Proc. of the 15™ Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

DIGITAL AUDIO EFFECTS ON MOBILE PLATFORMS

Victor Lazzarini, Steven Yi, and Joseph Timoney

Sound and Digital Music Technology Group
National University of Ireland, Maynooth
victor.lazzarini@nuim.ie,
stevenyi@gmail.com,
joseph.timoney@nuim.ie

ABSTRACT

This paper discusses the development of digital audio effect ap-
plications in mobile platforms. It introduces the Mobile Csound
Platform (MCP) as an agile development kit for audio program-
ming in such environments. The paper starts by exploring the ba-
sic technology employed: the Csound Application Programming
Interface (API), the target systems (iOS and Android) and their
support for realtime audio. CsoundObj, the fundamental class in
the MCP toolkit is introduced and explored in some detail. This is
followed by a discussion of its implementation in Objective-C for
i0S and Java for Android. A number of application scenarios are
explored and the paper concludes with a general discussion of the
technology and its potential impact for audio effects development.

1. INTRODUCTION

Lately, substantial interest has been directed at the possibilities of-
fered by mobile platforms, such as the ones running iOS (iPod
Touch, iPhone and iPad) and Android (mobile phone and tablets
from various vendors) operating systems. One of the major fea-
tures of these systems is the potential for media applications, in
which digital audio effects have an important part to play. In such
a scenario, one key aspect for programmers is the presence of a
number of rapid development tools. These facilitate the task of
creating applications for a variety of uses.

In this paper, we would like to introduce a software develop-
ment kit that allows for rapid development of audio applications on
mobile systems, the Mobile Csound Platform (MCP). It allows the
application of a mature sound processing technology, the Csound
language and engine, to a variety of ends. This paper is organised
as follows: we will first discuss the technology on which MCP is
based and its target platforms. Following this we will discuss the
detail of the iOS and Android implementations, with examples for
each platform. The paper concludes with an overview of applica-
tions and a discussion of the technologies employed.

2. TECHNOLOGY INFRASTRUCTURE

In this section, we discuss the technology infrastructure on which
MCP is build: Csound and its target systems (i0S, Android). The
computing devices used in these platforms is quite varied, but they
have some commonalities, and they have been in constant im-
provement. Most of the devices will be based on the ARM proces-
sor, of various versions. Earlier Android phones and tablets will
have used the ARM v.5, which does not include a floating-point

coprocessor. On these, audio processing applications will have a
weak performance. However, newer models have excellent com-
puting capabilities, including multiple cores and fast clock rates.

2.1. Csound

Csound is a a mature computer music language based on the MU-
SIC N paradigm [1], which was developed originally at MIT by
Barry Vercoe and then expanded as part of a community project,
managed by John ffitch, with a number of collaborators. Csound
5 [2], released in 2006, was a major re-engineering of the soft-
ware, which became a programming library with an application
programming interface (API). This allowed embedding and inte-
gration of the system with a variety of applications. Csound can
interface with a variety of programming languages and environ-
ments (C/C++, Objective C, Python, Java, Lua, Pure Data, Lisp,
etc.). Full control of Csound compilation and performance is pro-
vided by the API, as well software bus access to its control and
audio signals, and hooks into various aspects of its internal data
representation. Composition systems, signal processing applica-
tions and various frontends have been developed to take advantage
of these features. The Csound API has been described in a number
of articles [3]], [4] [5]].

The employment of Csound in mobile audio applications is
a natural extension of its use cases. In fact, Csound has already
been present as the sound engine for one of the pioneer portable
systems, the XO-based computer used in the One Laptop per Child
(OLPC) project [6]. The possibilities allowed by the re-engineered
Csound were partially exploited in this system. Its development
sparked the ideas for a Ubiquitous Csound, which is now steadily
coming to fruition with MCP.

Csound 5 is composed of its main C-based API (which pro-
vides access to libcsound) and an auxiliary "interfaces’ library (libc-
snd), which has a C++ APL It has a single dependency on the lib-
sndfile library, which either must be present on the target system
or needs to supplied alongside Csound. On iOS, both Csound and
libsndfile are built as static libraries that are linked against by the
main application, and the interfaces library is not used. On An-
droid, Csound and libcsnd are built into a single dynamic library,
which is statically linked against libsndfile.

Since the first release of Csound 5, the bulk of its unit gen-
erators (opcodes) has been provided in dynamic libraries, loaded
at the orchestra compilation stage.To facilitate the development of
MCP, all modules without any dependencies or licensing issues
were moved to the main Csound library. This was a major change
(in Csound 5.15), which made the majority of opcodes part of the

DAFX-1

mailto:victor.lazzarini@nuim.ie
mailto:stevenyi@gmail.com
mailto:joseph.timoney@nuim.ie

Proc. of the 15™ Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

base system, about 1,500 of them, with the remaining 400 or so
being left in plugin modules. The present release of MCP includes
only the internal opcodes.

2.2. Audio and MIDI on iOS

The audio subsystem on iOS offers developers a subset of the orig-
inal CoreAudio framework, which is shipped with Apple’s desktop
operating system, OSX. In that, it does not allow the simple port-
ing of desktop audio applications, as some of the underlying code
might not be supported. In particular, the HAL (Hardware Audio
Layer) of CoreAudio is not present, but a wrapper, in the form of
an AudioUnit, AuHAL, is used instead. In general, OSX applica-
tions using the AuHAL AudioUnit could be easily ported to i0S,
as far as the audio code is concerned. While in general applica-
tions are written in Objective-C, CoreAudio can be also accessed
via C-language code, which can be called directly by an Objective-
C class.

The AuHAL API does not allow the direct setting of audio
buffer sizes. Instead, it will take hints regarding the desired size,
but this is not guaranteed to be provided. In this case, the latency is
effectively fixed by the system, and software clients are not offered
the option of modifying it. On iOS 5, under an iPhone 3G and iPad
1, buffer size was determined to be 512 frames, which at 44100
samples/sec, provides about 11.6 ms of latency. While this does
not qualify by any means as low-latency, it allows for a number of
audio processing applications.

The latest versions of iOS also include support for MIDI via
the CoreMidi framework, which includes most of the features found
in its OSX version. While MIDI hardware is not provided on the
devices, on the iPad, there is the option of USB MIDI devices, via
an adaptor to its connector port, in addition to network MIDI com-
munications. In general, iOS provides a good infrastructure for
audio development and it has been the main target for sound/me-
dia software vendors.

Deployment of iOS applications, however, is not straightfor-
ward. While it is possible to upload applications to devices con-
nected to a development computer running OSX (with a devel-
oper’s license), for a more wide distribution of applications, the
only form is via the Apple Store. This imposes a number of re-
strictions. For instance, the approval status by Apple of some
open-source licenses is not very clear. Applications need to go
through a vetting process, which can be long. So while the de-
velopment can be classed as rapid, deployment is nothing of the
kind.

2.3. Audio on Android

Android is an open-source operating system based on the Linux
kernel. Its software development kit (SDK) is based on the Java
language, although it does not support the original Java Runtime
Environment. Instead, Android provides its own implementation,
which runs on the Dalvik Virtual Machine. In addition to the SDK,
the system also supports a native development kit (NDK), which
allows code written in C or C++ to be built into dynamic libraries.
This code can then be accessed by applications via the Java Native
Interface (JNI), which supports the loading of dynamic modules.
Audio on Android has been in constant development since the
first versions of the system. Prior to Android-9 (version 2.3.1),
the option for streaming audio input and output was provided by
a Java-based API, AudioTrack. Processing code could be writ-
ten in pure Java or as C/C++ libraries (as discussed above). From

Android-9 onwards, the system offers programmers a NDK alter-
native, based on the OpenSL ES standard of Khronos Computing.
Audio applications can access the audio device directly using C-
language code, outside the virtual machine (and its garbage collec-
tor), which, from the computing side, is optimal. In that case, the
application code in Java can then be left to control tasks and the
whole of the audio code can be placed in native module.

The ‘elephant in the room’ of audio development on Android
is its lack of support for reasonable latencies. At the moment, this
appears to be device dependent, but ranging from 200ms at the
shortest to over 500ms. Regardless of the API (AudioTrack or
OpenSL), the observed latency is the very same. This is in fact de-
termined by the common underlying audio library, AudioFlinger.
Since Android does not include a full client-side Alsa library (liba-
sound), it is not possible to employ any of the well-known methods
developed for GNU/Linux operating systems. It is hoped that this
situation will be resolved in the near future.

On the bright side, Android is a much more open system than
i0S, and is supported widely. Deployment of applications is very
much simplified: an apk package (the Android application format)
can be downloaded and installed directly from a given URL. De-
velopment tools for all major OSs are available, so programmers
are not tied down to a particular system or even to a particular in-
tegrated development environment (IDE). With the latency issue
solved, Android will be potentially a primary platform for open-
source audio applications.

3. THE MCP TOOLKIT

3.1. CsoundObj

At the heart of the MCP toolkit is based on the CsoundObj class
(with its different Objective-C and Java incarnations). This is re-
sponsible for encapsulating the Csound API calls and incorporat-
ing a control-data mechanism for passing values from the applica-
tion to Csound, as well as other out-of-the-box solutions for com-
mon tasks (such as routing audio from Csound to hardware out-
put). Figure 1 shows how CsoundObj, Csound and the application
are integrated in MCP.

\V4

Figure 1: CsoundObj and the Application

DAFX-2

Proc. of the 15™ Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

The essential elements of the CsoundObj class are defined (in
pseudocode) as:

class CsoundObj{

// the csound instance
Csound csound;

// ValueCacheable list
List<CsoundValueCacheable> valuesCache;
// CompletionListener list
List<CsoundCompletionListener>

completionListener;

public:
CsoundObj(); // constructor
Csound getCsound(); // get Csound instance

// ValueCacheable 1list manipulation

addValueCacheable (CsoundValueCacheable
valueCacheble) ;

removeValueCacheable (CsoundValueCacheable
valueCacheble) ;

// Completion Listener list manipulation

addCompletionListener (
CsoundCompletionListener
completionListener);

// interface components
CsoundValueCacheable
addSlider (Slider slider,
CsoundValueCacheable
addButton (Button button, String channel);
// other supported UI components

String channel);

// hardware
CsoundValueCacheable enableAccelerometer();
// other supported HW components

// Score interface for RT events
sendScore (String score);

// csound attributes
getNumChannels () ;
getKsmps () ;

// Performance control
startCsound (File csdfile);
stopCsound () ;
muteCsound () ;
unmuteCsound () ;

}

CsoundObj contains a Csound instance and two lists, of Csound-
ValueCacheable and CsoundCompletionListener objects. The for-
mer encapsulates the synthesis engine, while the latter are respon-
sible for the communication between the device controls and Csound.
For each interface component, a CsoundValueCacheable acts as
an intermediary to update values from and to Csound, working at
block boundaries to enable atomic operations:

class CsoundValueCacheable {
public:

setup (CsoundObj csoundObj) ;
updateValuesToCsound () ;
updateValuesFromCsound() ;
cleanup () ;

}

It employs the Csound software bus through named channels.
For instance, when adding a UI element to the application, a bus

channel is defined and this can be used in Csound to retrieve the
data:

kvar chnget "channel_name"

Methods for manipulating the data members of CsoundObyj are
provided: for adding UI components, HW controls, starting/stop-
ping the engine, sending events to it, etc.. While the CsoundObj
API covers most of the general use cases for Csound, it does not
wrap the Csound C API in its entirety. Instead, the decision was
made to handle the most common use cases from Objective-C or
Java, and for less used functions, allow retrieval of the Csound
object. This is exposed so that developers can use methods not di-
rectly available in that class. It is expected that as more developers
use CsoundObyj, this class might continue to further wrap C API
functions as they are identified as being commonly used.

Some small implementation differences remain, as the SDK
and hardware devices are different, but the overall principles out-
lined above are present in both iOS and Android. Applications
using CsoundObj should benefit from a certain amount of porta-
bility from one platform to another.

3.2. Csound for iOS

The Csound for iOS platform is based on a static libcsound.a and
the CsoundObj class implementation in Objective-C, as well as
the dependency libsndfile.a. The Objective-C class has all the at-
tributes and methods presented above, plus some extra support for
gyroscope and attitude. The class is derived from the base class
NSObject and the Csound object is actually wrapped in a C struc-
ture (csdata), which is used to facilitate the interface between the
C-language CoreAudio and the application code:

@interface CsoundObj NSObject {
csdata mCsData; // Csound data
NSMutableArrayx valuesCache;
NSMutableArray* completionListeners;
BOOL mMidiInEnabled; // app midi
CMMotionManager* mMotionManager;
NSURL xoutputURL; // audio outfile
SEL mMessageCallback; // console msgs
id mMessageListener;

In addition to the basic startCsound() method as described
above, we have an alternative method to record its output to a file
(given by a URL), which can also be enabled after Csound starts
by another method:

—(void) startCsound: (NSStringx)csdFilePath;

—(void) startCsound: (NSString x)csdFilePath
recordToURL: (NSURL «)outputURL;

—(void) recordToURL: (NSURL «*)outputURL;

As mentioned before, audio implementation uses CoreAudio,
which is a callback-based API. Csound’s performKsmps() func-
tion, which processes one block of audio, is called inside the Core-
Audio callback to consume and fill the input and output buffers,
respectively. Control values held by CsoundValueCacheable() are
passed to and updated by Csound at audio block boundaries in the
callback processing loop.

MIDI is implemented at two levels: using the MIDI 10 setup
functions of the Csound API (in C); and at application-level, inte-
grated to UI widgets (in Objective-C). This allows developers to
use all the standard MIDI functionality (via the Csound opcodes)
and/or apply MIDI to the controls, which will indirectly be con-
nected to Csound synthesis code.

DAFX-3

Proc. of the 15™ Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

A simple example of how to setup and start Csound a perfor-
mance on i0S is shown below. Here csound is a CsoundObj ob-
ject, which gets constructed and added a slider linked to a channel
("slider"). It is then started by passing it a file containing Csound
code:

NSString xtempFile =
[[NSBundle mainBundle]
pathForResource:@"test"
ofType:@"csd"];
self.csound = [[CsoundObj alloc] init];
[self.csound addCompletionListener:self];
[self.csound addSlider:mSlider
forChannelName:@"slider"];
[self.csound startCsound:tempFile];

A minimal Csound code that could be employed by this exam-
ple would look as follows:

<CsoundSynthesizer>
<CsOptions>

-o dac —-+rtaudio=null -d
</CsOptions>
<CsInstruments>

ksmps=64

instr 1

ksl chnget "slider"

ksl port ksl, 0.01

a2 madsr 0.01,0.1,0.8,0.1

al oscili a2x0dbfs, p5*(l+ksl), 1
out al

endin

</CsInstruments>
<CsScore>

£0 3600

f1 0 16384 10 1

il -1 0.5 440
</CsScore>
</CsoundSynthesizer>

3.3. Csound for Android

The Csound for Android platform is made up of a native shared
library (libCsoundandroid.so) built using the NDK, as well as Java
classes compliant the Android Dalvik implementation. The Java
classes include those commonly found in the csnd.jar library used
for desktop Java-based Csound development, as well as unique
classes created for easing Csound development on Android.

The SWICﬂ wrapping used for Android contains all of the
same classes as those used in the Java wrapping that is used for
desktop Java development with Csound. Consequently, those users
who are familiar with Csound and Java can transfer their knowl-
edge when working on Android, and users who learn Csound de-
velopment on Android can take their experience and work on desk-
top Java applications. However, the two platforms do differ in
some areas such as classes for accessing hardware and different
user interface libraries.

The CsoundObj Java implementation follows much of the spec-
ification described above:

public class CsoundObj {
private Csound csound;
private ArrayList<CsoundValueCacheable>

Thttp://www.swig.org

valuesCache;

private ArraylList<CsoundObjCompletionListener>
completionListeners;

private boolean muted = false;

private boolean stopped = false;

private Thread thread;

}i

The internal implementation of CsoundObj differs somewhat
to the iOS version, mostly due to the specifics of the audio APIs
in Android. Here, a Thread object is used to spawn a separate
processing thread, where calls to Csound.PerformKsmps() will be
made. Audio IO has been developed in two fronts. The first is as
a Csound realtime audio IO module employing the OpenSL API,
which is offered by the Android NDK. This is built as a straight
replacement for the usual Csound IO modules (PortAudio, ALSA,
JACK, etc.), using the provided API hooks.

In this case, the Csound input and output functions, called syn-
chronously in its performance loop, pass a buffer of audio samples
to the DAC/ADC using the OpenSL enqueue mechanism. The
OpenSL module is the default mode of 10 in Csound for Android.
Although it does not currently offer low-latency, it is a more ef-
ficient means of passing data to the audio device and it operates
outside the influence of the Dalvik virtual machine garbage col-
lector (which executes the Java application code).

Alternatively, a pure Java solution is also provided through
the AudioTrack API offered by the Android SDK The AudioTrack
code offers an alternative means accessing the device. It pushes/re-
trieves input/output frames into/from the main processing buffers
(spin/spout) of Csound synchronously at control cycle intervals (in
the Java processing thread). It is offered as an option to develop-
ers, which can be used for instance, in older versions of Android
without OpenSL support.

An example of the use of CsoundObj in Android is shown be-
low, as an exact port of the i0S example above. A resource is ob-
tained, which contains the Csound code, this is passed to Csound
as it is started. The addSlider() method is also used to add a slider
control:

String csd =

getResourceFileAsString (R.raw.test);
File f = createTempFile (csd);
csoundObj.addSlider (£fSlider,

"slider", 0.0, 1.0);
csoundObj.startCsound (f) ;

4. APPLICATIONS

While Csound is both directed at both users and developers, MCP
is aimed primarily at application programmers. It serves as the
audio component in an agile development environment, alongside
other elements. The audio synthesis and processing aspect of ap-
plications can be quickly prototyped using one of the Csound desk-
top frontends and then transported into the application.

As an example of this approach, the MCP SDK release in-
cludes a number of applications, which are designed to highlight
the various types of synthesis and digital audio effects that are pos-
sible under it (figs. 2 and 3):

1. Simple Test 1: demonstrates an arpeggio pattern whose
pitches are controllable via a slider.

2. Simple Test 2: a generative example with ADSR, note rate
and duration controls.

DAFX-4

Proc. of the 15™ Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

3. Button Test: shows the use of buttons as event triggers and
general-purpose controls.

4. MIDI test: a polyphonic MIDI subtractive synthesizer, with
ADSR and filter controls (iOS only).

5. Ping-pong delay: a processing example using a stereo de-
layline.

6. Harmonizer: a spectral processing example implementing
a formant-preserving harmonizer.

7. Hardware test: demonstrates the accelerator controlling an
oscillator and filter.

8. Csound Haiku 4: an example of a generative composition
by Iain McCurdy.

9. Multitouch XY: demonstrates a 2-D interface with multi-
touch capabilities controlling a polyphonic synthesizer.

Ping Pong Delay

Harmonizer
Hardware Test
Csound Haiku 4
Record Test
Multitouch XY
Waveview
Audio File Test

Console Output

A

Figure 2: Csound for iOS SDK application examples

For audio signal processing research, the environment can be
used as a means of developing portable demonstrations and proto-
types (see the discussion section below). For commercial applica-
tion developers, it should provide a simple to use audio engine. In
fact, at the time of writing, a number of commercial applications
for i0S have been developed and will shortly be available.

5. DISCUSSION

5.1. The multi-language design paradigm

At the core of application programming using MCP lies a multi-
language design paradigm, that of the use of an application-level
language (Java or ObjectiveC), a system-implementation language
(C/C++) and a domain-specific language (DSL, in this case, Csound).
This arrangement is very similar to what has been advanced by au-
thors such as Ousterhout [7]], where glue code is used to connect
components implemented in languages that are closer to hardware.
Such glue code in this case is both the application code (which
manages the U, interaction and controls the audio computation)
and the audio-specific code (which connects unit generators, etc.,
and sets up a synthesis engine). It also demonstrates the princi-
ple of separation of concerns in software design, where a complex
problem (in this case the design of an audio-processing applica-
tion) is divided into a set of discrete parts, that are implemented
separately [8].

This approach is not particularly new. In fact, it has been
present in Computer Music since MUSIC IV, where the event gen-
eration for a given score was completely separated from the design
of the synthesis program which would receive the score [9]. In
fact the MUSIC N languages themselves can be seen as glue code
connecting unit generators implemented in a lower-level language
[10]. This concept was extended to be the basis for the CARL
system, where components where connected using shell scripting
[11]. Similarly, it was used in Cmix [12], where synthesis pro-
grams written in C were glued by a score code written in MinC.
More recently, it is the basis of the meta-programming principles
embodied by Faust [13]]. Since the advent of Csound 5, it has be-
come an organic mode of operation, where Csound can be part of
a system involving a number of other languages. In fact, Csound
itself can embed other languages (such as Python and Lua).

This approach is, however, not free of criticism. Single-language
proponents advocate that even for specific tasks such as audio and
music programming, there should be a single language responsible
for all aspects of an application, from audio code to Ul to program
management. But in fact, even systems that have invested heavily
in such approach might depend on auxiliary languages for some
types of application development.

Our contention is that the multi-language paradigm offers sig-
nificant benefits to the task of audio application development. A
DSL such as Csound is well developed and maintained, as well as
comprehensive. It is also completely backwards compatible, so it
can take advantage of a library of code that has been developed
over more than thirty years (MUSIC11 code can in most cases run
in Csound). It allows, with MCP, audio programming to be fully
cross-platform, from iOS to Android and to desktop operating sys-
tems.

For the task of translating algorithms, Csound is capable of
representing signal flowcharts in a very straightforward and read-
able way, which can be a problem in some cases with Faust and
with graphic flowchart languages such as Pure Data (Pd) [14].
Also, it allows simple access to sample-level computation, which,
while not completely impossible, is awkward in Pd. Multirate pro-
cessing can also be implemented and spectral-domain data manip-
ulation is one of its strengths [[15].

DAFX-5

Proc. of the 15™ Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

Figure 3: CSDPlayer for Android, a general-purpose Csound performance application

5.2. Other systems

Projects similar to MCP currently exist. There are two which are
of note and comparable to Csound in terms of an extensive sup-
port for audio processing: libpd and Faust. The latter, already
cited above, is notable in the sense that it provides a very defined
algebra for the manipulation of block diagrams [16] and extensive
meta-programming capabilities. It does not however attempt to
implement an audio engine as such (i.e. it does not encapsulate the
concept of a scheduler), which might be useful for some tasks. It
instead relies on the target application to provide one. Its library of
signal processing functions is also still underdeveloped. Although
a new multirate processing version is being developed, currently it
only supports time-domain single-rate processing.

The other project, libpd, is based on the Pd music program-
ming system. Similarly to Csound 5, it offers Pd as a library with a
C-language API, which can be wrapped in a number of languages.
As with MCP, Android and iOS versions exist. Pd programs are
generally edited graphically within the original Pd application, and
stored in a text file, which, while human readable, is not very eas-
ily decoded. Such programs, or patches, contain the DSP code
that is used by libpd; the library itself does not include the graph-
ical element in Pd for patch editing. A significant difference with
Csound is that at all steps of the way, Csound code is preserved as a
completely human-readable, text-editable ASCII data. In addition,
Csound offers a built-in score, so in addition to DSP instruments,
whole compositions can be included in a mobile application. The
Csound score is mostly a data format/specification, rather than a
fully-develop programming language, but it has some simple sup-
port for value substitution and loops. Beyond these, there are other
important differences between the languages themselves, but a dis-

cussion of these is beyond the scope of this paper.

5.3. Usefulness of Mobile Audio Applications

One final question for discussion regards the usefulness or lack
thereof of audio applications on mobile systems. Over the years,
it had become clear that the ideal environment for audio systems
was the desktop computer (as a successor to the early UNIX-based
graphic workstations). For the majority of tasks, especially the
ones involving significant computational and digital audio hard-
ware resources, it still is. However, mobile devices, especially
tablet computers, have started to offer significant computing power,
which is comparable to the previous generation of desktop sys-
tems. Digital audio encoders and decoders in some devices are
of an acceptable quality (although not at the so-called professional
grade) and external hardware is available in some cases, which can
be of a higher specification.

This allows us to propose a number of scenarios that would be
useful for digital audio research and development. There are al-
ready a number of commercial applications that take advantage of
mobile platforms. Software synthesizers, effects processors, mul-
titrack and loop-based sequencing programs, and interactive com-
puter music instruments are some examples of the type of software
that can be targeted at these systems. Innovative distributed com-
puter music composition environments can be aimed at a cooper-
ation between multiple computing platforms, which users might
have at their disposal (phone, tablet, desktop computer).

For DAFx research, mobile platforms can be an excellent testbed
for algorithms. Their portability might offer a flexible demonstra-
tion environment. Finally, the presence of ubiquitous audio com-

DAFX-6

Proc. of the 15™ Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

puting devices can potentially alter our approach to the design and
application of algorithms for digital audio, in ways that are not
completely predictable at this stage.

6. CONCLUSION

In this paper, we have introduced the MCP toolkit, which can pro-
vide the audio component for an agile development environment
for mobile platforms. We have explored the individual attributes of
the target platforms with regards to their audio infrastructure, An-
droid and iOS. The software core of MCP, based on its CsoundObj
class was discussed in detail with code examples. The iOS and
Android implementations of MCP were presented and some ap-
plication code samples were shown. This was followed by a con-
sideration of the main applications of the technology. The paper
concluded with a wide-ranging discussion of audio programming
and languages for mobile applications. The source code for MCP
and its sample applications can be obtained from the Csound 5
main GIT repository

git://csound.git.sourceforge.net/gitroot/csound/csoundS

7. ACKNOWLEDGMENTS

We would like to acknowledge the support of An Foras Feasa via
the Digital Arts and Humanities programme, which provided the
funding for Steven Yi’s contribution to this paper.

8. REFERENCES

[1] R. Boulanger, Ed., The Csound Book, MIT Press, Cam-
bridge, Mass, 2000.

[2] J. ffitch, “On the design of csound 5,” in Proceedings of 4th
Linux Audio Developers Conference, Karlsruhe, Germany,
2006, pp. 79-85.

[3] V. Lazzarini, “Scripting csound 5,” in Proceedings of 4th
Linux Audio Developers Conference, Karlsruhe, Germany,
2006, pp. 73-78.

[4] V.Lazzarini and J. Piche, “Cecilia and tclcsound,” in Proc. of
the 9th Int. Conf. on Digital Audio Effects (DAFX), Montreal,
Canada, 2006, pp. 315-318.

[5] V. Lazzarini and R. Walsh, “Developing ladspa plugins with
csound,” in Proceedings of 5th Linux Audio Developers Con-
ference, Berlin, Germany, 2007, pp. 30-36.

[6] V. Lazzarini, “A toolkit for audio and music applications in
the xo computer,” in Proc. of the International Computer
Music Conference 2008, Belfast, Northern Ireland, 2008, pp.
62-65.

[7] J. Ousterhout, “Scripting: higher-level programming for the
21st century,” I[EEE Computer, vol. 31, no. 3, pp. 23-30,
1998.

[8] R. Damasevicius and V. Stuikys, “Separation of concerns in
multi-language specifications,” Informatica, vol. 13, no. 3,
pp. 255-274, 2002.

[9] M. Mathews and J. E. Miller, MUSIC IV Programmer’s Man-
ual, Bell Telephone Labs, 1964.

[10] M Mathews, F. R. Moore, and J. C. Risset, “Computers and
future music,” Science, vol. 183, pp. 263-268, 1974.

[11] G. Loy, “The CARL system: Premises, history and fate,”
Computer Music Journal, vol. 17, no. 2, pp. 23-54, 1993.

[12] S. Pope, “Machine tongues xv: Three packages for software
sound synthesis,” Computer Music Journal, vol. 17, no. 2,
pp- 23-54, 1993.

[13] Y. Orlarey, D. Fober, and S. Letz., “Faust: an efficient func-
tional approach to dsp programming,” in New Computation-
als Paradigms for Computer Music. 2009, Edition Delatour.

[14] M. Puckette, The Theory and technique of computer music,
World Scientific Publ., New York, 2007.

[15] V. Lazzarini, J. Timoney, and T. Lysaght, “Spectral process-
ing in csound 5,” in Proceedings of International Computer
Music Conference, New Orleans, USA, 2006, pp. 102-105.

[16] Y. Orlarey, D. Fober, and S. Letz, “An algebra for block dia-
gram languages,” in Proceedings of International Computer
Music Conference, Berlin, Germany, 2002.

DAFX-7

	1 Introduction
	2 Technology infrastructure
	2.1 Csound
	2.2 Audio and MIDI on iOS
	2.3 Audio on Android

	3 The MCP toolkit
	3.1 CsoundObj
	3.2 Csound for iOS
	3.3 Csound for Android

	4 Applications
	5 Discussion
	5.1 The multi-language design paradigm
	5.2 Other systems
	5.3 Usefulness of Mobile Audio Applications

	6 Conclusion
	7 Acknowledgments
	8 References

