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Abstract 
In this paper the criteria determining robustness of a LMS-driven Adaptive Periodic Noise 

Canceller (APNC) when applied to the cancellation of coloured interference signals are 

investigated. The upper bound on the algorithm stepsize is the crucial quantity for determining 

robustness and here relevant expressions for this upper bound are developed, followed by 

experimental evaluation.  
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1. Introduction 
In applications where cancellation of a time-varying interference, such as an acoustic resonance, 

is required, adaptive filtering is the most commonly proposed solution as the unknown nature of 

the interference demands a time-variant filter structure to ensure continuous tracking and 

cancellation. As the interference may exhibit rapid fluctuations in magnitude, an adaptive filter 

with robust performance properties is essential to prevent disturbance of the adaption process by 

these fluctuations. Specifically, the LMS-driven Adaptive Periodic Noise Canceller (APNC) has 

been shown experimentally to be a successful solution to resonance cancellation [1] [2]. 

However, although the requirement of algorithm stability is necessary for proper algorithm 

operation, it may not be sufficient to guarantee a practically useful level of performance at all 

times. Fortunately, the concept of robustness provides an alternative framework within which it 

is possible to establish a more meaningful criterion for algorithm performance. A theoretical 

proof of the robustness of the LMS algorithm in the sense of it being 
∞H -optimal was given in 

[3]. Here, the value of the algorithm stepsize was shown to be the crucial parameter for ensuring 

algorithm robustness. Following from this, an empirical determination of the necessary 

conditions for robust performance of the APNC in a one-dimensional open-loop feedback 

system with a white Gaussian input was given in [4], and for a one-dimensional closed-loop 

feedback system under similar input conditions was given in [5]. Limiting the input properties 

to be Gaussian, this work demonstrated how an empirical justification of APNC robustness 

could be achieved. This paper aims to extend these analyses to a two-dimensional open-loop 

APNC configuration whose input consists of an acoustic resonance and an information signal. 

The increased dimensionality allows arbitrary placement of the resonance in terms of frequency 

and magnitude. Additionally, the aim is to supersede the empirical approach in favour of a more 

rigorous derivation of a suitable expression for the maximum allowable stepsize to ensure 

robust performance.  

 

2. Background 
Little work has gone towards creating a methodology under which the performance of 

interference cancelling algorithms can be deemed to be robust. However, significant advances 

have been made in the field of estimation theory as many of the classical methods were not 

always directly applicable in cases where there was a high level of uncertainty regarding the  

statistics and distributions of the underlying signals being input to the system under 

examination. One particular approach known as 
∞H  estimation theory arose from 



developments in robust control theory [6]. It was founded on the premise that for a non-robust 

estimation procedure small disturbances corrupting the measurement combined with modelling 

errors may lead to large estimation errors. Therefore, any approach to robust estimation requires 

a measure of the largeness and smallness of the signals involved, and specifically within the 
∞H approach the focus was on the energy of these quantities [7]. The main idea was to come up 

with estimators that minimise (or in the suboptimal case, bound) the maximum energy gain 

from any disturbances to the estimation errors. Thus, it is guaranteed that if the disturbances are 

small (in energy) then, no matter what those disturbances are, the estimation errors will be as 

small as possible (in energy). The robustness of 
∞H  estimators, with respect to disturbance 

variation, follow from the fact that they protect against the estimators worst-case performance 

and make no assumption on the statistics or distributions of the disturbance signals. In other 

words, the maximum energy gain is minimised over all possible disturbances. The primary 

drawback of the 
∞H approach is that as it makes no assumptions about the disturbances and has 

to accommodate for all conceivable ones, it may be over-conservative. 

Although it has long been known experimentally that the Least-Mean Square (LMS) 

algorithm was robust, a good example being its superior tracking capability over the RLS 

algorithm in the presence of non-stationary inputs [8], this observed robustness was not justified 

theoretically until [3] established its formal link to 
∞H  theory. This paper set out to prove the 

LMS algorithm was robust in the sense of it being 
∞H optimal and the primary result was that 

the value of the algorithm stepsize was shown to be the crucial parameter for ensuring algorithm 

robustness. Although the interference cancelling problem was not examined within this work, 

the principles given exposed a procedure which could be adapted and applied. 

 

2.1 
∞H  approach to LMS Robustness 

First it is necessary to begin with the definition of the 
∞H  norm of a transfer operator: 

Definition  - The H ∞
-norm: Consider a linear time-invariant system that maps an input 

sequence { }ui  to an output sequence { }yi . The energy gain γ 2
 between the input and output 

is 
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Denoting T as the transfer operator that maps the input vector sequence { }ui  to the output 

sequence { }yi ,  

y T ui i=     (2) 

The H ∞
-norm of T is defined as the maximum value for γ  over all possible square-summable 

causal input sequences 2h ,  
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and is thus directly related to the maximum energy gain from the input to the output  [3]. 

In the context of adaptive filtering, which belongs to the finite horizon case above, robust 

performance implies that that the adaptive solution minimises the maximum energy gain from 



the disturbances to the estimation errors [3]. A measure of the energy gain is found by taking 

the H
∞

- norm of the transfer operator T that maps these disturbances to the estimation errors. 

As the adaptive filter is a time-varying system, this measurement must be taken with each 

iteration of the algorithm. Furthermore, T is a function of the weight estimation strategy i.e. 

( )T W , which in turn is a function of all previous filter inputs and outputs.  

 

( ) ( ) ( ) ( ) ( )( )T fW = e e n n0 0, , ; , ,K KX X    (5) 

 

where ( )e n  is the filter output and ( )X n  is the filter input vector at time n. 

In the case of the LMS algorithm, denoting the a priori error ( )nε  and the input disturbances 

collectively as ( )nv , the idea is to find a suitable value of algorithm stepsize so that the LMS 

algorithm will be a H ∞
-optimal strategy that minimises ( )

∞
WT  and will also obtain the 

resulting, 
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where 
*W  is the optimum Wiener weight value, 

0W  is the initial weight vector and µ  is the 

algorithm stepsize [3]. 

Examining (6), it can be seen that the transfer operator is a measure of the “amplification” of the 

noise given the estimate. Furthermore, the ratio depends on the choice of input disturbance. To 

remove this dependence it is important to consider the largest energy gain over all possible 

disturbance sequences, ( )nv . This is equivalent to finding the H
∞

- norm of the transfer 

operator ( )
∞

WT . 

For the LMS algorithm to exhibit robust performance the worst case disturbance energy gain 

must be less than or equal to 1, i.e. no amplification, and for it to be H ∞
-optimal [3]  
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For the LMS algorithm H ∞
-optimality is determined by the value of stepsize µ , so by 

choosing the value of the stepsize of the algorithm to lie below a defined upper bound, the 

criterion of optimality given in (7) will be satisfied. The proof of H ∞
-optimal of the LMS 

algorithm given in [3] for the system identification problem relies on the filter input being 

persistently exciting, i.e. 

( )lim
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If this is not the case, the solution will be sub-optimal. 

 

3. Method 
The aim here is to investigate robust interference cancellation, specifically, the removal of 

coloured interference from a desired information signal by an Adaptive Periodic Noise 

Canceller (APNC), a variant on the Adaptive Line Enhancer of Widrow [9]. Following from 

this, Figure 1 below shows the APNC connected in an open-loop configuration. The intention is 

that the filter will cancel the resonance at its input, leaving only the information signal ( )ns  at 

its output. In this case, the information signal is assumed to have Gaussian properties so the 

filter decorrelation delay can set to unity; however this does not restrict the generality of the 

analysis. 
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Fig. 1 Block diagram of APNC Configuration 

 

The resonance is represented by ( )u n  which is the output of a two-dimensional AR process. 

The investigation is focused on robust performance of the APNC when the filter input ( )x n  is 

considered as the disturbance. 

The filter output is given by 

 

( ) ( ) ( ) ( )nnunsne n

TXW−+=    (9) 

where nW  is the filter weight vector 

The filter input can be denoted as 

 

( ) ( ) ( ) ( ) ( )[ ]T
nunsnunsn 2211 −+−−+−=X  (10) 

giving 

 

( ) ( ) ( )nnxne
T
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Ideally, the filter will remove the autoregressive signal and only the information will be present 

at the output [2], i.e. 

 

( ) ( )nsne ≈     (12) 

 
The best possible performance of the APNC will be given by the optimum Wiener solution 

whose filter weight vector can be denoted as 
*

W . In practice, once the algorithm stepsize is 

within a certain bound, the LMS solution will approach but not exactly reach the optimum 

solution and will therefore produce a misadjustment error vector which is given by 
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Substituting ( )nεεεε  into (11) above gives 

 

( ) ( ) ( ) ( )nnnxne
TX*1 W−−+= εεεε    (14) 

Writing the LMS algorithm,  

 

( ) ( )nnenn Xµ+=+ 21 WW    (15) 

∆=1 

S(n) 



Then, subtracting 
*

W  from both sides of (15) gives the LMS algorithm update equation in 

terms of the weight misadjustment 

 

 ( ) ( )nnenn Xµ−=+ 21 BB    (16) 

 

The goal is to ensure robustness of the APNC against fluctuations in the filter input ( )nX . 

Thus, based on (6), the criterion for robustness can be cast as ensuring that the energy of 

residual error ( )nεεεε  is upper bounded by the energy of the disturbances and the initial 

uncertainty [3], i.e. 
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Denote the transfer operators that map the input disturbance vectors ( ) ( ){ }{ }∞

=

−µ 111

2/1 ,2 nnxB  

and ( ) ( ){ }{ }∞

=

− −µ 121

2/1 1,2 nnxB , where ( ) 11

2/12 B
−µ  and ( ) 21

2/12 B
−µ  are the (weighted) 

energies of the respective weight errors due to the initial guess, to the residual output error 

( ){ }∞

=1nnεεεε  as ( )D1n µ  and ( )D2n µ . Then, for robustness it is sufficient to ensure that for each 

iteration of the algorithm the H ∞
-norms of the transfer operators ( )D1n µ  and ( )D2n µ  are less 

then one [7], i.e. 
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To determine an expression for a suitable upper bound on the algorithm stepsize that will ensure 

algorithm robustness against the disturbances, first multiply (16) by ( ) 2/1
2

−
µ   
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Given the disturbance vector ( )nX , square (19) and then subtract the square on the disturbance 

from both sides, i.e. 
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giving 
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Then, substitute ( ) ( ) ( )nnnx
TX*1 W−−+ εεεε  for ( )ne  in the second term on the RHS of (22)  
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leading to 
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For robustness, the stepsize must be chosen so that the sum of the last three terms on the RHS of 

(24) is zero or smaller, i.e. 
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Rearranging (26) results in the following upper bounds for the stepsize µ  
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Taking (27a) as an example, to eliminate the dependence on ( )nx
2

 in the above, substitute for 

( )n1ε  
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Examining (29), if the algorithm is stable and convergent and has a zero initial weight vector, 

the maximum value that ( )ne  should reach is equivalent the maximum of the sum of the input 

signals, i.e. 
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Then, evaluating  



( )
( )nx

nx
BBWB nnn

1
22 11

*

1

2

1

+
−+   (31) 

gives  

( )
( )nx

nx
WW

1
2 *

1

2*

1

+
+−    (32) 

 

If it is assumed that, as the algorithm is convergent, the largest value of nB1  will be 
*

1W− . 

Also, to ensure that the value of (32) and therefore the nominator of (28) are small, take the 

minimum of the absolute value of the ratio 
( )

( )nx
nx 1+

, i.e. 
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Then, the following upper bound can be presented for the algorithm stepsize to ensure 

robustness 
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Examining (33) and (34), the upper bound on the stepsize for robustness is a function of both 

the filter input and the optimum weight value.  

Applying a similar analysis, (27b) becomes 
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4. Results 
Simulations were carried out for the system shown in Fig. 1 to investigate the necessary 

conditions to ensure robust performance of the APNC. The input to the all-pole filter section of 

Figure 1 was a 200-point Gaussian white noise sequence and the value of the all-pole filter 

coefficients were varied over the range 0.1 to 1 in steps of 0.1 to examine any possible 

relationship between noise colouration and robustness. The most difficult test for system 

robustness is when the filter poles are located on the unit circle as self-sustaining oscillations of 

increasing magnitude then appear at the filter output, and consequently the coupling between 

( )D1n µ  and ( )D2n µ  is maximised. The information signal ( )ns  was chosen to be Gaussian. 

The value of stepsize selected was as given by (34a). The H
∞

-norms were calculated by 

finding the maximum singular values of ( )D1n µ  and ( )D2n µ  at each time instant, and are 

shown in Figure 2 and 3. 
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Fig. 2 Maximum Singular Values of ( )D1n µ  Fig. 3 Maximum Singular Values of ( )D2n µ   

From Figs. 2 and 3, it is clear that the maximum singular values of ( )D1n µ  and ( )D2n µ are less 

than unity in all cases demonstrating that robust performance of the APNC is guaranteed within 

the stepsize bound given by (34a). Examination of the results shows that for the larger values of 

the all-pole filter parameters the maximum singular values of ( )D1n µ  and ( )D2n µ  exhibit a 

slower rate of growth towards unity. This can be attributed to the relatively slower convergence 

of the LMS algorithm in these cases.  

 

5. Conclusion 
This paper has presented expressions for an upper bound on the stepsize of the LMS algorithm 

to ensure robustness of the APNC in an open-loop interference cancellation configuration. The 

expressions derived in both cases were similar and showed a dependence on both the magnitude 

of the filter input and the optimum weight value. The benefits of the robustness criterion are that 

it provides a practically useful qualitative measure of algorithm performance over the more 

vague requirement, in performance terms, of stability and it helps to quantify the notion that it is 

better to be conservative in choosing an algorithm stepsize. As regards future work, it would be 

interesting to extend the analyses for over- and under-determined systems, i.e. when the number 

of filter weights is mismatched with the underlying parameters of the interference, and for 

algorithms other than the LMS.  
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