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Abstract 

This paper examines the performance of a vowel classification scheme using a new form of feature vector 

derived from a decomposition of the speech segment into Maximum Phase and Minimum Phase components. 

Justification for this approach in terms of its perceptual relevance is first made, followed by a signal processing 

scheme to obtain the components. The form for the feature vector is then discussed. Lastly, experimental work 

compares the performance of this new feature vector under a variety of distortion conditions with the 

contemporary popular choice of Mel-Frequency Cepstral Coefficients. 

 

1. Introduction 
There have been suggestions in recent years that improvements in speech recognition technology can be attained 

if the dynamic properties of spoken language are modelled adequately [1] [2]. To achieve this requires a change 

from the traditional techniques of using Cepstral-based feature vectors. Occurring in parallel, there has been 

increased interest in analysing and modelling the amplitude and frequency modulation structure of speech as it 

attempts to overcome the deficiencies of linear speech models by indirectly describing the non-linear and time-

varying phenomenon that occur during speech production [3] [4]. It is also motivated by better understanding of 

the signal processing function performed by the auditory periphery, particularly the cochlea. The cochlea is 

known to decompose acoustic stimuli into frequency components along the length of the basilar membrane. This 

phenomenon is called Tonotopic decomposition. It is also known that the nerve fibres emanating from a high-

frequency location in the cochlea “phase-lock” to the envelope of the stimulus around that frequency, i.e. convey 

information about the envelope modulations in the signal. Thus, to a first-order approximation, it is often argued 

that the tonotopic location/place along the length of the basiliar membrane conveys the FM or frequency 

information about the signal, and the rate of nerve fibre activity around that location conveys the AM or 

envelope information [5]. In applying this AM-FM model to speech the approach in [6] further assumes that 

segments of the speech signal can be first decomposed into minimum phase (MinP) and maximum phase (MaxP) 

components. This decomposition was justified on the interpretation of particular phenomenon associated with 

the functioning of the auditory periphery. Evidence includes the auditory relevance of the left-sided spectrum of 

MaxP signals and the possibility that both the MinP and MaxP components can be represented in a discrete 

format by their zero/level crossings which could correspond to the information-bearing spikes in the auditory 

nerve fibres [6].  

Although previous work has suggested that for vowel sounds the information carried by the MaxP 

component is very significant [6], this hypothesis was not thoroughly examined, and therefore, an attempt has 

been made to address it here. Thus, the intention in this paper is to examine the possibility of using a set of 

MaxP/MinP-based features extracted from the speech signal to the task of vowel classification, an essential 

component of the speech recognition process.  

 

2. MinP/MaxP Speech Model 

The model proposes that the speech signal can be represented as a periodic analytic signal ( )ts  with period T 

seconds and of fundamental angular frequency Tπ=Ω 2  [5]. If ( )ts  has finite bandwidth, it may be 

described for a sufficiently large M over an interval of T seconds by: 
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where the ip 's denote roots of the polynomial that lie inside the unit circle in the complex plane and the iq 's are 

roots that lie outside the unit circle. It is assumed that no roots actually lie on the circle so that 1<ip  and 

1>iq . The factors corresponding to the zeros inside the unit circle, ( )∏
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Phase signal while those corresponding to zeros outside the unit circle, ( )∏
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Maximum Phase signal [5]. These signals are the direct counterparts of the frequency responses of the minimum 

and maximum-phase FIR filters in discrete-time systems theory. This type of signal model has been referred to 

as a "product representation of signals" [4].  

To apply this model to a real speech signal, it must be realised that the properties of the speech signal 

can change significantly over time. However, a reasonable assumption is that within a short-time interval these 

properties can be regarded as being stationary [7]. Therefore, successive overlapping T-second segments of a 

signal may be described using this model. Another issue is that a harmonic model can only be applied to what 

are termed voiced speech sounds, the spectrum of which exhibits a harmonic structure [7]. Since, the vowels 

belong to the category of voiced speech, it is justifiable to apply the model given by (1) to vowel sounds in order 

to derive features that can be used in a classification context. 

 

3. Extraction of the MaxP component 
  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Block Diagram for the conversion of speech segment to a MaxP/MinP feature 

vector 
 
The procedure to extract the Maximum and Minimum Phase components from the speech and then create the 

feature vector representation is shown in Figure 1. The method is as follows. First, a high-resolution estimate of 

the fundamental frequency of the speech segment is obtained. The pitch detection algorithm is based on a 

parabolic time-warping procedure that effectively extracts the linear part of the pitch frequency variation from a 

voiced speech segment without affecting its time duration [8]. The form of the parabolic time warper is 

( ) ( ) Tttat
T

a
t ≤≤−+=τ 0,12

   (3) 

in which T represents the duration of the speech segment, t represents real time, τ  is warped time and a is the 

warping parameter. 

The segment of speech is warped over a range of values of a, and the one producing the largest peak in an 

autcorrelation-based pitch detection scheme is retained [8]. The warped segment and the pitch value is then 

passed to the next stage where the complex amplitudes of the harmonic frequencies present in the segment are to 

be found. After taking the Hilbert transform of the warped segment, the Chirp z-transform [9] is employed to 

find the peak complex amplitude associated with each harmonic frequency. Furthermore, by taking the Chirp z-

transform around the fundamental frequency a higher accuracy estimate of the pitch can be obtained. Once the 

complex amplitudes are known, the parameters of the speech model given by (1) can be filled. To generate the 
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MaxP and MinP components of the segment as given by (2), it is necessary then to find the roots of (1). This is 

achieved using a fast polynomial-rooting algorithm based on a combination of Muller's and Newton's method 

[10].  

 

4. Creating a Feature Vector 
Once the MaxP and MinP components are obtained the next step is to find a suitable form of feature vector that 

will capture their essential properties. By examining the MaxP component in the frequency domain it can be 

seen that it contains all the spectral information from DC to the greatest peak magnitude present, which in most 

cases corresponds to the location of the first formant. The MinP component therefore is formed from the peak 

magnitude and the remaining frequency components that exist in the spectrum, that is, those from the greatest 

peak up to the sampling frequency. Thus, the MaxP/MinP decomposition tends to split the spectrum of the 

waveform around the maximum peak present in it. Linking this with previous work [5], the MaxP/MinP model 

of (2) can also be described as 
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where the "hat" stands for the Hilbert transform. 
cA  is a complex amplitude parameter, of the form φj

ea0
. ( )nα  

and ( )nβ  denote modulating quantities, and 
cω  is a carrier frequency. From (4), it can be seen that the phases of 

the component signals, or equivalently the components' instantaneous frequencies, are essential aspects of the 

model. Thus, a possible feature set is the mean instantaneous frequency, that is the average of the time-derivative 

of the unwrapped phase, of the MaxP and MinP components for each segment. According to [5], the 

instantaneous frequency of the MaxP component will always be positive, a fact that is intuitively satisfying. This 

positivity is not necessarily the case for the instantaneous frequency of the MinP component. However, it was 

found that the trajectory of the instantaneous frequency curve of the MinP component can be much improved by 

first suppressing the frequencies lying close to DC. This MaxP/MinP feature vector was calculated for a 

synthetic version of the vowel /a/ which has its formant frequencies at 730, 1090 and 2440Hz respectively [7]. It 

was found that the mean instantaneous frequency of the MaxP component was approximately equal to the first 

formant frequency while the sum of the mean MaxP and MinP instantaneous frequencies was very close to the 

second formant frequency.  
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Figure 2 Spectrogram with MaxP/MinP Instantaneous Frequencies Superimposed 
  
Figure 2 is a spectrogram of the synthetic vowel with these instantaneous frequencies superimposed on it as 

white lines marked with circles, and it is clear from the figure that the match is excellent. 

A further inducement to use this form of feature vector comes from [1]. This work pointed out that there 

is evidence to show that complete knowledge of the formant frequencies is not required for accurate speech 

recognition. Moreover, [1] explains that results from perceptual experiments carried out by Fant and others 

appear to suggest that a two-formant approximation model (termed as perceptual effective formants) is a valid 

and robust framework for most vowels. Within these results, two prominent spectral peaks were found to be 

sufficient to describe all Swedish vowels. This effective formant model actually appeared to separate the vowel 

space better than a combination of the first two formants, and in addition, without the difficult requirement of an 

accurate formant tracking procedure. This format model was applied in a classifiaction procedure in [1] and the 

results indicated that the use of these perceptually effective formants conferred no disadvantages over any other 

choice of features. The use of the instantaneous frequencies of the MaxP and MinP components bears a 
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resemblance to the concept of perceptually effective formants as they are related to spectral maxima and also 

have perceptual validity. Thus, they should have potential for the vowel classification scenario.  

 

5. Classification Task 
To create a benchmark test within which the performance of the MaxP/MinP feature vector could be evaluated it 

was decided to use a set of synthesised vowels. The software to generate these vowels was found in [11] and the 

formant frequencies of the vowels were taken from [7]. Six different vowels were used and their formant 

frequencies are given in the table below 

 

Vowel F1 (Hz) F2 (Hz) F3 (Hz) 

/i/ 270 2290 3010 

/E/ 530 1840 2480 

/a/ 730 1090 2440 

/c/ 570 840 2410 

/U/ 440 1020 2240 

/R/ 490 1350 1690 

 

Table 1: Formant Frequencies for the Synthetic Vowels 
 

The pitch of these vowels was varied over the range 80 to 208 Hz in steps of 8Hz inclusive, and thus, eighteen 

copies of each vowel were generated in all. To classify the vowels the statistical Linear Discriminant Analysis 

procedure was used [12]. In order to rigorously test the performance of the classification, the vowels were 

subject to a series of distortions deemed to be typical of communications media: (1) additive noise, (2) peak 

clipping, (3) bandpass filtering and (4) reverberation [13]. These distortions were applied in various degrees, 

resulting in a total of 18 conditions, as specified in Table 2. 

 

Distortion Degree 

  

Masking noise SNR= 35, 25, 15, 10, 5 dB 

Peak clipping 7,30,50,70, 90 % (cut-part/whole) 

Band-pass 

filtering 

0.8-1.3,1.3-1.9,1.9-2.6,1.4-3.2 kHz 

Reverb 1.25ms 

(reflection coefficient 0.5 and 0.6), 

6.25 and 12.5 ms 

(reflection coefficient 0.5) 

 

Table 2: Distortions Applied to the Speech 
 

By way of comparison, the performance of this feature vector was compared with the popular Mel Frequency 

Cepstral Coefficients (MFCC). Here, nine coefficients were generated for each speech frame in the segment, the 

first coefficient of each frame, which represents a transformation of the energy of the frame, was discarded, and 

their average was then taken over all the frames. The program to generate these MFCC feature vectors was 

obtained in [11]. 

 

6. Results 
In carrying out the experiments, fifteen vectors, each of different pitch, for each vowel were used for training and 

the remaining three were retained for classification. Thus, the goodness of the vowel classification was evaluated 

using 18 input vectors and the percentage error was calculated to be the number of mis-classifications over the 

total input. This error percentage was calculated for each distortion condition and the results are shown in the 

four graphs in Figures 3 to 6. In each plot, the classification error for the MaxP/MinP feature vector is given by 

the solid line marked with triangles, while for the MFCC feature vector it is shown by the dashed line marked 

with circles. 
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  Fig.3 Classification Error for Noise Fig. 4 Classification Error for Clipping 
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Fig.5 Classification Error for Filtering Fig. 6 Classification Error for Reverb 
 
From the plots it can be seen that in most cases the MFCC-based feature vector outperforms the MaxP/MinP 

feature vector. The worst performance of the MaxP/MinP feature vector occurs in the presence of reverberation 

while its best performance, in relation to the MFCC feature vector, is for the bandpass filtering distortions. In the 

cases of noise masking and clipping the most redeeming quality of the MaxP/MinP feature vector is that in the 

worst case conditions its performance is either as poor as or better than that of the MFCC feature vector. 

Furthermore, in the case of noise masking, the classification performance of the two feature vectors is the same.  

 

7. Conclusion 
Overall, the results suggest that the MaxP/MinP feature vector is not as applicable as the MFCC feature vector to 

vowel classification under a range of common distortions, in particular for reverberation. However, given the 

relatively lower dimensionality of the MaxP/MinP feature vector, the results could be interpreted as showing that 

by extension of the feature vector with additional relevant information, it is possible that the performance could 

be brought to a level that is comparable with the MFCC feature vector.  

Furthermore, it is possible that errors in the pitch detection process may be responsible for the lower 

performance level as a poor pitch estimate will result in inaccurate values for the complex harmonics amplitudes 

that are extracted in the subsequent processing stage. Immediate future work is to consider this and, if necessary, 

to find a pitch detection scheme that will overcome any problems found. A possible alternative to using the pitch 

detector-based scheme used in this work could be to find the harmonics using a Fractional Fourier transform 

approach [14]. Also of importance is to examine the augmentation of the MaxP/MinP feature vector with other 

relevant features derived from the model which may help to improve its classification performance. Lastly, 

another avenue for future work is to compare the performance of the MaxP/MinP feature vector with a feature 

vector derived from the perceptually effective formants [1]. Given the low dimensionality of both feature 

vectors, this would probably be a more fair comparison to make than with the MFCC feature vector chosen for 

this paper.  
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