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Abstract

We study finite energy topologically stable static solutions to a global symmetry break-
ing model in 3 + 1 dimensions described by an isovector scalar field. The basic features
of two different types of configurations are studied, corresponding to axially symmetric
multisolitons with topological charge n, and unstable soliton–antisoliton pairs with zero
topological charge.

1 Introduction

The familiar solitons in 3 + 1 spacetime dimensions are the monopoles [1] of the Yang-Mills–
Higgs (YMH) model and the Skyrmions [2] of the O(4) nonlinear sigma model. The first of
these [1] is a solution of a gauged scalar (Higgs) field model, while the second [2] is not related
to a gauge field. But this is not a very strict distinction, since it is also possible to find solitons
of the SO(3) gauged O(4) nonlinear sigma model [3]. These are all models that pertain to
physically rather different contexts but are nonetheless closely related inasfar as they are all
classical field theories whose static energies are bounded from below by topological charges. On
this rather technical level therefore, one can ask whether there might be an ungauged Higgs
analogue of the the (ungauged) Skyrme soliton? We refer to such a symmetry–breaking field
theory, as a Goldstone model in 3 + 1 dimensions.

It is known on the other hand that such models do exist [4] not just in 3 + 1 but in all
dimensions. These are the gauge decoupled versions of the SO(D) gauged Higgs models [5]
in D + 1 spacetime dimensions. That such models should support solitons follows from the
simple fact that certain truncated versions of these have such solutions in closed form [6]. The
solitons of these models have the salient feature that the asymptotic behaviour of their solitons
feature the same properties as gauged Higgs models, and hence afford a simple background for
the study of Dirac equations [7] in all dimensions.

While the existence of solitons to generic such Goldstone models were known for sometime, a
concrete and detailed construction of these has not been presented in the literature to date. This
is what we propose to do in this paper, and since 3+1 is physically the most relevant dimension,
we have chosen this for our example. The solitons we construct are in a sense alternatives to the
usual Skyrmions, though we have not pushed this analogy here. Our strategy here is instead
to expose the generic properties of such solitons. To this end, we construct the topological
charge-1 spherically symmetric soliton, the axially symmetric winding number n multisolitons
(MS) and examine the possiblity of the existence of bound states. We also construct an (axially
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symmetric) topological charge-0 soliton-antisoliton (SAS) pair, to highlight the analogy of the
model studied with the usual YMH model.

In Section 2 we define the flat space energy density functional of the model and the topo-
logical charge density presenting its lower bound. In Section 3 we present the charge-1 solitons,
the charge-n MS, and the charge-0 SAS pairs, in successive Subsections respectively, and in
Section 4 we summarise our results.

2 The model and the topological charge

The symmetry breaking model in 3 spatial dimensions, to which we refer as a Goldstone model,
is described by a scalar isovector field φa, a = 1, 2, 3. There is such a hierarchy of models [4]
that arise from the gauge decoupled limit of the three dimensional SO(3) gauged Higgs model
descended from the p-th member of the Yang-Mills (YM) hierarchy on IR3 × S4p−3. Here we
have chosen the simplest of these, namely that descended from the 2-nd member of the YM
hierarchy. Using the notation

φa
i = ∂iφ

a , φab
ij = ∂[iφ

a∂j]φ
b , φabc

ijk = ∂[iφ
a∂jφ

b∂k]φ
c ,

with the brackets [ij...] implying total antisymmetrisation, the static energy density functional
is

E(p=2) = λ0

(

η2 − |φa|2
)4

+ λ1

(

η2 − |φb|2
)2

|φa
i |

2 + λ2

∣

∣φab
ij

∣

∣

2
, (1)

which implies a total mass M = 1/(4π)
∫

EdV.
All the dimensionless constants λ0, λ1 and λ2 must be positive if the topological lower

bound to be introduced below is to be valid. Moreover, any of these constants can also vanish,
provided that the absence of the corresponding term in (2) does not violate the Derrick scaling
requirement. That soliton solutions to this model exist is obvious since for particular choices of
these dimensionless constants, explicit solution [6] are known. Pushing our freedom of choosing
the numerical values of λ0, λ1 and λ2 further, we can add any other positive definite term to (1)
multiplying a new dimension dimensionless coefficient, as long as the scaling properties remain
satisfied. In 3 spatial dimensions, there is one such possible kinetic term which for which a
canonical momentum field exists, and that is the sextic term 1. Thus the most general model
we can consider is the following extension of (1)

E = λ V (η, |φa|) + τ

[

(

η2 − |φb|2
)2

|φa
i |

2 +
1

4

∣

∣φab
ij

∣

∣

2
]

+
κ4

36

∣

∣φabc
ijk

∣

∣

2
, (2)

τ and λ being dimensionless constants, κ is with dimension of length, and V (η, |φa|) a generic
symmetry breaking potential.

It is perhaps in order to point out that (2) is an ad hoc model, rather than a dimensionally
descended model like (1). Indeed, a sextic term does appear in the next one to (1)

E(p=3) = λ0

(

η2 − |φa|2
)6

+ λ1

(

η2 − |φb|2
)4

|φa
i |

2 + λ2

(

η2 − |φb|2
)2 ∣

∣φab
ij

∣

∣

2
+ λ3

∣

∣φabc
ijk

∣

∣

2
, (3)

1The correspoding sextic term in the Skyrme model was considered in [8] in some detail.
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descended from p = 3 YM, with which we are not concerned. We will restrict our attention to
(2), and mainly to the particular case where λ = κ = 0, which like the Skyrme model captures
the main qualitative features of the soliton.

The model (2) has certain remarkable similarities to the Skyrme [2] model, and other prop-
erties that differ fundamentally. On the similarity side, there is the obvious shared feature of
the scaling of the distinct terms in both three dimensional models. Also, for the important
special case with λ = κ = 0, the Bogomol’nyi equations are overdetermined like in the Skyrme
model and there exist no solutions saturating the Bogomol’nyi bound.

On the contrasting side, the order parameter field φa here is a relic of a Higgs field and
has the same dimensions (L−1) as a connection, and the finite enrgy conditions require the
symmetry breaking boundary condition

lim
r→∞

|φa| = η . (4)

For the (more standard) case of multisolitons centred at the origin, the boundary condition
there is

lim
r→0

|φa| = 0 . (5)

For the unit charge spherically symmetric soliton, when the system is described by a single
function h(r), the conditions (5) and (4) (see (10) below) result in the monopole like asymptotics
of our solitons, which are qualitatively different from the instanton like asymptotics of the
Skyrmions 2.

It is straightforward to show that (2) is bounded from below by the density

̺ =
1

4π
εijkε

abc
(

η2 − |φd|2
)

φa
i φb

j φc
k

=
1

4π
εijkε

abc ∂i

[(

η2 −
3

5
|φd|2

)

φa φb
j φc

k

]

(6)

whose volume integral is the topolgical charge, which is just the winding number.
Models like (1), (2) and (3) support global monopoles in the sense that their topological

charges are the winding numbers of the scalar (Higgs) field on the 2-sphere at infinity. These
solitons however have finite energy, unlike the usual global monopoles. This is due to two
reasons. Firsly we have included the quartic kinetic term to satisfy the required scaling, and
secondly, we have employed a non standard quadratic kinetic term which decays fast enough
to satify finite energy requirements. These two features are guaranteed by the fact that these
models are dimensionally descended from higher dimensional Yang–Mills models, the latter

2The values of the scalar Higgs function of a unit charge monopole on the boundaries [r = 0, r = ∞] are
[h(0) = 0, h(∞) = 1]. The values of the scalar function w(r) of the spherically symmetric Yang–Mills (YM)
instanton on the boundaries [r = 0, r = ∞] are [w(0) = ±1, w(∞) = ±1]. The one dimensional reduced action
density of the scale invariant YM system in 4p dimensions is proportional to the corresponding O(2p + 1)
sigma model reduced action in 2p dimensions, described by the function f(r) ≡ arccosw(r). Hence the values
of the scalar function cos f(r) of the unit charge sigma model soliton on the boundaries [r = 0, r = ∞] are
[cos f(0) = ±1, cos f(∞) = ±1], like an instanton.
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being endowed with the corresponding topological properties, as explained in [4] and references
therein.

While we are exclusively concerned with the classical properties of the model (2) here, it
is nevertheless interesting to comment on its possible quantum aspects. It is believed that
the Skyrme model is a reliable approximate theory of the Nucleons [9] and our model shares
many similarities with the latter. The main difference between the models is that while the
Skyrme field is a constrained field and hence the procedure of quantisation must take account
of the constraint, the order parameter field in our model is unconstrained. On the other hand,
the quadratic kinetic term in (2) is quite unconventional, featuring the field dependent factor
(

η2 − |φb|2
)2

. The effect of the latter is to prevent the definition of a propagator, this difficulty of
quantisation replacing the constraint problem in the Skyrme model. But it is also well known
that the most efficient practical method of quantisating Skyrme theory is that of collective

coordinate quantisation, employed in [9]. This method applies is equally well to the system (2),
subject to making the essential change of field coordinates

φa → Φ = φa τa ,

τa being the three Pauli matrices.

3 The solitons

Our aim in this Section is to demonstrate the close similarities of the solitonic solutions in this
model, with the various monopole (and dipole) solutions of the YMH model. The Section is
divided into three Subsections. The first involves the charge-1 soliton analogous to the ’t Hooft–
Polyakov monopole [1]. The second is concerned with axially symmetric solutions satisfying
standard boundary conditions, with arbitrary winding number n, namely the multisolitons (MS)
of this model. A question of interest raised in this Subsection is that of the mutual attraction
or repulsion two 1-solitons. In the last Subsection we impose those boundary conditions on the
axially symmetric fields, which result in zero charge (unstable) solutions representing soliton–
antisoliton (SAS) pairs situated on the symmetry axis. These boundary conditions are those
employed in [10, 11] for the corresponding SO(3) YMH model.

3.1 Charge-1 soliton: spherically symmetric

Subjecting (2) to spherical symmetry via the Ansatz

φa = η h(r) x̂a , (7)

and taking into account the factor r2 in the volume element, the reduced one dimensional
energy functional, after some rescalings, is

E = λ η−2 r2 V (η, h) + τ η6

[

(1 − h2)2
(

r2 h′2 + 2h2
)

+
h2

r2

(

2r2 h′2 + h2
)

]

+ (ηκ)4h4

r2
h′2. (8)
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Figure 1. The profiles of the function h(r) and the mass-energy E(r) of typical spherically symmetric

solutions are shown for several values of κ.

Mostly, we will retain only the terms multiplying τ . In that case the lower bound on the
integral of (8) is

Q =

∫

̺ d3x = 6

∫ ∞

0

d

dr

(

h3

3
−

h5

5

)

dr . (9)

Substituting into the limits of the definite integral (9) , the asymptotic values

lim
r→0

h(r) = 0 , lim
r→∞

h(r) = 1 (10)
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following from (5) and (4), one finds

Q =
4

5
which was verified numerically. The solutions of the field equation can be constructed numer-
ically. We follow the usual approach and, by using a standard ordinary differential equation
solver, we evaluate the initial condition

h = br −
b3

5(b2 + 2)
r3 + O(r5)

at r = 10−6 for global tolerance 10−14, adjusting for fixed shooting parameter and integrating
towards r → ∞. The behaviour of finite energy solutions as r → ∞ is

h ∼ 1 + ce−2r −
1

4r2
−

15

32r4
+ O(1/r6),

where c is a free parameter. For all considered cases, solutions with the correct asymptotics
occurs only when the first derivative of the scalar function h(r) evaluated at the origin, h′(0) = b,
takes on a certain value. For example b ∼ 0.443613 for a model without a sextic term (κ = 0),
while b ∼ 0.367479 for κ = 10 (the symmetry breaking potential is vanishing in both cases).

The profiles of typical solutions are presented in Figure 1 for several values of the parameter
κ and no symmetry breaking potential. The energy functional, as given by (8) is also exhib-
ited. No multinode radial solutions were found, although we have no analytical argument for
their absence. However, our preliminary numerical results indicate that, similar to the case
of monopoles and sphalerons, the gravitating Goldstone model also presents radial excitations
with an arbitrary number of nodes of the function h(r). A study of these solutions will be
presented elsewhere.

3.2 Charge-n multisoliton: axially symmetric MS

The axially symmetric Ansatz for the scalar field

φa = (φα, φ3)

is
φα = η ϕ1(ρ, z) nα , φ3 = η ϕ2(ρ, z) , (11)

where ρ2 = |xα|
2 = x2

1 + x2
2, z = x3, denoting xi = (xα, x3), and nα is the unit vector

nα = (cos n φ , sin n φ) (12)

with azimuthal winding n.
We denote the two functions (ϕ1, ϕ2) ≡ ϕA by labeling ϕA with A = 1, 2. Subjecting (2) to

(11), the λ = 0 system reduces to

E = 2π ρ

{

τ 2
1 η6(1 − |ϕB|

2)2

[

(

|∂ρϕA|
2 + |∂zϕA|

2
)

+

(

nϕ1

ρ

)2
]
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+τ 2
2 η4

[

(εAB ∂ρϕA ∂zϕB)2 +

(

nϕ1

ρ

)2
(

|∂ρϕA|
2 + |∂zϕA|

2
)

]

+κ4η6

(

nϕ1

ρ

)2

(εAB ∂ρϕA ∂zϕB)2

}

, (13)

which in terms of the more useful variables (r, θ) is

E = 4π η6 τ 2
1 sin θ

{

(1 − |ϕB|
2)2

[

(

r2|∂rϕA|
2 + |∂θϕA|

2
)

+
n2ϕ2

1

sin2 θ

]

+

(

τ2

τ1η

)2 [

(εAB ∂rϕA ∂θϕB)2 +
( nϕ1

r sin θ

)2
(

r2|∂rϕA|
2 + |∂θϕA|

2
)

]

+

(

κ2

τ1

)2
( nϕ1

r sin θ

)2

(εAB ∂rϕA ∂θϕB)2

}

, (14)

and rescaling r as

τ r ≡

(

τ2

τ1η

)

r → r

removes the coupling constant infront of the quartic term.
For the multisoliton (MS) solutions at hand, the boundary values of the functions ϕA in the

r ≫ 1 region are
lim
r→∞

ϕ1(r, θ) = sin θ , lim
r→∞

ϕ1(r, θ) = cos θ , (15)

while at the origin we find
ϕ1|r=0 = ϕ2|r=0 = 0. (16)

Since our imposition of axial symmetry requires also z → −z reflection symmetry, the actual
(numerical) integration need be performed only over the range 0 ≤ θ ≤ π

2
. The field equations

have been solved by imposing the following boundary conditions along the axes

ϕ1|θ=0 = ∂θϕ2|θ=0 = 0, ∂θϕ1|θ=π/2 = ϕ2|θ=π = 0. (17)

We solve numerically the set of two coupled non-linear elliptic partial differential equations
arising from the variation of the functional (14), subject to the above boundary conditions,
employing a compactified radial coordinate x = r/(1 + r). To obtain axially symmetric so-
lutions, we start with the n = 1 solution discussed above as initial guess (corresponding to
ϕ1 = h(r) sin θ, ϕ2 = h(r) cos θ) and increase the value of n slowly. The iterations converge,
and repeating the procedure one obtains in this way solutions for arbitrary n. The physical
values of n are integers. The typical numerical error for the functions is estimated to be lower
than 10−3. The numerical calculations for n > 1 were performed with the software package
CADSOL/FIDISOL, based on the Newton-Raphson method [12]. In Figure 2 we show the local
mass-energy as given by (14) of the κ = 0 n = 2 MS solution as function of the coordinates
z = r cos θ and ρ = r sin θ. In Figure 3 the profiles scalar functions ϕ1 and ϕ2 of the same
solution are shown for several angles as a function of the radial coordinate r.
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Figure 2. A three-dimensional plot of the mass-energy E(r, θ) of a n = 2, κ = 0 axially sym-

metric MS solution.

The analysis was carried out in the first place setting the constant κ = 0 and for several
values of n, which captures the main qualitative properties of the MS. The maximum of the
mass-energy density (14) moves outwards with increasing n. However, for n > 3, the numer-
ical errors start to increase, and for some nmax the numerical iterations fail to converge. The
problem resides in the behaviour of the scalar function ϕ2, which for large n, tends to develop
a discontinuity for some value of the radial coordinate.

Because of the close analogy between our model and the Skyrme model, it is worthwhile
checking one of the remakable properties of axially symmetric multi-Skyrmions. The property
in question is that up to vorticity (≡ baryon number) n = 4 the energy of the multi-Skyrmion
is smaller than that of n infinitely separated 1-Skyrmions, i.e. that the MS can be regarded as
a bound state [13].

We have here checked that starting from n = 2, and up to n = 5, the energies of the n-MSs
of our model are greater than that of n 1-solitons. Moreover it turns out that this deficit of
binding energy increases with increasing n, indicating that none of the MSs in this model can
be regarded as bound states. For example we have found M(n = 2)/(2M(n = 1))− 1 = 0.229,
M(n = 3)/(3M(n = 1)) − 1 = 0.381 while M(n = 4)/(4M(n = 1)) − 1 = 0.492 (where
M(n = 1) = 1.188).

It is for this reason that we have introduced the sextic 3 term in (14), to check whether
its presence may reverse this trend and lead to MS bound states? However, we find that for
0 ≤ κ ≤ 10, MSs with charges up to 3 the deficit of binding energy persists and increases with
n, confirming that like charged solitons of this model are mutually repulsive inspite of the

3The presence of higher order terms in the (covariant) derivatives of the Higgs field is known to result in the
mutual attraction of like charged (monopoles) solitons [14, 15].
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Figure 3. The profiles of the scalar functions ϕ1 and ϕ2 are shown for the n = 2, κ = 0 axially

symmetric MS solution.

model having descended from the gauge decoupling of Higgs models [14, 15] supporting mutu-
ally attracting monopoles of like charges.

3.3 Charge-0 soliton–antisoliton: axially symmetric SAS

For simplicity we will restrict to winding number 1 SAS solutions, whence we set n = 1 in the
Ansatz (11).
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Figure 4. A three-dimensional plot of the mass-energy E(r, θ) of a n = 1, κ = 0 axially sym-

metric SAS solution.

The reduced two dimensional energy density functionals (13) and (14) are unchanged for the
SAS solutions. Also the boundary conditions (17) arising from the requirements of analyticity
on the z-axis and at the origin, remain unchanged. What are different between the MS and
SAS solutions are the boundary conditions at r → ∞ and at r = 0.

For the SAS solutions in the region r ≫ 1, instead of (15) we require

lim
r→∞

ϕ1(r, θ) = sin mθ , lim
r→∞

ϕ1(r, θ) = cos mθ , (18)

with m ≥ 2 for SAS chains analogous to the monopole antimonopole chains [16]. But we are
here only interested in SAS pairs, therefore we restrict to m = 2 in (18).

For the SAS in the region r ≪ 1, instead of (16) we require

ϕ1|r=0 = 0 , ∂rϕ2|r=0 = 0. (19)

The field equations have been solved by using the same methods employed in the MS case.
However, the SAS solutions exhibit a very different picture. The energy density ǫ = −T t

t

possesses maxima at z = ±d/2 and a saddle point at the origin, and presents the typical form
exhibited in the literature on MA solutions [10]. The modulus of the scalar field |ϕ| =

√

ϕ2
1 + ϕ2

2

possesses always two zeros at ±d/2 on the z−symmetry axis. In Figure 4 we plot the mass-
energy (14) and the modulus of the scalar field of a typical m = 2 solution as a function of
the coordinates ρ, z, for κ = 0 (i.e. no sextic term). This solution has a mass M = 2.588
which is smaller than that of two (n = 1, m = 1) 1-solitons (M=2.92), similar to the sphaleron
describing a monopole-antimonopole pair [10] .
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Figure 5. The modulus of the scalar field |ϕ| =
√

ϕ2
1 + ϕ2

2 is shown for the n = 1, κ = 0 axi-

ally symmetric SAS solution.

4 Summary

We have studied the finite energy topologically stable static solutions to a (global) symmetry
breaking model in 3 + 1 dimensions described by an isovector scalar field. Such models can be
constructed in arbitrary D +1 dimensions since they are the gauge decoupled versions of Higgs
models in all dimensions. We have chosen here D = 3 examples, since this is the dimensionality
of most physical interest, like the usual Skyrme model, but very different from the latter in
many essential respects.

Two classes of solutions are studied: Axially symmetric multisolitons (MS) with topological
charge n, and unstable soliton–antisoliton (SAS) pairs with zero topological charge, both with
finite energies. There are two pertinent questions that arise here. In the case of the MS
solutions, the question is whether solitons of like charge attract or repel, and it was found that
they always repel, even when the model is augmented with a sextic kinetic term. In the case
of the SAS pairs, the question is whether they can support a nonzero angular momentum 4 ?
This task is deferred to some future work, and presumably it will involve a stationary Q-ball
like features.

As a scalar theory supporting soliton solutions in 3 space dimensions this model is like
the Skyrme model. Unlike the latter however this is a symmetry breaking model, as result
of which the boundary values of the field are akin to that of a monopole rather than that
of an instanton as is the case for the Skyrme (nonlinear sigma) model. From the viewpoint
of physical properties, there is no question that it can be regarded as an alternative for the

4The correspoding rotating solutions in YMH model have been studied recently in [17] and [18].
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Skyrme model which is known to give a good description of Nucleons [9] at low energies. This
can be seen from two clear viewpoints: (i) the fact that Skyrmions are capable of forming bound
states [13] describing exotic states, while the MSs of our model display the opposite property,
and (ii) because the Skyrmion can be gauged with the (Maxwell) U(1) field [19, 20] enabling
the description of the electromagnetic properties of the Nucleons, while the topological lower
bound on the energy of our MS is invalidated when the scalar field is gauged with U(1). This is
because Higgs models, from the p = 2 member of which [5] the present model is extracted, can
be gauged only with SO(D), or, be completely gauge-decoupled as the model considered here.
While it is true that a O(D + 1) sigma model in D dimensions can be gauged with all SO(N)
with N ≤ D [19] with its energy bounded from below by a gauge invariant topological charge,
gauging Higgs models [5] with SO(N) with 1 < N < D causes the collapse of the topological
lower bound on the energy.

Technically the properties of the model studied here are analogous to those of the usual
SU(2) Higgs model with symmetry breaking potential supporting monopoles [1]. Like in that
case, the Bogomol’nyi bound cannot be saturated, and, like-charged solitons repel in the sense
that a(n axially symmetric) multisoliton of charge n has higher energy than n infinitely sepa-
rated 1-solitons. (It is possible that solutions with less than axial symmetry may have lower
mass than the axially symmetric ones studied here, so the possibility exists that such solutions
may form bound states, however unlikely.) Another point in this analogy is that the sphaleron
describing soliton-antisoliton pairs here is lighter than two 1-solitons, just as it is in the Higgs
case [10].
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