
A novel co-locational and concurrent fNIRS/EEG measurement system:
design and initial results.

Darren J. Leamy and Tomas E. Ward

Abstract— We describe here the design, set-up and first time
classification results of a novel co-locational functional Near-
Infrared Spectroscopy/Electroencephalography (fNIRS/EEG)
recording device suitable for brain computer interfacing appli-
cations using neural-hemodynamic signals. Our dual-modality
system recorded both hemodynamic and electrical activity at
seven sites over the motor cortex during an overt finger-tapping
task. Data was collected from two subjects and classified offline
using Linear Discriminant Analysis (LDA) and Leave-One-Out
Cross-Validation (LOOCV). Classification of fNIRS features,
EEG features and a combination of fNIRS/EEG features were
performed separately. Results illustrate that classification of the
combined fNIRS/EEG feature space offered average improved
performance over classification of either feature space alone.
The complementary nature of the physiological origin of the
dual measurements offer a unique and information rich signal
for a small measurement area of cortex. We feel this technology
may be particularly useful in the design of BCI devices for the
augmentation of neurorehabilitation therapy.

I. INTRODUCTION

Brain Computer Interfacing (BCI) is making steady
progress towards becoming a mainstream alternative inter-
action technology. This progress has been driven in large
part to the increasing availability of inexpensive electro-
physiological apparatus and the application of ever more
sophisticated signal processing methods. However, progress
in the exploitation of alternative physiological measurements
for such interfacing has been limited and remains an aspect
of the discipline warranting more concerted investigation. In
this paper we describe initial progress in the development of
an alternative measurement technology.

We propose the use of neural-hemodynamic signals as an
interface technology suitable for brain computer interfacing.
This work is motivated by research towards the development
of BCI suitable for the augmentation of stroke rehabilita-
tion therapy. By measuring cortical activity associated with
motor function for those individuals unable to engage with
conventional therapy, as a consequence of little or no residual
movement, it is hypothesized that increased drive to neuro-
plastic processes can be administered through appropriate
neuro-feedback [1]. This application space presents a highly
demanding environment for the required BCI technology. For
example, the techniques used must be capable of generating
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stereotypical responses which can be associated with mean-
ingful biofeedback targets. Accuracy is also important as the
signal produced must be sufficiently robust so as to minimize
classification errors.

An additional concern is that the technology must be
convenient, unobtrusive and provide as little discomfort as
possible to the patient. It is therefore unreasonable to expect
a patient to travel to a research laboratory to spend extended
periods of time engaging with an uncomfortable cortical
activity recording device. Consequently the technology must
be capable of presentation in a small form factor, have
a quick subject set-up time and should be as portable as
possible.

Given the constraints already highlighted and, in particular
the application area of stroke, where the pathophysiology
arises from damage to the neural vasculature, we speculate
that a suitable BCI technology should combine both neural
and hemodynamic signatures of cortical function. Such a
compound signal conveys information not only about un-
derlying neural activity but also the associated vasculature
response, changes in which may reflect structural and regen-
erative changes in cortex. This represents a dual modality
measurement. In order to achieve this we propose the use
of a combined optical and electrical measurement system,
which in this case can be achieved through functional near
infrared spectroscopy (fNIRS) and electroencephalography
(EEG).

A. Functional Near-Infrared Spectroscopy (fNIRS)

fNIRS uses light in the near-infrared range (typically 660
nm to 1000 nm) to measure the dynamic changes in cerebral
blood oxygenation and blood flow of a localised area of
the brain [2]. fNIRS uses pairs of light sources and light
detectors operating at two or more discrete wavelengths.
A source-detector pair is referred to as an “optode” and
constitutes a single fNIRS channel. The light is emitted
into the scalp of a subject from the light source, where
the photons of light are either absorbed or scattered at
a molecular level. A portion of the emitted photons are
scattered to such a degree that they exit the scalp near to the
point of entry. A light detector can be placed on the scalp
to measure the intensity of the light exiting at that point.
Models of propagation of near-infrared light in the human
head have shown that the photons that exit at a particular
point will have followed a roughly banana-shaped path, the
depth of which depends on the source-detector separation
[3].
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Oxygenated hemoglobin (HbO) and deoxygenated
hemoglobin (HbR) are two components of blood that absorb
infrared and near-infrared light with known extinction
coefficient spectra [4]. Therefore, the amplitude of a
recorded fNIRS signal is a function of the concentration
of HbO and HbR along the path of the photons. Using
knowledge of the specific extinction coefficients of HbO
and HbR at the wavelengths used, a measurement of the
relative HbO and HbR levels can be found using analytical
and/or emperical calculations [5]. fNIRS responses have
been established in previous works e.g. [6] and have been
utilised for BCI applications [7].

B. Electroencephalography (EEG)

Non-invasive EEG is an electrical measurement of the
spatially integrated, near-synchronous dendritic activity of
similarly oriented neurons near the surface of the brain.
The EEG demonstrates spectral structure which can change
as a consequence of neural drive associated with brain
function. In particular motor tasks elicit specific well known
patterns in spectra which have been used as the basis for
BCI [8]. One such pattern is Event Related Synchroni-
sation/Desynchronisation (ERS/ERD), which is a relative
increase/decrease in the band power of a chosen frequency
range that coincides with some event. In ERS/ERD analysis,
a baseline ‘reference’ period of EEG data is recorded before
the event and then compared to an ‘activity’ period of EEG
data, recorded during or following the event [9]. ERD is
known to occur in the µ frequency range (8–12 Hz) on
movement onset and ERS is known to occur in the β
frequency range (12–30 Hz) following movement offset [10],
[11].

II. METHODOLOGY

A. Device design

We designed a module to hold three fNIRS light sources,
three fNIRS light detectors and seven EEG electrodes in
the array shown in Figure 1. There are seven fNIRS chan-
nels with the corresponding EEG electrodes located directly
above the centre point of each fNIRS channel. The centre
point of an fNIRS channel is the interrogated area of cortex,
so with our set-up, we are recording electrical and hemody-
namic activity from approximately the same area of cortex.
Thus, we have seven co-locational, dual-modality recording

TABLE I
EEG ELECTRODES, fNIRS SOURCES AND fNIRS DETECTORS USED FOR

EACH fNIRS/EEG CHANNEL.

Channel EEG fNIRS fNIRS
Num. Electrode Source Detector

1 E1 S1 D1
2 E2 S1 D2
3 E3 S2 D1
4 E4 S2 D2
5 E5 S3 D2
6 E6 S2 D3
7 E7 S3 D3

sites. Table I details the electrodes and optodes used for each
neuro-hemodynamic channel. fNIRS data was recorded using
a TechEn CW6 system (TechEn Inc., USA). Wavelengths
used were 690 nm and 830 nm, sampled at 25 Hz. EEG data
was recorded using a BioSemi Active-Two system (BioSemi
Inc., The Netherlands). DC coupled data was recorded at
2048 Hz.

B. Experiment

To demonstrate the classification accuracy gain of com-
bining the feature space of fNIRS and EEG, data was
collected from two healthy individuals. Both subjects gave
voluntary consent. Subject A was male, 37 years old and
left-handed (self-reported). Subject B was male, 26 years
old and right-handed (self reported). During the experiment,
the subjects were seated in a comfortable chair viewing a
computer screen which presented instructions. Subjects were
instructed to tap each of their fingers to their thumb on
both hands. Tapping was self-paced. Individual trials lasted
for 20 seconds, during which time the on-screen instruction
read either ‘TAP’ (an ‘active’ trial) or ‘RELAX’ (a ‘rest’
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Fig. 1. Design of the dual fNIRS/EEG recording module. fNIRS sources
are labelled S1 - S3. fNIRS detectors are labelled D1 - D3. EEG electrodes
are labelled E1 - E7. All source-detector separations are 30 mm. All EEG
electrodes lie halfway between a source and detector.

Fig. 2. Dual fNIRS/EEG module positioned over Subject A’s motor cortex.
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Fig. 3. 2D fNIRS feature space for Channel 2 of Subject A, Trial 1.
Crosses indicate feature locations when subject is in a rest period. Circles
indicate feature locations when subject is in a finger-tapping period.

trial). 20 trials were carried out per experimental run, which
alternated between active and rest, lasting 400 seconds in
total. Two experimental runs were recorded for each subject
with a short break between runs. The central electrode of our
fNIRS/EEG recording module was located at C3 for Subject
A (left-handed) and C4 for Subject B (right-handed). Module
position is shown in Figure 2.

C. Signal processing

EEG data was first analysed to identify the frequencies at
which ERS and ERD occurred in the µ frequency range and
β frequency range respective to two types of event. These
two events were the transition from rest to active periods
and vice-versa. The frequency ranges at which ERS and
ERD occurred were identified by sight by comparing average
FFT plots for the reference and activity periods for both
events. Raw EEG data was bandpass filtered with a 6th order
Butterworth filter to the identified ERS/ERD ranges, squared
to obtain a power signal and then smoothed using a lowpass
6th order Butterworth filter at 5 Hz.

For ERS/ERD analysis, the reference window was chosen
to be between 4.5 and 3.5 seconds before both types of
event. For a transition from a rest trial to an active trial,
the activity window was selected to be from 0 to 1 seconds
after the transition. For a transition from active to rest,
the activity window was selected to be from 0.5 to 1.5
seconds after the transition. These windows were chosen
to capture the expected timing of pre-movement µ-rhythm
desynchronisation and post-movement β-rhythm synchroni-
sation. These windowed µ and β range power signals were
used for classification of EEG activity.

For fNIRS, the 690 nm and 830 nm raw intensity mea-
surements were first converted to changes in optical density,
as per Eqn. (1a) and (1b) of [5]. Next, the Modified Beer-
Lambert Law was applied to these signals to generate change
in concentration signals for HbO and HbR, as per Eqn. 3 of
[5]. A differential path-length factor of 6 was used. These
∆HbO and ∆HbR signals were used for classification of
fNIRS activity.

Fig. 4. 2D EEG feature space for Channel 2 of Subject A, Trial 1. Crosses
indicate feature locations when subject is in a rest period. Circles indicate
feature locations when subject is in a finger-tapping period.

D. Classification

Signal classification was performed on the fNIRS and EEG
signals following the processing steps already described. The
goal of classification was to decode the subject’s current
state based on features extracted from the fNIRS and EEG
responses. We aimed to classify the activity into one of two
classes: ‘active’ and ‘rest’. We employed the Linear Discrim-
inant Analysis (LDA) classifier and calculated classification
accuracy via leave-one-out cross-validation (LOOCV). In
particular, for N trials, N–1 trials were used for training
the classifier and the remaining 1 trial was used for testing.
This was repeated N times with each trial used for testing
once. Classification accuracy was calculated as the number
of correct classifications over N.

For EEG, the feature extracted was change in µ-rhythm
and β-rhythm power from the reference period to the activity
period at the beginning of a trial. This resulted in a 2-
dimensional EEG feature space (Figure 4). For fNIRS, the
average change in amplitude of the ∆HbO and ∆HbR signals
over a trial were used to define a 2-dimensional fNIRS
feature space (Figure 3). By combining the fNIRS and EEG
feature spaces, an fNIRS/EEG 4-dimensional feature space
was also created for classification.

III. RESULTS

A table of classification results are presented in Table
II. Shown is the classification accuracy of the classifier
when operating on fNIRS features alone, EEG features
alone and combined fNIRS/EEG features. A summary of
results is presented in Table III. Subject A demonstrated
an average pre-movement µ-rhythm ERD in the 9–11 Hz
range and average post-movement β-rhythm ERS in the 19–
22 Hz range over all EEG channels. Subject B demonstrated
average pre-movement µ-rhythm ERD in the 9–12 Hz range
and average post-movement β-rhythm ERS in the 19–21 Hz
range over all EEG channels. Our results show that utilising
both fNIRS and EEG features for classification yields an
improvement on classification accuracy.

IV. DISCUSSION

Our results have shown an average increase in classi-
fication accuracy by combining fNIRS features and EEG
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TABLE II
LDA CLASSIFICATION RESULTS FOR fNIRS FEATURES ONLY, EEG FEATURES ONLY AND COMBINED fNIRS/EEG FEATURES.

Subject A Subject B
Trial 1 Trial 2 Trial 1 Trial 2

Channel fNIRS EEG Comb. fNIRS EEG Comb. fNIRS EEG Comb. fNIRS EEG Comb.
1 84% 79% 90% 100% 84% 95% 79% 84% 95% 79% 84% 84%
2 79% 79% 84% 95% 79% 95% 47% 79% 63% 53% 84% 84%
3 100% 74% 95% 100% 84% 100% 79% 74% 79% 84% 84% 84%
4 95% 84% 95% 84% 84% 79% 74% 74% 63% 53% 90% 79%
5 74% 74% 84% 42% 74% 58% 47% 68% 47% 74% 79% 95%
6 100% 90% 100% 95% 74% 90% 58% 74% 68% 79% 84% 79%
7 58% 84% 84% 68% 68% 79% 68% 63% 68% 58% 74% 63%

Average 84% 80% 90% 83% 78% 85% 65% 74% 69% 68% 83% 81%

features into a single fNIRS/EEG feature space. Results for
each subject, however, were slightly different. For Subject
A, the combined classifier yielded better results than either
fNIRS or EEG individually, but for Subject B, results were
slightly better for EEG classification than for combined
classification. While this may seem discouraging, this result
is not unexpected. For 2D data, LDA finds a line between
classes that best describes the classification boundary. In
combining two 2D feature spaces, it’s possible that the
hyperplane boundary does not as clearly divide the two
classes. This appears to have occurred with Subject B’s data.
However, the average gain of using dual feature classification
over fNIRS is greater than the loss when compared to EEG
feature classification.

Our results suggest that classification with combined
fNIRS/EEG is an improvement over fNIRS or EEG indi-
vidually. Therefore, we expect a similar improvement to
be seen when using dry electrodes, instead of the standard
wet electrodes we have used here. Should these results
hold for dry electrodes, then we could design a completely
dry fNIRS/EEG recording system, which will significantly
reduce set-up time and subject discomfort and may have
similar classification success to an all-wet electrode EEG
system.

V. CONCLUSIONS

The investigation of alternative technologies for BCI is
an important endeavour if engineers are to design systems
that have broader appeal and utility than current systems.
Here we have successfully demonstrated the feasibility of
technology yielding a neural-hemodynamic interface for the

TABLE III
SUMMARY OF CLASSIFICATION RESULTS.

Subject fNIRS EEG Dual
A 83.5% 79% 87.5%
B 66.5% 78.5% 75%

Average 75% 79% 81%

monitoring of cortical activity associated with motor move-
ment. We believe that this technology will facilitate further
investigation into the development of easy-to-use mainstream
rehabilitation technology utilising BCI principles.
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