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Abstract: Semiconductor manufacturing is one of the most technologically advanced industrial
sectors. Process quality and control are critical for decreasing costs and increasing yield. The
contribution of automatic control and statistical modeling in this area can drastically impact
production performance. For this reason in the past decade major collaborative research projects
have been undertaken between fab industries and academia in the areas of Virtual Metrology,
Predictive Maintenance, Fault Detection, Run-to-Run control and modeling. In this paper we
review some this research, discuss its impact on production and highlight current challenges.
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1. INTRODUCTION

The field of semiconductor manufacturing, while being
among the most technology-oriented and cost-intensive in-
dustrial sectors, has a massive impact on everyday life. As
a matter of fact, semiconductor-based devices are perva-
sive: personal computers, mobile phones and cars are only
the most straightforward examples. Given such premises,
it is not surprising that semiconductor manufacturing
companies are spending effort and resources to improve
quality and open the way to smaller, faster, higher quality
devices.

In the milestone paper Edgar et al. (2000), the (at that
time) future challenges for modeling and control in micro-
electronics manufacturing were presented. In the past 12
years intense research activity has been going on in this
area, largely enabled by the advances in machine learning
and computation capability. As described in Edgar et al.
(2000), the variations in process and tool properties due
to long-term production runs, the limited understanding
on such complicated processes and the lack of automated
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operational practices (especially from the maintenance
point of view), suggest that there is a huge margin for
improvements in this area.

In this paper the contributions of non-parametric model-
ing, machine learning, filtering and prediction, and run-to-
run control to semiconductor manufacturing are reviewed.
In particular, we show some examples in the following
applications areas:

• Virtual Metrology (VM) systems;
• Fault Detection (FDC) systems;
• Predictive Maintenance (PdM) systems;
• Run-to-Run (R2R) control.

All of these technologies have proliferated in the past
few years in semiconductor manufacturing facilities, called
fabs, in order to improve the productivity and decrease
costs. The final goal of this work is to prove through sev-
eral examples and applications that the use of statistical
modeling algorithms and control systems can improve the
efficiency, yield and profits of a manufacturing environ-
ment such as the semiconductor one, where lots of data are
recorded and can be employed in mathematical models.
Semiconductor companies are investing more and more
resources in these topic to improve their manufacturing
capabilities; recently, for example, the major European
Nanoelectronics Industries have focused their efforts on
developing statistical metrology/predictive systems to de-
crease the number of defective products, increase process
stability and even decrease the number of physical mea-
sures performed, see IMPROVE (2012).
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Fig. 1. The main stages of the Czochralski process.

The paper is organized as follows: in Section 2 an overview
of semiconductor fabrication is provided. The most com-
mon practices in Advanced Process Control (APC) systems
and the major issues for engineers and statisticians work-
ing in this area are then presented: in Section 3 Virtual
Metrology systems are discussed, while in Section 4 we
present Predictive Maintenance technologies. Fault Detec-
tion and Classification and Run-to-Run control techniques
are presented in Section 5 and 6 respectively. Finally in
Section 7 some final remarks are provided.

2. FABRICATION OF SEMICONDUCTOR DEVICES

This section describes, with no aim of completeness, the
fabrication process for a semiconductor device. For a
deeper description of the technology behind a semicon-
ductor manufacturing company, the interested reader is
referred to Quirk and Serda (2001).

2.1 Description of the process

The entire semiconductor manufacturing process, from
the first stage up to final product shipping, takes usually
six to eight weeks and is performed in highly specialized
fabrication plants. The process is composed of four main
steps (Chang (1997)):

i) Wafer formation: a wafer is a thin (125 - 300mm
diameter and 525 - 775 µm) slice of semiconductor material
- usually silicon crystal - that serves as the substrate for
microelectronic devices. Wafers are formed from extremely
pure (99.9999% purity) crystalline material; the process to
create such crystalline wafers, is the Czochralski process,
depicted in Figure 1.

ii) Front end processing: this step relates to the for-
mation of transistor chips on the silicon wafer and is per-
formed in controlled environments known as clean rooms;
in such rooms the level of pollutants (dust, vapors, par-
ticles) is artificially kept at a fixed level by means of
air filtering and restricted access policies. The front end
process encompasses the following sub-steps:

(1) Wafer-cleaning : since Ultra-Large Scale Integration
(ULSI) technology is characterized by strict require-
ments concerning surface smoothness and particle
contamination, the wafers need to be prepared for
further processing by means of cleaning procedures.
Table 1 summarizes the sources and effects of the
various contaminations (Chang and Chao (1996)).

(2) Deposition: dieletric and polysilicon film deposition
is widely used in Integrated Circuits (IC) fabrication.

Dieletric films, including silicon dioxide and silicon
nitride, serve as isolation, mask, and passivation lay-
ers; polysilicon film can be used as a conducting
layer, semiconductor, or resistor by proper doping
with different impurities. The main deposition tech-
niques are CVD (Chemical Vapor Deposition) and
PVD (Physical Vapor Deposition); other processes
include plasma-assisted deposition, photo CVD, laser
CVD, Rapid-Thermal Processing CVD (RTPCVD),
and Electron-Cyclotron Resonance (ECR) CVD, see
Cheng (1996).

(3) (Photo)Lithography : several techniques may be used
to create ULSI circuit patterns on wafers; the most
common process relies on photomask exposition. An
ultraviolet radiation is transmitted through the clear
part of the mask, while the opaque part blocks the
rest of the radiation. The resist film, being sensitive to
the radiation, is then coated on the wafer surface. The
mask is aligned within the required tolerance on the
wafer; then radiation is applied through the mask and
the resist image is developed, see Nakamura (1996).

(4) Etching : devices are built from a number of differ-
ent layer materials sequentially deposed. Lithography
techniques are used to replicate circuit and device
features, and the desired patterns are transferred by
means of etching. In ULSI technology, the etching
process is very sensitive because of strict dimensional
requirements (fraction of a micrometer). The etching
process can be dry or wet, see Lii (1996).

It should be noted that the above mentioned process steps
are repeated several times during front-end processing
to produce multiple interconnected layers on the wafer
surface.

iii) Testing: before a wafer is sent to chip preparation,
every single IC on the wafer is tested for functional
defects (test end-of-line) (Palma (2005)). The tests can
be parametric and electrical.

• Parametric tests are performed on ad-hoc structures
prepared on the device to monitor the efficiency of
process steps and the goodness of the design. Such
structures are called TAG, and lie in the scribe lines.
Usually there are less than 10 TAGs per wafer. Para-
metric tests consist of electric measurements of phys-
ical quantities (impedance, capacitance, resistance,
etc.).

• Electrical tests verify that the behavior of each device
is consistent and within specifications; this capability
is assessed by means of electrical testing with se-
quential measurements; if some value is out of spec-
ification range, the circuit is flagged as faulty. The
non-passing die is marked with a small dot of ink,
and the passing\non-passing information stored in a
wafermap.

iv) Packaging (or Back end): the purposes of packag-
ing are to provide electrical connection, protect the chip
from mechanical and environmental stress and provide a
proper thermal path for the heat that the chip generates.
Packaging plays a crucial role with respect to performance
and reliability of the chip and the system in which the
package is applied (Tachikawa (1996)).
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Table 1. Sources and effects of the various contaminations

Contamination Possible source Effects

Particles Equipment, ambient, gas, chemical Low oxide breakdown
Metal Equipment, chemical, reactive ion etching Low breakdown field, reduced minority lifetime
Organic Vapor in room, residue of photoresist Change in oxidation rate
Microroughness Initial wafer material, chemical Low oxide breakdown
Native oxide Ambient moisture Degraded gate oxide, high contact resistance

The Front end processing part is the one where machine
learning and automatic control techniques can affect the
most the production quality. We will give in the next
sections an overview of the main technologies that have
been developed in the last years in this area.

3. VIRTUAL METROLOGY

3.1 Introduction and Modeling

A VM system consists of a mathematical model of the
system under consideration (Ringwood et al. (2010)) for
estimating a ‘costly to measure’ physical variable where
tool variables are used as inputs. These quantities are
usually ‘costly’ to measure in economic or temporal terms:
the prediction is based on process variables and/or logistic
information on the production that, instead, are always
available and that can be used for modeling without
further costs.

VM systems have been proposed in the literature for CVD
(Hung et al. (2007); Cheng et al. (2007); Huang et al.
(2008); Ferreira et al. (2009)) , Etching (Kang et al. (2009);
Lynn et al. (2009); Cheng et al. (2008); Lin et al. (2009)),
and Lithography Huang et al. (2009) processes. Also, fab-
wide VM structures have been proposed by Khan et al.
(2007); Huang et al. (2007); Su et al. (2008)

Besides high prediction accuracy, desirable properties of
an efficient VM system are:

• reasonably low computational times, since new prod-
ucts are added monthly to fab production and the
behavior of tools change over their maintenance cy-
cles, therefore models need to be constantly updated
and computed;
• interpretability, so that it is possible to identify which

variables in the model are the most meaningful, a very
appealing property for FDC purposes.

The problem of modeling semiconductor processes has
been approached by using different techniques, both Lin-
ear, such as Ordinary Least Square (OLS) and Partial
Least Squares (PLS), and Non-Linear, such as Artificial
Neural Networks (NNs). It has been shown (Hung et al.
(2007); Kang et al. (2009); Lynn et al. (2009); Himmel
et al. (1992); Himmel and May (1993)) that NNs guarantee
better performance in modeling semiconductor manufac-
turing processes than other linear approaches. NNs are
flexible computing frameworks and universal approxima-
tors that can be applied to a wide range of learning prob-
lems with a high degree of accuracy (Khashei and Bijari
(2010)). A common and widely adopted type of NN is the
Multilayer Perceptron (MLP); the central idea of MLPs is
to extract linear combination of the inputs (in the problem
considered here, the tool and logistic data) and then model
the target (the critical dimension to be estimated) as a

nonlinear function of such features (Besnard and Toprac
(2006)). However, NNs can be really hard to train in learn-
ing problems with high dimensionality, as is the case in
semiconductor manufacturing modeling. Moreover, given
the use of non-linear features of the inputs during the
algorithm training, the results often lack interpretability.

3.2 Challenges

As partly described in Susto and Beghi (2012c), modeling
of semiconductor manufacturing processes is a challenging
task mostly due to four main factors:

(1) high dimensionality - hundreds of input variables are
available making the regression problem computa-
tionally expensive and difficult to solve;

(2) data fragmentation - hundreds/thousands of products
are run on the same machine, with different tool
settings (called recipes); in the case of some tools,
the dataset is even further complicated by the fact
that each product has a different target, and the
equipment may be composed of 2 or 3 separated
chambers that exhibit different behaviors. As shown
in the example reported in Fig. 2, chambers of the
same tool can usually be considered as completely
different machines.

(3) time series input data - many semiconductor model-
ing problems require the estimation of a scalar output
from one or more time series. Such VM problems
are usually tackled by extracting a fixed number of
features from the time series (like their statistical
moments), with a consequent loss in information that
leads to suboptimal predictive models. Moreover, fea-
ture extraction techniques usually make assumptions
that are not met by real world settings (e.g. uniformly
sampled time series of constant length), and fail to
deliver a thorough methodology to deal with noisy
data.

(4) multi processes modeling - semiconductor production
processes involve a high number of sequential oper-
ations and the quality features of a certain wafer
depend on the whole processing and not only on
the last step before measurement; unfortunately VM
modules proposed to date only take into account one
physical process.

A substantial part of modern VM literature is focused on
how to tackle the aforementioned issues.

Two basic approaches to deal with issue (1) have been
proposed in the VM literature:

• the use of dimensionality reduction techniques, like
correlation analysis (Susto et al. (2011b); Cheng et al.
(2008)) and Principal Components Analysis (PCA)
(Zeng and Spanos (2009)), that, when applied before
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Fig. 2. The first two Principal Components (PCs) of the
physical variables of a CVD tool with three chambers
(A, B and C), each one with 2 sub-chambers (1 and
2). Taken from Susto and Beghi (2012c).

the actual modeling part in a two-step approach,
reduce the size of the dataset;
• the use of variable selection techniques, like Stepwise

Selection (SS), where parsimonious models are cre-
ated during the modeling phase.

The results of variable selection techniques are usually
easy to interprete, given the fact that only variables that
matter ’enter’ the model. However SS Regression, that
has been widely adopted (Ferreira et al. (2009); Kang
et al. (2009); Lynn et al. (2009); Ragnoli et al. (2009)),
is considered in the Statistical Learning community as a
really ‘greedy’ approach where important variables may
not enter the model due to the algorithm procedure.
Usually Stagewise Selection (SgS) Hastie et al. (2009) is
preferred for prediction accuracy, but it is much more
onerous from the computational point of view. Other
variable selection methodologies have been proposes: in
Susto and Beghi (2012b) Least Angle Regression (LARS)
(Efron et al. (2004)) has been proposed, a model selection
algorithm which provides equivalent solutions to SgS, but
at the cost of SS; in Pampuri et al. (2011b) the LASSO
(Tibshirani (1996)) has been employed, another popular
variable selection technique.

Huge data fragmentation (2) cannot be dealt with by
considering separately every specific case, since there is
insufficient data to identify and validate a reliable math-
ematical model for each product. It is therefore necessary
to group together data collected under different equipment
operating conditions. A smart data clustering, as shown in
Susto and Beghi (2012a), can enhance prediction accuracy
and it is necessary to model all the fab production. A
different approach has been proposed in Schirru et al.
(2011), where Multi-Task techniques have been proposed
to model the different logistic paths that a wafer may take.

In Schirru et al. (2012), inspired by issue (3), a method-
ology based on functional learning has been proposed to
overcome the problems of dealing with time series where
features must be extracted; the proposed Supervised Ag-
gregative Feature Extraction (SAFE) approach allows con-
tinuous, smooth estimates of time series data to be derived

(yielding aggregate local information), while simultane-
ously estimating a continuous shape function providing
optimal predictions. To our knowledge, this in the first
approach presented in the literature to deal with issue (3).

Regarding (4), a solution has been proposed in Pampuri
et al. (2012). Unfortunately, the modeling of multiple steps
makes the dimensionality of the regression problem even
bigger and for this reason research has not proceeded far
in this direction. However, this is the next step in the VM
research, given the fact that the variability of a process
cannot be fully captured without looking at the wafer state
that is related to the previous processing steps performed.

4. PREDICTIVE MAINTENANCE

4.1 Definition

Efficient management of maintenance and control actions
on a process is essential to decrease the costs associated
with defective wafers and equipment inactivity. Mainte-
nance policies can be divided into four categories, with
different levels of complexity and efficiency, Susto et al.
(2012a); Mobley (2002):

• Run-to-Failure (R2F) Maintenance: when repairs or
restoration actions are performed after the occurrence
of a failure. This is the simplest approach to main-
tenance management and usually the most costly
one due to the large number of defective products
obtained as a consequence of the failure.

• Preventive Maintenance (PVM) (or Scheduled Main-
tenance): when the maintenance is carried out peri-
odically on a planned schedule with the aim of antic-
ipating the process failures. In this approach, failures
are usually avoided, on the other hand, unnecessary
maintenances are sometimes performed.

• Condition-Based Maintenance (CBM): when the ac-
tions on the process are taken after the verification
of one or more conditions indicating a degradation in
the process or equipment. This approach is based on
continuous monitoring of the machine/process health
and enables maintenance to be performed only when
actually needed. The drawback of CBM management
is that maintenance cannot be planned in advance.

• Predictive Maintenance (PdM) (or Statistical Based
Maintenance): similarly to CBM, maintenance ac-
tions are taken only when necessary. However, pre-
diction tools are used to assess when such actions are
likely to be required, facilitating implementation of
planning and scheduling schemes. PdM systems can
employ ad-hoc defined health factors or, in general,
statistical inference methods.

Sophisticated maintenance tools, such as those belonging
to the CBM and PdM classes, are clearly associated
with initial, installation, and development costs, that are
however paid off by the increase in system uptime and
percentage of non defective products and decrease in
the number of test wafers employed. Besides the above
mentioned advantages, it has also been shown (Hyde et al.
(2004)) that the introduction of a PdM system in the
production line can increase the Process Capability Index
Cpk (Montgomery (2007)).
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The PdM techniques usually define and exploit a Health
Factor (HF), Chen and Blue (2009), that is a quantitative
index of the status of the equipment. It is a function
of observable facilities parameters (historical time series,
characteristic behavior of the equipment, sensor data, and
so on) and can be employed to:

• assess future status of the equipment or one of its
components;
• take strategic decisions about maintenance schedul-

ing;
• provide information for dynamic sampling plans,

Pasadyn and Toprac (2002).

The concept of HF is usually widely adopted also in Fault
Detection and Classification (FDC) systems and this leads
to some overlap between the two categories (see Section 5).

4.2 Review and Challenges

While all VM problems can be tackled with regression
approaches, for PdM, depending on the problem, several
techniques may be suitable for modeling and predicting
faults and scheduling maintenance interventions, making
this area more complex and challenging than VM. As a
result the PdM area is much less developed than VM,
albeit significant progress has been made in the last
decade. For example:

• in Rying (2001) a wavelet-based approach has been
used to identify important features for detection of
process faults;
• in Pampuri et al. (2011a) survival models theory is

employed for the same goal;
• regression methods have been employed also in this

area; linear approaches, such as Ridge Regression and
Elastic Nets, have been used in Susto et al. (2012c),
while NNs have been adopted for modeling in Wu
et al. (2007);
• Filtering and Prediction techniques, like Kalman Pre-

dictor and Particle Filters, have also been recently
employed in PdM for semiconductor manufacturing
processes in Butler and Ringwood (2010); Schirru
et al. (2010b) and Susto et al. (2011a);
• Classification Methods, more specifically, Support

Vector Machines have been considered in Baly and
Hajj (2012).

Given all the various methodologies it can be understood
how PdM topics are so different one from each other and
every new PdM problem should be studied separately with
a customized solution.

The PdM problems usually suffer, even more than the VM
ones, from the lack of a sufficient amount of observations
to prepare a reliable statistical model: this is due to the
fact that the maintenance interventions are of course in far
fewer than the number of measured wafers (observations
for VM problems). For this reason, it is of paramount
importance in the modeling to exploit the information
coming from similar processes/equipments. This concept
has been adopted in Susto et al. (2012b) with the employ-
ment of Multi-Task techniques.

Another major issue is represented by the non-trivial eval-
uation of the impact of a PdM in an industrial environ-
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Fig. 3. The performances of two PvM systems (PvMµ and
PvMη) versus the ones of the PdM system PdME as a
function of the threshold kT . Taken from Susto et al.
(2012c).

ment and the comparison of the performance of a PdM
system versus a R2F/PvM approaches. In Susto et al.
(2012c,a) the performances of the proposed PdM systems
are evaluated in terms of two indicators:

(1) type I error - number of not prevented maintenances
NUB;

(2) type II error - number of process iterations that may
have been performed if the maintenance interventions
suggested by the PdM systems would not have been
performed NBL.

Based on the costs associated with the two errors, the
maintenance system can be tuned to be more or less
reactive: in the example reported in Fig. 3 the tuning
is done through the choice of scalar parameter kT , see
Susto et al. (2012c) for details. Clearly this performance
evaluation can only be done on R2F dataset and this is a
huge limitation. Not only that, but before adopting a PdM
approach instead of a PvM, the costs associated with the
lack of planned scheduling should be taken into account,
see Susto et al. (2012c).

5. FAULT DETECTION AND CLASSIFICATION

Fault Detection and Classification (FDC) methods have
been widely applied in the past years (Adamson et al.
(2006); Moore et al. (2006); Schirru et al. (2010a).) In
contrast to PdM techniques, an FDC system does not
predict the future behavior of the tool/process, but, in
the case of a fault, aims to identify the root cause of
the abnormal behavior. This is of particular interest in
the everyday work of a semiconductor plant: the root
causes of faults in a complex process may be dozens,
sometimes hundreds, and even expert process engineers
have difficulty understanding the pathology and, therefore,
how to properly cope with the faulty process/tool.

Sometimes PdM modules/approaches are based on FDC
systems and this is the reason why FDC is sometimes
a misused word for PdM; in Goodlin et al. (2003) for
example the PdM module constantly monitor the FDC
results as a sort of HF. In that work the FDC system
simultaneously detects and classifies different faults from
different control charts. Another work where control charts
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are used for defining a FDC system is Schirru et al.
(2010a), where chamber matching is obtained with multi-
level linear models (see Fig. 4).

The FDC modules usually employ classification tech-
niques, Hastie et al. (2009); for example K-Nearest-
Neighbour (kNN) in He and Wang (2007), Principal
Component-based kNN in He and Wang (2010) and Sup-
port Vector Machines (SVMs) in Sarmiento et al. (2005).

FDC systems are affected by some of the same data
challenges described for VM and PdM: lack of observa-
tions, huge data fragmentation, high-dimensionality, multi
process causes. A common problem for FDC and PdM
is usually the lack of structured data for maintenances;
usually faults and corrective actions are recorded manually
by process/maintenances engineers and the resulting lists
are incomplete or the same maintenance or fault cause
may be indicated with different names. This, and several
other problems not cited in this paper, underline how, to
be successful in the work of applying machine learning
and control methods to semiconductor manufacturing, it
is of paramount importance to closely collaborate with
people in the industry to understand the problem and the
complexity of the datasets.

6. RUN-TO-RUN CONTROL

Run-to-Run (R2R) has become the standard approach for
process control in Semiconductor plants (Boning et al.
(1996); Toprac et al. (1999)) in the last decades. Despite its
simplicity, R2R control presents several advantages such
as improved process and device performance, decreased
tool downtime, improved process throughput, reduction
of defective wafers and early detection of process drifts
(Anderson and Hanish (2007)).

R2R techniques are based on physical measurements of
quality parameters (such as layer thickness or Critical
Dimensions). Considering the common sampling practices
of measuring a small number of wafers for each lot (usually
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Fig. 5. R2R control scheme with Physical and VM (statis-
tical) Measures.

1 out of 25 wafers), it is apparent why R2R controllers
operate on a Lot-to-Lot (L2L) control policy that allows
for corrective actions to be taken at lot level (Toprac
et al. (1999)). R2R controllers are generally implemented
through EWMA-based algorithms, see Chen and Guo
(2001).

With the development and adoption of VM systems in
recent years, this scenario has changed as control systems
have the possibility of incorporating this new information
source in their calculations. The presence of statistical
measurements for each wafer and the reduction of physical
measure should be taken into account when implementing
a control strategy. In Fig. 5 a qualitative block scheme for
R2R controllers with VM module in the loop is depicted.

In Cheng et al. (2008) and Susto et al. (2012d) VM
and physical measurements are treated differently depend-
ing on their probabilistic distributions, with different ap-
proaches. This research topic is however in its infancy,
largely because VM has only become a well established
technology in the last few years.

7. CONCLUSIONS

An overview on the major applications of machine learning
and automatic control for semiconductor manufacturing
have been presented. This is a challenging research area of
growing interests; as explained in Section 3.2, 4.2, 5 and 6
several of the problems of this area are still open or have
just been recently tackled.

Several other APC works (for example Vincent et al.
(2011) and Prakash et al. (2012)) in the area of statistical
modeling/automatic control that cannot be included in
the categories of Virtual Metrology/Predictive Mainte-
nance/Fault Detection/Run-to-Run have been presented
in recent years underlying the extents of the possibilities
of machine learning and control systems in semiconductor
manufacturing.
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