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This basic equation can then be used as the germ for 

a number of variations, which include, for instance, the 

addition of extra terms, waveshaping, heterodyning and 

longer feedback periods. FBAM can also be described a 

special case of a first-order recursive periodically linear 

time-variant (PLTV) filter [3], if Eq. (1) is recast as 

  (2) 

with x(n) = a(n) = cos(!0n). Regarding FBAM as a 

PLTV filter proves to be very useful for the 

understanding of the system, as well as for developing 

variants to the basic technique, as extensively discussed 

in [2]. 

In this paper, we will extend the FBAM method 

from its first-order formulation (FBAM-1) to the 

second-order form (FBAM-2) and its variants. We will 

first examine the basic attributes of a straight extension 

of Eq. (1) into second-order and the definition of a basic 

FBAM-2 algorithm. This will be followed by a study of 

some of its derivative forms and applications. 
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  (3) 

where the amplitude of an oscillator is modulated by 

both its one-sample delay and its two-sample delay.  

As with the first-order FBAM, this feedback 

expression can be expanded into an infinite sum of 

products given by 

   

(4) 
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  (5) 

we can see that a number of extra terms exist in the 

expansion. These will give rise to a narrower pulse and a 

richer spectrum with a wider bandwidth (see Fig. 1). 

As with the original FBAM-1, it is useful to regard 

FBAM-2 as a second-order PLTV filter. In this case, Eq. 

(3) becomes 

  (6) 
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with x(n) = a1(n) = a2(n) = cos(!0n). Of course, when 

developing the algorithm fully as a PLTV there will be 

no need to force the two coefficients a1(n) and a2(n) to 

be the same periodic signal or the filter input to be a 

sinusoid. 

 

Figure 1. Comparison of FBAM-1 (dots) and FBAM-2 

(continuous line) waveforms and spectra. f0 = 500 Hz. 

Finally, to complete the basic FBAM-2 algorithm, it 

is useful to include scaling parameters for the two 

feedback terms, 

  (7) 

following the form seen in [1] for the first-order case, 

where it is called the ‘theme’ on which subsequent 

‘variations’ are based. The flowchart of this basic 

FBAM-2 algorithm is shown in Fig. 2. 

 

Figure 2. Flowchart of the basic FBAM-2 algorithm. 
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variation can be transformed into a second-order 

configuration by connecting two allpass stages into a 

cascade, and furnishing the latter stage with two 

feedback terms, as in  

      

(8) 

with x(n) = a(n) = cos(!0n). The effect of the added 

allpass stage ("2 = 0) is depicted in Fig. 3, which shows 

a modest increase in bandwidth when compared to the 

original FBAM-1 form. However, increasing "2 towards 

unity will gradually widen the bandwidth, until the 

spectrum reaches the shape shown in Fig. 1 ("2 = 1). 

Other second-order FBAM-1 variants present similar 

characteristics. For example, the waveshaping variation, 

defined as  

 (9) 

and shown in Fig. 4 using a cosine waveshaper, behaves 

accordingly. 

 

Figure 3. Allpass variation, comparison of FBAM-1 

(dots) and FBAM-2 (continuous line). f0 = 500 Hz, "1 = 

1, "2 = 0. 

 

Figure 4. Waveshaping variation – using f = cos[.] 

waveshaper, comparison of FBAM-1 (dots) and 

FBAM-2 (continuous line). f0 = 500 Hz, "1 = "2 = 1. 
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   (10) 

where the two complex-conjugate filter poles have 

radius R and angle ±#. In the PLTV case, our synthesis 

equation can be written as 
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  (11) 

where x(n) = a(n) = cos(!0n) and we are able to 

implement the filter pole-angle modulation. 

Now we have three parameters to play with, the 

filter radius R, the modulation amount ", and the angle 

offset #. Various waveform shapes and spectra can be 

obtained with different values for these parameters, 

within their stability range. Fig. 5 shows the synthesis of 

a quasi-bandlimited square wave, generated by setting R 

= 0.5, " = 1 and # = 0. Higher values of R will produce 

more harmonics, but with aliasing becoming more 

prominent. 

 

Figure 5. Pole-angle modulation synthesis, with R = 

0.5, " = 1 and # = 0. 

The resonator structure also allows for classic 

frequency (or phase) modulation [5] to be implemented, 

within a narrow range of parameters. By setting R to 

close or equal to 1 and limiting " to small values 

(around 0.01), we can then use ! to denote a carrier 

frequency c in Hz:
 

   (12)
 

This combination of parameters is very unstable and 

some c:m ratios are impossible (m defined as in [5] to be 

the modulator frequency). In particular, the cases c " m 

are problematic. Some ratios of small numbers are also 

unstable: 3:2, 2:1. The FM spectrum will be present for 

the duration of the envelope of the resonator impulse 

response, which is a decaying exponential defined by 

R
n
. This allow us to generate an inharmonic attack based 

on a certain c:m ratio, which leads into an harmonic 

tone defined by the pole angle modulation synthesis 

after a certain amount of time. 

Of course, since the pole-angle modulated resonator 

is PLTV, we can use distinct signals for its input x(n) 

and modulator a(n). An interesting case arises when we 

have a sinusoidal modulator and an arbitrary 

monophonic pitched input. In this case, we will be able 

to add components to the signal, creating a distorted 

output which is reminiscent of adaptive FM (AdFM) [6] 

and Adaptive Phase Distortion synthesis [7]. An 

example is shown on Fig. 6, where a C4 flute tone is 

used as an input to a pole-angle modulated resonator. 

By setting the modulator frequency in relation to the 

input fundamental, it is possible to create harmonic or 

inharmonic spectra, depending on the modulator to input 

!!"#$%&'(")*&+",'--'.+"%*/"+&0&-$#"1#&23&1-/+"',""4#$#$%&'+"

&2"56"7$28"9856:"+;2%*/+&+("

 

Figure 6. Pole-angle modulated resonator with a C4 

flute tone as input: (a) original steady-state spectrum 

and (b) spectrum of the pole-angle modulated filter 

output. 
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and $. In this case, in order to obtain a more stable 

behaviour from the filter, we keep a fixed Q ratio, which 

ultimately means that both R and $ are modulated. To do 

that, we use Eq. (10) and the following identities: 

 and  (13) 

with Q = fc:B, where B is the –3 dB bandwidth in Hz 

and fc(n) is the time-varying centre frequency in Hz. The 

time-varying centre frequency can then be generated by 

sinusoidal modulation as 

  (14) 

where fm is the modulation frequency in Hz. Care needs 

to be taken with Q and the frequency deviation A to 

keep the filter stable and reduce aliasing. The latter can 

be set to the product Ifm, where I is a modulation index, 

as in classic FM synthesis. This set-up is much more 

stable than the basic pole-angle modulation FM and 

allows for yet another range of synthesis and processing 

effects.  

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

94



 

 

 

!" #$$%&'#(&)*+,

The Chamberlin state variable filter is a widely used 

second-order topology that enables decoupled control 

over the center frequency Fc and Q factor, Qc = 1/Q, of 

the filter [8], [9]. Applying the frequency-modulation 

variant of 3.3, we keep Qc fixed within the range 0…2, 

and modulate the center frequency of the filter using 

 .  (15) 

The lowpass output of the Chamberlin filter can then be 

written in PLTV form as 

  (16) 

with b1(n) = fc(n)
2
, a1(n) = 2 – fc(n)Qc – fc(n)

2
, and a2(n) 

= 1 – fc(n)Qc. Setting !2 close or equal to 1, Eq. (16) 

produces a formant whose bandwidth and magnitude 

can be controlled using Qc and A. Parameter !1 controls 

the center frequency of the resonance peak, as depicted 

in Fig. 7. The waveform plot shows also an initial 

transient, which damps rapidly with low Qc values, but 

stays more pronounced when Qc is increased. This is 

useful in inharmonic attack segment generation. 

 

Figure 7. Coefficient-modulated Chamberlin lowpass 

filter output, with ƒ0 = fm = 400 Hz, Fc = 100 Hz, Qc = 

1.3, A = 0.2, !1 = 0.9, and !2 = 1. 
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In this paper, we have studied some basic aspects of the 

second-order FBAM. We have presented it as a novel 

and natural extension of the first-order version of the 

synthesis method. It was demonstrated that the spectra 

of second-order FBAM variants are in general wider and 

richer than their first-order counterparts. This is a 

definite improvement on the original method, as it 

allows a more complex output without any further 

modifications to the process. Following the 

methodology of previous studies for first-order cases, 

we have looked at the technique as a form of PLTV 

filtering with a sinusoidal input and modulator.  

As a further extension of this principle, we proposed 

some new variants based on standard second-order 

filters, in particular looking at ways of modulating 

resonator parameters. This leads to novel possibilities, 

based on pole-angle and center-frequency modulation of 

second-order filters. The principles of second-order 

PLTV can be useful in the construction of interesting 

adaptive effects. 

A remaining issue, currently under investigation, 

regards the filter stability, which is more complex here 

than in the first-order cases. Although beyond the scope 

of this initial study, this forms an important research 

question that will be tackled in subsequent work. 
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