
ISSC 2012, NUI Maynooth, June 28-29

A Consistency Regulation Algorithm for
Client-Server-based Multiplayer Computer Games

Séamus C. McLoone, Damian Wynne, Aaron B. McCoy and Tomás E. Ward

Department of Electronic Engineering,

National University of Ireland Maynooth,

Maynooth, Co. Kildare, Rep. of Ireland.

email: seamus.mcloone@eeng.nuim.ie; tomas.ward@eeng.nuim.ie

Abstract— Consistency is one of the most important aspects to be considered when designing a

Distributed Interactive Application, and particularly in networked Multiplayer Computer Games
(MCGs). Several techniques exist which aim to reduce network traffic in an attempt to maintain an
acceptable level of consistency. However, these techniques are static in nature, as they do not adapt to
the varying network conditions. This paper presents an algorithm which aims to maintain an
acceptable level of consistency by adapting to changes in the network. The algorithm is a rate-based
approach which monitors the remote inconsistency of all players participating in a client-server-based
MCG. It operates on the premise that as the network conditions across the links between the server
and the clients vary, so too will the remote inconsistency. In response, the rate at which the updates are
transmitted from the server to all the remote clients is adapted, ensuring that an acceptable level of
consistency is maintained. Simulation results for the proposed algorithm are also presented.

Keywords – Consistency, Client-Server Network Architecture, Multiplayer Computer Games,

Distributed Interactive Applications.

I INTRODUCTION

A Distributed Interactive Application (DIA) is
a computer program which enables geographically
dispersed users to act in real-time in a simulated
environment to perform interactive tasks [1, 2]. Over
the past three decades, three distinctive classes of
DIAs have come to the fore, namely military
simulations, networked virtual environments and
online multiplayer computer games (MCGs) [2].

Due to the rapid advancements in online
gaming technology, it is the MCGs that have seen
the greatest increase in demand and popularity in
recent years, with games such as the Massively
Multiplayer Online Game (MMOG) hosting over a
thousand players at any instance in time [3]. MCGs
present their own unique challenges as they require
high consistency and high responsitivity. Players of
MCGs expect their actions to be interpreted
immediately and they assume that the representation
of the virtual world which they are viewing is
faithful and true. The distributed nature of MCGs
and DIAs in general, presents several obstacles to
meeting these expectations, as game designers have
to overcome challenges presented by real world
communication networks, most commonly the
Internet. These include limited bandwidth and
network latency.

In reality, perfect consistency is unachievable.
There is a balance required between the number of
updates transmitted among hosts and the actual

consistency obtained. On one hand, if too few
updates are sent then the consistency is greatly
reduced. On the other hand, if too many updates are
sent, the bandwidth is flooded, updates are delayed
and consistency is again reduced. This concept is
known as the consistency-throughput trade-off [4].

To date, current MCGs employ static methods
for sending updates, such as dead reckoning models
[5] with fixed error thresholds or simple fixed rate-
based transmission. However, these methods do not
allow for changing network conditions and therefore
cannot guarantee or maintain an acceptable level of
consistency. Some work has been carried on an
adaptive entity state update technique, but this has
primarily focused on peer-to-peer DIAs [6].

This paper proposes a novel global
consistency-aware entity state update algorithm for a
client-server MCG. This algorithm is a rate-based
technique that monitors a measure of inconsistency
recorded by each remote client and adjusts the rate at
which the remote clients receive updates from the
server accordingly. This new technique is simulated
using the NS2 network simulator [7] and its
performance is evaluated in comparison to a standard
fixed rate method.

The rest of this paper is structured as follows.
The next section describes two of the key aspects
associated with MCGs, namely consistency and
responsitivity. It also describes how the various
communication layers within networked games

affect both of these aspects. Section III outlines the
proposed rate-based method for entity state updates
in client-server MCGs. Section IV describes the
simulation used to evaluate the performance of the
proposed algorithm. The NS2 simulator is also
described here. The results of the simulation are
presented and discussed in section V, while the paper
ends with conclusions in section VI.

II CONSISTENCY & RESPONSITIVITY

Consistency in a MCG refers to the ability of
the MCG to ensure that each user’s view of the
world is identical, or as close to identical as can be
achieved for given conditions. A basic aspiration for
a distributed simulation is to present entities as being
in the right place at the right time and a simple
metric to capture this notion is a spatially-derived
time-stamped measure of consistency that can be
calculated using distance measures between the
entity positional state at its local peer and its
representations at remote peers.

The responsitivity of a MCG refers to how
quick an action taken by a user, in the form of a
physical key press or a joystick movement, is
processed and played out in the virtual world. In the
case of a client-server architecture (see Figure 1),
such an action has to be sent to the server for
processing and verification. For example, consider
the case where a player strikes the mouse button in
order to lift an object in an environment before
another opponent. This event is then sent to the
server, where it is processed and verified. Once the
server has verified that this is a valid operation, in
this case that the opponent has not lifted the object
first, a response is sent back to the player indicating
that they are allowed to take the object. The time it
takes for this to occur is known as the response time.

a) The physical and logical platforms
Multiplayer computer games can generally be

broken down into three separate communication
layers, namely the physical platform (this refers to
the underlying network infrastructure), the logical
platform (this builds upon the physical platform and
provides architectures for communication, data, and
control) and the networked application (this provides
for the interpretation of the data). Of these, it is the
physical and logical platforms that have the greatest
affects on consistency and responsitivity.

The physical platform for any distributed
application imposes certain restrictions on the speed
and reliability of the communication of data. These
issues are caused by resource limitations including
the network bandwidth, the network latency and the
processing power of each node for handling the
network traffic. These limitations are tightly coupled
with the consistency and responsiveness of the
application. For MCGs, as previously mentioned,
both high responsiveness and high consistency are
important. In reality, it is difficult to have an MCG

which is both highly responsive and highly
consistent. The physical platform dictates that only a
trade-off between these aspects can be achieved.

There are many existing techniques which
aim to compensate for the limitations imposed by the
physical platform of the network. These techniques
tend to rely on the principle of message reduction, in
an effort to prevent overloading of the network.
However, on the other hand, an abundance of
messages can lead to packet loss and increases in
network latency, which adversely affects both
responsiveness and consistency.

The logical platform is concerned with the
flow of traffic in the network. As such, it defines the
communication, data, and control architectures.
There are a number of models which can be chosen
for the communication architecture, the two most
commonly used being client-server and peer-to-peer.

Figure 1: Communication models - (a) peer-to-peer

and (b) client-server.

b) Peer-to-peer & client-server
In the peer-to-peer model, as shown in Figure

1(a), each node is equal, and may transmit messages
to any other node in the network. Early networked
games relied on this peer-to-peer model as it is fairly
straightforward to realize. Also, since each peer is
equal and maintains authority over its own state, high
responsitivity can be assured as the players actions
may be interpreted immediately by the node. This
comes at the cost of consistency, as conflicts can
arise over the true game state due to the lack of a
single controlling entity. Problems can arise when
attempting to determine ownership of a particular
item, or determining if a player has successfully
seized an item before an opponent, for example.

The client-server model, as illustrated in
Figure 1(b), works by introducing a server node into
the network. All nodes in the network, called clients,
need only be concerned with connecting to this
server. They have no interest in any of the other
clients in the network, as the server is responsible for
all communication between each of them. In this way
the server can monitor all traffic between clients and
maintains the authoritative state of the game world.
Thus, high consistency can be maintained, but at the
cost of the responsitivity of the application, as all
user input must first be approved by the server before
being acted on, introducing delays between the time
a player initiates an action and the time it takes place.

(a) (b)

Several different entity state consistency
management methods exists for reducing network
traffic while maintaining some level of consistency
[5, 8]. However, these methods are static in nature
and do not adapt to changing network conditions,
such as increases in latency or reduction in available
bandwidth. There has been recent investigation into
using adaptive techniques based on the inconsistency
at remote users [6]. However, this work has focused
on peer-to-peer DIAs to date. Nevertheless, it
provides inspiration for the development of an
adaptive rate-based entity state update method for
use in client-server MCGs. This proposed method is
now presented.

III CLIENT-SERVER CONSISTENCY REGULATION

(CSCR) ALGORITHM
The proposed algorithm strives to maintain an

acceptable, preset level of inconsistency by adjusting
the update transmission rate from the server to the
client in accordance with the current level of remote
spatial inconsistency at that client. This rate-based
approach is dependent on two important aspects,
namely the required desired level of inconsistency
and a measure of the remote inconsistency.

a) Desired level of inconsistency (DLI)
As noted in section II, absolute consistency is

not achievable. As such, we need to choose an
acceptable level of inconsistency and allow the
proposed algorithm to maintain this level. Choosing
this value is not trivial and will need to be carefully
considered at design time, using knowledge of the
network environment, the type of MCG interaction
supported and the level of acceptable error. Ideally, it
should be a value that can be maintained with a low
transmission rate in order to avoid excess traffic
generation, while also ensuring the inconsistency
produced is not perceptually noticeable. In addition,
the rate should be able to increase in the presence of
increased latency without causing the traffic to
exceed the bandwidth limitation. By way of
illustration, consider the graph in Figure 2. This
graph shows how inconsistency (pixels) varies with
the transmission rate (packets per second) for an
arbitrary simulation example. The relevant detail to
note here is that the bandwidth limit occurs at a
transmission rate of 35pps. Three different DLI
values are also shown.

In this case, a DLI of 0.5 pixels is too low as
the inconsistency is never reduced to that level, even
at the maximum possible transmission rate before
exceeding the bandwidth limitation. This would
cause the algorithm to behave as though it were
attempting to achieve absolute consistency. In
contrast, a DLI of 20 pixels can be maintained at a
very low transmission rate. However, it is obvious
that by increasing the rate by a very small amount
the inconsistency can be maintained at a much lower
level, which is clearly preferable. In Figure 2 (b) it is

observed that a DLI of 5 pixels can also be
maintained at low transmission rates but, more
importantly, it takes a relatively larger increase in
transmission rate to reduce the level of inconsistency
experienced. Hence, this is a good choice of DLI for
this particular simulation. A lower value may also be
chosen along this curve, but as the DLI gets lower,
the transmission rate required gets closer to the
bandwidth limitation, reducing the scalability of the
application, as well as the additional latency that can
be accounted for.

Figure 2: (a) Sample inconsistency profile with example
DLI levels; (b) a magnified version of same.

It is worth noting, from Figure 2 (b), that a

DLI of 5 pixels provides two points along the
inconsistency curve. The first is around which the
inconsistency is to be maintained (the DLI) and the
one at the lowest transmission rate. The other point
occurs where the inconsistency is increasing. This is
the point where the transmission rate has caused the
traffic on the network link to exceed the available
bandwidth and is the point with the largest
transmission rate. Clearly, the latter point needs to be
avoided. These two points can be easily
distinguished through monitoring packet loss, which
increases when the bandwidth is exceeded. By
detecting the instances when the traffic exceeds the
available bandwidth it then becomes possible to
reduce congestion on the network. This is achieved
by increasing the DLI and reducing the transmission
rate, maintaining a higher level of inconsistency, but
guaranteeing that higher level.

b) Measuring remote inconsistency

The remote inconsistency measured and used by the
proposed algorithm is the error due to latency in
addition to the time between updates. This error is
best illustrated with the aid of an example, as shown
in Figure 3. This figure shows the path�an object may
take. Along this path, two updates are generated. The
first is generated at time t = 0, with position p1 and
velocity vector v1, as shown. At a time tu later the

object’s path

p1
p2

v1

er

v2

tu
time t = 0

second update is generated with position p2 and
velocity vector v2. The remote client does not receive
this new update until a further time later, indicating
the delay experienced. The remote inconsistency er is
calculated as the spatial error at this point in time.

Figure 3: Measuring remote inconsistency er.

c) Ignoring sudden spikes in inconsistency
Sudden short-lived spikes can sometimes

occur in remote inconsistency for reasons such as
packet loss or extremely acute changes in entity
motion. These spikes need to be ignored otherwise
they will cause a sudden increase in transmission rate
followed by an almost immediate reduction, resulting
in unnecessary usage of the bandwidth. In order to
reduce the sensitivity of the proposed algorithm to
such spikes, rate changes are only generated when
the DLI is exceeded for a minimum period of time,
defined here by the parameter TDLI.

Figure 4: Flowchart of the CSCR algorithm.

d) The CSCR algorithm
Figure 4 outlines the actual CSCR algorithm

as implemented by the server in a client-server
scenario. In brief, the server receives a measure of
the inconsistency from the remote client, ensures that
any changes in this value exists for a short, but
sustained period of time (by using a timer) and,
subsequently, changes the transmission rate of
packets to the same client accordingly. Figure 4 also
shows that the DLI increases if the bandwidth is
exceeded and once network congestion eases, the
DLI value can return to its original value once again.
This is to ensure that the lowest possible DLI is
maintained at all times.

It is worth noting that if the inconsistency is
less than the DLI then the transmission rate is
decreased. Leaving the rate unchanged would result
in a lower level of inconsistency. However, this
occurs at the expense of additional traffic being
generated. By maintaining the level inconsistency at
the preset DLI, there is more bandwidth available,
and thus the potential for allowing more users of the
application, or possibly even allowing other data
types to be transmitted along with the updates that
would not have been otherwise possible.

Finally, as acceptable levels of consistency
may be impossible to achieve due to excessive
traffic, or even network failure, limits must be set on
both the server transmission rate and the DLI. Under
such severe circumstances, a solution is to remove
any clients which cannot maintain the acceptable
level from the MCG. Each of these limits are
important and are generally application specific.

IV SIMULATING THE CSCR ALGORITHM

This section outlines the simulation setup
used to evaluate the performance of the proposed
CSCR algorithm. Firstly, the NS2 simulator used to
simulate the algorithm is briefly presented.

a) The NS2 simulator
NS2 is an event driven network simulator

developed at UC Berkeley [7]. It is targeted at
networking research that simulates a variety of
Internet Protocol networks. It implements network
protocols such as the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP), along
with numerous traffic source behaviours, router
queue management mechanisms, routing algorithms,
and more. It also implements multicasting and some
of the MAC layer protocols for LAN simulations.
NS2 is developed using both the C++ and OTcl
programming languages. The simulator itself is
written in C++ with the command and configuration
interface being implemented using OTcl.

b) Simulation setup
In order to test the CSCR algorithm some

means of simulating the motion of an object was
required. Three types of motion were simulated,

Wait for remote inconsistency
er from client

Has timer
exceeded

TDLI?

No

Yes

Is er > DLI?

Is er = DLI?
Yes

No

Is bandwidth
exceeded?

Is current
 DLI > Initial

DLI?

Yes No

Increase Rate Decrease Rate

Decrease DLI Increase DLI

No No

Yes Yes

Time(s) Time(s)

Starting
point of
object

namely smooth, bounce and jolt, as these represent
the curve classifications by which the motion of an
object can be locally described [9].

The smooth motion is simply represented by a
circular path. The bounce motion is used to simulate
a sudden change in direction, i.e. an object which is
travelling in one direction and suddenly turns and
begins travelling in the opposite direction. This is
implemented by causing the object to reverse its
direction once it reaches a certain point, for example
where a ball comes into contact with the ground. The
jolt motion is used to simulate an object moving in a
random path and is obtained by introducing a second
circle to the smooth motion. A visual representation
of the jolt motion is given in Figure 5.

Figure 5: Simulated jolt motion.

In addition to simulating these motions, the

parameters of the CSCR algorithm had to be chosen.
Here, the initial DLI value is 5 pixels and the initial
transmission rate is 5pps. If required, the DLI will be
increased by an increment of 5 pixels and reduced by
a factor of 10%. In general, these parameters need to
be carefully chosen at design time and are
application dependent.

In addition, it was decided to adopt four
different transmission rate changes. This allowed the
algorithm to remain highly responsive and, also,
introduced the ability to fine-tune the transmission
rate as the inconsistency approaches the DLI value.
The values chosen here are as follows: if the remote
inconsistency is < 70% or > 105% of the DLI, then
the rate change is set to 1pps; if it is between 70%
and 85% of the DLI then the rate change is 0.1pps; if
is between 85% and 95% of the DLI then the rate
change is 0.02pps; if it is between 95% and 105% of
the DLI then there is no rate change.

c) Test Cases
Several tests were successfully simulated in

order to illustrate the effectiveness of the CSCR
algorithm. Due to lack of space, only two of these
test cases are presented here. The reader is referred
to [10] for a detailed set of analysis and results. Test
Case 1 simply involves simulating a single client-
server scenario where a server-side object follows
each of the three motions outlined earlier. The client
side views a simple linear extrapolation of the

object’s motion, as illustrated in Figure 3. The
network latency for this test case was varied from
50ms to 250ms, increasing 50ms every 10s. The
simulation ran for 60s. For the final 10s, latency is
returns to 50ms. Test Case 2 involves multiple
clients (4 in this case) and only the smooth motion is
now considered. Here, each client is subject to a
different value of latency, ranging between 100ms
and 250ms. This simulation ran for 30s. Both test
cases were carried out with CSCR and without
CSCR. In the latter case, this simply means that a
fixed transmission rate of 5pps is used throughout
the simulation. The results of these test cases are
now presented.

V RESULTS AND DISCUSSION

Figure 6 shows the inconsistency obtained for
each of the motion types smooth, bounce and jolt for
test case 1. The advantages of the CSCR algorithm
are clearly evident, particularly in the case of the
smooth motion, where the inconsistency is
maintained around the DLI despite the changing
latency. It is worth observing that slight ‘bumps’
occur in the inconsistency each time the latency
changes. This is due to the increased latency
experienced, and is corrected by adjusting the
transmission rate. The transmission rate from the
server to the client increases in order to compensate
for the larger inconsistency and decreases whenever
the latency is reduced. By adjusting the transmission
rate, based on the inconsistency measured, the
inconsistency can be regulated at the desired level.
When the CSCR algorithm is not employed, the
smooth motion simply experiences an inconsistency
which mimics the changes in latency, due to the
fixed transmission rate.

Figure 6: Inconsistency for test case 1 (smooth, bounce and
jolt motions) with and without CSCR.

It is worth noting that when the latency is
reduced at 50 seconds, a momentary spike in the
inconsistency occurs. This is caused by packets
being received out of order. In NS2, each packet
transmitted has a delay associated with it. Once the
latency changes, packets that are already transmitted
do not change this value, experiencing longer delays
than any newly transmitted packets. Hence, these
packets are received by the recipient later than
packets transmitted after them with a lower latency.

Similar observations can be made for the
bounce and jolt motions in relation to an improved
performance using the CSCR algorithm. Here,
however, we can observe spikes in inconsistency for
the bounce motion and constantly changing
inconsistency for the jolt motion. These occur
because of the simple client-side linear extrapolation
employed. For example, this extrapolation predicts
the ball travelling past the bounce point rather than
turning at it and, hence, each time the ball bounces a
spike in inconsistency occurs.

Figure 7: Inconsistency for test case 2 (4 clients with
different latency values) with and without CSCR.�

Figure 7 shows the inconsistency obtained

for each of the four clients for test case 2. These
results show that, despite differing levels of latency
between each of the connected clients, the CSCR
algorithm can adjust the transmission rate of each
client to ensure that a uniform level of inconsistency
is maintained. This is significantly better then the
scenario in which a fixed transmission rate is
employed. In this case, each client experiences a
different level of inconsistency. Furthermore, due to
the fixed rate, poor inconsistency values are not dealt
with. The only hope for improving consistency is

that network traffic from other applications reduces
to increase available bandwidth.

It is important to note, that using the CSCR
to maintain a uniform level of inconsistency for all
clients may not always be a good idea, or even
possible. As previously stated in section III, part (d),
specific clients may need to be completely removed
from the application for the ‘greater good’ of the
remaining participants.

VI CONCLUDING DISCUSSION

This paper has proposed a novel consistency
maintenance algorithm for use in client-server based
MCGs and, indeed, DIAs in general. It operates by
monitoring inconsistency levels at each client and
adjusts the transmission rate to maintain this
inconsistency at a preset level. The simulation results
presented within validate this approach and show
that the algorithm performs better than the current
static method of employing a constant transmission
rate throughout.

Future work will evaluate the performance of
the proposed algorithm in more realistic distributed
interactive virtual environments.

VII REFERENCES
[1] M. R. Macedonia and M. J. Zyda, "A

Taxonomy for Networked Virtual Environments", IEEE
Multimedia Systems’ 98, 4(1), 1997, pp. 48-56.

[2] D. Delaney, T. Ward and S. McLoone, 2006,
"On Consistency and Network Latency in Distributed
Interactive Applications: A Survey - Part 1", Presence:
Teleoperators and Virtual Environments, vol. 15, 2006, pp.
218-324.

[3] J. Kim, J. Choi, D. Chang, T. Kwon, Y. Choi
and E. Yuk, "Traffic Characteristics of a Massively Muli-
player Online Role-Playing Game", 4th ACM SIGCOMM
workshop on Network and System Support for Games, New
York, USA, 2005.

[4] S. Singhal and M. Zyda, “Networked Virtual
Environments: Design and Implementation”, New York
ACM Press/Addison-Wesley Publishing Co., 1999.

[5] “IEEE Standard for Distributed Interactive
Simulation - Application Protocols”, 1998, IEEE Std
1278.1a-1998.

[6] D. Marshall, S. McLoone and T. Ward,
"Optimising Consistency by Maximizing Bandwidth
Usage in Distributed Interactive Applications", ACM
Transactions on Multimedia Computing, Communications,
and Applications, vol. 6, no. 4, article 30, 2010.

[7] K. Fall and K. Varadhan, K, "The ns Manual",
available at http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf.

[8] A. McCoy, T. Ward, S. McLoone and D.
Delaney, "Multistep-ahead neural network predictors for
network traffic reduction in distributed interactive
applications," ACM Transactions on Modeling and
Computer Simulations, vol. 17, no.4, article 16, 2007.

[9] S. K. Singhal, "Effective Remote Modelling in
Large-Scale Distributed Simulation and Visualization
Environments," Dept. of Computer Science, Stanford
University, CA, USA, 1996.

[10] D. Wynne, “Design of a Consistency
Regulation Algorithm for Client/Server Based Multiplayer
Computer Games”, M.Eng.Sc. Thesis, Dept. of Electronic
Engineering, NUI Maynooth, Ireland, 2009.

