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ABSTRACT 

This paper investigates a number of digital methods to 

produce the Analog subtractive synthesis effect of ‘Hard 

Synchronisation.’ While the original effect is produced by 

an explicit waveform phase reset, other approaches are 

given that produce an equivalent output. In particular, 

based on measurements taken from a real-analog synthe-

sizer, a comb filtering model is proposed. This description 

ties in with earlier work but here an explicit structure is 

provided. This filter-based approach is then shown to be 

far more computationally efficient than the synchronisation 

by phase reset. This efficiency is at a minor cost as it is 

shown that it has a minimal impact on the sonic accuracy.  

1. INTRODUCTION 

Oscillator synchronization (Hard Sync) is an important us-

er option that any digital subtractive synthesizer should of-

fer. Synchronization was originally developed for analog 

synthesizers to counteract the frequency drifting that can 

occur between voltage controlled analog oscillators, as too 

much drift can make the musician appear to be out of tune. 

Oscillator synchronization comes in two forms: Hard sync 

and Soft sync. Of the two, Hard Sync is the more striking 

effect. It is noted for its dynamic, expressive, screaming 

quality that is excellent for creating remarkable lead and 

bass sounds ([1], [2], and [3]). Hard synchronization is 

normally associated with sawtooth oscillators and requires 

two oscillators to work. These are termed as the Master 

and Slave respectively. For the effect to be noticeable, the 

Slave oscillator should be at a higher frequency than the 

Master. In essence, hard sync locks the waveshape of the 

slave oscillator to that of the master, resetting to its initial 

value ‘in sync’ with that of the Master as it commences a 

new period. This ensures that both oscillators are at the 

same period, eliminating the frequency drift between them.  

While algorithms for the bandlimited implementation of 

Hard Sync exist ([4, [5], and [6]), there is no ideal version 

against which to benchmark it. Thus, it would be very use-

ful to have an Fourier series/additive synthesis description 

of the Hard Sync waveform. Having such a description it 

should be able to suggest a way by which a digital imple-

mentation could be made using tailored digital elements. 

This should lead to a less complex, and therefore cheaper, 

way to implement it for virtual reproductions of analog 

synthesis operations. A lower implementation cost would 

confer benefits such as greater polyphony from the virtual 

synthesizer. In contrast, although attempting to directly si-

mulate a particular analog circuit design offers more mod-

eling accuracy, it normally results in an algorithm that is 

computationally intensive because of nonlinear circuit 

elements, requiring a significant oversampling factor to 

operate correctly, see [7], [8], [9], and [10] for example.  

In this paper, we will therefore present an additive syn-

thesis /Fourier series description of Hard Sync followed by 

an efficient implementation using standard DSP elements. 

The paper is organized as follows: Section 2 examines the 

Hard Sync effect using examples that were measured from 

actual analog synthesizers. Derivations for the Fourier se-

ries will also be given in Section 2. This will be followed 

by a delay-line filter-based implementation in Section 3. 

An evaluation of its computational efficiency relative to a 

recent alternative implementation reset-based implementa-

tion will be carried out in Section 4. Additionally, the ac-

curacy of the delay-line approach will be evaluated with 

respect to the Fourier series description and the alternative 

implementation. One benefit of the filtering approach is 

that it will not introduce new aliasing distortion compo-

nents into the signal. Section 5 then completes the paper 

with a conclusion and some areas for future work. 
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2. THE HARD SYNC EFFECT 
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Figure 1: Example of Minimoog Hard Sync waveform. 

The top panel shows the Master waveform, the middle 

panel the Slave and the bottom panel the Hard Sync out-

put.  

Fig. 1 plots an example of oscillator sync from a Mini-

moog Voyager [2]. The top panel shows the Master, while 

the middle panel shows the Slave, and the lower panel is 

the hard sync output. The reset in sync with the Master can 

be seen in the lower panel. What makes hard sync remark-

able, however, is that when the frequency control of the 

Slave oscillator is adjusted, either manually or using an 

LFO or envelope, the timbre of the Hard Sync output exhi-

bits a harsh, dissonant quality.  

Although the spectrum of the Hard Sync output has har-

monics at the same pitch as the Master, the timbral modifi-

cation is manifested as regularly-spaced formant-like re-

sonances in the spectrum of the Slave. The sound is most 

sonorous when the relationship between the pitch frequen-

cy and the frequency location of the resonances is non-

integer. To illustrate, a hard sync output was recorded from 

the Minimoog Voyager at a sample rate of 44100Hz where 

the frequency of the Slave is driven by a rising envelope. 

The spectrogram in Fig. 2 shows the time-frequency pro-

file of the oscillator output and superimposed is a solid 

white line that shows the adjustment of the frequency con-

trol of the Slave oscillator. This spectrogram was com-

puted using an 800-point Chebyshev window, overlapped 

by 50%. 

  In Fig. 2 the underlying harmonics of the sync waveform 

are shown as horizontal grey lines, and the resonances are 

visible as dark black lines. The actual harmonic frequen-

cies are static through-out, but the resonances move in an 

almost harmonic relationship following the Slave oscilla-

tor’s frequency control in a quantized fashion.  
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Figure 2: Spectrogram of hard sync output signal with 

frequency control adjustment superimposed as a solid 

white line. 

2.1. Direct Digital Reproduction 

A direct digital reproduction of hard sync can be 

achieved by simply resetting the Slave waveform at the ap-

propriate points in time. This can be illustrated using the 

following. If the Master waveform is generated using the 

phase accumulator 

 

 
( ) ( )( ) ( )ππ+−θ=θ 2%21 mastermastermaster ftt  (1) 

where the frequency of the master waveform is given by 

fmaster and the modulo operation is denoted by %.  

Similarly the phase accumulator for the Slave waveform 

is given by 

 

 
( ) ( )( ) ( )ππ+−θ=θ 2%21 slaveslaveslave ftt   (2) 

The phase accumulator for the hard sync waveform then 

is generated according to the following conditions 

 

 ( ) ( )tt slavesync θ=θ  (3) 

unless when θmaster(t)<2πfmaster and the phase is reset ac-

cording to 

 

 

( ) ( )t
f

f
t master

master

slave
sync θ








=θ

 (4) 

A sawtooth can be generated from the accumulated phase 

by 

 

 ( ) ( ) πθ= 2ttSsaw  (5) 

Fig. 3 gives an example of a Master and Slave wave-

forms and the Sync output using this algorithm. The fre-

quency of the Master is 441Hz, that of the Slave is 723Hz, 
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for the Hard sync waveform is 441Hz. The effect of the 

reset is clear on the Hard sync wave and it is clearly in 

synchronization with the Master. 
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Figure. 3: Example of Hard Sync. The top panel shows 

the Master waveform, the middle panel the Slave wave-

form and the lower panel a Hard Sync waveform synthe-

sized using eqns. (3),(4) and (5).  

However, using this approach the sync waveform is sus-

ceptible to the problem of aliasing distortion due to sharp 

transitions in the waveform. A limiting issue to overcom-

ing this, as raised by [11], was the lack of an expression for 

the Fourier series of Hard Sync. It is possible to use the 

phase reset of eqns. (3) and (4) to drive a bank of weighted 

harmonic sinusoidal oscillators to produce the a complete-

ly bandlimited sync signal but this would be prohibitively 

expensive for practical musical uses. One solution given in 

[4] proposed to implement hard sync by creating a bandli-

mited residual signal that is combined with the waveform 

at every reset instance. The reported results have been 

good but its implementation does incur a computational 

cost in identifying the instances of the reset before they oc-

cur as the residual is symmetric around the reset, a problem 

that also clearly occurs with the reset approach. Nam et al. 

[5] proposed to implement the hard sync by adding scaled 

versions of two bandlimited impulse trains and integrating 

the resulting signal. 

 

2.2. Exact Fourier series for Hard Sync 

  An exact expression for the Fourier Series of the hard 

sync waveform can be obtained by viewing the waveform 

as the convolution of a pulse train with a rectangular win-

dowed Slave sawtooth. The length of the window and the 

period of the impulse train are equal to the period of the 

Master. This can be written, where the asterisk denotes 

convolution, as 

 

 
( ) ( ) ( )( ) ( )titWtStS slavesync *=

 
 (6) 

where W(t) is a rectangular window 

 

 

( )


 <≤

=
otherwise

Tt
tW

master

,0

0,1

 (7) 

where Tmaster is the period of the Master sawtooth, and i(t) 

is the impulse train given by 

 

 
( ) ( )∑

∞

−∞=

−δ=
k

masterkTtti
 (8) 

In the frequency domain, eq. (6) can be written 

 

 ( ) ( ) ( )( ) ( )ωωω=ω iWSS slavesync *  (9) 

 

The continuous-time fourier transform of the product of 

the sawtooth Sslave(ω) and the rectangular window W(ω) is  
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e
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  (10) 

where Tslave is the period of the slave sawtooth, 

ωp=p2π/Tslave and p is an index of sinc values. 

  The sinc in eqn. (10) stems from the continuous frequen-

cy spectrum of the rectangular window. The Fourier trans-

form of a pulse-train of period Tmaster is itself a pulse train 

of frequency domain spacing 2π/Tmaster. The time domain 

convolution of the windowed sawtooth with the pulse train 

is equivalent to the product of their spectra, eqn. (9), and 

this is the same as sampling of eqn. (10) in the frequency 

domain, which leads to an expression for the Fourier series 

of the hard sync wave 
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T
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(11) 

where k is the series index. Note that eqn. (11) describes 

the two-sided Fourier series. 

  Examining eqn. (11), it can be seen that every Fourier 

coefficient is made up of an infinite sum of sinc values in-

dexed by the letter p. The infinite sum is due to the leakage 

resulting from the discrepancy between the zero-crossing 

rate of this sinc function in the frequency domain and the 

spacing of the sawtooth’s harmonics. Figure 4 plots the set 

of Fourier series (upper panel) and the time domain signal 

(lower panel) using the same frequencies for the Master 

and Slave waveforms of Figure 3. The value of p is from -
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20 to 20 and k is from -40 to 40, meaning 40 coefficients. 

The match between the waveform shapes in Figure 3 and 4 

is evident. The only difference is that the one is Figure 4 is 

bandlimited. The spectral shape according to the Fourier 

series shows peaks whose frequencies are related to the 

frequency of Slave waveform. This links in with the fol-

lowing section about sync and its relationship with Comb 

filtering. 
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Figure 4: Hard sync Fourier series (upper panel) and 

waveform (lower panel) computed using eqn. (11). 

 

2.3. Sync and its relationship to Comb filtering 

 Prompted by the fact that the appearance of the time-

varying spectrum in Fig. 2 suggests that the effect is a form 

of comb filtering of the Master waveform, that is, the Hard 

sync of sawtooth waveforms can actually be written as the 

combination of weighted and phase shifted versions of the 

Master waveform. A suggestion to this effect was made 

already by [12] but not illustrated. The evidence for this is 

shown in Figure 4. If we consider the sync waveform in the 

lower panel of Figure 3, and subtract from it the Master 

waveform shown in the upper panel of Figure 3, we obtain 

the waveform in the upper panel of Figure 4. From the wa-

veshape it can be hypothesized that it contains another 

sawtooth waveform at the same period of the Master but 

shifted in phase. This phase shift can be measured to be 

proportional to the time difference between the periods of 

the Master and Slave waveforms. Removing then a phase 

shifted master returns the waveform in the middle panel. 

This waveform is the combination of an impulse and a 

scaled and DC adjusted version of the Master waveform. 

Subtracting out such a waveform leaves a pure impulse 

train whose period is the same as that of the Master. This 

can be seen in the lower panel of Figure 4. An impulse 

train can be written as the differential of a sawtooth wave-

form. Thus, this hard sync waveform can be described as a 

combination of a number of Master sawtooths of different 

amplitudes, phase shifts and DC offset. 
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Figure 5: Determining how the sync waveform is a com-

bination of scaled, shifted and DC adjusted Master 

waveforms. The upper panel is the subtraction of the 

Master from the sync output, the middle panel shows 

what remains after subtracting a shifted Master, and the 

lower panel is the final remaining impulse train 

 

Further experimentation was carried out to verify that it 

always the case that the hard sync waveform can be formed 

from a set of Master waveforms. This phenomenon fits 

well with the Comb filtering interpretation of the sync ef-

fect as a Comb filter in essence combines a delayed and 

scaled version of the input with itself resulting in alteration 

of the waveshape and thus, the timbre of the input.  

  Through experimentation it was found that there were two 

key parameters: a weighting C and phase shifting φ that are 

both proportional to the period of the Slave waveform. The 

value for C is given by 

 

  

 ( )

slave

slavemasterslavemaster

T

TTTT
C

−
=

 (12) 

where Tmaster is the period of the Master sawtooth in samples, 

Tslave is the period of the Slave waveform in samples, and . is 

the floor function. The actual Master waveform is weighted by 

this value C and is combined with a number of phase shifted ver-

sions of the Master. This value can be denoted as N and is com-

puted by 

 

  slavemaster TTN =  (13) 

Thus, N phase shifted versions of the Master are required in the 

combination. Assuming an index n, with n=1…N, each version is 

phase shifted by an amount given in (14) 

 

 

master

slave
n

T

T
nπ=φ 2

 (14) 

The Hard sync waveform can then be written as 
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( ) ( ) ( )∑
=

φ−+=
N

n

nmastermastersync tStSCtS
1

 

(15) 

We write the Fourier series for a phase shifted, unity ampli-

tude, falling Master sawtooth wave as 

 

( )
( )

∑
∞

=

φ+π

π
=φ+π

1

2sin2
2

k

nmaster

nmastersaw
k

ktfk
tfS

      (16) 

with k being the harmonic index. 

Then, the combination of sawtooths in the second term of 

the sync waveform in (15) can be expanded as a set of 

harmonically related sinusoids with N individual magni-

tudes and phases that are described using the absolute val-

ue and angle of their complex representation 
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  (17) 

where  denotes the absolute value and ∠  is the phase angle. 

If we then combine the first term of (15) with the expression in 

(17) we can get an expression for the sync wave as 
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  (18) 

 

From (18) then, the magnitude of each harmonic in the spectrum 

of this Hard Sync wave form can easily be written 

 

 
( )

( )

π

+

=

∑
=

φ

k

eC

fkH

N

n

njk

master

1

2

 (19) 

Fig. 6 gives an example of a hard sync sync waveform and 

its Fourier series computed using eqns. (18) and (19) re-

spectively. The frequency of the Master is 441Hz, the 

Slave is 1575Hz, and thus, after substitution into eqn. (13) 

the value of N is 3. The top panel displays the hard sync 

waveform and it is perfectly bandlimited, i.e., there is no 

aliasing distortion associated with it. The lower panel 

presents the Fourier series. Again, the resonances in the 

spectrum are related to the frequency of the Slave wave-

form.   
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Figure. 6: The upper panel shows a Hard sync waveform 

computed using eq. (18) and the lower panel gives its 

spectral magnitudes computed using eq. (19). 

 

3. IMPLEMENTATION USING A DELAY-LINE 

Following the Additive Synthesis/Fourier series description of 

hard sync outlined in the previous section, it seems that it should 

also be possible to implement the phase shifting and scaling of 

the Master waveform via a delay-line filter approach. Previous 

work has already hinted at the potential for implementing hard 

sync using a time-varying comb filter [12]. However, no algo-

rithm or expression has been provided for this method. Consider-

ing both the appearance of the spectrogram in Fig. 2, and the ad-

ditive synthesis expression in (18) this appears to be a very ap-

propriate model. The delay-line filter structure is an inverse 

comb filter. In the case where the period of the Slave is less than 

twice the period of the Master, it can be defined by 

 

 
)()()( τ−+= txtCxty  (20) 

where C is given by (1) and the delay-line length 
slaveT=τ .  

The transfer function of this filter is 

 

 
H c z( )= C + z−τ

 (21) 

The input to the comb filter is the Master waveform. In cases 

where the period of the Slave is two or more times than that of 

the Master, then additional comb filter stages must be cascaded. 

Fig. 7 shows a block diagram of the comb filter structure. 
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Figure. 7: Block diagram of comb filter structure for ge-

nerating hard sync waveform.  

 

 In evaluation experiments carried out it was noticed that in 

cases where the frequency of the Slave is much higher than that 

of the Master it is necessary to have a DC blocker filter following 

the inverse comb filter structure. The final algorithm of those 

given in [13] was found to work well, where the value of the 

blocker filter delay was chosen to be half the period (in samples) 

of the input.  

Fig. 8 gives an example of the output of the Delay-line filter 

approach where the frequency of the Master is again 441Hz, that 

of the Slave is 700Hz and the sampling frequency is 44100Hz. 

After substitution into eqn. (13) the value of N is 1. The input to 

the delay line filter was a bandlimited sawtooth. This sawtooth 

was generated using the algorithm given in [5] that creates it 

from a 3rd order B-spline bandlimited impulse response train. 

Fig. 8 plots a portion of the magnitude of the frequency response 

of the delay-line filter in the upper panel and its waveform output 

in the lower panel. As to be expected, the frequency response 

exhibits peaks at the harmonic frequencies of the Slave and nulls 

at frequency locations halfway in-between these. The waveform 

of the delay-line output in the lower panel clearly shows the Hard 

sync effect.  
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Figure. 8: The upper panel shows a zoom of the low fre-

quency portion of the frequency response of the delay-

line filter and the lower panel shows the output sync 

waveform.  

For non-integer sample periods of the Slave waveform or to 

create a time-varying effect it is necessary to use fractional delays 

that can be implemented using techniques discussed in [14]. The 

distinct advantage of this delay-line filter-based approach is that 

if the filter input is bandlimited then the filter output will also be 

bandlimited. Additionally, it should be more computationally 

efficient than an approach based on the explicit phase reset ap-

proach, explained in section 2.1, as there is no decision logic re-

quired in its implementation. 

4. EVALUATION 

Firstly, to evaluate in relative, rather than absolute, terms 

the efficiency of the delay-line implementation a number of 

empirical evaluations were carried out to compare the exe-

cution time of the delay-line version against the algorithm 

presented in [5]. The algorithm in [5] implemented the 

phase reset hard sync, as discussed in section 2.1, applied 

to a bandlimited sawtooth. The author of [5] kindly gave a 

copy of his Matlab m-file for this. The input to the delay-

line was also bandlimited sawtooth generated using his 3rd 

order B-spline algorithm of [5]. For the Hard sync evalua-

tion the parameters in both cases was that Master fre-

quency was held fixed at 441Hz and the Slave frequency 

was set to vary from Fs/99 to Fs/3 where Fs =44100Hz 

(the sampling frequency). These figures were chosen as it 

meant that the delay-line did not need any fractional delay 

elements included in its structure. The reason for this type 

of relative evaluation was that the aim was to show that the 

delay-line approach is very attractive. However, it is real-

ised that the mechanics of any algorithm’s implementation 

always has a significant impact on its efficiency in absolute 

terms. Thus, a proper evaluation of this, to do it justice, 

would require a separate study.  The experiments were car-

ried out on a Dell Latitude D620 laptop with an Intel Core 

2 processor running at 1.66GHz.  

Fig. 9 shows a plot of the average execution time taken 

over 20 simulations of the Hard sync algorithm in [5] 

against the delay-line approach. As can be seen from the 

plot, the delay-line approach is at least twice as fast. Fur-

thermore, its execution time does not change significantly 

with respect to the Slave Frequency while this is not the 

case for the approach of [5] which actually increases as the 

relative Slave frequency increases. Thus, the delay-line ap-

proach is relatively faster and is consistently so. Note that 

for a real-time implementation, say within a VST software 

synthesizer, the actual absolute execution time of the de-

lay-line approach could be reduced further using suitable 

code optimisation techniques. 
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Figure 9: A comparison of the execution time of Matlab 

m-files for to compute Hard-sync using the algorithm 

from [5] (solid line) and the delay-line approach 

(dashed line) for a fixed Master frequency and an in-

creasing set of Slave frequencies. 

 

As a further test the difference between the Fourier se-

ries given by the exact expression, i.e. eqn. (11) in section 

2.2, against the harmonic magnitudes from the spectrum of 

the output of the delay-line when the input is a bandlimited 

sawtooth was measured. Again, the parameters were that 

Master frequency was held fixed at 441Hz and the Slave 

frequency was set to vary from Fs/99 to Fs/10 where Fs 

=44100Hz (the sampling frequency).  
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Figure 10: A comparison of the MSE difference between 

the Hard Sync algorithm of [5] (solid line) and the de-

lay-line hard sync (dashed line with triangles) with the 

Fourier series of eqn. (8) respectively for a fixed Master 

frequency and an increasing set of Slave frequencies. 

Fig. 10 plots the mean square error difference in dB be-

tween these. From the figure it can be seen that overall 

there is little difference between these versions of the sync 

signal, the error being less than -80dB in almost all cases. 

From this result, we can say that the exact expression and 

the delay-line approach produces, for all intents and pur-

poses, the same output. 

 

5. CONCLUSION  

This paper has presented a Fourier Series description for 

Oscillator Hard Synchronisation that is associated with 

Analog subtractive synthesizers. This was followed by an 

alternative expression based on observations that showed 

how the sync waveform can be formed from scaled, shifted 

and DC adjusted versions of the Master waveform. The 

expressions then lead to a delay-line implementation for 

the Hard Sync operation. Comparisons with a recent alter-

native implementation showed that this version was rela-

tive faster computationally. 

Future work will examine how the delay-line Hard sync 

algorithm can be emulated using distortion synthesis tech-

niques such as VPS [15] and demonstrate its link with 

resonant synthesis as suggested in [16]. 
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