
PHASESHAPING OSCILLATOR ALGORITHMS FOR
MUSICAL SOUND SYNTHESIS

Jari Kleimola 1, Victor Lazzarini 2, Joseph Timoney2, and Vesa Välimäki1
1 Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland

2 Sound and Digital Music Technology Group, National University of Ireland, Maynooth, Ireland
jari.kleimola@tkk.fi,victor.lazzarini@nuim.ie,jtimoney@cs.nuim.ie,vesa.valimaki@tkk.fi

ABSTRACT

This paper focuses on phaseshaping techniques and their
relation to classical abstract synthesis methods. Elemen-
tary polynomial and geometric phaseshapers, such as
those based on the modulo operation and linear transfor-
mations, are investigated. They are then applied to the
generation of classic and novel oscillator effects by using
nested phaseshaping compositions. New oscillator algo-
rithms introduced in this paper include single-oscillator
hard sync, triangle modulation, efficient supersaw simu-
lation, and sinusoidal waveshape modulation effects. The
digital waveforms produced with phaseshaping tech-
niques are generally discontinuous, which leads to alias-
ing artifacts. Aliasing can be effectively reduced by mod-
ifying samples around each discontinuity using the pre-
viously proposed polynomial bandlimited step function
(polyBLEP) method.

1. INTRODUCTION

The generation of complex musical timbres has been
approached from various angles in sound computing. One
elegant solution, which has provided a wide scope for
research and implementation, has been that of distortion
techniques. Within this area, various techniques have
been put forward, such as frequency modulation (FM)
[3], phase distortion (PD) [5,9], nonlinear waveshaping
[1,10,14,16], and discrete summation formulae (DSF)
[11]. These are in many cases equivalent and can be used
as alternative ways to describe and implement a given
algorithm, as discussed in [7].

In particular, the waveshaping method provides a
computationally simple means to produce potentially rich
spectra. Its principle is quite straightforward, starting
with a discrete-time sinusoidal signal,

 ,)sin()(nnx ω= (1)

where ω is the angular frequency and n is the discrete
sample index, a complex (i.e., non-sinusoidal) spectrum
can be obtained via a mapping such as

[],)()(nxfny = (2)

where f[.] is an arbitrary nonlinear function called a wa-
veshaper. The well-known classic FM synthesis equation,
for instance, can be rewritten as a waveshaping expres-
sion

[]

[] [] ,)(sin)sin()(cos)cos(

)(cos

cc

c

nxInnxIn

nxIn

ωω
ω

−
=+ (3)

where ωc is the carrier frequency and the waveshapers
cos(.) and sin(.) act on the sinusoidal modulation signal
x(n) of Equation 1.

Similarly, it is possible to describe PD as a form of
waveshaping. This is demonstrated by starting with the
following expression defining a sinusoidal oscillator:

 [].)(2cos)(nny πφ= (4)

The function φ(n) is the normalized phase defined by

[] ,1mod/)1()(s0 ffnn +−= φφ (5)

where f0 is the fundamental frequency, fs is the sampling
rate, and x mod 1 = x – x, and x is the floor function
denoting the largest integer that is not greater than x. To
implement a PD oscillator, the phase is then applied to a
nonlinear function g(x):

 []{ }.)(2cos)(ngny φπ= (6)

A linear g(x) would result in a sinusoid whose frequency
is transposed. However, with nonlinear g(x), the shape of
the output waveform is modified.

From a waveshaping perspective, Equation 4 can be
described as a sinusoidal waveshaper acting on a complex
input waveform s(n) = 2πφ(n):

[].)()(nsfny = (7)

This transforms the phase signal s(n) into the output
signal y(n) by means of a waveshaper f(x) = cos(x). The
waveshaper can be implemented as a function or as a
lookup table that acts on the normalized value of the
phase signal. The typical phase generator producing s(n)
is the unipolar modulo counter φ(n) of Equation 5, which
is also a unipolar geometric non-bandlimited sawtooth
wave.

In this vein, Equation 6 can be seen as based on a
form of double waveshaping, where two functions, g(x)
and cos(x), are applied to an input sawtooth wave φ(n).
This is perfectly equivalent to the principle of distorting
the phase function φ(n) of a sinusoidal oscillator.

Copyright: © 2010 Kleimola, Lazzarini, Timoney, and Välimäki. This is

an open-access article distributed under the terms of the Creative

Commons Attribution License 3.0 Unported, which permits unrestricted

use, distribution, and reproduction in any medium, provided the origi-

nal authors and source are credited.

In this paper, the term ‘phaseshaping’ [7] is used to
describe the generalization of the phase function distor-
tion g[φ(n)]. The aim here is to investigate elementary
polynomial and geometrical phaseshapers, and then dis-
cuss their application in classic and novel oscillator algo-
rithms.

2. ELEMENTARY PHASESHAPERS

The investigation is began by proposing two fundamental
phaseshaping concepts, entitled nested phaseshaping and
phaseshaper entities. Nested phaseshaping is related to
function composition, in which the result of the inner
function serves as the input to the outer function. Equa-
tion 8 shows an example of nesting at three levels, ex-
pressed in the basic form in Equation 8a and its equiva-
lent shorthand notation in Equation 8b.

 []{ },)()(xhgfny = (8a)

 .)()(xhgfny oo= (8b)

For the purposes of this paper, x is assumed to be a
signal which flows from the inner function towards the
outer ones, transforming at each step into the final shape
given by the outmost function. The graphical representa-
tion of this composition is thus a signal block diagram,
similar to the one shown in Figure 1.

Figure 1. Graphical representation of Equation 8.

It is further assumed that the source of the chain is the
unipolar modulo counter φ(n) of Equation 5, and that the
rightmost block is the waveshaper producing the final
output signal. The blocks or functions between these two
extremes are called phaseshapers, because they act on the
phase signal φ(n) and because the input of the final wave-
shaper is essentially a phase signal as well. Having said
this, note that in some cases the output of the chain is the
phase signal itself instead of the product of the wavesha-
per.

Phaseshaper entities are frequently used phaseshapers
that have fixed predefined semantics. These include

 [] 1mod)()(mod1 nxnx = (9a)

 [] mnxmnxm mod)(),(mod = (9b)

 [] 1)(2)(b −= nxnxg (9c)

 [] ,5.0)(5.0)(u += nxnxg (9d)

where mod1 is the modulo-1 operation, modm is the real-
valued modulo-m operation (m ∈ R), gb is the bipolar
transformation converting a unipolar signal into its bipo-
lar form, and gu its opposite unipolar transformation.

2.1 Ramp-like Fractional Period Phase Signals

Phaseshaper entities gb and gu are linear transformations,
whose general expression is given by the phaseshaper

 [] ,)(),(010,1lin anxaanxg += (10)

where a1 and a0 are the scaling and shifting factors, re-
spectively. Assuming that x(n) is given by φ(n) – which is
restricted to values between 0 and 1 – one notices that the
output of glin is no longer constrained to the range [0,1],
which is the expected normalized phase range of most
waveshaper terminals of the shaper chain.

The output of glin should therefore be normalized. One
way of doing this is to apply the mod1 phaseshaper entity
to obtain

 [].),(mod)(0,1lin1
anxgny o= (11)

The effect of this normalization is seen in Figure 2,
which plots the output of Equation 11 using parameter
values a1 = 1.5 and a0 = 0. The sampling rate fs = 44.1
kHz is used in all examples of this paper. In this example,
the modulo operation is activated first within the context
of mod1 (producing the full-height phase cycle) and then
within the context of glin (producing the fractional phase
cycle)1. Parameter a1 thus controls the length of the phase
period (when a1 > 1) or the slope of the phase signal
(when a1 < 1). The shifting term a0 contributes to the DC
offset of the produced phase signal.

Figure 2. Ramp-like phase signal with a fractional phase
period (a1 = 1.5 and a0 = 0). The fundamental frequency
is f0 = 441 Hz, as in all plots of this section.

2.2 Triangular Fractional Period Phase Signals

The unipolar modulo counter signal φ(n) can be trans-
formed into a bipolar sawtooth waveform by applying the
gb phaseshaper entity of Equation 9c. Then, by feeding
this sawtooth waveform through the absolute value func-
tion, a unipolar triangular signal [20] is obtained, which
can be further shaped by glin and mod1 to get phaseshaper

 [] []{ } .)(absmod),(blin10,1tri nxgganxg oo= (12)

Alternatively the abs{.} term of Equation 12 can be re-
placed with the piecewise linear triangular waveform
definition





≤≤−
<≤

=
.15.0when,22

,5.00when,2
)(tri xx

xx
xs (13)

The fractional period phase signal produced by gtri is
depicted in Figure 3, which shows that because the slope
of the triangle wave is two times steeper than that of a

1 Here the term phase cycle is adapted to describe the segment that
takes the phase value from 0 to 1, and the term phase period to describe
the total period of the modulo counter signal φ(n).

sawtooth, the frequency of the phase cycle is doubled.
The phase period of gtri therefore contains two complete
periods of Equation 11 and, as expected, the latter period
is reversed in time. Because of this symmetry, gtri pro-
duces less dramatic effects on the output of the shaper
chain.

Figure 3. Triangular phase signal with a fractional phase
period (a1 = 1.5 and a0 = 0).

2.3 Rectangular Signals

The unipolar modulo counter signal φ(n) can also be
shaped into a unipolar square wave by first replacing the
abs{.} term of gtri with the signum function and then
applying the unipolar transformation entity gu to the re-
sult. Unfortunately, this construction does not allow for
variable-width duty cycles.

Variable-width pulse signals can be generated by sub-
tracting two out-of-phase ramp signals from each other
[19], and then by offsetting the difference with the duty
width, it is possible to obtain their unipolar representa-
tions. The generating phaseshaper is given by

 [] ,)()(),(pulse wwPnxnxwnxg ++−= (14)

where w defines the pulse width (0 ≤ w ≤ 1) and P = fs/f0
is the period of x(n). Since Equation 14 is linear and does
not thus introduce aliasing, it is well suited for situations
where x(n) is a bandlimited or an antialiased signal.
However, if aliasing problems are not a concern, the
trivial unipolar pulse waveform definition





≤≤
<≤

=
1when,0

0when,1
)(pulse xw

wx
xs (15)

is able to produce similar results more efficiently.
Although a rectangular signal is not a useful phase sig-

nal by itself, it may be combined with other phaseshapers
for two-segment phase sequences. For instance, the ex-
pression for the variable-slope phase signal of Figure 4 is
x(n){1 + gpulse[x(n) – 1, w]}. Another application for rec-
tangular signals is the algebraic sawtooth shifter de-
scribed in [4].

Figure 4. Variable-slope phase signal (w = 0.5).

2.4 Tilted Triangular Fractional Period Phase Signals

Instead of subtracting two sawtooth waveforms from
each other, subtracting two out-of-phase parabolic wave-
forms produces a variable-slope triangle wave [13]. Us-
ing phaseshaping techniques, this can be implemented as

 [] [] []{ } ,)()(),(T
2

b
2

bTvtri bwnxgnxgawnxs +−−= (16)

where w is the duty width, aT = 1/[8(w – w2)], and bT =
0.5. Although Equation 16 may be used as a standalone
phase generator, it can be further generalized by shaping
it with a glin and mod1 sequence. This results in the phase-
shaper

 [] [].)(mod,),(vtrilin10,1vtri nxsgawnxg oo= (17)

Figure 5 plots a fractional period phase signal generat-
ed by gvtri. Comparing this with Figure 3, it is noted that
the slopes of the up- and down-ramp cycles are weighted
by the duty width w. As expected, with w = 0.5 the slopes
become equal in magnitude, at which point gvtri and gtri
produce identical results. Therefore, Equation 17 can be
seen as a generalization of Equation 12.

Figure 5. Variable-slope triangular phase signal with a
fractional phase period (a1 = 1.5, a0 = 0, w = 0.75).

2.5 Phase Signals with Ripples

The definition of the general modulo operation of Equa-
tion 9b is

   ,/)()(mod)(mnxmnxmnx −= (18)

where m ∈ R is the real-valued wrapping modulus. For
efficiency reasons, practical applications usually set m =
1, making Equation 18 equal to the fractional part of x(n).
In some applications, however, it is desirable to generate
a phaseshaper whose output is decorated with small-
amplitude ripples. This can be achieved by utilizing the
phaseshaper entity modm (with a low fractional m value),
as in

 [] [].),(mod)(),(ripple mnxnxmnxg m+= (19)

An example phase signal generated by this phasesha-
per is shown in Figure 6.

Figure 6. Phase signal with ripples (m = 0.05).

3. OSCILLATOR ALGORITHMS

This section describes the application of the elementary
phaseshapers in classic and novel oscillator algorithms.

3.1 Waveslices

The waveforms produced by physical analog oscillators
diverge from trivial piecewise linear sawtooth, pulse, and
triangle waveshapes. Although these deviations are subtle
in the spectral domain, they contribute to the characteris-
tic sound of the synthesizer [15].

These nonlinear waveshapes may be approximated
with higher order polynomial or sinusoidal waveshapers.
For example, Figure 7a shows an approximation of the
Minimoog Voyager sawtooth waveform, which was gen-
erated using

 []{ }.25.0),(2sin)(1linb == anggny φπo (20)

Parameter a1 is set to a value smaller than unity so that
only a portion of the entire sine wave period is included
in the output. The spectrum of the waveform produced by
Equation 20 is shown in Figure 7b. As can be seen, the
abrupt transition caused by the modulo operation of φ(n)
introduces a questionable amount of aliasing.

Figure 7. Approximation of the Minimoog Voyager
sawtooth waveform. (a,b) Trivial and (c,d) aliasing-
suppressed implementation. The thin lines of (a) and (c)
plot the phase signal, while the thick lines show the
waveshaper output (f0 = 1245 Hz).

3.2 Antialiasing

The amount of aliasing can be suppressed by smoothing
the transition in the time domain. An efficient method to
accomplish this is the polynomial bandlimited step func-

tion (polyBLEP) [18], which is a simplification of the
minBLEP method originally proposed by Brandt [2].
PolyBLEP modifies the values of two samples that are
located before and after the modulo transition by evaluat-
ing a second-order correction polynomial and adding the
result to the values of the two original waveform samples.

Figures 7c and 7d show the aliasing-suppressed wave-
form and spectrum of Equation 20 after applying the
polyBLEP method. The aliasing is suppressed considera-
bly at low and middle frequencies and, although the arti-
facts are still clearly visible in the spectrum plot, their
effect is greatly diminished because of the properties of
human hearing. The effect of transition smoothing is also
visible in the time domain as the minima of the waveform
do not reach the level of –1. Interestingly, the same effect
is also observable in the original analog Minimoog
Voyager waveform.

This suggests yet another phaseshaper entity that ap-
plies the polyBLEP method to its input signal, thereby
performing a soft modulo-1 operation. This antialiasing
phaseshaper is denoted as

 [] [] ,,),(polyBLEP,),(mod sss hTnxhTnx = (21)

where Ts = f0 / fs is the phase increment of signal x(n) and
h is the maximum height of the discontinuity. The sign of
h should be negative for falling transitions. A detailed
explanation of the polyBLEP is out of the scope of this
paper, but interested readers may consult Reference [18]
and the source code published in the companion page of
this paper2.

3.3 Oscillator Synchronization

In classic oscillator hard synchronization (hardsync), the
phase of the slave oscillator is reset each time the master
oscillator finishes its cycle [2,17]. As shown in Figure 2,
modulo-based phaseshaping is capable of producing
similar effects by first utilizing the linear transformation
phaseshaper glin and then processing the result with the
modulo-1 phaseshaper entity mod1. The latter operation
synthesizes the free-running cycles of the slave oscillator,
while the former generates the hardsynced transition. A
computationally efficient trivial single-oscillator hard-
sync implementation is therefore given by the phaseshap-
ing composition

 [] [] .11mod)(2),(mod)(11lin1b −== nxaanxggny oo (22)

The synchronization rate between the master and the
slave oscillator is modeled by a1, which is given in terms
of the classic hardsync implementation as

 ,/ masterslave1 ffa = (23)

where fslave is the slave and fmaster is the master oscillator
frequency, respectively. Figure 8 shows the waveform
and spectrum produced by the aliasing-suppressed single-
oscillator hardsync algorithm for a1 = 2.5.

2 http://www.acoustics.hut.fi/go/smc2010-phaseshaping

Figure 8. (top) Waveform and (bottom) spectrum of the
single-oscillator hardsync algorithm in which the po-
lyBLEP method is used to suppress aliasing (a1 = 2.5, f0
= 1245 Hz).

Instead of resetting the phase of the slave, oscillator
soft synchronization (softsync) inverts the phase incre-
ment of the slave oscillator at the points of synchroniza-
tion. The trivial single-oscillator softsync implementation
utilizes the output of the phaseshaper gtri of Equation 12
either directly or indirectly through a triangular wavesha-
per function stri{ x}:

 []1trib),()(anxggny o= (24a)

 []{ }.),()(1tritrib anxgsgny o= (24b)

Figure 9 shows the phase signal gtri (thin line) on top of
the resulting waveshaping operation of Equation 24b
(thick line). The phase signal does not produce softsync
in a strict sense, because the slopes of both ramps are
inverted after the synchronization instant. However, this
does not have a profound effect on the produced timbre.

Figure 9. Trivial single-oscillator softsync effect. The
thin line plots the phase signal, while the thick line
shows the result of the waveshaping acting on that
phase, as in all waveform plots in the subsequent exam-
ples (a1 = 1.25 and f0 = 441 Hz).

3.4 Pulse-width Modulation

Pulse-width modulation (PWM) changes the relative
durations of the high and low state segments of a rectan-
gular signal, while the frequency and the amplitude of the
signal remain constant [17]. This can be achieved in two
ways:

 []wnxggny),()(pulseb o= (25a)

 []{ },),(mod)(1lin1bpulse, anxgsny o= (25b)

where spulse,b is the bipolar transformation of Equation 15.
Both forms produce classic PWM when 0 < a1 = w < 1.
When a1 > 1, Equation 25b produces a trivial hardsynced
square wave.

3.5 Triangle Modulation

One of the first commercial virtual analog synthesizers,
the Roland JP-8000, introduced three original oscillator
effects [15]. One of these effects is triangle modulation
(see Figure 10a), which can be implemented using a
scaled bipolar triangular phase signal xT(n) with a ceiling
function:

[]
 () ,5.0)()(2)(

1,2),()(

TT

triTMT

−−=
−=

nxnxny

nxganx (26)

where aTM is the modulation amount in the range [0.7, 1],
and x denotes the ceiling function, which returns the
smallest integer not less than x. Figure 10b shows both
signals of Equation 26 with aTM = 0.82, corresponding to
the Roland JP-8000 triangle modulation offset parameter
value 64/127.

Figure 10. (a) Roland JP-8000 triangle modulation and
(b) its simulation. The thin line plots the scaled phase
signal xT(n), while the thick line shows the output signal
y(n) (aTM = 0.82, f0 = 261.63 Hz, and JP-8000 offset
parameter = 64/127).

Higher amounts of modulation increase the slope of
the ramp and the magnitude of the v-shaped segments. At
the maximum modulation aTM = 1 the magnitude of the v-
shapes becomes 0.5. Figure 11 shows the effect of aTM to
the lower half of the baseband spectrum. As can be seen,
the spectrum consists of odd harmonics only, the 3rd par-
tial being the most prominent throughout the entire para-
meter range. The relative strengths of other harmonics
change dynamically with aTM, producing sweeping for-
mant-like oscillator synchronization type effects.

The timbre that is produced by the maximum modula-
tion amount aTM = 1 can also be synthesized using the
bitwise logical modulation [6]. This is not surprising,
because the bitwise XOR operation is related to the stair-
case functions mod(.) and ceiling(.) employed here. The
expression for the equivalent logical triangle modulation
is

Figure 11. The effect of the modulation amount aTM to
the Roland JP-8000 triangle modulation spectrum.

 []{ } .5.0xor)(2)(tritri nxgsny = (27)

3.6 Supersaw

The most well-known Roland JP-8000 oscillator effect is
supersaw, which emulates a bank of seven slightly de-
tuned oscillators [15]. Previously, an algorithm for pro-
ducing the supersaw signal using the bandlimited im-
pulse-train method has been proposed in [12]. However,
instead of utilizing seven oscillators, our supersaw simu-
lation employs only one sinusoidal waveshaper that is
driven by a slightly modified gripple phaseshaper:

 [] []{ } ,),(mod),(modsin)(21b mnxmnxgny mm += o (28)

where m1 and m2 are the ripple amounts, and x(n) =
glin[φ(n),a1] = a1φ(n). The difference between the gripple
phaseshaper of Equation 19 and that of Equation 28 is the
added modulo operation of the first term.

Figure 12 shows three waveforms produced by the su-
persaw simulation algorithm, using three different ripple
amounts m1. Since a1 < 2π, only a portion of the entire
sine wave cycle is used as a virtual analog sawtooth oscil-
lator. However, because a1 > 1, the phase signal extends
beyond a single phase cycle – thereby introducing an
additional discontinuity to the ripple-edged waveform.

Figure 12. Supersaw simulation. (a) m1 = 0.75, (b) m1 =
0.5, (c) m1 = 0.25 (a1 = 1.5, m2 = 0.88, and f0 = 441 Hz).

Although Equation 28 is capable of synthesizing cha-
racteristic spectrally rich supersaw timbres, the sound is
still not a convincing simulation of a multi-oscillator set-
up. This is due to a lack of timbral variations over time,
which is a distinctive feature of a slightly detuned oscilla-
tor bank. To overcome this, a low frequency oscillator
(LFO) may be connected to the m1 parameter of the algo-
rithm, as shown in Figure 13.

Figure 13. Block diagram of the supersaw simulation
algorithm.

Figure 13 shows also that nested phaseshaping is a
practical tool that provides a modular approach to sound
synthesis and is therefore instantly applicable in systems
such as Max, Pure Data, and Reaktor. However, some
implementations might opt for minimizing the number of
function calls in the code. An example of this is shown in
Equation 22.

3.7 Phaseshaping for a Sinusoidal Waveshaper

3.7.1 Sinusoid with a Variable-slope Ramp Phase

Figure 14a shows the output of a sinusoidal waveshaper
acting on the variable-slope phase signal of Figure 4. The
waveshape consists of concatenated half- and full-cycle
sine wave segments alternating at a frequency ratio of
1:2. The spectrum contains all harmonics and decays

Figure 14. Variable-slope phase signal applied to a
sinusoidal waveshaper. (a) Duty width w = 0.50, (b) duty
width w = 0.85 (f0 = 392 Hz).

fairly rapidly because the waveform has discontinuities
only in its derivatives.

The phase signal of Figure 14a was generated by mul-
tiplying a ramp signal with a square waveform. By re-
placing the 50% duty-width square with a variable width
pulse signal, it becomes possible to alter the relative
widths of the half- and full-cycle sine segments, as shown
in Figure 14b. As can be seen, the fundamental frequency
component is reinforced as the width of the full-cycle
segment is increased. The spectrum also shows modest
formant regions that sweep across the baseband when the
pulse width is modulated with an LFO.

3.7.2 Sinusoid with a Variable-slope Triangular Phase

The variable-slope triangular phase generator gvtri of
Equation 17 is closely related to the phase shape of the
previous section. However, there are two major differ-
ences as can be seen in Figure 15. First, applying a sinu-
soidal waveshaper to the output of gvtri produces a more
prominent formant region, whose position may be con-
trolled using the a1 parameter. Second, outside this for-
mant region, every fourth harmonic is missing from the
spectrum. The aliasing artifacts are also more pro-
nounced, because the symmetrical nature of the phase-
shaper is reflected as the sharp peaks of the waveshaped
output.

Figure 15. Variable-slope triangular phase signal ap-
plied to a sinusoidal waveshaper (a1 = 1.5, w = 0.75, and
f0 = 392 Hz).

Decreasing the value of parameter a1 below 1 bends
the phase signal from a perfect triangle (a1 = 0.5) towards
a rising ramp shape (a1 = 0). At a1 = 0.5, the waveshaper
output is a half-cycle sine wave, which gradually bends
towards the extreme quarter-cycle segment shown in
Figure 7. In between, the spectral tilt becomes less steep,
thereby making it possible to control the amount of high
end spectral content, as shown in Figure 16.

Lower values of a1 produce more high end content,
and at the same time, the amount of aliasing increases. By
comparing Figure 16 to Figure 7, it is noted that poly-
BLEP provides better aliasing suppression than the sinu-
soidal waveshaping in effect here.

Figure 16. Bent sinusoidal half-cycle (a1 = 0.25, w =
0.2, and f0 = 1245 Hz).

4. CONCLUSIONS

This paper investigated elementary phaseshapers, which
were based on low-level entities such as modulo opera-
tions and linear transformations. All elementary phase-
shapers were derived from the unipolar modulo counter
signal, which is a common building block of digital
sound synthesis systems.

The elementary phaseshapers were then arranged into
nested higher-level topologies to form polynomial and
geometrical phaseshaper compositions. These included
fractional period, variable-width and variable-slope ramp,
triangular, rectangular, and ripple-edged phaseshapers.

The phaseshaper compositions were finally utilized in
classic and novel oscillator effect algorithms. The novel
algorithms comprised single-oscillator hardsync, triangle
modulation, efficient supersaw simulation, and sinusoidal
waveshape modulation effects.

These synthesis algorithms produce evolving spectra,
which can be manipulated with a continuous controller
device or a control rate function generator, using a com-
pact set of synthesis parameters. The algorithms are most
useful in providing animation to the otherwise static tim-
bres, and as such, respond well to secondary control
streams that carry minute articulated expressions of the
performer.

Because of the modulo operation, the produced wave-
forms are generally discontinuous, leading to aliasing
artifacts. However, it was found that a previously pro-
posed polynomial bandlimited step function (polyBLEP)
is an efficient method to reduce aliasing.

The authors believe that nested phaseshaping is a flex-
ible tool that has many practical uses in the design and
implementation of modular sound synthesis applications.
Furthermore, because the phase signal has a profound
effect on the produced timbre, phaseshaping may also be
used in sculpting yet-unheard sonic material.

Online sound examples and software are available at
http://www.acoustics.hut.fi/go/smc2010-phaseshaping.

5. ACKNOWLEDGMENTS

This work has been supported by the European Union as
part of the 7th Framework Programme (SAME project,

ref. 215749) and by the Academy of Finland (project no.
122815).

6. REFERENCES

[1] D. Arfib: “Digital Synthesis of Complex Spectra by
Means of Multiplication of Nonlinear Distorted Sine
Waves,” Journal of Audio Engineering Society, Vol.
27, No. 10, pp. 757–768, 1979.

[2] E. Brandt: “Hard Sync Without Aliasing,”
Proceedings of the International Computer Music
Conference (ICMC 2001), Havana, Cuba, Sept. 17-
22, 2001.

[3] J. Chowning: “The Synthesis of Complex Audio
Spectra by Means of Frequency Modulation,”
Journal of Audio Engineering Society, Vol. 21, No.
7, pp. 526–534, 1973.

[4] B. Hutchins: “Analog Circuits for Sound
Animation,” Journal of Audio Engineering Society,
Vol. 29, No. 11, pp. 814–820, 1981.

[5] M. Ishibashi: “Electronic Musical Instrument,” U.S.
Patent 4,658,691, 1987.

[6] J. Kleimola: “Audio Synthesis by Bitwise Logical
Modulation,” Proceedings of the 11th International
Conference on Digital Audio Effects (DAFx-08), pp.
67–70, 2008.

[7] V. Lazzarini and J. Timoney: “New Perspectives on
Distortion Synthesis for Virtual Analog Oscillators,”
Computer Music Journal, Vol. 34, No. 1, pp. 28–40,
2010.

[8] V. Lazzarini, J. Timoney, and T. Lysaght:
“Nonlinear Distortion Synthesis Using the Split-
Sideband Method, with Applications to Adaptive
Signal Processing,” Journal of Audio Engineering
Society, Vol. 56, No. 9, pp. 684–695, 2008.

[9] V. Lazzarini, J. Timoney, J. Pekonen, and V.
Välimäki: “Adaptive Phase Distortion Synthesis,”
Proceedings of the 12th International Conference on
Digital Audio Effects (DAFx-09), 2009.

[10] M. Le Brun: “Digital Waveshaping Synthesis,”
Journal of Audio Engineering Society, Vol. 27, No.
4, pp. 250–266, 1979.

[11] J.A. Moorer: “The Synthesis of Complex Audio
Spectra by Means of Discrete Summation
Formulae,” Journal of Audio Engineering Society,
Vol. 24, No. 9, pp. 717–727, 1976.

[12] J. Nam, V. Välimäki, J.S. Abel, and J.O. Smith:
“Efficient Antialiasing Oscillator Algorithms Using
Low-order Fractional Delay Filters,” IEEE
Transactions on Audio, Speech, and Language
Processing, Vol. 18, No. 4, pp. 773–785, 2010.

[13] M. Puckette: The Theory and Technique of
Electronic Music, World Scientific Press, 2007.

[14] J.-C. Risset: “An Introductory Catalog of Computer-
Synthesized Sounds,” Bell Laboratories, 1969.
Published as part of The Historical CD of Digital
Sound Synthesis, Computer Music Currents 13,
Wergo WER 20332, 1995.

[15] Roland: JP-8000 Synthesizer Owner’s Manual,
Roland Corporation, 1996.

[16] R.A. Schaefer: “Electronic Musical Tone Production
by Nonlinear Waveshaping,” Journal of Audio
Engineering Society, Vol. 18, No. 4, pp. 413–417,
1970.

[17] A. Strange: Electronic Music: Systems, Techniques
and Controls, William C Brown Pub., 1983.

[18] V. Välimäki and A. Huovilainen: “Antialiasing
Oscillators in Subtractive Synthesis,” IEEE Signal
Processing Magazine, Vol. 24, No. 2, pp. 116–125,
2007.

[19] V. Välimäki and A. Huovilainen: “Oscillator and
Filter Algorithms for Virtual Analog Synthesis,”
Computer Music Journal, Vol. 30, No. 2, pp. 19–31,
2006.

[20] V. Välimäki, J. Nam, J.O. Smith, and J.S. Abel:
“Alias-Suppressed Oscillators Based on
Differentiated Polynomial Waveforms,” IEEE
Transactions on Audio, Speech, and Language
Processing, Vol. 18, No. 4, pp. 786–798, 2010.

