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The term “virtual analog” (VA) first appeared in the
1990s with the commercial introduction of digital
synthesizer instruments that were intended to
emulate the earlier analog subtractive synthesizers,
such as those produced by, among others, Moog
or Sequential Circuits (Smith 2008). In creating a
“virtual analog” digital model, two approaches are
possible: the first is to build an explicit digital model
derived from the various electrical components that
form the original analog circuit; the second is to
use digital processing structures that will produce
outputs that mimic those of the analog system. To
date, the second approach has been used for the
implementation of the elements of virtual analog
subtractive synthesizers, as real-time computational
constraints limit the efficacy of circuit models in
usable software instruments (Civolani and Fontana
2008). Among the features of a subtractive synthesis
system, one aspect that has received more attention
than others is algorithms for real-time digital
generation of the periodic waveforms associated
with voltage-controlled oscillators (VCO), such as
sawtooths, square waves, and triangle waves, also
known as the classic analog waveforms (Stilson
2006).

Although the original analog waveforms theoreti-
cally had an infinite bandwidth, the digital versions
must be bandlimited to half the sampling frequency
(Stilson 2006). If this is not the case, the audio output
can exhibit excessive aliasing distortion, which can
severely corrupt the sound quality. This distortion
is manifested as audio disturbances that include
inharmonicity, beating, and heterodyning. It can be
particularly severe when the ratio of the waveform
fundamental frequency to the sampling frequency is
not an integer, as the aliased components will then
fall in between the signal harmonics (Välimäki and
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Huovilainen 2007). Furthermore, although a crude
technique such as using oversampling with a trivial
waveform generator followed by downsampling to
the audio rate afterwards can help to ameliorate
some of the distortion (Chamberlain 1987), the
drawback is that this adds significantly to the com-
putational cost of the implementation. This then
impacts on other synthesizer features such as the
permissible degree of polyphony. Therefore, for VA
subtractive synthesizers, a key goal currently is to
develop algorithms that can generate bandlimited
digital versions of the classic periodic waveforms at
a low computational cost.

To date, a number of algorithms have been pro-
posed for the production of bandlimited digital
periodic waveforms. However, even though the
variety of approaches appears diverse (Välimäki and
Huovilainen 2007), in fact they can be unified in
that all can be shown to be connected to nonlinear
distortion synthesis (Dodge and Jerse 1985). Perhaps
one of the most important discoveries of early digital
sound synthesis, distortion-based methods domi-
nated the research landscape of computer music in
the 1970s and 1980s. A framework for these tech-
niques was developed through the pioneering work
of John Chowning on frequency modulation (FM)
synthesis (Chowning 1973); Godfrey Winham, Ken
Steiglitz, and Andy Moorer on discrete summation
formulae (DSF; Winham and Steiglitz 1970; Moorer
1976, 1977); and Daniel Arfib and Marc LeBrun
on digital waveshaping (Arfib 1978; LeBrun 1979).
These techniques were demonstrated to stem from
the same principles and to have interchangeable
interpretations. Perhaps the key aspect that made
them so interesting in the early days of computer
music was their low computational cost. A num-
ber of variants, especially of FM synthesis, were
keenly explored (e.g., Schottstaedt 1977; Palamin,
Palamin, and Ronveaux 1988; Chowning 1989). In
the 1990s, interest in these techniques diminished,
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even though some important novel methods were
still being proposed, such as that of Puckette (1995).
More recently, distortion techniques have been used
in new synthesis algorithms (Lazzarini, Timoney,
and Lysaght 2008b) and for audio effects (Lazzarini,
Timoney, and Lysaght 2007, 2008a, 2008c).

The development of research into VA oscillator
models has somewhat rekindled the interest in
techniques that can be interpreted from a nonlinear
distortion perspective. However, the literature has
so far been limited in terms of discussing these new
methods from that angle. In the following discus-
sion, we hope to address this issue and propose new
nonlinear distortion synthesis algorithms for classic
analog-waveform generation. Such signals are nor-
mally represented by the sawtooth wave (containing
all harmonics with 1/n weights, n being the har-
monic number), the square wave (all odd harmonics,
1/n), and the triangle (all odd harmonics, 1/n2).

Distortion Synthesis and Analog Waveform Models

We now present a brief survey of key methods
methods for the digital generation of the classic
periodic waveforms of subtractive synthesis. Our
aim is to show how these fall within the framework
of nonlinear distortion synthesis, demonstrating its
potential for further designs.

Lane’s Analog Model Oscillator

The technique of nonlinear waveshaping is the
basis for one of the early VA models of oscillators
(Lane et al. 1997). The algorithm is based on the
use of the modulus and absolute-value functions
followed by filtering to suppress the aliased portions
of the spectrum and correct the spectral rolloff. The
waveshaping expression is, with ω = 2π ft, given by

x(t) = f
(
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2

))
= abs

(
sin

(ω

2

))
(1)

The spectrum of such a waveshaped signal is not
bandlimited, but the most objectionable aliased
components in the vicinity of half the sampling
rate are reduced by a low-pass filter. Theoretically,
the waveshaper output will contain all components

from ω upwards, in decreasing strength, plus a
certain amount of DC energy (Lane et al. 1997):
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By using an adaptive high-pass filter, the steeper
rolloff can be corrected to yield an approximate saw-
tooth spectrum. If we generate a second sawtooth-
like wave at ω/2 and subtract it from the original
signal, then square and triangle wave approxima-
tions are obtained. This method seems to provide
an efficient algorithm for the digital generation of
subtractive synthesis oscillator waveforms, but with
some aliasing penalty.

Differentiated Parabolic Wave

Differentiated parabolic wave (DPW) synthesis
(Välimäki 2005; Välimäki and Huovilainen 2006,
2007) can be described in terms of nonlinear distor-
tion, as it is based on a parabolic waveshaping of a
non-bandlimited sawtooth wave. Similarly to the
method in the previous section, the DPW method
is also a non-bandlimited but alias-suppressed algo-
rithm. Instead of starting with a sinusoidal signal,
the function mapping here uses a complex, already
aliased input generated by a modulo counter, which
is for all practical purposes a non-bandlimited saw-
tooth wave. Following on from the waveshaping
process, a high-pass filter (a first-order difference) is
used to approximate a sawtooth shape. This method
seems to provide an efficient algorithm for VA
oscillators, but with some aliasing penalty.

Band-Limited Impulse Train and Discrete
Summation Formulae

DSF and band-limited impulse train (BLIT; Stilson
and Smith 1996) are similar techniques. In fact,
the sinc-based BLIT and the original Winham and
Steiglitz DSF pulse are effectively two ways of
expressing the same closed-form summation. Both
of these methods fall within the nonlinear distortion
framework. Moorer’s DSF algorithm in particular
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can have an interesting re-casting as a waveshaping
process (LeBrun 1979), where one of its four original
formulae,

s(t) =
∞∑

n=1

an cos(nω) = 1 − a cos(ω)
1 + a2 − 2a cos(ω)

(3)

can be reinterpreted as a cosine wave mapped by a
transfer function,

f (x) = 1 − ax
1 + a2 − 2ax

(4)

This fact demonstrates some interesting points of
connections between waveshaping and summation-
formulae methods. DSF is also strongly connected
with FM synthesis, as the latter can be seen as a
closed-form summation formula (Dodge and Jerse
1985).

Phase Distortion or Phaseshaping

The technique of phase distortion (PD), imple-
mented in the Casio CZ series of synthesizers
(Massey, Noyes, and Shklair 1987; Roads 1996),
has been somewhat ignored in the literature even
though it has been shown to be a means of digitally
generating the classic periodic waveforms of subtrac-
tive synthesis (Ishibashi 1987). Because this method
has escaped a more formal treatment, we will try
to sketch some of its main points in the following
discussion. In addition, we will propose some new
alternative approaches to its implementation.

The main technical reference for it is a patent
(Ishibashi 1987) where the basic method is described.
PD is, effectively, complex frequency or phase
modulation in disguise. Using a sinusoidal oscillator,
the output signal is produced by using a nonlinear
phase increment,

spd(t) = − cos(φpd(t)) (5)

where φpd(t) is our distorted phase increment. (Here,
we use –cos() to keep the original formulation as
per Ishibashi (1987) in line with our convention of
unipolar 2π -modulo phase.) The phase is in fact
made up of a linear increment φ(t) and a modulation

Figure 1. Phase-distortion
synthesis, original design
(solid line). A 50-harmonic
bandlimited sawtooth is
plotted as comparison
(dotted line).

function mdpd(t):

φpd(t) = φ(t) + mdpd(t) (6)

We can see in Figure 1 that the function shape is a
smooth version of a trivial sawtooth wave, and thus
it should have lower energy in its higher frequencies
with a consequent reduction in aliasing. One of the
problems is that, given the straight angles of the
modulating function, we will not be able to produce
a strictly bandlimited output, and some aliasing
may occur. In practice, by limiting the amount of
distortion, it is possible to reduce the foldover to
acceptable levels.

Another solution is, of course, to try to produce
a roughly bandlimited phase distortion, either by
polynomial or Fourier-series approximation of the
modulation function. In fact, we can see in Figure 1
that the function shape is very close to that of
a bandlimited sawtooth. Because we know how
to describe PD synthesis as complex FM (LeBrun
1977), we can use that theory to estimate the output
spectrum, which can be made, for all practical
purposes, bandlimited. We start with our basic PD
expression of Equation 5, but now, for simplicity,
we normalize it:

spd(t) = − cos(2πφpd(t)) (7)
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so that

φpd(t) = φ(t) + 0.5mdpd(t) with φ(t) = f0t (8)

Now we can define our modulating function to
be a raised, scaled, bandlimited (and phase-shifted)
sawtooth, described by

mdpd(t) = 0.5 + 0.5
MAX(N)

N∑
n=1

1
n

sin
(
2πnφ(t) − nπ

N + 1

)

(9)

where MAX(N) is a normalization factor the depends
on the number of Fourier components N used to
describe the sawtooth. Now, we can just turn to the
theory of FM synthesis (Chowning 1973) to get the
correct expansion for our bandlimited PD synthesis
(with Jn(k) standing for the Bessel function of the
first kind of order n):
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(10)

A rough measure of bandwidth is given by
Carson’s rule for FM signals (Van Der Pol 1930;
Peiper 2001). The highest significant sideband mN
will be at k+ 1, where k = π (2nMAX(N))−1, with k
rounded to the nearest integer. We can estimate that
m1 and m2 will be two at most, and the maximum
value of all other mn will be unity. Given that signal
frequencies are a sum of the carrier, which is also the
fundamental f0, and modulator frequencies mnn f0,

Figure 2. Bandlimited
phase-distortion plots,
showing the phase
modulation and PD
functions mdpd(t) and

φ pd(t), as well as the
output waveform s(t), with
the number of harmonics
in the modulation
waveform N = 10.

as indicated by Equation 10, the highest significant
component of our spectrum will then be at

fN =
[

1 + 1 + 2 +
N∑

n=1

n

]
f0 =

[
4 + N(N + 1)

2

]
f0

(11)

It is safe to assume that the highest components
will be of very little amplitude, because the value
of J1(I) in those cases will be very close to 0. So,
in fact, the bandwidth might be slightly less than
predicted by the expression above. Figures 2 and
3 show the result of this method in the time and
frequency domains.

In general, PD can be considered a special case
of FM synthesis in which the modulator function
fundamental frequency is an integral multiple of the
carrier frequency. For the sawtooth approximation,
these are the same, whereas for a square-wave
simulation, we would want the modulator frequency
to be twice that of the carrier. In that case, for
a bandlimited approach, we would model the
modulator as a triangle wave.

From a complementary angle, if we understand
PD to be a method of nonlinear phaseshaping, in
analogy to waveshaping, we can produce similar-
sounding outputs by developing a much simpler
algorithm. One way of approximating the original
“kinked” phase increment function of Figure 1 can
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Figure 3. Spectrum of a
bandlimited PD signal,
with f0 = 440 Hz and N =
24 (solid line), in
comparison to an ideal

(additive synthesis)
bandlimited sawtooth
wave (dots), with sampling
rate sr = 44.1 kHz.

be simplified by the following expression:

spd(t) = − cos(2πφnorm(t)1/k) (12)

where φnorm(t) is the normalized phase increment
(moving from 0 to 1), and the phaseshaping trans-
fer function is f (x) = x1/k. The value of k is now
our phase-distortion index and will increase the
bandwidth of the signal. This method is the PD
equivalent of polynomial-transfer-function-based
waveshaping. The plots for all the relevant mod-
ulation functions and the resulting waveform are
shown in Figure 4 for k = 5. However, unlike the
previous method, this algorithm is non-bandlimited,
but aliasing may be controlled by judicious choice of
distortion index. The value of k can be selected by
experimentally observing the maximum significant
component at various fundamental frequencies.
These can be tabulated and looked up to produce an
alias-suppressed output over a range of pitches.

Novel Approaches

As demonstrated herein, distortion synthesis meth-
ods are ubiquitous for the digital generation of the
periodic waveforms of subtractive synthesis. The
waveshaping technique in particular seems to offer
great potential for the development of efficient

Figure 4. Phase-shaping
synthesis, k = 5.

algorithms. However, it might have been somewhat
overlooked, perhaps due to the shortcomings of the
polynomial transfer function approach. The main
flaws with this method are twofold: first, the target
spectrum is only matched with a specific distortion
index; and dynamic spectral evolutions, obtained by
varying the distortion index, sound quite unnatural.

There are, however, alternatives to waveshaping
based on polynomial transfer functions. In fact, the
original approach (Risset 1969) was to heuristically
draw a function table that will approach a certain
waveshape. It is also possible, as seen in the case
of DPW, to use a non-sinusoidal input signal. Both
of these approaches, however can often lead to
problematic aliasing issues, as the output spectrum
will not always be bandlimited, as well as being
sometimes hard to predict.

In the methods discussed here, we have chosen to
concentrate on sinusoidal inputs, as this will lead to
a more easily describable output spectrum. However,
this choice means that certain waveshapes, such
as the sawtooth, are not directly achievable by
any transfer function, as they have asymmetric
half-periods. As we will demonstrate later, this is
overcome by some small modifications to the basic
waveshaping algorithm.

Of the heuristic approaches mentioned above,
there is one case of note, which is the use of a
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hard-clipping signum function defined as

sgn(x) =

⎧⎪⎨
⎪⎩

+1, x > 0
0, x = 0
−1, x < 0

(13)

This function, when used in waveshaping, pro-
duces a non-bandlimited square wave. By smoothing
the transition around the origin, it is possible to
reduce the amount of aliasing that this transfer func-
tion produces. The first of the methods proposed in
this section, based on hyperbolic tangent waveshap-
ing, explores the implications of this principle.

In addition, there are alternative approaches for
transfer function design, based on functions with
infinite polynomial expansions (Taylor’s series),
such as cos(), sin(), arccos(), arcsin(), and exp(). They
allow for the synthesis of nearly bandlimited spectra,
which is a very useful quality for VA algorithms.
FM synthesis has also been demonstrated to use
such an approach, as it can be put in terms of a
waveshaping expression using sinusoidal transfer
functions (LeBrun 1979; Lazzarini, Timoney, and
Lysaght 2008b). However, the major problem in this
case is that the resulting spectra will be weighted by
Bessel functions of the first kind. These will result in
equally unnatural spectral evolutions, comparable
to the results of polynomial waveshaping.

The exponential function, however, is an inter-
esting case. The resulting spectrum in this case
is defined in terms of modified Bessel functions
of the first kind, which produces a more natural
timbral evolution. The second method discussed
subsequently takes advantage of this fact to generate
bandlimited pulse waveforms as the basis for classic
analog waveform synthesis.

Hyperbolic Tangent Waveshaping

The use of the hyperbolic tangent function, tanh(), in
waveshaping is quite widespread, especially in non-
linear amplification modeling (Huovilainen 2005).
This method has not been previously explored for
the design of VA oscillator algorithms, however. In
this section, we present a method for generating clas-
sic analog waveshapes based on this technique. The

main advantage of using sigmoids (i.e., functions
exhibiting an “s” shape), in general—and the tanh()
function in particular—is the fact that their shape ap-
proximates the signum shape, with a smoothed tran-
sition. The hyperbolic tangent has a partial Taylor’s
series description, which can be useful for predicting
the output spectrum of waveshaping (Zucker 1965):

tanh(x) = x − x3

3
+ 2x5

1.5
− 17x7

315
+ · · ·

=
∞∑

n=1

22n(22n − 1)B2nx2n−1

(2n)!
, |x| ≤ π

2
(14)

where Bi represents the Bernoulli number i, defined
as

B2n = (−1)n+1 2(2n)!

(2π )2n

[
1 +

∞∑
m=0

1
m2n

]
(15)

If we derive this function with an input sine
wave, we will obtain the following spectrum, which
is in practice bandlimited:

tanh
(π

2
sin(ω)

)

=
∞∑

n=1

22n(22n − 1)B2n (π/2)2n−1

(2n)!
sin2n−1(ω) =

=
∞∑

n=1

22n(22n − 1)B2n (π/2)2n−1

(2n)!
×

[
2

22n−1

n−1∑
k=0

(−1)n−k−1
(

2n−1
k

)
sin([2n − 2k− 1]ω)

]
=

=
∞∑

n=1

n−1∑
k=0

(−1)n−k−1 2B2n(22n − 1)(π/2)2n−1

n(k!)(2n − k− 1)!

× sin([2n − 2k− 1]ω) (16)

where ω = 2π ft.
This will produce a signal with odd harmonics,

but with a very steep spectral rolloff (see Figure 5),
which is not what we want when we are trying to
produce a digital version of an analog square-wave
oscillator. However, if we consider that the
hyperbolic tangent approximates a signum function
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Figure 5. The hyperbolic
tangent waveshaping
spectrum (as driven by a
sine wave with amplitude
π/2 and frequency 440 Hz).

for high values of k in

tanh(kx(t)) ≈ sgn(x(t)), k >> 0 (17)

we can then drive the waveshaper with suitable
values for the distortion index k, to obtain a closer
model of the square wave. The choice of k will of
course depend on the acceptable levels of aliasing.
We have found empirically that for a driving sine
wave scaled by 0.5π , sampled at 44,100 Hz, we can
define k in terms of the fundamental frequency as

k = 12000
fo log10 f0

(18)

With this technique, the highest aliasing levels
will be kept roughly at –60 dB. In the practical ranges
of fundamental frequency values (for instance, up to
5 kHz), aliasing should be tolerable. If oversampling
is used, then we can relax this constraint on k quite
significantly. In this case, values of k producing high-
frequency components will not lead to aliasing, as
the digital baseband of the signal is higher.

This method is an efficient way to implement
a low-aliasing digital version of an analog square-
wave oscillator (see Figure 6), as we can use a table
lookup waveshaper, driven by a simple oscillator.
The computational costs are small; the only extra
component required is a second function that
can also be tabulated to normalize the output for
varying values of k. This algorithm is capable of

Figure 6. Magnitude
spectrum and waveform of
hyperbolic tangent
waveshaper square wave,
with f0 = 440 Hz. An ideal
(additive synthesis)

bandlimited square wave
is plotted in the dotted
line (spectrum and
waveform), with sampling
rate sr = 44.1 kHz.

producing dynamic spectra with smooth changes
from sinusoidal to square waveshapes.

Sawtooth from Square

In order to produce a nearly bandlimited sawtooth
output with the previous method, it is necessary to
add some means of heterodyning the waveshaper
output. This is the classic combination of nonlinear
distortion and ring modulation, which is also an
alternative formulation for FM synthesis. Here, in
order to produce a sawtooth wave, we will first
try and add the missing even harmonics and then
combine the odd and even components to generate
the output.

Generating even components from odd ones is
again another simple procedure. All we need to do
is to ring-modulate the square wave with a cosine at
the same fundamental frequency. Because we expect
the square-wave components to be in the sine phase,
we can easily predict the output of this process:

s(t) = cos(ω) square (ω)

= cos(ω)
∞∑

n=0

1
2n + 1

sin([2n + 1]ω)

= 1
2

∞∑
n=0

1
2n + 1

(sin(2nω) + sin(2[n + 1]ω)) (19)
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Figure 7. Magnitude
spectrum and waveform of
hyperbolic tangent
waveshaper sawtooth
wave, with f0 = 440 Hz. An
ideal (additive synthesis)

bandlimited sawtooth
wave is plotted in the
dotted line (spectrum and
waveform), with sampling
rate sr = 44.1 kHz.

= 1
2

[(
1 + 1

3

)
cos(2ω) +

(
1
3

+ 1
5

)
cos(4ω) + ...

]

=
∞∑

n=0

2n + 2
4n2 + 8n + 3

sin(2[n + 1]ω)

The resulting signal s(t) is itself made up of even
and odd harmonics of 2ω, twice the square wave’s
fundamental frequency, and it is not too far from a
sawtooth shape. If we add together the odd and even
components, we will have a sawtooth-like wave at
fo, defined by (excluding a normalizing factor of 0.5):

saw(t) = square (ω)(cos(ω) + 1)

=
∞∑

n=0

1
2n + 1

sin([2n + 1]ω)

+ 2n + 2
4n2 + 8n + 3

sin(2[n + 2]ω) (20)

This models the sawtooth shape relatively well
(see Figure 7). Remembering that in our notation
the expected amplitudes of the sawtooth’s even
harmonics are (2n + 2)−1, the approximation error
can be calculated by

erreven harmonics(n) = 20 log10

(
2n+2

4n2+8n+3

)
( 1

2n+2

) (21)

Figure 8. Hyperbolic
tangent waveshaper
oscillator flowchart.

The only significant difference is at the second
harmonic, where the error is 2.5 dB. From the fourth
harmonic upward, the error is less than 0.5 dB.
This is a general method that can be used with any
bandlimited square-wave input. We can therefore
insert our hyperbolic-tangent waveshaper square
into it to produce a sawtooth. In addition, we can
also define a control m, 0 ≤ m ≤ 1, that will affect
the blend of even and odd harmonics. This, together
with the waveshaping modulation index, can be
used to model the shape control customarily found
in analog oscillators (Moog 2002).

The complete expression for the algorithm
becomes

s(t) = A(k)
(
1 − m

2

)
tanh

(
πksin(ω)

2

)
[1 + m cos(ω)]

(22)
where A(k) is a scaling function used to normalize
the signal for different values of k. Smooth changes
in the shape of the wave can be achieved by varying
the value of m from 0 to 1 in Equation 22. As m
approaches 0, the expression becomes closer to
Equation 17, thus producing only odd harmonics.
The larger the value of m (within its correct range),
the more prominent even harmonics become. The
signal flowchart for this instrument is shown in
Figure 8.
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Modified FM Synthesis

Modified FM (ModFM; Timoney, Lazzarini, and
Lysaght 2008) is a technique derived from classic
FM synthesis. The main difference between the
two techniques is that its expansion is based on
modified Bessel functions, rather than the ordinary
Bessels found in the expansion of FM equations. The
relationship between the two techniques is better
explained first by manipulating the simple FM
formulation (expressed in terms of cosines rather
than sines):

sF M(t) = cos(ωc + kcos(ωm))

= cos(kcos(ωm)) cos(ωc) − sin(kcos(ωm)) sin(ωc)

= Jo(k) cos(ωc) +
∞∑

n=1

(−1)int( n
2 ) Jn(k)

× (cos(ωc − nωm) + (−1)n cos(ωc + nωm)) (23)

where Jn(k) is the Bessel function of order n, and
int(n) is the integer part of the number n. Bearing
in mind the expression above, ModFM is then
expressed as

sModF M(t) = ekcos(ωm) cos(ωc)

= Io(k) cos(ωc) +
∞∑

n=1

In(k) (cos(ωc − nωm)

+ cos(ωc + nωm)) (24)

with In(k) = i−nJn(ik), the modified Bessel function
of order n, which is a special case of that function
for purely imaginary arguments (Watson 1944).

If FM synthesis can be seen as a combination of
sinusoids ring-modulated by sinusoidal-waveshaper
signals, ModFM is then based on a sinusoid ring-
modulated by an exponential-waveshaper signal.
Other points of connection between the two ex-
pressions above are discussed in Moorer (1976) and
Palamin, Palamin, and Ronveaux (1988), where
variations on a similar algorithm are explored. The
main advantage of ModFM when applied to the pro-
duction of the waveforms of subtractive synthesis
is that, unlike FM, ModFM exhibits a smoother
and more natural-sounding spectral evolution for

Figure 9. ModFM pulse
waveforms for k = 5, 10,
50, and 100. The wider
pulses are generated with
lower values of k (the
modulation index).

time-varying modulation index values. This is in
contrast to the Bessel functions that describe the
output of classic FM synthesis, which exhibit an
oscillatory amplitude pattern as the modulation
index increases (Chowning 1973).

If we scale the basic ModFM signal output by

g(k) = e−k (25)

then the ever-increasing modified Bessel functions
are a very good choice of scaling coefficients,
producing spectra that are, for all practical purposes,
bandlimited. For high values of k and c:m = 1, the
algorithm will produce a pulse train. The equation
for the ModFM-based pulse can be written as

spulse (t) = e(kcos(ω)−k) cos(ω) (26)

The width, and therefore smoothness, of the pulse
is determined by the modulating index k, and lower
values of k will give a broader pulse shape. This is
illustrated in Figure 9 for various modulation index
values. The pulse formed with the lower modulation
index is wider.

Taking the ModFM expansion (Equation 24), the
spectrum of the pulse train defined herein is given by

spulse (t) = 2
ek

∞∑
n=1

I ′
n(k) cos (nω) (27)

where In’(k) = 0.5[In−1(k) + In+1(k)] (Watson 1944).
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Figure 10. Plot of the
scaling functions 2e−kI′n(k)
for n = 0 to 3, found in the
ModFM expression.

The spectrum of the modFM pulse has a low-
pass characteristic. This roll-off pattern suggests
that it should be possible to carefully choose
parameter values for the modulation index k in the
equation above such that the pulse train waveform
is effectively a bandlimited signal.

The rate of rolloff in the spectrum is determined
by the modulation index k and the scaled modified
Bessel functions of different orders. A plot of the
amplitudes of the scaling functions in the ModFM
pulse expansion (Equation 27) is shown in Figure 10.
Notice that these curves are free of the characteristic
wobble of classic FM Bessel functions.

Bandlimited Sawtooth Generation

If a bandlimited pulse train is available, it is
possible to generate a bandlimited sawtooth wave
by integration, following the procedure given in
Stilson (2006, p. 214). The integration can be carried
out using a one-pole filter whose z-transform is

H (z) = 1
1 − z−1 (28)

An important factor in the procedure is to remove
the mean of the pulse train so that the sawtooth will
be centered around a DC level of 0. For this effect
in real-time implementations, we chose to use the

Figure 11. Magnitude
spectrum and waveform of
ModFM sawtooth wave
(solid line), with f0 =
440 Hz, compared to an

ideal bandlimited
sawtooth wave (dotted
line), with sampling rate sr
= 44.1 kHz.

linear-phase DC blocking filter given in Yates and
Lyons (2008) after the integration stage. A plot of the
resulting signal in the time and frequency domain
is shown in Figure 11. The bandlimited-sawtooth-
generation system could thus be described by the
block diagram in Figure 12.

We must determine the best value for the modu-
lation index k such that we achieve both our goals
of bandlimited output and sawtooth approximation.
We demonstrated in the previous section that the
higher the modulation index k, the greater the mag-
nitude of the higher-frequency spectral harmonics.
However, from Equation 27, our output signal is
theoretically not bandlimited, so high values of k
could introduce aliasing. It is clear a trade-off must
be found between a sufficiently bright spectrum
that closely approximates a sawtooth and one free of
perceptible aliasing. By integrating Equation 27 with
respect to frequency, we will find an expression for
our ModFM sawtooth wave:

ssaw(t) = 2
ek (nω)

∞∑
n=1

I ′
n (k) sin (nω) (29)

We can now find a maximum value for the
modulation index at any sawtooth frequency such
that the harmonics that lie beyond half the sampling
frequency are less than a defined threshold. In
addition, due to the low-pass characteristic of the
sawtooth wave, we only need to know the magnitude
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Figure 12. The ModFM
sawtooth oscillator
flowchart.

of the first harmonic that appears above half the
sampling frequency. Using a –90 dB threshold (with
respect to the fundamental frequency f0), we can find
the best values for k using the following expression:

max
k

{
20 log10

I ′
n+1(k)(n + 1)−1

I ′
1(k)

}
≤ −90dB, n =

⌊
sr

2 f0

⌋

(30)

where sr is the sampling rate in Hz.
Using Equation 30 to compute the maximum

value of modulation index, it was found that
its value decreases exponentially with respect to
frequency, or linearly with respect to the equivalent
MIDI note number. A first-order polynomial was
fitted to the line, which then provides the expression
for the maximum modulation index

k = e−0.1513N+15.927 (31)

where N is the MIDI note value of the desired pitch
of the bandlimited sawtooth wave to be generated,
defined as

N = 12 log2 ( f /440) + 69 (32)

with f in units of Hz. The modulation index is high
for low fundamentals, but smaller than unity at the
other extreme of the range.

Generating Other Bandlimited Waveforms

Other waveforms can be produced following a
similar method, but using a bipolar pulse as the
starting point. This signal can easily be generated by
using a ModFM c:m ratio of 1:2:

sbipulse (t) = e(kcos(2ω)−k) cos(ω) (33)

The resulting bipolar bandlimited pulse wave is
shown in Figure 13. Integrating this waveform using
the first-order filter defined in Equation 28 then
produces a bandlimited square wave. The resulting
square wave is shown in Figure 14. As the method
is basically the same as for the sawtooth wave,
changes to the oscillator waveshape are controlled
by simple c:m ratio selection. The only limitation
is that continuous smooth changes are not possible.
This is because values for c:m that do not closely
approximate ratios of small integers will result in
inharmonic spectra.

In addition, if we start from a square wave,
we can also produce a sawtooth wave using the
method outlined previously in Equations 19 and
20. One advantage of such an algorithm is that the
DC-blocking requirement is effectively removed,
as the bipolar pulse in general has an insignificant
DC component. In this case, the transition between
sawtooth and square can be made simpler and linear.

Finally, by further integrating the square wave, we
will also be able to produce a triangle waveform. In
this case, we will again have to take care of removing
the signal mean, using the same DC-blocking filter
of the previous section. Other ad hoc shapes can also
be produced by the choice of various c:m ratios.
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Figure 13. ModFM bipolar
pulse, with k = 5, 10, 50,
and 100.

Figure 13

Figure 14. Magnitude
spectrum and waveform of
ModFM sawtooth wave
with f0 = 440 Hz,
compared to an ideal
bandlimited square wave
(dotted line), with

sampling rate sr =
44.1 kHz. Note the small
amount of aliasing in the
ModFM spectrum, which
is nevertheless not
objectionable.

Figure 14

Conclusion

The framework of distortion synthesis offers some
very useful methods for the implementation of
bandlimited and low-aliasing VA oscillators. We
have demonstrated here a number of techniques that,
in addition to established algorithms, provide some
interesting alternatives for the synthesis of classic
analog waveforms. Particularly, these methods are

possibly low-cost in computational terms. Another
advantage of the distortion techniques discussed
here is that they allow for tonal control without the
need for separate filtering. This makes possible the
addition of oscillator shape controls similar to the
ones found in analog synthesizers. We are confident
the novel methods introduced in this article are an
important addition to the arsenal of techniques at
the disposal of digital instrument designers.

A number of Python scripts, sound exam-
ples, and other resources are available online at
http://music.nuim.ie/synthesis and will also appear
on the 2010 Computer Music Journal DVD.
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