Subtractive Synthesis Modelling of the Irish Uilleann Pipes

ISSTC 2012

T. Ó Póil, J. Timoney, T. Lysaght, V. Lazzarini, R. Voigt

MAYNOOTH

IRISH SOUND SCIENCE AND TECHNOLOGY ASSOCIATION

Introduction

- Subtractive Synthesis of Acoustic Instruments
 - Prior to sampling, FM, Phase Distortion & Physical Modelling
 - Painstaking iteration through parameter changes
- Howard Massey 'A Synthesist's Guide to Acoustic Instruments'
 - Comprehensive, useful
 - Popular & orchestral instrument recreations
 - Still relevant Has not been rewritten yet

Introduction

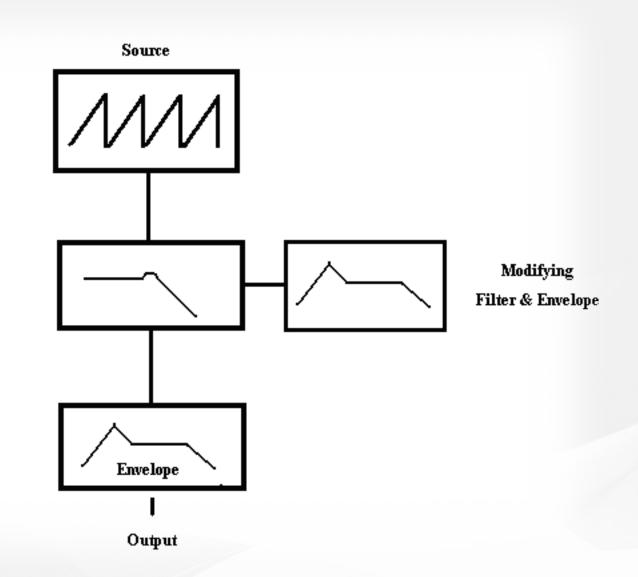
- Aims
 - Provide useful parameters to a synthesist
 - Add to previous work
- Contents
 - Description of Uilleann Pipes
 - Issues encountered in recording
 - Introduction to Subtractive Synthesis
 - Analysis Procedures/Techniques
 - Histogram plots of useful parameters

- Parts
 - Bag / Reservoir
 - Chanter
 - Drones
 - Regulators

- Bag
 - Inflated by means of a bellows
 - Bellows attached by a belt to the waist
 - Tubing from bellows to bag
- Chanter
 - Attached to the neck of the bag
 - Main melody component
 - Same tonehole arrangement as in Scottish bagpipe chanter

- Drones
 - Supply a continuous drone accompaniment
 - 3 Drones Tenor, Baritone and Bass
 - Tongued Reed
 - Tuned by means of a slide
 - Can be switched off
- Regulators
 - Somewhat like keyed chanters
 - Played with the wrist
 - No note is played until a key is pressed
 - Lie side-by-side across the player's knee
 - Chords

- Played sitting down
 - Bellows Operated by elbow of one arm
 - Bag under elbow of the other
 - Pressure adjusted by squeezing/releasing 'bag arm'
- Chanter played resting on the knee
 - Can play staccato and legato notes
 - Can be modulated by raising chanter off knee
 - Vibrato by waving fingers over toneholes and raising from knee


Recording of the Uilleann Pipes

- Procedure
 - Recorded on a standard concert set of pipes
 - Chanter tuned to D Major
 - Recorded using Logic Pro and a Shure SM58 positioned approx. 15cm in front of chanter
- Issues that arose
 - Playing notes in isolation is unusual in performance
 - Achieved by 'cutting' (playing grace note before desired note)
 - Leather valve flaps on bellows prevent air-return, but cause some noise when recording in close proximity
 - Noise gate used in recording -> Impacts analysis

Recording of the Uilleann Pipes

- Issues that arose
 - Microphone must be repositioned for each note to match the tonehole locations
 - Recording session produced only 1.5 octaves of good-quality notes
 - Further recording limited by logistics
 - Additional notes from sample CDs used to supplement the data

Subtractive Synthesis

Subtractive Synthesis

Overview

Source

- Start with sonically rich waveforms and remove elements (frequencies) until the desired sound is achieved.
 - As if 'sculpting' a sound
- Source: One or more oscillators

Modifying

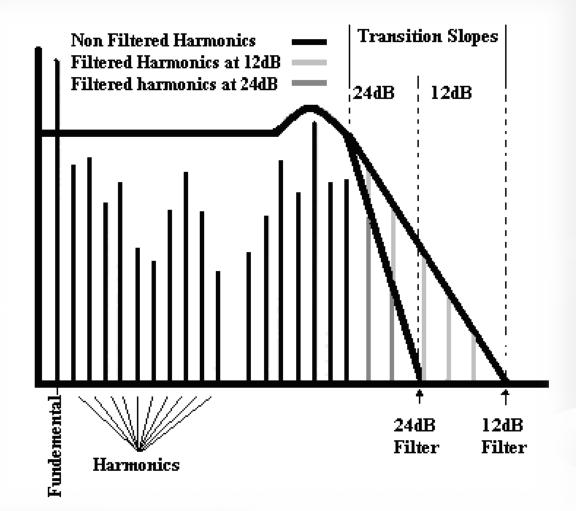
Filter & Envelope

- Filter: Often low-pass whose cutoff is dynamically varied
- Amplitude: Dynamically altered to match rise/fall of volume in acoustic instruments

Subtractive Synthesis - Oscillators

- Three main waveforms: Sawtooth, Square, Triangle
 - Easily reproduced using electronic components in early analogue synths
 - Sawtooth is richest in terms of frequency content, while Triangle has a purer sound; closer to that of a Sine wave
- Noise oscillators are also often available
 - Generates 'white noise' which can be used to add random/breathy quality to sound

Subtractive Synthesis - Filters


• Remove undesired frequencies and allow boosting of certain frequencies if required

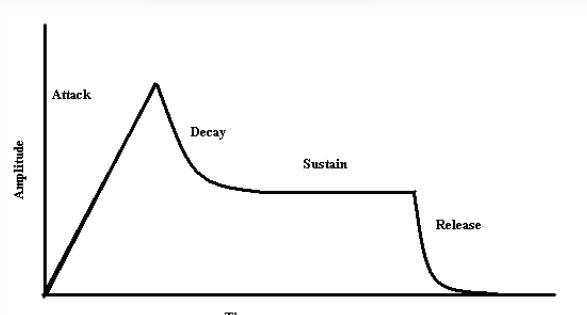
- Two typical parameters:
 - Cutoff frequency
 - The point at which the output is 3dB below unfiltered components
 - Resonance
 - A peak in frequency response around the cutoff

Subtractive Synthesis - Filters

- Lowpass is most common
 - Attenuates high frequency components above cutoff and preserves components below the cutoff
 - Fundamental component is retained
 - Dynamic timbre of acoustic instruments is closer to a moving lowpass filter than to a highpass filter
 - Highpass tends to sound more 'synthetic'
- Slope illustrates the level to which components are attenuated
 - Two common types: 12dB/Octave, 24dB/Octave
 - Bump around cutoff -> Resonance peak

Subtractive Synthesis - Filters

Subtractive Synthesis - Envelopes


- Two main ways of adding dynamic interest:
 - Change waveform volume over time
 - Move filter cutoff over time
- Volume: Amplifier Envelope
 - Begins and ends at zero
 - Envelope Max. = Max. synth output level
- Filter: Cutoff Envelope
 - Begins at user cutoff value, increases to specified max., returns to user cutoff

Subtractive Synthesis - Envelopes

- ADSR Most common type of Envelope
 - Attack:
 - Time taken for envelope to move from initial zero level to the maximum level.
 - Decay
 - How long it takes for the envelope level to drop from maximum to Sustain level.
 - Sustain
 - The relatively stable portion of the envelope before Release
 - Release
 - How quickly the level drops to zero from the Sustain level

Subtractive Synthesis - Envelopes

ADSR

Time

Parameter Extraction

 Procedures for extracting useful parameters from analysis

Parameter Extraction – Oscillators

- Determine the best combination of oscillators to use to match the basic timbre of the Uilleann Pipes sound prior to filtering.
- Assume that the same oscillators operate for the entire duration of a note.
 - Allows us to analyse any portion of the sound sample to establish the most suitable waveforms, frequencies and amplitude values.
 - Select a frame of waveform data from the Sustain portion of the sound sample
- 'Undo' the spectral shaping of the frequency components from this frame that would be the result of the filter.
 - A high-order IIR filter that can be inverted and applied to the waveform form is used.
 - This should result in the primary excitation signal of the sound.

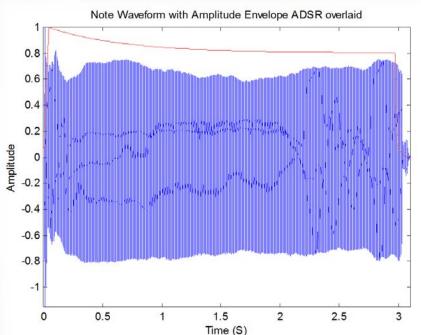
Parameter Extraction – Oscillators

- Analyse the excitation signal and determine the best combination of oscillator waveforms to use in recreating it synthetically.
- Use two oscillators and compare their spectrum to that of the excitation signal.
 - Find the best match amongst the available waveforms. This will determine the waveform for the first oscillator.
 - Remove that waveform's spectrum from the excitation spectrum.
 - The greatest remaining peak in the excitation spectrum is used to determine the most suitable waveform for the second oscillator.
 - Remove that waveform's spectrum from the excitation spectrum.

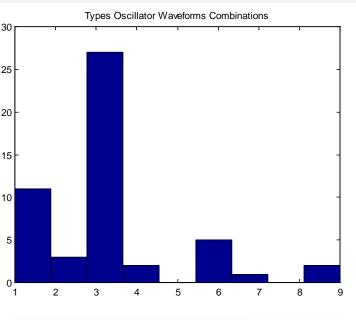
Parameter Extraction – Oscillators

- A reasonable match is achieved but a strong frequency component is missing in the synthesized note
 - This issue could be rectified with a third oscillator, if available.
- A tuneable notch/comb filter is used to remove all harmonic components from the remaining spectrum.
 - A noise oscillator can then be used to emulate noise of a similar character.

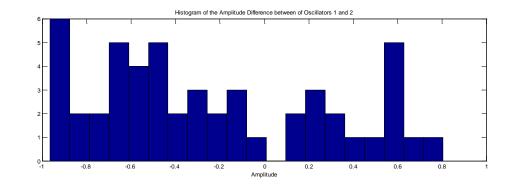
Parameter Extraction – Filters

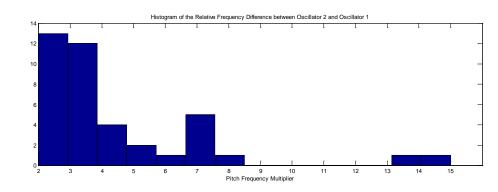

- Split the whole signal into multiple frames of approx. 100msec duration with 50msec overlap
- A low-order (4-pole) LPC spectral model is applied to each frame, normalized to align with the spectrum of the frame at DC
- Location of LPC spectrum peak -> Resonance peak of actual spectrum
 - Strength of the peak is retrieved from magnitude of pole associated with that peak
- 3dB below the 0dB point is assumed to be the filter cutoff
 Due to earlier definition of Filter Cutoff
- Cutoff values from each frame are stored for later use in the filter envelope

Parameter Extraction – Envelopes

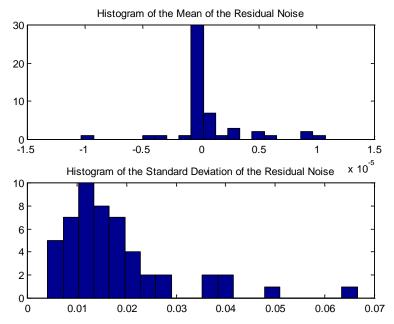

- Three time parameters and constant attack slope
- Parameters for both signal and filter cutoff envelopes are calculated using an automatic algorithm and equations:
 - **Attack:** c(k) = k/A, k = 0,...,A-1 (1)
 - **Decay:** $c(k) = \gamma_b c(k-1) + (1-\gamma_b)S, k = A, ..., A + D 1(2a)$
 - Sustain: $c(k) = \gamma_D^{k-A}(1-S) + S, k = A, ..., A + D 1$ (2b)
 - **Release:** $c(k) = \gamma_R C(k-1), \quad k = A,..., A + D + R 1$ (2*c*)

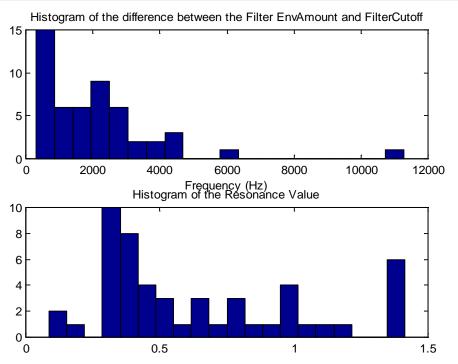
Parameter Extraction – Envelopes


- Envelope is filtered for smoothing, then differentiated.
 - Significant peaks near the changepoints (between ADSR sections) give values for A and R
 - D is obtained using: DS = L-A-R where L is the total length of the envelope.
- The sustain level is estimated as the median value of the decay portion of the envelope.
- Same algorithm used for filter envelope, but cutoff values are normalized before processing.
 - Max. value of cutoff trajectory is used to define the envelope amount.

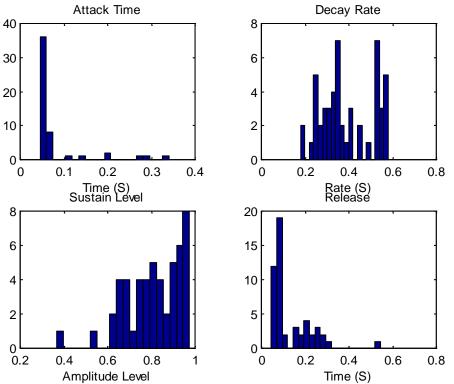


Results – Oscillators (Main)

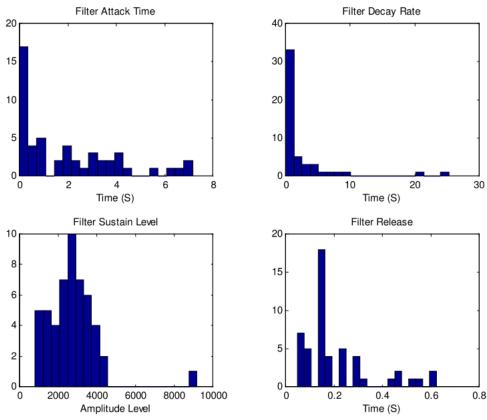

- Waveform Combinations
- (Type 1 / Type 2)
- Sawtooth/Triangle combination is most prevalent


- Relative amplitude difference
 - Osc. 2 typically 1.4 1.95 times greater amplitude than Osc. 1
- Relative frequency difference 2
 - 2-3 times Osc. 1

Results – Oscillators (Noise)


- Residual Noise Mean
 - Centered around 0
- Residual Noise Standard Deviation
 - Clustered around 0.005 0.028
- Minimal contribution to sound
 - Conclusion tempered by corruption of analysis by noise gate in recording

Results - Filters


- Frequency difference between filter envelope amount and filter cutoff
 - Between 500Hz and 4500Hz
 - Most frequent difference between 500Hz and 1000Hz
- Resonance Value
 - Peak of 0.25 on most occasions

Results – Envelopes (Amplitude)

- Attack: < 0.1s, typically ~0.05s
- Release: 0.12s or less
- Sustain: 0.65 0.95
- Decay Rate: 0.35 0.55
 - decay rate = $10^{-2/decay time}$
 - Time: 4.3 7.7s

Results – Envelopes (Filter)

- Attack: 0.25s
- Release: 0.15s
- Decay: <1s
- Sustain: 2000Hz 4000Hz

Most frequent values around 3000Hz

Conclusion

- Analysis
 - Parameters presented in histograms should be useful for synthesists interested in recreating Uilleann Pipe sounds subtractively.
- Future work Three issues
 - Finding improved ways of recording the Uilleann Pipes so that individual notes are more accurately determined.
 - A comprehensive assessment of the signal processing algorithms and synthesis model could be done to improve their performance.
 - A re-application of the aforementioned techniques could be applied to other traditional Irish instruments that have not yet been the subject of such analysis.