar triangular phase sigrgin) with a ceiling
function:

Xr(N) = amny gy [X(n): 2’_1]
y() =2 (x () =[x () - 05]),

whereary is the modulation amount in the range [0.7, 1],
and[ x| denotes the ceiling function, which returns the
smallest integer not less than Figure 10b shows both
signals of Equation 26 witary = 0.82, corresponding to
the Roland JP-8000 triangle modulation offset patam
value 64/127.

(26)

10F
_ 05 / :
a
= 00F
g (@
=05} 4
-1.0L 1 i i " 4
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Figure 10. (a) Roland JP-8000 triangle modulation and

(b) its simulation. The thin line plots the scalpdase

signalx;(n), while the thick line shows the output signal

y(n) (arm = 0.82,f, = 261.63 Hz, and JP-8000 offset

parameter = 64/127).

Higher amounts of modulation increase the slope of
the ramp and the magnitude of the v-shaped segm&ints
the maximum modulatioary = 1 the magnitude of the v-
shapes becomes 0.5. Figure 11 shows the effesi,oto
the lower half of the baseband spectrum. As casdes,

shows the result of the waveshaping acting on that the spectrum consists of odd harmonics only, thea-

phase, as in all waveform plots in the subsequesitne
ples @; = 1.25 and, = 441 Hz).

3.4 Pulse-width Modulation

Pulse-width modulation (PWM) changes the relative
durations of the high and low state segments @ctan-
gular signal, while the frequency and the amplitatithe
signal remain constant [17]. This can be achievetivb
ways:

(25a)
(25b)

y(n) = gb ° gpulsix(n)! W]
y(n) = spulseb{ mOdl ° glin [X(n)’ a:l.] }’

tial being the most prominent throughout the erpiaea-
meter range. The relative strengths of other haroson
change dynamically witlary,, producing sweeping for-
mant-like oscillator synchronization type effects.

The timbre that is produced by the maximum modula-
tion amountary = 1 can also be synthesized using the
bitwise logical modulation [6]. This is not surprig,
because the bitwise XOR operation is related tosthi-
case functions mod(.) and ceiling(.) employed h@&iee
expression for the equivalent logical triangle matian
is
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Figure 11 The effect of the modulation amous$, to
the Roland JP-8000 triangle modulation spectrum.

y(n) = Stri{ 2 gtri [X(n) ] } xor 05 (27)

3.6 Supersaw

The most well-known Roland JP-8000 oscillator efisc
supersaw which emulates a bank of seven slightly de-
tuned oscillators [15]. Previously, an algorithnt foro-
ducing the supersaw signal using the bandlimited im
pulse-train method has been proposed in [12]. Hewev
instead of utilizing seven oscillators, our supersému-
lation employs only one sinusoidal waveshaper that
driven by a slightly modifiedyiype phaseshaper:

y(n) = g, o sin{ mod . [x(n), m,] + mod,,[x(n),m,] }, (28)

where m; and m, are the ripple amounts, andn) =
gin[@N),a1] = au¢g{n). The difference between thwipge
phaseshaper of Equation 19 and that of Equatids #&
added modulo operation of the first term.

Figure 12 shows three waveforms produced by the su
persaw simulation algorithm, using three differapple
amountsmy. Sincea; < 2r, only a portion of the entire
sine wave cycle is used as a virtual analog saWwtostil-
lator. However, becauss > 1, the phase signal extends
beyond a single phase cycle — thereby introducing a
additional discontinuity to the ripple-edged wavefo
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Figure 12. Supersaw simulation. (&), = 0.75, (b)m;, =
0.5, (c)m; =0.25 f; =1.5,m, =0.88, and, = 441 Hz).

Although Equation 28 is capable of synthesizing-cha
racteristic spectrally rich supersaw timbres, thang is
still not a convincing simulation of a multi-oseaitbr set-
up. This is due to a lack of timbral variations otiene,
which is a distinctive feature of a slightly detdnescilla-
tor bank. To overcome this, a low frequency osimla
(LFO) may be connected to thg parameter of the algo-
rithm, as shown in Figure 13.

N LFO
f O/fs 1
i i a

vmy i,
v v -

1
1
A"

#n) Sripple2 sin &b »n)

Figure 13 Block diagram of the supersaw simulation
algorithm.

Figure 13 shows also that nested phaseshaping is a
practical tool that provides a modular approaclkdond
synthesis and is therefore instantly applicableyistems
such as Max, Pure Data, and Reaktor. However, some
implementations might opt for minimizing the numioér
function calls in the code. An example of thishewn in
Equation 22.

3.7 Phaseshaping for a Sinusoidal Waveshaper
3.7.1Sinusoid with a Variable-slope Ramp Phase

Figure 14a shows the output of a sinusoidal wayssha
acting on the variable-slope phase signal of Figuréhe
waveshape consists of concatenated half- and yualec
sine wave segments alternating at a frequency wtio
1:2. The spectrum contains all harmonics and decays

150 200 250 300
Time (samples)

50 100

(@)

Magnitude (dB)

-

Frequency (kHz)

e smnzanch
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Figure 14. Variable-slope phase signal applied to a
sinusoidal waveshaper. (a) Duty width= 0.50, (b) duty
widthw = 0.85 {, = 392 Hz).



fairly rapidly because the waveform has discontiesi LofF==
only in its derivatives. 05+
The phase signal of Figure 14a was generated by mul v
tiplying a ramp signal with a square waveform. By r
placing the 50% duty-width square with a variabidtiv
pulse signal, it becomes possible to alter thetivela
widths of the half- and full-cycle sine segmentsshown
in Figure 14b. As can be seen, the fundamentaléecy
component is reinforced as the width of the fuitley
segment is increased. The spectrum also shows mode: ; -
formant regions that sweep across the baseband tliken o 5 Freqt%ncy KH2) 15 20
pulse width is modulated with an LFO.

Level
[=}
o

Magnitude (dB)
5 bR
o
T
|

Figure 16. Bent sinusoidal half-cyclea{ = 0.25,w =
3.7.2Sinusoid with a Variable-slope Triangular Phase 0.2, andfy = 1245 Hz).

The variable-slope triangular phase generaigs of
Equation 17 is closely related to the phase shdtheo 4. CONCLUSIONS

previous section. However, there are two majorediff This paper investigated elementary phaseshapeishwh

ences as can be seen in Figure 15. First, appdy/sigu-  yere based on low-level entities such as modulaape
soidal waveshaper to the outputgafi produces a more  tions and linear transformations. All elementaryags
prominent formant region, whose position may be-con shapers were derived from the unipolar modulo ceunt
trolled using thea; parameter. Second, outside this for- sjgnal, which is a common building block of digital
mant region, every fourth harmonic is missing frém sound synthesis systems.

spectrum. The aliasing artifacts are also more pro- The elementary phaseshapers were then arranged into
nounced, because the symmetrical nature of theephas nested higher-level topologies to form polynomialda
shaper is reflected as the sharp peaks of the Wwaped  geometrical phaseshaper compositions. These intlude
output. fractional period, variable-width and variable-sga@mp,
triangular, rectangular, and ripple-edged phasesisap

;g , ‘ Q’ ‘ ‘ " ’ The phaseshaper compositions were finally utiliired
g 0.0 FY PV LY. LSV S classic and novel oscillator effect algorithms. Tovel
“ostl NS ) algorithms comprised single-oscillator hardsyn@anigle
oV M oV M N M modulation, efficient supersaw simulation, and soidal
0 >0 100 Ti,ﬁi‘isamp";g;’, 250 300 waveshape modulation effects.
5 7 These synthesis algorithms produce evolving spectra
= 20} U OSSO SOSNSRNN SO which can be manipulated with a continuous corgroll
E a0 FHE o g T e d device or a control rate function generator, usingpm-
% 60 fH | ; it " pact set of synthesis parameters. The algorithesnast
= g0 useful in providing animation to the otherwise ist&im-
0 5 10 15 20
Frequency (kHz) bres, and as such, respond well to secondary dontro

Figure 15 Variable-slope triangular phase signal ap- streams that carry minute articulated expressidnhe

plied to a sinusoidal waveshaper € 1.5,w = 0.75, and  Performer. _
fo = 392 Hz). Because of the modulo operation, the produced wave-

forms are generally discontinuous, leading to al@s
Decreasing the value of parameterbelow 1 bends  artifacts. However, it was found that a previouply-
the phase signal from a perfect triangie< 0.5) towards  posed polynomial bandlimited step function (polyBtE
a rising ramp shape{ = 0). Ata; = 0.5, the waveshaper s an efficient method to reduce aliasing.

output is a half-cycle sine wave, which gradualgntis The authors believe that nested phaseshapingléx-a f

towards the extreme quarter-cycle segment shown injple tool that has many practical uses in the desigd

Figure 7. In between, the spectral tilt becomes ##sep,  implementation of modular sound synthesis appheeti

thereby making it possible to control the amounhigh Furthermore, because the phase signal has a pobfoun

end spectral content, as shown in Figure 16. effect on the produced timbre, phaseshaping maytes
Lower values ofa; produce more high end content, ysed in sculpting yet-unheard sonic material.

and at the same time, the amount of aliasing ise®aBy Online sound examples and software are available at

comparing Figure 16 to Figure 7, it is noted thalyp  http://www.acoustics.hut.fi/go/smc2010-phaseshaping
BLEP provides better aliasing suppression thansthe-

soidal waveshaping in effect here. 5. ACKNOWLEDGMENTS
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