

TIME-STRETCHING USING THE INSTANTANEOUS
FREQUENCY DISTRIBUTION AND PARTIAL TRACKING

Victor Lazzarini Joe Timoney Tom Lysaght
Department of Music

NUI, Maynooth
Ireland
Email:

Victor.Lazzarini@nuim.ie

Dept. of Computer Science
NUI, Maynooth

Ireland
Email:

Joe.Timoney@cs.nuim.ie

Dept. of Computer Science
NUI, Maynooth

Ireland
Email:

Tom.Lysaght@cs.nuim.ie

ABSTRACT

This article presents a method of signal timescale
modification using spectral analysis-resynthesis. It
discusses an alternative technique for instantaneous
frequency estimation, the Instantaneous Frequency
Distribution (IFD). The partial tracking analysis employed
in this process is explained in some detail, followed by a
look into the resynthesis method. The article discusses this
technique of time-stretching in comparison to the standard
phase vocoder process. Performance details and specific
aspects of this implementation are examined, including the
C++ code for a time-stretching application.

1. INTRODUCTION

Time-stretching is a transformation process frequently used
in many computer music applications. It involves the change
in the duration, or time-scaling, of a signal independent of
its frequency scale. A variety of techniques exist for its
implementation, in both time and spectral domains. The
quality of the time-stretched output varies quite a lot
between these different methods. Many of them will
introduce a certain amount of artifacts, which sometimes
may be objectionable.

A widespread method of time-stretching using spectral
analysis-resynthesis is the phase vocoder[2]. The process
relies on the use of the Short-Time Fourier Transform
(STFT), followed by polar conversion and instantaneous
frequency estimation. The analysed data can then be
resynthesised at a different time rate using either an inverse
process of phase integration, followed by rectangular
conversion and the inverse transform, or by additive
synthesis. Depending on the source signal and on the time-
stretching amount, the phase vocoder will produce an
acceptable result. However, due to many inherent problems
of phase recuperation involved in the process[9], artifacts
will be produced, which in some cases might result in a low-
quality output.

This article describes an alternative method of time-
stretching based on spectral analysis-resynthesis. This
technique employs a superior method of instantaneous
frequency estimation, followed by partial tracking analysis
and additive resynthesis. With this method is possible to
provide an enhanced quality time-stretching, without the
problems associated with more traditional approaches.

2. THE INSTANTANEOUS FREQUENCY
DISTRIBUTION

The method of frequency estimation used in this work is
given by the instantaneous frequency distribution (IFD)
algorithm. This was proposed, independently, by

Friedman[3] and Toshihiko Abe[1]. It uses some of the
principles also seen in the phase vocoder algorithm, but its
mathematical formulation is more complex. The basic idea
is that the instantaneous frequency detected at a certain band
is the time derivative of the phase. Using Euler’s
relationship, we can define the output of the Discrete
Fourier Transform (DFT) in polar form. This is shown
below, using ω = 2πk/N:

DFT (x(n), k, t) = R(ω, t) × e jθ (ω ,t) (1)

The phase detected by band k at time-point t is
θ(2πkn/N, t) and the magnitude is R(2πkn/N, t). The
Instantaneous Frequency Distribution of x(n) at time t is
then the time derivative of the STFT phase output:

),(),),((t
t

tknxIFD ωθ
∂
∂

= (2)

This can be intuitively understood as the measurement of
the rate of rotation of the phase of a sinusoidal signal. In the
phase vocoder, this is estimated by crudely taking the
difference between phase values in successive frames. The
IFD actually calculates the time derivative of the phase
directly, from data corresponding to a single time-point. We
will start by using the STFT, taken as a series of DFTs of a
rotated and windowed input signal:

STFT(x(n),k,t) =

= e− j 2πkt / N 1
N

w(m)x(m + t)e− j 2πkm / N
m= 0

N−1

∑ =

= e− j 2πkt / NDFT(xt (m),k)

 (3)

Each DFT is taken from xt(m) = w(m)x(m+t), which is the
windowed input signal at time-point t. The multiplication by
the complex exponential can be done in the time domain as
a rotation of the input. Now the phase can be isolated from
the magnitude spectrum. This is done by first taking the
logarithm of the DFT output in polar form. From (1), we
have:

ln[DFT (x t (m), k)] = ln[R(ω , t)] + jθ (ω , t) (4)

It is clear from the above that the phase is the imaginary part
of the logarithm of the DFT, imag{ln(DFT)}. Now the
derivative of the phase can be expressed in terms of the DFT
of the signal:

{ =
∂
∂

=
∂
∂)]),((ln[),(kmxDFTimag

t
t

t tωθ }

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

×=)),((
)),((

1 kmxDFT
tkmxDFT

imag t
t

 (5)

All that is necessary is to find the derivative of the DFT.
This can be done by changing the summation variable of the
transform, using r = m+ t, so that the only function of the
time variable t left inside the summation is the window:

∑

∑

∑

−

=

−

−

=

−−

−

=

−

−=

=−=

=+=

1

0

1

0

)(

1

0

)()(1

)()(1

)()(1)),((

N

r

rjtj

N

r

trj

N

m

mj
t

etrwrx
N

e

etrwrx
N

emwtmx
N

kmxDFT

ωω

ω

ω

 (6)

Now it is a simple matter of taking the derivative of the
above product. As the derivative of the complex exponential
is trivial, we are left only with the derivative of the window
function:

∂
∂t

DFT(xt (m),k) =
∂
∂t

e jωt 1
N

x(r)w(r − t)e− jωr

r= 0

N−1

∑
⎧
⎨
⎩

⎫
⎬
⎭

=

= jωe jωt 1
N

x(r)w(r − t)e− jωr

r= 0

N−1

∑

+e jωt 1
N

x(r) ∂
∂t

w(r − t)
⎧
⎨
⎩

⎫
⎬
⎭
e− jωr

r= 0

N−1

∑

(7)

Reverting to the previous formulation of the DFT (using the
converse of (6), with m = r – t):

=
⎭
⎬
⎫

⎩
⎨
⎧

−∂
∂

++

+=
∂
∂

∑

∑
−

=

−

−

=

−

1

0

1

0

)(
)(

)(1

)()(1)),((

N

r

mj

N

r

mj
t

emw
mr

tmx
N

emwtmx
N

kmxDFT
t

ω

ω

))()()(' (

)),('()),((

tmxmw
m

mxwith

kmxDFTkmxDFTj

t

tt

+
∂
∂

−=

+= ω (8)

Substituting back in (5) and using the definition of the IFD
given in (2), the final formulation is obtained:

IFD (x (n), k, t) = ω + imag DFT (x ' t (m), k)
DFT (x t (m), k)

⎧
⎨
⎩

⎫
⎬
⎭

(9)

As demonstrated, the IFD is formulated as a ratio of two
DFTs, one taken from a windowed signal and the other
using the same signal windowed by the negative derivative
of the same analysis window. The derivative of the analysis

window is generated by computing the differences between
its consecutive samples. Re-arranging the formula, it is
possible to see that the instantaneous frequency deviation
d(x(n),k,t) from the bin centre frequencies is inversely
proportional to the signal power at that bin (eq. 10). This
follows from the fact that the closer a frequency peak is to
the bin centre, the higher the bin magnitude will be.

d(x(n), k, t) = imag DFT (x ' t (m), k)
DFT (x t (m), k)

⎧
⎨
⎩

⎫
⎬
⎭

=

=
imag DFT * (x t (m), k)DFT (x ' t (m), k)[]

DFT (x t (m), k) 2

 (10)

The method of spectral analysis employed here will use

the modulus of the DFT of a windowed frame to obtain the
magnitudes. At the same time, the IFD will be used to
estimate the frequencies. It is important to point out that we
are estimating the frequency using a single analysis time-
point. As far as the instantaneous frequency estimation is
concerned, the amount of analysis frame overlap is of no
consequence. The IFD formulation shares some common
aspects with the hopsize-1 phase vocoder described in [8],
but provides a much more accurate result, as outlined by
Hainsworth and McLeod [4]. In a recent study, this method
has been shown to provide a superior frequency analysis to
a number of other methods, including the standard phase
vocoder [5].

3. PARTIAL TRACKING

Using the IFD and magnitudes from the analysis method
described above, it is possible to employ a peak-picking
algorithm to isolate partials. These can be organised into
spectral tracks, containing frequency and amplitude
information. Similar partial-tracking methods are employed
in sinusoidal modelling of speech [7] and of arbitrary
audio/music signals [11][12], with deterministic/stochastic
component separation. Both methods also retain and use
phase spectra from STFT analysis. In this work, however,
we are only concerned with amplitudes and instantaneous
frequencies. Also, the tracking method here does not
attempt to separate deterministic and stochastic components,
but will keep them together in the analysis data.

Figure 1. Partial track analysis

The principle behind the partial track analysis is very
simple, although its implementation is somewhat involved.

Using the magnitudes, spectral peaks at integral frequency
points (bins) will be identified. A thresholding mechanism is
used to eliminate low-amplitude components. The exact
peak position and amplitude can be estimated using a
quadratic interpolation procedure based on the magnitudes
of the bins around the peaks. With the interpolated
frequency points, it is possible to find the exact values for
the frequencies obtained originally from the IFD input,
through linear interpolation. These will then, together with
the amplitude, form a ‘track', linked to each detected peak.

The track will only exist as such if there is some
consistency in consecutive frames, ie. if there is some
matching between peaks found at each time-point. When
peaks are short-lived, they will not make a track.
Conversely, when a peak disappears, we will have to wait a
few frames to declare the track as finished. Most of the
process involved in this analysis becomes one of track
management, which accounts for the more complex aspects
of the algorithm.

The track generation algorithm is shown in fig. 1. It
takes in the DFT magnitudes, a threshold, maximum gap (in
time-points) between peaks in a track and minimum number
of time-points for a track, as well as the instantaneous
frequencies of each bin, from the IFD.

The present implementation of the partial analysis
algorithm can be described as a streaming process. Track
frames are generated for every hop size of the analysed
signal. Here, unlike other more straightforward
implementations, only a single signal frame is present, or
known, at a given time by the analysis algorithm, making it
suitable, for instance, for realtime processing. For such
implementation a number of special details are required. For
instance, a record of past peaks is needed for the peak
matching operation. Also, if the required minimum number
of time-points exceeds one, a delay will be introduced
between the input and the output of the analysis.

4. RESYNTHESIS

As discussed above, the partial tracking analysis will output
tracks made up of frequencies and amplitudes. This in turn
can be used for additive re-synthesis of the signal or of
portions of its spectrum. A typical method involves the use
of the frequency parameter to calculate the varying phase
used to drive an oscillator and the amplitude to scale its
output. The parameters can be interpolated linearly on a
frame-by-frame basis, which was found to be efficient and
sufficiently precise for many applications. The resynthesis
process is described by eqs 11 to 14:

output(n) = a(trk,n)cos(2πθ(trk,n) /sr)
trk=1

N

∑ (11)

θ (trk , n + 1) = θ (trk , n) + f (trk , n) (12)

f (trk,n) = f (trk, t) +

[f (trk,t + n) − f (trk,t)](n − t) /h
 (13)

a(trk,n) = a(trk, t) +

[a(trk, t + n) − a(trk, t)](n − t) /h
 (14)

where a(trk,n) and f(trk,n) are the interpolated
amplitudes and frequencies, h is the hopsize and t the
analysis time-points.

Additive resynthesis uses the analysis track frames to
drive a bank of cosine wave oscillators . In this streaming
implementation, the process will use the track IDs to match
tracks between analysis frames, in order to perform properly
the interpolation of amplitude and frequency. High-quality
frequency shifting, scaling or warping is also possible, by
introducing a scaling control on each oscillator frequency.

Figure 2. Time-stretching

5. TIME-STRETCHING

Time-stretching, independent of frequency, can be
implemented with the processes described above. After
IFD/magnitude and partial tracking, the resynthesis can be
made to proceed at any time rate, since the track data
contain basically the parametric values of amplitude and
frequencies. By spacing the resynthesis time-points to
different hopsizes (in eq. 12 to 14), time-scale modification
(either stretching or compression) is produced (fig. 2).

The quality of the time-stretched output produced with
this method seems to be much superior to other common
techniques of timescale modification, particularly the phase
vocoder. In fact, since this process is based on the analysis
of spectral peaks, the typical artifacts associated with that
technique, such as phasiness and modulation, are absent
from the resynthesised sound. A number of comparative
tests were run, with different sound sources, and it was
found that the method described offers considerable the
quality of the output, especially for larger time-stretching
factors.

5.1. Implementation details

In this work, the IFD, partial analysis and resynthesis have
been implemented as classes in the SndObj library [6][12].
The instantaneous frequency and magnitude analysis are
generated by an IFGram object from a time-domain signal.
Partial tracking is performed by a SinAnal object, which
takes the IFGram output. Finally, resynthesis is performed
by an object of the AdSyn class.

All processing objects are fed into a SndThread object,
which manages the sound processing thread. This basic
code, shown in fig 8, can be wrapped up in a GUI
framework or used directly as a command-line application.
The output object, shown here as using the SndWave class,
can alternatively use the SndRTIO or SndASIO classes for
realtime output in systems with such capability.

5.2. Other processes

In addition to time-stretching, the analysis-synthesis
method described here has a variety of other potential
applications, such as most of the ones described in [13]. In
the partial tracking methods, for instance, basic noise-
reduction can be performed by adjusting the analysis
threshold parameter. Transients can be reduced by
increasing the minimum number of analysis time points.
Non-linear filtering can be achieved by limiting the number
of analysis and/or resynthesis tracks. Other effects can be
implemented by custom track processing classes.
Furthermore, with the track analysis framework in place, it
is possible to design and experiment new processes that
take advantage of this data format

 SndThread thread;
 // cosine wavetable
 HarmTable tb(10000,1,1, 0.25);
 // hanning window
 HammingTable win(ffts,0.5);

 // SndObj chain
 // dcm is analysis hopsize
 // itp is resynthesis hopsize
 // itp:dcm is timescale ratio
 SndWave in(ifile,READ,1,16,0,0,dcm);
 SndIn ins(&in,1,dcm);
 IFGram ifd(&win,&ins,1.f,ffts,dcm);
 SinAnal trks(&ifd,thrsh,intrks,1,3);
 AdSyn syn(&trks,outrks,&tb,1.f,scl,itp);
 SndWave out(ofile,OVERWRITE,1,16,0,0,itp);
 out.SetOutput(1,&syn);

 // sound thread set-up
 thread.AddObj(&ins);
 thread.AddObj(&ifd);
 thread.AddObj(&trks);
 thread.AddObj(&syn);
 thread.AddObj(&in,SNDIO_IN);
 thread.AddObj(&out,SNDIO_OUT);

 // processing
 thread.ProcOn();
 while(!input.Eof());
 thread.ProcOff();

Figure 3. C++ code for a time-stretching application.

6. FUTURE PROSPECTS

The simple resynthesis method proposed in this paper has
been successful for the resynthesis of arbitrary signals.
However, it was found that further enhancements to the
output sound quality can be achieved using better
interpolation methods. One such method is the cubic
interpolation algorithm proposed in [7], using the retained
phases in resynthesis. However, the original formulation for
this method does not allow for changes in the signal
timescale. An adaptation of this method is currently being
investigated for track resynthesis, as an alternative to the
method presented here.

7. REFERENCES

[1] Abe T, et al. “The IF spectrogram: a new spectral
representation,” Proc. ASVA 97, pp. 423-430, 1997.

[2] Dolson, M. “The phase vocoder tutorial”. Computer
Music Journal, 10(4), pp. 14-27, 1986.

[3] Friedman, DH. “Instantaneous-frequency distribution
vs time: an interpretation of the phase structure of
speech”. Proc. ICASSP, pp 1121-4, 1985.

[4] Hainsworth, S, Mclead, M. Time-frequency
reassignment: a review and analysis. Technical
Report, Cambridge Univ. Eng. Dept.
CUED/FENG/TR.459, 2003.

[5] Keiler, F, Marchand, S. “Survey on extraction of
sinusoids in stationary Sounds”. Proc. of DAFx02, pp-
217-221, 2002.

[6] Lazzarini, V. “The sound object library”. Organised
Sound 5 (1). pp. 35-49, 2000.

[7] McCaulay, RJ, Quatieri, TF. “Speech
Analysis/Synthesis Based on a Sinusoidal
Representation”. IEEE Trans. On Acoustics, Speech,
and Signal Processing, ASSP-34 (4), 1986.

[8] Puckette, MS, Brown, JC. “Accuracy of frequency
estimates using the phase vocoder”. IEE Transactions
on Speech and Audio Processing 6 (2), pp. 166-177.

[9] Puckette, MS. “Phase-locked vocoder”. Proc. IEEE
ASSP Workshop on Applications of Signal Processing
to Audio and Acoustics, 1995.

[10] Smith, J, Serra, X. “PARSHL: An analysis/synthesis
program for non-harmonic sounds based on a sinusoidal
representation”.Proc. of the ICMC 87, Tokio, 2002.

[11] Serra, X. “Musical Sound Modelling with Sinusoids
plus Noise”. in: G.D. Poli et al (eds.), Musical Signal
Processing, Swets & Zeitlinger Publishers, Amsterdam.
1997.

[12] Timoney, J, Lazzarini, V and Lysaght, T. “New SndObj
classes for sinusoidal modelling”. Proc. of DAFx02, pp-
217-221, 2002.

[13] Verfaille, V, Depalle P. “Adaptive Effects Based on
STFT, Using a Source-Filter Model". Proc. of DAFx04,
pp. 296-301 2004.

	Index
	ICMC 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Program Guide

	Sessions
	Monday 5, September 2005
	MonAmOR1-Paper Session 1: Frameworks
	MonAmPO1-Demo Session 1
	MonAmOR2-Paper Session 2: History of Electroacoustic Mu ...
	MonAmPO2-Poster Introduction Session
	MonAmPO3-Demo Session 2
	MonPmOR1-Paper Session 3: Automatic Performance Renderi ...
	MonPmOR2-Studio reports
	MonPmPO1-Demo Session 3
	MonPmOR3-Paper Session 4: Sound Synthesis and Analysis
	MonPmPO2-Demo Session 4

	Tuesday 6, September 2005
	TueAmOR1-Paper Session 1: Sound Synthesis and Analysis
	TueAmPO1-Demo Session 1
	TueAmOR2-Paper Session 2: Music Analysis and Representa ...
	TueAmPO2-Poster Introduction Session
	TueAmPO3-Demo Session 2
	TuePmOR1-Paper Session 3: Mathematical Music Theory
	TuePmPO1-Demo Session 3

	Wednesday 7, September 2005
	WedAmOR1-Paper Session 1: Sound Synthesis and Analysis
	WedAmPO1-Demo Session 1
	WedAmOR2-Paper Session 2: Psychoacoustics
	WedAmPO2-Poster Introduction Session
	WedAmPO3-Demo Session 2
	WedPmOR1-Paper Session 3: Systems for Composition and M ...
	WedPmOR2-Studio reports
	WedPmPO1-Demo Session 3
	WedPmOR3-Paper Session 4: Sound Processing and Synthesi ...
	WedPmPO2-Demo Session 4

	Thursday 8, September 2005
	ThuAmOR1-Paper Session 1: Music Information Retrieval a ...
	ThuAmOR2-Paper Session 2: Performance
	ThuAmPO1-Poster Introduction Session
	ThuAmPO2-Demo Session 2
	ThuPmOR1-Paper Session 3: Interactive Music
	ThuPmOR2-Studio reports
	ThuPmPO1-Demo Session 3
	ThuPmOR3-Paper Session 4: General Computer Music Topics
	ThuPmPO2-Demo Session 4

	Friday 9, September 2005
	FriAmOR1-Paper Session 1: Composition Systems
	FriAmOR2-Paper Session 2: Composition Systems
	FriAmPO1-Poster Introduction Session
	FriAmPO2-Demo Session 2
	FriPmOR1-Paper Session 3: Sound Synthesis and Analysis
	FriPmPO1-Demo Session 3
	FriPmOR2-Paper Session 4: Performance
	FriPmPO2-Demo Session 4

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Digital Audio Signal Processing
	Sound Synthesis and Analysis
	Music Analysis
	Music Information Retrieval
	Representation and Models for Computer Music
	Artificial Intelligence and Music
	Languages for Computer Music
	Mathematical Music Theory
	Psychoacoustics, Music Perception and Cognition
	Acoustics of Music
	Aesthetics, Philosophy and Criticism of Music
	History of Electroacoustic Music
	Computer Systems in Music Education
	Composition Systems and Techniques
	Interactive Performance Systems
	Software and Hardware Systems
	General and Miscellaneous Issues in Computer Music
	Studio Reports

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Thomas Lysaght
	Joseph Timoney
	Victor Lazzarini

