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“The real voyage of discovery consists not in seeking new landscapes but in having new

eyes.”

Marcel Proust



Abstract

“The road ahead for preventive medicine seems clear. It is the delivery

of high quality, personalised (as opposed to depersonalised) comprehensive

medical care to all.” Burney, Steiger, and Georges (1964)

This world’s population is ageing, and this is set to intensify over the next forty years.

This demographic shift will result in significant economic and societal burdens (partic-

ularly on healthcare systems). The instantiation of a proactive, preventative approach

to delivering healthcare is long recognised, yet is still proving challenging. Recent work

has focussed on enabling older adults to age in place in their own homes. This may

be realised through the recent technological advancements of affordable healthcare sen-

sors and systems which continuously support independent living, particularly through

longitudinally monitoring deviations in behavioural and health metrics. Overall health

status is contingent on multiple factors including, but not limited to, physical health,

mental health, and social and emotional wellbeing; sleep is implicitly linked to each of

these factors.

This thesis focusses on the investigation and development of an unobtrusive sleep mon-

itoring system, particularly suited towards long-term placement in the homes of older

adults. The Under Mattress Bed Sensor (UMBS) is an unobstrusive, pressure sensing

grid designed to infer bed times and bed exits, and also for the detection of development

of bedsores. This work extends the capacity of this sensor. Specifically, the novel contri-

butions contained within this thesis focus on an in-depth review of the state-of-the-art

advances in sleep monitoring, and the development and validation of algorithms which

extract and quantify UMBS-derived sleep metrics.

Preliminary experimental and community deployments investigated the suitability of the

sensor for long-term monitoring. Rigorous experimental development refined algorithms

which extract respiration rate as well as motion metrics which outperform traditional

forms of ambulatory sleep monitoring. Spatial, temporal, statistical and spatiotemporal

features were derived from UMBS data as a means of describing movement during sleep.

These features were compared across experimental, domestic and clinical data sets, and

across multiple sleeping episodes. Lastly, the optimal classifier (built using a combina-

tion of the UMBS-derived features) was shown to infer sleep/wake state accurately and

reliably across both younger and older cohorts.

Through long-term deployment, it is envisaged that the UMBS-derived features (in-

cluding spatial, temporal, statistical and spatiotemporal features, respiration rate, and



sleep/wake state) may be used to provide unobtrusive, continuous insights into over-

all health status, the progression of the symptoms of chronic conditions, and allow the

objective measurement of daily (sleep/wake) patterns and routines.
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Chapter 1

Introduction

1.1 Background and Motivation

The world’s population is ageing as a result of changes in life expectancy, fertility and

migration, and this demographic shift is set to intensify over the next forty years (Mc-

Morrow and Roeger, 2012). This will be most acute in North America, Europe and

Japan and is set to place an enormous burden on healthcare systems (McMorrow and

Roeger, 2012). In a global context, the proportion of the population over 60 years of

age has risen from 8% in 1950 to 11% in 2009, and is expected to dramatically increase

further to 22% in 2050 (Department of Economic and Social Affairs, Population Divi-

sion, United Nations, 2009). In a European context (of the EU 27 countries as of May

2012), the proportion of adults aged 65 and above is set to increase from 17.4% in 2010

to 30% by 2060 (see Figure 1.1). The Old Age Dependency Ratio, the ratio of those

over 65 over the working population (15-64 years old), is set to increase dramatically in

both a European (from 25.9% in 2010 to 52.6% in 2060) and an Irish (from 16.8% in

2010 to 36.7% in 2060) context (see Figure 1.2). Additionally, there will be an increase

in the prevalence of chronic diseases, such as diabetes, Chronic Obstructive Pulmonary

Disease (COPD), and arthritis, as a result of changing diet and lifestyles. For example,

the incidence of diabetes is set to double between 2005 and 2030 to an estimated number

of 366 million people living with diabetes in 2030 (World Health Organisation (WHO),

2004). This will place further strain on healthcare systems as chronic conditions may

exists for a long number of years, the resultant complications may be severe, and the

means to control them costly (Agoulmine et al., 2011).

The current healthcare paradigm for individuals who have lost the ability to fully care

for themselves, particularly amongst older adults (aged 60 and older), is centred around

delivering institutional care (for example either through hospital or nursing home) when
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Figure 1.1: Demographic breakdown of the population of the EU 27 (diagram repro-
duced from European Union (2011) and data taken from EuroStat)
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Figure 1.2: Old age dependency ratios (data from 2010-2060 are predicted values;
data taken from Information Unit, An Roinn Slainte (Department of Health), Ireland

(2010))
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no caregivers are available or appropriately skilled. This model is costly and significantly

reduces the independence and quality of life of those being cared for. Institutional care

is suboptimal in cases where some additional support allows the older adults to remain

in their home. Ongoing research proposes a move towards technologies which deliver

and support independent living allowing the older adult to age in place for as long as

possible.

Recent advances in health technology for older adults have focussed broadly on two

areas: 1) clinic-based technology for health assessment resulting in a better delivery

of care and 2) home-based technology to support independent living. Both of these

areas are diverse. The former ranges from the instantiation and large-scale analysis of

electronic health records, to the collection of large data sets using instrumented versions

of standard clinical tests for the modelling and prediction of a deteriorating health

status, and to the development of new technologies for the prevention, early diagnosis

and management of chronic diseases (such as COPD, Congestive Heart Failure (CHF)

and diabetes). The latter consists of body sensor networks (the continuous collection and

analysis of physiological, kinematic and biomechanical data from miniaturised sensors

attached or implanted onto the person), robotics (inclusive of mechatronic systems which

may restore motor function or for limb recovery, robots to assist in the performance of

Activities of Daily Living (ADL), or the monitoring of overall health status such as

for cognition, or for companionship), and ambient intelligent smart homes (where the

environment is sensorised using novel unobtrusive technologies which infer, monitor and

report the overall health status of the resident). Jointly these approaches facilitate a

more effective and efficient delivery of healthcare.

Clinical tests provide a deep insight into the health status of an individual, however

due to their intrusive nature and costly overhead they are often performed infrequently.

Simple and easily performed standardised tests have been developed to provide quanti-

tative health status indicators (such as the quantitative Timed Up and Go test (Greene

et al., 2010)). While these may provide a much richer source of data in more convenient

settings (for example through primary care clinics), inter- and intra-daily variations are

still not measured. This is particularly important for those conditions which cause a

rapid deterioration in health (such as COPD and CHF). Body sensor networks and

non-contact solutions have been proposed to address this issue (Bonato, 2010).

Ambient living aware homes capture data continuously from various sources through-

out the participant’s residence; these range from monitoring in-house movement levels

(Walsh et al., 2011a), electricity and water usage (Froehlich et al., 2011), inferring a

depression index (Dickerson et al., 2011) and many other topics. Through combining

features extracted from such technologies valuable insights into the occupant’s life may
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be obtained. Central to this is the prediction of the overall health status of the resident,

however this is contingent on multiple factors including, but not limited to, their physi-

cal health, mental health, and social and emotional wellbeing; sleep is implicitly linked

to each of these factors.

The fundamental focus of this thesis is the development of an appropriate technology

for the long-term monitoring of sleep, particularly suited for placement in the homes

of older adults. The Under Mattress Bed Sensor (UMBS) is a pressure sensing grid

placed beneath the mattress. In its original clinical instantiation (mainly in nursing

homes), it provides measurements of presence in bed and quantifies the timing between

bed movements for inferring the development of bedsores. Specifically, the contributions

of this work are in the development of algorithms which extend the capacity of the sensor

and are shown to accurately provide metrics of in-bed movement levels, respiration

rates and sleep state. Through long-term deployment, it is envisaged that this system

may be used to provide unobtrusive insights into overall health status, the progression

of the symptoms of chronic conditions, and allow the objective measurement of daily

(sleep/wake) patterns and routines.

1.2 Sleep

Sleep is a fundamental physiological process with important restorative functions. It oc-

curs in all living mammals and generally over a significant portion of each day (Zepelin,

2000). Sleep problems have been shown to be detrimental to human health. In humans,

short (seven hours or less) and long (nine hours or more) durations of sleep have been

shown to be significant predictors of death in prospective population studies (Cappuccio

et al., 2010). Sleep disturbances may be indicative of poor health and functional deficits,

especially in older adults (Manabe et al., 2000; Miles and Dement, 1980). Total sleep

time is reduced in the elderly and this is not due to a reduced need for sleep, but in a di-

minished ability to sleep (Ancoli-Israel, 1997). Sleep complaints are commonly reported

by over 50% of those aged 65 and older (Miles and Dement, 1980). These complaints

include getting less sleep, frequent awakenings, waking up too early, excessive daytime

sleepiness, and napping during the day. Decreased quality of life, and higher rates of

depression and anxiety are reported in patients with sleeping difficulties (Barbar et al.,

2000). In direct comparisons against matched controls, aged patients with sleep diffi-

culties have significant cognitive impairment and limited attention spans. Additionally,

high incidences of balance, ambulatory and visual difficulties (after controlling for med-

ication use) have been reported in older adults with sleep problems (Brassington et al.,

2000). Furthermore, decreased TST, an increased SL, defined as the time taken to fall
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asleep in bed, and a poor Sleep Efficiency (SE), defined as the percentage of TST over

total TIB, are linked to a greater risk for mortality (even when controlling for related

covariates) (Dew et al., 2003). Additionally, the symptoms of various chronic condi-

tions continue into the night and result in a disturbed sleep; these include movement

disorders, neuromuscular diseases, depression, dementia, epilepsy, obesity and circadian

rhythm disorders (Happe, 2003).

The gold standard sleep assessment technology is polysomnography (PSG) which records

multiple physiological signals (including brain activity, muscle tone, eye movements,

heart rate and respiration) during sleep. This is generally performed in a sleep clinic

and a trained sleep scorer uses a strictly defined set of rules to classify each 30 second

epoch into either wake or a variety of sleep stages (Iber et al., 2007). However the

application of these rules is subjective and an inter-rater agreement rate of 82% has

been reported using data from multiple subjects and across separate sleep laboratories

(Danker-Hopfe et al., 2009). Additionally, Polysomnography (PSG) is intrusive, costly,

time consuming and often alienates the patient. Wrist actigraphy is the current am-

bulatory gold standard sleep monitoring device. It consists of a two axis accelerometer

which records the rest/activity patterns of the wearer and converts this to sleep/wake

estimates (using slightly modified thresholding algorithms). Wrist actigraphy has been

shown to estimate nocturnal sleep duration and sleep-wake patterns reliably where PSG

is not a suitable alternative (Kushida et al., 2001; Sadeh et al., 1994). However, a low

wake detection capacity is often reported with this device as the device cannot dis-

criminate between quiescent wake and sleep (Paquet et al., 2007). Wrist actigraphy is

dependent on the adherence (and conscious participation) of the wearer. Sleep diaries

are also used (often concomitantly with wrist actigraphy) to estimate sleep duration in

normal, institutionalised and pediatric populations. However their validity relies upon

the attentiveness of the individual filling the diaries out (in cases where the diaries are

filled out by the individual). A trade-off exists for these technologies between accuracy

and suitability for long term deployment.

An ambient living technology approach offers a more practical solution for long term

sleep monitoring and will ideally avoid any conscious interaction with the subject. Video-

based sleep monitoring solutions have been proposed Nakajima et al. (2001); Okada et al.

(2008) and while their utility is impressive participants are often uncomfortable with

the presence of video recording equipment in the home and especially in the bedroom

(Townsend et al., 2011c). Privacy concerns were diminished only when unfavourable

alternatives (such as nursing homes) were considered (Townsend et al., 2011c). How-

ever, other technologies may provide sufficient utility while retaining privacy. Passive

Infra-red (PIR) based monitoring systems (Choi et al., 2006; Shin et al., 2003) have

been developed and a high accuracy reported, but a number of potential usability issues
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remain including the varying location of heaters between environments and the presence

and types of bed sheets shielding sensor from the minute movements of the individual.

Radar based technologies (de Chazal et al., 2008) report high accuracies in detecting

movement compared to wrist actigraphy although the range between the sensor and the

individual may be an issue in some cases (particularly when the user is in a double bed).

Load-cell movement detection sensors (Brink et al., 2006; Choi et al., 2009) have been

shown to have a high capacity in detecting respiration and movement although this may

depend on the orientation of the individual. Sleep monitoring systems using pressure

pads placed on top of the mattress, underneath the bed sheets, have been developed

which detect the ballistocardiogram and detect the heart rate and respiratory rate ac-

curately (Mack et al., 2009a). Under mattress sensors (Watanabe and Watanabe, 2004;

Carlson et al., 1999; Shin et al., 2010; Kortelainen et al., 2010; Brser et al., 2011) have

been shown to measure respiration or both respiration and heart rate effectively. Pillow

based sensors Zhu et al. (2006) have been proposed as solutions to domestic non-contact

sleep monitoring by measuring heart and respiration rate. These systems are particu-

larly suited to non-contact long term sleep monitoring as they do not require specialist

expertise to install. Overall, some systems have usability constraints ranging from lim-

itations in a practical deployment to a rejection of the technology by the participants

due to their design (for example, the noticeable presence of the sensor when in bed or

the stigma attached to the requirement for an assisted living technology if the technol-

ogy is within view of visitors to the environment). In order for any such technology

to be adopted successfully over extended durations, they must meet the needs of the

user, and, in the case of smart-home/telehealth technology, being unobtrusive is central

to this (both in terms of aesthetic design and comfort when applied to long-term sleep

monitoring).

1.3 Aims and Scope of this Thesis

Reliable non-invasive long-term monitoring of sleep in a non-clinical setting remains a

challenging problem and significant amounts of similar research is ongoing (as discussed

above). Such pervasive technologies offer the ability to monitor both the slow progression

of an illness as well as sudden physiological changes due to serious life events. The main

objective of this thesis is in the development of an appropriate system for long-term in-

bed monitoring, particularly for placement in the homes of older adults. This objective

is achieved in four main sections.

Firstly, a brief introduction to sleep is given including the definition of sleep, the stages of

sleep, physiological changes entering and during sleep, and commonly used sleep metrics.
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Additionally, architecture of sleep stages throughout the night, as well as age and illness

related changes in sleep are described. A comprehensive overview of traditional clinical

and non-clinical sleep monitoring is also provided. An in-depth discussion of the state-

of-the-art recent (clinical, contact-based and non-contact) advances in sleep monitoring

is also given.

Secondly, the non-contact under-mattress sleep monitoring modality (the UMBS) and

the various multiple data collection systems are described in detail. Results from an

initial experimental deployment of the UMBS show the ability of the sensor to discern

motion. Another initial deployment in a pilot study in the domestic residences of older

adults provides a comparison to other sleep monitoring technologies as well as daily

activity metrics.

Thirdly, a thorough validation of custom developed algorithms details the reliable and

accurate detection of respiration rate and the movement detection capacity of the sen-

sor. Three experiments provide the justification for this: 1) an initial investigation into

the capacity of the sensor to detect respiration and heart rate, 2) the development of

automated algorithms which extract these physiological signals, and 3) the develop-

ment of algorithms to extract movement metrics and a comparison against alternative

technologies.

Fourthly, multiple feature extraction algorithms which measure temporal, spatial, sta-

tistical, and spatiotemporal movement are proposed. These features are applied to and

compared across clinical (research and hospital based) and domestic data sets from older

and younger adults. A comparison across multiple nights is also made in order to assess

inter-daily variations.

Finally, all of the features derived throughout this thesis are used to generate systems

which discriminate between sleep and wake. This is performed using a large data set and

multiple classifiers on both a younger and older adult data set and is shown to outperform

wrist actigraphy (the current ambulatory gold standard for sleep monitoring).

1.4 Contributions of this Thesis

In its entirety, this thesis extends the original purpose of the sensor (intended for use in

long-term care institutions) into a system which unobtrusively gathers objective respira-

tion, movement and sleep state metrics reliably and accurately. The novel contributions

of the work presented in the thesis are:
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1. A comprehensive literature review of the state of the art in contact and non-contact

sleep monitoring is conducted. This includes advances in automated PSG scoring,

electrodes based advances, video, smartphone and Radio Frequency (RF) based

applications, and pressure based sensors. The review also provides details on the

methodologies used in validating sleep monitoring systems.

2. As part of preliminary investigations of the UMBS, the system was deployed in an

experimental setting as well as in a pilot study in the real-world. This real-world

deployment was part of a larger study investigating the routines of community

dwelling older adults and was carried out by the Digital Health Group in Intel

Ireland Ltd. The creation of the data collection platform and the analysis of the

associated data was performed in collaboration with the Digital Health Group.

3. The preliminary detection of physiological signals using the system was performed

using a rigorously developed experimental setup. Using the resultant data, al-

gorithms were developed which automatically derived respiration rate from the

UMBS. These results were optimised against gold standard measurements of res-

piration. Additionally, movement detection algorithms were developed which were

found to outperform wrist actigraphy when compared to a custom-built video-

based motion detection system.

4. Methods extracting quantitative measures of temporal, spatial, statistical and

spatiotemporal motion in bed were developed as a means of describing move-

ment during sleep. These techniques were validated using a custom-collected data

set. Additionally, the system was deployed in complicated clinical (research and

hospital-based) and non-clinical (domestic) settings amongst older and younger

adults. Features were extracted from the resultant data, and compared across

the cohorts. Furthermore, inter-daily comparisons of the metrics were also inves-

tigated. Consistencies in some features existed between subjects and cohorts as

well as across days, while other features were found to vary largely. This provides

an unobtrusive framework for the collection of objective sleep data (in the form

of temporal, spatial, statistical and spatiotemporal movement descriptions) which

may be representative of transient and long-lasting sleep quality. The hospital-

based clinical data set is to be made available to the wider reseach community.

5. Data were collected in a intensive physiological monitoring clinical research setting

from a large cohort of older and younger adults as part of wider research studies.

The UMBS data was linked to sleep stages and advanced classification techniques

were applied to this data in order discriminate between sleep and wake. The large

data set collected facilitated the application of many classification algorithms, and

ensured the validity of the results. The algorithms with the highest accuracy
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were shown to outperform wrist actigraphy in detecting sleep and wake using an

unobtrusive and non-contact means. An investigation into discriminating between

the constituent stages of sleep was also performed, however its performance was

low and the system was deemed unsuitable for sleep stage detection. Other similar

systems report greater accuracy, however they also use features derived from the

heart rate which provides extra discriminative capacity.
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1.6 Thesis Layout

This thesis begins in Chapter 2 by providing an introduction to sleep and sleep medicine

for the novice reader. It provides a definition of each of the constituent stages sleep is

generally broken into and other physiological changes exhibited during sleep. Commonly

reported sleep metrics are also defined. The typical architecture of sleep and sleep stages

throughout the night are also described. Additionally, the changes to sleep caused by

natural ageing, and by illness and disease are discussed.

In Chapter 3 an overview of the performance metrics and classification methods discussed

in this thesis are presented. These classification methods include the binary classification

test, discriminant analysis, k-nearest neighbour, artificial neural networks and support

vector machines. An overview of how to rigorously implement these techniques using

large data sets and how to implement multiclass classisification is provided.

Chapter 4 provides a comprehensive literature review of sleep measurement technologies.

It ranges from PSG (the traditional clinical based approach) and manual scoring, sleep

diaries, sleep tests and subjective measures, to wrist actigraphy, automated PSG scoring

techniques, and contact and non-contact advances in sleep monitoring. Additionally,

multi-modal techniques, modalities for sleep apneoa monitoring and sleep monitoring

using brain imaging are briefly discussed.

Chapter 5 presents the candidate hardware and software used to unobtrusively monitor

sleep. Results from initial experimental deployments investigating the detection of phys-

iological signals, examining sensor data from an entire night and showing sensor data

during typical nightly movements are presented. Additionally, results from the deploy-

ment of the sensor in a pilot study are presented. Data extracted from the sleep sensor

during this pilot study are compared to wrist actigraphy, measures of daily activity and

daily routines. A discussion on parallel research being carried out using this sensor is

also reported.
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Chapter 6 describes the thorough and rigorous validation of automated algorithms ex-

tracting respiration rates and in-bed movement metrics. These physiological results

are optimised against clinical gold standards and a custom-built motion detection sys-

tem. This chapter provides the evidence underpinning the suitability of the sensor for

reporting data related to overall health and sleep status.

Chapter 7 discusses the extraction of temporal, spatial, statistical and spatiotemporal

movement features from the proposed sensor. Data were collected from clinical (in

research and hospital based settings) and non-clinical (domestic) settings from both older

and younger adults and these features were extracted from each of these populations.

A comparison of the movement features across the subjects over one night is made,

as well as an investigation of the consistency of these metrics across multiple nights

(mainly in the cohort of the older adults in their domestic residences). A comparison

of the spatiotemporal movement features between cohorts is made in order to compare

whether the quantitative components of each movement differs between the populations.

Chapter 8 applies various classification techniques to the features derived in the previous

chapters in order to discriminate between sleep and wake, and between the sleep stages.

A large data set was collected for this purpose in a cohort of older and younger adults

in a clinical research setting. Cohort and subject specific classifiers are built for the

discrimination of sleep and wake. Standard multiclass classification techniques and

hierarchical binary classifiers are applied to predict the sleep stages from a mixture of

the individual features.

Finally, Chapter 9 provides a summary of the novel contributions of this thesis, and

discusses potential further avenues of research made available by this body of work.
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Chapter 2

An Introduction to Sleep

Sleep is a complex and essential physiological process with an important restorative

function. Unsurprisingly, it has been, and remains to be, the subject of intense scientific

study. This chapter introduces the field of sleep science and begins by providing the

scientific definition of sleep and the various sleep stages, each with their own distinct

characteristics. Commonly used sleep metrics, derived from the pattern of sleep stages

that occur during a sleeping period, are described. Sleep quality declines and sleep

quantity shortens as a person gets older and this can be a result of ageing, the progression

of a disease or illness, and/or sleep disorders. These changes (for example a reduced TST,

lower SE or an increased SL) are often multifactorial. A description of how poor sleep

affects overall health, and how various illnesses affect sleep is provided. Sleep science

and sleep medicine is an ever-expanding area and its entire scope is outside the bounds

of this research; for a thorough review the reader is directed to Lee-Chiong (2006).

2.1 The Definition of Sleep

Humans spend approximately one third of each day asleep (Feinberg, 1974; Miles and

Dement, 1980). Before the development of technologies which measure internal biological

processes, sleep was defined through: a) a species specific body posture, b) maintained

behavioural quiescence, c) an elevated arousal threshold, and d) state reversibility with

stimulation (Flanigan, 1972). However, in 1935, Loomis et al. conducted extensive

comparisons investigating changes in cortical patterns discriminating patterns sleep and

wake (Loomis et al., 1935a,b). Further work in 1937 examined brain waves at the point of

sleep onset (Davis et al., 1937). This work was further expanded up as eye movements

were found to also provide discriminative capacity in identifying when dreams occur

(Dement and Kleitman, 1957). Rechtschaffen and Kales published their seminal sleep
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scoring manual in 1968 which provided a strict and well-defined set of rules for trained

scorers to identify periods of sleep and the constituent stages of sleep.

The exact purpose of sleep is unknown; however adaptive, restorative and homeostatic

theories have been proposed to explain a need for sleep (Carlson et al., 2000; Malim

and Birch, 2000). The adaptive theory discusses that sleep evolved to keep animals safe

from predators as this was when they were most susceptible to attack. The restorative

theory for sleep states that sleep is needed for recuperative purposes. The homeostatic

theory suggests that sleep evolved to conserve energy, the antithesis of the waking day.

An endogenous drive for sleep exists in most animals (Lockley, 2009). In fact, chronic

sleep restriction has been found to be fatal in rats, drosophila and possibly humans

(Frank, 2006). This supports a life-sustaining function for sleep. The existence of an

internal body clock that regulates the circadian (Latin for ’about a day’) rhythms of

many physiological processes, including sleep, has been proven to exist (Lockley, 2009).

In humans, the circadian rhythm of sleep and wake drives a high desire for sleep at

night and a smaller drive in the afternoon (Mitler, 1996). This is the opposite for noc-

turnal animals. The driving mechanism behind this rhythm has been found to exist in

the Supra-Chiasmatic Nucleus (SCN) in the hypothalamus (Lockley, 2009). Light is a

direct input to this system and the retino-hypothalamic tract has been shown to carry

projections from the retina to the SCN. If a human is left to self regulate without any

external influences their body has been shown to adopt an internal endogenous cycle

lasting nearly twenty five hours (Lockley, 2009). Light, environmental cues (such as

social demands) and hormones can be used to reset and regulate this internal clock to

adhere to societal norms (Lockley, 2009). Disturbances in circadian rhythms have been

associated with cognitive decline, mood, behavioural and sleep disturbances, and limi-

tations of activities of daily living in elderly patients with dementia and their caregivers

(Riemersma-van der Lek et al., 2008). A randomised control study on elderly patients

with dementia found that the long-term treatment using whole-day bright light (≈ 1000

lux) attenuated cognitive deterioration, ameliorated depressive symptoms and reduced

the limitations in functional limitations over time (Riemersma-van der Lek et al., 2008).

2.2 Sleep Scoring

Upon initial investigation human sleep was divided into two distinct states known as

REM sleep and Non-Rapid Eye Movement (NREM) sleep each characterised by the pres-

ence or absence of the fluttering, or rotation, of the eye (Aserinsky and Kleitman, 1953).

In 1968, Rechtschaffen and Kales developed an analytical basis for scoring human sleep
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Figure 2.1: Positions of the electrodes for EEG (brown), EOG (purple) and EMG
(blue).

recordings into separate stages using brain waves and physiological patterns (Rechtschaf-

fen and Kales, 1968). Specific, well defined rules subdivided NREM sleep into 4 stages

(stage 1, stage 2, stage 3, stage 4) (Rechtschaffen and Kales, 1968). Rechtschaffen and

Kales also defined ’wake’ and ’movement time’ stages. Recently these standards have

been replaced by the American Academy of Sleep Medicine (AASM) Manual for Scoring

Sleep Stages and Associated Events (Iber et al., 2007) as outlined in Table 2.1. One

major change between the AASM and the Rechtschaffen and Kales guidelines for scoring

sleep is that sleep stages 3 and 4 are combined. REM sleep is also divided into phasic

and tonic REM.

Sleep scoring mainly examines (Iber et al., 2007) (and the uses the electrode positions

defined in Figure 2.1):

• EEG: the measurement and patterns of brain waves

• EOG: the measurement of eye movements

• Electromyography (EMG): the measurement of muscle tone

EEG provides essential information for sleep scoring, while EOG and EMG provide

additional information (Iber et al., 2007). Other signals which can aid scoring are

the Electrocardiography (ECG), the breathing signal and a movement signal. Further

information on the measurement of these signals is provided in Chapter 4.
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A brief overview of wake and each of the sleep stages is given in the following sections.

Table 2.1: Physiological rules for sleep scoring as defined by the AASM 2007 standard

Stage EEG Findings Eye Movements

(EOG)

EMG submental

W Over 50 % of an epoch has an alpha rhythm

over occipital rhythm

Typically, no eye

movements seen

Normal to high

muscle tone

N1 Attenuation of alpha rhythm for over 50 %

of the epoch replaced with mixed frequency

low-amplitude rhythm or a slowing of PDR

from waking of greater than or equal to 1

Hz if no alpha rhythm was noted. Vertex

sharp waves. N1 stage continues until beginning

of N2 stage or an arousal

Slow, rolling eye

movements typi-

cally

Variable, typi-

cally less than

wake

N2 K complexes and/or sleep spindles (as pre-

sented in Figure 2.2) occurring in the first

half of the epoch; Low-amplitude, mixed fre-

quency EEG. N2 stage persists until transition to

N3 stage, R stage or an arousal.

Typically, no eye

movements , but

slow eye move-

ments may per-

sist

Variable ampli-

tude, typically

lower than W

and higher than

R

N31 Slow-wave activity (0.5-2 Hz, greater than

75 microVolts) for greater than 20 % of an

epoch. Sleep spindles may persist. N3 per-

sists until transition to N1, transition to N2, be-

tween K complexes without eye movements, or an

arousal.

Typically, no eye

movements seen

Variable ampli-

tude, typically

lower than W

and higher than

R

R Low-amplitude, mixed frequency EEG.

Sawtooth waves. R persists until transition to N1,

transition to N2, between K complexes without

eye movements, or an arousal

REMs Low muscle

tone

W=wakefulness; N1 = NREM stage 1 sleep; N2 = NREM stage 2 sleep; N3 = NREM stage 3 sleep;

R = REM stage sleep. Bolded items are requirements for staging. Italicised items are nonrequired

associated findings that may be present in that sleep stage. Table adopted from AASM Manual for

the Scoring of Sleep and Associated Events (Iber et al., 2007).
1 Previously known as NREM stage 3 and NREM stage 4 sleep.

2.2.1 Wake

Wake is characterised by an alpha (8-13 Hz) EEG rhythm over the occipital region

(rearmost position of the brain) and this is commonly referred to as a Posterior Dominant

Rhythm (PDR). It is also defined by the presence of rapid eye movements and continued

muscle tone. Sleep is scored as wake when greater that half of the epoch has an alpha

rhythm (Iber et al., 2007). Eye blinks, reading eye movements, irregular conjugate rapid
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eye movements associated with normal or high chin muscle tone also define the wake

state (Iber et al., 2007).

2.2.2 Rapid Eye Movement (REM) Sleep

REM sleep occurs for approximately twenty five percent of TST (Ehlers and Kupfer,

1997). REM sleep is characterised in EEG by low amplitude, mixed frequency EEG

activity with slow alpha (8-12 Hz) and theta (4-8 Hz) waves. Saw-tooth waves (resem-

bling in appearance the blade of a saw) which are brief bursts of 3-7 Hz EEG activity

with an amplitude less that 50µV olts and a duration of about 5 seconds can also be

present (Stern, 2004). REM sleep can be divided up into tonic and phasic REM sleep.

Tonic REM sleep is characterised by a desynchronised EEG, atonia of skeletal muscle

groups and suppression of monosynaptic and polysynaptic reflexes. Rapid eye move-

ments, transient swings in blood pressure, heart rate changes, irregular respiration,

tongue movements and myoclonic twitching of chin and limb muscles are evident in

Phasic REM sleep (Baust et al., 1972; Chokroverty, 1980; Iber et al., 2007; Oksenberg

et al., 2001; Orem, 1980; Rama et al., 2006).

2.2.3 Non-Rapid Eye Movement (NREM) Sleep

Non-rapid eye movement sleep occupies approximately seventy-five percent of total sleep

time in normal healthy adults. Traditionally it was broken into four sleep stages, al-

though in the recent review of sleep scoring (Iber et al., 2007) it has been broken up

into 3 stages. Stage 1 (also known as N1 in the latest revision of sleep scoring by Iber

et al.) is often considered a transitional stage of sleep occurring as the individual enters

sleep. NREM sleep occurs cyclically throughout the night interspersed with REM sleep

(Feinberg, 1974). The following section describes the different stages of NREM sleep.

Stage NREM 1 (N1) sleep occurs mostly in the transition from wakefulness to sleep (in-

cluding after arousals). Approximately five percent of sleep is spent in this stage (Ehlers

and Kupfer, 1997). Some subjects if woken after stage 1 sleep will have no recollection

of being asleep, while others will report being asleep (Feinberg, 1974). During stage 1

sleep the PDR is replaced by a low-voltage, mixed-frequency activity pattern, typically

to a theta frequency (4-8 Hz). A decreased muscle tone and slow rolling eye movements

are also evident. Vertex sharp waves (50-200 ms) are noted towards the end of stage 1

sleep (Iber et al., 2007; Rama et al., 2006; Vaughn and Gaiallanza, 2008).

Stage NREM 2 sleep (N2) is often also referred to as quiet sleep and occurs for over forty

five percent of total sleep time (Ehlers and Kupfer, 1997). Two distinct EEG patterns,
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Figure 2.2: Sleep spindle and K-Complex EEG patterns which characterise Stage 2
sleep.

sleep spindles and K-complexes (as presented in Figure 2.2), which must occur in the first

half of the scoring period, define the start of this sleep stage (Iber et al., 2007). A sleep

spindle is a train of distinct waves of 11-16 Hz activity lasting at least 0.5 seconds (Iber

et al., 2007). K-complexes are EEG activity consisting of a downward trend followed by

a gradual upward trend lasting more than 0.5 seconds(Iber et al., 2007). Delta waves

(0.5-4 Hz) may also be present in the EEG but occur in small amounts. Muscle tone and

eye movements also diminish during this stage (Rama et al., 2006; Iber et al., 2007). This

stage will continue to be scored until an arousal, major body movement or transition to

another sleep stage occurs (Iber et al., 2007).

Stage NREM 3 and 4 sleep (N3) lasts for approximately fifteen to twenty percent of the

total sleep time. High-amplitude (> 75µV olts peak to peak), slow wave delta (0.5-2.0

Hz) EEG activity characterises these stages. Stage NREM 3 and 4 are defined when

this EEG pattern occurs for over twenty percent of the epoch (Iber et al., 2007). In

the previous Rechtschaffen and Kales standard (Rechtschaffen and Kales, 1968), stages

NREM 3 sleep and stage NREM 4 sleep were commonly referred to as SWS. Stage

NREM 3 sleep contained over twenty percent delta activity and stage NREM 4 sleep

contained over fifty percent delta activity. When a person is woken from this stage they

appear groggy and disorientated. EOG does not register eye movements and muscle

tone is decreased compared to wakefulness or stage NREM 1 sleep, typically lower than

NREM 2 sleep and can be as low as that seen in REM sleep (Rama et al., 2006; Iber

et al., 2007).
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2.3 Other Physiological Changes During Sleep

Autonomic Nervous System Variation An increase in parasympathetic tone and a

decrease in sympathetic tone is seen at the onset of sleep and NREM (Choudhary

and Choudhary, 2009). These features are more exaggerated during tonic REM,

however in phasic REM an increase in sympathetic activity is observed. For further

information regarding the autonomic nervous system, sympathetic and parasym-

pathetic tone, the reader is referred to Choudhary and Choudhary (2009).

Body temperature Variation The body temperature decreases during sleep by 1-2

degrees Celcius and rises during the waking day in a sine wave pattern (Choudhary

and Choudhary, 2009). The regulation of temperature is maintained during NREM

sleep, but this is attenuated during REM sleep (Choudhary and Choudhary, 2009).

Hormonal Variations A circadian variation in hormone secretion is common and this

often peaks between 4am and 8am (Choudhary and Choudhary, 2009).

Cardiovascular Variation The cardiovascular system is influenced by parasympa-

thetic activity (Choudhary and Choudhary, 2009). As a result, heart rate, blood

pressure, stroke volume, cardiac output and systemic vascular resistance decreases

during sleep (Choudhary and Choudhary, 2009). A 35% increase in heart rate

occurs during phasic REM sleep (Choudhary and Choudhary, 2009).

Respiratory Variation A small decrease in ventilation occurs during the transition

from wakefulness to NREM sleep and a reduction in respiratory drive occurs

(Choudhary and Choudhary, 2009). The breathing pattern is regular during

NREM sleep (Choudhary and Choudhary, 2009). During REM sleep the respi-

ration becomes irregular (Choudhary and Choudhary, 2009).

2.4 Commonly Used Sleep Metrics

Various general statistics describing sleep are commonly reported across studies and

individuals (Iber et al., 2007; Hori et al., 2001); some of which are detailed below. A

comparison of some of these metrics across age groups and gender (see Figure 2.3)

was performed by Miles and Dement (Miles and Dement, 1980). These metrics can be

reported objectively from sleep recordings and also through subjective reports.

Wake-time After Sleep Onset (WASO) The length of time spent awake after sleep

onset until the final awakening.

18



An Introduction to Sleep

Figure 2.3: Schematic representation of the trends of objectively recorded sleep pa-
rameters, such as WASO, SL, TIB, TST and all stages, are shown. Data are best
estimates taken from all the publications cited in (Miles and Dement, 1980, chap. 3).

[taken from (Miles and Dement, 1980, chap. 3).]

Sleep Latency (SL) The length of time between lights out (the decision to sleep) and

sleep onset.

Rapid Eye Movement (REM) latency The length of time between lights out and

the first occurrence of REM sleep.

Total Sleep Time (TST) The total length of time spent asleep over the entire sleep

episode.

Time in Bed (TIB) The total time spent in bed during the entire sleep episode.

Sleep Efficiency (SE) Sleep efficiency is defined as the TST divided by the TIB.

Number of bed exits The number of times that the participant leaves the bed (for

example, to use the toilet) during the entire sleep episode.

Length of bed exits The total length of times that the participant leaves the bed for

during the entire sleep episode.

Number of arousals This is defined as the number of individual arousals during the

entire sleep episode.

Length of arousals The total length of arousals during the entire sleeping episodes.

Percent of sleep stage This is a percentage of the time spent in each stage divided

by the TST.
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Figure 2.4: Typical progression of sleep stages throughout an eight hour sleeping
period

2.5 The Architecture of Sleep and Sleep Stages

The distribution of the various sleep stages occurs in NREM-REM cycles throughout

the night. Each cycle lasts approximately ninety minutes with approximately four to

six cycles per major sleeping episode (Feinberg, 1974). As older adults tend to have a

reduced TST, a lower number of cycles is generally seen (Feinberg, 1974). SWS sleep

is more common at the beginning of the sleeping period with REM sleep more common

towards the end. An example of the typical distribution of sleep stages throughout

a night can be seen in Figure 2.4 generated with simulated data using typified data

(Feinberg, 1974).

Changes in the amount of time spent in each sleep stage over a range of subjects stratified

by age is shown in Figure 2.5. The data are reported were averaged results categorised

by the mean age of each group. A general downward trend in the amount of time spent in

NREM sleep can be seen over successive cycles. The time spent in REM sleep generally

increases over successive cycles.

2.6 Age and Illness Related Changes in Sleep

2.6.1 Sleep and Age

Natural age-related changes in sleeping patterns occurs throughout the life cycle (see

Figure 2.6). New born infants spend a significant portion of their day asleep (commonly
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Figure 2.5: The values shown in the legend are the mean age of each group. The
fifth group, mean age 55.3, experienced only four cycles. Data taken from (Feinberg,

1974).

Figure 2.6: Age-related trends for stage 1 sleep, stage 2 sleep, SWS, REM sleep,
WASO and SL (in minutes). Taken from Ohayon et al. (2004).

over sixteen hours asleep; however this is not consolidated) and over fifty percent of sleep

is spent in the REM stage (Rosenthal, 2006). A consolidated nocturnal sleep should be

possible from three months with addition of daytime naps. Older children and adults

typically have consolidated nocturnal sleep without any daytime naps. However, older

adults commonly report sleep disturbances (Ayalon et al., 2004; Ayalon and Ancoli-

Israel, 2006; Bliwise, 2000). However, a distinction must be made between natural

changes in sleep patterns with normal aging and pathological changes in sleep patterns.

2.6.1.1 Sleep and Older Adults

Total sleep time is reduced in the elderly (Miles and Dement, 1980) and this is not due

to a reduced need for sleep, but in a diminished ability to sleep (Ancoli-Israel, 1997;
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Foley et al., 2004). It has also been shown that sleep disturbances may be indicative of

poor health and functional deficits, especially in older adults (Miles and Dement, 1980;

Manabe et al., 2000). Over 50 % of older adults frequently complain about their sleep

and these complaints include getting less sleep, difficulty initiating or maintaining sleep,

frequent awakenings, waking up too early, excessive daytime sleepiness, and napping

during the day (Foley et al., 1995; Vitiello et al., 2004; Bliwise et al., 1992)

A meta-analysis of older adults with a strict selection criteria found consistent TST, SL,

WASO, percent stage NREM 1 sleep, percent stage NREM 2 sleep, percent stage SWS,

percent stage REM sleep, REM latency and also found a decrease in sleep efficiency

between the ages of sixty, and one-hundred-and-two years old (Ohayon et al., 2004). A

second study by Vitiello (2006) with a less stringent selection criteria found that men

showed evidence of poorer sleep with aging compared to women. A possible explanation

for this postulated by Redline et al. (2004) is the excess subclinical morbidity in men.

Correspondingly, the studies by Vitiello and Ohayon et al. are complimentary when the

reader is mindful of the selection criteria for participants. The Ohayon et al. study uses

a strict selection criteria and reports on older adults aging healthily. However, Vitiello

uses a less strict selection criteria, which is more representative of the population, and

reports poorer sleep as age increases. This suggests that monitoring sleep may be used

as a proxy for assessing the health status (including subclinical degradations) of older

adults.

2.6.2 Sleep Degradation from Sleep Disorders, Diseases and Illnesses

The effects of many diseases extend nocturnally, negatively affecting sleep, while some

manifest themselves solely during the waking day. Movement disorders, neuromuscular

diseases, depression, dementia, epilepsy, obesity and circadian rhythm disorders directly

affect the sleep of many people (Happe, 2003). Sleep disorders, occurring in the absence

of a causative factor, also degrade sleep and sleep quality. This effect is often multifacto-

rial. Some common sleep disorders are described below and the effects of some diseases

and illnesses on sleep is also described.

2.6.2.1 Apnoea/Hypopnoea

Apnoeas are characterised as a cessation of breathing during sleep for at least ten seconds

(Lawati et al., 2009). This can be further broken down into central (lack of respiratory

effort) or obstructive (caused by a blockage in the breathing passage) sleep apnoea. Sleep

apnoea and its diagnosing criteria have been well defined and an outline is given below

(The Report of an American Academy of Sleep Medicine Task Force, 1999). Hypopnoeas
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are a milder form of sleep apnoea where a complete suspension of breathing does not

fully occur. Instead, either 1) a reduction of over 30% of airflow for ten seconds and at

least a 4% drop in oxygen desaturation or 2) a 50% reduction in airflow for ten seconds

and at least a 3% drop in oxygen desaturation or an arousal must occur in order to score

a hypopnoea.

Diagnostic criteria for Central Sleep Apnoea: Insomnia or excessive sleepiness,

shallow or absent breathing during sleep; gasps or grunts or choking during sleep;

frequent body movements; cyanosis; polysomnogram demonstrations of central

apnoeas with arousals; bradytachycardia (prolonged occurrence of a slowing of the

heart rate), or oxygen desaturation.

Diagnostic Criteria for Obstructive Sleep Apnoea: Excessive Daytime Sleepiness

or insomnia; frequent episodes of obstructive breathing during sleep; associated

features such as loud snoring; morning headaches; dry mouth upon wakening,

and chest retraction in children during sleep; PSG showing obstructive apnoeas,

arousals, bradytachycardia, and arterial oxygen desaturation; and Multiple Sleep

Latency Test (MSLT) showing increased daytime sleepiness. Not all of these need

to be present.

The Apneoa-Hypopneoa Index (AHI) is used to quantify the severity of apnoeas/hy-

popnoeas. It is measured clinically as the average number of apnoeas and hypopnoeas

which occur per hour. High rates of moderate (AHI of 15 to 30) to severe (AHI of

over 30) sleep apnoea have been reported in approximately 9% in middle aged men and

4% of women (Lawati et al., 2009). This is greater in some patient populations such

as those who are elderly, have hypertension, and those with coronary disease (Lawati

et al., 2009). Obstructive sleep apnoea impairs quality of life, and is associated with

cardiovascular disease and motor vehicle crashes (Lawati et al., 2009).

2.6.2.2 Excessive Daytime Sleepiness

Excessive Daytime Sleepiness (EDS) is defined by the need to sleep at abnormal, often

inappropriate, times and places (American Sleep Disorders Association, 1997). Twelve

percent of the general population are affected by it (Happe, 2003; Roth and Roehrs,

1996). EDS is thought to have four major causes:

1. Quantitative and qualitative sleep deficiencies

2. Central Nervous System (CNS) pathological abnormalities (eg. neurological dis-

orders)
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3. Circadian rhythm disorders (eg. jet lag or shift work)

4. Drugs (Roth and Roehrs, 1996)

2.6.2.3 REM Sleep Behaviour Disorder

REM sleep is partially characterised by muscle atonia, except in the extraocular and

diaphragm muscles (Rechtschaffen and Kales, 1968). This atonic state is thought to

avoid the ’acting out’ of dreams. REM Sleep Behaviour Disorder (RBD) occurs when

this suppression of bodily activity does not function. PSG-coordinated video recordings

often show dream mentation during these RBD episodes. It often presents itself in 60-80

year olds and can be preceded by limb movements, talking and yelling (American Sleep

Disorders Association, 1997).

RBD is thought to be a precursor for many neurological disorders and this theory is

supported by many studies (Happe, 2003). One such study has indicated that 38% of

males diagnosed with idiopathic RBD developed Parkinson’s disease over a mean of 3.7

years (Schenck et al., 1996). A further follow-up study showed that 65% developed de-

layed Parkinsonism and/or dementia seven years after the original article was published

(Schenck et al., 2003). Another recent study showed 45% of a cohort of forty four pa-

tients with assumed idiopathic RBD developed a neurodegenerative disease, including

Parkinon’s disease, dementia with Lewey bodies (DLB), multiple system atrophy (MSA)

and mild cognitive impairment, 10.7 years after reported RBD onset (Iranzo et al., 2006).

Early clinical manifestations of neurodegenerative disorders, such as Parkinson’s disease

or MSA might be possible by screening for idiopathic RBD (Stiasny-Kolster et al., 2007).

Sleep Related Injury (SRI) often occurs jointly with the sudden aggressive movement

associated with RBD. It can be caused to either the subject or to their caregiver.

SRI was reported to be a lot higher in an RBD group, thirty three percent, than in a

non-RBD group, six percent (Comella et al., 1998).

2.6.2.4 Restless Leg Syndrome

Restless Leg Syndrome (RLS) is prevalent in adult populations (5%-15%) and increases

with age (Happe, 2003; Allen et al., 2003). Individuals with RLS have a longer SL, a

shorter TST, less SWS and and a decreased SE (Happe, 2003). A National Institute of

Health (NIH) workshop in collaboration with the International Restless Legs Syndrome

Study Group defined the criteria for RLS (Allen et al., 2003):

1. Desire to move the limbs usually associated with paresthesias or dysesthesias

24



An Introduction to Sleep

2. Symptoms begin or worsen during inactivity or rest (ie. lying or sitting)

3. Symptoms partially or totally relieved by movement (walking or stretching)

4. Symptoms are worse in the evening or night. (Allen et al., 2003)

2.6.2.5 Periodic Limb Movement Disorder

Periodic Limb Movement Disorder (PLMS) is classified by abnormal uncontrolled in-

voluntary movements during sleep and have been reported to be associated in up to

eighty eight percent of patients with RLS (Happe, 2003). PLMS is more common with

increasing age and it is thought that thirty three percent of people with Parkinson’s

disease have PLMS (Happe, 2003). The American Sleep Disorders Association (ASDA)

classified a diagnostic criteria for PLMS (American Sleep Disorders Association, 1997):

1. Insomnia or excessive sleepiness, occasionally patients are asymptotic and move-

ments are noted by an observer

2. Repetitive, highly stereotyped muscle movements

3. PSG demonstrates repetitive episodes of muscle contraction, and arousal or awak-

enings may occur.

2.6.2.6 Nocturia

Nocturia, the process of waking during sleep in order to use the bathroom, has been found

to be independently associated with sleep disordered breathing and also independently

associated with cardiovascular co-morbidity in a community based study of older adults

(Parthasarathy et al., 2012).

2.6.2.7 Circadian Rhythm Disorders

The most common circadian phase disorder is shift work sleep disorder; experienced by

many of the 15 million American Shift workers (Lockley, 2009). Shift workers experience

fatigue, sleep problems, poor performance, poor memory, gastrointestinal problems and

have an increased risk for cardiovascular disease, diabetes and cancer. This is due to

the desynchronisation between the light-dark cycle of the natural day and the shift

worker’s schedule (Lockley, 2009). It is common that the shift worker cannot adapt to

inconsistent working times (imposed by varying times at which their working schedule
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begins) which results in working and sleeping at biologically inappropriate times of the

day.

Jet lag is another common circadian rhythm disorder caused by the insertion of an

individual into a new circadian phase (Lockley, 2009). However, unlike shift work, jet

lag does not occur that frequently (as most individuals do not travel across timezones

very regularly).

Advanced and delayed sleep phase syndrome cause sleep to naturally occur very early or

very late in the day (Lockley, 2009). It is common that older adults have advanced sleep

phase syndrome which results in very early awakenings and consequently early sleep start

times. However, this imposes bed times earlier than societally accepted norms. Often

the older adults goes to bed at a more traditional time and their TST is reduced (Miles

and Dement, 1980; Lockley, 2009).

2.6.2.8 The Effect of Parkinson’s Disease on Sleep

A comprehensive review of Parkinson’s disease and sleep has been given in various studies

(Freedom, 2007; Happe, 2003; Clarenbach, 2000). Patients with Parkinson’s disease are

prone to sleep disturbances (Thorpy, 2004). A positive correlation between severity

of Parkinson’s disease and sleep disruption has been found (Comella, 2006). Another

sleep related complaint which occurs in Parkinson’s disease patients is nocturia and

urinary incontinence (Chaudhuri et al., 2001). Two studies report high incidents of sleep

disturbance or sleepiness of 82% and 98% in Parkinson’s disease patients (Oerlemans and

de Weerd, 2002; Factor et al., 1990). It has also been reported that there is a increased

number of arousals, a lower sleep duration and efficiency as well as an increased sleep-

related breathing disorder and sleep behaviour disorder in Parkinson’s disease patients

(Clarenbach, 2000). Such sleep disturbances may lead to an explanation for the increased

daytime sleepiness (EDS) in Parkinson’s Disease patients (as discussed in section 2.6.2.2).

EDS has been shown to increase in severity with increasing degradation due to Parkin-

son’s disease (Gjerstad et al., 2002). An increase from 7.7% to 28.9% of sleepiness in

patients with Parkinson’s disease over four years has been reported (Gjerstad et al.,

2002). EDS was reported to be prominent in over 15% of subjects compared to 1% of

healthy controls (Tandberg et al., 1999). Another study reported a smaller difference

in age matched controls, 19.9% EDS in Parkinson’s disease patients compared to 9.8%

of control subjects (Tan et al., 2002), however there is still a marked increase in EDS

in those with Parkinson’s disease. Sleep attacks, similar to narcolepsy, have also been

reported in 20% of patients with Parkinson’s disease (Roth et al., 2003). The occurrence
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of both obstructive and central sleep apnoea increases with the prevalence of Parkinson’s

disease (Basta et al., 2003).

Many studies have highlighted the occurrence of RBD in parkinson’s disease; RBD is

even thought to be an indicator of parkinson’s disease and other neurodegenerative

diseases (briefly discussed previously in section 2.6.2.3).

Some studies note a possibility for an association between RLS and Parkinson’s disease,

while other don’t show any association. PLMS has been shown to be more common in

patients with neurodegeneration than in controls (Freedom, 2007). Medication treating

neurodegenerative disorders, particularly Parkinson’s disease, has been shown to lessen

the effects of sleep degradation most notably caused by RLS (Rye, 2004).

2.6.2.9 The Effect of Alzheimer’s Disease on Sleep

Individuals with Alzheimer’s disease (a neurodegenerative disease) often show a de-

creased SE, more frequent awakenings and arousals, and a decreased TST. Other

features are nocturnal insomnia, nocturnal wandering (and an increase in nocturnal

wandering), increased number of daytime naps, increased TIB and increased time spent

awake in bed (Crowley, 2011; Pollak and Perlick, 1991). Patients with Alzheimer’s dis-

ease often exhibit circadian rhythm disorders where a consolidated nocturnal sleep no

longer occurs (Lockley, 2009). Often this results in the institutionalisation of the in-

dividual as a single caregiver cannot provide adequate care 24 hours per day (Lockley,

2009). Restoration of light/dark cycles (possibly by an intervention technology) re-

sults in more consolidated rest/activity patterns and can help alleviate these symptoms

(Lockley, 2009).

2.6.2.10 Insomnia

A difficulty in falling asleep or maintaining sleep for at least one month, with a resulting

impairment in daytime functioning is defined as insomnia (Crowley, 2011). This can

either be secondary to another medical condition, or exist alone (primary insomnia).

Insomnia is estimated to be as prevalent as 40 % in those over 65 years of age (Foley et al.,

2004), although this varies between 4 and 11 % for the general population (Crowley,

2011). Insomnia patients report problems with memory, concentration, slower reaction

times, poor attention, higher risk of falling (resultant from the use of hypnotics) and

impaired cognition (Foley et al., 1995; Ancoli-Israel, 2005; Ancoli-Israel et al., 2005; Roth

and Ancoli-Israel, 1999).
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2.7 Conclusion

An introduction and foundation to sleep and sleep research are provided in this chapter.

A working definition of sleep is given and an outline of the constituent stages of sleep is

described (further details can be found in Iber et al. (2007); Malim and Birch (2000)).

The rules for scoring sleep into its constituent stages, and the general patterns in which

they occur, are also given. Other physiological changes which occur during sleep, and

various sleep stages, are outlined. Commonly used metrics describing sleep (derived on

a nightly basis from sleeping patterns and sleep stage information) are also introduced.

Sleep is an important physiological process and any degradation in its quality or quantity

can result in poor health. This chapter discussed the negative effects various sleep

disorders, common illnesses and diseases (particularly in older adults), and ageing has

on sleep, and as a result their effects on health.

In Chapter 4, an in-depth description of the traditional clinical and ambulatory tech-

nologies used to monitor sleep will be presented and a review of the recent advances in

sleep monitoring will also be given. Prior to this, Chapter 3 provides a description of

discriminating algorithms used in this thesis and introduces commonly used performance

metrics. These are illustrated using a simulated data set.
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Classification Methods

This chapter provides an outline of the methods used in this thesis to discriminate be-

tween sleep and wake, and between sleep stages. It also details strategies which are

employed to ensure the generation of valid results. Such a consistent approach is par-

ticularly warranted due to the multiple sleep stage inferencing methods and sleep mea-

surement technologies currently under investigation. Additionally, multiple performance

metrics are used to report the accuracy of a classifier and many are reported inconsis-

tently across the literature making comparisons difficult. The common performance

metrics reported in the literature are presented in this chapter.

3.1 Data Sets

Five data sets were artificially generated using a randomised procedure (as shown in

Figure 3.1) to illustrate the differences between the various classification algorithms de-

scribed later. In the first separate sides data set (Figure 3.1(a)), data are separated

by a relatively large distance. In the second straight split data set (Figure 3.1(b)), the

horizontal distance between the data sets was reduced dramatically until a straight line

could no longer be used to separate both classes. The classes in the third data set (diag-

onal split)could also be discriminated using a straight line (see Figure 3.1(c)). However,

in previous examples one feature could discriminate between the classes whereas a linear

combination of both features is required to separate both classes for these data. The

remaining two data sets were designed to be increasingly difficult to classify accurately.

In data set 4 fully surrounded (see Figure 3.1(d)), data from one class was completed sur-

rounded by the other class. In the last data set partially surrounded (see Figure 3.1(e)),

data from one class exists at the edge of the bounds of the data set and surrounded on

all other sides by the other class.
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(a) separate sides
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(b) straight split
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(c) diagonal split
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(d) fully surrounded
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(e) partially surrounded

Figure 3.1: Five artificially generated data sets containing data from two classes (grey
and brown respectively).
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Table 3.1: Determination of TP, FP, FN and TN

Actual Class
1 0

Predicted 1 TP FP
Class 0 FN TN

3.2 Performance Metrics

Many metrics may be used to report the performance of a classification algorithm in-

cluding accuracy, Misclassification Rate (MCR), sensitivity, specificity, precision, recall,

Matthew’s Correlation Coefficient (MCC), F Score and Cohen’s Kappa. Accuracy (de-

fined as the number of correctly classified samples over the total number of samples)

provides a good indication of the overall performance of a system, however it is unsuit-

able when the data set is biased towards a particular class. For example, a biased data

set is often present during sleep recordings as the subject can be asleep for over 90% of

the period under investigation. Thus, if a test, using such data, states that the person

is always asleep, without interrogating that data, an high accuracy of 90% would be

reported. However, the system would never report when the subject is awake. As such,

other metrics, which report the accuracy of the system in detecting both a positive and

negative case, are often used to report the system performance.

In order to fully explain each of these metrics, the reader must first become familiar

with the concept of True positives (TP), False positives (FP),False negatives (FN), and

True negatives (TN). TP occur when a sample is correctly predicted (in this case by a

classifier) as belonging to the positive class, while TN occur when a sample is correctly

predicted as belonging to a negative class. FP are when a sample is incorrectly predicted

to belong to the positive class, while FN occur when a sample is incorrectly predicted

as belonging to the negative class. This is further illustrated in Table 3.1.

The mathematical formulation of each of the performance metrics is given below.

Accuracy: Accuracy, as defined above is the number of correctly classified samples

(TP + TN) over the total number of samples, is a valid measure of performance when

the data set is evenly distributed between both states (sleep and wake in this instance).

However the performance of the accuracy metric suffers in cases where the data set is

biased towards a particular state. For example when 90% of the data set is sleep, if a
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classifier states that the entire data set is sleep an accuracy of 90% will be reported.

Accuracy =
(TP + TN)

(TP + FN + FP + TN)
(3.1)

Misclassification Rate: MCR is a measure of the number of incorrectly classified

samples and is directly related to accuracy as (1−Accuracy). Its suitability also suffers

when the data sets is biased towards one particular state.

Misclassification Rate (MCR) =
(FP + FN)

(TP + FN + FP + TN)
(3.2)

Sensitivity, Specificity and Precision: Sensitivity and specificity are measures of

the accuracy of the system in detecting true positives and true negatives. For this

application, sensitivity refers to the number of true sleep epochs which are correctly

classified as sleep, while specificity refers to the number of true wake epochs correctly

labelled as wake. Sensitivity is also known as recall and hit rate. Precision measures the

number of samples the classifier correctly predicted as a proportion of the total number

of samples the classifier predicted to be positive. Putting this into context, it refers to

the number of samples the system correctly identified as sleep over the total number of

sleep samples the system predicted. Each of these measures are not affected whether

the data set is biased or not.

Sensitivity(recall) =
TP

(TP + FN)
(3.3)

Specificity =
TN

(FP + TN)
(3.4)

Precision =
(TP )

(TP + FP )
(3.5)

Cohen’s Kappa (κ): Cohen’s Kappa is a statistic used to assess inter-judge agree-

ment and is used for nominally coded data Cohen (1960). In the context of sleep/wake

discrimination only two output cases are allowed (although it is still applicable when

more output cases exist). If both raters were in complete agreement Cohen’s Kappa (κ)

would be one, however if there was no agreement Cohen’s Kappa (κ) would be zero.

This test is insensitive to a biased data set.
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Probability of observed agreement (Po) =
(TP + FP )

(TP + FN + FP + TN)
(3.6)

Probability expected by chance (Pc) =
(TP + FN)

(TP + FN + FP + TN)
× (TP + FP )

(TP + FN + FP + TN)
(3.7)

Cohen′s Kappa (κ) =
Po− Pc
1− Pc

(3.8)

F1-Score The F1-Score van Rijsbergen (1979) is a measure of a tests accuracy and uses

a weighted average of (the previously defined values of) precision and recall, specifically

the harmonic mean,

F Score = 2
Precision × Recall

Precision + Recall
(3.9)

This metric is also insensitive to a biased data set.

Matthew’s Correlation Coefficient MCC is another metric of the quality of agree-

ment between two classes which is not sensitive to a biased data set. Values may range

from -1 (complete disagreement) to +1 (complete agreement) with 0 representing no

better prediction that by chance.

MCC =
(TP × TN − FP × FN)√

(TP + FN)(TP + FP )(FP + TN)(TN + FN)
(3.10)

3.3 Classifiers

A brief review of the theory behind the classification algorithms employed in this thesis is

given below. Additionally, artificially generated data (described in Section 3.1) are used

to provide a more intuitive understanding of the inner workings of each classifier as well

as some of the advantages and disadvantages of applying each classifier. Firstly however,

a common approach used to ensure valid classification results is briefly described.

3.3.1 Training, Validation, Testing Data and Cross Validation

Training data (a data set of inputs with known outputs, or states) is used to create

a function which can discriminate between two or more classes of data. During that

classification process the hyperparameters (the pre-configured set-up of the classifiers,

such as the structure of a neural network) and the parameters (the internal parameters

tuned during the classification process) are optimised. An optimally tuned classifier

may report excellent performance on the data it has been trained upon. However the
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discriminating function developed may be too specialised upon the training data and,

as such, report significantly poorer performance when applied to unseen data (a data

set external to the training data commonly referred to as validation data). The process

of ensuring that the classifier does not become too overfitted on the specific variations

of the training data is referred to as generalisation. The generalisability of a classifier

is optimised during the training procedure. This is performed using unseen data during

or after the training process. For computationally inefficient algorithms, the training

procedure is often stopped early when the performance of the classifier, on the validation

data, decreases. Often multiple classifiers are tested and the performance curves (from

both the training and testing data sets) are analysed in order to find the optimal choice

of classifier (and choice of internal classification parameters, where appropriate).

Cross validation is an additional methodology used to select the optimal classifier (and

internal parameters of a classifier) which performs well, on both training and validation

data. This process consists of training the classifier multiple times over different com-

binations of samples in the training and validation data sets which produces multiple

sets of results. Through re-running the classification process on different combinations

of samples in the training and validation sets, the bias inherent in a particular set of

training samples or in a specific set of random chosen initial variables can be controlled

for. The overall training and validation performance is averaged for all classification

iterations in order to cater for any such bias. However a computational overhead is

associated with each cross-validation, and for certain classifiers (and configuration of

classifier) this limits the number of runs.

Often multiple classifiers (with various combinations of internal parameters) are trained

and validated using this process. However, this also introduces a bias, as one data set has

been continually split used to generate this optimal classifier (and internal parameter)

selection. As such, the results are not completely independent of the training proce-

dure. Accordingly, additional and completely separate testing data is sometimes used to

generate independent results which quantifies the performance of the optimal classifier

(found during the training/validation procedure). The testing data set is only applied

to the optimal classifier. This final test step is often not employed in practice as this

requires a very large data set which may not be practical.

3.3.2 Binary Classification Test

A Binary Classification Test (BCT) is one of the simplest methods for discriminating

between two classes. This algorithm finds the optimal threshold value (of a feature)

which best separates two classes. This discriminator works in situations where classes
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(b) Results from BCT on Feature 1
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(c) Results from BCT on Feature 2

Figure 3.2: Application of BCT classifier on separate sides data set

can be separated by applying a threshold to a single feature. It is ideal for the straight

split and separate sides data sets (ie. where a thresholded value of Feature 1 can split

the data into the two separate classes). Figure 3.2 presents results from the application

of a BCT on both features in the ‘separate sides’ data set. Maximum performance is

found for a range of values over Feature 1 (see figure 3.2(b)) and poor performance

is reported for Feature 2 (see figure 3.2(c)). The optimum threshold may be chosen

as the point which maximises either the overall accuracy, sensitivity, specificity, recall,

precision, f-score, MCC, MCR or Cohen’s Kappa (κ). For the separate sides data set,

this occurs at many places.

However for cases where more than one feature is required to separate the classes (for

example, diagonal split, see Figure 3.1(c)), BCT is not suitable (as a linear combination
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Figure 3.3: Distribution of data (shown using the Gaussian bell curves) from two
classes on the original features and on a new axis which optimally separates the classes.

The minimum overlap between the distributions occurs for this new axis.

of more than one features is required to accurately split the data into the separate

classes). Additionally, for cases where a straight line will not discriminate between

classes, this type of classifier will perform very poorly (for example the fully surrounded

and partially surrounded cases, Figures 3.1(d) and 3.1(e)).

3.3.3 Discriminant Analysis

Discriminant Analysis predicts data as belonging to between two or more classes using

distributions of that data. Two side-by-side normal distributions show the projection of

simulated data (in this case modelled using a Gaussian distribution) from two classes

onto the two original features (see Figure 3.3). Due to the overlap between the distribu-

tions, we cannot say with certainty to which class every sample belongs when investigat-

ing the two original features separately. However, the two classes may be discriminated

when projected onto a new axis (containing a combination of Feature 1 and Feature 2)

which minimises this overlap (see Figure 3.3). As a result, we are much more confident

in predicting a class to which a sample belongs (including an unseen sample).

In order to achieve this, discriminant analysis models the data (producing a model

similar to the Gaussian distributions shown above) using a training set in order to find

the optimal axis (and discriminating boundary) which separates the classes. In order to

find this axis, discriminant analysis maximises the ratio of the between-class variance

to within-class variance. If the data from each class were normally distributed (with an
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equal number of samples and spread), the discriminating boundary would occur along a

line which runs equidistant from both clusters of data (for the two class case). However in

practice, the distribution of both classes is often non-normal and accordingly the spread

of the data must be taken into account to find the optimal discriminating boundary

(which in such a case would not be equidistant from each cluster centroid).

3.3.3.1 Mathematical Derivation

Given a single measurement of data, x, the probability of the current class being Rκ

is P (Rκ | x). However, the range of x is vast, and calculating P (Rκ | x) for each x

will be a lengthy process; Bayes’ rule (see Equation 3.11) may be used to simplify this

calculation:

P (Rκ | x) =
P (x | Rκ) P (Rκ)

P (x)
(3.11)

where P (Rκ) is the probability of class Rκ, P (x) is the probability of the sample x

occurring and P (x | Rκ) is the probability of the data occurring given the class. P (Rκ) is

usually assumed to be equal across all classes (where no data exists to suggest otherwise).

P (x) may be calculated using

P (x) =

M∑
κ=1

P (x | Rκ) P (Rκ) (3.12)

where M is the total number of classes.

The distribution of data for each class may be modelled using a Gaussian function as:

P (x | Rκ) =
1

(2π)
k
2 |Σκ|

1
2

exp

(
−1

2
(x− µκ)TΣ−1

κ (x− µκ)

)
(3.13)

where x is the data, Rκ is the current class, P (x | Rκ) is the probability of the data for

a given class κ, µκ is the mean of the data for each class, Σκ is the covariance of the

data for a class κ, |Σκ| is the determinant of the covariance for a particular class.

The relative probability of class κ occurring (P (Rκ)P (x | Rκ)) can be expressed as

δκ(x) = P (Rκ)
1

(2π)
k
2 |Σκ|

1
2

exp

(
−1

2
(x− µκ)TΣ−1

κ (x− µκ)

)
(3.14)

or using the log likelihood,

δκ(x) = log

[
P (Rκ)

1

(2π)
K
2 |
∑

κ|
1
2

exp

(
−1

2
(x− µκ)TΣ−1

κ (x− µκ)

)]
(3.15)
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This may be simplified further to,

δκ(x) = log(P (Rκ))− 1

2
log(|ΣK |)−

1

2
(x− µκ)TΣ−1

κ (x− µκ) (3.16)

The optimal discriminant function occurs for,

D(x) = arg max
κ

(δκ(x)) (3.17)

or,

D(x) = arg max
κ

(
log(P (Rκ))− 1

2
log(|ΣK |)−

1

2
(x− µκ)TΣ−1

κ (x− µκ)

)
(3.18)

Linear Discriminant Analysis: Linear Discriminant Analysis (LDA) assumes that

the distribution of the data for all classes (the covariance,
∑

) is the same which simplifies

the discriminating function as 1
2 log(|ΣK |) is constant across all classes (producing the

decision function in equation 3.19). The point x is estimated as belonging to the class,

κ, which results in the largest DLDA(x) value. The discriminating boundary may be

calculated as the points which result in equal DLDA(x) values for both classes.

DLDA(x) = arg max
κ

(
log(P (Rκ))− 1

2
(x− µκ)TΣ−1(x− µκ)

)
(3.19)

Quadratic Discriminant Analysis: Quadratic Discriminant Analysis (QDA) calcu-

lates the covariance of the data for each class and uses these to calculate the discriminant

function (as given in Equation 3.20) using the method as described for the linear case.

In this case the discriminating function will be non-linear.

DQDA(x) = arg max
κ

(
log(P (Rκ))− 1

2
log(|ΣK |)−

1

2
(x− µκ)TΣ−1

κ (x− µκ)

)
(3.20)

For both LDA and QDA, the mean (µ) and covariance (
∑

) are calculated using,

µ =
∑
gi=κ

xi/Nκ (3.21)

∑
=

K∑
κ=1

∑
gi=κ

(xi − µk)(xi − µk)T /(N −K) (3.22)
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(a) LDA applied to separate sides data
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(b) QDA applied to separate sides data

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature 1

F
ea

tu
re

 2

(c) LDA applied to partially surrounded data
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(d) QDA applied to partially surrounded data

Figure 3.4: Decision regions (marked by blue and red backgrounds) and a discrimi-
nating boundary (pink) of LDA and QDA classifiers on two data sets (containing two

classes of data marked by brown square and light blue data diamond points).

3.3.3.2 Application of LDA and QDA

LDA and QDA were applied to two of the sample data sets (as shown in Figure 3.4). For

the separate side data set, a straight line will easily discriminate between both classes of

data. There is no added advantage in using a quadratic discriminator (as demonstrated

in Figure 3.4(b)). The partially surrounded data set is more difficult to separate and its

performance is poor using LDA (see Figure 3.4(c)). However, a quadratic line provides

a greater discriminative capacity as shown in Figure 3.4(d).

3.3.3.3 Discussion

Discriminant analysis estimates the covariance matrix from the training samples. For

LDA the same covariance matrix is estimated and used to calculate a discriminating

function which is linear. For QDA, the covariance matrices are calculated separately

for each class of data. This results in a quadratic discriminating hyperplane which may
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provide better performance for non-Gaussian and closely inter-mingled data sets. As

such, QDA may fit the data better than LDA, however more parameters are estimated

for QDA than for LDA (which may reduce the performance of the classifier). QDA

is more computationally complex than LDA. Higher dimensional hyperplanes can be

also be generated however they are outside the bounds of this work. The order of the

hyperplane (where 1 is linear, 2 is quadratic, etc.) is referred to as a hyperparameter

and is set prior to training.

Another method of performing non-linear discriminant analysis involves transforming

the data to a higher dimensional hyperspace and then discriminates the data using a

linear hyperplane (performing LDA in the higher dimensional feature space). This has

been found to provide similar classification flexibility to the Gaussian QDA method

(Hastie et al., 2001). The reader is directed to Hastie et al. (2001) for a more detailed

discussion on this and on discriminant analysis in general.

3.3.4 k-Nearest Neighbour

The k -Nearest Neighbour (kNN) classifier is a simple, non-linear classification method

which generally results in a relatively high accuracy. It is a non-parametric, memory-

based algorithm which classifies new samples based on how closely they occur (often

using a Euclidian distance metric) relative to samples in a training set. Generally, a

large training set is used as this captures a distribution representative of the occurrence

of classes in the feature space. The Euclidian distance is calculated between each test

sample that is to be classified (x̆) and each sample in the training data set (as given in

Equation 3.23).

en =
√

(x1
n − x̆1)2 + ...+ (xdn − x̆d)2 + ...+ (xDn − x̆D)2 (3.23)

where the training set consists of N sample vectors with D features, n ε <, 1 ≤ n ≤ N ,

1 ≤ d ≤ D and en is the root mean squared distance between the test sample and each

point in the training set.

The vector of the distance metric is arranged in ascending order (from small to large)

and each sample has a corresponding class (Rκ). This effectively arranges the training

samples in order of their proximity to the test sample. The nearest k samples (belonging

to one class) define which class the test samples is predicted as belonging to. The value

of k is a hyperparameter and can be optimised over multiple iterations.
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3.3.4.1 Discussion

k is a user-defined value which controls the flexibility and generalisability of the decision

regions (the area in the feature space which are related to a particular class). For

example, if k is too low the accuracy of the classifier becomes very dependent on the

training data. However, if k is too large the classifier may become too generalised. In

practice, k is often optimised using a cross-validation approach. The results of applying

kNN is illustrated in Figure 3.5. The non-linear decision boundaries are particularly

evident for the closely intermingled data. With increasing k, the decision boundary can

be seen to become less complex and more generalisable (and more representative of the

underlying structure of the data).

The kNN algorithm has a very high computational complexity (as the distance to each

sample in the training matrix must be calculated for every test sample). This is partic-

ularly problematic for large data sets. Many other classifiers rely on representations of

the data sets which reduces the complexity of the algorithms.

3.3.5 Artificial Neural Networks

Artificial Neural Networks (ANN) are a method of processing information which mimics

the technique used by the human brain. It consists of an interconnected network of

nodes, or neurons, in which a learning strategy developed over time allows information

to transfer throughout the network. Signals are allowed to proliferate across the network

based on the previous amount of information transfer between specific neurons. This is

achieved biologically, in the brain, by lowering the resistance of a pathway between two

neurons iteratively over time as signals are sent across that pathway. A mathematical

implementation achieves this by weighting each interconnection between each neuron

resulting in a process which either allows the signal to pass or not (McCulloch and Pitts,

1943; Rosenblatt, 1962). By passing signals through multiple interconnecting internal

layers of neurons with non-linear activation functions (for example a sigmoid activation

function), non-linear relationships between the inputs and outputs to the network can

be generated.

3.3.5.1 The Mathematical Representation of a Neuron

The McCulloch-Pitts implementation produces an output using the summation of a

weighted version (wi) of all inputs (xi) as well as a bias (b) offset (as shown in Figure

3.6) (McCulloch and Pitts, 1943). The inputs may be external to the network or from
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(a) kNN applied to ‘separate sides’ data (k=1)
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(b) kNN applied to ‘separate sides’ data (k=9)
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(c) kNN applied to ‘partially surrounded’ data (k=1)
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(d) kNN applied to ‘partially surrounded’ data (k=9)

Figure 3.5: Decision regions (marked by blue and red backgrounds) of kNN classifiers
on two data sets (containing two classes of data marked by brown square and light blue

data diamond points).

other neurons. The output is generated using an activation function f(.). This activation

function may be either linear or non-linear (such as a step function).

3.3.5.2 Multilayer Perceptrons

Multiple neurons may be arranged in a network of interconnecting nodes in order to

approximate complex functions similar to the neuronal structure in the brain. Multiple

layer neural networks with linear activation functions can be simplified to single layer

networks (although these networks remain incapable of representing certain functions

such as the XOR function) (Minsky and Papert, 1969). However, the use of non-linear

activation functions overcomes this limitation and allows the approximation of an ex-

tended set of functions.

MLP neural networks consist of three separate layers of neurons: 1) the input layer

(where the inputs to the network are directly connected), 2) the hidden layer (which
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Figure 3.6: The McCullough-Pitts neuron.

consists of one or more layers), and 3) the output layer (connected directly to the

outputs). The hidden layer may itself consist of multiple layers. Each layer consists

of multiple neurons and the neurons in each layer are interconnected to each neuron

in the previous layer (as shown in Figure 3.7), and this is commonly referred to as a

feedforward neural network. Hyperparameters define the overall structure of the neural

network (including the number of neurons in each layer and the number of hidden layers).

These are set prior to training the ANN.

Although MLP neural networks have been shown to able to approximate almost any

continuous function (Irie and Miyake, 1988; Funahashi, 1989), in practice it may be

prohibitive to approximate some functions due to computational constraints such as

processing power and time. Additionally, this may require the collection of large amounts

of data which might be unrealistic in practice (Zhang et al., 2001).

Multiple MLP are commonly configured in networks forming ANN. Other implemen-

tations of ANN include radial basis function networks, Hopfield networks and self-

organising features maps, however the MLP is the most popular and is considered in

this work.

3.3.5.3 Neural Networks: Learning and Storing Information

Information is stored in a neural network using the internal parameters: the weights and

the biases. Through a training procedure, the biases to each neuron, and the weights
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Figure 3.7: Multilayer perceptron ANN.

applied to each input and to each connection between each neuron are tuned. The

optimal parameters are found when the error between the output of the neural network

(ŷ) and the desired output (y) is minimised. In order to achieve this, a training data set

is used where the output of the system is known for particular inputs. After the training

procedure, the neural network should be able to correctly approximate the underlying

relationship between the inputs and outputs for new unseen data.

The backpropagation algorithm was devised to tune the weights and biases for MLP

neural networks (Rumelhart et al., 1986). As a first step, the weights are initialised

randomly (although intelligent techniques may be used to select better initial parameters

(Hernandez-Espinosa and Fernandez-Redondo, 2001)). Subsequently, the output of the

network is calculated using the input data from the training data set for the initial

weights (ŷ). An error metric is generated using the difference between the desired (or

correct) output (y) and (ŷ). The Sum of Squared Errors (SSE) is often used as this

performance metric (or cost function), that is,

SSE =
N∑
i=1

M∑
j=1

(ŷij − yij)2 (3.24)

where ŷij represents the estimated value for the j th output at the ith sample instant,

yij represents the desired value for the j th output at the ith sample instant, N is the
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number of sample instants, and M is the number of outputs.

Learning occurs through modifying the internal parameters of the neural network such

that the SSE is reduced. A gradient descent algorithm is often used to iteratively tune the

weights until the SSE is minimised. The general form of the gradient descent algorithm

for MLP neural network weight optimisation is,

w(m+ 1) = w(m)− v∆(m) (3.25)

where m is the training iteration number, w is a vector containing the weight and bias

values, v is the learning rate. ∆(m) is the gradient of the error function with respect to

the weight vector,

∆(m) =
δ(SSE)

δw(m)
(3.26)

This process is repeated until the minimal SSE has been found. This process can be

applied to either all data in the training set at once (a batch process), or iteratively one

sample at a time.

More computationally efficient techniques of finding the optimal weights have been

proposed, such as the 2nd order gradient descent Broyden-Fletcher-Goldfarb-Shannon

(BFGS) method (Barttiti and Masulli, 1990) or the Levenberg-Marquardt (LM) method

(Hagan and Menhaj, 1994; Marquardt, 1963).

Often in practice, this training procedure is run multiple times per training structure in

order to ensure the optimal weights are found. For some cases, the randomly assigned

initial weights may produce a sub-optimal set of weights. In some cases, these may occur

locally in the feature space as opposed to an optimal set of weights which would occur

globally in the feature space. Randomly assigned initial conditions may result in slightly

different weights when optimised using multiple runs. Additionally, many different MLP

neural network structures may be tested in order to find the optimal configuration. For

each test, the error metric, network configuration and internal parameters are recorded

and compared. The network with the best performance is then retained for future use.

When MLP neural networks are applied to classification, they may result in different de-

cision regions for different initial configurations (as shown in Figure 3.8) and for different

topologies (as shown in Figure 3.9).
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(c)
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(d)

Figure 3.8: Decision regions (red and blue backgrounds) for four MLP neural net-
work classifiers trained using the ‘partially surrounded’ data set and randomly assigned
initial conditions. Different decision regions were found for each different set of initial

conditions.

3.3.5.4 Discussion

ANN provide a black box system which models an input-output relationship of variables

(capable of approximating non-linear functions) and no understanding of this relation-

ship is required. While this may be extremely useful, many caveats exist. These include

making an intelligent choice of the model topology for a system which is slightly non-

linear, versus a system which is completely non-linear. An in-depth understanding of the

system often proves useful, especially when large sets of unseen data are passed through

the system. In order to reduce errors, the system is built and tested using training,

testing and validation data. ANN are computationally intensive and typically require

large training data sets to achieve optimal results (Cerny, 2001).

MLP neural networks can be designed as classifiers by specifying one or two outputs. In

the case of one output, a sigmoid output function changes the probability of the output

to be more likely to be 0 or 1. In practice, both of these states are set to represent
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(a) 1 neuron in the hidden layer
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(b) 2 neurons in the hidden layer

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature 1

F
ea

tu
re

 2

(c) 5 neurons in the hidden layer
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(d) 10 neurons in the hidden layer
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(e) 50 neurons in the hidden layer
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(f) 100 neurons in the hidden layer

Figure 3.9: Decision regions (red and blue backgrounds) for six MLP neural network
classifiers trained using the ‘partially surrounded’ data set and different topologies. The
decision regions become increasingly complex (in terms of the function that is being

approximated) as the number of neurons in the hidden layer increases.
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both classes and training of the neural network is performed in the standard manner.

The accuracy of this system is then tested using a separate data set. This approach was

used when using an ANN classifier in this thesis. In the case of two separate outputs,

one predicts the first class and the other output predicts the second class. Training and

testing is performed as before, however four possible output may exist. The input may

be classified as belonging to the first class, the second class, both classes, or neither

class. No issues arise where only one class is selected. However for the two remaining

two combinations, the score from each output neuron is a measure of the probability

that the current sample belongs to the relevant class and, as such, the output with the

highest probability is selected.

3.3.6 Support Vector Machines

Support Vector Machines (SVM) are another classification method which can separate

classes using a non-linear boundary. However, SVM achieve this by increasing the di-

mensionality of the input feature space, and subsequently, a (possibly linear) hyperplane

is used to maximally separate the classes in this higher dimensional feature space. De-

pending on the function used to increase the dimensionality, this may be equivalent

to applying a non-linear hyperplane in the original feature space. A kernel function,

K(x, y), is used to translate the input to the higher dimensional space.

Initially, SVM can be explained using the linear case in the original feature space.

Suppose, a set of data containing two features may be separated using a linear decision

boundary (as defined by the hyperplane wT .x + b = 0, where wT is the slope of the

hyperplane, w is the normal vector, and b is the bias), two hyperplanes may be defined

on either side of this decision boundary of maximal distance away from the decision

boundary (Equations 3.27 and 3.28) as shown in Figure 3.10. These two hyperplanes

pass through points (or vectors) closest to the decision boundary, and the distance from

each hyperplane to the decision boundary is known as the margin. SVM maximise this

margin in order to define the optimal decision boundary.

wT .x + b = 1 (3.27)

wT .x + b = −1 (3.28)
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Figure 3.10: Optimal discriminating hyperplane (solid line) for two separate classes
(red and blue points) with two hyperplanes either side of maximal distance away (dashed

lines).

The distance between the hyperplanes may be calculated by first subtracting the equa-

tions of each hyperplane (Equations 3.27 and 3.27) from each other,

w.(x1 − x2) = 2 (3.29)

Projecting this onto the normal to the hyperplane gives,

w

|w|
.(x1 − x2) (3.30)

This can be used to calculate the distance between the hyperplanes (by substituting

3.30 into 3.29) resulting in a distance of 2
|w| . The optimal discriminating boundary is

found when this margin is maximised (minimising |w|), however this is computationally

complex (due to the square root). A computationally less intensive, yet equivalent,

alternative is to minimise |w|
2

2 . Thus, defining the margin, such that no points lie within

it, as,

min
w,b

1

2
|w|2 (3.31)

subject to

yi(w
Txi + b) ≥ 1, 1 ≥ i ≥ N (3.32)

where yi takes on the values +1,−1 for either class.
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Lagrangian theory can be applied to reformulate the optimisation problem, where each

Lagrange multiplier (αi > 0) is subject to the constraint in Equation 3.32, as per,

min
w,b

max
α≥0

{
1

2
|w|2 −

N∑
i=1

αi
{
yi(w

Txi − b)− 1
}}

(3.33)

subject to the constraint,

w =
n∑
i=1

αiyixi (3.34)

All points (or vectors) which are not support vectors, that is the points which do not

lie on the margin, (yi(w
Txi − b) − 1 > 0) do not matter (as they do not influence the

decision boundary). Correspondingly their αi is set to zero, and as such do not have to

be considered in the optimisation process.

This problem may be written in the dual form:

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi,xj) (3.35)

subject to αi ≥ 0 for all 0 ≥ i ≥ n and the constraint

n∑
i=1

αiyi (3.36)

This facilitates the calculation of the weight vector,

w =
N∑
i

αiyixi (3.37)

Currently we have only catered for linear decision hyperplanes. However, specific kernel

functions, K(xi,xj) in Equation 3.35, can translate the input features into a higher

dimensional space and linear decision hyperplanes in this higher dimensional space may

be equivalent to non-linear decision regions when translated back into the original fea-

ture space. The translation of features from the original feature space into the higher

dimensional space may be defined as:

K(xi,xj)→ ϕ(xi)
Tϕ(xj) (3.38)

The selected Kernel must fit Mercer’s condition:∫
K(xi,x)ϕ(xi)

Tϕ(xj)dxidx ≥ 0 ∀ ϕ 6= 0,

∫
ϕ2(x)dx <∞ (3.39)
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Examples of Kernels which fit this condition include the dot product kernel, where

K(xi,x) is the dot product of both inputs (this is a linear Kernel which produces a

linear decision boundary), polynomial kernels, where K(xi,x) = (xi.x)d∀d ≥ 1 (that

is, the dot product of the two input vectors is raised to a power greater than one), a

Gaussian Radial Basis Function (RBF), where K(xi,x) = exp(− |xi−xj |2
2σ2 ) (that is, the

distance of each point from a centroid determines the magnitude of projection into a new

dimension), and many others. The internal parameters of the Kernel being implemented

are optimised as part of the classifier training procedure.

The process of finding the perfect hyperplane which separates the data in both classes

may be exhaustive when data is closely intermingled, and may be impossible where

samples from both classes overlap upon each other (possibly due to the nature of the

data or to noise). Allowing some misclassifications to occur efficiently caters for these

conditions and may be realised by making the decision function less strict (through

introducing a slack term (ε)

yi(w
Tx + b) ≥ 1− εi (3.40)

Thus, the original optimisation condition for the selection of the optimal margin (Equa-

tion 3.30) is modified to

min
w,b

1

2
|w|2 + C

N∑
i=1

εi (3.41)

where C may be thought of as a penalty on errors and is referred to as the box constant.

Greater box constant values will increase the cost on the optimisation process. In prac-

tice, this means that larger box constant values result in a more complicated decision

region while smaller values result in a smoother decision region (and an increased num-

ber of errors). Large box constant values may be suboptimal as the generalisability of

the classifier can become reduced as the classifier will become more specialised on the

training data.

Examples of the decision regions found with the ‘partially surrounded’ data set using

SVM with linear, quadratic and polynomial kernels are given in Figure 3.11. The com-

plexity of the decision region increases as the order of the polynomial kernel increases.

RBF offer a more non-linear approach by extending the feature space into another di-

mension centred around a centroid with a Gaussian distribution of width σ (Figure 3.12

illustrates the effect of different σ values). The box constant value may also be optimised

while training the classifier. As shown in Figure 3.13, smaller box constant values result

in a smoother decision region (and an increased number of errors), while larger values

result in more complex decision regions (and less misclassifications).
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(a) Linear kernel
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(b) Quadratic kernel
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(c) Polynomial kernel, order 3
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(d) Polynomial kernel, order 10

Figure 3.11: Decision regions of SVM applied to the ‘partially surrounded’ data set
for the specified kernel, and, where applicable, internal parameters.
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(a) σ = 0.1, C = 1
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(b) σ = 1, C = 1
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(c) σ = 3, C = 1
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(d) σ = 5, C = 1

Figure 3.12: Decision regions of SVM with an RBF kernel applied to the ‘fully
surrounded’ data set for the specified internal parameters.
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(a) σ = 0.1, C = 0.1
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(b) σ = 1, C = 0.1
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(c) σ = 10, C = 0.1
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(d) σ = 0.1, C = 1
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(e) σ = 1, C = 1
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(f) σ = 10, C = 1
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(g) σ = 0.1, C = 10
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(h) σ = 1, C = 10
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(i) σ = 10, C = 10

Figure 3.13: Decision regions of SVM with an RBF kernel applied to the ‘partially
surrounded’ data set for the specified internal parameters.

For a more detailed description of SVM the reader may refer to Shawe-Taylor and

Christiani (2000), and Burges (1998).

3.3.7 Multiclass Classification

Although some classifiers are naturally able to discriminate between more than two

classes, many classifiers reduce the multi-class problem into a series of binary classifica-

tions. Two common approaches are 1) the one versus all strategy, and 2) the one versus

one strategy.

One versus all: For this strategy, a classifier is trained to discriminate whether a new

sample belongs to a specific class or to the remaining classes. Ideally, this results in the

new sample being assigned to only one class. However, in practice the sample may be

classified as belonging to two or more classes. In this case, the class which the sample
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has the highest probability of belonging to is often chosen (known as the winner takes

all strategy).

One versus one: Multiple classifiers are trained to discriminate between every pos-

sible pair of classes. In practice, each new sample is assigned to one of two classes for

every possible pair of classes. The new sample is assigned to an overall class based on

which class it has been assigned to the most.

3.3.8 Application and Performance of the Classifiers

Each of the classifiers described above were applied to the fully surrounded data set.

This is a difficult set of classes to discriminate as no linear combination of the features

may distinguish the features. As non-linear methods are employed (QDA, kNN, NN and

SVM), significant improvements in performance were found (see Table 3.2). The ANN

were trained using sixty percent of the data (and tested on the remaining forty percent),

while the remaining classifiers were trained using two-thirds of the data and tested using

the remaining one-third.

Increasing the k parameter in the kNN classifier (increasing the non-linearity of the

discriminating hyperplane) was shown to reduce performance. Similarly, using a large

number of neurons in the hidden layer of the ANN classifier was also shown to decrease

performance. The SVM was optimised using a grid search method on the hyperparam-

eters (the box constant and sigma) which resulted in the best performance (along with
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QDA and kNN when k=1).

Table 3.2: Performance of the SVM, ANN1, kNN2, LDA and QDA on the fully surrounded data set.

LDA QDA kNN 1 kNN 5 kNN 9 ANN 1 ANN 5 ANN 10 ANN 100 SVM

TP 30 53 53 52 51 53 69 62 65 53

FP 8 0 0 0 0 4 0 0 0 0

TN 13 21 21 21 21 23 22 30 25 21

FN 23 0 0 1 2 12 1 0 2 0

Accuracy 58 100 100 99 97 83 99 100 98 100

MCR 42 0 0 1 3 17 1 0 2 0

Sensitivity 57 100 100 98 96 82 99 100 97 100

Specificity 62 100 100 100 100 85 100 100 100 100

Precision 79 100 100 100 100 93 100 100 100 100

Recall 57 100 100 98 96 82 99 100 97 100

PPV 79 100 100 100 100 93 100 100 100 100

NPV 36 100 100 95 91 66 96 100 93 100

MCC 16 85 85 82 79 54 85 82 81 85

F Score 0.66 1 1 0.99 0.98 0.87 0.99 1 0.98 1

Kappa 0.15 1 1 0.97 0.94 0.61 0.97 1 0.95 1

1 The number of neurons in the hidden layer is specified in the column header.
2 The value of k is specified in the column header.

3.4 Conclusion

In this chapter, the classification algorithms commonly used in recently developed sleep

technologies and in the later chapters of this thesis were briefly described. Additionally,

commonly used performance metrics were introduced. Artificial data sets were generated

in order to provide the reader with a more intuitive understanding of these classifiers, the

hyperparameters and the parameters (as given in Table 3.3). The procedure of splitting

the data into training, validation and test data in order to produce valid results, select

the optimal classifier and report its unbiased performance was also described.

As previously discussed, each classifier has their own advantages and disadvantages.

During implementation, these mainly focus around time and processing power con-

straints. The BCT, LDA and QDA classifiers have relatively little computational over-

head during training and implementation and their simplicity makes them ideal for low

cost systems. The increased complexity of kNN, ANN and SVM provide increased dis-

criminatory power where highly non-linear hyperplanes are required. However in cases
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where such systems provide marginal benefit simpler and more low cost discriminating

systems may be preferential.

Table 3.3: The hyperparameters and parameters associated with each classifier.

Classifier Hyperparameters Parameters

DA1 Order of the discriminating hy-

perplane (where 1 is linear, etc.)

Equation of the optimal separat-

ing hyperplane

kNN k distance between new test point

and each training point

ANN number of hidden layers, number

of neurons in each layer

weights and bias applied to each

neuron

SVM Box constant, sigma and the Ker-

nel type

Equation of the optimal separat-

ing hyperplane

1 Discriminant Analysis
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Chapter 4

A Review of Sleep Measurement

Technologies

This chapter provides a comprehensive review of the traditional clinical, non-clinical and

research technologies used in sleep monitoring, namely PSG, wrist actigraphy, subjec-

tive sleep scales, sleep indices, and sleep diaries. Various advances in sleep technology

have been made and this chapter provides an overview of the new approaches to contact

and non-contact based sleep monitoring. Such advances include advancements reducing

the number of electrodes required, embedding electrodes into bed sheets and textiles,

the use of smart phones, video monitoring, and advancements in recording vital signs

(respiration and heart rate) via a non-contact (off-body) sensor. Finally, a compar-

ative evaluation of these technologies investigating their suitability for long term use

(particularly amongst sensitive populations) is made.

4.1 Polysomnography

PSG is the process of recording multiple physiological signals during sleep. This includes

EEG, EOG and EMG and often can extend to ECG, Blood Pressure (BP), respiration

(including air flow and respiratory effort) and less often renal function. A set of rec-

ommended recording guidelines (concerning sampling rate, etc.) was established by the

AASM (Iber et al., 2007).
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Occipital

Frontal

Central

Figure 4.1: Approximate central, frontal and occipital regions of the brain

4.1.1 Polysomnography Signals

EEG EEG records synaptic potentials from pyramidal cells or neurons in the brain.

The EEG records the potential difference between electrodes placed on the skull (Ben-

badis, 2006). The new AASM guidelines state that the frontal, central and occipital

regions (as given in Figure 4.1) are to be monitored with a minimum of 3 EEG record-

ings during sleep (Iber et al., 2007), whereas the older Rechtschaffen and Kales standard

used EEG configurations recording from the central region of the brain. These electrodes

are referenced to a lead placed on the mastoid (part of the bone located behind the ear).

EOG A natural dipole exists between the retina and the cornea (Benbadis, 2006). As

the eye moves around its axis the potential between the retina and the cornea changes

(Benbadis, 2006). Eye movements can be captured by recording this potential difference
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over time (Benbadis, 2006; Collop, 2006; Iber et al., 2007). Electrodes are placed slightly

above and below the outer canthus of each eye and are referenced to the same or opposite

mastoid lead.

EMG Muscle tone is measured as a function of the electric fields generated by the

membrane depolarisation of submental muscle fibers and is typically recognised as ac-

tivity of greater than thirty hertz (Vaughn and Gaiallanza, 2008). Submental muscle

tone is used in sleep studies to distinguish between different stages of sleep (for example

REM sleep is noted to have low muscle tone) (Iber et al., 2007). The surface electrodes

are generally placed 2 cm below the inferior edge of the mandible (the lower jaw) and

2 cm to the right and left of the midline. This electrode is referenced to an electrode

placed at the midline about 1 cm above the inferior edge of the mandible and grounded

to common electrode placed at the mastoid (Iber et al., 2007; Vaughn and Gaiallanza,

2008).

ECG A modified Lead II of a standard ECG is used to record the heart signal (Iber

et al., 2007). Electrodes are placed below the right clavicle and below the left rib cage.

A reference electrode is also used and is often also taken from the mastoid.

Respiration For an accurate representation of respiration both respiratory flow and

effort should be recorded. Respiratory flow incorporates the movement of air in and

out of the chest cavity. Respiratory effort must be measured as a surrogate to chest

movement. A pneumotachometer can directly measure this, however it is both intrusive

and cumbersome. Air temperature and nasal pressure are common techniques for flow

measurement. A thermistor can be used to record breathing by detecting the flow of

air at near body temperature being exhaled and the inhalation of warmer air which is

at an ambient room temperature. A nasal pressure device can detect the air flow using

a piezoelectric pressure sensor placed inside a small tube at the nostrils. Respiratory

effort can be directly measured by intrathoracic pressure monitoring, however this is

intrusive and will disturb sleep. Less invasive techniques include Respiratory Inductance

Plethysmography (RIP), intercostal EMG and strain gauges. RIP measures changes in

a magnetic field generated by a current passing through coil bands that are placed

around the chest and abdomen. As such, deformations in either the diameter or the

shape of the RIP band is used as a proxy measure of respiratory effort. Intercostal

(between the ribs) EMG is the placement of surface electrodes on the fifth to eight

lateral intercostal space and has been shown to qualitatively assess respiratory effort

(Stoohs et al., 2004; Vaughn and Gaiallanza, 2008). This can be of particular use

during REM sleep where diaphragmatic activity exists but intercostal muscles are atonic
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(Vaughn and Gaiallanza, 2008). Strain gauges, or belts, are piezoelectric devices which

measure change in circumference of the chest. However, unlike RIP bands, the change

in circumference is not measured throughout the device but at a fixed location along

the belt. As the belt’s circumference increases the strain on the piezoelectric sensor also

changes. This strain is transduced into a recordable electrical signal. Strain gauges are

not currently recommended by the AASM due to a lack of validation studies (Iber et al.,

2007; Vaughn and Gaiallanza, 2008).

An oronasal thermal sensor is recommended for the detection of sleep apnoeas (discussed

in Section 2.6.2.1) (Iber et al., 2007). A hypopnoea can be identified using a nasal

air pressure transducer (Iber et al., 2007). Respiratory effort is often assessed using

esophageal manometry or calibrated or uncalibrated inductance plethysmography (Iber

et al., 2007). However, diaphragmatic or intercostal EMG can be used if none of these

sensors are available Iber et al. (2007).

Oxygen Saturation The sensor recommended to record blood oxygenation is pulse

oximetry with a maximum signal averaging time of 3 seconds (Iber et al., 2007). De-

tails on how oxygen saturation and respiration can be used to assess sleep apnoea and

hypopnoeas can be found in Section 2.6.2.1 and in (Iber et al., 2007).

4.1.2 Types of Polysomnography

PSG can be performed in a clinical setting attended by clinicians, in an unattended

setting (may be in a clinical or domestic setting) or in an ambulatory fashion (Iber

et al., 2007).

4.1.2.1 Clinical PSG

Clinical PSG should be attended by a trained health care clinician. A minimum of

seven channels must be used (including EEG, EOG, EMG, ECG, air flow, respiratory

effort and oxygen saturation). More comprehensive studies will use a full compliment

PSG and be recorded in a specialised sleep laboratory. This facilitates the diagnosis of

Obstructive Sleep Apnoea Syndrome (OSAS) and as well as various sleep disorders. It

is also sometimes recommended that patients spend two nights in the sleep lab and data

from the second night be used for analysis. This is due to ’the first-night effect’ where

increased arousals, reduced TST and a decreased REM percentage are seen in the first

night of data collection. However, recording PSG over two nights has a high overhead

and has not been proven to be cost and time beneficial.
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4.1.2.2 Unattended PSG

Unattended studies range from recording data from one or two sensors (for example,

air flow or oxygen saturation) to the seven channels described above. While recording

using two channels does not yield the quantity of data collected in a clinical study, it

does provide important information and can be used to screen for OSAS and other sleep

disorders.

4.1.2.3 Ambulatory PSG

The ambulatory collection of PSG allows a participant to continue their daily routine

without having to be kept in a fixed location. It can be cumbersome, intrusive and

expensive. However it provides important information about sleep and sleeping patterns

(for example, that of severely sleep restricted health care professionals (Barger et al.,

2005; Lockley et al., 2004)). Results have shown an increased risk of motor vehicles

crashes and attentional failures occurs in sleep restricted individuals (Barger et al.,

2005; Lockley et al., 2004).

4.1.3 PSG in Children

Sleeping patterns are different in children to that seen in adults. There are many obsta-

cles to pediatric sleep scoring including the developmental processes of pediatric EEG

and sleep, changes in other physiological patterns with age, the changing etiologies of

various disorders with age and the challenge of dealing with children in an intrusive clin-

ical environment (Griebel and Moyer, 2006). However, there is still considerable benefit

in pediatric PSG as an untreated sleep disorder can have long ranging effects such as

growth failure, pulmonary hypertension, cor pulmonale (a heart condition) as well as

academic and behavioural concerns (Griebel and Moyer, 2006). The recording of PSG

during a nap session has also been suggested as a screening tool, however this can prove

inconclusive as it is possible not all sleep stages will be seen (Griebel and Moyer, 2006).

Consequently, a full overnight PSG could also be required, nullifying the cost and time

benefits of a nap study. The ‘first-night effect’ is often called into question in pediatric

sleep studies. However some have reported no difference between sleep metrics recorded

on the first and second night spent in a sleep laboratory (Griebel and Moyer, 2006; Katz

et al., 2002). More thorough information on pediatric PSG can be found in Griebel and

Moyer (2006); Iber et al. (2007).
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4.1.4 Sleep Scoring

Sleep scoring is based on rules established by Rechtschaffen and Kales (Rechtschaffen and

Kales, 1968) which were subsequently updated recently by the AASM (Iber et al., 2007).

The scoring process is complicated and subjective, and often results in two trained and

experienced sleep scorers having an imperfect agreement rate. Inter-rater agreement

rates have been reported to be 80% for the R&K guidelines and 82% for the AASM

guidelines over different subjects and sleep laboratories (Danker-Hopfe et al., 2009).

EEG, EOG and EMG data are reviewed generally in 30 second epochs and assigned

a sleep stage. Certain characteristic patterns define each sleep stage including sleep

spindles, K-complexes, alpha and PDR activity, slow wave (also known as delta) activity,

saw-tooth waves, differing levels of muscle tone and different types of eye movements.

The reader is referred to Chapter 2.2 where these rules are specifically discussed.

4.2 Sleep Diaries

The sleep diary (see Figure 4.2) is an instrument consisting of multiple questions which

record multiple sleep metrics. It records subjective information about sleep/wake rhythms,

such as when ’lights out’ time, ’lights on’ time, sleep latency, number of and reasons

for awakenings, time spent awake in bed until arising and visual acuity scales (VAS) for

sleep quality, mood on wakening and alertness on final wakening (Monk et al., 1994). It

is widely used in clinical and research studies. In comparison to a single survey report,

a daily sleep diary relies less on memory and provides a quantitative measurement of

sleep/wake schedules (Wolfson et al., 2003). A comparison of total sleep times between

ambulatory PSG and sleep diaries have shown acceptable agreement rates (92.3% sen-

sitivity and 95.6% specificity) (Rogers et al., 1993). Sleep diaries are often used as a

screening tool for clinicians and researchers for sleep disorders, especially for circadian

rhythm sleep disorders.

4.3 Sleep Tests and Subjective Measures

Subjective questionnaire-based data has also been used to compare both between and

across study populations. Some of these are described below:
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Sleep Diary Template 

ID:_________________________   

 

Current Date/Time:_____________  Lights Out:______________     Lights On:_______________

 

                               

 

1.  How long did you take to fall asleep last night?_____(hrs)_____(mins) 

2.  How long did you sleep last night?_____(hrs)_____(mins) 

3.  How many times did you awaken during the night?_____ 

4.  After the end of your sleep period, how long did you remain in bed before getting up?___(hrs)___ 

(mins) 

5.  Was your sleep disturbed:  [Yes / No]  (If Yes, check all that apply) 

  noise   work duties   physical discomfort   voids,  # of voids:_____  

  too hot    too cold   other 

__________________________________________ 

6.  How did you sleep last night? 

       poorly                                                                                                      great 

7.  How do you feel right now? 

           sleepy                                                                    alert 

8.  Did you have any caffeine yesterday?   [Yes / No]  (If Yes, indicate how much) 

    coffee _____(cups)      caffeine pills _____(100mg)  _____(200mg) 

    tea  _____(cups)      caffeinated soft drinks    _____(glasses) 

   Indicate how long before bed your last caffeine intake was:_____(hrs) _____(mins) 

9.  Did you nap yesterday? [Yes / No] If Yes, indicate time of 

nap(s)________________________ 

10.  Did you take any medications yesterday?   [Yes  /  No  /  Decline]  (If Yes, list all)             

 _______________________________________________________________________________

 

Comments: 

 __________________________________________________________________________________ 

 __________________________________________________________________________________ 

 __________________________________________________________________________________ 

 __________________________________________________________________________________ 

Figure 4.2: Typical Sleep Diary
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4.3.1 Common Sleep Tests and Measures

Multiple Sleep Latency Test (MSLT): The MSLT is currently considered the

‘gold standard’ for the quantitative assessment of sleepiness (Carskadon et al., 1986).

The MSLT examines the likelihood of falling asleep at multiple intervals throughout the

day in an environment conducive to sleep. If, during a test, the user does fall asleep

(as measured by PSG) the time taken to fall asleep is recorded. The average from the

beginning of the test to sleep onset is averaged over four to five naps to obtain the Mean

Sleep Latency (MSL). The MSLT is used to assess sleepiness with a lower score indicating

a more severe case (Carskadon et al., 1986; Chervin and Guilleminault, 1995). MSLT is

commonly often used as a primary indicator of sleepiness in a clinical setting. An MSL

shorter than five minutes has been found to be associated with performance decrements

and unintentional episodes of sleep in sleepy patients (Carskadon et al., 1986; Chervin

and Guilleminault, 1995). The link between MSL and sleepiness has been questioned

due to a lack of correlation with other factors including the amount of sleep during the

previous night, the efficiency of that sleep, the number of awakenings and the amount

of time spent in a particular sleep stage (Chervin, 2003; Chervin and Guilleminault,

1995). A thorough physiological construct for the mediation of sleepiness has not been

established and as a result the optimal measurement scale for sleepiness remains elusive

(Chervin, 2003; Chervin and Guilleminault, 1995).

Epworth Sleepiness Scale (ESS) The ESS is intended to assess excessive daytime

sleepiness by measuring sleep propensity (Johns 1991, Johns 1992). It consists of eight

questions asking whether or not the subject is likely to fall asleep in common situations

of daily living. The four possible answers are weighted according to likelihood and

subsequently summed to a single number. The final score has been shown to correlate

well with the AHI in a large study sample (Gottleib et al., 1999). A score of greater than

ten is considered to indicate sleepiness (Buysse et al., 2008). The scale is widely used in

clinical and research studies to assess sleepiness although there has been some dispute

of its validity (Miletin and Hanly, 2003). Miletin and Hanly (2003) conducted a review

and discussed the relationship between ESS and MSLT. A moderate but statistically

significant relationship between ESS and MSL, as reported by MSLT, was cited, however

conflicting results in other studies were also reported. It was noted that the ESS and

MSLT do not measure the same type of sleepiness. The MSLT is an objective measure

of sleepiness at the point of testing, but the ESS measures the tendency of sleepiness

during certain recent activities (Miletin and Hanly, 2003).
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Karolinska Sleepiness Scale (KSS) The KSS is a 9 point verbally anchored scale

with the following steps: ”Extremely alert” (score = 1), ”Alert” (3), ”Neither alert

nor sleepy” (5), ”Sleepy - but no difficulty remaining awake” (7), ”Extremely sleepy -

fighting sleep” (9) (Kaida et al., 2006). The steps in between have a scale value but no

verbal value. Median reaction time, number of lapses, alpha and theta (as defined in

Section 2.2) power density and the alpha attenuation coefficient (the ratio of mean eyes

closed to mean eyes open alpha power) have been shown to have a highly significant

increase with increasing KSS (Kaida et al., 2006).

Stanford Sleepiness Scale (SSS) The SSS is an analog scale used to assess sleepiness

(Carskadon and Dement, 1981; Hoddes et al., 1973). It is a 7 point scale consisting

of numbered statements which describe alertness/sleepiness levels. These range from

”Feeling active, and vital” (score = 1) to ”No longer fighting sleep, sleep onset soon”

(score = 7) (Carskadon and Dement, 1981; Hoddes et al., 1973).

Maintenance of Wakefulness Test (MWT) The MWT assesses wake tendency by

measuring the ability to remain awake in a sleep conducive setting (Doghramji et al.,

1997). The MWT has been shown to be able to identify those with an impaired wake

tendency and to identify those with a pathologic inability to remain awake while in a

setting conducive to sleep (Doghramji et al., 1997).

Other sleep scales and tests Other sleep scales have been devised for specific con-

ditions, for example the Parkinson’s Disease sleepiness scale (PDSS) (Chaudhuri et al.,

2002). The psychomotor vigilance test (PVT) is also commonly used to test reaction

times in clinical and research studies (Wright et al., 2002).

Pittsburgh Sleep Quality Index (PSQI) The PSQI is a self rated questionnaire

which assesses sleep quality over a period of one month (Buysse et al., 1989). Nine-

teen individual items are used to generate seven equally weighted ”component” scores

including subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency,

sleep disturbances, use of sleeping medication and daytime dysfunction. These com-

ponent scores are summed to generate a global metric which ranges from 0-21, with

higher scores indicating a worse sleep quality. The PSQI has been shown to identify

good and poor sleepers and has been shown to have a high sensitivity and specificity

for detecting a sleep disorder, using a cut-off of 5 (Buysse et al., 2008). An additional

five questions are asked for clinical information only. Longitudinal applications of the

PSQI have included its use in examining the course and natural history of sleep/wake
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disorders, the progression of sleep disturbances and the detection of relapses detected

by the re-emergence of a sleep disorder (Buysse et al., 1989).

Insomnia Severity Scale (ISS) The ISS comprises of seven items and is used to

assess insomnia severity (Bastien et al., 2001). It generates a score varying from 0-28

with higher scores indicative of more severe insomnia. A total score of 0-7 indicates ’no

clinically significant insomnia’, 8-14 ’sub-threshold insomnia’, 15-21 ’clinical insomnia

(moderate severity)’ and 22-28 ’clinical insomnia (severe)’ (O’Donoghue et al., 2009). A

cut off of 14 is used to discriminate between individuals diagnosed with primary insomnia

and those without (reporting a sensitivity of 94% and a specificity of 94%) (Smith and

Trinder, 2001).

4.4 Actigraphy

Actigraphy refers to the collection of rest/activity profiles of humans and other animals,

generally over extended periods of time in the animals normal habitat (Sadeh et al.,

1994, 1995). These patterns have been widely used to document and present sleep/wake

habits due to the inherent lack of physical activity during sleep. Mechanical actigraphs

originally transduced physical movement into an electrical signal which used movement

and inactivity as markers for wake and sleep. Subsequent manual scoring reported

highly accurate sleep/wake classification (Mullaney et al., 1980). Modern actigraphs

have developed into compact, reliable, single or multiple axis accelerometry based de-

vices, often placed on the wrist, with the ability to record for several days, even weeks,

without interruption.

4.4.1 Actigraphy Data Preprocessing

A bandpass filter is applied to the raw accelerometry data allowing signals in the gen-

eral range of 0.25-4 Hz to pass. The selection of this range of frequencies removes

the gravitational acceleration component and records only voluntary human movement

(Ancoli-Israel et al., 2003). Redmond and Hegge (1987) reported that voluntary move-

ment rarely exceeds 3-4 Hz and that involuntary movement generally exceeds 5 Hz. It

has elsewhere been suggested to record faster movement in the 0.5-11 HZ range in order

to capture movement in younger subjects (Van Someren et al., 1995). Various metrics,

often reported as ‘activity counts’, have been derived to represent motion over a user
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Figure 4.3: Sample wrist actigraphy collected over nine days from an elderly subject
with each day plotted on subsequent lines. The light blue patterns indicate periods of

sleep and the pink patterns indicate periods when the watch was not worn.

specified period of time, or epoch. Activity counts are calculated by integrating, or sum-

ming, the bandpassed accelerometry data over each epoch. Example wrist actigraphy

data is shown in Figure 4.3 collected over a nine day period.

Unlike PSG, actigraphy generally does not suffer a ‘first night effect’ as the participant

does not feel overly constricted (as they do in PSG). Compliance issues are generally less

likely than PSG as the actigraph is considered unobtrusive. Although some participants,

particularly older adults, may consider the device a hindrance (Behan et al., 2008a;

Walsh et al., 2008). Actigraphy allows for an unconstrained, long-term and continuous

monitoring period which PSG does not. This facilitates the examination of variations

in sleeping patterns across multiple days in a community setting.

4.4.2 Sleep/Wake Classification and Scoring Procedures for Humans

The manual scoring of actigraphic records for sleep/wake discrimination reported highly

accurate results using wrist based devices against PSG in humans (Mullaney et al.,

1980). This process was automated using a thresholding algorithm on activity count

data to report active and inactive periods as sleep and wake, respectively, and was also

found to report a high level of accuracy (Webster et al., 1982). Many of these algorithms

generate a metric by weighting past, current and future activity count data together and

a thresholding algorithm scores the current epoch as either sleep or wake (Cole et al.,

1992; Sadeh et al., 1994). However, inaccurate short sleep latency times were found using
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this approach. To improve the accuracy in detecting the correct sleep start time the

scoring algorithms were modified to require a minimum consecutive period of inactivity

(some allow for one epoch of activity) before sleep start could be defined. For example,

the initial sleep epoch is scored as sleep when nineteen of the twenty subsequent epochs

also report a value below the sleep/wake threshold (indicating sleep). This algorithm is

also applied (although implemented in reverse) in order to find the last epoch of sleep

before wake. This added complexity has addressed the issue of the inactive state of

wakefulness prior to sleep start. Short sleep latency times were reported prior to the

application of this algorithm (Ancoli-Israel et al., 2003; Cole et al., 1992).

4.4.3 Clinical Performance

Comparisons of actigraphy and PSG have been reported for multiple populations in-

cluding healthy adults, children, adolescents, older adults, psychiatric patients as well

as people suffering from various sleep disorders including sleep apnoea and insomnia

(Ancoli-Israel et al., 2003; Cole et al., 1992; Hauri and Wisbey, 1992; Hedner et al.,

2004; Jean-Louis et al., 2001; Kushida et al., 2001; Mullaney et al., 1980; Pollak et al.,

2001; Sadeh et al., 1994; Souza et al., 2003; Webster et al., 1982). Comparisons between

actigraphy and PSG-defined sleep have yielded high levels of agreement with epoch-by

epoch concordance of up to 91-93% (Ancoli-Israel et al., 2003). A more recent review

reported high agreement rates of over 85% in healthy adults of different age groups

(Acebo and LeBourgeois, 2006).

Van De Water et al. (2011) presented a review of objective sleep measurements for

non-laboratory settings and this included a large variety of wrist actigraphy sleep/wake

systems deployed in hospital intensive care units, sleep laboratories and nursing homes.

This review presents a number of metrics (including TST, SE, agreement rate, sensitivity,

specificity, accuracy, total wake time, SL, WASO) which were used to compare the

proposed technology to PSG. For most systems, specificity rates were much lower than

sensitivity rates, although high accuracy rates were still reported as the data is generally

highly biased towards the sleep state. No comparisons of wrist actigraphy against PSG

were reported in home-based environments, however the optimal results for a sleep

laboratory based setting had a sensitivity of 91%, a specificity of 65% and an accuracy

of 88% ((Paquet et al., 2007) in (Van De Water et al., 2011)). Night to night TST (and

other variables) correlations between PSG and actigraphic methods were commonly

reported, however these can provide misleading results as they are a measure of the

commonality of the trend between two signals.
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4.4.3.1 The Validity of Wrist Actigraphy Estimates

Actigraphic sleep monitoring uses movement information to discriminate sleep from

wakefulness. As such, actigraphic estimates of sleep do not contain the ability to dis-

tinguish inactive, or quiescent, wake from sleep or conversely active sleep (such as sleep

walking) from wake. Actigraphy, at its optimal performance, can only approach the

accuracy of PSG, which uses multiple physiological variables to determine the sleep-

/wakefulness state, and as such actigraphy can only be viewed as an estimate of sleep

or wakefulness.

Commonly reported measures of comparison between actigraphy and PSG in sleep mon-

itoring are Pearson’s Correlation Coefficient (PCC) for total sleep time TST, accuracy,

sensitivity and specificity of a binary classifier, Cohen’s Kappa and Bland-Altman analy-

sis (Tryon, 1991). The suitability of PCC for comparing sleep metrics, particularly TST,

against the gold standard of PSG has been questioned as this comparison is relative not

absolute (Ancoli-Israel et al., 2003; Souza et al., 2003). For example, a high correlation

would remain if the trend of TST was similar for both measures despite a possible order

of magnitude difference between the actual values (Ancoli-Israel et al., 2003; Souza et al.,

2003). A direct epoch-by-epoch comparison of actigraphic and PSG measures of sleep

state would be more suitable to determine the efficacy of the actigraph.

However, such a direct comparison presents a major methodological challenge known

as ’time-locking’ (ensuring all data across different devices starts and ends at the same

time) (Ancoli-Israel et al., 2003; Pollak et al., 2001). Pollak et al. (2001) described the

application of sensitivity, specificity and accuracy measures, as performance indicators

of a standard binary classification test, in an epoch-by-epoch comparison. Positive

results were reported, however a low wake detection capacity (specificity) was found.

The Bland-Altman technique has also been used to compare two techniques of sleep

monitoring (Souza et al., 2003). This technique compares two measures of the same

metric recorded using two different devices. It is based on a plot of the difference

between the two techniques against the mean of the two techniques for each subject in

a sample (Bland and Altman, 1999).

4.4.4 Actigraphy - Deployment in Practice

There are many situations where it is prohibitive to monitor sleep by PSG (for example

in sensitive populations or in challenging environments such as space, or over multiple

nights) and for these situations wrist actigraphy is a suitable alternative (Walsh et al.,

2009a). Actigraphic values for sleep onset and offset, sleep duration and sleep efficiency
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were found to be superior to sleep diaries when compared against PSG in space (Monk

et al., 1999). The authors concluded that when PSG was too cumbersome to use that

actigraphy was a simple efficient means of evaluating sleep (Monk et al., 1999). Actigra-

phy has been suggested as a large scale, reliable, easily deployable and low cost estimator

of sleep/wake patterns especially where PSG is not an option (Walsh et al., 2009a).

4.4.4.1 Actigraphy Device Placement Issues

In a comprehensive review, Ancoli-Israel et al. (2003) discussed two studies which found

that there were no differences in actigraphy results collected from multiple locations

(dominant wrist, non-dominant wrist, ankle or trunk) although the actual actigraphic

data might be dissimilar (Ancoli-Israel et al., 2003; Jean-Louis et al., 1997; Sadeh et al.,

1994). This review noted that in some studies wrist placement was found to be better

at detecting wake than other placements. Although, it was concluded that more studies

comparing different actigraph placements against concomitant PSG were needed (Ancoli-

Israel et al., 2003; Middelkoop et al., 1995).

4.4.4.2 Circadian Rhythm Analysis

Wrist actigraphy has been used as an indicator of circadian rhythms as it estimates

sleep and wakes states reliably (both for the major sleep episode and for naps) and also

provides a measure of daytime activity levels (Littner et al., 2003). A stable circadian

rhythm has a consistent 24 hour sleep cycle and this is reflected in periodic cycles of

body temperature, hormone production and physical activity over an extended period

(Lockley, 2009). Deviations from this pattern may be as a result of circadian rhythm

disorders such includes shift work sleep disorder, jet-lag disorder, advanced and delayed

sleep phase syndrome, or aging and psychiatric disorders (Lockley, 2009). In some cases,

it may be as a result of unusual environmental photo-periods.

4.4.4.3 Limitations of Actigraphic Monitoring

There are multiple limitations to actigraphic sleep monitoring such as movement artifacts

(arising from non-compliance or breathing). Non-compliance can arise due to a forgetful

participant or due to an individual who finds the device an irritant (Behan et al., 2008a;

Walsh et al., 2008). Motion artifacts can arise due to breathing or from the participant’s

location (for example, if the subject were on a moving vehicle the actigraphic device

would also record the acceleration of the vehicle). Another limitation of wrist actigraphy

is a low specificity (a low ability to detect wake) (Paquet et al., 2007) and as such it
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has been shown to be problematic when a large proportion of the recording period is

spent awake (Sadeh, 2011) (for example, for participants suffering from insomnia (Acebo,

2006)). A particular problem is the detection of the correct sleep start time as subjects

often remain still in an effort to fall asleep. The effect of misclassifying wake epochs at

the beginning of sleep can be lessened through the introduction of an algorithm which

requires an extended continuous period of no movement in order to demarcate the start

of sleep (as previously discussed in Section 4.4.2). Multiple scoring algorithms have been

developed for certain sleep disorders (Hauri and Wisbey, 1992; Hedner et al., 2004).

4.4.4.4 Advances in Wrist-based Actigraphic Monitoring

Various advances have been made in wrist-based actigraphic monitoring over the years.

For example, a wrist-based wireless activity monitoring device which continuously moni-

tors body movements and derives circadian rhythm profiles from sleep/wake patterns has

been developed (Sarela et al., 2003; Ltjnen et al., 2003). The data is also automatically

transmitted continuously to a base station. The Vivago WristCare R©(IST International

Security Technology Oy, Finland) was found to be comparable to traditional wrist actig-

raphy devices validated against PSG in a study of 32 subjects (Ltjnen et al., 2003). A

lower Pearson correlation coefficient for TST from WristCare R©and PSG was found when

compared to actigraphy and PSG (0.43 and 0.70 respectively) (Ltjnen et al., 2003). A

lower TST difference was reported for actigraphy than for WristCare R©(41 and 59 min-

utes respectively; validated against PSG) although this difference was not found to be

significant (Ltjnen et al., 2003). Both technologies were found to over-estimate sleep.

Similar findings were reported from the two devices using a custom nap analysis algo-

rithm (Ltjnen et al., 2003). The system was deployed into a study investigating the

circadian activity rhythms in 23 demented and 19 non-demented nursing-home residents

for at least 10 days each (Paavilainen et al., 2005a). Daytime alertness and subjective

assessments of sleep were also recorded. Weak, but significant, correlations between

activity parameters and self-assessments were found. It was concluded that the system

was a valid instrument for unobtrusive continuous long-term monitoring of the circadian

rhythm and sleep/wake patterns of the elderly (Paavilainen et al., 2005a). This system

was deployed in a study investigating its use as a tool for long term monitoring of 16

nursing home residents for several months (Paavilainen et al., 2005b). Findings were

presented as case reports suggesting that actual health status was linked to circadian

activity rhythm (Paavilainen et al., 2005b). This device has also been shown to provide

information regarding the classification of daytime activities (Mattila et al., 2008).
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4.5 Advances in Sleep Monitoring

4.5.1 Automated PSG Sleep Analysis

The specific, well defined rules for sleep scoring were established by Rechtschaffen and

Kales (R&K) in 1968 (Rechtschaffen and Kales, 1968) were recently updated by the

American Academy of Sleep Medicine (AASM) in 2007 (Iber et al., 2007). This is a time-

consuming process in which a trained rater manually reviews various physiological signals

recorded during sleep and scores each 30 second epochs as a specific sleep stage. The

automation of this process has proven to be extremely challenging. This is made more

difficult due to the presence of significant levels of inter-rater variability, as previously

noted. The agreement rate between two individuals scoring sleep has been found to

be of the order of 82% and 80.6% for the AASM and R&K standards respectively

(Danker-Hopfe et al., 2009). Despite these difficulties, current automated sleep scoring

systems are able to achieve performances comparable to these inter-rater agreement

rates (Danker-Hopfe et al., 2009).

Furthermore, the percentage agreement rate, epoch-by-epoch agreement rate and Co-

hen’s Kappa have been used to validate a classifier’s ability to score sleep correctly.

The following section describes recent advances in the field of automated sleep scoring.

Approaches are categorised according to the range of signals used; either a partial or a

full compliment of PSG signals.

4.5.1.1 Partial PSG Automated Sleep Scoring

The following section describes multiple approaches to PSG scoring using either EOG,

EEG, or EOG and EEG data. These are summarised respectively in Tables 4.1, 4.2 and

4.3.

EOG Virkkala et al. (2007) investigated using solely EOG data (extracted from the

PSG data set) to estimate sleep stages throughout a night in 265 male train drivers and

railway traffic controllers. The sample population was split into training and validation

data sets, containing 132 and 131 subjects respectively. The PSG data was manually

scored according to the R&K standard (Rechtschaffen and Kales, 1968), however stages

3 and 4 were grouped and jointly referred to as SWS. Features were extracted using

EOG data from the left eye referenced to the mastoid (EOG L-M1), and for the right

eye (EOG R-M1) and for the left eye referenced to the right eye (EOG L-R). A metric

corresponding to alpha (0.5-6Hz in this case) power was extracted using EOG L-M1 and

72



A Review of Sleep Measurement Technologies

Author Accuracy Feature Classifier Data

Virkkala et al.
(2007)

Agreement rate: 71.8
%, kappa = 0.62

EOG Rule based
decision
tree and
smoothing
process

n=265 (train
drivers and
railway traffic
controllers

Table 4.1: A summary of an approaches to automated PSG scoring using EOG data

another metric relating to beta (18-30Hz in this case) power was extracted using EOG

L-R. Cross correlation and synchronous activity metrics between both eyes were also

used as inputs to the classifier. These resultant features were used to describe slow eye

movements, synchronous activity of the eyes and alpha and beta activity. A decision

tree used threshold rules to estimate the current sleep stage; later a smoothing process

was applied. An agreement rate of 71.8% and a Cohen’s Kappa of 0.62 was reported

between the smoothed estimated sleep stages and the manually scored results. Subject

specific thresholds improved the accuracy further to 72.5% and 0.63 respectively. The

article concluded that in comparison to other studies the manually scored data was not

consensus scored. It was also noted that this system is more convenient and has the

ability to be much more ambulatory than full PSG monitoring though it did note that

a feasibility study would be required.

EEG Prinz et al. (1994) investigated automated sleep scoring in 115 older adults (70

training, 45 validation) using solely EEG features. The PSG data was scored as per

the standard R&K guidelines (Rechtschaffen and Kales, 1968). A Fourier analysis was

applied to the EEG data resulting in a spectrum estimation for each signal. The mean

and standard deviation of 18 frequency bands were used as features to identify sleep

stages. Rules derived from the guidelines were used to separate data and estimate sleep

stages. The Pearson correlation (mean proportion of agreement) between the automatic

system and the manual scorer was 0.74 with a Cohen’s Kappa of 0.57.

Pardey et al. (1996) used EEG data from 9 healthy female adults. A 10th order

Autoregressive (AR) model was used to estimate 1 second of EEG data. The resul-

tant 10 AR coefficients were used as feature vectors to train a 10-by-10 Self-organising

Map (SOM). For each stage of sleep over the entire data set, SOM are populated. A

direct comparison of SOM showed that it was optimal to separate the SOM into wake,

REM and stage 4 sleep and subsequently used as methods to infer wake, REM/light

sleep and deep sleep respectively. A neural network, with one hidden layer, was trained

using the 10 AR coefficients as inputs to produce 3 outputs relating to the probabilities

of wake, REM/light sleep and deep sleep. For example, an output of [1,0,0] would signify
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the current state is wake. An agreement rate of 80% was reported between consensus

(joint agreement between two manual scorers) scoring and this method. An examination

of misclassified data showed that this was mainly due to stage 3 and REM EEG data

being incorrectly scored as stage 2 data. It was concluded that this analysis should

not be used to replace manual sleep scoring but rather to provide detailed diagnostic

information regarding sleep fragmentation and sleep disorders for clinicians.

Berthomier et al. (2007) reported on the validation amongst 15 healthy individuals of an

automatic sleep analysis system using single-channel EEG. Sleep stages were scored using

the R&K guidelines (Rechtschaffen and Kales, 1968) by 2 independent scorers. Epochs

jointly classed as belonging to the same stage by both scorers were compared to classes

estimated by this system. Features used in this classifier were spectral energies from [0-4

Hz], [4-8 Hz], [8-12 Hz], [12-16 Hz] as well as temporal information and detectors of sleep

spindles, K complexes and alpha bursts. An adaptive fuzzy logic system, based on R&K

rules, which repeatedly updates the sleep stage classifier was employed in the analysis.

Multiple results for increasing numbers of sleep stages showed high agreement levels. An

82.9% agreement rate (κ = 0.72) was reported for 5 states (Wake/REM/Stage 1/Stage

2/SWS).

Flexer et al. (2005) developed a probabilistic continuous sleep stager based on Hidden

Markov Models (HMM) with a single EEG signal. The sleep stages were scored using

standard R&K guidelines (Rechtschaffen and Kales, 1968). Two healthy adult popu-

lations from separate labs were used to test the system; these consisted of 40 people

(20 training, 20 test) and 28 people (14 training, 14 test). Metrics of EEG reflection

coefficients and stochastic complexity were used as features in this system. A Gaussian

observation HMM (GOHMM) was used to classify the data into wake, deep sleep, and

REM/light sleep as per Pardey et al. (1996). High accuracies of 79%, 82% and 68% were

reported for wake, deep sleep and REM/light sleep respectively for the first data set;

however low classification results were reported for discriminating stage1, stage2 and

stage 3 sleep (24%, 36% and 35% respectively). In the second experiment at a separate

sleep lab, data from 14 whole nights resulted in accuracies of 25%, 16%, 38%, 27%,

87% and 61% for wake, stage 1, stage 2, stage 3, stage 4 and REM sleep respectively.

The lower accuracies reported could not be attributed to a difference in the cohort. A

bigger overlap between data in the feature space was found for this data set explaining

the poorer performance. This resulted in a conclusion that classifiers need to be cus-

tomised to individual laboratories through the use of laboratory specific training data.

Flexer et al. (2005) concluded that the approach was not intended as an automatic sleep

scoring system according to the R&K rules, but rather it aided in the development of

an alternative sleep scoring system which focuses on the restorative value experienced

during the sleeping period.
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Gudmundsson et al. (2005) investigated sleep staging approaches on EEG data from

young subjects using nearest neighbour and support vector machine classifiers. The

PSG data was scored into traditional R&K sleep stages (Rechtschaffen and Kales, 1968)

by an experienced neurologist. Data was used from 4 young subjects (mean age of 5

years); 3 data sets were used for training and the remaining data from 1 subject was

used for test data. Hjorth complexity parameters (Hjorth, 1975), spectral energies in

various frequency bands and histogram features on waveform measures of EEG data were

used separately as features in this system. Both support vector machines (SVM) and

nearest neighbour approaches were used to estimate sleep states from inputted features.

Five fold cross validation was used to find optimal parameters for the SVM. Posterior

probability estimates were used to smooth out transitions between states by measuring

the likelihood in changing state from past observations (in the training set). Using

the histogram features with the posterior probability method resulted in the highest

accuracy (although the exact definition of this accuracy was not provided) at 0.81 or

81%. The posterior probability method improved accuracy for all methods except in

one instance where it remained the same.

Ebrahimi et al. (2008) developed a sleep stage classifier based on EEG signals using

neural networks and wavelet packet coefficients. EEG data was taken from the Physionet

(Goldberger et al., 2000) database from 7 healthy adults and used in this analysis.

From a wavelet decomposition of the EEG, the following features were used: mean

energy from each band, total energy, ratio of various energy bands to total energy,

mean of the absolute values of wavelet coefficients in each sub-band and the standard

deviation of these coefficients in each sub-band. A feedforward multilayer perceptron

neural network trained using the backpropagation algorithm was used to classify sleep

stages. A bootstrap technique was used to even the proportion of samples in each stage.

Bootstrapped samples were used to derive feature vectors and were separately used in

training and testing. The classifier successfully discriminated between wake/stage 1-

REM/stage 2/SWS with a specificity of 94.4%, sensitivity of 84.2% and an accuracy of

93.0%.

McGrogan et al. (2001) further built upon previous work by Pardey et al. (1996) by

devising a neural network sleep analysis system which used reflection coefficients derived

from the EEG as features to train a classifier. Reflection coefficients provide similar

spectrum information as autoregressive (AR) coefficients, derived from an AR model,

however they are independent of signal amplitude and have the range [-1, 1]. The outputs

of the classifier inferred the likelihood of a wake, REM/light sleep and deep sleep state

and were in the range [-1, 1]. The feature space was trained using a total of 8,502 30

second epochs of EEG data from 9 individuals. Estimation of sleep stage was achieved

using Mahalanobis distance as a tool for selecting the closest cluster in the training
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data set to the current set of data. This distance metric allows for different variance

in each class in the calculation of distance in contrast to Euclidian distance which does

not. A leave-one-out strategy was employed for the generation of results. The data

from 8 subjects were used to calculate mean and covariance values in order to find the

Mahalanobis distance. This was used to estimate the current sleep stage in the remaining

set of data. A comparison against consensus (of three sleep scorers) and individual

scoring took place and provided an agreement rate of 72.2% and 63.3% respectively.

Caffarel et al. (2006) reported on using this system to assess the sleep/wake and sleep

stage epoch-by-epoch comparison against manual scoring in 114 patients with suspected

obstructive sleep apnoea syndrome (OSAS). There was poor overall agreement with a

Cohen’s Kappa (κ ) of 0.305 for differentiating Wake/Light Sleep/Deep Sleep/REM and

of 0.445 for the simpler case of Sleep/Wake. It was concluded that using such a system

was not sufficiently accurate for sleep study analyses among the OSAS patients.

EEG and EOG Hassaan and Morsy (2008) investigated an adaptive hybrid system

for automatic sleep staging. PSG data was taken from 10 healthy adults (7 males).

A single EEG channel and the left EOG channel were used to estimate sleep stages.

Reference sleep stages were estimated using the Alice sleep staging system (Goldberger

et al., 2000). The features used for classification were from the EEG: sum of power of

spectrum for [0.5-2, 2-7, 8-12, 14-25, 25+ Hz], the mean frequency from each of these

bands, the alpha wave index, the theta wave index and the slow wave index. EOG data

was used during post-processing to differentiate between stage 1 sleep and REM sleep;

specifically measures of summed and max peak-to-peak values (characterising the rapid

increase in eye movements) were used. A feed-forward ANN with back propagation

training was used to classify the data. Comparison against the Alice automated scoring

system reported an accuracy of 69.96%.

Sleep Spindle and K-Complex Detector There has been significant research in the

development of automated sleep spindle and K-complex detectors (Ahmed et al., 2009;

Huupponen et al., 2007; da Rosa and Paiva, 1993; Richard and Lengelle, 1998). These

EEG waveforms define stage 2 sleep and are distinguishable by their shape (Iber et al.,

2007; Rechtschaffen and Kales, 1968). The distinct high frequency train of sleep spindles

results in a distinguishable high frequency component while time and frequency based

analyses have been used to identify k-complexes. Often each 30 second epoch is broken

into 1 second chunks and each segment is tested for sleep spindles and K-complexes.
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Author Accuracy Feature Classifier Data

Prinz et al.
(1994)

Pearson’s Correlation
Coefficient: 0.74, kappa
= 0.57

EEG Rule based
system

n=115 (older
adults)

Pardey et al.
(1996)

Agreement rate: 80
% (for wake/light sleep
and REM/deep sleep
discrimination)

EEG Self organ-
ising map
and ANN

n=9

Berthomier
et al. (2007)

Agreement rate: 82.9
%, kappa = 0.72

EEG Adaptive
fuzzy logic
system
based on
R& K rules

n=15

Flexer et al.
(2005)

Mean accuracy: 73.3%
(across wake/light sleep
and REM/deep sleep
discrimination)

EEG Probabilistic
HMM

n=68

Gudmundsson
et al. (2005)

Accuracy: 81 % (elusive
definition of accuracy)

EEG SVM and
nearest
neighbour
classifier

n=4 (mean
age: 5)

Ebrahimi et al.
(2008)

Specificity: 94.4%,
sensitivity: 84.2%,
accuracy: 93% (for
wake/stage 1 and
REM/stage 2/SWS
discrimination)

EEG ANN n=7

McGrogan
et al. (2001)

Agreement rate: 72 % EEG Automated
clustering

n=9

Table 4.2: A summary of some approaches to automated PSG scoring using EEG
data

Author Accuracy Feature Classifier Data

Hassaan and
Morsy (2008)

Accuracy: 69.96 % EEG and
EOG

ANN n=10

Table 4.3: A summary of some approaches to automated PSG scoring using EEG and
EOG data
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4.5.1.2 Full Complement Automated Sleep Scoring

The automation of sleep scoring using EEG, EOG and EMG signals has been investi-

gated almost since the development of criteria for the scoring of sleep and sleep apnoea

in healthy adults and children (Anderer et al. 2005;Anderer et al. 2010; Goldberg and

Beiber 1979; McGrogan et al. 2001; Pardey et al. 1996; Park et al. 2000; Smith and Kara-

can 1971; Villa et al. 1998). Despite these multiple approaches, computerised analysis

has not been accepted by the sleep community. Schulz (2008) emphasised that a shift

in the paradigm of sleep analysis is needed as traditional visual scoring techniques have

undergone few changes despite major technological advances. It has been argued that

NREM sleep should be thought of as a continuous state of differing restorative depth

as opposed to a series of discrete stages (Schulz, 2008). A cumulative score based on

the quality, composed of both quality and quantity of sleep, was proposed. This could

effectively deem that 5 hours of good quality NREM sleep could be the equivalent of 8

hours of poor quality NREM sleep (Schulz, 2008).

The following section briefly describes various automated sleep monitoring approaches

using EEG, EOG and EMG data (these are summarised in Table 4.4):

Anderer et al. (2005) developed the Somnolyzer 24/7 automatic sleep classification sys-

tem using the Siesta (a large EU funded) database of PSG data. Normal and patient

(insomnia, Parkinson’s disease, PLMS or sleep apneoa) PSG data from 590 subjects was

split evenly into training and validation sets (396 normal and 194 patients). Standard

sleep scoring was performed according to the R&K guidelines (Rechtschaffen and Kales,

1968) by 2 trained scorers; consensus (a third scorer validated mismatched epochs). A

large number of features were extracted from the EEG, EOG and EMG data (101 fea-

tures in total). This included density, intensity, max intensity, frequency, amplitude,

duration, velocity and waveform measures of EEG (in the form of slow wave, muscle ar-

tifact, delta, theta, alpha, beta-1, beta-2 omega/total band, possible/probable/certain

spindles), EOG (in the form of possible/probable/certain slow eye movements, REM,

eye movement) and EMG (minimum, maximum and mean). An LDA decision tree hi-

erarchical classifier was used to break the problem of classifying all the different stages

into separate easier to distinguish stages. Thus each classifier uses implicit (learned) and

explicit (rule based) knowledge on features to separate stages. For example, the first

classifier separates wake/light/REM sleep from SWS; the explicit knowledge taken from

choosing which states to separate and the implicit knowledge is taken from training data.

The training classification reported an agreement of 79.9% (κ = 0.74). Validation data

without quality control (reviewing scorer) reported an agreement of 78.3% (κ = 0.71)

and an agreement of 79.6% (κ = 0.72) using a reviewer for quality control. Quality con-

trols included the absence of any REM stage, too many REM stages, artifacts, missing

78



A Review of Sleep Measurement Technologies

data, etc. Comparisons between scoring after quality control by two separate scorers had

a high accuracy 99.4% (κ = 0.991) between two partially automated scorings. Further

analysis with a smaller sample reported higher Somnolyzer 24/7 vs consensus scores for

sleep estimation than inter-rate scores (Anderer et al., 2007, 2010).

Park et al. (2000) used a rule-based scoring technique and a hybrid rule-based and case-

based scoring technique to develop a system which reported over 87% and 82% agreement

rates between manual scoring (according to the R&K guidelines) and an automated

algorithm in a small number of 3 normal adults and 3 OSAS patients respectively.

Features used for classification include EEG frequency information on a per second basis

for each epoch to derive the temporal distribution of different frequencies (including [0-2

Hz], [3-7 Hz], [7.5-12 Hz], [12-20 Hz], [20-50 Hz] and [11.5 - 15 Hz] for sleep spindles),

total EEG power spectrum per epoch, state of the EOG (divided into SEM, drift, delta,

quiet and normal) and the tone of the chin EMG. The rule based scoring techniques

mirrored the R&K guidelines. Case based reasoning introduces into the system the

ability to learn from past examples. If the rule based method cannot sufficiently classify

data, the case based reasoning engine is invoked which compares the current data to

previous examples and finds a matching solution, and correspondingly an answer, or

sleep stage.

Schaltenbrand et al. (1996) developed an automatic sleep scoring system based on test

data from 60 subjects (33 males). These were evenly distributed between normal con-

trols, depressed patients and insomniac patients. 17 features were extracted from PSG

data sets and applied to a classifier (14 EEG features, 4 EOG features and 3 EMG

features). These features included using a mixture of relative spectral power in specific

frequency bands, total spectral power, ratio of spectral powers, dispersion of spectral

density and mean frequency of spectral density in EEG, EOG and EMG data. The Fast

Fourier Transform (FFT) was used to achieve these spectral features. A MLP ANN

was trained using these features to predict 6 scored states (wake/stage 1/stage 2/stage

3/stage 4/REM). Manual scoring by consensus agreement between two trained sleep

scorers performed according to the R&K guidelines (Rechtschaffen and Kales, 1968)

provided the reference stages. Training and test data were kept separate throughout

this analysis. 12 participants data were used for training the classifier. These were kept

in the same proportion as the testing set (4 normal, 4 depressed patients and 4 insomnia

patients). The testing set contained 48 participants (16 normal, 16 depressed patients

and 16 insomnia patients). The results were optimised based on the training data and

subsequent final testing was performed with the remaining data. Average agreement

rates over all stages for each set of subjects was over 80%. The related inter-rater agree-

ment rates were over 85%. Improved performance was achieved by the creation of an

uncertainty index. Expert supervision of epochs with a high uncertainty index improved
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expert/automatic scoring agreement rates to 89%. The detection and subsequent correc-

tion by clustering of results (defined by Euclidian distance to a cluster of data) improved

performance to 84%. This affected nearly 20% of all data and improved an average of

30 epochs per night (3% per recording).

Agarwal and Gotman (2001) extracted features from epochs of PSG data from 12 sub-

jects (9 male) and grouped them into their naturally occurring clusters. The number of

clusters was reduced to 8 using the nearest neighbour method over the entire data set.

The reviewer examined sample data from each cluster and assigned a sleep stage. This

sleep stage was applied to all data sets in that cluster. This allowed for the unique PSG

data from each subject and the customisation of scoring for each reviewer. PSG records

from normal, abnormal, male, female and varying age groups were used to validate this

computer-assisted sleep staging approach. The features derived from the physiological

data were amplitude, dominant rhythm, and frequency weighted energy for each EEG

and EMG channel, presence of spindles in the central EEG channel, alpha-slow-wave

index for the occipital EEG, theta-slow-wave index for the central EEG and presence

of eye movements in the EOG. An overall concordance of 80.6% with manual scoring

of 20 second epochs, according to the R&K guidelines, was reported. This agreement

rate was based upon sleep staging data which had been previously scored (with which it

had an agreement rate of 76.8%) and was subsequently re-scored (corrected) by the cur-

rent reviewing scorer. It was concluded that this could introduce a bias as the current

reviewer could use the computer assisted scores as a possible indicator of sleep stage

when reviewing data. It was also stated that this method approached a high accuracy

amongst a variety of individuals, whereas other techniques with higher accuracy had

a sample population with a tight population bounds (eg. all male, 18-23) (Kuwahara

et al., 1988).

Pittman et al. (2004) developed an automatic PSG scoring system and tested it in

a population with suspected sleep-disordered breathing (SDB). A total of 31 subjects

(9 women) took part in the study. Standard PSG was recorded in all cases and this

was scored independently by 2 trained scorers in the same lab. Automated algorithms

extracted features from the EEG, EOG and EMG. Algorithms were developed to lo-

cate sleep spindles, K-complexes, movement and electrode artifacts. Additionally high-

frequency EEG data as well as movements were deemed to signify wake, low-energy

mixed-frequency EEG data referred to stage 1 and Stage REM sleep, high-energy mixed-

frequency, spindles and K-complexes highlighted stage 2 sleep and low-frequency EEG

patterns and peak-to-peak amplitudes were considered as indicators of delta waves

(SWS). Reduced EMG activity, estimated using fuzzy clustering, and REM indicated

REM sleep. The EOG signal was analysed and variance and cross-correlations metrics

were extracted; segments with high relative energy and low cross-correlation measures
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Author Accuracy Feature Classifier Data

Anderer et al.
(2005)

Agreement rate: 78.3
% (79.6 % if uncertain
epochs are supervised),
Kappa = 0.71

101 EEG,
EOG, EMG
features

Hierarchical
LDA

n=590 (396
normal, 194
patient)

Park et al.
(2000)

Agreement rate: 87% 13 EEG,
EOG, EMG
features

Rule and
case based
scoring
technique

n=6 (3 nor-
mal, 3 OSAS)

Schaltenbrand
et al. (1996)

Agreement rate: over
80 % (89% if uncertain
epochs are supervised)

17 EEG,
EOG, EMG
features

ANN n=60 (20 nor-
mal, 20 de-
pressed, 20 in-
somniac)

Agarwal
and Gotman
(2001)

Agreement rate: 80.6 % EEG, EOG,
EMG

Manual
clustering

n=12

Pittman et al.
(2004)

Agreement rate: 73.3
%, Kappa = 0.61

EEG, EOG,
EMG

Rule based
system

n=31 (SBD)

Table 4.4: A summary of some approaches to automated PSG scoring using EEG,
EOG and EMG data

were used to define REM sleep. EMG signals with high relative energy were used to

score arousals as they were noted as EMG bursts. This rule-based system was devised

using the R&K guidelines (Rechtschaffen and Kales, 1968). Inter-rater reliability was

82.1% and had a Cohen’s kappa (κ) of 0.73. Consensus scoring was not used in this

study. Agreement rates and Cohen’s kappa between scorers and against the consensus

PSG were reported as 77.7% and 0.67, and 73.3% and 0.61 over all subjects respectively.

4.5.2 Contact-Based Sleep Monitoring

Advances in physiological monitoring technology has brought about a move away from

traditional electrodes and towards dry electrodes, textile-based sensors and ambulatory

physiological monitoring. This section describes some recent advances in this area par-

ticularly applied to sleep monitoring.

4.5.2.1 Electrode-based Advances

The Actioculographic Monitor of Sleep: Kayed et al. (1979) reported on a device

used to monitor sleep by recording eye movement (via a piezo-electric transducer placed

on the eyelid), submental EMG and body movement (via a sensor placed on the back

of the hand). Data for 8-9 hours of sleep over 6 subjects were presented showing a high

statistical correlation with wake, NREM and REM sleep using standard PSG recordings.

81



A Review of Sleep Measurement Technologies

Nightcap: A Home Based Sleep Monitoring System: Mamelak and Hobson

(1989) devised a method to monitor eye movements using a strain gauge placed on the

eyelid. A piezo-electric cartridge was used to monitor body movements. Movement

impinged upon a piezo-electric transducer generates a charge and through recording

these charges movement was recorded. Data from a total of 4 subjects (2 female), 15

nights in total (4 nights each, except for one subject) were collected for this study. The

system used threshold algorithms on eye movement and body movement data to estimate

sleep stages. The agreement rate of hand-scored records against PSG was 87.57% for

scoring wake, movement, NREM and REM sleep. Mean values for sleep onset and REM

latency were within 1.6 and 10.8 minutes, respectively, compared to PSG records.

Dry Electrodes - myZeo Personal Sleep Coach: Recently the Zeo Personal Sleep

Coach (http://www.myzeo.com/) was presented as a wireless dry headband technology

for automatic sleep monitoring (Blake et al. 2009; Fabregas et al. 2009; Shambroom

et al. 2009; Wright et al. 2008a; Wright et al. 2008b). A single channel is acquired

using a dry contact electrode sensor integrated into the forehead section of a headband.

This data is transmitted wirelessly to a base station which performs a neural network

classification to estimate sleep stages. The published results have shown good correlation

for TST between this system and two independent trained manual sleep scorers. Good

comparisons were found for sleep efficiency, number of awakenings and the estimation of

sleep stages. A validation study of this technology against manually scored PSG by two

trained scorers showed an agreement rate of 75.8% and 74.7% for all sleep stages, and

92.6% and 91.1% for sleep/wake discrimination (Shambroom et al., 2011). Inter-rater

reliability was 83.2% for all stages and 95.8% for sleep/wake discrimination (Shambroom

et al., 2011). This device shows promise as an ambulatory, easy to use sleep monitoring

system. This system is marketed towards nightly in-home use in order to improve sleep

quality. Although this device is in direct contact with the participant, it can easily

collect data from one person regardless of whether the bed is shared or not. A review

of the comfort of this device is required as anecdotal comments question its suitability.

4.5.2.2 Embedded and Textile Electrodes

ECG Recording in a Bed: An indirect method of recording heart rate variability

(HRV) was presented by Lim et al. (2007). By placing high-input-impedance active

electrodes on a mattress beneath a cotton bed sheet, it was shown that the R-peaks of

each heartbeat (a cyclic peak distinguishable from each heart beat) could be recorded.

This was compared to a direct contact ECG method and worked regardless of body
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position and location on the bed, although in-bed body movement proved problematic.

This embedded electrode approach was noted to be adequate for long-term use.

Monitoring Bed Temperature in Elderly in the Home: Bed temperature was

proposed as a method of characterising the sleep of an elderly population as a circadian

variation in temperature occurs (Lim et al., 2007). By placing a thermistor on top of the

mattress, below the waist of the participant, temperature was recorded. The resulting

signal was also shown to correlate well with bed movement. Two studies (one in a

nursing home and one in a participant’s domestic house) highlighted how time in bed

and movements (calculated using the derivative of bed temperature) can be measured.

However, it should be noted the practicality of this method is limited when the bed is

shared.

4.5.2.3 Ambulatory Physiological Monitoring

The development of an ambulatory physiological sleep monitoring technology would

be very advantageous as it would allow the continuous monitoring of sleep and wake

(using physiological signals as well as movement signals). The following section describes

various sleep monitoring technologies which can be considered to be ambulatory:

Ambulatory Cardiopulmonary Monitoring: Ambulatory monitoring of cardio-

vascular, respiratory, motor-behaviour and experiential responses has been developed in

the form of textile sensors embedded into the Lifeshirt
TM

(Vivometrics, Inc., Venture,

CA, USA) (Coyle, 2002). Plethymography sensors, a 3-lead, single channel ECG, a

2-axis accelerometer and an user-input device were embedded into a single comfortable

garment. The Lifeshirt
TM

has been suggested for use in sleep monitoring as well as

for other uses, but not for capturing ambulatory PSG (as this requires EEG, EOG and

EMG).

WP100 - Arousal Detection using Peripheral Arterial Tonometry, Oximetry

and Actigraphy: The WP100 (developed by Itamar Medical Ltd. Caesaria, Israel.) is

a wrist worn device which records actimetry and also uses finger probes to measure pulse

oximetry and Peripheral Arterial Tonometry (PAT) (Herscovici et al., 2007; Pillar et al.,

2003). PAT is an indicator of sympathetic tone variations found by measuring pulsatile

volume changes at the extremes of the body, in this case in the finger (Herscovici et al.,

2007). PAT and pulse rate were shown to be able to monitor arousals from sleep due

to an increased sympathetic activation and, hence, peripheral vasoconstriction during
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these times (Pillar et al., 2002). Additionally a high correlation between AASM-defined

arousals derived from the PSG and arousals estimated from the WP100 across a wide

range of values and subjects was reported (68 subjects; 7 healthy volunteers, 61 with

suspected OSAS). The WP100 reported a sensitivity of 0.80, specificity of 0.79 and an

area under the Receiver Operator Characteristic (ROC) of 0.87 in detecting patients

with more than 20 arousals per hour of sleep (Pillar et al., 2003). Herscovici et al.

(2007) reported on a technique to identify 30 second epochs of REM sleep using the

WP100 and reported a sensitivity of 78%, specificity of 92% and agreement of 89%. 16

features derived from PAT amplitudes and these PAT-derived metrics were aggregated

into a prediction function which used an optimised genetic algorithm to determine the

likelihood of REM sleep. A similar approach was taken to discriminate between light

and deep sleep which reported a sensitivity, specificity and accuracy of 66%, 89%, 82%

and 65%, 87%, 80% for training and validation data respectively (Bresler et al., 2008).

Using the actigraphic and PAT data, algorithms have been developed to separate wake,

light sleep, deep sleep and REM. The performance of the system to discriminate between

all sleep stages over a full night was validated with 227 subjects (38 normal, 189 OSAS)

and this reported a Cohen’s κ coefficient of 0.475 for all stages of sleep and 0.549 for

sleep/wake (Hedner et al., 2011).

4.5.3 Non-Contact Sleep Monitoring

Significant work is currently being carried out on developing an unobtrusive, non-contact

sleep monitoring system. This would be particularly suited to a pervasive, ambient,

distributed in-home healthcare monitoring system.

4.5.3.1 Optical Monitoring

Although optical monitoring (including video and non-video sources) is cheap, easily

deployable and completely non-contact, subjects often raise privacy concerns finding

the technology intrusive. Some technologies currently under investigation are described

below.

Optical Flow: A video based sleep monitoring technique was devised which extracted

apparent velocity of motion, or optical flow, over a sequence of images to observe chest or

blanket movement (Nakajima et al., 2001). Upon investigation of the optical flow metric

during quiescent periods, a respiration signal was evident despite the participant being

covered by a blanket. Large body movement could also be discriminated. Difficulties
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with non-uniform ambient light due to sunrise and other changes in ambient conditions

over the recording period were noted.

Difference Images: Using the differences between subsequent images in a video of

a person sleeping, a system was developed to track the movements of a cohort of 5

children (Okada et al., 2008). Movement tracking was performed at a sampling rate of

1Hz and was recorded with concomitant PSG. A decrease in motion was reported as

the participant progressed from wake to REM sleep to stage 1/stage 2 sleep to SWS. It

was also noted that changes in sleep stage were often accompanied by movement.

PIR Sensors: PIR motion detectors were used to monitor body movement in bed in 2

separate studies (Choi et al., 2006; Shin et al., 2003). In one study, a PIR motion detector

was placed at each of the four corners of a bed and it recorded movements at 100Hz

(Shin et al., 2003). A wavelet decomposition of each of the 4 signals produced multiple

coefficients which represented the movement recorded at different frequencies. The 8th

detail coefficients (representing a frequency range of 0.19-0.39Hz) were used as features to

train an adaptive neuro-fuzzy inference system which discriminated between movement

and non-movement epochs (Shin et al., 2003). A high detection rate for instantaneous

(entire) and partial body movements was reported over multiple subjects. Another

study used a single PIR sensor placed over the bed to discern periods of movement

and non-movement (and this was used to infer wake and sleep) (Choi et al., 2006). An

agreement rate between the proposed system and actigraphy of 92.2%, 89.7% and 95.4%

for three participants over 5, 3 and 4 nights, respectively, were reported. The ability

of the PIR to discern movement depends on the specification and manufacture of each

individual PIR. The authors also stated the PIR system was more adept at reporting

whole-body movement, being less intrusive, providing real-time monitoring and a high

time resolution. Disadvantages of the system noted were being less portable and not

offering 24 hour participant monitoring when compared to traditional actigraphy. Other

disadvantages of PIRs include thermal artifacts due to sunlight and heaters, reduction

in movement accuracy due to blankets and inter- and intra-PIR specification variations.

4.5.3.2 Smart Phone Application - Sleep Cycle Alarm Clock/Sleep On It

LexWare Labs Ltd., Goteborg, Sweden developed an iPhone, (Apple Inc., CA, USA)

application which monitors the participant’s sleep cycle and wakes them at the most

opportune time nearest their scheduled wake time (Drejak, 2010). This software, called

Sleep Cycle alarm clock (http://www.lexwarelabs.com/sleepcycle/), uses the in-

built accelerometers and microphone within the iPhone to measure body movements
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and estimate sleep state. A longitudinal objective comparison of estimated sleep metrics,

including the estimated time spent in 4 states (transition to sleep and REM, light sleep,

medium/deep sleep and deep sleep) throughout each night is presented to the user. There

has been no scientific validation of this application, although it uses similar approaches

to existing actigraphic technology. Variations due to individual mattress characteristics

which the system does not cater for has been noted by the developers (Drejak, 2010).

Med Help (2012) is another smart phone application which allows users to record their

sleep and wake times. It also allows recording of subjective scores of mood, sleep quality

and medication. Users are able to review their own sleeping patterns in order to increase

their understanding of their own sleeping patterns.

4.5.3.3 Bed Position Monitoring (Bed Sores)

Some research has taken place to quantify lack of movement in bed and to monitor the

development of resulting bed sores (also known as pressure ulcers) (Hsia et al., 2009;

Hnatiuc et al., 2009). Hnatiuc et al. (2009) proposed an intelligent mattress to monitor

periods of inactivity based on using fuzzy rules and using pressure amplitude data and

length of time between movements (Hnatiuc et al., 2009). Hsia et al. (2009) investigated

using a force sensing resistor (FSR) based sensor mattress to determine sleep postures

for the prevention of bed sores (Hnatiuc et al., 2009). For this, two different sensor

layouts were used; one used 16 FSR parallel strips and the other used a FSR matrix

with an increased number of sensors around the torso providing greater resolution and

FSR strips placed at the other end of the bed. The shape of the pressure distribution was

estimated using Kurtosis and Skewness. A second approach used advanced classification

methods to discern sleeping posture. Features extracted include using a PCA based

decomposition of pressure values, raw data and descriptive statistics such as mean, root

mean square, variance and standard deviations of pressure readings over a specific area.

An SVM classifier was used to train and test this estimation of sleeping posture. The

data was split between a training set (3 people) and a test set (5 people) for the two

different sensor layouts across 6 typical sleeping postures. The accuracy of the Kurtosis

and Skewness approach was 100% for sleeping postures parallel to the central line of

the bed; however this decreased to 81.43% with deviation from this central line. The

classification accuracy for the SVM method was 64.66% for the PCA decomposition of

the pressure data, 83.5% for the raw data and 77.66% when the descriptive statistics

were used. This method catered for sleeping postures other than those parallel to the

central line of the bed. The template matching method was shown to perform well. It

would be interesting to note how long was spent parallel and off parallel of the central

line of the bed.
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4.5.4 Non-Contact Vital Signs Monitoring

4.5.4.1 Ballistocardiorespirography

Ballistocardiography (BCG) is a relatively old technique to measure the movement of

the heart and blood flow in the body due to the body’s incidence on a non-invasive

sensor (Rosenblatt, 1957). Techniques for establishing the BCG have used direct and

indirect contact methods including lying directly on a suspended frame (Eblen-Zajjur,

2003), pressure sensors under the legs of a table or bed (also known as load cells) (Adami

et al., 2009a,b) and pressure sensors placed within, over and under the mattress (Behan

et al., 2008a; Seeton and Adler, 2008; Walsh et al., 2008; Watanabe et al., 2005); some

of these are detailed further below. A generic standard BCG for a person under 50

years of age, and its ECG counterpart, can be found in (Rosenblatt, 1957). However an

abnormal BCG is often found in a significantly large population of individuals over 50

years of age who have no cardiovascular complaints (Rosenblatt, 1957). This limits the

widescale deployment and acceptance of BCG devices. Generally, the respiration signal is

apparent in the BCG and is often considered an artefact. The reliable extraction of both

respiration and heartbeat, ballistocardiorespirography (BCRG), would be advantageous

for sleep monitoring, particularly if the sensor was an ambient technology collecting data

in a seamless and unobtrusive manner. The following section describes recent advances

in movement-based physiological signal estimation including BCG devices. Some work is

also described which uses these derived metrics to infer sleep information such as sleep

quality, restlessness, number and duration of awakenings, total sleep time and sleep

architecture.

Embedded Electromagnetic Coil: The placement of a single coil electromagnetic

sensor embedded into a mattress as a method of measuring respiration was proposed as a

possible non-contact sleep monitoring solution (Seeton and Adler, 2008). By monitoring

changes in the conductive substrate within the electromagnetic field of the coil (for

example, the lungs) respiration could be accounted for. A single subject was used to

investigate the efficacy of the respiratory signal extracted using the system against a

pneumotachograph. A theoretical proof of the system was also presented (Seeton and

Adler, 2008).

Force Sensitive Resistors: A force sensitive resistor (FSR) is a thin film sensor

whose resistance decreases as pressure is applied (Van Der Loos et al., 2003). Body

movement can be measured by monitoring the change in resistance of a distributed grid
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of sensors spread throughout a bed. Two FSR sleep monitoring solutions are presented

below.

120 FSRs were incorporated into a single textile sheet, placed on top of the mattress,

which records movement and temperature impinged upon a bed (Van Der Loos et al.,

2003). Vitals signs monitoring and sleep quality assessment was also acheived. The

sensors were distributed in a grid-like fashion with a greater density around the torso

of the subject. The sensor was sampled at 100Hz. Wavelet decomposition was used to

estimate heart and breathing rates to an accuracy of 0.5 beats per minute averaged over a

moving window of length 25 seconds with a 5 second overlap. A restlessness index during

sleep was also derived over the 25 second window. This was calculated by integrating

the absolute change in the estimated point position of the body. An adjustable bed

frame was built to correct for poor sleep posture and to relieve sleep problems by tilting

the subject over (Van Der Loos et al., 2003). Respiration and temperature were shown,

using diagrams, to be estimated reliably however heart rate was not.

Another technology was developed using 210 FSRs (sampled at 20 Hz) which recorded

body movement, articular (or joint) motion, respiration and heart rate and also inferred

sleeping posture (Harada et al., 2002). Templates for different postures were used to

estimate the subject’s posture. Filtering the pressure signal within the respiration and

heart rate bands respectively allows for both signals to be extracted. The respiration

signal was extracted using time-based methods while a frequency based method was

used to extract the heart rate.

For both of these studies, figures were used to show the ability of the system in extracting

these physiological signals. However numerical results that would allow quantification

of the reliability of this system for extracting body movement and physiological signals

over multiple subjects and postures were not provided.

Air Mattress: Multiple sensors for reliable estimation of physiological signals during

sleep using a thin air-filled pneumatic mattress placed on top of the traditional mattress

have been developed (Carlson et al., 1999; Chee et al., 2005; Chow et al., 2000; Shin

et al., 2010; Watanabe et al., 2005).

Carlson et al. (1999) used a peak-valley detection method to derive inter-breath interval

and breath amplitude from the pulsatile pneumatic signal imparted on an air mattress.

In this study data was recorded from 11 subjects (5 male) and compared to a capno-

graph (a measurement of carbon dioxide at the nose used to record breathing patterns).

Overall 11 supine, 11 side-lying and 11 apneoa simulations were compared to visually
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observed chest movements. The frequency of the breathing cycles for the proposed sys-

tem and the visual observation correlated highly (r=0.99). All simulated apneoas had a

standard deviation of inter-breath interval of greater than 3 seconds. Body movements,

denoted by excessive breath amplitude and frequency, were detected more accurately

than using wrist actigraphy (proposed system: 99% of events, Cohen’s κ = 0.90 vs.

Wrist actigraphy: 50% Cohen’s κ = 0.70).

A system monitoring pressure changes impinged on two air cells, located under the

abdomen and thorax connected to a balancing tube, within an air-mattress consisting of

horizontal air cells was developed to assess sleep (Chee et al., 2005; Shin et al., 2010). The

pressure signal was recorded using separate pressure sensing tubes connected between

the balancing tubes. A mechanical human body simulator and 1 human subject was

first developed to validate the operation of this system (Chee et al., 2005). ECG and

respiration (measured by nasal air flow) were compared to the filtered and differentiated

air-mattress pressure signals. A visual comparison of the ability of the system to measure

cardiac and respiratory signals was shown; however this does not provide a detailed

description of the efficacy of this sensor. A future clinical study of this system over a

large cohort would provide quantitative statistics needed for the systematic validation of

the sensor. It is noted that during high amplitude body movement the reliable extraction

of physiological signals becomes extremely difficult; however this movement information

itself is deemed an important sleep metric in the form of a movement index.

Shin et al. (2010) furthered this work by reporting on a population of 13 awake par-

ticipants during the day. Respiratory effort, oronasal airflow, ECG and activity were

recorded concomitantly with the air-mattress system. Autocorrelation algorithms were

used to estimate respiration and heartbeat. The total mean difference in beat-to-beat

heart rate was 0.68 beats/minute for all subjects and the average of the mean error

reported was less than one percent. A Bland-Altman analysis showed that the mean

difference was almost zero and that 95% of the heart rate differences were between -1.22

and 1.22 beats/minute. The mean difference of the breath-to-breath respiration rate

was 0.5 breaths/minute with a relative error of 2.85%. There was an average correla-

tion of 0.92 between the chest belt and the proposed method of respiration estimation.

The system also showed good results for the detection of simulated snoring, simulated

apnoeas and simulated body movements; reporting a Cohen’s Kappa value of κ of 0.93,

0.85 and 0.92 respectively. A home deployment of the system was also performed on

one subject for seven days. A restlessness index was derived using the percentage of the

epoch for which physiological information could not be detected.

Chow et al. (2000) developed an air-mattress respiratory monitoring system by exam-

ining pressure variations on 4 cylindrical air cells. 4 male subjects were recruited for
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this study. Over 90% sensitivity and accuracy values were reported for the detection of

hypopneas against PSG and respiratory inductance band (RIP) measurements (speci-

ficity values were not reported). A low accuracy was reported for the detection of body

movement derived from the RIP measurements. However a possible explanation for this

would be the detection of non-core body movements (such as feet movements) for which

further validation is warranted. The mean error between breathing rates from the RIP

bands and the proposed system was noted to be very small (less than 0.2 breaths per

minute).

Watanabe et al. (2005) have developed a sensitive and robust air-mattress which has been

shown to extract heartbeat, respiration, snoring and body movement signals reliably.

The extracted pressure signal was filtered according to the frequency ranges of heart

rate, respiration rate and snoring. An analysis of the power spectrum within these

bands was used to estimate heart and respiration rate over the epoch. Further research

involved the estimation of sleep stages using bio-rhythm metrics derived from the heart

rate measurement and also body movements (Watanabe et al., 2005). A sleep stage

transition equation tracking the relationship of these metrics to the progression of sleep

stages throughout the night was the basis for the sleep stage estimator developed. A

mean percentage agreement for estimating sleep stages between the proposed system

and an automated sleep scoring method (using training data; 5 subjects over a total of

15 nights) was 42.8%, 82.6%, 70.5% and 38.3% for all stages, NREM sleep, wake and

REM sleep respectively. The results for test data (6 subjects over a total of 12 nights) in

discriminating sleep stages had a mean percentage agreement of 44%, 83.6%, 44% and

47.5% respectively for all stages, NREM sleep, wake and REM sleep. Other sleep metrics

such as sleep latency and total sleep time were calculated using the estimated sleep

stage results with low mean difference compared to the R&K sleep scores produced by

the automated sleep scoring system. Sensitivity, specificity or other similar performance

metrics were not given. Although the accuracy of the system over all stages is low (42.8%

on training data, 44% on test data), this system is a non-contact alternative to sleep

monitoring and as such provides valuable statistics without impinging on the subject.

Pneumatic Tubes: Pneumatic tubes placed across the width of the bed, over the

mattress, have been shown to reliably estimate physiological signals and infer various

sleep metrics in both clinical (Chen et al. 2005; Mack et al. 2009a; Mack et al. 2009b;

Zhu et al. 2005; Zhu et al. 2006) and real-world settings (Chen et al., 2008; Rantz et al.,

2009; Zhu et al., 2008). Filtered pressure signals from two pneumatic tubes, sampled at

150Hz, were compared to ECG, oximetry and RIP band data (Mack et al. 2009a; Mack

et al. 2009b). Data were collected from 20 training and 20 test subjects in bed (32 males;

evenly split between the training and test group). By isolating characteristic features

90



A Review of Sleep Measurement Technologies

of the BCG (in a similar manner to the detection of the QRS characteristics of the

ECG)and using both a quasi-template matching method and a peak detection method on

the differentiated pressure signal from both pneumatic tubes, the heart rate was detected

to within 2.72 beats per minute of the direct measurement of ECG. A peak and trough

detection method was used to detect the breathing rate to within 2.1 breaths per minute

of that obtained using an RIP band. A refractory period and a comparison between the

two pneumatic tubes were used to correct for outliers. This system was subsequently

deployed into a nursing home for longitudinal analysis of sleep and physiological metrics

(Rantz et al., 2009). Several case studies on subjects within this community have shown

the reliability, efficacy and the value in this technology by correlating deviations in the

produced metrics with serious life events (Rantz et al., 2009). This system was shown

to outperform actigraphy in capturing movement information (Cohen’s kappa κ = 0.478

and 0.344 for the proposed system and for wrist actigraphy respectively) when compared

to PSG (Mack et al., 2009b) .

A similar system has been developed using two pneumatic tubes, sampled at 100Hz,

placed under the pillow of the subject to measure physiological data from the near and

far neck occiput regions (Chen et al. 2005; Chen et al. 2008; Zhu et al. 2006; Zhu et al.

2005; Zhu et al. 2008). A wavelet decomposition of the pressure signals at specific

frequencies of interest has been shown to detect heart and breathing rate reliably. An

adapted pulse peak pursuit method refined from the R-wave detection algorithm for

ECG devised by Pan and Tompkins (1985) was employed. A threshold crossing method

and refractory period were used to detect respiration. A sensitivity of 99.17% and

positive predictivity of 98.53% was found for pulse detection and a sensitivity of 95.63%

and positive predictivity of 95.42% was found for respiratory rate detection (Zhu et al.,

2006). This sensor was deployed into a real-world setting for 6 months on one female

subject (Chen et al., 2008; Zhu et al., 2008). The system was modified to transfer

summarised data over the internet to a remote location which assessed the suitability of

the system for long term remote monitoring.

A significant improvement in physiological data from pillow pressure signal data was

achieved using Independent Component Analysis (ICA) and filtering (Uchida et al.,

2003). Pulsatile pressure signal data from a pillow was recorded from 6 volunteers for

10 minutes each in addition to PPG data from the finger and respiration data using a

thermistor. The ICA method decreased beat detection error from 5.83% to 1.94% and

breath detection error from 4.69% to 0.29% (Uchida et al., 2003).

Load Cells Sleep monitoring technologies in the form of pressure sensors placed un-

derneath the legs of a bed, known as load cells, have been used to track movement in
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the bed (Adami et al. 2005; Adami et al. 2009a; Adami et al. 2009b; Brink et al. 2006;

Choi et al. 2006). A similar approach to that used in the analysis of the pressure signals

in the extraction of BCG was applied to this data to discern heart rate, respiration and

body measurements. This section describes some of this work:

Load cell pressure sensors for movement classification was used in several studies (Adami

et al. 2005; Adami et al. 2009a; Adami et al. 2009b). Movements were classified in

experimental settings on 15 subjects (7 male) using difference images from a web-cam

and a template matching approach which used coloured cloths placed on the limbs of

the participants as the gold standard in discriminating between posture shifts (Adami

et al., 2009b). Mean squared differences in pressure readings across the 4 load cells

and scaling coefficients (gauging motion relative to the centre of the bed) were used

as inputs to an optimally tuned likelihood ratio estimation model for discrimination

between movement and no movement. The subjects were requested to shift position to

a randomly selected pre-defined posture at specified time intervals. The accuracy of this

system was evaluated using the Equal Error Rate (EER). The EER is the operating

point where the false alarm rate is equal to the misdetection rate. This system reported

an EER of 3.22%. It must also be noted that data were recorded when the subjects were

awake in bed.

A cantilever type load cell composed of a top and bottom aluminium plate with a

reflex light barrier in between has been shown to reliably extract heart, respiration

and activity information (Brink et al., 2006). The distance between the two plates

decreases as a downward force is applied to the upper plate. The width between these

plates is measured using a reflex light barrier at a sampling rate of 100Hz. The BCG

interbeat interval is calculated by counting the difference between subsequent minima

in windowed pressure signals from each load cell. A similar technique is used to extract

respiration rate. Larger amplitude movements are defined as movement. A preliminary

simulation of cardiac movements was performed to characterise the sensor. For this a

permanent magnet shaker and 33 KG weight was used at a range of different frequencies.

This magnet shaker was tuned to a frequency which was found to be similar to a beating

heart and the proposed system was reported to agree with these simulated cardioballistic

movements to within 0.2 beats per minute over different mattresses and bed types.

Subsequent validation experiments across different subjects and bed, frame and mattress

types as well as sleeping postures were performed. In the first validation experiment

data from 4 subjects across 72 combinations of mattress, subjects, frames and type

of single bed were recorded (Brink et al., 2006). The extracted BCG heartbeat was

found to compare well against ECG and it reported a mean difference of −0.035 Beats

Per Minute (BPM) with a Standard Deviation (SD) of 0.89 BPM. A second validation

experiment across 24 subjects (12 male) over 3 sleeping postures found a mean difference
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of 0.33 BPM (SD 0.94 BPM); a mean difference of 0.1 BPM, 0.23 BPM and 0.65 BPM

and an SD of 0.75 BPM, 1.17 BPM and 0.8 BPM was found for supine, sideways and

prone sleeping postures respectively. The extraction of respiration was validated in a

final experiment where 14 people (7 male) in the same 3 sleeping postures as above were

compared against abdominal strain gauges. A mean difference of 0.03 breaths per minute

with a SD of 0.33 breaths per minute was found. In a comparison of movement detection

with wrist actigraphy (Actiwatch, Cambridge Neurotech Ltd., UK), an agreement rate

of 84% was found.

A load cell utilizing a strain gauge was compared against PSG and also actigraphically

defined sleep/wake (Choi et al., 2006). 10 subjects (6 male) were recruited for this

study, PSG, wrist actigraphy (ActiWatch R©, Mini Mitter, Co. Inc., USA.) and load cell

data was collected over an 8 hour period. The load cell data was high pass filtered and

movement intensity and duration values were collected and averaged over all sensors.

A thresholding algorithm is used to estimate movement using the load cell data. If

movement was deemed to be present for longer than 3 seconds within an epoch, the

epoch was scored as wake. Epoch-by-epoch sleep/wake agreement rates of 95.2%, 92.9%

and 94.3% and Cohen’s Kappa κ of 0.61, 0.4 and 0.44 were found for PSG against load

cells, PSG against wrist actigraphy and wrist actigraphy against load cells respectively.

Sleep was classified into either SWS or non-SWS (92.5% epoch-by-epoch agreement rate,

Cohen’s κ 0.62) using features extracted from cardiac activity as measured by a load-

cell-installed bed (Choi et al., 2009). These features were heartbeat data and heart rate

variability data. Distinguishing between the stages within non-SWS (light sleep and

REM) remains to be done.

Static Charge Sensitive Bed (SCSB) The SCSB is composed of two sheets of

material, each with different dielectric constants, which generate a charge when rubbed

against each other (Jansen et al., 1991). An antenna sensitive to electric charge is

embedded within the SCSB to gauge the movement of these two sheets of material. The

SCSB can be placed within, over or under the mattress and measures body movement

arising from respiration, heart beat, posture change and bed entry/exit. The device

is commonly insulated to avoid external interference. The device does not need to be

directly powered as static charges are used to gauge the movement. This device is not

a grid and only the amount of movement can be measured; the direction of movement

cannot. However a modified version using a matrix of multiple SCSB plates has been

developed which enables the measurement of distributed pressure throughout the bed

(Kortelainen and Virkkala, 2007). Descriptions of various SCSB and modified SCSB

sleep monitoring devices are given below:
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One study used a template matching scheme to extract BCG information and a piece-

wise linear approximation of the respiration signal from the SCSB (Jansen et al., 1991).

ECG, abdominal strain gauge and SCSB data, sampled at 200Hz, were recorded from 8

subjects. A segment of 8 minutes data was randomly chosen to calculate the accuracy of

the sensor. The first ten BCG complexes were isolated and averaged to form a template.

This was then cross correlated with the SCSB data over windows of increasing size with

a refractory period of 0.3 seconds and a max window length of 1.5 seconds. BCG peaks

were found using a peak detection method. If no acceptable apex of the BCG is found

(due to both the oscillatory nature of the BCG and noise) the BCG peak is estimated to

occur at a median value of the previous 25 BCG peaks. A t-test of the heart rate derived

from the SCSB and from an ECG showed that there was a significant difference in only

5 of the 64 cases. Large body movement was associated to 4 of the 5 outlying cases due

to a saturated (and thus indistinguishable) BCG, though this was not confirmed during

recording, either visually or experimentally (for example, by EMG). A correlation (r =

0.76, p < 0.05) was found when comparing the heart rate between the SCSB and ECG

over 1 minute intervals. 49 of the 64 cases showed a median heart rate difference less

than or equal to 1 BPM. This was larger than 5 in 5 cases. Further research investigated

the ability of this SCSB technology to predict sleep stages (Jansen and Shankar, 1993).

A classification rate of between 52% and 75% was reported for the 5 R&K sleep stages

and also for wake. This improved to between 78% and 89% for wake, NREM and REM,

and 86% - 98% for sleep/wake classification.

Electromagnetic Film (EMFi) The EMFi sensor is an electret foil sensor placed on

top of the mattress which can track pressure changes over time and can be considered a

form of a SCSB. Charges are generated on the surfaces of the sensor as force is applied to

the parallel permanently polarised layers. This allows for the amount of movement to be

monitored; however similar to the SCSB the direction of movement cannot be measured.

The EMFi sensor has been deployed in experimental (Akhbardeh et al., 2005; Alametsa

et al., 2008), clinical (Aubert and Brauers, 2008) and real-world settings (Merilahti et al.,

2007).

The sensor has been investigated as a clinical tool to assess heart conditions (Akhbardeh

et al., 2005). The BCG was extracted from the EMFi-film sensor and correlated with

the visual Starr classification of BCG states (which classifies BCG as either normal,

slightly abnormal, markedly abnormal or extremely abnormal) (Akhbardeh et al., 2005).

A wavelet decomposition of this EMFi pressure signal and a novel transform method,

known as the AliMap transform, were used to distinguish healthy and unhealthy classes

from the BCG recordings of 18 subjects. However, the method was not able to recognise

heart conditions from two of the subjects.
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The FFT was applied to extract the RR interval from the pressure signal in a multi-

channel EMFi film sensor (Kortelainen and Virkkala, 2007). The Matsense mattress

consisted of 160 EMFi sensors distributed in a grid and was sampled at 50Hz. 15 sets

of recordings were taken from 6 male subjects. A time based pulse detection method

using edge detection was found to have an average error of 2% in comparison to the

RR interval from the ECG. Using an averaging method with a period of more than

10 seconds improved the error in the average heart rate to less than 1%. By applying

an FFT based deconvolution method, known as cepstrum (Rosenblatt, 1963), using a

time window which contained exactly two consecutive heart beats (determined using

the time based pulse detection method) the RR interval error was 0.4%. This method

excluded periods when movement occurred as the reliability of the RR interval was re-

duced dramatically. This corresponded to 12% of the total sleep time for this data set.

This system was further improved through the validation of a EMFi-based system which

distinguishes between wake/REM/acNREM using a HMM classifier (Kortelainen et al.,

2010). The movement features were used to detect wake periods while the cardiac data

was used as inputs to the classifier. An accuracy of 79% (± 10%; where ± relates to 1

standard deviation) and a Cohen’s κ of 0.44 (± 0.19) were reported.

The EMFi has been deployed in a hospital setting and data recorded over 102 nights

on 58 participants (Aubert and Brauers, 2008). This included 11 healthy subjects (7

male; over 53 nights), 19 sleep apnea (17 male; over 21 nights), 6 insomnia (3 male;

6 nights) and 22 participants with sleep disorders (13 male; 22 nights). Data from an

ECG (sampled at 250 Hz), a thorax strain gauge (250 Hz) and the EMFi (128 Hz) was

recorded. A peak and trough detection method was used to extract respiration data

from the low pass filtered pressure signal. The estimate of the RR interval was found

using the autocorrelation function. The error in the breathing rate was only reported

for the healthy and insomnia participant groups (an error of 0.47 and 1.17 breaths per

minute respectively). The average error for heart rate was 1.25 BPM. This consisted

of 1.17 BPM, 1.57 BPM, 0.67 BPM and 1.27 BPM for healthy, sleep apnoea, insomnia

and sleep disorder groups respectively.

A comparison of BCG recorded using an EMFi sensor was compared to both ECG and

carotid pulse for sitting and horizontal (including prone, supine and side-lying) postures

(Alametsa et al., 2008). The carotid pulse is the pressure signal resulting from the heart

beat apparent at the carotid artery at the surface of the neck. Data was recorded from

7 subjects for each of the positions. Various medical metrics involving amplitude and

duration scores derived from the ECG, BCG and carotid pulse data were recorded and

compared to the EMFi. The successful use of the EMFi in extracting the BCG validates

its clinical use. However, an automated method for extracting these metrics is required

to provide comparative statistics.
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Fibre Optic Solutions: Movement impinged on a multi-modal fibre optic perturbs

light passing through the fibre optic by different amounts (Spillman et al., 2004). This

principle was used to detect respiration, heart rate and body movements when the fibre

optic was woven into the bed (Spillman et al., 2004). Data was recorded from one

subject over 4 postures (supine, prone, left fetal and right fetal) and a fourier transform

of the pressure signal showed the existence of signals in the respiration and heartbeat

range. However no comparison was made to a gold standard measure of heart rate or

respiration rate.

Another fibre optic technology used as a sleep monitor is the Fibre Bragg Grating (FBG)

sensor which is again sensitive to strain caused by varying amounts of pressure applied

(Foo Siang Fook et al., 2008). The surface of the fibre is grated in certain places and

this affects the transmission of light at that point in the fibre optic as movement occurs.

For the system, 12 FBG sensors were distributed evenly throughout the bed. A trace

of the respiration was reported using the proposed system in order to demonstrate its

sensitivity. A Fourier transform of the band-passed filtered signals displayed a peak

relating to the observed respiration. No comparison against gold standards were made.

4.5.4.2 Radio Frequency-Based Solutions:

A non-contact biomotion sensor in which Doppler radar is used for the extraction of

movement and the estimation of breathing and heart rates has been developed by Bian-

caMed (NovaUCD, Dublin 4, Ireland) (de Chazal et al., 2008; Fox et al., 2007; Zaffaroni

et al., 2009), Lubecke and Boric-Lubecke (2009), and Choi and Kim (2009).

The BiancaMed system was developed using Doppler radar to measure movements by a

human body. In a study of 20 individuals (9 healthy, 6 severe sleep apnoea, 2 moderate

sleep apnoea, 1 chronic obstructive pulmonary disease, 1 childhood obesity, 1 insomnia;

8 of which were males), high sensitivity and specificity values (79% and 75% respectively)

of sleep/wake detection were reported when compared to wrist actigraphy (Fox et al.,

2007). It was noted that the lower specificity could be due to the proposed sensor

capturing entire body motion and the gold standard employed (wrist actigraphy) only

reporting wrist movements (Fox et al., 2007). A signal considered to contain a strong

respiratory component was presented, however no gold standard statistical comparison

was made. Breathing frequencies were attenuated using a 7th order Butterworth filter.

In a later study, large movements, bodily movements and, in periods of quiescence,

the amplitude and frequency of respiration were used as features for estimating the

sleep/wake state of 14 participants (11 male) (de Chazal et al., 2008). The overall

accuracy of the system in classifying sleep/wake state was 82%. When broken down
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into classifying each sleep stage this ranged from 61% to 98%. A visual comparison of

the respiratory effort signals captured using a RIP sensor and the proposed biomotion

sensor was also presented. More recent work describes the performance of this sensor

in discriminating sleep and wake (using an algorithm built upon an LDA classifier) in

113 subjects being assessed for sleep disordered breathing (De Chazal et al., 2011). An

overall per subject accuracy of 78% (Cohen’s kappa of 0.38) was reported, however

higher AHI (≥ 15 apnoeaic events per hour) was found to reduce performance (74.8%

vs. 81.3% in subjects with higher vs. lower AHI).Overall, a sensitivity of 87.3% and a

specificity of 50.1% was reported. The system also overestimated SE and TST.

The biomotion sensor was also proposed as an innovative device to estimate the apnoea-

hypopnoea index (AHI) (Zaffaroni et al., 2009); as discussed later in Section 4.5.6.

Other researchers have also proposed a similar Doppler radar based non-contact sleep

monitor (Lubecke and Boric-Lubecke, 2009). For this system, a visual comparison of

extracted pulse rate against finger pulse rate, respiration and body movement were

provided; however no gold standard statistical comparison was made.

Another RF sensor using an electromagnetic wave for real-time monitoring of heartbeat

and respiration rate was realised using peak detection of the power spectral density of

the signal (Choi and Kim, 2009). The results were compared against a fingertip PPG

sensor. 100% accuracy was reported for this technology however no subject details were

given. An evaluation using several subjects over a long period would provide more robust

results.

4.5.5 Multi-Modal Solutions:

A wellness monitoring system was developed by researchers at VTT Technical Research

Centre of Finland, Finland for older adults in out-hospital conditions for the monitoring

of physiological and psychosocial variables (Korhonen et al., 2001). RR interval, activ-

ity level, blood pressure, weight, temperature, respiration, ballistocardiography (using

an SCSB), movements, sleep stages (using the SCSB) and a behavioural diary were

recorded. This system was deployed on 2 participants (1 male) for 10 weeks and 14

days respectively. This system was concluded to be suitable for continuous monitoring

of several variables over weeks and months.

In a study by Merilahti et al. (2007), subjective and objective sleep data were recorded

using sleep logs, the Vivago WristCare R© (as discussed in Section 4.4.4.4) and an EMFi

bed occupancy sensor (Emfit Ltd., Finland, http://www.emfit.com/) (as discussed in

Section 4.5.4.1) for 17 participants (3 male) over an average of 58 nights each (Merilahti
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et al., 2007). A visual sleep analysis of all data was taken as the gold standard for

this data set. A high correlation was found between the objective and subjective sleep

metrics; however it was noted that long term data collection for sleep monitoring should

include bed time and illumination information as previously suggested in the literature

(Sadeh et al., 1995).

Movement captured using a webcam (sampled once every 6 seconds) and from a PIR were

combined with spectral Heart Rate Variability (HRV) data to form a sleep monitoring

system by Peng et al. (2007). This was compared to wrist activity and subjective sleep

quality data from a PSQI questionnaire. Data was collected from 1 healthy female

participant over 13 days (split into 7 days training, 3 days testing, 3 days validation).

An SVM classifier and both pre- and post-processing fusion methods were employed to

estimate sleep state. It was not clear how the determination of true sleep state was

achieved; although it was assumed sleep state was scored using wrist actigraphy. High

detection accuracy was found for the PIR and video sensor, 0.92 and 0.89 respectively.

Small differences were found in sleep efficiency between the sleep logs, actigraphy and

the proposed system. The machine learning techniques applied in this scenario (SVMs)

were shown to achieve better results than a regression model.

4.5.6 Sleep Apnoea Monitoring

Respiration monitoring through ECG analysis: Data derived from the ECG has

been shown to provide very high accuracy in detecting OSAS (de Chazal et al. 2009;

Dorfman Furman et al. 2005; Khandoker et al. 2009b; Khandoker et al. 2009c; Khandoker

et al. 2009d; Khandoker et al. 2009a; Mendez et al. 2009; Mendez et al. 2010).

In a study by Dorfman Furman et al. (2005), three methods for ECG derived respiration

(EDR) during sleep (from 24 subjects; 15 male) were compared to nasal air flow and

abdomen and thorax based modalities for respiration estimation. The three methods

estimated respiration using R wave amplitude, R wave duration and area under each QRS

complex. The frequency of these signals were shown to be related to true respiration

rate; however the amplitude of the respiration was not comparable. The correlation

between the extracted respiration signal was above 0.85 for all metrics against each

reference measure of respiration. The peak-to-peak values of the estimated respiration

signals decreased during both central and obstructive apnoeas, although no automated

detection of these apnoeas was attempted.

Another study investigated applying autoregressive models to RR interval and QRS

area time series data in order to screen for sleep apnoea (Mendez et al. 2009; Mendez

et al. 2010). Features derived included QRS area phase space (modulus and phase
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from these signals), power spectral density at 0.003-0.04Hz, 0.04-0.15Hz and 0.15-0.5Hz,

coherence, kurtosis and skewness for both time series. ECG data from 50 sets of PSG

sleep data were taken from the Physionet database (Goldberger et al., 2000) and scored

for apnoeas and hypopneoas in this study. The best feature subset was found using

Sequential Forward Selection (SFS) and by selecting a optimised kNN-model. Leave-

one-out cross validation was employed to generate accuracy, sensitivity and specificity

values. An ANN model was compared against the kNN model. 25 data sets (50%) were

used to train the kNN and ANN classifier. This contained 15 apneoic, 8 normal and

2 borderline subjects. Results were reported using the validation set which contained

13 apneoic, 4 borderline and 8 control subjects. Using 10 features the kNN reached an

accuracy of 88%, a sensitivity of 85% and a specificity of 90% in detecting individual

apnoeas. The ANN reached an accuracy of 88%, a sensitivity of 89% and a specificity

of 86%. The classifiers are able to separate completely the normal subjects from the

apnoeic subjects. Testing was performed on a separate database of 8 recordings and

completely separated the normal subjects from OSAS individuals.

Other advanced nonlinear classification methods, using support vector machines, for the

detection of OSAS from ECG data was shown to have a high accuracy using RR interval

and EDR (using R wave amplitude) features (Khandoker et al. 2009b; Khandoker et al.

2009c; Khandoker et al. 2009d; Khandoker et al. 2009a). In comparison to the use of

autoregressive models elsewhere (Mendez et al. 2010; Mendez et al. 2009), a 14-level

wavelet decomposition of RR interval and EDR data were used as features in this sys-

tem (Khandoker et al., 2009a). SFS was used to select the best candidate features and

reported a 100% accuracy, 100% sensitivity, 100% specificity, 100% area under the ROC

curve and 100% Cohen’s κ on training data (83 subjects) for an SVM classifier in dis-

criminating OSAS positive and negative subjects. The best classifier used 1 RR interval

feature and 3 EDR features and a polynomial kernel of degree 3 with a regularisation

parameter of 0.8. An accuracy of 92.85% and a Cohen’s κ of 0.85 was reported on test

data from 42 independent subjects. The posterior probabilities estimates from the SVM

was suggested as an indicator of apnoea-hypopnoeas index (AHI).

Pressure Based Respiration Monitoring: A pneumatic sleep monitoring system

capable of reliably estimating respiration (Mack et al. 2009a; Mack et al. 2009b) has

been previously discussed in Section 4.5.4.1. Further work investigated 40 Healthy sub-

jects (32 male) in order to assess the efficacy of this system in detecting sleep apnoeas

and arousals (Mack et al., 2006). Apnoeas were detected when the amplitude of the

breathing signal was reduced below 75% or when there were gaps in the breathing sig-

nal with minimal postural movement. No discrimination was made between apnoeas
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and hypopnoeas. A sensitivity of 89.2% and a specificity of 94.6% was reported for the

automated detection of sleep apnoeas (Mack et al., 2006).

Load cells were used to discriminate Sleep Behaviour Disorder (SBD) from normal

breathing with a sensitivity of 0.77 and a specificity of 0.91 (Beattie et al., 2009). 150

instances of apnoeas, 150 instances of hypopneas and 150 instances of normal breathing

(lasting 20 seconds) from 4 subjects was used in this analysis. 8 features were extracted

from each instance including: the variance over all samples, normalised average power

of the signal in the 0-0.5Hz, 0.6-0.75Hz and 0.75-5Hz frequency bands, spectral entropy,

and 3 features from the signal bandpass filtered in the respiration range (0.2-0.33Hz)

namely, variance, range and respiratory amplitude (that is, the range of the median am-

plitude of overlapping windows of data). This system was developed using a Bayesian

classifier and validated using 10-fold cross validation. The sensitivity of the system for

hypopnoea/obstructive apnoea was 0.65 and 0.90, for central apnoea 0.82 and 0.92 and

for normal breathing 0.84 and 0.84. The Sleep Disordered Breathing (SDB) breathing

was also discriminated with a sensitivity of 0.77 and specificity of 0.91. A sensitivity of

0.91 and specificity of 0.77 was reported for discerning normal breathing segments.

Ambulatory SpO2 Monitoring: Real-time detection of apnoeas using a pulse oxime-

try (saturation of peripheral oxygen; SpO2) signal was implemented on a Personal Digital

Assistant (PDA) and an accuracy of 93% and an ROC area-under-the-curve of 98.5%

was reported (Burgos et al., 2009). 70 sleep recordings, annotated for SDB and includ-

ing a blood oxygen saturation signal from which SpO2 data was derived, of duration

approximately 8 hours each were used in this analysis. The data was split into 66%

training data and 33% test data. Features extracted from the SpO2 signal included :

the number of 2%, 3% and 4% dips from a moving baseline and the length of time the

saturation decreases below 95%, 90%, 85%, 80% and 70% per segment of SpO2 data. 10

tests were performed using 10 classification methods (within the Weka machine learning

tool (Witten et al., 1999)) on 10 sets of different training data. The area under the

ROC curve, the accuracy and the processing time for each method was used to select

the optimal classifier. This was chosen by examining the contribution of each feature,

the number of decision trees and reducing the cost matrix (for example, minimising the

number of false positives). An area under the curve of 99.1%, sensitivity of 96% and

specificity of 96% was reported for the training data. An area under the curve of 98.5%,

sensitivity of 92.3%, specificity of 93.5% and accuracy of 93% was reported for the test

data. A real-time implementation of the detection of apnoeas was developed using a

PDA as well as the development of a system which can transfer pulse rate and SpO2

data over a telecommunications network to a medical professional (Burgos et al., 2009).

100



A Review of Sleep Measurement Technologies

Inspiratory Flow Monitoring: Morgenstern et al. (2008) described an automatic

non-invasive method of breath classification using a nasal canula. Breath contour data

from 11 subjects, trained using an SVM and adaboost classifier, against gold standard

measures, provided high sensitivity (0.92) and specificity (0.89) results in assessing in-

spiratory flow limitation during sleep.

Multi-Modal Solutions RR interval, EDR (QRS area) and pulse oximetry (satura-

tion of peripheral oxygen; SpO2) data were used to jointly discriminate normal breathing

from SDB (de Chazal et al., 2009). The SDB consisted of 6 classes: obstructive, central

and mixed conditions of both apnoeas and hypopnoeas. A total of 72 ECG features were

used including the Power Spectral Density (PSD) of RR interval data (32 features), the

PSD of EDR data (32 features), 5 serial correlation coefficients relating to a delay of 1-5

RR intervals, standard deviation of the RR interval data, mean of the RR interval data.

7 additional SpO2 features were also used: mean SpO2, minimum SpO2, the number

of samples less than 92%, 5-95% spread of SpO2, mean of the absolute differences of

SpO2, the number of samples of (SpO2 − baseline(SpO2)) < 3% and number of sam-

ples of (SpO2− baseline(SpO2)) < −3%. Features were generated for 1-minute epochs

overlapping by 30 seconds each. A leave-one-out-cross-validation scheme was applied

to generate statistical data from the 183 subjects. Linear discriminant classifiers with

equal prior probabilities were applied to the ECG and SpO2 data separately in order to

detect the SDB. The results from these two classifiers were combined using a weighted

Bayesian addition integration scheme with the oximetry data weighted at 80% and the

ECG data weighted at 20%. If data from one device was found to be corrupt, the pos-

terior probabilities were copied from the valid data. If both sets of data were corrupt,

the epoch remained unclassified. The class chosen had the highest posterior probability

estimate. A hierarchical summing method was used to generate the total number of

SDB, apnoea and hypopnoea epochs from the original 6 classes: obstructive apnoeas,

central apnoeas, mixed apnoeas, obstructive hypopnoeas, central hypopnoeas and mixed

hypopnoeas. The AHI was estimated as the average percentage of SBD epochs per hour.

For detecting SDB, a sensitivity of 84%, a specificity of 87%, an accuracy of 86% and a

Cohen’s κ of 0.66 was reported. Results of a comparison of the ability of the system to

discriminate between severe SDB (AHI > 15) and normal breathing (AHI < 5) using

a) oximetry only were sensitivity 94% and specificity 93% b) ECG only were sensitivity

92% and specificity 65% and c) oximetry and ECG were sensitivity of 94% and specificity

94%.
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4.5.7 Brain Imaging and Sleep Monitoring

Advanced brain imaging technologies have been applied to sleep monitoring. In a re-

view, Deboer (2007) discussed that functional Magnetic Resonance Imaging (fMRI) and

positron emission tomography (PET) offer the possibility of monitoring the neuronal

activity in the brain. This has been applied to sleep research using variations in glucose

and oxygen consumption and hemodynamic changes to offer insights into brain struc-

tures and brain function. However, the practicality of using fMRI is questionable due to

the high noise levels within the scanner in spite of continued improvements in the tech-

nology (Kaufmann et al., 2006). Although PET does not offer a real-time measurement,

it is stable and quieter than fMRI (Braun et al., 1997). This form of sleep monitoring is

outside the scope of this thesis, however the interested reader is referred to Braun et al.

(1997) and Deboer (2007).

4.6 Conclusions

This chapter has provided an overview of the traditional established standards for sleep

monitoring, namely PSG in a clinical setting, wrist actigraphy in a non-clinical setting,

and subjective scales or sleep diaries (possibly recorded by clinicians) where neither

PSG or actigraphy are appropriate or acceptable. This serves as a precursor to the

main contribution of the chapter; a review of various recent advances in contact and

non-contact sleep monitoring approaches. Contact-based advances in sleep monitoring

include electrodes implanted in bed sheets, garments, a wrist-based device or the use

of a minimal number of PSG electrodes. Non-contact advances included an optical

approach (video or PIR), the use of smartphones (via an unvalidated algorithm using

the device’s accelerometer and microphone or the manual entry of sleep/wake times),

an approach where the sensor was placed under the mattress (for use in sleep/wake

monitoring, physiological signal detection, movement detection, or the monitoring of

development of bed sores) and a RF system (in which the device is placed on the bed

side locker). Technological advancements in sleep measurement modalities is fast-paced

and ever-expanding. A direct clinical comparison is difficult across these technologies due

to multiple methodological approaches including different performance metrics, different

population types, and different recording environments.

The chapter briefly discussed the need for an unencumbering sleep monitoring system

suitable for the long-term monitoring of sleep in sensitive populations (particularly older

adults and unhealthy individuals). As such, each of the types of technologies described

in the chapter were evaluated using three criteria: 1) accuracy, 2) comfort, and 3)
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obtrusiveness, as summarised in Table 4.5. The accuracy of the alternative approaches

(in sleep/wake detection) varies considerably. Generally, the accuracy decreases as the

proposed solution has less physical contact with the individual. The comfort of the

device is dependent on how much it hinders directly the sleeping patterns of the user,

that is, does the use of the device negatively affect quality of sleep due to its physical

design? Examples of this include electrodes placed on the skull (eg. NightCap (Mamelak

and Hobson, 1989)) or having to wear a specially designed garment (eg. LifeShirt (Coyle,

2002)). The obtrusiveness of the system is another important factor. Technologies which

require continuous vigilance (in terms of wearing, maintenance, or requiring special care)

are a hindrance to the user and inhibit long-term adherence by the user. In certain

cases, non-physical factors can affect adherence including privacy concerns from cameras

(Demiris et al., 2009), or the clinical appearance of the device (as this places a feeling

upon the individual that they are unhealthy).

In general the accuracy of systems that are suitable for long term use is traded off against

comfort and obtrusiveness. This thesis proposes a technology which is particularly

suitable for long-term deployment in sensitive populations (particularly older adults

living in their own homes), is easy to install, does not burden the user by being both

comfortable and unobtrusive. An introduction to the entire system and its underlying

technologies is given in the next chapter. In the subsequent chapters, experimental

evaluations, deployments in various settings and sleep stage discrimination using the

system is performed.
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Table 4.5: Suitability of sleep monitoring modalities for long-term use.

Device Accuracy Comfort Unobtrusiveness Signals

Established Full PSG XXX EEG, EOG, EMG, ECG
Standards Partial PSG XX Some of above

Amb. PSG XX X EEG, EOG, EMG
Actigraphy X XX X BM
Subj. Scales XXX X
Sleep Diary XXX X

Contact-Based AOG Mon. X X EOG
Monitoring NightCap X X quasi-EOG, BM

MyZeo XX X quasi-EOG, BM
Textile XX quasi-EEG, quasi-EOG
LifeShirt X ECG, BM, T
WatchPat X XX BM, Oxi, PAT

Optical Video Mon. XXX X 1 Video
PIR X XXX XX BM

Smartphones XXX XX BM (via Acc.), Sound

Under Coil Mattress XXX XXX BM, BR
Mattress FSR XXX XXX BM, T, BR, HR, RI

Air Mattress X XXX XX2 BM, BR, HR
Pneumatic Tube X XXX XX2 HR, BR, BM
Load Cells X XXX XXX HR, BR, BM
SCSB X XXX XXX HR, BR, BM
EMFi X XXX XXX HR, BR, BM
Fibre Optic XXX XXX HR, BR, BM
Bed Sores Mon. XXX XX BM

RF System X XXX XX 3 BR, BM

AOG = Actiolculographic Monitor; BM = Body Movement; HR = Heart Rate; BR = Breathing Rate;
RI = Restlessness index; T = Temperature; Oxi = Oximetry; PAT = Peripheral Arterial Tonometry

1 Use of video in the bedroom can cause privacy concerns in older adults (Demiris et al., 2009).
2 Some systems are in direct contact with the participant and as such long-term use reduces comfort.
3 RF systems must be designed not to appear clinical as this reduces suitability for long term use.

Rating system developed by author using data gathered from each relevant study. Increasing numbers
of X indicate better results.
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Chapter 5

The Non-Obtrusive Non-Contact

Sleep Sensor

This chapter introduces a novel, non-contact sleep monitoring solution in the form of

an under-mattress bed sensor. The sensor was initially designed to monitor bed exits

of patients in a nursing home and also to investigate the development of bed sores in

bed-ridden cohorts. In this chapter it is shown that the sensor also has the capacity to

provide informative data relating to changes in sleeping patterns over extended periods

of time. Such data has potential diagnostic value particularly in relation to health issues

in older adults. Several studies have demonstrated that older adults are found to have

an impaired sleep, and sleep disturbances, especially in older adults, have been found to

be indicative of poor health and functional deficits (Miles and Dement, 1980; Manabe

et al., 2000).

This chapter provides an insight into the design of the sensor and data collection system.

It provides an investigation into the practicality and suitability of the sensor for the long-

term collection of sleep data, particularly in older adults. Sample data, collected in test

scenarios, recorded by the sensor is shown and this illustrates to the reader the form of

the sleep monitoring data. Additionally, results from the deployment of the sensor in

experimental conditions and in a community-based study of older adults are presented.

5.1 Under-Mattress Bed Sensor

The under-mattress bed sensor (UMBS) is proposed as a non-contact, actigraphy based

sleep monitoring solution particularly applicable to long term domestic placement. The
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Figure 5.1: Layout of the UMBS. Each pressure sensing location is marked by the
blue circles. The signal from each tactel is sampled by a multiplexer.

sensor is composed of 24 tactels, or pressure sensing points, evenly distributed through-

out the device in a 3 x 8 pattern. The sensor is 90cm x 24cm x 1cm and each tactel is

located 10cm away from neighbouring tactels. An outline of the tactel placement within

the UMBS is shown in figure 5.1. The typical placement of the UMBS is underneath

the upper torso of the subject, underneath the mattress, as given in Figure 5.2.

Figure 5.2: Typical placement of the UMBS
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(a) No pressure applied to the sensor and light
illuminates through the substrate from the emitter
(on the left) throughout the foam.

(b) The application of pressure reduces the
amount of light permeating through the substrate
(due to the compression of the substrate).

Figure 5.3: UMBS open cell urethane foam substrate mechanism of transducing
downward pressure into a signal. The foam is covered with a heavy duty flat plastic
material (black). The amount of light permeating throughout the substrate is illustrated

by the yellow colouring.

5.1.1 Tactels

This sensor uses a light-based pressure sensitive system which is not sensitive to elec-

tronic interference. Relative pressure is recorded by measuring the amount of light pass-

ing between an emitter and receiver woven into a semi-permeable substrate. Changes in

pressure applied to the substrate results in varying amounts of light passing between a

fibre optic emitter and receiver (as shown in Figure 5.3).

5.1.2 UMBS Sensor Types

The instantaneous pressure placed on each tactel is measured at a rate defined internally,

using a piezo-electric crystal, within the UMBS. This rate is either 10Hz or 20 Hz and

is set during the manufacture of the sensor. The range of values over which the UMBS

measures relative pressure varies between 0 and 255 or 0 and 2047 depending on the

model. In the course of this research, data was collected using three types of sensors as

defined in Table 5.1.

5.1.3 Communications Protocol

The UMBS is designed to communicate with a data aggregator which polls data from

the UMBS through a standard RS232 serial port. The communications protocol defines
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Table 5.1: UMBS Sensor Types

Sensor Name Sampling Rate Range of Values

UMBS (v1) 10Hz 0 to 255
UMBS (v2) 10Hz 0 to 2047
UMBS (v3) 20Hz 0 to 2047

requests, as sent by the data aggregator, and replies, as issued by the UMBS. The UMBS

will always be the slave device in the system. For this research, two requests were used.

The first request ensures that the UMBS is ready for data transfer (by sending a ’ping’

with a positive response, ’ack’, indicating the device is on). The second request asks

for the current pressure values recorded by all tactels. The UMBS will not deal with

subsequent requests until it has completed its current request. This effectively resulted

in a half-duplex communication protocol.

5.1.4 Data Collection System

A flow chart of the UMBS data collection algorithm is given in Figure 5.4. Initially,

a ’ping’ message is sent to the UMBS to ensure that it is currently active and that

the serial port the device is connected through is working correctly. Subsequently, the

current tactel data is requested from the UMBS. The UMBS data packet is sent to the

port and buffered. This buffer is read repeatedly with a 10ms delay between readings

until a full data packet has been read. After a full packet has been read, the system

either stops data collection, if requested by the user, or requests another UMBS data

packet. This ensures that there is as minimal a delay as possible between the collection

of UMBS data packets. In practice, this system continually collects data for a number

of weeks until the study has finished. This system was implemented on two platforms:

a PDA (Dell R© Axim x51v) and a personal computer (model dependent on each study).

The data collection system for the PDA was coded using the Visual Basic Programming

language. The personal computer data collection system was coded in the C++/CLR

programming language. The PDA data collection was implemented using UMBS (v1),

while the computer-based data collection system was implemented using UMBS (v2)

and UMBS (v3)

5.1.5 Sampling Rate

The sampling rates for both data collection systems can be seen in Figure 5.5. While

the values of each tactel was internally refreshed at either 10Hz or 20Hz, the rate at
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Figure 5.4: UMBS data collection algorithm
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(a) PDA using 10Hz sensor
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(b) Personal Computer using 20Hz sensor

Figure 5.5: Sampling rates attained by the data collection equipment.

which this data was accessed and saved was dependent on the interface between the

data aggregator and the UMBS. The PDA-based system achieved an average sampling

period of 107.1 ± 3.5 ms, with a range from 105 ms to 225 ms. The personal computer-

based system achieved an average sampling period of 65.4 ± 5.1 ms, with a range from

46.1 to 109.9 ms.

After data collection, the time-series was interpolated to a constant sampling rate (gen-

erally 10Hz) using linear interpolation. This was deemed sufficient as no signal of interest
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occurred above 5 Hz. Breathing and voluntary movements (ie. excluding spasms and

seizures) occur below this rate (Redmond and Hegge, 1987) .

5.1.6 Pressure Measurement

The ability of the tactels to accurately record absolute pressure was investigated by

Holtzman et al. (2008b). They found that the tactels did not record absolute pressure

(measured in Newtons) and that a non-linear relationship existed between tactel val-

ues and pressure. Additionally they investigated the application of pressure at various

distances away from the tactel, along the same axis as the UMBS, and also found a

non-linear response. The tactel values remained stable over multiple tests, however the

elasticity of the internal substrate over extended periods of time was unknown and may

degrade when continuous pressure is applied (for example when the UMBS is placed un-

der a mattress). Due to the combination of all of these factors, an algorithm to convert

tactel values to absolute pressure values was not developed and this thesis focussed on

developing algorithms using the tactel values as directly measured.

5.1.7 UMBS Notation

The UMBS contains 24 tactels. The notation used to refer to the UMBS data is as

follows. Denoting xij as the value of the ith sample instant of the jth tactel, and assuming

a total of N samples, the tactel dataset X ∈ <N×24 can be defined:

X =



x1,1, x1,2, ..., x1,j , ..., x1,24

x2,1, x2,2, ..., ..., ..., x2,24

...

xi,1, xi,2, ..., ..., ..., x2,24

...

xN,1, xN,2, ..., ..., ..., xN,24


, 1 6 i 6 N, 1 6 j 6 24 (5.1)

Each row (xi) of X relates to the pressure values recorded over all tactels at one time

instant, while each column (xj) of X represents the pressure on one tactel over all times

instants.

Sleep data is often examined over non-overlapping time windows, or epochs. In PSG,

these windows last 30 seconds. Here, we use the following notation to refer to windows

of UMBS data. Given m sample windows the kth data window, Wk ∈ <m×24 is defined

as:
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Wk =



xm(k−1)+1,1, xm(k−1)+1,2, ..., xm(k−1)+1,j ..., xm(k−1)+1,24

xm(k−1)+2,1, xm(k−1)+2,2, ..., ..., ..., ...

...

xm(k−1)+i,1, xm(k−1)+i,2, ..., ..., ..., ...

...

xm(k−1)+N,1, xm(k−1)+N,2, ..., ..., ..., xm(k−1)+N,24


,

1 6 j 6 24, 1 6 k 6 (bN
m
c)

(5.2)

Each window consists of m samples instants and N is the total number of samples in

the entire data set. xm(k−1)+1,j is the m(k− 1) + 1th sample instant of the jth tactel. If

data from all of these windows are concatenated together, the original data set X will

be formed (if N−mbNmc = 0, ie. N is an exact multiple of m).

5.2 Initial UMBS Deployment

5.2.1 Example Data

Example data collected using the UMBS (v3) is shown in Figure 5.6. When no pressure is

placed on the UMBS (unsaturated), the tactel values vary slightly around their minimum

values. This value is not constant across all tactels ranging between 200 and 600 units

(when the sensor is placed under a mattress), and varies by less than 5 units around

this minimum value (as shown in Figure 5.6(a)). When the amount of pressure placed

on each tactel exceeds a maximal value (saturated), the tactels saturate (at 2047 for

this sensor). When a participant lies passively on the UMBS, clear cyclical patterns of

breathing can be seen on some of the tactels, some tactels register no pressure (as the

subject is not lying over those tactels) and others are saturated. The last subfigure in

Figure 5.6 shows the patterns observed when the subject moves while on the mat. A two

dimensional representation of the pressure distribution on the UMBS at a time instant

is given in Figure 5.7.

5.2.2 Entire Night’s Data

Data collected over an entire sleeping period for a normal healthy adult can be seen

in Figure 5.8. This data relates to a period when the subject was asleep (as defined

by a wrist actigraph). Large shifts in the tactel values define periods when the subject
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(a) UMBS unsaturated
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(b) UMBS saturated
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(c) UMBS breathing
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(d) UMBS movement

Figure 5.6: Sample UMBS data. The signals from each tactel are plotted as separate
lines.
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Figure 5.7: 2D map of pressure placed on the UMBS at one time instant.
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Figure 5.8: UMBS data over an entire sleeping period for a healthy adult subject.

shifted their body position. For multiple portions of the night, data from five tactels

show pressure exerted on them (each of which are plotted in Figure 5.9). The body

weight of the subject is not impinging on some tactels and as such they record values

lower than 600.

5.2.3 Turns Data Set

Data were collected using the UMBS v3 showing the effect turns in bed had on the UMBS

data. The UMBS was placed underneath the mattress. The participant was asked to

assume and shift between four typical sleeping postures between lying on their back (B),

left side (L), right side (R) and front (F) on the bed. The subject was asked to change

postures under three conditions 1) rapid transition without lateral displacement, 2) rapid

transition with lateral displacement and 3) slow rolling transitions (inherently including

lateral displacement) as shown in Figure 5.10. Between each of these three conditions

the subject exited the bed. Each rapid transition lasted approximately five seconds

while the slow rolling transitions lasted approximately 15 seconds with approximately

60 seconds between transitions. The data set lasted a total duration of 1,140 seconds

and contained 12 changes in posture, 3 bed entries and 3 bed exits. After the subject

enters the bed and after each turn, the pressure array reports a new series of values

which reflects the position of the subject. A settling time of approximately five seconds
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(a) UMBS active tactel 1
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(b) UMBS active tactel 2
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(c) UMBS active tactel 3
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(d) UMBS active tactel 4
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(e) UMBS active tactel 5

Figure 5.9: 5 active tactels over an entire sleeping period for a healthy adult subject.
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Figure 5.10: Sample UMBS Turns Data. The subject is lying on their back (B), left
(L), right (R) and front (F) and where 1) represents rapid transition without lateral
displacement, 2) represents rapid transition with lateral displacement and 3) represents

slow rolling transitions

in the tactels values can be seen. This was extended when the subject performed slow

turns.

A long settling time can be seen in Figure 5.10 when the subject exits the bed. This

transient effect occurs less when the UMBS is not placed underneath a mattress and as

such is thought to be an effect of the particular mattress.

5.3 UMBS Community Deployment in Older Adults

A preliminary investigation of sleeping patterns and sociality was carried out in a group

of older adults recruited in Summerhill, County Meath, Ireland. This pilot study was

carried out in collaboration with the Digital Health Group in Intel Ireland Ltd. All sub-

ject interviews were performed by trained ethnographers. This work measured sleeping

patterns using both the UMBS and wrist actigraphy. While other metrics were recorded,

generally they are outside the bounds of this research, and as such are only briefly dis-

cussed. This research evaluated the ability of the UMBS to record sleeping patterns

and also its suitability for long-term placement. A preliminary investigation into the

comparison of metrics, derived from the UMBS, against wrist actigraphy was also per-

formed. This provided an insight into the application of the UMBS as a sleep monitoring

device. Lastly, this study provided a means of investigating whether in-bed restlessness,

that is the proportion of time spent moving in bed, is related to daily activity levels in

older adults.
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Table 5.2: Subject details from UMBS community deployment

Sub. Code Sex Age Mean Sleep Length Health Info. Restlessness

DH701 F 63 08:35 Sleep Apnoea 16%
DH702 F 69 N/A Spina Bifida N/A
DH703 F 62 05:11 Rel. Healthy 3.70%
DH704 F 80 08:55 Rel. Healthy 8.2%
DH705 M 72 07:40 Stroke Sufferer 19.80%
DH706 F 88 N/A Rel. Healthy N/A
DH707 F 64 07:25 Rel. Healthy 11.90%
DH708 M 81 06:40 Rel. Healthy 12.10%
DH709 F 65 08:20 Rel. Healthy 9.30%
DH710 F 72 06:50 Rel. Healthy 14.40%

5.3.1 Methods

The UMBS (v1) was deployed in a community based study of ten (2 males) older adults

(62-88 years old) for a period of two weeks (see Table 5.2). This was part of a study

which investigated sleep, social and physical activity. Additional sensors and methods,

including wrist actigraphy, a phone use sensor, location sensors (GPS), pedometers

(placed on the waist line), as well as audio diaries and ethnographic interviews collected

data relating to sleep, social and physical activity. The audio diaries were used to capture

data from a modified version of the Pittsburg Sleep Questionnaire (Hislop et al., 2005)

and internal state (how the subject felt). The subjects were also allowed to record

comments as they wished using the audio diary. The ethnographic interview recorded

data in relation to routine behaviours. The UMBS data were continuously recorded using

the PDA based platform. The data were linearly interpolated to a constant sampling

rate of 9Hz. The data were manually aligned with wrist actigraphy data prior to analysis.

Sleep analysis was not performed on two subjects: 1) DH702 had childhood spina bifida

and as such her weight was not evenly distributed throughout the UMBS, and 2) DH706

refused to wear the wrist actigraph. Other problematic issues regarding the wrist acti-

graph were: 1) three subjects were initially unaware that it should be worn at night,

and 2) the device was taken off while one participant was playing cards. It is unknown

whether the latter incident was due to comfort or stigma (due to the perception of having

to wear a health-type device).

The mean sleep length per subject over all nights of available data is given in Table 5.2.

This was calculated using the wrist actigraph.
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5.3.1.1 Detection of In-Bed Presence and Calculation of Bed Restlessness

The ability of the UMBS to extract daily sleeping patterns including time-to-bed, time-

out-of-bed, number and duration of bed exits and bed restlessness was examined during

this study. This was achieved using two methods: 1) defining when the subject was in

bed, and 2) defining the amount of motion in bed. An empirically defined threshold,

applied to all tactels, was used to define whether the subject was in or out of bed using

the mean pressure placed on the UMBS (see Equation 5.4) and an InBed indicator

decision function (see Equation 5.6). For this, the UMBS data was examined in thirty

second epochs (m=270 for 9Hz sampling rate) and if the mean value for two or more

tactels was greater than a bed presence threshold (that is InBedk ≥ 2), the subject

was defined to be in bed.

The kth data window (epoch) corresponds to the l = m(k − 1) + i to mk rows of the

UMBS data matrix,X, that is:

Wk = [wki,j ] = wki,j , xm(k−1)+i,j (5.3)

Defining w˜ kj as the jth column vector of Wk (ie. w˜ kj , wk:,j), the mean of this vector

may be denoted as

w˜ kj =
1

m

m∑
i=1

x(k−1)×m+i,j =
1

m

m∑
i=1

wi,j (5.4)

Using this metric, the inBed decision function can be defined as

InBedkj =

{
1 if wk

j > bed presence threshold

0 otherwise
, 1 ≤ j ≤ 24, 1 ≤ k ≤ bN

m
c (5.5)

For the kth window, the number of tactels registering bed occupancy is given by

InBedk =
24∑
j=1

InBedkj (5.6)

For periods when the subject was in bed, a measure of their in-bed restlessness was

calculated. This was calculating using the standard deviation of each thirty second

epoch for each tactel j, σkj (see Equation 5.7 and Figure 5.11). The movement threshold
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(a) UMBS data with movements
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(b) Standard deviation of windowed UMBS data

Figure 5.11: UMBS data with movements times highlighted using the standard de-
viation of the windowed UMBS data

which is specific to the mattress and subject, was used to recognise the occurrence of

motion on each tactel and was empirically defined for this study. For a given epoch

to be classed a ’movement’ epoch, two or more tactels had to register motion, that is

Mk ≥ 2 (see Equation 5.9).

The standard deviation of the variation in the jth tactel during the kth window can be

defined as:

σkj =

√√√√ 1

m

m∑
i=1

(wki,j −wk
j )

2 (5.7)

The associated movement decision function is

Mk
j =

{
1 if σkj ≥ movement threshold
0 otherwise

(5.8)

and the number of tactels registering motion in the kth window can be defined as

Mk =
24∑
j=1

Mk
j (5.9)

A restlessness index was generated for each subject over each night of the study from the

UMBS data. This was calculated as a ratio of the number of movement epochs over the

total number of epochs the subject was in bed. The mean restlessness for each subject

over all nights is reported in Table 5.2.

5.3.2 Nocturnal Routines and Bed Restlessness

An examination of the suitability of the UMBS for long-term domestic placement and

an investigation of the ability of the UMBS to extract bed entry/bed exit times was

performed using this data set (Behan et al. 2008a, Behan et al. 2008b).
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5.3.2.1 Methods

The in-bed indicator, as described in the previous section, was used to extract multiple

metrics regarding general sleeping patterns including: 1) time to bed, 2) time out of

bed, 3) the number of bed exits during the sleeping period, and 4) the duration of bed

exits during the sleeping period in the entire population. These metrics, as well as the

restlessness index (also described above), were calculated for all subjects over all nights.

5.3.2.2 Results

Sleeping patterns, inclusive of bed restlessness, time in bed and bed exit information,

and the changes in these sleeping patterns over time are shown in Figure 5.12. These

data were extracted for all participants. The mean time in bed (TIB) for this population

was 524.4 minutes (± 40.8 minutes) per night per subject as defined using the UMBS.

The extraction of quantitative statistics using this data set was unrealisable due to the

low number of participants and also due to the short duration of the study. Generally the

routines and sleeping patterns were consistent across the cohort over all nights, however

some nights of sleep disturbance occurred and these were found to be resultant from pain

or anxiety. Due to the high inter-subject variation, results from one subject are reported

on a case-by-case basis. For subject DH701 in the second week of the study (from night

11 on), the bed restlessness was found to decline dramatically (as shown in Figure 5.12).

Upon further investigation it was found that this subject had a highly inconsistent bed

time and wake time during the first eleven days of the study. In the exit interview,

the subject stated that they started an undergraduate degree after the eleventh day.

Furthermore, on the night prior to beginning the college course the subject reported ”I

slept badly” in their audio diary. Upon investigation, an increased restlessness index

of 19% was found (mean of study 8.51%) for this night. While variations in sleeping

patterns over time were noticeable in the other subjects, these changes were not found

to be correlated with any serious life events.

5.3.2.3 Discussion

During the study it was found that the UMBS was an easily deployable technology.

No complaints were made by the subjects in regard to the use of the UMBS, whereas

adherence issues were evident with wrist actigraphy and other modalities which required

any subject interaction. As such, the UMBS is suited to a long-term deployment. A

number of subjects in this study expressed a discontent in wearing the actigraph (the

ambulatory gold standard for sleep monitoring). One subject chose not to wear the
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Figure 5.12: Sleeping pattern data from subject DH701 over the two week trial. The
magnitude of the blue data is given on the left axis, while the magnitude for the brown

data is given on the right axis.

watch, while others often forgot to put the device back on after a shower or after a

social event where they did not want to wear the device. None of the subjects reported

any discomfort resulting from the presence of the UMBS.

The mean time in bed (TIB) for this population (524.4 minutes/night) was longer than

that recorded for other studies involving older adults which reported a mean nocturnal

time in bed of 475.6 minutes (± 52 minutes) (Prinz et al., 1975) and of 468.9 minutes

(±38.3 minutes) (Feinberg, 1974). The extended nocturnal sleep duration seen in this

study could be because subjects did not partake in any daytime naps or it could be a

reflection of their overall healthy status.

This study found that for one subject with a highly irregular routine, the imposition of a

regularised schedule served to reduce restlessness. An investigation into the relationship

between sleeping patterns and metrics of sociality, routines and daily activity was also

undertaken (Behan et al. 2008a, Behan et al. 2008b), however only data relating to

the UMBS is reported in this thesis. This research poses the UMBS as a technological

system suitable for long term placement as well as a method to quantify changes in daily

sleeping patterns. Further studies should examine the this relationship and investigate

whether regular sleeping patterns (and schedules) lead to an increase in quality of life

metrics, or in health status.

The UMBS was found to report bed times, bed exits and bed-restlessness unobtru-

sively. Additionally, this system is an ideal modality to investigate nocturia (previously

discussed in Section 2.6.2.6). Research by Rantz et al. (2008) using a different pneu-

matic pressure based sleep sensor placed above the mattress has shown that changes in

bed restlessness and bradycardia (specifically, the increased occurrence of large inter-

heartbeat-intervals during the night) over long periods of time are indicative of serious
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life events. All of the results in this study were reported using a case study analysis.

This reflects the investigative nature of this research and the high overhead in the de-

ployment and management of in-home health technologies. Additionally, it is difficult

to recruit a cohort of older adults with very similar health levels and co-morbidities.

As such, the collection of data from large cohorts is often prohibitive. Large cohorts

will help in providing statistically significant results, however the process of answering

a strictly defined research question (usually requiring a specific cohort and investigating

a specific manifestation of an illness or disease) is often unfeasible.

5.3.3 UMBS vs Wrist Actigraphy

A direct comparison between the motion detection capacity of the UMBS and the wrist

actigraph was performed using the data from this study (Walsh et al., 2008). This in-

vestigation considered wrist actigraphy to be the gold standard for movement detection.

While this is a sub-optimal approach in that it assumes that wrist actigraphy is 100%

accurate, it was used to provide an indication of the similarity between UMBS derived

metrics and wrist actigraphy.

5.3.3.1 Methods

One night of UMBS and wrist actigraphy data was taken from each person (total dura-

tion 59 hours and 36 minutes). The UMBS (v1) and PDA data logging platform were

used to record the UMBS data. The UMBS data was subsequently interpolated lin-

early to a constant sampling rate of 9Hz. The UMBS data was manually aligned to the

wrist actigraphy data and truncated appropriately. A highpass fifth order butterworth

filter with a cutoff frequency of 1.5Hz was applied to each tactel signal, such that only

movement related information would remain and the relative pressure impinged on each

tactel would be removed. The data was sectioned into multiple non-overlapping win-

dows lasting: 30 seconds, 60 seconds, 90 seconds, 120 seconds, 150 seconds, 180 seconds,

210 seconds and 240 seconds. Two metrics of motion were calculated over each epoch:

1) The standard deviation of the signal over this window for each tactel (σkj ), and 2)

the sum of the difference between signal values over the window for each tactel (∆k
j )

as shown in Figure 5.13. The former is computed according to Equation 5.7, while the

latter is defined as

∆k
j =

m∑
i=2

∣∣∣wki,j − wki−1,j

∣∣∣ (5.10)
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Figure 5.13: Comparison of UMBS data, standard deviation metric and sum of dif-
ference metric.

The sums of both metrics (σkj and ∆k
j ) over all 24 tactels were also calculated.

The optimal threshold for discriminating movement from each of the UMBS metrics

from any wrist actigraph defined motion (activity counts > 0) was determined using

MCC (see Section 3.2). MCC was used as the data set was significantly biased towards

the non-movement state. Furthermore, it was unknown whether a thirty second epoch

(which is traditionally used for PSG scoring) is an appropriate epoch length for activity

detection. As such, the window length, m, was also optimised as part of the investigation.

5.3.3.2 Results

The best MCC was obtained with a window length of 210 and 240 seconds (see Figure

5.14). However, this was considered too long to give a realistic time resolution for motion.

As such, a shorter, more adequate window length of 90 seconds reported an MCC of

0.62 (and using the sum of differences movement decision function). High sensitivity

values of 69.6% and very high specificity values of 89.6% were reported for this selection

as given in Table 5.3.
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Figure 5.14: MCC and MCR for both movement decision functions over 8 window
lengths.

Table 5.3: Determination of the optimal coefficients

Dec. Thres Win. Len. Sens Spec MCR MCC
function (seconds) % % % -1 to +1

Best Classification Results
St. Dev. 6.3 240 72.6 92.2 14.07 0.67
Sum Diff. 10.8 210 72.6 91.2 14.34 0.66

Optimal Classification Results
St. Dev. 5.8 90 63.7 94.5 11.07 0.63
Sum Diff. 5.8 90 69.6 89.6 13.3 0.62

This study was repeated with data from one healthy female adult over one night. The

tuning process was repeated and specificity and sensitivity values greater than 90% were

achieved for a window length of 120 seconds.

5.3.3.3 Discussion

This preliminary investigation showed high agreement rates between wrist actigraphy

and the derived UMBS motion metrics. This provided similar performance to an alter-

native non-contact sleep monitoring system (BiancaMed) (Fox et al., 2007) (as detailed

in Section 4.5.4.2). When the UMBS system was applied to data collected from a young
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healthy adult, sensitivity and specificity rates over 90% (compared to wrist actigraphy)

were reported. It is unclear why there is such a large difference between the performance

rates found for young and healthy versus older and relatively healthy subjects. In all of

this analysis the wrist actigraph was taken to be the gold standard for movement detec-

tion, however it is not, and as such, further validation is required. Further studies using

an established reference for motion detection (such as a video camera) would elucidate

whether metrics derived from the UMBS or from the wrist actigraph are more effective

in detecting body movement while in bed.

5.3.4 UMBS and Daily Activity

An investigation into UMBS derived restlessness and daily activity was performed (Walsh

et al., 2009b). This was performed in order to check if there was a relationship between

sleep disturbances and activity levels (as measured using a step counter) the following

day.

5.3.4.1 Methods

The daily number of foot steps taken by each subject was recorded using a pedometer

attached to the waist line of each subject. This data was directly compared to a restless-

ness metric, averaged per hour, generated each night by the UMBS. Data was available

over a total of 87 nights. No valid pedometer data was available from subject DH705

due to an impaired gait.

5.3.4.2 Results

The mean hourly number of restless epochs and the mean number of steps (the following

day), and their standard deviations are given in Table 5.4. The correlation between both

of these metrics was computed for each subject over all nights available. While general

subject specific patterns are presented, none of these correlations were significant. An

inverse relationship was found with an r value of -0.35 over the entire data set, however

this correlation was not significant (ρ > 0.1).

5.3.4.3 Discussion

While the associations found in this data set were not significant, it suggests that an

inverse relationship between bed restlessness and subsequent daily activity exists. How-

ever this was only found in the general case and might not apply to individual subjects
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Table 5.4: Comparison of UMBS derived restlessness versus activity count (via pe-
dometer).

Subject No. Avg. Hourly No. Correlation
Days Restless Epochs Steps

DH701 12 19.38 ± 5.17 1697 ± 971 -0.115
DH703 10 6.55 ± 3.93 8551 ± 4670 -0.086
DH704 13 4.26 ± 0.66 5057 ± 2308 0.06
DH705 2 9.32 ± 3.05 n/a - -
DH706 11 9.11 ± 2.55 8462 ± 7384 -0.47
DH707 14 9.43 ± 1.69 1776 ± 819 -0.31
DH708 8 9.52 ± 0.59 5061 ± 1998 0.79
DH709 14 12.32 ± 5.1 3632 ± 2027 -0.01

All 87 10.26 ± 5.62 4767 ± 4526 -0.35

(for example, subject DH708 exhibited a large positive correlation). A larger investiga-

tion with a larger cohort over a longer study would uncover any significant correlation

between these data, if it exists.

5.3.5 Overall Discussion

From the community deployment of the UMBS, it was shown that the UMBS is suitable

for long term placement. Adherence issues were reported for the wrist actigraph, however

not for the UMBS. Bed presence and bed restlessness indicators were found to provide

quantitative statistics of sleeping patterns, particularly bed times, bed exit data and bed

restlessness. A comparison of UMBS-derived bed restlessness data and wrist actigraphy

showed high agreement rates. However, this investigation defined wrist actigraphy to be

an absolute measure of movement which is incorrect. The use of video monitoring and

widely accepted motion detection algorithms as the gold standard movement detection

modality would provide a more robust comparison of the UMBS-derived metrics and

wrist actigraphy. An investigation into the relationship between the UMBS-derived

movement metric and daily activity (as measured in step counts) showed a negative

correlation, however this was not statistically significant. A larger study may elucidate

this claim.

5.4 Parallel UMBS Research

A separate research group (based in Carleton University, Ottawa, Ontario, Canada)

have investigated the use of the UMBS as a sleep monitoring system, although the focus
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of their work is mainly in detecting sleep apnoeas. This has focused on: 1) the detection

of breathing signal using a time-based correlation with a respiratory inductance band,

2) the detection of central apnoeas, and 3) an investigation of the attenuation of the

respiration signal caused by various mattresses. A brief description of this work is given

below.

A cross-correlation based method of respiratory rate estimation, using data from each

tactel in the UMBS and compared to respiratory effort (measured using a respiratory

inductance band), reported a high accuracy (Jones et al., 2006a). For this study, the

UMBS was placed in direct contact with the subject. Furthermore, a reliability metric of

the respiratory signal calculated for each tactel was generated using a metric derived from

the auto-correlation of the tactel data. This method used the difference between the first

peak and trough in the autocorrelation sequence to measure motion. If a suboptimal

reliability metric was found for that tactel, it was excluded from the calculation of

an overall respiratory rate. The respiratory rate was estimated using data from each

tactel which was not saturated or completely under-saturated. The respiratory rate

was calculated using the autocorrelation of the signal. The distance between the first

two peaks was used to estimate the breathing rate. The respiratory rate estimates

from each sensor were fused using a cluster-based voting approach which removed any

outliers. Further research was undertaken which used an adaptive linear combiner to

correct for, and multiplex, tactel signals which were misaligned in the time domain prior

to respiratory rate estimation (Holtzman et al., 2008a, 2011; Townsend et al., 2011b).

This was performed for data collected when the UMBS was placed underneath the

mattress. This research validated the optimal method for phase correction using the

cross correlation of signals from each tactel. A comparison was made to two respiration

signals measured using RIP bands. A high correlation against both respiratory effort

signals (r=0.68 and r = 0.72) was found (this was found to be significant (p < 0.05).

Furthermore, this research mapped the delay between tactels in a 2-d graph in an effort

to provide a quantification of the change in torso movement due to breathing over time.

The effect of different mattresses on the attenuation of the pressure signals was also

investigated (Holtzman et al., 2010). This study investigated coil, foam and futon mat-

tresses of various depths. Two UMBS were used for this analysis. One was placed on top

of the mattress directly underneath the person, while the second was placed underneath

the mattress. A large attenuation in the signal to noise ratio (the power spectral density

peak magnitude divided by the total spectral density within the respiration band) was

found in the sensor placed underneath the mattress. Additionally, the respiratory time

series signal was found to be greatly reduced in amplitude in the sensor placed under-

neath the mattress. It was found that the identification of physiological signals from the

sensor underneath the mattress was much more difficult than when the sensor was in
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direct contact with the person. However, the extraction of a respiration signal was still

realisable.

A dynamic approach to detecting movement onset times using the UMBS has also been

investigated (Jones et al., 2006b). This method calculated the variance and standard

deviation in a moving average window from each tactel. Movement was defined to begin

when the change in a tactel value goes above three standard deviations (the standard

deviation was computed from the previous thirty second window). This method was

applied to experimental and simulated results and found to give a high accuracy in

determining the starting time of movements. This work was extended to detect periods

of low variance in the respiration signal which would indicate the occurrence of central

apnoeas (Townsend et al., 2009a, 2010, 2011a). A dynamic relative threshold was used

to identify the start and end points of the apnoea. This dynamic approach is ideal for

use with different mattress types. This work indicated a positive predictive value of over

0.75 and a Matthew’s correlation coefficient (discussed in Section 3.2) of greater than

0.72 in detecting simulated central apnoeas.

An algorithm for detecting rollovers in bed was developed using features derived from

the change in subject position over time and an LDA classifier (Townsend et al., 2009b).

For this study, a large number of artificially induced rollovers were performed by one

healthy volunteer. High sensitivity and specificity values were reported.

5.5 Conclusions

This chapter introduces the UMBS as an unobtrusive sleep monitoring system. A de-

scription of the pressure sensing mechanism, which make up each individual sensing

location in the UMBS, is provided. Additionally, an outline of the communications

protocol and the data collection system is given. Descriptions and figures illustrating

UMBS data for various scenarios and conditions, including tactel saturation, respiration

data, UMBS data recorded over an entire sleeping period, and UMBS data during turns

are also provided.

A preliminary investigation of the suitability of the sensor for long term deployment was

carried out through a community based deployment amongst older adults. The UMBS

was found to be an unobtrusive and valid instrument for the long term monitoring of

sleeping patterns, particularly for use in an older adult cohort. Additionally, a compari-

son of the sensor against wrist actigraphy showed high agreement rates in the detection

of nocturnal activity (as defined by wrist actigraphy). Lastly, a bed restlessness metric,
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computed from the UMBS data, was shown to correlate to daily activity measurements

in older adults (in the form of step counts).

Recently, the ability of the UMBS to identify respiratory patterns, and particularly

to identify central apnoeas has been performed by another group (Jones et al., 2006a;

Holtzman et al., 2008a, 2011; Townsend et al., 2011b; Holtzman et al., 2010; Jones et al.,

2006b; Townsend et al., 2009a, 2010, 2011a). This research identified a high correlation

between a dynamically weighted mixture of tactel signals (representing respiratory ef-

fort) and a respiration signal measured using an RIP band. However, a comparison

of an algorithm which extracts respiration rate would provide a more robust compari-

son against the current gold standard. In the work presented in this chapter, frequency

analyses (using the Fourier transform) were shown to be indicative of manually observed

estimates, however the accuracy seemed limited. Further investigation with a larger data

set is required to elucidate whether frequency based analyses can derive respiration rate.

A high correlation, as reported by Townsend et al. (2011a), does not infer an ability to

determine respiration rates.

This chapter discussed a methodology for using the UMBS to extract sleeping patterns

over an extended period of time in a sensitive population (older adults). The long-term

collection of data could be used to examine any correlation between serious life events

(for example adverse health events leading to a reduction in quality of life) and changes in

sleeping patterns. Ongoing research has found that long term sleep monitoring, inclusive

of the monitoring of bradycardia (an increase in the amount of ’slow’ heart beats) and

bed restlessness, has been linked to overall health status (Rantz et al., 2008). However,

generally, data presented to date has been presented on a case-by-case basis (similar to

an approach used in parts of this chapter) and a thorough validation using a large data

set would provide more quantitative results. The identification of changes in behaviours

and activity needs to be flexible and robust enough to detect any changes in pattern

which might relate a negative change in health status (regardless of disease or illness

type, or cause). While a case study analysis provides an insightful view of the capability

of a technology or approach to health monitoring, it does not provide a statistically valid

solution which can be applied to large cohorts. However, the presence of multiple co-

morbidities in older adults is very common makes the problem increasingly challenging.

Additionally, the financial overhead and lengthy duration required for running lengthy

studies is often prohibitive. However, the first step in achieving such a solution is to

standardise and validate all sensors under analysis. In the context of this research,

a rigorous validation of UMBS-derived motion metrics, against a video-based motion

metric, is performed in the next chapter. Additionally, automated algorithms for the

estimation of respiration rate are also developed.
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Chapter 6

Experimental Validation of the

UMBS

Sleep and wake have traditionally been monitoring using multiple physiological signals

(including ECG, respiration, EEG, EMG and EOG). However, the ability to distinguish

between active wake (or restlessness) and quiet sleep, based on motion has enabled sleep

monitoring to be moved from research settings and from the clinic into the real-world.

The use of motion/non-motion as a proxy for wake/sleep has facilitated the acquisi-

tion of quantitative data from various cohorts and in many different settings. While

Ambulatory Polysomnography (A-PSG) can be more accurate and wrist actigraphy is

more accepted than recent advances in sleep monitoring, both impinge upon the subject

due to the wearing and active participation required by the subject. Additionally, this

is unsuitable for long-term monitoring. Furthermore, these are inappropriate for certain

populations and in certain situations (including the elderly, those with mental health

issues, large studies and studies in extreme environments). Several competing technolo-

gies have been proposed as ambient sleep monitoring solutions suitable for long-term

data collection amongst a sensitive cohort (such as residents in an assisted living facil-

ity). These solutions have been proposed in the form of an air mattress, a radar based

technology placed beside the bed, optical and PIR based solutions (further details on

these technologies is given in Chapter 4).

In this chapter the results of a series of experiments are presented which validate the

UMBS as an ambient sleep monitoring solution. Firstly, Experiment 1 details the find-

ings of a preliminary study examining the efficacy of the UMBS in the estimation of

physiological signals. Subsequently in Experiment 2, a larger investigation was carried

out in order to develop and validate algorithms which reliably estimate respiration rate

from the UMBS data. Finally in Experiment 3, algorithms were designed to maximise
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the ability of the UMBS to discern nocturnal body movement and a comparison of

these algorithms against other ambient solutions was also made. Each of these three

experiments are discussed separately. The methods, developed algorithms, results and

a discussion is given for each experiment. An overall conclusion describing the ability

of the proposed sensor to capture relevant information pertinent to inferencing sleep is

given at the end of the chapter.

6.1 Experiment 1 - Detection of Physiological Signals

Initial findings, reported in Chapter 5, associated large body movements with deviations

in the UMBS pressure data. Previous research has shown that small subject movement

can be attributed to the physical action of the beating heart and the inhalation and

exhalation of the lungs in similar devices (Alametsa et al., 2008; Brink et al., 2006;

Mack et al., 2009b; Rosenblatt, 1957). A preliminary investigation was carried out

assessing the sensitivity of the UMBS in measuring physiological information.

6.1.1 Methods

Three healthy young adult subjects (two male, one female; mean age 25 years old) were

recruited for this pilot study. Each subject assumed three sleeping positions resulting:

supine (lying down, face up), prone (lying down, face down) and lateral/foetal (lying

down on one’s side, specifically on the right side during this experiment). Each individual

test had a duration of two minutes and was investigated in thirty second epochs. The

heart beat (recorded via the radial artery) was located prior to the beginning of each

test. The total number of heart beats and breaths (one inhalation and one exhalation)

were recorded over each of the four thirty second periods during each test. During this

experiment the subjects were asked to lie naturally and to refrain from making any large

movements. The UMBS was placed directly underneath and in contact with the subject.

Data were recorded on a Dell Precision laptop with an Intel Dual-Core Processor using

a customised C++ software interfacing to the UMBS (v2) as introduced previously

in Chapter 5. The UMBS data were subsequently linearly interpolated to a constant

sampling rate of 10Hz for further analysis.

An extract of the UMBS data recorded for the female subject is shown in Figure 6.1. The

cyclic inhalation and exhalation patterns related to breathing can be clearly observed.

This breathing pattern is not evident in each of the 24 pressure sensors within the

UMBS. This is because some tactels are saturated (resulting in a maximal value of
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255) while other tactels do not report any information as the subject’s weight does

not impinge on them (resulting in an oscillating value of approximately 45). Tactels

containing information were identified using two criteria: firstly, signals must have a

standard deviation greater than an empirically defined threshold, and secondly, they

must fall within the dynamic range of the sensor, (using notation developed in Chapter

5) that is,

1. σkj >τmin

2. wk
j >τnoload

3. Max(wk
j ) <τsaturated

Here τmin, τnoload and τsaturated are pre-defined thresholds, σkj is the standard deviation

along each tactel, wk
j is the data during the kth window along the jth tactel, and wk

j is

the pressure on the jth tactel during the kth window instants.

Tactels not satisfying these conditions were not included in any further analysis which

resulted in a reduced number of signals. The reduced set of signals corresponding to

Figure 6.1 are given in Figure 6.2(a).

The signals from each of the active tactels were split into 30 second segments which

contained 300 samples. The mean was removed from each segment and they were nor-

malised to a range of [-1, 1]. The Fourier transform was applied to each set of data

as discussed in Chapter 3. Each 30 second segment was zero padded until it contained

512 samples. A spectral analysis of the signals from the active tactels using the Fourier

transform can be seen in Figure 6.2(b). A visual examination of the frequency spectrum

found peaks in both the respiration and heart rate frequency ranges. The first peak

at 0.01 Hertz (Hz) is due to a small linear trend in the data. The second peak occurs

at 0.23 Hz (13.8 cycles per minute) and matches the breathing patterns of the subject.

The third peak occurring at 0.46 Hz relates to the first harmonic of the peak at 0.23

Hz. The last peak occurs at 1.06 Hz. This matches the manually recorded heart rate of

the subject over that test and corresponds to 63.6 beats per minute. A visual analysis

of time series and frequency spectrum data for all epochs over all tests was performed

and compared to the manual recorded cardiac and respiratory rates.

6.1.2 Results

The respiration and heart rates for each of the nine tests (three subjects in three po-

sitions), extracted using the time series and frequency spectrum information, can be
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Figure 6.1: Example UMBS data recorded from a female subject lying in a prone
position
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(b) Spectral data

Figure 6.2: Active UMBS signals recorded from a female subject lying in a prone
position

seen in Table 6.1. The heart rate could not be found during a visual examination of

the UMBS time series data and as such is not reported. A clear peak relating to the

respiratory rate using the frequency information was clearly evident in most epochs (34

out of 36). Frequency peaks relating to heart rate were found in 12 of the 36 epochs. An

investigation of the remaining epochs revealed that noise resultant from body movement

contaminated the frequency spectrum significantly.

A comparison of breathing and heart rates between the UMBS time and frequency

series data generally showed high agreement rates as shown in Table 6.2. Futhermore,

the Pearson’s correlation coefficient and mean percentage error for estimated breathing
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rates against the manually observed methods reported good results and are given in

Table 6.3. A scatter plot of actual vs. estimate breathing rate for both UMBS time

series and frequency spectrum data is given in Figures 6.3(a) and 6.3(b) respectively.

Over all tests, a mean heart rate difference of 1.275 (± 4.02) beats per minute was found.

An investigation found that the data collected from Subject 3 in the prone position

reported an abnormally high difference between the estimated (using the frequency based

visual analysis) and measured cardiac rates. The heart rate could only be estimated when

this subject was in the prone position, and not in the supine or side-lying positions. This

was presumably due to a movement related artefact due to breathing which was larger

relative to the cardiac cycle than for other subjects. Excluding Subject 3, the mean

rate difference reduced to −0.87 (± 0.941) beats per minute as given in Table 6.2. A

scatter plot of actual vs. estimated heart rate for UMBS frequency spectrum data for

all good data over all subjects is given in Figure 6.3(c). The Pearson’s correlation and

mean percentage error for estimated heart rates against manually observed values for

all subjects are given in Table 6.3.

6.1.3 Discussion

This experiment was designed to provide a preliminary validation of the efficacy of

the UMBS in capturing respiration and heart rates reliably. The results report a high

correlation, low mean percentage error and a low mean difference to manually detected

actual rates. However it was found that body movement causes significant contamination

of the frequency spectrum data. The heart rate could not be estimated in 66% of the

epochs; while respiration could not be discerned in 5.05% of the epochs. This is due to

respiration having larger perturbations than the heart. For one subject the heart rate

information was questionable. This could be due to various potential sources of error

including, but not limited to, insufficient contact with the UMBS and faulty manual

observation of heart rate. Experiments using longer recording times, longer epochs and

a larger cohort will limit the effect of these sources of error. The epoch lengths in

this experiment were short, especially with respect to the number of respirations per

epoch. Longer epoch lengths would facilitate a greater number of breaths and heart

beats per epoch giving increased statistical power and hence more reliable results when

reporting their variability. Longer epoch lengths would also lessen the effect of short

large body movements on the frequency spectrum. Two scenarios for recording data

are proposed: 1) the subject being in direct contact with the sensor, and 2) the sensor

is placed beneath a mattress. The latter will investigate the sensitivity of the sensor

when placed in a truly ambient position. Additionally, a comparison of these results

will quantify the attenuation resultant from using the mattress. The UMBSv1 has a
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Table 6.1: Heart beat and respiration rates over 3 subjects for 3 positions each. The
rates for each epoch are measured manually by an observer, by visually examining
the UMBS time series data (UMBS time) and also by visually examining the UMBS
frequency spectrum (UMBS freq). A manual determination of the heart rate was not
possible by a visual examination of the UMBS time series data (-). For some epochs a
visual examination of the frequency spectrum could not discern a clear frequency peak

for both respiration and heart rate data (N/A).

Subject Position Measurement Heart Beats Breaths
Method (per 30 Seconds) (per 30 Seconds)

Manual 28 29 31 32 9 8 8 7
1 Supine UMBS time - - - - 9 8 7 7

UMBS freq - - - - 8.1 8.1 7.5 7.2

Manual 32 32 32 32 8 8 7 7
1 Prone UMBS time - - - - 7 8 7 6

UMBS freq 30.9 31.2 - 31.2 7.2 7.5 6.9 6.6

Manual 32 31 31 31 9 9 9 10
1 Lateral UMBS time - - - - 8 9 9 10

UMBS freq 30.9 - - 31.2 8.4 9.3 10.5 9.5

Manual 30 31 30 31 9 9 9 9
2 Supine UMBS time - - - - 9 9 10 9

UMBS freq - - 29.7 27.9 9 8.6 9.6 9.6

Manual 32 32 32 33 13 11 14 13
2 Prone UMBS time - - - - 12 12 12 13

UMBS freq - - 31.8 32.4 12.15 12.6 12.9 12.45

Manual 32 32 32 31 12 11 12 12
2 Lateral UMBS time - - - - 12 11 12 11

UMBS freq - - - - 11.4 11.25 - 11.85

Manual 38 40 38 37 8 8 7 7
3 Supine UMBS time - - - - 8 7 7 7

UMBS freq - - - - 7.5 - 7.5 6.75

Manual 34 34 34 37 6 6 6 5
3 Prone UMBS time - - - - 6 6 6 5

UMBS freq 39.9 43.2 42 - 6 5.4 6 5.5

Manual 38 36 35 34 6 6 6 6
3 Lateral UMBS time - - - - 7 7 6 6

UMBS freq - - - - 6.3 6.3 5.7 6

Table 6.2: The difference between respiration rates captured over all subjects, mean ±
standard deviation breaths per minute. The heart rate difference could not be calculated
using UMBS time series data and also excludes Subject 3 in the prone position, mean

± standard deviation beats per minute.

Difference Against Manual Method
Respiration Heart Rate

UMBS time −0.14(±0.639) N/A
UMBS Freq −0.08(±0.614) −0.87(±0.941)
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Table 6.3: Pearson’s correlation coefficient and mean percentage error for the esti-
mated UMBS data against the actual breathing and heart rates over all subjects. Data

is also shown for the heart rate estimate excluding Subject 3 Prone position.

Respiration Heart Rate Heart Rate
All Subjects All Subjects w/o Sub 3 Prone

UMBS Time Correlation [ρ] 0.96 - -
Error [Mean, %] -1.10% - -

UMBS Freq Correlation [ρ] 0.56 0.88 0.7
Error [Mean, %] -6.80% 3.61% -2.74%
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Figure 6.3: Scatterplots of UMBS derived physiological measures to actual and res-
piratory rates. Diagonal line represents point of perfect alignment.
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dynamic range of [0-255]; increasing this should positively affect the sensitivity of the

UMBS when detecting physiological signals. Additionally, the estimates of breathing

and heart rates were calculated manually by an observer in this experiment; however

this can raise a source of error and objective measurements should be used.

6.2 Experiment 2 - Automated Respiration and Heart Rate

Estimation

An accurate and automatic method of estimating respiration and heart rate using the

UMBS (v3) was investigated using both time and frequency based methods. Ground

truth measurements were used to assess the valid, robust and accurate detection of

these physiological signals using the UMBS as proposed previously. A larger cohort was

recruited and longer data sets were used. The epoch lengths were also increased to a 5

minute duration as used in similar studies by other research groups (Brink et al., 2006;

Carlson et al., 1999; Shin et al., 2010). The dynamic range of the UMBS (v3) is 8 times

greater than the UMBS (v1) (varying from [0-2045]), and although the pressure range

is similar, the sensitivity of the sensor in detecting movement should be greater.

Figure 6.4 shows concomitant data without movement artifacts from the UMBS, from a

strain gauge recording respiratory effort and from a PPG recording cardiac pulse rate. As

shown previously, respiratory information can be seen in the UMBS data when compared

to the respiratory effort signals directly. In the previous experiment, slight perturbations

in the UMBS signals were found to result in a peak in the frequency domain correlated

with the estimated heart rate. It is of no surprise that a frequency analysis of UMBS

signals in Figure 6.4 results in the similar spike in the cardiac frequency range as well

as a peak in the respiratory frequency range. This experiment was designed to compare

the respiratory and heart rate measures generated from UMBS data against objective

measures of these physiological signals. The creation of an automated algorithm to

estimate physiological signals reliably was central to this.

A description of the technologies used to measure the physiological signals, the experi-

mental set-up and the data set is given below.

6.2.1 Methods

This experiment recorded data over 8 subjects (4 male; 24-28 years old) lying in direct

contact with the UMBS (placed on a solid surface) and subsequently upon a mattress

with the UMBS underneath. Subjects were asked to refrain from any large movements
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(c) Raw PPG data containing pulse rate information

Figure 6.4: Concomitant raw UMBS, strain gauge and PPG data

and to stay in the prone position during the experiment. Approximately 30 minutes of

data were recorded per subject when in direct contact with the sensor while 60 minutes

of data were recorded per subject when the mattress separated the subject and the

sensor. Respiratory effort (around the upper torso) was recorded using a strain gauge

as shown in Figure 6.5(a). Heart rate was calculated by measuring PPG placed upon

the ear lobe of the subject. The placement of the UMBS, PPG and strain gauge for this

experiment is shown in Figure 6.5(b). In order to increase the range of the respiration

and heart rates recorded, some subjects partook in cardiovascular exercise prior to the

start of the experiment (at the subject’s discretion). UMBS data was recorded on a

computer and time stamped according to the internal Central Processing Unit (CPU)

time. All strain gauge and PPG data were recorded on the same computer as the

UMBS data using the RSP100C and the PPG100C modules on a Biopac MP150 System

(Biopac Systems, Goleta, USA) and customised software. In order to remove noise on

the respiratory module (RSP100C), the first low pass was set to allow frequencies below

1.0 Hz, and a second highpass filter was set to allow frequencies greater than 0.05Hz (as

per the manufacturer’s recommendations). The filter settings applied to the data from

the PPG module (PPG100C) were as per the manufacturer’s guidelines. The lowpass

filter allowed signals less than 3Hz and the highpass filter allowing signals over 0.5Hz.

This data was synced to the UMBS data manually after data collection.
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(a) Strain gauge placement

PPG

Strain Gauge
UMBS

(b) Example UMBS deployment (beneath mattress)

Figure 6.5: UMBS and strain gauge placement
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(c) UMBS data filtered in the respiration range
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(d) UMBS data filtered in the heart rate range

Figure 6.6: A sample of the concomitant data recorded from one subject. The respi-
ratory effort is captured using the strain gauge as shown in (a).
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Subject Sex Sensor Good All
Position Epochs Epochs

1 F Direct 5 6
2 M Direct 3 6
3 M Direct 2 6
4 M Direct 6 6
5 F Direct 3 6
6 M Direct 5 6
3 M Mattress 12 12
6 M Mattress 10 12
4 M Mattress 5 6
5 F Mattress 12 11
7 F Mattress 9 11
8 M Mattress 10 11

Total - - 82 99

Table 6.4: Particulars of automated respiration estimation data set.

6.2.2 Data Preparation

A number of automated methods for capturing respiration rates were investigated. These

included time and frequency based analyses. A total of four types of signals were pre-

pared using the following techniques.

6.2.2.1 UMBS Data Preparation

The entire data set (over 495 minutes) was divided into 99 non-overlapping windows of

duration five minutes. This epoch length was consistent with similar literature allowing

for a large number of complete respiration cycles to occur within each window (Brink

et al., 2006; Carlson et al., 1999; Shin et al., 2010). As such, this research estimated the

respiration rate based on a 5 minute epoch. Due to large body movement artifacts in

the UMBS data (including shifting postures, coughing, etc.) and also due to inadequate

clean respiration profiles (inherent from using a strain gauge) 82 windows (82.83%;

410 minutes) were deemed acceptable for further analysis. The UMBS was in direct

contact (DC) with the participant for 24 (24.24%; 120 minutes) of the 82 windows and

underneath a standard spring mattress (UM) for 58 (58.58%; 290 minutes) of the 82

windows (as given in Table 6.4). A supine posture was maintained by the participants

over all tests. Strain gauge data were reviewed manually by an observer and the location

of all respiratory peaks were manually stored. Heart rate data (r-r interval) was detected

using a standard algorithm (Pan and Tompkins, 1985).
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Signal Extraction The UMBS tactels which contain no information (saturated tactels

and tactels devoid of movement or pressure) were excluded from further analysis leaving

active signals containing body movement information. Slight temporal phase shifts were

found between the UMBS signals measuring respiration and heart rate (as can be seen

in Figure 6.7). It was anticipated this was due to the spatial separation of the individual

sensors within the device, of particular concern to higher frequency signals such as heart

rate.

Filtering A median filter, of length 100 samples, was applied to the UMBS data

in order to remove any baseline wander (mFiltData). Subsequently a high-pass 5th

order Butterworth filter with a cut-off frequency of 0.1Hz was applied to remove slow

deviations in pressure across the UMBS resultant from gradual postural shifts. This data

was subsequently passed through multiple low-pass 5th order Butterworth filters with a

varying cut-off frequency of 0.1, 0.2, . . . ,2.0 Hz producing multiple signals (bpFiltData).

The optimal upper cut-off frequency was unknown and selected during analysis. It was

anticipated that the frequency range for heart and respiration rate would be required

to estimate each signal. Upper cut-off frequencies were selected for each of the DC and

UM conditions.

Data Fusion The mFiltData and bpFiltData contain data from one or more tactels

over the recording period. Each set of data were fused together using two techniques;

(i) Principle Component Analysis (PCA) (Jolliffe, 2004); and (ii) an Adaptive Linear

Combiner (ALC) (Widrow and Stearns, 1985). In PCA, the data is transformed into

principal components with each component formed as a weighted mixture of the original

signals so that they are successively orientated in the directions of maximum variance in

the data. The first principal component is the direction of largest variance, the second

component is in the direction of next largest variance (which is orthogonal to the first

component) and so on. Since large body movement data segments have been omitted

from the data the resulting signal variance can be attributed to respiration and heart

rate components. During quiescent periods (ie. epochs devoid of postural shifts), the

first principal component was found to contain strong correlations with respiration as

can be seen in Figures 6.7 and 6.8(a). A high correlation (r = 0.8875) can be seen

over 500 seconds of example strain gauge data and the first principal component taken

from the relevant UMBS data. In this instance, the first principal component captured

90.71% of the variance (and it was found to be over 80% of the variance for the other

sets of data), while the 2nd and 3rd principal component captured 8.36% and 0.93%

of the variance respectively. The variance captured by the first principal component is

reduced when significant movement occurs. This is due to seemingly random changes
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(b) raw UMBS data (from 3 active signals)
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(c) UMBS data after baseline removal using an overlapping windowed
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(d) Principal Components from UMBS data after baseline removal

Figure 6.7: Concomitant data recorded from one subject. A correlation exists between
the first principal component and the strain gauge (SG) data.

in pressure across the sensor. The amount of variance captured by the first principal

component may be used as a measure of the amount of movement occurring during that

epoch. This is further discussed in Section 6.3.

However, PCA based data fusion does not take into account any phase variation between

signal sources arising from the spatial distribution of the tactels within the UMBS. If

the phase variation resulted in a 90 degree phase shift between signal sources this would

result in a complete loss of signal (as can be partially seen in Figure 6.6(b)). As a result

a second method was devised using an ALC to fuse the original signals and 30 phase

delayed versions of these signals together catering for any phase difference between the

signals. The signal containing the largest variance was taken to be a reference signal. A
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Figure 6.8: A correlation can be seen between the first principal component (PC1)
and the strain gauge in both figures. The data was normalised to a range of [-1, +1].

cancellation signal was then generated from the remaining signals (and 30 phase delayed

versions of these signals; one sample apart). These were weighted such that a minimum

phase error between the reference signal and the cancellation signal was found. The

Least Mean Squares (LMS) algorithm was used to select the appropriate weighting for

each input to minimise the Mean Squared Error (MSE) between the sum of the weighted

inputs and the desired output during a training phase (after which the weights remained

constant). This cancellation signal fused information from all sources (including phase

delayed versions of the original signals), and also the reference signal, into one signal.

The weights subsequently can be used as a means of mapping the spatial distribution of

pressure on the UMBS, however this was not investigated further in this instance. The

weights should be re-initialised after each large movement as spread of pressure across
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the mat may have changed and, accordingly, new weights may be required.

The ALC technique was tested initially using simulated data. Three signals of various

maximum amplitude oscillating at 0.2 Hz were generated and phase shifted (by approxi-

mately ten degrees) relative to one other. One signal (randomly selected) was chosen to

be a reference (or desired) signal. Thirty phase delayed versions of the remaining signals

(1 sample apart) were generated and fed as inputs into the system. The weighted sum

of the inputs (iteratively optimised over time) successfully followed the desired signal

and the frequency spectrum of the output, as expected, contains a peak at 0.2 Hz (as

shown in Figure 6.9). Experimental results with UMBS data using the signal with the

highest variance as the desired signal, and subsequently with the strain gauge data as

the desired signal can be seen in Figure 6.10. Should a weighted version of the UMBS

data be able to completely compensate for the strain gauge data, no error should exist

between the output and desired signal. However in practice, this is not often the case

when real data is concerned (and may be possibly due to a changing spatial orientation

brought about through breathing). Results using a real data set can be seen in Figure

6.10(e). The ALC method serves to minimise the error and the output can be seen to

follow the strain gauge data suggesting that the UMBS data (and time shifted versions

of this data) can capture respiratory data effectively, as shown in Figure 6.10(d). A low

error is generally seen however an increase occurs and diminishes at 100 Seconds. A

small movement may be seen in the corresponding UMBS data.

The ALC was applied to both the mFiltData and bpFiltData data sets generating a total

of four signals for later estimation of respiration and heart rate:

• PCA mFiltData

• PCA bpFiltData

• ALC mFiltData

• ALC bpFiltData

6.2.3 Automated Physiological Signal Estimation

6.2.3.1 Time-based Techniques

Peak Detection Algorithm Two peak detection methods were developed to detect

the breathing profiles on both the strain gauge and UMBS-derived data. In the first

method, (peakDet), all local peaks were found by searching for samples occurring between
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(a) Simulated UMBS data; Oscillating at 0.2Hz, out of phase and of different amplitudes
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Figure 6.9: Simulated UMBS data showing the capacity of the ALC to compensate
for the phase variance between UMBS signals. The frequency peak in the output signal

is at the expected value of 0.2 Hz.

upward and downward trends which represents the point between the end of inhalation

and the start of exhalation. This was achieved through differentiating the signal and

finding where the maxima occur. A further requisite involved ensuring that the height

of each peak occurred above the mean signal value within that epoch. A fixed (peakDet

fixed) and dynamic (peakDet dyn) minimum refractory period, initially chosen to be

two seconds, between each respiration cycle was chosen and this was optimised during

testing. The initial window of analysis contained ten peaks. The next peak occurred

after the initial refractory period. This refractory period was updated after each new

peak was found. The updated minimum refractory length was taken to be half of the

median length of time between the previous ten peaks.

A comparison (using absolute mean difference and standard deviation between the num-

ber of manually observed peaks and number of automatically detected peaks) of the

dynamic updating method against the fixed refractory length method for a reduced set

of 24 five minute windows of data can be seen in Figure 6.11. The reference method was

manually scored. The peakDet peak detection technique was also applied to the strain
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(a) Actual UMBS data; Oscillating at approximately 0.2Hz
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(c) Frequency spectrum of output signal; three peaks are present at 0.16, a slightly larger peak at
0.2 Hz and a peak within the cardiac range at 1.15 Hz.
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Figure 6.10: Actual UMBS data showing the application of the ALC in compensating
for the phase variance between UMBS signals. In Figures (a) and (b), the UMBS signal
with the highest variance is used as the desired signal. The output is compared to the
actual strain gauge data in Figure (c). In Figures (d) and (e), the actual strain gauge

data is set as the desired signal.
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Figure 6.11: The absolute mean difference (solid line) and standard deviation (dotted
lines) between the respiratory peaks manually observed and automatically detected

using the various techniques.

gauge signal and resulted in a low mean difference and low standard deviation when

compared to the manually scored results. The dynamic refractory length was shown to

correct for an ill-fitting initial window length, however it did not perform well for the

ALC data.

A second method was used which sequentially found peaks which were surrounded by

lower values on both sides, (PkDet) (Billauer, 2012). The minimum height difference

between each maxima and the surrounding minima on each side was optimised during

analysis.

A time based analysis for estimating heart rate was not applied as the cardiac cycle was

not visually discernible as reported in the previous section.

6.2.3.2 Frequency Based Analysis

Frequency analysis was applied to all of the UMBS-derived data in order to find fre-

quency peaks relating to respiration and heart rates. Wavelet and windowed Fourier

analyses were applied to the active signals. The Lomb-Scargle method (Press and Ry-

bicki, 1989) was applied to the unevenly sampled raw UMBS data. ICA was also applied

in an effort to fuse the active signals and extract separate noise and physiological signals.

None of these methods outperformed the time based analyses methods when compared

to the gold standard measures of respiration during initial analyses.

The frequency-based detection of heart rate was inconsistent and its accuracy was highly

variable. As such, heart rate detection was not included in any further analyses.
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6.2.4 Results

6.2.4.1 Respiration Estimation

The mean difference in the number of breaths, for each window of data and for all internal

configuration parameters (lpCutOff, refractory length and the reference length), between

the derived respiration rate and the gold standard was calculated. The average and

standard deviation of this mean difference over all windows, for all internal parameters

were subsequently found. The optimal internal parameters were chosen by minimising a

performance metric (the sum of the average and standard deviation of the absolute mean

difference over all windows of data). These optimal parameters were calculated for each

signal (PCA mFiltData, PCA bpFiltData, ALC mFiltData, and ALC bpFiltData), for

each time-based respiratory peak detection method (PkDet, peakDet fixed, and peakDet

dynamic), and for each sensor position (in direct contact with the subject, and under the

mattress). A summary of the optimal metrics over all scenarios can be found in Table

6.5. The refractory length remained fixed for the peakDet fixed peak detection method,

while it was internally modified during algorithm execution for the peakDet dynamic

peak detection method. The optimal results found are as follows. Over the DC data set,

a mean difference of 0.5 (SD of ± 1.85 ) Breaths per Five Minutes (BrP5M) and a mean

percentage error (MPE) of 0.56 % (SD of ±2.47%) was found when the participant was in

direct contact with the sensor. This occurred using the PkDet algorithm applied to the

first principal component of the bpFiltData, an upper cut-off frequency of 0.4Hz and a

refractory length of 308 samples. When the sensor was placed underneath the mattress,

the mean difference was -0.12 (SD of ± 2.26) BrP5M and an MPE of -0.16 % (SD

of ±3.12 %). This occurred using the PeakDet algorithm applied to the first principal

component of the bpFiltData, an upper cut-off frequency of 0.8Hz and a refractory length

of 19 samples.

6.2.4.2 Heart Rate Estimation

Time based analysis was not applied for heart rate estimation from the UMBS data

as a visual examination of concomitant UMBS and PPG data could not determine any

time-based correlation. As a result, only a frequency based analysis was applied to

each window of data. A Fourier transform was applied to the raw UMBS data and the

frequency range 0.7-1.8 Hz was investigated for any cardiac activity. A distinct peak

was found in the cardiac range for only some of the windows of data. As such, the ratio

of the amplitude of this peak to the mean amplitude over the entire cardiac range was

used as a quality metric to assess the reliability of using frequency content to report an

estimate of heart rate (see Figure 6.12). The was compared to the absolute difference
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Figure 6.12: Absolute difference between the frequency peak of actual heart rate (us-
ing PPG) and the estimated heart rate (dotted lines separate data belonging to different
subjects). The corresponding derived quality metric (peak frequency height/mean fre-

quency height) is also shown.

(in Hz) against a gold standard measurement of heart rate. This was calculated over all

windows of data.

6.2.5 Discussion

The UMBS performs well compared to other similar technologies as given in Table

6.6. For the under mattress condition, the mean difference between this system and

the gold standard was -0.12 (SD of ± 2.26) BrP5M and an Mean Percentage Error

(MPE) of -0.16 % (SD of ± 3.12 %). A scatter plot of the optimal respiration count

estimate for both conditions against the actual count can be seen in Figure 6.13. Shin

et al. (2010) investigated direct contact respiration estimation using an air mattress,

composed of separate air cells with a balancing tube based pressure sensor, and reported

a mean difference of 0.5 ± 0.63 Breaths per Minutes (BrPM) (equivalent to 2.5 ± 3.15

BrP5M) and an MPE of 2.85 %. Estimates of heart beats, body movement, snoring

events and apnoeic episodes were also produced with high sensitivity and high positive

prediction values. Carlson et al. (1999) developed a non-invasive respiratory monitoring

system (NIRMS) for sleeping subjects (in direct contact with the sensor) which monitors

pressure changes on an air mattress using a pressure transducer. They reported on eleven

subjects over three sleeping postures each (supine, prone and side) for a duration of 5

minutes per condition (33 data sets in total). A mean of absolute differences between

the estimated respirations and the actual respirations was 0.79 ± 0.6 BrP5M and a
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mean error of 1.38% were reported. Brink et al. (2006) investigated the use of high

resolution force sensors (also known as load cells) placed underneath the bed posts for

non-contact measurement of respiration, heart rate and body movements during sleep.

Data was captured from fourteen subjects (seven male) over a five minute duration in

a prone, supine or side position. This produced a mean absolute difference of 0.03 (SD

of ± 0.33) BrPM (equivalent to 0.15 ± 1.65 BrP5M) between the estimated and actual

breaths and a mean error of 1.2%. Zhu et al. (2006) developed an under-pillow pressure

based respiration and heart rate estimation sensor. Data was recorded from thirteen

recumbent subjects (8 male) for an average of approximately 115 minutes. A mean

absolute difference of 0.04 (SD of ± 0.06) BrPM (equivalent to 0.24 ± 0.34 BrP5M) were

reported, resulting in a mean error of 0.38%. However the accuracy of this under-pillow

technique might vary over different sleeping positions (supine, prone or side-lying) as

the carotid pulse might not be present in all postures. Pressure sensitive pads placed on

top of the mattress, in contact with the participant through bed sheets, was put forward

as a potential technology for sleep monitoring (Mack et al., 2009a). An algorithm was

developed, from data collected from 40 subjects, which detected the ballistocardiogram

and accurately reported the heart rate to within 2.72 beats per minute and respiration

to within 2.1 breaths per minute. The use of 4 strain gauges, sampling at 128Hz, fitted

to a segment of the bed frame was also investigated (Brser et al., 2011). An automated,

dynamic technique was developed to extract the heart rate from data collected from 16

individuals. A beat to beat interval error of 1.79% was reported and the algorithm was

found to work for over 95% of the data. Load cells, placed underneath the bed posts and

sampled at 200Hz, were further investigated and found to extract the ballistocardiogram

(Choi and Kim, 2009). Heart rate variability analysis was then applied and the derived

features were found to be able to discriminate deep sleep (stage 3 and stage 4 sleep) from

the other stages of sleep with a 92.5% accuracy. An under-mattress pressure sensitive

capacitive foil electrode grid sampled at 50Hz was found to extract the various heart

rate features from the ballistocardiogram (Kortelainen et al., 2010). The combination of

a movement detection system and another system, based on the application of HMM on

heart beat interval data to discriminate between REM and Non-REM sleep, was found

to report an accuracy of 79%.

During the initial analysis, it was discovered that the strain gauge derived respiration

data contained some invalid values. This was attributed to issues with the design of

the sensor. The strain gauge measures horizontal torsion of an elasticated band at

one position along the device, rather than measuring strain throughout the band, as is

the case in a Respiratory Inductance Band (RIB) which measures changes in the total

circumference of the band. The RIB measures strain (and correspondingly respiration)

by measuring the inductance in a wire woven in a sine wave pattern throughout the
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Figure 6.13: Comparison of the ability of the UMBS to correctly estimate respiration
using direct contact (grey diamonds) and through a mattress (brown squares) against
manual respiration counts using a strain gauge over a 5 minute epoch. The diagonal

line represents perfect estimation.

Table 6.6: Performance of the UMBS compared to similar ambient sensors. Mean Absolute
Difference (MAD), Mean Difference (MD), Mean Error (ME), Mean Percentage Error (MPE),

Breaths Per Minute (BrPM)

Device Performance Cohort Data Set
Details

Load Cells (Brink et al., 2006)1 MAD 0.15 ± 1.65 BrP5M 14(7M) 5 min bins
ME 1.2%

NIRMS (Carlson et al., 1999) MAD 0.79 ± 0.6 BrP5M 11 5 min bins
ME 1.38%

Air Cells (Shin et al., 2010)1 MD 2.5 ± 3.15 BrP5M 13
MPE 2.85%

Pillow (Zhu et al., 2006)1 MAD 0.24 ± 0.34 BrP5M 13(8M) 115 min bins
ME 0.38%

UMBS MD -0.12 ± 2.26 BrP5M 8(4M) 5 min bins
MPE -0.16 ± 3.12 %

1 Results originally quoted on a per minute basis.

151



Experimental Validation of the UMBS

band. Another source of error was found to be as a result of ill-fitted strain gauges; if

the circumference of the belt is too large, the point of complete exhalation cannot be

measured accurately as seen in Figure 6.6(a). The minima of the strain gauge data does

not exhibit a clear point marking the exact location of complete exhalation. A slight

upward trend after each minima can also be seen. This is due to the application of a

filter used to remove a Direct Current (DC) component. It should also be noted that no

clear inhalation peak can be seen between 1405 and 1415 seconds. This absence of an

inhalation signal the strain gauge data is also reflected in the concomitant UMBS data.

Data sets containing these errors were excluded from further analysis.

A slight temporal phase shift was found when measuring respiration from adjacent sen-

sors on the UMBS as a result of their spatial distribution. The effect of this was con-

sidered minimal when investigating respiration as the wavelength concerned was much

larger than the temporal phase shift, although it was suggested that this would be more

of a concern for higher frequency signals such as heart rate. Methods of signal fusion

using cross correlation were initially investigated. However, these was very sensitive

to minor body movement (occurring during brief periods of the data) not relating to

respiration or heart rate. As such, an ALC was applied in order to investigate whether

dynamic phase correction would be more accurate than fixed phase correction offered

when using cross correlation. A modified ALC was applied to resolve this problem,

however it did not result in any increased accuracy. This may be due to the artificial

conditions (not the subject’s normal bedroom, etc) or resultant from the subject being

asked to remain as still as possible (yet comfortably) during the experiment.

Some subjects partook in cardiovascular exercise (approximately twenty minutes run-

ning) prior to the beginning of the experiment, this increased the cardiorespiratory range

of the data.

Frequency-based methods (Fourier Analysis) of extracting heart rate and respiration

rate were also investigated, however inconsistent results were reported and they were

outperformed by the time-based peak detection algorithms. Wavelet analysis showed a

large peak occurring in the respiratory range, however further investigation found that

while it was indicative of respiration, more accurate estimates were provided by the

time-based methods. Time and frequency based methods for detecting heart rate did

not provide reliable results.
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6.3 Experiment 3 - Movement Detection Capacity

This section describes the validation of the UMBS in detecting nocturnal movement. A

video based gold standard movement index is used to quantify the true level of motion

over each recording. The work investigates the development of an algorithm which accu-

rately and reliably discriminates movement from non-movement epochs. A comparison

against other commonly used modalities of measuring movement, namely a PIR and a

wrist actigraph, during sleep is also made.

6.3.1 Data Collection and Processing

Data were recorded from four participants (one male) over eight sessions in a standard

bedroom. Five sessions were recorded from the male, while a data set was recorded from

each of the three females. The eight data sets had a total duration of 1,491 minutes.

The UMBS (v3) was placed underneath the mattress of the bed and the data collection

system was placed adjacent to the bed. The participants were instructed to lie naturally

as they would when going asleep. The PIR and video camera were placed directly

over the bed at a height of 1.7 metres. No blankets covered the subject ensuring the

detection of any body movement by the video based gold standard used. UMBS data

were compared to video gold standard, wrist actigraphy motion metrics, and a motion

metric derived from the PIR in 60 second non-overlapping windows.

6.3.1.1 UMBS

UMBS Motion Metric Estimation Algorithm A median filter was used to remove

outliers in the UMBS data. All data was split into windows of 60 seconds duration. The

standard deviation of the signal over this window for each j tactel (σkj as defined in

Equation 5.7), and the sum of the difference between signal values over the window for

each j tactel (∆k
j as defined in Equation 5.10) were used to generate UMBS motion met-

rics for each 60 second window of data, k. Specifically, the sum and standard deviation

of these two metrics over all signals were used to generate the following metrics:

UMBS 1k =

24∑
j=1

σkj (6.1)

UMBS 2k =
24∑
j=1

∆k
j (6.2)
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UMBS 3k =

√√√√ 1

24

24∑
j=1

(σkj − σ̄k)2 (6.3)

UMBS 4k =

√√√√ 1

24

24∑
j=1

(∆k
j − ∆̄k)2 (6.4)

where ∆̄k and σ̄k are the mean ∆k
j and σkj values over all j tactels for epoch k.

6.3.1.2 Video

Video based motion detection, using a standard web-cam (Trust Spacec@m 360 ) and

motion detection algorithm described below, was used as the reference gold standard

motion detection technology (Camurri et al., 2003). Lights were kept on during data

collection as required by the motion detection algorithm.

BioMobius/EyesWeb Video Motion Metric Algorithm A motion metric was ex-

tracted using in-built blocks within the TRIL BioMobius platform (www.biomobius.org)

developed as an extension to the Eyesweb (http://www.infomus.org/EywIndex.html)

data collection and analysis platform. The motion detection algorithm compares the

apparent motion between subsequent images within a video. Firstly, some preprocess-

ing steps are performed, the video is converted into black and white and a median filter

is used to remove white noise. The motion detection algorithm uses a reference frame

(the first frame captured) of the background as a method of detecting the introduction of

a foreign object (such as a person) into subsequent frames. This results in the extraction

of a silhouette of the new object in the video such as a person. Variations in the shape of

this silhouette over a user defined number of previous frames (4 for this experiment; the

default value) is found by summing the area difference between the area of the silhouette

in the current frame and the silhouette area in each of the previous frames. The resulting

’silhouette motion image’ is normalised by the total area of the silhouette in the current

image. This results in a ’quantity of motion’ metric which avoids scaling issues due

to the object being different distances away from the camera. This also compensates

for different apparent sizes of objects. It should be noted that a smoothing effect is

introduced when multiple previous frames are used in the calculation of the ’quantity of

motion’ metric. Further details may be found in Camurri et al. (2003). A time-stamped

motion metric is produced as each frame is processed. A histogram of the Video Motion

Metric data can be seen in Figure 6.14. A manual investigation of the data revealed
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Figure 6.14: Video motion metric histogram for the entire data set. The high occur-
rence of low motion metric values represent illustrates that subjects remained still over

extended periods of time.

that using a threshold of 0.01 detected all major and minor body movements without

generating false alarms due to random noise.

6.3.1.3 PIR SHIMMER

Passive Infra-red (PIR) motion detection is widely used for detecting the presence of

an intruder and is commonly seen in house alarms. The lens in the PIR unit focuses

environmental infrared radiation onto a pyroelectric sensor. It is the change in the

amount of infrared emitted in the environment which triggers an event which is in turn

interpreted as motion. Thus, sudden changes across any of the cells in the pyroelectric

sensor are interpreted as motion. The circuit is designed using a differential amplifier so

that universal changes in environmental infrared levels are not misinterpreted as motion.

The PIR device used in this experiment was attached to the Intel Digital Health Group’s

Sensing Health with Intelligence, Modularity, Mobility and Experimental Reusability

(SHIMMER) platform (Burns et al., 2010). Data was streamed from this device using

a Bluetooth connection and collected using the TRIL BioMobius platform in real time.

The resulting non-negative sampling error (the delay between the detection of motion

and the time-stamping of its occurrence can not be negative) was considered to be

negligible when compared to the analysed epoch length of 60 seconds. The PIR module

attached to the SHIMMER board was a Panasonic MP Motion Sensor (AMN 1, 2, 4)

Slight Motion Detector. This had a maximum rated detection distance of 2m, a detection

range of 91 degrees both horizontal and vertical, 104 detection zones and a movement

speed detection of 0.3 m/s-1.0 m/s.
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6.3.1.4 Wrist Actigraphy

In this study a reduced data set (four subjects; 1 male) of concomitant actigraphy

and video based motion data (267 minutes) was recorded for direct comparison. Wrist

actigraphy motion counts were recorded in one minute epochs and compared to the

video motion metric. The movement data between the video motion metric and wrist

actigraph were found to be significantly correlated (r2 = 0.3795, p < 0.0001).

6.3.2 Results

Concomitant data collected from the UMBS (the UMBS 2 motion metric derived from

the UMBS data), the wrist actigraph, and the video motion metric for 7,000 seconds

are shown in Figure 6.15. A direct comparison between normalised values of two of the

UMBS motion metrics, the PIR motion metrics and the video motion metric over 45

sixty second epochs is presented in Figure 6.16.

Specificity and sensitivity values were calculated and a ROC was generated in order to

assess the accuracy of the UMBS motion metrics in detecting motion (as defined by the

video-based motion metric). The use of specificity and sensitivity caters for any bias in

the data set toward either motion or non-motion. The best threshold was found using

the greatest distance between the origin and a point on the ROC curve (defined as the

ROC distance). This was defined to be the point at which the sensitivity and specificity

were closest to their optimal values when given equal significance (Equation 6.5) and

was reported as a percentage of the maximal distance (
√

2). An example ROC curve is

shown in Figure 6.17 and the optimal point on the curve (furthest from sensitivity and

specificity values of 0) is clearly marked.

ROCDistance =

√
Sensitivity2 + Specificity2

2
(6.5)

6.3.2.1 Movement Binary Classification Test

A BCT was performed directly on each of the four UMBS metrics against the true

indicator of motion (the video-derived motion metric) in order to select the optimal

threshold separately for each UMBS metric. The accuracy, specificity, sensitivity and

ROC distance for the optimal ROC point for each of the four UMBS metrics defined

above are given in Table 6.7.
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(a) Sample UMBS data showing pressure deviations resultant from large body movement.
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(b) UMBS 2 - UMBS Motion Metric
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Figure 6.15: UMBS data and concomitant video and wrist actigraphy data over an
extended period
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Figure 6.16: Direct comparison of 2 derived UMBS motion metrics, the PIR motion
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Table 6.7: Results for the binary classification test at the optimal UMBS threshold
(as defined by the ROC curve) applied to each UMBS derived motion metric and PIR

defined motion against the gold standard video based movement metric.

Acc Sens Spec ROC dist UMBS
% % % Thresh

UMBS 1 91.48 91.03 91.51 91.28 12.06
UMBS 2 91.48 92.31 91.44 91.88 163.44

UMBS 3 90.07 92.31 89.95 91.15 18.26
UMBS 4 89.74 55.13 91.65 75.63 64.15

PIR 93.36 83.33 93.91 88.79 N/A

6.3.2.2 Movement Classification Using Multiple Inputs

Advanced signal processing methods were employed to fuse the data from the four UMBS

metrics to maximise motion detection accuracy and reliability. This included linear and

nonlinear classifiers using all 4 UMBS metrics as input features. These were LDA,

QDA, SVM with linear and non-linear (radial basis functions) kernels, kNN and ANN

classifiers.

The data set is biased towards the non-movement class as over 94% of epochs contain

no movement. Training classifiers directly with this data would bias the results. For

example, if 90 % of data contained no movement and a classifier was tuned so that all

epochs reported no movement regardless of the raw data, an accuracy of 90% would still

be reported. To avoid this, a reduced data set was created by drawing equal numbers of

samples of both classes randomly from the data. This reduced data set was further ran-

domly split into 50% training and 50% test data sets. The original data set contained

1,418 samples and the reduced data set contained 156 samples evenly split between

movement and non-movement samples. Classifiers were optimised using the training

data and their classification performance evaluated on the test data. This process was

repeated one hundred times for each classifier and the mean performance recorded (also

known as cross-validation). Samples were replaced between each repetition. The stan-

dard deviation of the classification performance over the 100 runs was used to quantify

the stability of the accuracies reported by each classifier. These results are given in

Table 6.8.
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Table 6.8: Results (mean ± st dev; %) for the accuracy of movement detection when
fusing the four UMBS derived motion metrics together and for the UMBS 2 metric.

Accuracy Sensitivity Specificity ROC Dist.

LDA 80.77±4.57 96.08±3.90 65.46±3.90 82.39±3.96
QDA 89.48±3.69 91.54±5.13 87.42±6.74 89.67±3.60
kNN 83.64±4.60 86.08±6.69 81.19±8.16 83.88±4.52

SVM Linear 87.02±4.78 95.39±4.61 78.65±9.57 87.64±4.38
SVM Non-linear 90.06±4.17 93.73±4.63 86.39±6.70 90.24±4.10

NN 89.11±2.75 83.94±5.35 94.28±2.57 89.33±0.25

UMBS 2 91.48 92.31 91.44 91.88

Table 6.9: Wrist actigraphy movement detection performance over various thresholds
compared to the video based gold standard. The optimal BCT applied to the derived

UMBS data is also given.

Act Thresh Acc (%) Sens (%) Spec (%) ROC Dist (%)

>0 (all motion) 79.03 93.10 77.31 85.58
>20 (low) 88.39 89.66 88.24 88.96
>40 (medium) 88.76 68.97 91.18 80.84
>80 (high) 89.89 44.83 95.38 74.53
>11 (optimal) 85.77 93.10 84.87 89.09

UMBS 2 91.48 92.31 91.44 91.88

6.3.2.3 Alternative Technologies

PIR Motion Detection In a direct comparison of PIR motion and video detected

motion (gold standard), a high accuracy, specificity and sensitivity was found as given in

Table 6.7. PIR motion detection was outperformed by three of the four UMBS metrics.

Wrist Actigraphy The wrist actigraph sleep/wake discrimination algorithm uses low

(>20 motion counts), medium (>40 motion counts) or high (>80 motion counts) sensi-

tivity thresholds reported on a per minute basis. A comparison against these thresholds

and any wrist actigraph defined motion (>0 motion counts) was investigated. The

actigraphy threshold with the most accurate motion detection (defined by the maximal

ROC distance) occurred at eleven activity counts per minute. The results from a binary

classification test applied to these thresholds are given in Table 6.9.
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6.3.3 Discussion

The UMBS 2 metric accurately detects nocturnal movement in bed with an accuracy,

sensitivity and specificity of over 90% using a thresholding method applied to an easily

computed UMBS metric (see Table 6.7). The UMBS has been shown to outperform

wrist actigraphy, the current real-world gold standard for sleep monitoring, regardless of

whether the actigraphy threshold was selected to detect an optimal, low, medium or high

levels of motion (see Table 6.9). Additionally, although various advanced classification

algorithms were applied to increase accuracy, a binary classification test applied to one

set of derived UMBS data still resulted in the greatest accuracy (see Table 6.8). The

calculation of the UMBS 2 metric and the application of a thresholding function has

a significantly lower computational complexity than the use of advanced classification

algorithms and, as such, is easily realisable in a bed-based movement detection system.

The PIR based alternative solution investigated here results in a lower accuracy, speci-

ficity and sensitivity than three of the four UMBS motion metrics, yet this remains

comparably high. However, no bed sheets were used in this validation and it is conceiv-

able that bed sheets would inhibit the motion detection accuracy of the PIR.

6.4 Summary

This chapter has investigated the potential of a pressure based Under Mattress Bed

Sensor (UMBS) as a means of non-invasively capturing breathing, heart rate and acti-

graphic data from a sleeping subject. The novel contributions of this chapter are as

follows:

The development and validation of an algorithm which extracts respiration

rate from UMBS data: While reliable heart rate measurement was shown not to

be feasible, validating experiments confirm the sensor’s capabilities for respiration rate

estimation. Data was collected from eight subjects over lengthy periods when the UMBS

was placed both beneath and above the mattress. The algorithm discussed can reliably

estimate breathing rate from UMBS data in the absence of large body movement when

the UMBS is placed both above and below the mattress. In particular, a novel algorithm

has been proposed involving median filtering to remove the effect of slow postural changes

on the UMBS, bandpass filtering to remove unwanted spectral noise, PCA based data

fusion to merge respiratory information from all active UMBS signals and an optimised

peak detection algorithm which detects peaks related to breathing cycles. When the

UMBS is placed underneath the mattress, the mean difference between this system and
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Table 6.10: Performance of wrist actigraphy, PIR and UMBS metrics in detecting
motion compared to a video-based gold standard.

Technology Acc (%) Sens (%) Spec (%) ROC Dist (%)

Wrist Actigraphy 85.77 93.10 84.87 89.09
PIR 93.36 83.33 93.91 88.79
UMBS 2 91.48 92.31 91.44 91.88

the gold standard was -0.12 (SD of ± 2.26) BrP5M and an MPE of -0.16 % (SD of ±3.12

%). This method has been shown to provide a high accuracy compared to a strain gauge

based measurement of respiration rate and compares very well against similar ambient

approaches to sleep monitoring (as reported in Table 6.6).

An examination into the extraction of heart rate from UMBS data: In a

preliminary experiment heart rate signals were found to exist in the UMBS data using

frequency analysis. However, this information was not available over all subjects. A

visual time-based analysis did not reveal heart rate signals. In a further investigation in

Experiment 2, it was established that heart rate could not be accurately detected using

frequency analysis. The sampling rate of the UMBS (v3) was 20 Hz, however due to

the effective simplex polling protocol (discussed in the last chapter) this sampling rate

was lower and a mean sampling rate of approximately 15 Hz was found. Other similar

pressure-based systems which use a very high sampling rate report a high accuracy in

detecting heart rate (Mack et al., 2009a). However in this case data from one sensing

position is recorded, whereas in the case of the UMBS data from 24 sensing positions is

collected at a lower sampling rate.

The development and validation of an algorithm which derives multiple mo-

tion metrics from UMBS data: In the investigation of the motion detection ca-

pacity of the UMBS, a number of UMBS derived metrics were proposed and shown to

detect movement epochs with a high degree of accuracy and reliability (the best, UMBS

2, reporting sensitivity and specificity of over 90%). This was achieved using multiple

subjects over extended periods and compared to a video-based gold standard and al-

ternative bed movement sensing solutions. A motion detection algorithm using binary

classification on a UMBS derived metric, and an optimally selected threshold, was found

to outperform advanced classification techniques, using a combination of all UMBS de-

rived metrics. Additionally, the UMBS motion detection algorithm outperformed wrist

actigraphy, the gold standard method of sleep/wake discrimination, and a PIR based

ambient technology (as shown in Table 6.10).
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By exploiting the movement detection and respiration rate estimation capabilities in

parallel, the UMBS system can provide valuable physiological information relating to the

sleeping patterns of a subject under study, in an unobtrusive and ambient manner. The

technology is suited to data collection over an extended period and will not alienate the

participant. This is particularly relevant when monitoring a sensitive cohort, such as the

elderly, those suffering from mild cognitive impairment or people with dementia. This,

coupled with the low computational complexity of the data processing involved, makes

the UMBS an attractive and practical proposition for longer-term sleep monitoring in a

non-clinical setting.
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Chapter 7

UMBS Deployment in Clinical

and Domestic Environments

In the previous chapter, metrics derived from the UMBS were shown to reliably and

accurately estimate respiration rate and also to detect movement. However, a num-

ber of more informative metrics, or features, of motion can be extracted from the raw

UMBS data. The UMBS possesses the ability to record temporal, spatial, statistical and

spatiotemporal descriptions of in-bed movement throughout the night. In this chapter,

algorithms will be proposed which derive these descriptions from the raw UMBS data.

These algorithms will subsequently be applied to data collected in both real-world and

clinic-based populations. This will provide an insight into the types of information

captured by these features. A comparison will be made against wrist actigraphy data

in order to investigate whether there is any inherent loss of information due to the

discretisation process (that is, in wrist actigraphy, the continuous two axial accelerom-

eter data is summated into a discrete sample over a pre-defined epoch). Additionally,

a comparison will be made between the spatial and temporal UMBS-derived features.

Furthermore, this chapter describes a method of providing a spatiotemporal description

of each movement. A comparison of all UMBS-derived features across data collected in

the clinic and the real-world will be investigated.

The research will quantify differences between clinical and real-world measurements of

in-bed motion. It will also highlight features which are environment independent (that

is, features which will provide similar information regardless of recording condition and

bed/mattress type).
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7.1 Introduction

Traditional approaches of ambulatory sleep monitoring (wrist actigraphy) calculate a

movement metric (commonly referred to as activity counts) which summates all motion

occurring within an epoch (see Chapter 4). This was originally performed as a means

of reducing computational complexity in the storing of the data and for the sleep/wake

discrimination process. The application of relatively simplistic algorithms have reported

high accuracies and reliability of using this derived activity information to estimate

sleep and wake states across various cohorts (Kushida et al., 2001; Sadeh et al., 1994).

However, the actigraph’s placement on the wrist introduces an inherent difference in the

type of motion that is being recorded, that is, it is limb movement and not core body

movement that is recorded.

While relatively recent advances in technology provide increased computational com-

plexity in contact-based devices which are of appropriate sizes and dimensions, little

consideration has been given to the adherence and suitability of wrist actigraphy for

long term placement. For example as reported previously in this thesis, one older adult

refused to wear an actiwatch, another subject took off the actiwatch for periods of social

interaction, and there were problems in the initial days of the study where subjects

removed the actiwatch prior to sleep due to confusion about having to wear the watch

even whilst asleep (the subjects were asked to wear the actiwatch continuously) (Behan

et al. 2008a, Behan et al. 2008b). For sensitive populations, a non-contact modality for

sleep monitoring is proposed to provide a similar descriptive index of sleeping patterns

and sleep quality as the contact-based approach. Such a solution would be particularly

suitable for long-term monitoring. To date, many ambulatory and ambient sleep mon-

itors have focussed solely on temporal descriptions of movement, that is, reporting the

magnitude of movement over time (Adami et al., 2009a; Brink et al., 2006; Choi et al.,

2006; Fox et al., 2007; Rantz et al., 2008). A limited number of these technologies have

the ability to provide a spatial description of sleep, however very few of these take ad-

vantage of this capacity (Van Der Loos et al. (2003) use a spatial description of body

position to correct for bad posture).

The addition of a spatial description of sleep can be used to quantify the magnitude

of physical changes in body posture resultant from nocturnal movements throughout

the night. Additionally, spatiotemporal descriptions of each movement, containing both

temporal and spatial quantifications, report specific metrics relating to each movement

such as duration, magnitude and change in lateral position of that movement. Both of

these types of data may quantify in-bed movements better than the more traditional

temporal and statistical metrics of in-bed movement.
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Table 7.1: Derived UMBS Features

Feature Description

Temporal The continuous quantification of overall move-
ment over time

Spatial The continuous quantification of the magnitude
of changes in body posture over time

Statistical A discretised measurement of the magnitude of
movement in user-defined epochs

Spatiotemporal A detailed description (both spatially and tem-
porally) of each in-bed movement

The research questions addressed in this chapter include:

• Can temporal, spatial and statistical descriptions of in-bed movement be derived

from the UMBS? And if so, how do they compare across cohorts based in clinical

and real world environments?

• Does continuous temporal movement and/or spatial data provide a more informa-

tive description of in-bed movement than discretised (binned data, such as activity

counts recorded by wrist actigraphy) data?

• Can spatiotemporal descriptions of each movement be calculated from UMBS

data? And if so, can a spatiotemporal description of postural movements in-bed

discriminate between cohorts?

• Are temporal, spatial, statistical and spatiotemporal descriptions of in-bed move-

ment consistent over multiple days?

7.2 UMBS Feature Extraction Algorithms

Four types of features relating to movements were derived from the UMBS data: tempo-

ral, spatial, statistical and spatiotemporal features (as shown in Figure 7.1 and described

in Table 7.1). Statistical data was used to identify periods of continuous movement from

which spatiotemporal descriptions of each movement were calculated. Spatial data also

informed these descriptions. The algorithms developed to extract these data were vali-

dated using a custom collected ‘Turns Data Set’ (previously described in Section 5.2.3).
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Figure 7.1: Extraction of movement features from UMBS data.

7.2.1 Temporal Movement Features

Temporal movement features, extracted from the UMBS data, describe the magnitude

of motion registered by each tactel in the sensor over time. By monitoring the changes

in all tactel values over subsequent sample instants, an overall measure of motion can

be calculated. Initially, a continuous temporal activity metric was calculated using the

first derivative of the raw UMBS tactel data (see Equation 7.1). This metric represents

changes in the pressure placed across each of the 24 tactels in the UMBS over time as

shown in Figure 7.2. The standard deviation and mean of this metric was extracted

from the data over all tactels as given in Equations 7.4 and 7.5 respectively.

δij = [xij − x(i−1)j ] ∀ 2 6 i 6 N, 1 6 j 6 24 (7.1)

where δ is the difference between successive tactel values, N is the number of samples,

xij is the value of the jth tactel at the ith sample instant, and δij = 0 for i=1 and

1 6 j 6 24.

δi = [δi1, ..., δi24] ∀ 1 6 i 6 N (7.2)
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Figure 7.2: Data from one UMBS tactel over time and the derivative of that data.

δi = mean(δi) =
1

24

24∑
j=1

|δij | (7.3)

TMF1(i) = std(δi) =

√√√√ 1

23

24∑
j=1

(δij − δi)2 (7.4)

TMF2(i) = δi (7.5)

In the turns data set, TMF1 and TMF2 were found to be highly correlated (r=0.96, p

< 0.001) and as such TMF2 was used in further analysis due to its lower computational

complexity. The time domain data from the two derived temporal features (TMF1 and

TMF2) are shown in Figure 7.3(b) and can be compared directly to the UMBS data as

given in Figure 7.3(a). The frequency domain data for TMF2 was calculated using the

short time Fourier transform. The real part of the log of the frequency component of the

signal was used in order to reduce the magnitude of the time-frequency data (as shown

in Figure 7.3(c)). No significant difference between the different postural changes was

visually discernible from the frequency spectrum, apart from during the slow turns which

inherently have a reduced magnitude. However, this reduced magnitude is evident in

the time based data. As such, the frequency content of the temporal movement features

was not included as a feature in further analysis.

In order to identify movements a threshold of greater than 4 in the time-domain TMF2

data was empirically chosen to define when motion occurred (see Figure 7.3(b)
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(a) UMBS data collected while the participant was asked to assume and shift between four typical
sleeping postures: lying on their back (B); left side (L); right side (R); and front (F). The subject was
asked to change postures under three conditions 1) rapid transition without lateral displacement,
2) rapid transition with lateral displacement and 3) slow rolling transitions (inherently including
lateral displacement).
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(b) Corresponding temporal movement features with movement threshold (time domain).

(c) Temporal movement features (time-frequency domain for TMF2).

Figure 7.3: UMBS data and derived temporal features from a participant shifting
between postures on the UMBS.
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Figure 7.4: UMBS pressure data with outline of original tactels registering values
above 500.

7.2.2 Spatial Movement Features

A continuous description of spatial movement in bed was formed by extracting both the

centre and spread of pressure applied to the UMBS. A value of 500 units was used as

the threshold to indicate whether pressure was placed on a tactel. This allows us to

map where the subject is lying across the UMBS as shown in Figure 7.4. The centre

of pressure (COP) is defined as the centre of the outline shown, while the spread is a

measure of the width of the outline. In order to increase the accuracy in the centre and

spread of pressure measurements, the tactel values were interpolated, that is, for each

row of eight original tactels across the UMBS, 71 sample points were linearly interpolated

using tactels 1 through 8 in steps of 0.1 (as shown for one row in Figure 7.5). If any of

the interpolated sample points registers pressure above 500, it was deemed that pressure

was placed upon that point. The absolute centre of pressure was the average point

upon which pressure is applied over the three rows of the UMBS in both the lateral (x)

and anteroposterior (y) direction (this coordinate system is given in Figure 7.6). These

points are referred to as COPx,y (see Equation 7.8), or COPx and COPy individually

(an example of the COPx and COPy points for the ‘Turns’ data set is given in Figure

7.7(b)). The value of the centre of pressure point relates to the absolute centre of the

subject lying on the UMBS and is calculated for each sample instant as shown in Figure

7.7(b)). The bottom left of the UMBS was taken as the origin of this axis (that is, the

corner closest to the right arm when the subject is lying supine).

statusx,y =

0 xx,y < Threshold

1 Otherwise
(7.6)
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Figure 7.6: UMBS terms of location

where xx,y is the pressure placed upon the point (x, y) and statusx,y is a boolean value

which defines whether pressure is placed upon the point (x, y). For each point (x, y),

the pressure value is interpolated from the tactel values in the x-direction only.

COPx,y =

∑71
x=1

∑3
y=1(Posx,y × statusx,y)∑71
x=1

∑3
y=1 statusx,y

(7.7)

COPx,y = [COPx, COPy] (7.8)

where Posx,y is a vector which defines the location of the current point (x, y), the

numerator is a summation of (x, y) positions upon which pressure is applied (defined by

having a status of 1) in both x and y directions, and the denominator is the number of

positions which register pressure as being applied.

It was unclear whether COPx would provide useful information when each sample is

examined independently. The absolute value of COPx does not possess any relationship
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(a) UMBS data collected during conditions 1, 2 and 3.
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(b) Spatial movement features - time
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(c) Spatial movement features - time difference

(d) Spatial movement features - frequency (no data were plotted when the subject was not present in the
bed)

Figure 7.7: UMBS data and derived spatial features from a participant shifting be-
tween postures on the UMBS.
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to sleep quality, solely to position of the subject, however when taken relatively to sur-

rounding values, it provides a spatial measure of in bed movement. The first derivative

of the COPx data was used to quantify this movement (as per Equation 7.9). A plot of

the Spatial Movement Feature (SMF) for the ‘Turns’ data set is shown in Figure 7.7(c).

SMFi = COPx(i)− COPx(i− 1) ∀ 2 6 i 6 N (7.9)

where SMF1 is 0.

The time-frequency content of the lateral centre of pressure (COPx) is shown in Figure

7.7(d). Similarly to the temporal movement features, the frequency spectrum of the

spatial movement features did not offer any increase in information content above the

time based features.

Changes in centre of pressure in the anteroposterior direction were not investigated

as it was deemed that changes in posture in this direction would not provide useful

information.

TMF2 (Equation 7.5) and SMF (Equation 7.9) were found to be significantly correlated

(r=0.43, p<0.001) for the turns data set. However, while it was significant, it was not

found to be a strong correlation. This provides a justification for the use of this metric

in addition to TMF2.

The spread, or width, of the pressure impinged on the UMBS by the subject was also

investigated as a means of quantifying in-bed movements. It was defined as the number

of tactels taken to cover 80% of the overall pressure applied to the UMBS centered

around the COPx point. This algorithm begins at the lateral center of pressure point

(COPx) and iteratively works outward in both directions until 80% of the overall pressure

applied to the UMBS is measured. The width of this window is defined as the spread

of pressure and is calculated for each sample instant (see Figure 7.8(b)). A partial

function of the spread of pressure was calculated in order to differentiate between side

lying and front/back lying postures. However, this metric also measures movement as the

spread will change with postural shifts in position. A histogram of the data from these

postures was plotted in order to investigate the differences between the postures (see

Figures 7.8(c) and 7.8(d)). No discernible variation between the two histograms relating

to the different types of postures was present in the ‘Turns’ Data Set (see Figure 7.8(c)).

A two-dimensional comparison of tactel values (top-down view) for both prone/supine

and side-lying showed little difference between both postures. This may be due to an

increase in pressure being directed radially outward for the side-lying case (as the same

amount of pressure is focussed in a smaller area).
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(a) UMBS data collected during conditions 1, 2 and 3.
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(b) Spatial movement features - spread of pressure across the UMBS
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(c) Histogram of spread of pressure - lying on the front or back
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(d) Histogram of spread of pressure - lying on the side

Figure 7.8: UMBS data and spread of pressure from a participant shifting between
postures on the UMBS.
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7.2.3 Statistical Movement Features

Discretised UMBS 2 data measuring the magnitude of motion within a predefined epoch

length of 60 seconds was calculated using Equation 6.2 (as discussed in Section 6.3 and

shown in Figure 6.15). This metric is similar in form to the activity motion count

calculated by wrist actigraphy although the specificity, sensitivity and accuracy of the

UMBS 2 metric was found to be higher. Time frequency analysis was not applied to

this data set as there was an inadequate number of samples.

7.2.4 Statiotemporal Movement Features

Spatiotemporal UMBS movement features were calculated from data in which a complete

movement occurred (that is, a single motion event or multiple motion events occurring in

quick succession). In order to locate the beginning and end points of the motion event,

each epoch deemed to contain motion (as defined by UMBS 2 in Section 7.2.3) was

analysed over all time samples within that epoch. Upon conditions where a movement

occurred over multiple epochs, all of these epochs were concatenated and examined

together. A fifth order butterworth low-pass filter, with a cut off frequency of 0.5 Hz,

was applied to the tactel data in order to remove any higher frequency related artifacts,

which would not relate to large body movement (Redmond and Hegge, 1987). Within

this, possibly concatenated, filtered data, movement was defined to have occurred if the

absolute difference between a tactel value and its predecessor (as per Equation 7.10)

exceeded an empirically defined threshold (see Equation 7.11 and Figure 7.9(b)).

δ′ij = [xij − x(i−1)j ] for 2 6 i 6 N, j = 1, 2, ..., 24 (7.10)

where δ′ij is the difference between successive tactel values for the spatiotemporal window

under investigation, N is the number of samples, xij is the value of the jth tactel at the

ith sample instant (within the window under investigation), and δ′ij = 0 for i=1 and

j = 1, 2, ..., 24.

movement′ =

{
1 if δ′ ≥ threshold

0 otherwise
(7.11)

Under circumstances where movement briefly ceases, a refractory period of ten seconds

was used to concatenate these separate multiple movements together in order to analyse

them as belonging to the same movement event. The majority of movements lasted less

than 20 seconds. As such, frequency analysis was not applied to the spatiotemporal

data.
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Figure 7.9: UMBS and spatiotemporal data from a participant shifting between pos-
tures on the UMBS.

B
o

d
y

 P
o

si
ti

o
n

 a
t 

E
n

d
B

o
d

y
 P

o
si

ti
o

n

 a
t 

S
ta

rt

COP

COP

Spread

Spread

Lateral Change in Position

U
M

B
S

U
M

B
S

P
re

ss
u

re
 o

n
 U

M
B

S

P
re

ss
u

re
 o

n
 U

M
B

S

Figure 7.10: Pressure impinged on the UMBS at the beginning and end of a movement

A number of metrics were extracted from each of these movement events as listed in

Table 7.2.
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Table 7.2: Spatiotemporal Features

Feature Description

Start Time The absolute start time of the movement (see Figure
7.9(b)).

Finish Time The absolute end time of the movement (see Figure
7.9(b)).

Movement Duration The duration of the movement (see Figure 7.9(b)).

Lateral Change in Position The displacement in posture across the UMBS be-
tween the start and end of the movement (see Figure
7.10).

Change in Spread The change in the 80% spread of pressure across the
UMBS between the start and end of the movement
(the change in the spread before and after the move-
ment as shown in Figure 7.10).

Movement Area The absolute sum of the movement metric throughout
the movement period (shown in blue in Figure 7.9(b)).

Maximum Movement Magni-
tude

The maximum (or peak) movement value during the
movement (see Figure 7.9(b)).

Time to Peak Movement The time taken to reach the maximum movement mag-
nitude point from the start of the epoch (see Figure
7.9(b)).

Percentage to Peak Movement Time to peak movement taken as a percentage of the
total duration of the movement.

Magnitude of Movement Movement area normalised by the duration of that
movement.

Spread Movement Index The sum of the absolute difference of the 80% spread
of pressure across the UMBS.

7.3 Methods

The UMBS was deployed in four settings: 1) the homes of healthy adults, 2) the homes

of relatively healthy older adults, 3) a sleep clinic where participants were assessed for

a sleep disorder (most commonly sleep apnoea) and 4) a general clinical research centre

where healthy adults are undergoing sleep research studies.

7.3.1 Summerhill Data Set

Data were collected from the homes of 10 older adults for a period of two weeks as

previously discuss in Section 5.3 (see Table 7.3 for participant information). The 10Hz

256 resolution UMBS (v1) and PDA data collection system was deployed in the homes
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Table 7.3: Data from the home
of relatively healthy older adults.

Subject Sex Age Nights

SH101 F 63 12
SH1021 F 79 -
SH103 F 62 11
SH104 F 80 13
SH105 M 72 2
SH1062 F 88 -
SH107 F 64 12
SH108 F 65 13
SH109 M 81 8
SH110 F 72 14

1 this participant had spina bifida
since childhood.

2 This participant refused to wear
the actigraphy watch.

Table 7.4: Data from the homes of 3 healthy young adults.

Subject Sex Age Nights

MH101 M 27 1
MH102 M 27 2
MH103 F 27 5

of older adults. Mid-study data integrity checks were carried out. Data were collected

successfully over 75% of nights. The primary reason for sensor failure was power outage.

This was due to either loose connections or the participant unplugging the sensor. Par-

ticipants were asked to wear a wrist actigraph (Actiwatch, Cambridge Neurotechnology,

UK) for the duration of the study. One participant was excluded from analysis as she

had spina bifida since childhood and as a result her weight was not evenly spread across

the bed. One participant, aged 88 years old, refused to wear the watch for the duration

of the study. Another regularly removed the watch for any periods of social interaction,

each of these periods were excluded from analysis.

7.3.2 Maynooth Data Set

Data were collected from the homes of 3 healthy adults over a number of days (see

Table 7.4). The 20Hz 2048 resolution UMBS (v3) was deployed in their bedrooms.

A customised C++ program collected data continuously on a laptop (Dell Precision

M6300).
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Table 7.5: Data from a Sleep
Clinic from individuals with a sus-

pected sleep disorder.

Subject Sex Age Nights

PT101 F 63 1
PT102 M 59 1
PT103 M 44 1
PT105 M 52 1
PT106 M 30 1
PT108 F 43 1
PT109 M 39 1
PT110 M 74 1
PT112 F n/a 1
PT114 M n/a 1

Age data not available for two
subjects.

7.3.3 Peamount Data Set

Data were collected from the Sleep Clinic at Peamount Hospital (Newcastle, Co. Kildare,

Ireland) from 10 adults referred with a suspected sleep disorder for one night (see Table

7.5). The 20Hz 2048 resolution UMBS (v3) was deployed in the clinic continuously until

an entire data set was recorded. A customised C++ program collected data continuously

on a laptop (Dell Precision M6300).

7.3.4 Boston Data Set

Data were collected from the General Clinical Research Center in the Division of Sleep

Medicine at Brigham and Womens’ Hospital, Harvard Medical School (Boston, MA,

USA) over multiple nights from 12 subjects (see Table 7.6). These subjects were un-

dergoing a protocol under which the phase and length of day varied (this is discussed

in further detail in Section 8.2.1). Data were taken from the initial baseline period as

sleep occurs during the normal sleep time of the subject. The 20Hz 2048 resolution

UMBS was deployed in the clinic continuously. A customised C++ program collected

data continuously on multiple computers (Dell Optiplex 745).

7.3.5 Pre-Processing

The UMBS data were interpolated after data collection to a constant sampling rate of

10Hz. All data were manually truncated to remove wake periods at the beginning and

end of the sleeping episode. Sleep diary reports and either wrist actigraphy or UMBS
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Table 7.6: Data from a research
clinic from healthy younger and

older adults.

Subject Sex Age Nights

BN101 M 21 2
BN1021 M 19 3
BN103 F 56 3
BN1041 M 70 6
BN1051 M 23 3
BN1061 M 23 3
BN1071 F 19 3
BN108 F 21 1
BN1091 M 24 3
BN1101 M 27 3
BN1111 F 19 3
BN1121 M 24 3

1 data available for the initial sleep
period.

derived movement periods were used to define the beginning and end of analysis. As this

chapter examines the movement periods in bed these edge times were deemed suitable.

7.4 Results

7.4.1 Distribution Plots

Distribution plots (Dorn, 2008) were used to provide a visual description of the features

recorded across subjects and across cohorts. These are vertical forms of histograms akin

to the boxplot, however they additionally show the distribution of the data along one

axis (as shown in Figure 7.11). The width of the distribution refers to the frequency of

that sample in that set of data. This width is normalised to the largest occurrence of a

particular sample across the entire data set. In this chapter, the data was often divided

into distinct sections, and then plotted separately. This is because the data is biased

towards lower values.

7.4.2 Comparison Across All Subjects and Cohorts

7.4.2.1 Temporal, Spatial and Statistical Features

The distribution of the temporal (TMF2), spatial (SMF) and statistical (UMBS 2)

movement features, over the first night of each recording, are shown in Figures 7.12(a),
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Figure 7.11: Distribution plots for uniform random (left), sinusoidal (centre), and
normally distributed random time series data.

7.13(a) and 7.14(a) respectively. Only TMF2 and SMF values greater than zero were

included in these results. TMF2 and SMF values equal to zero related to no movement

change between two sample points and due to their abundance were excluded from

further analysis. The labels of each level of movement in these Figures were termed

relative to the magnitude of movement of the adjacent levels. Comparisons across the

four cohorts (Maynooth, Summerhill, Boston and Peamount) are also given in Figures

7.12(b), 7.13(b) and 7.14(b) for the temporal (TMF2), spatial (SMF) and statistical

(UMBS 2) movement features. These features, computed as percentages, were compared

across each cohort, as shown in Table 7.7.

7.4.2.2 Spatiotemporal Features

The spatiotemporal descriptions of movements, as defined in Table 7.2, were also ex-

tracted across the entire cohort, and are included in Appendix A for completeness.

The absolute magnitude of all metrics were calculated. The lateral change in position

values contained a large number of zeros over all cohorts. As such, only values greater

than zero were included in further analysis. The spatiotemporal features, computed as

percentages, were compared across each cohort, as shown in Table 7.7. The variation in

the number of spatiotemporal movements is shown in Figure 7.15

7.4.3 Variance Over Multiple Days

The variance in each metric over five days for eight community dwelling older adults

and one healthy community dwelling adult was examined. Distribution plots for the

TMF2, SMF and UMBS 2 are provided in Figures 7.16, 7.17, and 7.18, while those for
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(a) Distribution of TMF2 temporal movement feature over all subjects.
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(b) Distribution of TMF2 temporal movement feature over the 4 cohorts (fraction of the sleep period). For
example, for over 95% (0.95) of the sleeping episode the Maynooth participants experienced no movement.
Each horizontal line represents data from a subject, wider lines indicate data from more than one subject (the
width is scaled accordingly). Thicker lines represent closely aligned data collected from multiple participants.

Figure 7.12: Distribution of TMF2
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(a) Distribution of SMF spatial movement feature over all subjects.
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(b) Distribution of SMF spatial movement feature over the 4 cohorts (fraction of the sleep period). A
significant number of SMF values equal to zero were excluded from these results.

Figure 7.13: Distribution of SMF
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(a) Distribution of UMBS 2 statistical movement feature over all subjects.
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(b) Distribution of UMBS 2 statistical movement feature over the 4 cohorts (fraction of the sleep period).

Figure 7.14: Distribution of UMBS 2
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Table 7.7: Comparison of temporal, spatial, statistical and spatiotemporal movement features for
each metric averaged across the four cohorts.

Movement Description Maynooth Summerhill Boston Peamount
Feature

Temporal Very Large Movement 0.013 0.01 0.026 0.026
(TMF2) Large Movement 0.054 0.057 0.067 0.086

Medium Movement 0.51 0.51 0.55 0.75
Small Movement 1.3 18.70 1.98 2.62
No Movement 98.13 80.72 97.38 96.52

Spatial Large Movement 0 0 0 0
(SMF) Medium Movement 0.27 0.43 0.01 0.02

Small Movement 0.67 2.73 0.70 0.57
Very Small Movement 0.15 0.79 0.17 0.14

Statistical Very Large Movement 11.74 13.49 7.91 13.26
(UMBS 2) Large Movement1 2 8.50 20.26 8.90 20.23

Medium Movement1 2 27.90 51.93 33.56 44.13
Small Movement 52.86 14.32 49.64 22.37

Spatio- Number of Movements1 2 12.64 37.62 11.18 38.53
temporal Movement Area1 2 15.92 32.18 16.62 35.28

Change in Spread 14.22 63.01 6.67 16.10
Duration1 2 10.59 33.21 12.43 43.77
Max. Movement Mag. 14.75 25.48 22.59 37.18
Lateral Change in Pos. 21.05 64.75 3.27 10.93
Magnitude of Movement1 2 16.32 29.98 18.05 35.66
% to Peak Movement1 2 11.66 39.43 11.57 37.34
Spread Movement Index2 11.71 61.11 8.80 18.37
Time to Peak Movement1 2 11.48 34.63 13.08 40.81

Total 260.36 515.35 231.00 329.95

1 denotes metrics for which the Summerhill (community dwelling older adults) and Peamount (clinic based
sleep clinic patients) data sets are jointly high in comparison to the Maynooth (young healthy adults)
and Boston (clinic based healthy young adults) data sets.

2 A Student’s t-test found a significant difference between the Maynooth and Boston cohorts against the
Summerhill and Peamount cohorts (ρ <0.05). Data was grouped from the two separate cohorts and a
Kruskal-Wallis test was used to ensure validity in grouping the data.
Bold denotes values which are noticeably different to others across that metric.
The temporal, spatial and statistical features sum to 100 over each cohort (vertically), however the No
Movement case for the spatial feature (SMF = 0) was excluded due to its abundance.
The spatiotemporal features sum to 100 across all cohorts over each feature respectively.
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(a) Number of spatiotemporal movements over all subjects.

Maynooth Summerhill Boston Peamount
0

100

200

300

400

(b) Number of spatiotemporal movements over the 4 cohorts.

Figure 7.15: Number of spatiotemporal movements

the spatiotemporal features are included in Appendix B. SMF values equal to zero were

excluded from these data as they were overly abundant in comparison to other values.

7.4.4 Cohort Classification of Spatiotemporal Movement Features

Linear and quadratic discriminant classifiers were applied to the spatiotemporal move-

ment features in order to discriminate between cohorts. 103 movements were captured

from the three Maynooth participants, 836 movements from the eight Summerhill partic-

ipants, 250 movements from the eight Boston participants and 969 movements from the

nine Peamount participants. 101 movements were randomly chosen from each cohort and

split into 51 training and 50 test data sets. Each data set contained nine spatiotemporal

features: movement area, change in spread, duration, max. movement magnitude, lat-

eral change in position, magnitude of movement, percentage to peak movement, spread

movement index and time to peak movement. This process was repeated one hundred

times in order to ensure consistent results and values were averaged over the 100 repi-

titions. Confusion matrices were generated from the test data for both the linear and

quadratic methods (see Tables 7.8 and 7.9). With ideal classification, corresponding

classes would report 25% as a quarter of the samples belonged to each class. The non-

diagonal elements of these confusion matrices illustrate where incorrect classifications
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Figure 7.16: TMF2 CompOverMultNights
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Figure 7.17: SMF CompOverMultNights
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Figure 7.18: UMBS 2 CompOverMultNights

Table 7.8: Confusion Matrix discriminating cohorts using spatiotemporal features
using linear discriminant analysis (percent)

Actual Data Set
Maynooth Summerhill Boston Peamount

Maynooth 5.53 3.52 3.52 2.51
Predicted Summerhill 4.52 10.55 8.54 6.03
Data Set Boston 10.05 5.03 8.04 13.57

Peamount 4.52 4.02 5.03 5.03

are made. For both the linear and quadratic discriminant analysis, low accuracies were

reported and considerable amounts of misclassifications were made. A Normalised Mis-

classification Rate (NMCR) of 71% and 68% were found for the linear and quadratic

classifiers respectively.

7.5 Discussion

7.5.1 Movement Features Across All Subjects and Cohorts

A comparison of features across the various cohorts was made using data from the initial

night of data collection. This was performed due to the ‘first night effect ’, whereby par-

ticipants initially feel alienated by being in an artificial situation (eg. being monitored)
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Table 7.9: Confusion Matrix discriminating cohorts using spatiotemporal features
using quadratic discriminant analysis (percent)

Actual Data Set
Maynooth Summerhill Boston Peamount

Maynooth 3.03 2.53 1.01 2.53
Predicted Summerhill 6.57 6.06 3.03 2.53
Data Set Boston 0 0.51 1.52 2.02

Peamount 13.64 11.11 22.73 21.21

or environment (such as a non-domestic bedroom). The first night was selected as data

from only one night was available in the Peamount data set (where ‘first night effects’

were deemed likely to occur).

7.5.1.1 Temporal Movement Feature - TMF2

The distribution of TMF2 over the four cohorts showed some distinguishing features

both across subjects and between cohorts (see Figure 7.12(a)). Three of the four cohorts

showed a high level of ‘no movement ’ mostly ranging close to one (where on this scale

one represents one hundred percent). This reflects the almost continuous occurrence of

no shifts (or very small shifts, eg. breathing) in posture throughout the night. It must

be noted that some range of movement (TMF2 greater than zero, eg. small, medium,

large or very large movement) was reported for most subjects for some quantity of the

sleeping episode. The Summerhill data set reported lower amounts of ‘no movement’ due

to a much larger occurrence of small movements (also shown in Table 7.7). This equates

to increased restlessness levels in the Summerhill cohort. It was expected that a similar

pattern would be seen in the Peamount data set considering there is a high likelihood for

sleep disorders in the Peamount data set. However, there is no such difference against

the Summerhill data set. While this may suggest that the older adult Summerhill

participants experience a more disturbed sleep than the Peamount population, it may

be related to a possible high sleep efficiency in the Peamount population (due to sleep

deprivation induced by the possible sleep disorder). Further research is necessary in

order to provide a robust explanation.

It was anticipated that the clinic-based populations would have a more disturbed sleep

than normal due to the artificial environment imposed upon them. The Boston (healthy

clinic-based) populations reported higher levels of small, medium, large and very large

movements than the Maynooth (healthy home-based) participants. However this differ-

ence was small and larger sample sizes would be required to test for significance. Unfor-

tunately, no baseline (home-based) data set exists for the Peamount (sleep-clinic-based)
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participants which would provide a direct comparison of domestic and clinic-based sleep.

However, it should be noted that the medium movement levels in the Peamount data

set were distinctly higher than the Maynooth, Summerhill and Boston data sets.

7.5.1.2 Spatial Movement Feature - SMF

The SMF distributions were similar across the two clinical populations (Boston and

Peamount), which was unexpected as the Boston population contained a healthy cohort.

A possible explanation for the small difference is the occurrence of the ’first night effect’.

An examination of follow-up nights would justify this claim.

The magnitude of spatial deviations (postural changes) are much larger for the Sum-

merhill data set than for other populations (see figure 7.13 and Table 7.7). The medium

movement SMF in the Maynooth participants was much larger than either clinical pop-

ulation, although similar to the Summerhill data set. These patterns of larger spatial

movement may be a result of feeling unencumbered while sleeping in their normal, nat-

ural, environment. Whereas subjects may be less likely to have large movements in a

clinical environment while wearing polysomnographic equipment. The number of large

spatial movements captured was negligible over all cohorts.

7.5.1.3 Statistical Movement Feature - UMBS 2

The statistical movement features (UMBS 2) are skewed towards lower values in both

the Maynooth and Boston data sets. The Summerhill and Peamount participants report

higher movement values in the medium and large ranges, although these differences are

not as large compared to the relative difference seen in the spatial and temporal small

movements reported (see figure 7.14 and Table 7.7). This relative similarity suggests

a generalisability whereby algorithms can be designed and implemented across cohorts

without requiring separate algorithms for specific populations. This suggestion is further

supported by the current and successful application of sleep/wake detection algorithms

in commercially available wrist actigraphs amongst various population types (apart from

insomniacs where the phenomenon of sustained quiescent wake occurs at an increased

rate).

7.5.1.4 Spatiotemporal Movement Features

Spatiotemporal movement features were extracted for each movement over all partic-

ipants. The Summerhill and Peamount populations had much larger spatiotemporal
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movement features than the Maynooth and Boston populations, notably in some spe-

cific metrics (see Table 7.7). These included:

• Number of movements

• Movement area

• Duration

• Magnitude of movement

• Percentage to peak movement

• Time to peak movement

Figure 7.15 shows the number of movements reported over all subjects and provides a de-

scription of the distribution of spatiotemporal movement features over the four cohorts.

The Maynooth and Boston data sets reported lower numbers of movements compared

to the Summerhill and Peamount data sets (see Table 7.7). This would indicate a more

restful sleep due to the lower numbers of arousals.

An extremely large number of movements (approximately 400) was reported for one

Peamount participant. Upon further inspection it was found that this individual had

a large number of movements (31 per hour). A similar pattern of a high number of

arousals would be expected in a subject exhibiting a large apnea/hypopnea index (as

noted in Section 2.6.2.1).

The lateral change in position during movements was larger in the Summerhill popula-

tion than for the other cohorts which tended to have similar ranges (see Table 7.7 and

Figure A.5). Larger lateral changes in position would suggest a decrease in sleep depth

(due to the larger postural shift). It would be interesting to examine the sleep/wake

state during all spatiotemporal movements and investigate whether a threshold applied

to the lateral change in position values discriminates between sleep stages. It may be

the case that only large lateral changes in position occur during light sleep (stage 1 and

stage 2).

It was also noticed that the distribution in the change in spread values is significantly

larger for the Summerhill cohort than for the others (see Table 7.7 and Figure A.2).

It was shown in Section 7.2.2 that the change in spread metric does not measure body

posture. The significantly increased values of change in spread and lateral change in

position are likely related to overall movement.

The maximum movement magnitude increased from Maynooth to Boston to Summerhill

to Peamount, in that order (see Table 7.7 and Figure A.4). It is interesting to note that
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the maximum movement magnitude is higher in the Peamount participants compared to

the Summerhill population. This seems in conflict with the previous suggestion where

a larger lateral change in position is reported in the Summerhill data set. However,

a large change in spread is reported in the Summerhill data set providing a possible

explanation. Additionally, it should be noted that a direct relationship need not exist

between all these metrics.

Overall, distinct patterns in spatiotemporal features were found between cohorts, as

well as between subjects. Using this data we see that there are cohort specific patterns,

although larger studies are required for a full evaluation. Variations may also occur

on an environmental basis (that is, a situational context for example older adults in a

domestic setting), as well as an inter-daily basis. Environmental studies, carried out

over the long-term, are difficult to implement as they must control for many variables

(such as functional and cognitive capacity). However, they could be used to uncover

whether the transfer from domestic to clinical (including long-term care homes) plays

a positive or negative influence on sleep and sleep quality. Inter-daily variations may

correspond to short term changes in the quality of sleep. A preliminary investigation of

this was carried out and is discussed in the next section.

7.5.2 Consistency of Measurements Over Multiple Days

The variance in all movement features over multiple days was investigated for consis-

tency. The Summerhill data set, which contained an appropriate number of multiple

days data, was matched by data from the Maynooth participants. This gave a data set

consisting of five nights. While long data sets were collected in the Boston cohort, only

the initial three days of the study were appropriate for investigation. After this base-

line period, the participants were subjected to a modified day length. These artificially

imposed sleeping periods would not be appropriate as the circadian rhythm of these

individuals is not is in alignment with their environment. The Peamount data was also

excluded as only one night for each participant was collected. The data set covered a

period of 5 days.

The variance in the movement features across the five nights were found, for some

participants, to be inconsistent. These included:

• SMF (see Figure 7.17)

• movement area (see Figure B.2)

• percentage to peak movement (see Figure B.8)
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• time to peak movement (see Figure B.9)

• and spread movement index (see Figure B.10)

However, many metrics were found to be consistent. These included:

• TMF2 (see Figure 7.16)

• UMBS 2 (see Figure 7.18)

• Number of movements (see Figure B.1)

• Change in spread (see Figure B.3)

• Duration (see Figure B.4)

• Maximum movement magnitude (see Figure B.5)

• The lateral change in position (see Figure B.6)

• Magnitude of movement (see Figure B.7)

Minimal inter-daily variations in sleeping patterns and sleep quality were reported by the

participants for this period (using an informal audio questionnaire). However, natural

inter-daily variations in sleep would occur. Thus, the inconsistencies in some movement

metrics over the five days were attributed to this natural variation. The set of data

collected from each night reflects that specific sleeping episode.

Interestingly, TMF2 and UMBS 2, temporal measurements of in-bed movement, were

found to be consistent over multiple days. This suggests that these variables are stable

over multiple nights and may be indicative of general sleep performance. However,

SMF2, a spatial measurement of in-bed movement, was found to be variable over the

multiple sleeping episodes. This may suggest that this metric is more reflective of day-

to-day changes in sleep quality. As such, two forms of sleep metrics may be derived from

the UMBS: 1) a short-term highly changeable metric, derived from the inconsistent

metrics, which provides a description of sleep that is highly variable between days, and

2) A stable measurement of sleep, derived from the consistent metrics, which allows a

characterisation of the general aspects of an individual’s sleep. A longer term study

using larger and more varied cohorts is required to validate such metrics.
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7.5.3 Spatiotemporal Movement Feature Derived Cohort Classifica-

tion

The performance of LDA and QDA classifiers built to discriminate between the four

cohorts using the spatiotemporal features is summarised in the confusion matrices given

in Tables 7.8 and 7.9 respectively. These confusion matrices highlight where misclas-

sifications occur, that is, they show the distribution of incorrect classes. The results

are clearly very poor with a NMCR of 71% and 68% respectively for LDA and QDA

demonstrating that the cohort cannot be classified effectively.

These results would suggest that each spatiotemporal description of in-bed movement

does not have a cohort specific identifier or signature which discriminates between co-

horts. This suggests that there is no distinct pattern in how movements occur and it is

fact of their occurrence that is important.

It should be noted that the number of spatiotemporal movements was not included as a

feature in this analysis. This was chosen so that the spatiotemporal features extracted

from each movement, across all cohorts, could be directly compared, and not the number

of movements which occurred. In this data set, three times as many spatiotemporal

movements occurred in the Summerhill and Peamount data sets than in the (healthy)

Maynooth and Boston data sets. Further investigation would elucidate whether the

number of nocturnal movements (regardless of any feature of those movements) could

be used to distinguish between healthy and unhealthy cohorts.

7.5.4 Non-Environmental Specific Features

The majority of features described in this chapter are environment specific, that is, they

are dependent of the mattress/bed type and the weight/height/dimensions of the subject

under investigation. For example, UMBS 2 is dependent on the thickness of the mattress.

While the empirical selection of thresholds has catered for much of this variation, only the

standardisation of the environment could ensure the absolute comparison of data from

multiple subjects. It has been ensured, where possible, that similar environments were

selected, especially within a cohort. Catering for specific environments is not a realistic,

nor a wanted, proposition for the development of a device which will ideally be applied

to large populations (and, inherently, an almost countless number of environmental

variables).

However some features are non-environment specific, such as the spatial movement fea-

ture, SMF2, (as long as the threshold is selected so that subject presence is detected).
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Additionally, some of the spatiotemporal movement features, including movement du-

ration, lateral change in position, change in spread, time to peak movement, percentage

to peak movement and spread movement index, were deemed to be non-environment

specific.

7.6 Conclusions

This chapter focusses on the derivation of temporal, spatial, statistical and spatiotem-

poral movement features from the UMBS. These algorithms were then applied to exper-

imental, domestic and clinic-based data sets and a comparison of the derived features

across all cohorts performed. The variability observed in these features between subjects,

between cohorts and across multiple days was then discussed.

In this context this chapter makes a number of novel contributions as follows.

The formulation and validation of algorithms deriving novel UMBS features

and the application of these features on domestic and clinic-based data sets:

Custom algorithms were developed to extract temporal, spatial, statistical and spa-

tiotemporal ways of describing in-bed movement (Walsh et al., 2011b). These algorithms

were validated using an example data set . Subsequently, these algorithms were applied

to data collected in domestic and clinic-based environments from old and young cohorts

ranging from healthy and relatively healthy to those at a high risk of having a sleep

disorder. Multiple differences in these derived movement features were shown between

the four cohorts. The combination of these features provide a rich description of the

movements of individuals whilst in-bed.

The home-based older adults (Summerhill) were found to have increased movement

levels (noted through multiple features) and this increase was also evident in the sleep-

clinic-based population (Peamount) who have a high likelihood of suffering from a sleep

disorder (most likely apnoea or hypopnoea) and thus, a more disturbed sleep. Older

adults are widely documented to have a lower sleep quality than younger subjects and

often report frequent awakenings, poor sleep quality and a lower sleep efficiency (Miles

and Dement, 1980). In an Irish context, the Technolgical Research for Independent

Living (TRIL) Centre cohort of over 600 Irish older adults, 67% were found to have

poor sleep (PSQI > 5) (McHugh et al., 2011). However, similar profiles seen in these

subjects indicate that community dwelling older adults suffer from sleeping disturbances

to a similar degree to individuals with a potential sleep disorder (the Peamount cohort).

The Peamount population were referred to the sleep clinic either through their general

195



UMBS Deployment in Clinical and Domestic Environments

physician or through a respiratory consultant. As such, their likelihood of suffering from

a sleep disorder is high. A larger comparison of the sleep disturbances of community

dwelling older adults compared to healthy and unhealthy (subjects with a sleep disorder)

participants would elucidate this finding. Additionally, the longitudinal monitoring of

these disturbances, with a possible intervention strategy through a feedback mechanism

showing these disturbances back to the subject, may serve to increase the quality of life

of older adults. This would be particularly applicable to older adults who tend to have

a large number of complaints regarding their sleep (Miles and Dement, 1980).

Significant differences (ρ <0.05) were found for a number of spatiotemporal movement

features (number of movements, movement area, duration, magnitude of movement,

percent to peak movement, and time to peak movement) between the Summerhill and

Peamount subjects when compared against the Maynooth and Boston subjects. How-

ever, the sample sizes available for this analysis is small, and the collection of larger data

sets (both in terms of the number of sleeping periods and number of subjects) would

allow for a more valid comparison. The results presented herein suggest an ability to

discriminate between the healthy (Maynooth and Boston) and less healthy (Summerhill

and Peamount) cohorts.

The statistical movement feature of the UMBS 2 metric is akin to the activity count

metric reported by wrist actigraphy devices (however it should be noted that the UMBS

2 metric is generated from core body movement as opposed to limb movement). These

metrics were previously shown to be highly comparable to each other (see Section 6.3.2).

The movement detection capacity of UMBS 2 has also been shown to outperform wrist

actigraphy earlier in this thesis in Section 6.10. Interestingly, relatively consistent pat-

terns of activity were found across the four cohorts. This affirms and validates the

application of wrist actigraphy across separate populations as wide documented in the

literature. Categorical differences were found in the temporal movement feature, TMF2,

between the different cohorts. The difference in these movement features would suggest

different information is being measured by the two metrics. While TMF2 provides a

higher time resolution of movement data, this does not necessarily convert to higher

resolution information. A more smoothed low frequency data (such as UMBS 2) might

align better with subjective or PSG-defined objective assessment of sleep quality better.

Alternatively, the opposite may be true.

The spatial movement feature (SMF) provides a spatial description of movements in-bed.

Distinct differences can be seen between the home-based (Maynooth and Summerhill)

and clinic-based (Boston and Peamount) populations. The movements of the clinic-

based populations do not contain large spatial deviations. This may suggest that the

clinic-based cohort are more constrained by sleeping within a smaller area and are less
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active than the home-based populations in the home based populations. This could be

a conscious factor mediated through either limited freedom of movement (through the

application of multiple electrodes and sensors) or artificially self-imposed inactivity due

to the desire to sleep during the assigned time. Further research should be performed

in order to investigate the association between wrist actigraphy and UMBS derived

movement features and subjective or PSG-defined objective assessments of sleep quality

in order to ascertain the benefit of the highly sampled movement and spatial data.

Frequency analyses were applied to the TMF2, SMF and UMBS 2 data in order to

investigate whether patterns existed in the occurrences of movements throughout the

sleeping period. This did not show any increased performance in detecting discernible

patterns across the cohorts.

An investigation of the variation of features over multiple days: An investi-

gation of the consistency of movement features over multiple days was also performed.

This showed both stable and variable patterns in the metrics. For example, stable pat-

terns were found in the UMBS 2 movement feature. This was as expected as consistent

patterns in wrist actigraphy data, which has been shown to be highly similar to UMBS

2, across various cohorts have been reported in the literature. However, the variability in

some movement feature data suggests that data should be collected from multiple nights

in order to get a valid baseline of participant’s spatial and spatiotemporal movements.

Further research is required in order assess whether capturing these variations adds

further insight into the individual’s sleep. The low level of variation between multiple

days in the Summerhill data indicates that sleeping patterns are relatively consistent

over time. This consistency between multiple days was expected in these data as no

serious life events occurred during data collection. As this device is suited to long term

placement, it would be interesting to capture data surrounding serious life events. Long

term analyses and outlier detection methods applied to all of the temporal, spatial, sta-

tistical and spatiotemporal features could provide proactive and preventative methods

of highlighting an individual’s deteriorating health status.

An analysis of spatiotemporal differences in movements between multiple

cohorts: Spatiotemporal descriptions of movements during sleep provides an insight

into the formulation of each nocturnal movement. There were noticeable differences in

the average magnitudes of these features on a per cohort basis (see Table 7.7). This

prompted an investigation into whether there were differences between individual move-

ments. Linear and quadratic classifiers were applied to the spatiotemporal features in

order to discriminate between the cohorts. Interestingly, the application of classifiers
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did not prove successful (see Tables 7.8 and 7.9) in discriminating between cohorts using

the spatiotemporal features. It should be noted that although the sample size of cohorts

were small, the number of movements in each class were relatively large. This analysis

provides a basis for the suggestion that there is no difference between how these pop-

ulations move in bed, and it is more the occurrence and frequency of such movements

that is an important factor.
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Chapter 8

UMBS Sleep Classification

8.1 Introduction

In this chapter, concomitant UMBS and PSG data collected from healthy subjects is

used to develop discriminating functions which separate sleep/wake state and identify

sleep stages. In order to realise this, a large data set consisting of multiple sleeping

episodes from younger and older adults was required. This data set facilitates the

training and testing of these functions. This chapter details the collection of this large

data set, gives an overview of the features (described in the previous chapter) extracted

from the UMBS data, details the performance metrics used, and reports the accuracy of

dimensionality reduction mechanisms used to reduce the number of features. Multiple

sleep/wake discriminating classifiers are tested on both cohort and subject specific data,

and the optimal sleep/wake classifying function is validated using independent unseen

data. This robust approach is employed to ensure that the developed system is applicable

to individuals whom the system has not been exposed to, which in turn justifies its larger

scale deployment. An investigation into identifying specific sleep stages is also carried

out using multi-class classifiers and hierarchical binary classifiers.

8.2 Methods

8.2.1 Study Protocol

Data were collected during 2 research protocols (described below) in the Intensive Physi-

ological Monitoring Unit of the General Clinical Research Center at the Division of Sleep

Medicine, Brigham and Womens’ Hospital, Boston, MA, USA. Full ethical approval was

granted by the Institutional Review Board at the Brigham and Womens’ Hospital. These
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protocols investigated the effect artificially imposed day lengths and ambient light levels

have on the circadian and biological systems of healthy human adults. The time at

which the scheduled sleep episode begins is referred to as lights off and the time at

which the sleep episodes ends is referred to as lights on. Prior to each scheduled sleep

episode, electrodes were placed on the subject in the standard montage: EEG recorded

from four derivations (C3, C4, O1, O2) and EOG (LOC and ROC) both referenced to

the contralateral mastoid and the submental EMG was also recorded. These PSG data

were captured using a Vitaport Digital Sleep Recorder (Temec Instruments, Kerkrade,

Netherlands). The electrodes were applied approximately two hours prior to the sched-

uled lights out and recording began approximately one hour prior to the scheduled lights

out. The electrodes were removed after the end of the scheduled sleep episode, after

lights on. The PSG records were scored in 30 second epochs by a trained technician

using standard methods (Rechtschaffen and Kales, 1968). The PSG data were scored

into one of eight states: wake, stage 1 sleep, stage 2 sleep, stage 3 sleep, stage 4 sleep,

REM sleep, movement or undefined. The first six of these related to the sleep/wake

stage of the subject. Movement related to periods in which the subject was clearly mov-

ing. Movement was deemed to be awake for the purposes of this research. Undefined

related to periods where not enough information was available to score the data (this

only occurred during application and removal of the electrodes). Thus, all epochs within

lights out and lights on were either scored as sleep or wake.

The 20Hz UMBS was placed under the mattress for the duration of data collection. Data

were recorded continuously over the entire study using a customised C++ program on

a desktop computer (Dell Optiplex, Dell Inc., Tx, USA). The timestamps for each data

packet was referenced to a consistent lab time held between all devices and all computers.

This ensured that PSG data was concomitant.

Each participant in this protocol was subjected to prescribed periods of lights on and

lights off over multiple days. The subject was instructed to sleep, or attempt to sleep,

during the lights off periods. This process of scheduling the sleep and wake times was

external to this analysis. An example of these periods is shown in Figure 8.1 using a

double raster plot. On this type of graph, data for successive days are plotted beneath

each other. The data is then offset by one day and plotted beside the first plot. This

eliminates the discontinuity in the data at midnight (24:00). The subjects were housed

in locations and circumstances which are specially modified to ensures that the subject

will become disassociated with the outside world and with the absolute time of day.

The subject is continually monitored through a team of specialist healthcare clinicians

and technicians. The details of the research protocols the participants are voluntarily

subjected to is given below:
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Protocol A - PPG-CSR In this protocol, the natural nocturnal sleep length was

extended to twelve hours during the initial three days of the study (see Figure 8.1).

Additionally, a midday nap was scheduled however sleep was not included in any analysis.

These extended sleep times and naps were inserted into the protocol in order to ensure

the subject had no short term sleep debt. Over the next three days, the sleep length was

reduced to approximately nine hours. Over the remaining thirteen days the day length

was extended to twenty-eight hours, while the sleep length was reduced further to six

and a half hours. This protocol meant that the subject became sleep restricted after the

initial six days. As such the wake time during scheduled sleep episodes diminished as

the protocol continued.

Day 6

Day 1

Day 11

Day 16

Day 21

Day 6

Day 1

Day 11

Day 16

Day 21

6 am Noon 6 pm Midnight 6 am Noon 6 pm

Figure 8.1: Double raster plot for protocol A (black represents scheduled periods of
sleep).

Protocol B - Circ-Gen For this protocol, data were collected for over 21 days,

however only data from the initial 21 days were used for analysis. Baseline data were

collected during the initial 3 nights of the study (see Figure 8.2). Subsequently the

subject was kept awake for a period of forty hours in order to disassociate their conscious

mind from the absolute time of day. They are then allowed to sleep for approximately

10 hours. The day length was then modified to a twenty-eight hour schedule with

approximately seven hours of sleep per sleeping episode. The subject was re-entrained

to a sleep time aligned with environmental norms for the final two days of the research

study.
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Day 6

Day 1

Day 11

Day 16

Day 21

Day 6

Day 1

Day 11

Day 16

Day 21

6 am Noon 6 pm Midnight 6 am Noon 6 pm

Figure 8.2: Double raster plot for protocol B (black represents scheduled periods of
sleep).

8.2.2 Subject Details

Data were collected from 5 cohorts for this analysis as detailed in Tables 8.1, 8.2, 8.3,

8.4 and 8.5. The cohorts in Tables 8.1 and 8.2 were used to train and validate the

classifiers. The total distribution of sleep stages per subject over the sleep episodes for

these subjects is given in 8.3. The cohort in Tables 8.3 and 8.5 related to data from

a group of young adults over one night and an older adult over 3 nights. These data

were used to test the performance of the optimal classifier on unseen subjects and were

referred to as data sets C and E respectively. The cohort in Table 8.4 did not have any

corresponding PSG data. As such, its sole purpose was used to provide quantitative

statistics to remove the approximate mean from the A, B, C and D data sets. It was

also used for dimensionality reduction.

8.2.3 Data Preparation

Only data recorded between the lights on and lights off periods were included in the

analysis. This eliminated all epochs of type undefined. PSG and UMBS data were

analysed in non-overlapping 60 second epochs. Two consecutive 30 second epochs of

PSG data were concatenated together and included in analysis only if the sleep/wake

state did not change between both epochs. Otherwise they were discarded from any

analysis. UMBS-derived respiration rate was estimated using the method described in

Chapter 6. A sliding window is used for this analysis. As such, the initial and final two
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Table 8.1: Data Set A - young healthy adults used for classifier training and validation.

UMBS Study Age Sex records
Subcode yrs m/f scored

BN101 Protocol B 19 M 13
BN102 Protocol B 23 M 13
BN103 Protocol B 21 F 13
BN104 Protocol B 24 M 13
BN105 Protocol B 19 F 13
BN106 Protocol B 21 M 13
BN107 Protocol A 20 F 13
BN108 Protocol A 24 F 13

Table 8.2: Data Set B - older healthy adults used for classifier training and validation.

UMBS Study Age Sex records
Subcode yrs m/f scored

BN109 Protocol A 56 F 14
BN110 Protocol A 70 M 14
BN111 Protocol A 56 M 14
BN112 Protocol A 58 F 14
BN114 Protocol A 64 M 14
BN115 Protocol A 55 M 14
BN116 Protocol A 60 F 14

Table 8.3: Data Set C - young healthy adults used for classifier testing. * indicates
subjects with less than twenty 60 second epochs of wake.

UMBS Study Age Sex records
Subcode yrs m/f scored

BN117 Protocol A 19 F 1
BN118 Protocol A 18 F 1
BN119 Protocol A 27 M 1
BN120 Protocol A 24 F 1

BN121* Protocol B 19 F 1
BN122* Protocol B 24 M 1
BN123* Protocol B 23 M 1
BN124 Protocol B 27 M 1
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Figure 8.3: Distribution of sleep stages per subject over all sleep episodes. BN101-
BN108 belong to the younger adult cohort, while BN109-116 are part of the older adult

cohort.

Table 8.4: Data Set D - young healthy adults used for extracting coefficients used in
pre-processing steps. No corresponding sleep stages associated.

UMBS Study Age Sex records
Subcode yrs m/f scored

BN125 Protocol B 23 F 0
BN126 Protocol B 22 F 0
BN127 Protocol B 21 F 0
BN128 Protocol B 19 M 0
BN129 Protocol B 21 F 0
BN130 Protocol B 24 M 0

Table 8.5: Data Set E - older healthy adult used for classifier testing.

UMBS Study Age Sex records
Subcode yrs m/f scored

BN113 Protocol A 55 F 3
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Table 8.6: UMBS-Derived Features Used to Discriminate Sleep from Wake.

No. Feature Type Feature Description

1 Respiration Number of Respiratory Peaks
(see Section 6.2)

2 Spatial Movement Feature Standard Deviation
3 SMF (Eqn. 7.9) Maximum
4 Mean
5 Time Greater Than 0
6 Num. Distinct Movements

7 Temporal Movement Feature Standard Deviation
8 TMF2 (Eqn. 7.5) Maximum
9 Mean
10 Median
11 Time Greater Than 4
12 Num. Distinct Movements

13 Statistical Log of UMBS 2
(See Equation 6.2)

60 second epochs of UMBS data were excluded from classification. If any PSG or UMBS

data were missing or excluded, that entire sample was removed from any analysis.

Data set D (see Table 8.4) were excluded from analysis as it did not have any corre-

sponding PSG data. The data were used to guide statistics to give each feature an

approximate zero mean. Additionally, it was used to guide the dimensionality reduction

of data in the other data sets.

8.2.4 Features

13 features were derived including the temporal (TMF2), spatial (SMF ) and statistical

(UMBS 2 ) descriptions of motion as well as an estimate of respiration rate, all derived

solely from the UMBS (as given in Table 8.6). It was also found that a large number of

features were correlated with each other (see Table 8.7) using data set D. As a result, it

was conceivable that a number of features could be removed from the data set. However,

it was unknown which features were the primary source of information. Dimensionality

reduction procedures discussed later will investigate which features are redundant and

the impact of removing these features on classification performance will also be evaluated

.
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Table 8.8: Confusion Matrix Showing Determination of the Number of True Positives,
False Positives, True Negatives and False Negatives.

Actual Class
True False

Predicted Positive True Positive (TP) False Positive (FP)
Class Negative False Negative (FN) True Negative (TN)

8.2.5 Performance Measures

The performance of the classifier can be viewed in a similar way to that of a binary clas-

sification test where four metrics capture the performance of the test. These metrics are:

1) the classifier positively identifies a true result (True Positive), 2) positively identifies

a false result (False Positive), 3) negatively identifies a true result (False Negative) and

4) negatively identifies a false result (True Negative). Over all samples, the optimal clas-

sifier is the one which has a minimal number of false positives (FP) and false negatives

(FN) and a maximal number of true positives (TP) and true negatives (TN). A blind

approach to maximising these (see Equation 8.1) can lead to a sub-optimal selection

should the data be largely skewed toward either class. In order to take account of this

bias, the specificity (Equation 8.2) and sensitivity (also referred to as recall) (Equation

8.3) are often reported. These metrics quantify the correct classification of false and true

samples respectively. A common approach for choosing a classifier with maximal results

involves maximising the F-Score (Equation 8.5) which is the harmonic mean of the recall

(Equation 8.3) and the precision (Equation 8.4) of the test. The precision of the test is

the number of correct results classified as a ratio of all results the classifiers reports as

being correct. The use of the harmonic mean ensures that the result is heavily skewed

toward the lower value and this avoids the situation where there is a large difference

between the precision and recall values.

For cases where there are more than two classes, the overall accuracy of the test is

often used. This is the ratio of correct classifications the algorithm makes over the total

number of samples in that test.

Accuracy =
TP + TN

TP + TN + FP + FN
(8.1)

Specificity =
TN

TN + FP
(8.2)

Recall = Sensitivity =
TP

TP + FN
(8.3)

207



UMBS Sleep Classification

Precision =
TP

TP + FP
(8.4)

F =
2× Precision×Recall
Precision+Recall

(8.5)

8.2.6 Feature Reduction Mechanisms

A high correlation was found between a number of the thirteen original features. As

such, three dimensionality reduction methods were investigated in order to remove any

redundant features and to simplify the classification process.

8.2.6.1 Principal Component Analysis

Principle Component Analysis (PCA) orthogonally transforms data from a number of

possibly correlated variables into a series of uncorrelated variables known as principal

components (Jolliffe, 2004). Each principal component captures the largest variance in

the data under the condition that it is orthogonal to the preceding principal components.

Thus, a series of principal components are calculated which capture the variance (or

internal structure) of the original data set. The variance of each principal component

decreases with each successive principal component calculated. PCA was applied to

this data and it was also found that over 99.5% of the variance in data set D could

be explained using the first 4 principal components. While the top three principal

components explained over 96.5% of the variance in this data set. Data set D (see Table

8.4) was used to calculate the coefficients which would be applied to the remaining data

sets in order to reduce their dimensionality. This dimensionality reduction procedure

is not ideal as the coefficients used do not pertain to the data set under investigation.

However, this procedure was used in order to avoid any overfitting on the training and

test data.

8.2.6.2 Forward Selection Component Analysis

Forward Selection Component Analysis (FSCA) arranges signals in successive descending

order of how each signal describes the overall variance of the data set (Prakash et al.,

2012), as per Algorithm 8.1. Initially, the signal which explains the largest variance on

the data set is chosen (step 2) and the effect of its variance is removed from the data

set (step 3). This process is repeated until either the last signal is reached or a stopping

criterion (such as explaining 99.9% of the variance in the data set). Thus, a prioritised

list of variables that are most representative of the data set, of decreasing contribution,

is produced.
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Algorithm 8.1 Forward Selection Component Analysis Algorithm

1. Given a data set X, set X̃ = X.
2. Select x̃i (the Forward Selection Component) ∈ X̃ such that

x̃∗i = arg min
x̃i∈X̃

(∥∥∥X̃− X̂(x̃i)
∥∥∥2

F

)
where X̂(x̃i) = x̃i

x̃T
i X̃

x̃T
i x̃i

, i = index(X̂, x̃∗i )

3. Remove contributions of x̃∗i from X

X̃ = (I − x̃∗
i (x̃∗

i )T

(x̃∗
i )T x̃∗

i
)X̃

4. S = [S, x̃∗i ], Q = [Q, i]
where S is the set of orthogonal Forward Selection Component(s) (FSC) components,
prioritised in decreasing contribution, and Q is the set of corresponding indices.
5. Repeat from 1 until a stopping criterion is reached, or until there are no variables
left.

Table 8.9: Top four FSCs.

FSC No. Feature No. Feature

1 1 Estimated respiration rate
2 6 The SMF defined number of distinct movements
3 8 The max of the TMF
4 12 The TMF defined number of distinct movements

In this instance, FSCA was employed as a means of selecting a minimal number of

original features which explain a large proportion of the variance in the data set. If

there is high redundancy in the data, that is a large number of highly correlated signals,

then FSCA can achieve similar performance to PCA. PCA will always outperform

or equal FSCA in the explanation of variation on a per feature basis. However, the

principal components generated often do not relate to any tangible metric, but rather

are a weighted mixture of several of the input features. The use of the raw input

features is sometimes preferential when trying to understand the system and how the

actual inputs relate to the output state or when trying to reduce the computational load

as only a low number of original features may need to be measured or computed.

Training and test data (data sets A and B) were analysed using FSCA. It was found

that the four top FSC per subject explained over 97% of the variance in each subject’s

case. In 95% of these cases, it was found to be four features as defined in Table 8.9.

8.2.6.3 Feature Subset Selection

Feature subset selection is a method for determining the best subset of features which

results in the best discrimination of classes. It consists of both a search strategy and

an objective function (Cantu-Paz et al., 2004). The search strategy selects candidate

features iteratively while the objective function evaluates each selection. The search
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strategy can be exhaustive where all possible subsets of candidate features are chosen.

However, there are 2N possible subsets of candidate features, where N is the total

number of features (if the optimal number of selected features is unknown), making it

computationally unfeasible as N becomes large. Various strategies have been developed

to minimise the number of searches while maintaining maximal performance of the

classifier. The objective function is a measure of the ”goodness” of the chosen subset of

features. The objective function can be split into two groups: 1) filters, and 2) wrappers.

Filters evaluate the chosen subset of features based on their information content (often

using distance metrics, correlation metrics or, alternatively, non-linear approaches such

as the determination of mutual information between features). Filters are quick to

execute and their results are very generalisable as the intrinsic properties of the chosen

subset of features is directly related to the output or class. However, there is a tendency

for filters to select large subsets of features (Kohavi and John, 1997). Wrappers use a

classifier each time to evaluate the performance of the selected subset of features (using

accuracy, F-score or other similar measures). Wrappers tend to have higher accuracies

than filters as the classifier is included in the process of choosing the optimal subset

of features (Kohavi and John, 1997). Cross-validation is generally used to avoid any

cases where over-fitting occurs ensuring high generality. Wrappers tend to have longer

execution times than filters. This is because the classifier must be trained upon each

iteration. The inclusion of the classifier means that the subset of features chosen are

only optimal for that classifier and thus the chosen features might be different should

another classifier be used. This may lead to a reduction in the overall generality of the

solution.

In this analysis, the Sequential Forward Selection (SFS) wrapper method (Kohavi and

John, 1997) (see Algorithm 8.2) was investigated as a means of reducing the number of

features. This method begins with an empty subset of features and iteratively adds one

feature to the subset. At each iteration, the feature which maximises a pre-defined cost

function is added to the subset of features. This process is repeated until the addition

of any new feature does not result in an increase in accuracy. The cost function is a

performance metric which tests the ability of the classifier to correctly label the inputs

using the chosen subset of features. For this analysis, the cost function used was (1−F-

score) as this caters for biased data in addition to placing emphasis on reducing the

number of false positives and false negatives. The main drawback of this algorithm is

that it is unable to remove features which have become obsolete after the later addition

of features. Additionally, this algorithm might not necessarily converge on the optimal

selection of features which an exhaustive search would uncover. Other wrapper methods

have also been developed, such as Sequential Backward Selection, Bidirectional Search

and Sequential Floating Selection, however only SFS was investigated in this analysis.
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Algorithm 8.2 Sequential Feature Selection Algorithm

1. Start with an empty subset of features, Y0 = {ø} and k=1.
2. Select the feature which maximises the performance of the classifier,

xa = argmax
x∈Yk

J(Yk + x)

3. Add Y to include xa and increment k, Yk = Yk−1 + xa and k = k + 1
4. Repeat from step 2 until the performance of the classifier does not improve.

8.3 Sleep/Wake Classification

Data from two types of participants were collected in this study. They were used to

develop classifiers which would discriminate between sleep and wake on younger adults

(data set A), older adults (data set B) and a combined data set of both younger and older

adults. For this analysis, sleep was defined as any of the five sleep stages: stage 1, stage

2 stage 3, stage 4 or stage 5 sleep. The ability of a classifier to successfully discriminate

between sleep and wake was tested on both a per cohort (cohort specific classification)

and a per subject (subject specific classification) basis. The optimal classifier type was

chosen from five types of classifiers: 1) LDA, 2) QDA, 3) kNN, 4) ANN, and 5) SVM

with various internal configurations as shown in Table 8.10. A brief explanation of these

is given in Chapter 3.3.

LDA and QDA classifiers were trained using a proportion of each data set as training data

to divide the n-dimensional space into linearly or quadratically defined subspaces which

optimally discriminate between sleep and wake. The performance of each classifier was

then found by dividing the remaining data (the validation data set) into these subspaces

and then calculating the number of correct classifications.

Three internal states of the kNN classifier were chosen: 1) k=1, 2) k=5, and 3) k=9

where k represents the number of nearest neighbours required to classify a sample as

belonging to one state or another. The euclidian distance between each test sample and

each training sample over all dimensions was used as the distance metric to find the

nearest neighbours. The distance from the test sample to all samples in the training

data set was computed. The test sample was labelled with the majority class of the

nearest k training set samples. As such, kNN is a non-linear classifier which creates

a non-linear boundary which discriminates between states. The effect of noise on the

accuracy of the discriminating hyperplane is greater for lower values of k. Values of k

which are too high can create a boundary which is too smooth (and not specific enough

to the data set). A preliminary investigation determined that the optimal k value was

less than 10.
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Two internal states for the ANN classifier were chosen: 1) a ANN with 20 neurons in

the hidden layer, and 2) a ANN with 40 neurons in the hidden layer. Both of these

networks had one neuron in the output layer, with high and low values reporting each

state (wake and sleep). There are several options for optimising the topology of a neural

network, for example varying the number of hidden layer neurons or even the number of

hidden layers. Due to time constraints, only the two options listed above were included

in this analysis.

A lengthy optimisation procedure was followed for the SVM whereby the internal states

for sigma (σ) and the box constraint (C) were optimised. The box constraint is a

parameter which controls the level to which misclassifications can occur. If this is kept

too strict and no misclassifications are allowed to occur this can results in a loss of

generality. σ is a parameter which controls the potential minimum width between classes

(or the margin). The non-linear kernel used for this analysis was the RBF. Initially a

large once-off sweep was performed using a large range of values for sigma and the box

constraint. It was found during a preliminary analysis that the optimal performance (as

noted using F-score) would be found for sigma (σ) values in the range 0.01 to 4 and box

constraint (C) values in the range 0.01 to 20. This SVM optimisation procedure is an

exhaustive search and as such is computationally inefficient. Accordingly, the sigma and

box constraint parameters were increased by 0.5 units per iteration in order to reduce

the running time of this optimisation process. The optimal classifiers were chosen based

on their performance (as measured using F-score, see Equation 8.5) when trained and

tested on a per cohort (young, old, all) basis and a per subject basis.

The classifiers were trained and tested using the original features and the Principle Com-

ponent(s) (PC) derived from the features. PCA was used to reduce the dimensionality

of the data, and FSCA (as described in Section 8.2.6) was used to select the signals

which give the highest contribution to the variation in the data set. SFS was applied

in the cohort specific classification as a large number of samples existed for each cohort

under analysis. It was felt that SFS would not be appropriate in the subject specific

classification case due to the low number of wake samples available.

8.3.1 Cohort Specific Classification

Three data sets were assembled and split into training and validation data for cohort

specific classification (see Table 8.10). The first data set contained only the younger

adults (data set A), the second data set contained only the older adults (data set B)

while the third data set contained both cohorts (data set A and data set B). This data

was then used to train a number of classifiers (listed above) and provide performance
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results based on the validation data. The optimal classifier was later tested on unseen

data (data sets C and E). In most cases a large proportion of samples were used to train

the classifier, while the remainder validated the performance of that classifier. However,

a significantly lower number of samples were used to train the SVM classifier as its

processing time increases exponentially with the number of training samples (Joachims,

1999) and also due to the tuning process for selecting the optimal internal parameters.

Thus, a trade-off between the search for optimal internal configuration values and the

duration of the optimisation procedure was made.

8.3.1.1 Classifier Training and Validation Preprocessing Procedure

Initially, the set of 13 input features along with their corresponding sleep or wake stage

were split into subsets of sleep and wake epochs on a per subject basis. 400 epochs

of sleep and 400 epochs of wake randomly chosen from each person were then selected

for classification. For two of the younger subjects (BN101 and BN108) and one older

adult (BN113), random sampling with replacement was used to select the wake epochs

as there were less than 400 wake epochs available (95, 198 and 196 wake epochs available

respectively as shown in Figure 8.3). For all other subjects and for the selection of sleep

epochs, sampling without replacement was used as the number of available samples

allowed it. These data were then grouped into three sets: data set A) younger adults,

data set B) older adults or data set AB) all subjects. Each data set consisted of an

equal proportion of wake and sleep epochs per subject. The PCs of this data was then

approximated using the coefficients derived from data set D. A separate data set of

younger adults were used to approximate these coefficients in order to avoid overfitting.

This process resulted in 13 original and 13 principal component features available for

classification.

8.3.1.2 Single Feature Classification

The ability of each feature taken individually to discriminate between sleep and wake

using LDA was also investigated (see Figure 8.4). The number of samples used to train

and validate the classifier was 4266 and 2134 for the younger adult cohort, 3732 and

1868 for the older adult cohort and 8000 and 4000 for the younger and older cohort

respectively. As above, 400 epochs of wake and 400 epochs of sleep were randomly

chosen from each subject. The results were generated for the younger adult, older adult

and all subject cohorts. This process was repeated five times in order to examine the

consistency of the results. Minimal standard deviations in the classification performance
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(a) Performance of LDA classification using the original features.
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(b) Performance of LDA classification using the PC features.

Figure 8.4: Performance of each single feature in discriminating between sleep and
wake over the three cohorts: younger adults (green), older adults (blue) and all adults

(red). The standard deviation in the performance over 5 repetitions is shaded in.

occurred when using the original features as inputs, whereas this standard deviation was

dramatically larger for some of the PCs in some of the cohorts.

8.3.1.3 Multi-Feature Classification

Various classifiers were trained and validated on all the PC and/or using all of the orig-

inal features as combining information for multiple features would be likely to increase

performance. Conversely, some features might not provide any additional capacity over

other features in discriminating between sleep and wake. As such, dimensionality reduc-

tion techniques were applied. If successful, this procedure would also serve to reduce the

computational load of the final algorithm and to reduce the number of features which

need to be calculated. Classifiers were trained and validated using all the PC or using all

the original features, or with data containing the top three and four PCs as well as the

top three and four FSC. The classification procedure was repeated multiple times using
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different randomly selected samples in order to ensure consistent results (also known as

cross validation). The number of repetitions as well as the number of training and test

samples for each classifier and each cohort analysed is given in Table 8.10.

Table 8.10: Classifiers and samples sizes used for sleep/wake discrimination.

No. Samples - GSC No. Samples - SSC

Classifier NR A B AB NR All Subjects

Tr Va Tr Va Tr Va Tr Va

LDA 5 4266 2134 3732 1868 8000 4000 5 532 268

QDA 5 4266 2134 3732 1868 8000 4000 5 532 268

kNN1 5 4266 2134 3732 1868 8000 4000 5 532 268

kNN5 5 4266 2134 3732 1868 8000 4000 5 532 268

kNN9 5 4266 2134 3732 1868 8000 4000 5 532 268

NN20 5 4266 2134 3732 1868 8000 4000 5 532 268

NN40 5 4266 2134 3732 1868 8000 4000 5 532 268

SVM 5 320 6080 280 5320 300 11700 5 400 400

Group Specific Classification (GSC), Subject Specific Classification (SSC), Number

of Repititions (NR), Number of Training Samples(Tr), Number of Validation Samples

(Va), k -Nearest Neighbour where k=x (kNNx), Neural Network with y neurons in

the hidden layer (NNy).

The mean performance of the classifiers (F-score, see Equation 8.5) over all repititions is

reported in Figure 8.5 and also in Tables 8.11, 8.12 and 8.13 for the younger adults, older

adults and all subjects respectively. The internal configurations (sigma, σ, and the box

constraint, C) for the SVM were tuned and the results from the optimal configuration

reported (see Figure 8.6). The performance score values had a standard deviation of

less than 0.025 over all repetitions. The three optimal classifiers (C-younger, C-Older

and C-all) for each cohort (younger, older and all subjects respectively) reported a high

performance (F-score) along with a low standard deviation.
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(a) Younger adult cohort
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(b) Older adult cohort
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(c) Entire cohort

Figure 8.5: Performance of the cohort specific classification over the three cohorts.
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Table 8.11: Performance (F-score) of the classifiers in discriminating sleep and
wake over the younger adult cohort

3 PCs 4 PCs 13 PCs 3 FSCs 4 FSCs 13 FSCs

LDA 0.768 0.762 0.802 0.758 0.759 0.799

QDA 0.751 0.764 0.787 0.766 0.772 0.784

KNN 1 0.716 0.718 0.734 0.232 0.725 0.714

KNN 5 0.755 0.765 0.770 0.245 0.756 0.762

KNN 9 0.765 0.773 0.784 0.266 0.776 0.780

NN 20 0.789 0.794 0.807 0.798 0.799 0.800

NN 40 0.791 0.801 0.805 0.793 0.802 0.796

SVM 0.775 0.762 0.755 0.771 0.767 0.760

All performance scores had a standard deviation of less than 0.025 over all repetitions.

Table 8.12: Performance (F-score) of the classifiers in discriminating sleep and
wake over the older adult cohort

3 PCs 4 PCs 13 PCs 3 FSCs 4 FSCs 13 FSCs

LDA 0.749 0.738 0.766 0.739 0.744 0.768

QDA 0.734 0.728 0.746 0.724 0.724 0.748

KNN 1 0.670 0.673 0.693 0.214 0.675 0.698

KNN 5 0.709 0.715 0.72 0.312 0.728 0.734

KNN 9 0.734 0.733 0.749 0.353 0.739 0.752

NN 20 0.773 0.762 0.767 0.764 0.763 0.767

NN 40 0.765 0.766 0.776 0.757 0.764 0.772

SVM 0.742 0.715 0.716 0.746 0.726 0.714

All performance scores had a standard deviation of less than 0.025 over all repetitions.

Table 8.13: Performance (F-score) of the classifiers in discriminating sleep and
wake over the entire cohort

3 PCs 4 PCs 13 PCs 3 FSCs 4 FSCs 13 FSCs

LDA 0.761 0.747 0.780 0.735 0.743 0.783

QDA 0.743 0.743 0.767 0.748 0.747 0.765

KNN 1 0.692 0.698 0.711 0.167 0.689 0.704

KNN 5 0.742 0.739 0.746 0.229 0.740 0.745

KNN 9 0.750 0.750 0.761 0.256 0.756 0.761

NN 20 0.780 0.783 0.790 0.784 0.774 0.784

NN 40 0.776 0.780 0.789 0.783 0.779 0.789

SVM 0.746 0.748 0.738 0.761 0.745 0.743

All performance scores had a standard deviation of less than 0.025 over all repetitions.
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Figure 8.6: SVM Performance over all box constraint (C) and sigma (σ) values applied
to the younger adult cohort (cohort specific classification).

8.3.1.4 Sequential Feature Selection

SFS in the forward direction was applied to the younger, older and entire data sets using

either the original features or the 13 approximated PCs. LDA was used as the classifier

in this analysis as it’s more computationally efficient (more suitable for implementation

on low complexity systems) and its performance only slightly inferior to the optimal

classifier for each cohort (NN20 for the younger cohort, NN40 for the older cohort, and

NN40 for the entire cohort all using the 13 original features). A preliminary investigation

using QDA was carried out and classification using LDA reported a slightly higher

performance. In all cases and for each number of selected features, the original features

outperformed the PCs consistently (see Figure 8.7). A list of the chosen features per

cohort is given in Table 8.14, the numbering of these features is taken from Table 8.6.
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Figure 8.7: Sequential feature selection performance per number of input features.

Table 8.14: Sequential feature selection chosen features per
cohort.

Features Cohort Chosen Features Performance

PCs Younger Adult 2, 11 0.781

Older Adult 5, 2, 1, 7, 9, 8, 3, 11 0.770

All Subjects 2, 11 0.761

Original Younger Adult 12, 13, 10, 1 0.809

Older Adult 12, 13, 10, 2 0.777

All Subjects 12, 13, 10 0.788

Feature numbers relate to the features as per Table 8.6.

Additionally, the 13 original and 13 PCs were combined and SFS was applied. No greater

performance was found when using these 26 features. The majority of features came

from the subset of the original 13 features and additionally the effect of the PC features

in increasing classifier performance was minimal. This was consistent with the results

found above where all 13 original and 13 PC features were taken together and a classifier

trained and validated. Additionally it should be noted that no difference in performance

should be expected as the PC should be transformed versions of the original features

(however this may not be the case the PCA transformation matrix is derived from data

set D). No increase in performance in taking the original or PC features separately was

found.

219



UMBS Sleep Classification

Table 8.15: Best group specific classifier.

Cohort F-score Sens. Spec. Classifier Details

Younger 0.807 0.724 0.880 LDA SFS, Features: 12, 13, 10, 1
Older 0.772 0.690 0.840 LDA SFS, Features: 12, 13, 10, 2
All 0.790 0.876 0.657 NN20 All 13 PCs

Table 8.16: Optimal group specific classifier.

Cohort F-score Sens. Spec. Classifier Details

Younger 0.799 0.902 0.645 LDA All Original Features
Older 0.768 0.856 0.627 LDA All Original Features
All 0.783 0.880 0.633 LDA All Original Features

8.3.1.5 Optimal Classifier Selection

The optimal classifier over each cohort is given in Table 8.15. However for these classi-

fiers, the sensitivity values are lower than most commercial sleep/wake detection prod-

ucts, conversely the specificity is much higher for the SFS classifiers. In the non-SFS

classifiers, this is reversed which is more preferable as the subject is in the true positive

(sleep) state more often throughout the night (and correspondingly this will result in

a higher overall accuracy). As such, the non-SFS classifiers were chosen. The optimal

non-SFS classifier was a neural network as per Tables 8.11, 8.12 and 8.13. However

the performance of an LDA classifier (see Table 8.16) was slightly lower (by less than

0.008) and within one standard deviation, but had very high sensitivity values and ad-

equate specificity values (making it more suitable due to the bias typical of the bias

in the data from each night’s sleep). Additionally due to the simpler implementation

in low-level hardware of an LDA classifier, it was chosen as the optimal classifier for

sleep/wake classification. Low standard deviations (less than 0.02) were found for the

F-score, sensitivity and specificity.

8.3.1.6 Cohort Independent Classifier Testing

The younger adult classifier, the older adult classifier and the all subject classifier with

the optimal performance (as described in Table 8.16) were applied to data from an

unseen cohort of 5 younger adults over one night (data set C), to data from an unseen

cohort of one older adult over three nights (data set E) and to a subset of data from both

of these cohorts. This process provides an independent testing of the optimal classifier.

The size of these independent testing data sets (data sets C and E) are relatively small,
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however an independent report of the performance of each classifier using this data is

still valid. Equal proportions of sleep and wake were randomly selected from each of

these cohorts ensuring a valid comparison of results from training, validation and testing

data.

Younger Adult Testing Cohort For the younger adult cohort, fifty samples of sleep

and fifty samples of wake were randomly selected from each of the five subjects in data

set C and compiled into the younger adult testing data set. Random sampling with

replacement was used to select the fifty wake epochs due to the low number of wake

epochs available in this data set. A much lower number of samples was used here

compared to the training and validation stage as the number of wake epochs was below

50 for subjects BN117 and BN120 (23 and 25 epochs respectively). The subjects were

only awake for 13% of the recordings. Random sampling without replacement was used

to select fifty of the sleep epochs in this data set. The subsets of chosen sleep and wake

epochs from all subjects were combined to creating a set of 500 chosen epochs.

Older Adult Testing Cohort For the older adult cohort, 200 samples of sleep and

200 samples of wake were randomly selected for each subject over the three nights and

compiled into the older adult testing data set. Random sampling without replacement

was used to select the sleep and wake epochs in this data set as the data set contained

over 41% wake epochs. The subsets of chosen sleep and wake epochs from all sleeping

episodes were combined to create a set of 400 chosen epochs.

All Subject Testing Classifier The data from one sleeping episode from one younger

subject (BN119) and one older subject (BN113) were compiled into a testing set for older

and younger subjects. The data from the younger subject contained 113 wake epochs

and 472 sleep epochs. The data from the older subject contained 264 wake epochs

and 233 sleep epochs. 200 samples were randomly selected, without replacement where

possible, to create a data set of 400 sleep epochs and 400 wake epochs. This data set

contained an equal contribution of data from younger and older adults.

The mean performance (F-score) of each of the three classifiers applied to the three

data sets above over 10 trials is reported in Table 8.17. The standard deviation of the

performance of each classifier was less than 0.025. The F-score, sensitivity, specificity

and accuracy of each classifier on their respective cohort is given in Table 8.18. A

comparison of the performance of the classifiers during training, testing and validation

on their respective data sets is given in Table 8.19.
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Table 8.17: Testing performance of the optimal cohort specific classifiers on all three
cohorts.

Cohort
Younger Adult Older Adult All Subjects

Classifier Younger Adult 0.758 0.867 0.801
Older Adult 0.750 0.813 0.776
All Subjects 0.738 0.823 0.788

Table 8.18: Performance of the optimal cohort specific classifiers on their cohorts’
independent unseen data (data sets C and E).

Cohort/Classifier F-score Sens. Spec. Acc.

Younger Adult 0.758 0.879 0.560 0.719
Older Adult 0.813 0.980 0.570 0.775
All Subjects 0.788 0.955 0.532 0.743

Table 8.19: Performance of the optimal cohort specific classifiers on their cohorts’
data during training, testing and validation.

Data Set
Training Validation Testing

Classifier Younger Adult 0.805 0.796 0.758
Older Adult 0.775 0.780 0.813
All Subjects 0.779 0.787 0.788

8.3.2 Subject Specific Classification

8.3.2.1 Pre-Processing

A similar sampling procedure to the Cohort Specific Classification approach above was

used to select 400 sleep and 400 wake samples from each subject. However, the data

from each subject was kept separate and randomly assigned to either train or validate

the classifier. Equal numbers of sleep and wake epochs were used to train and validate

each classifier. Each classifier was trained and validated on each of the six types of

data previously described (the 3, 4 and 13 PCs, the 3 and 4 FSCs and the 13 original

features). Again, cross validation was used to examine the consistency of the results.

8.3.2.2 Multi-Feature Classification

Performance results for each subject and the six types of input features over the 8

classifiers can be found in Figures 8.8-8.15. The mean performance of the SVM classifier
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Figure 8.8: LDA classifier performance over six sets of input features.
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Figure 8.9: QDA classifier performance over six sets of input features.

reported is the optimal result over all sigma (σ) and box constraint (C) values per subject

averaged over all cross-validations. The optimal internal SVM parameters varied on a

per subject basis, and as such the performance at the best combination of internal

parameters is reported.

The average subject performance reported on a per cohort (younger adults, older adults

and all subjects) basis was then evaluated using the mean across the relevant cohort

(see Figure 8.16). Averaging the best subject performance per cohort was not suitable

for the SVM case as the internal parameters for each subject is different. As such, the

best performance per cohort over all combinations of sigma and box constraint values

were reported. As a result, the mean SVM performance across each cohort will be equal

or lower than the values previously reported in Figure 8.15. In this case, the mean

performance across each cohort is lower.
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Figure 8.10: kNN1 classifier performance over six sets of input features.
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Figure 8.11: kNN5 classifier performance over six sets of input features.
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Figure 8.12: kNN9 classifier performance over six sets of input features.
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Figure 8.13: NN20 classifier performance over six sets of input features.
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Figure 8.14: NN40 classifier performance over six sets of input features.
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Figure 8.15: SVM classifier performance over six sets of input features.
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(a) Mean subject specific performance over six sets of input features for the younger adult cohort.
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(b) Mean subject specific performance over six sets of input features for the older adult cohort.
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(c) Mean subject specific performance over six sets of input features for the entire cohort.

Figure 8.16: Mean subject specific classifier performance.
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Table 8.20: Optimal subject specific classifier (results reported per cohort).

Cohort F-score Sens. Spec. Classifier Details

Younger 0.828418 0.879665 0.729294 LDA 13 PCs
Older 0.807631 0.877827 0.696587 LDA 13 PCs
All 0.811247 0.8788 0.714031 LDA 13 PCs

Table 8.21: Validation performance of the optimal subject specific classifiers on both
cohorts.

Cohort
Younger Adult Older Adult

Classifier Younger Adult 0.7462 0.8358
Older Adult 0.7299 0.8217

8.3.2.3 Optimal Classifier Selection

The optimal classifier over each cohort is given in Table 8.20. This reports a slightly

better performance compared to the optimal cohort specific classifier. When examined

on a per subject basis, very high performance rate are reported in some cases. This

leads to a much larger standard deviation when results are averaged over each cohort

analysed. The standard deviation in the F-score is 0.049, 0.054 and 0.050 for the younger

adults, older adults and all subjects respectively.

8.3.2.4 Subject Specific Classifier Validation

The younger adult classifier and older adult classifier with the best performances (BN103

and BN109 respectively) were both applied to the unseen data from a younger and older

population. As these classifiers were subject specific, an older/younger adult classifier

could not be formed. The formation of the older adult and younger adult data sets used

for this analysis was discussed previously in Section 8.3.1.6.

The mean performance (F-score) of each classifier applied to both data sets above over

10 trials is reported in Table 8.21. The standard deviation of the performance of each

classifier was less than 0.025. The F-score, sensitivity, specificity and accuracy of each

classifier on their respective cohort is given in Table 8.23. A comparison of the perfor-

mance of the classifiers during training, validation and testing on their respective data

sets is given in Table 8.22.
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Table 8.22: Performance of the optimal subject specific classifiers on their cohorts’
data during training, testing and validation.

Data Set
Training Validation Testing

Classifier Younger Adult 0.895 0.880 0.746
Older Adult 0.822 0.847 0.821

Table 8.23: Performance of the optimal subject specific classifiers on their cohorts’
testing data.

Cohort/Classifier F-score Sens. Spec. Acc.

Younger Adult 0.746 0.788 0.676 0.732
Older Adult 0.821 0.945 0.645 0.795

8.3.3 Discussion

This investigation found positive results for the discrimination of sleep and wake in

both healthy younger and healthy older adults using LDA classifiers applied to fea-

tures derived from UMBS data. A performance similar to commercially available acti-

graphic sleep/wake monitors was found (Fox et al., 2007). The UMBS system consists

of a classifier which was trained, validated and tested using a large data set collected

over an extended period of time using a relatively large cohort over multiple sleeping

episodes. High performance has been reported when the optimal discriminating method

was applied to a completely independent cohort in a testing phase. This validates the

performance of the UMBS sleep/wake detection algorithm system when applied to new

subjects.

The subjects under analysis were defined as healthy using a strict inclusion criteria and

were also screened for potential sleep disorders such as sleep apnoea, insomnia, and

circadian rhythm sleep disorder. As such, the data investigated in this analysis relates

to healthy subjects, and not to those whose sleep would warrant monitoring due to the

presence of co-morbidities and/or a sub-optimal health status. This research focussed

on the ability of the UMBS to discriminate between wake and sleep in healthy cohorts as

an initial step. Later steps may include unhealthy cohorts, where ethically appropriate.

Furthermore, it is unrealistic to expect all of those with a reduced health status to

have an identical pattern of degradation in their sleep. More illness specific changes in

sleeping patterns would be expected (Happe, 2003). As such, it may be beneficial to

analyse each cohort separately.
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The sleep and wake patterns of each subject studied is not representative of natural

variations in sleep and wake. All subjects complied to a strictly defined protocol of sleep

and wake over the recording period. Large periods of the studies did not have a twenty

four hour day. While this resulted in the collection of sleep and wake data throughout

various circadian phases of the subject, this does not affect the PSG-definition of the

sleep/wake state of the subject (Rechtschaffen and Kales, 1968). As such, the relation-

ship between the UMBS collected features and the PSG-defined sleep/wake state should

not be impacted. In this research, it was taken that the UMBS activity patterns should

relate solely to sleep or wake state and not be modified due to circadian phase or the time

of day. There was not sufficient sleep and wake data available for all circadian phases

to examine whether circadian phase affected the ability of a classifier to discriminate

between sleep and wake. The propensity of the subject to sleep at different circadian

phases varies (Czeisler et al., 1992). This results in a greater amount of wake time during

certain circadian phases, however, this should not affect the relationship between the

UMBS-data and the PSG-defined sleep/wake state either. All subjects underwent one

of two protocols enforcing sleep and wake times. While these protocols were different,

most notably during the initial baseline period, this also should not affect the relation-

ship between UMBS data and sleep/wake state. While the extended day length and

sleep restriction are artificially enforced, this should have no bearing on the relationship

between UMBS-derived data and sleep/wake state. As such, this data is adequate for

the investigation of the classification of wake and sleep stages from UMBS data. No no-

table difference was found in the performance of any classifier when comparing protocols

using the younger adult cohort (BN101-BN106 belonged to protocol B; BN107-BN108

belonged to protocol A) as seen in Figures 8.8-8.15. The older adult data set related to

only one protocol and as such a comparison between protocols could not take place.

Naturally the subject might not be asleep for the entire period that they are prescribed

to sleep. The quantity of sleep they get during this period only affects this research

when a significant lack of either sleep or wake occurs. This occurred in some subjects

where a low number of wake epochs were recorded. Consequently, random sampling

with replacement was used to cater for this condition. Subjects for whom an inadequate

number of wake epochs occurred were excluded from analysis. This only happened

during the classifier testing phase for three subjects. While this reduced the amount

of testing data available, there was still an adequate amount of data to produce valid

testing results.

Normally, the subject is likely to be asleep for the majority of that period as they are

not allowed to sleep during other times. However, periods exist where the subject is

awake trying to get to sleep (exhibiting periods of quiescent wake). Due to the presence

of PSG recording equipment, subjects are less likely to move as they naturally would in
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their domestic environment which may exaggerate the amount of quiescent wake. This

is a problematic condition for all activity based sleep monitors. Subsequently, the data

collected might not be representative of data where no PSG is being collected (ie. during

typical natural domestic sleep where quiescent sleep may occur less). However this is

a constraint of all research where the subject is aware of being monitored (regardless

of the nature of that monitoring). In any case, any system developed using data with

high amounts of quiescent wake is likely to be more specialised and more sensitive to

classifying epochs of quiescent wake correctly. While this may result in the development

of a system more sensitive to the condition of quiescent wake, only a home-based inves-

tigation using a very minimally intrusive gold standard sleep/wake monitor would fully

be able to answer this question. Additionally, it must be noted that all the data in this

investigation was collected in an artificial environment and as such may not be fully

representative of data collected in the home. Again, there exists an inherent constraint

of this nature for any type of clinical research.

Methods of dimensionality reduction were investigated in order to assess if any redun-

dancy in the features could be removed from the proposed UMBS sleep/wake detection

system. Although the number of features is low, it would be advantageous if a final sys-

tem had as low a complexity as possible (in order for the system to implemented on low

cost hardware). Additionally the calculation of some features (which can be a lengthy

process) could be avoided. FSCA and PCA were initially investigated. FSCA and PCA

modify and/or arrange the feature set in terms of the decreasing variance in the data.

PCA transforms this data to a new basis in a manner which ensures that each new signal,

or principal component, is orthogonal to all previously generated principal components.

FSCA arranges the signals in terms of decreasing variance explained. These methods of

dimensionality reduction do not necessarily compare well with the optimal selection of

features which would result in the best discrimination of the output classes. For exam-

ple, feature 12 (the number of distinct movements as defined using Temporal Movement

Feature (TMF)) was found to provide the highest performance in discriminating between

sleep and wake (see Figure 8.4), however it was not always identified as the first FSC or

as the major contributing factor in the determination of the first principal component.

In fact, the feature 12 was found to the be fourth FSC, and its inclusion as a features

significantly increased the accuracy of kNN classifiers (see Tables 8.11, 8.12, and 8.13).

The use of all of the original features outperformed the use of the best three or four FSC

(see Figures 8.8-8.15). Additionally, the use of all of the PC outperformed the use of the

top three or four PC. This was in spite of the very low contribution of the remaining PC

to the variance of the data set. The use of some of the features, found using a feature

subset selection method, in the discrimination of sleep and wake provided good results.

SFS was used to achieve this. For this the class each data sample corresponded to was
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involved in the determination of the optimal selection of features. The determination of

these features is specific to the classifier used (which in this case was LDA). The SFS

classifiers were found to provide the highest mean performance of all the older adult

and younger adult classifiers, despite using only four of the original features (as given in

Table 8.14). The best mean performance for the mixed cohort was a non-SFS classifier,

however the SFS classifier performed only marginally worse. The best three and four

FSC and the top three and four PC were outperformed by the SFS selected features

consistently. The FSC did not correspond exactly to the features SFS determined as

the best features (although feature 12 was in common). FSCA and PCA are often used

as unsupervised machine learning techniques where the output state is either unknown

or doesn’t exist. In the context of this research, the supervised approach of using SFS

provided better results than the aforementioned unsupervised methods. Overall, the use

of all of the original features was chosen as the optimal method to use (see Table 8.16).

The results from the application of these classifiers to training, validation and test data

report high performance (as given in Table 8.19).

It should also be noted that a tradeoff was made during this research where the PC were

approximated using an external data set (data set D) in order to reduce the occurrence

of overfitting on the training and validation data sets and also to increase generality. It

was felt that the data set used to calculate the PCA transformation matrix was large

enough to provide results robust enough to be considered generally applicable. It is of

importance to note that this data pertains to younger adults and as such might not

be ideal for data sets containing older adults. This could be a potential explanation

for the consistently lower results found in the sleep/wake discrimination of older adults

(see Figure 8.5). However, lower accuracies in the discrimination of sleep and wake of

older adults than in younger subjects have been previously reported in the literature

(see Section 4.5). There are many potential sources of explanation for this including the

increasing number of subclinical co-morbidities in older adults or the higher proportion

of wake in the sleeping episode (which increases the occurrence of quiescent wake, a

problem for activity based sleep/wake monitors). A comparison of the performance

of an LDA classifier using the 13 original features, 13 PC features, and all 26 jointly

as inputs found no improvement in performance. This was expected as the 13 PC

should just be a transformed version of the 13 original features (assuming that the PCA

transformation matrix used was generally applicable).

In this analysis, both linear and non-linear classifiers were investigated. The most basic

linear classifier examined (LDA) performed very well in comparison to more advanced,

and optimised, non-linear techniques. This was the case for both the cohort specific

scenario and the subject specific scenario. While LDA was marginally outperformed

by some of the non-linear techniques, LDA was chosen as the optimal cohort specific
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classifier under the condition that all thirteen original features were used as inputs.

This was due to the ease of implementation of the classifier in a finalised system which

is of specific importance when using low-level hardware and software. The non-linear

classifiers under examination in this analysis did not significantly outperform the more

basic linear approaches despite comparatively lengthy optimisation processes. While an

exhaustive search for a better solution using different kernels in the SVM or alternative

ANN topologies might prove fruitful (for example using a low number of neurons in the

hidden layer, such as 5), the results from this analysis suggest that the linear approaches

provide a near optimal sleep/wake discrimination and that a more comprehensive search

for the ideal classifier and topology would not significantly improve performance. Ad-

ditionally it must be noted that SVM classifiers were trained using significantly less

samples than that applied to the other classifiers. The number of samples used to train

the SVM classifier was reduced due to the high computational overhead and also due to

the lengthy process of optimally tuning the internal parameters. A tradeoff was made

between the number of samples used to train the classifier and the resolution of the

search for optimal internal parameters.

Figure 8.6 shows the performance of the SVM classifier throughout a range of sigma

and box constraint values. It suggests that a larger range of values for sigma should be

investigated. However in a preliminary investigation it was found that the performance

of the classifier declined above a sigma value of 4. As such, the performance metrics

reported herein are considered accurate for this data set.

In addition to classifying cohort specific data (all younger subject, all older subjects,

and all subjects), subject specific classification was also performed and results were

averaged over the younger adult and older adult cohorts (as given in Tables 8.22 and

8.23). The performance of the subject specific classifiers outperformed the cohort spe-

cific classification over the training and validation data. This is unsurprising as each

subject specific classifiers were trained and tested on each subject. The group specific

classifier marginally outperformed the subject specific classifier for the younger cohort

using validation data. In this scenario, the best performing subject specific classifiers

(optimised on a subject’s data) were applied to independent testing data. As such, it is

unsurprising that much lower performance was reported.

Applying the subject specific classifiers to certain individuals, very high validation per-

formances were reported (F-Score over 0.85), however other individuals reported lower

performance rates (F-Score of 0.75). The high results illustrate that some subjects

present specific patterns (exhibited in the UMBS features), pertaining only to that in-

dividual, which can discriminate sleep from wake very well. The lower results illustrate
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that such specific patterns do not exist for all subjects (as quantified using the UMBS

features).

A low variation in the average subject specific performance per cohort was found over

all classifiers (as seen in Figure 8.16). Higher variations are evident when comparing the

input features to the classifiers. Again, the LDA classifier was found to be the optimal

choice for subject specific classification. The use of all 13 PC, followed by all 13 original

features, performed best. This suggests that effort should be directed towards deriving

useful features, rather than an exhaustive search of the optimal configuration of the

optimal classifier.

8.4 Sleep Stage Classification

8.4.1 Multi-Class Classification

A subset of the younger adult data set was randomly selected to contain 1000 samples

of each sleep stage. This created a data set of 6000 samples using the 5 sleep stages as

well as the wake stage. There was an even contribution of data per sleep stage from

each subject included in this analysis. The data was split into 66.6% training and 33.4%

test data. This investigation used LDA classification to distinguish between the sleep

stages as it was easy to implement in a finalised system and has a low computational

overhead. This test was repeated 100 times using a different combination of samples

from the cohort in order to assess the consistency of results. Results were reported using

the mean over all repetitions and as a ratio of the number of samples per stage (see Table

8.24). The standard deviation over all repetitions was less than 0.04. The accuracy of

this method in correctly classifying the wake or sleep stage is reported along the diagonal.

The accuracy is less than or equal to 50% in all cases. This system performed relatively

poorly, although still significantly better that random chance (given that there are 6

stages under examination). The process of correctly classifying sleep stages is not an

easy one, even using standard PSG data and human scorers. In such cases, inter-rater

reliability is relatively low as 80.6% for the Rechtschaffen and Kales (5 sleep stages)

standard (Danker-Hopfe et al., 2009).

In order to reduce the complexity of the system, the number of classes were reduced.

Stage 1 and stage 2 sleep were combined in a category called ’light sleep’, while stage

3 and stage 4 were combined in a category called ’deep sleep’. The wake and stage 5

(REM) stages remained as before. In a similar approach as that above, 1000 samples

per stage were selected randomly with an equal distribution from each subject. Again,

cross validation was applied and the standard deviation in results was less than 0.075%.
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Table 8.24: Confusion matrix of LDA classification of wake/sleep stages using the 13
UMBS features.

Predicted
Wake Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Actual Wake 0.50 0.19 0.12 0.02 0.09 0.06
Stage 1 0.17 0.25 0.29 0.06 0.10 0.10
Stage 2 0.02 0.14 0.45 0.07 0.18 0.10
Stage 3 0.01 0.10 0.27 0.12 0.35 0.12
Stage 4 0.00 0.09 0.30 0.10 0.38 0.09
Stage 5 0.04 0.17 0.31 0.08 0.24 0.13

Table 8.25: Confusion matrix of LDA classification of a reduced number of wake/sleep
stages using the 13 UMBS features.

Predicted
Wake Light Sleep Deep Sleep REM

Actual Wake 0.56 0.18 0.12 0.11
Light Sleep 0.13 0.32 0.28 0.25
Deep Sleep 0.02 0.19 0.53 0.25

REM 0.06 0.27 0.36 0.28

Table 8.26: Confusion matrix of LDA classification of wake/NREM/REM stages
using the 13 UMBS features.

Predicted
Wake NREM REM

Actual Wake 0.61 0.18 0.21
NREM 0.06 0.59 0.34
REM 0.09 0.50 0.40

Results were reported using the mean over all repetitions and as a ratio of the number

of samples per stage (see Table 8.25). This classification process was repeated using just

three classes: Wake, NREM and REM (see Table 8.26). In these results the standard

deviation was than 0.062%.

The overall accuracy of these systems in distinguishing between different states of sleep is

relatively poor (see Table 8.27). QDA was also compared and it was found to consistently

be outperformed by LDA. This could be due to the more complex classification task for

QDA where a greater number of additional parameters have to be estimated over LDA.

LDA makes stronger assumptions during derivation and as such has smaller variance

in these estimates. However, LDA uses linearly defined decision boundaries which may

not always be ideal. Non-linear classifiers, such as ANNs and SVMs, could potentially

provide better accuracies, however these were not investigated further due to the very

low accuracies reported by LDA and QDA.
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Table 8.27: Overall accuracy (total percentage of correct classifications) of LDA and
QDA classification over the three sets of data.

LDA QDA

W/1/2/3/4/REM 0.31 0.27
W/LS/DS/REM 0.28 0.26
W/NREM/REM 0.51 0.49

NREM

Vs.

REM/Wake

REM

Vs.

Wake

Light Sleep

Vs.

Deep Sleep

Stage 1

Vs.

Stage 2

Stage 3

Vs.

Stage 4

Sleep and Wake Data

Figure 8.17: Hierarchical sleep classifier.

8.4.2 Hierarchical Binary Classification

Hierarchical classification approaches have been suggested in the literature as a means

of successively discriminating between sleep stages (Anderer et al., 2005). Initially a

classifier is designed to distinguish between groups of classes which display similar data

patterns. Subsequently, this process is repeated until each stage has been identified

(see Figure 8.17). For example in PSG data, Wake and REM sleep often have similar

physiological profiles which can be differentiated from NREM sleep. Thus, a classifier

can be applied to separate these stages. At a second level, a classifier will be applied to

separate REM sleep from wake. Another classifier will be applied to the NREM sleep

samples in order to distinguish between light sleep (stage 1 and stage 2 sleep) and deep

sleep (stage 3 and stage 4) sleep. At a third level, classifiers will be used to identify each

stage of NREM sleep.

However while this technique was found to have merit on PSG data, it will only work

where there is sufficient differences in the data between groups of sleep stages. In order

to investigate whether any such groupings exist, a clustering approach was applied. Ini-

tially, the younger adult data set was divided into clusters using a common unsupervised

technique. The k -Nearest-Neighbour clustering algorithm using the Euclidian distance

metric was used to split the data into between two and ten clusters. The optimal number
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Figure 8.18: Distribution of sleep stages per cluster.

of clusters was unknown. A subset of the younger adult data set was used to form these

clusters with an equal proportion of data (1000 samples) belonging to the wake, stage

1, stage 2, stage 3, stage 4 and stage 5 epochs. An equal proportion of data was taken

from each subject. While some small clusters identified wake epochs, the larger clusters

contained approximately equal distributions of data from all of the sleep and wake stages

(for example, see Figure 8.18). Similar results were found when the numbers of cluster

varied between 2 and 10. Due to the consistent overlapping of most sleep stages in clus-

ters, with wake (sometimes accompanied by stage 1) often being identified in separate

clusters, it was decided that a hierarchical approach to sleep stage classification could

not achieve greater sleep stage classification accuracy for the features in this data.

8.4.3 Discussion

An investigation into the potential of the UMBS to discriminate between the stages of

sleep was also performed (see Tables 8.24, 8.25 and 8.26). While an accuracy much

larger than random chance was found, it did not report an accuracy of an adequate level

to be realisable in a final solution. Subsequent analysis using an unsupervised clustering

technique showed that large overlaps of sleep stages occurred in most clusters. This

clustering approach was employed in order to inform whether a hierarchical approach

to discriminating between sleep stages would be beneficial. The optimal hierarchical

approach to distinguish between sleep stages (similar to that shown in Figure 8.17) was

not evident. This may explain the low performance in discriminating between sleep

stages. This result is not altogether surprising as the physiological basis for discriminat-

ing between sleep stages is not largely defined in terms of body movement, but mostly a

combination of EEG, EMG, and EOG (Rechtschaffen and Kales, 1968). While neurolog-

ical changes between REM and NREM (the control of the sympathetic/parasympathetic

nervous system) do occur, this does not generally result in changes in movement patterns
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but rather changes in the rhythmicity of physiological functions such as heart rate and

respiration rate (Rostig et al., 2005). An investigation into using advanced non-linear

techniques, such as Gaussian mixture models, to gauge this rhythmicity may provide

better accuracy.

8.5 Overall Discussion

In various other actigraphic sleep/wake detectors the sleep state has been defined using

data from a current epoch and its surrounding epochs (Mullaney et al., 1980; Sadeh

et al., 1994). However, the sleep or wake state of the subject during an epoch does not

have a causal relationship to the state of the subject during surrounding epochs, despite

having a strong correlation with these surrounding epochs. For example, if a subject is

awake during one epoch that does not determine their sleep/wake state during the next

epoch despite having increased the probability of their being asleep or awake during

that subsequent epoch. Some technologies have used an approach where the state a

current epoch is assigned is altered based on surrounding epochs (Cole et al., 1992).

However, it is not physiologically accurate to determine the sleep/wake state of the

subject based on previous or future epochs (Rechtschaffen and Kales, 1968). Altering

the assigned sleep stage, post analysis, can increase the over all accuracy of results by

correcting misclassification. However such an approach loses the sensitivity of detecting

discontinuities in one state, particularly the subject waking briefly. Recent research by

Lim et al. (2012) has found that such discontinuities can be used to identify subjects

who are cognitively impaired. The focus of this research was to solely investigate the

relationship between the current set of features and the current state of the subject.

This was performed so that the classifier would report the causal relationship between

the UMBS features and the PSG-defined sleep/wake state.

Often the accuracy of actigraphy is measured using specificity (Equation 8.2) and sen-

sitivity (Equation 8.3). However, these might be sub-optimal techniques as sleep data

sets are generally heavily biased toward the sleep state. For example, let’s say that

the number of misclassifications (false negatives and false positives) that the optimally

trained classifier reports are equal. Due to the bias in the data set where there are

significantly more sleep epochs (true positives), the sensitivity of the classifier will be

very high. However, the specificity the classifier reports will be much lower, despite

the same number of misclassifications, due to fewer wake epochs (true negatives) in the

data. Furthermore, this bias is not fixed for all sleeping episodes under analysis and

can change substantially both between subjects and between sleeping episodes. One

approach which addresses this is to select a subset of samples, randomly chosen, with an
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equal number of actual sleep and wake epochs and to calculate the performance of the

discriminating algorithm using that data. Cross validation should be used to quantify

the accuracy of the performance metrics reported. An alternative approach could be to

weight the sensitivity or specificity values in order to correct for this bias. A consistent

approach across all future literature should be taken in order to compare the accuracy

of multiple technologies. The reporting of overall sleep metrics should be avoided when

validating a sleep/wake monitoring device.

8.6 Conclusions

This chapter analysed the ability of UMBS-derived features to predict the wake or sleep

state of an individual. Additionally, the degree to which sleep stages could be deter-

mined using UMBS-derived data was also investigated. The performance and reliability

of this technology is comparable to the current ambulatory sleep/wake monitoring gold

standard, wrist actigraphy, and an alternative non-contact sleep/wake monitor (Bian-

caMed SleepMinder (De Chazal et al., 2011; Fox et al., 2007). However, this system is

suitable for long term placement in domestic homes and is ideal for the non-intrusive

collection of health data, particularly amongst sensitive populations (such as those with

mild cognitive impairment or dementia).

The collection of a large database or concomitant sensor and PSG data is a significant

logistical barrier to validating any proposed novel sleep monitoring system. While the

deployment of the UMBS device is relatively straightforward, the collection of PSG

data has a much larger overhead. The EEG montage must be applied and removed at

the beginning and end of each sleeping episode by a trained technician. Additionally,

the PSG data must be subsequently scored manually by a trained scorer which is an

expensive and time consuming process. In order to collect a large enough data set to

allow an accurate investigation of the discrimination of sleep and wake, data must be

collected from many subjects. The relatively low percentage of wake in each sleeping

episode means that data must be collected over many sleeping episodes in order to get

an adequate number of wake samples. Through the collection of this data set two main

novel contributions were possible, they are as follows:

A method to predict the sleep/wake state of a person: This research identified

an optimal sleep/wake discriminating algorithm and tested its performance on a set of

individuals external to the training/validation stage. Very high sensitivity and relatively

high specificity values were reported for the optimal classifier. These results compete

favourably against wrist actigraphy which is the current gold standard for ambulatory
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Table 8.28: Comparison of wrist actigraphy, BiancaMed SleepMinder and UMBS for
sleep/wake discrimination

Sensitivity Specificity

Wrist Actigraphy ((Paquet et al., 2007) in (Van
De Water et al., 2011))

91% 65%

BiancaMed SleepMinder(De Chazal et al., 2011) 87.3% 50.1%
UMBS - Younger Adult 87.9% 56%
UMBS - Older Adult 98% 57%
UMBS - All Adults 95.5% 53.2%

sleep monitoring and an alternative non-contact sleep/wake monitoring device (Bian-

caMed SleepMinder). However, it might be unfair to provide a direct comparison of

results as the UMBS-derived results are based on an unbiased data set (equal numbers

of actual sleep and wake epochs), while the other studies use a biased data set calculated

using the proportion of sleep and wake in each sleep episode under analysis. The prob-

lem this highly variable sleep/wake bias introduces has been discussed in the previous

section.

It should be noted that while the optimal solution used all thirteen UMBS derived

metrics, a dimensionality reduction technique identified four signals which would achieve

a slightly lower accuracy. Three metrics provided the majority of that accuracy. These

were derived from the TMF2 and UMBS 2 data. The fourth metric varied between the

UMBS-derived respiration rate and the SMF metric for the younger and older adults

respectively. It may be advantageous to remove this fourth metric as the computational

overhead of such a system will be considerably lower. This may be particulary applicable

to a low-level hardware/software solution.

An investigation into the ability of UMBS-derived data to discriminate be-

tween sleep stages: This research has also investigated the ability of UMBS-derived

metrics to discriminate between wake and a number of sleep stages. The accuracy of the

results was relatively low. A hierarchical method of classification was also investigated

using a unsupervised clustering technique. This did not prove fruitful, but did highlight

that each cluster does contain data from different sleep stages. This suggests that it is

not feasible to discriminate between sleep stages using UMBS-derived data.
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Chapter 9

Conclusions and Future Work

This thesis presents the novel development of an ambient sleep monitoring system suited

to long-term domestic placement, particularly in the homes of older adults. This work is

centred around the development of assistive technologies which allows older adults to live

independently and age in place. Additionally such advances deliver a higher quality of

life while reducing economic and societal costs. A review of the recent advancements in

sleep monitoring modalities (as well as an overview of more traditional methods) provides

a justification of the need for an ambient sleep monitoring system. The proposed system

provides indices relating to nocturnal movements, bed restlessness levels, sleep metrics,

and respiration rate. Experimental, domestic, and clinical deployments, using both

younger and older adults, validated algorithms devised to generate these statistics and

quantified their accuracy against clinical and widely accepted standards.

This section details the overall conclusions and contributions of this research as well as

providing possible avenues for future investigation.

9.1 Overall Conclusions

Sleep is a fundamental physiological process where significant decrements in its quality

or quantity may represent a degradation in overall health status. While the relationship

between the afflicting condition/illness and poor sleep may be causal or correlational,

the ability to track changes in sleeping patterns (inclusive of bed restlessness, nocturnal

movements, and respiratory rate) over time may provide important clinical informa-

tion. Such information may be used to better direct clinical interventions benefitting

the overall health of the individual (for example, improving quality of life, physical

functioning, and mental health). Poor sleep may be expressed multifactorially perhaps
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through deviations in bed restlessness levels, longitudinal inconsistency in sleep/wake

routines, overall sleep quantity as well as through other general sleep metrics (such as

SL, WASO, number and duration of bed exits, etc.).

In Chapter 2 sleep stages and typical sleep profiles for healthy individuals are intro-

duced. Typical changes in sleeping patterns due to ageing and illness are presented

which provide an argument for using measurements captured during sleep as a proxy

for overall health status. A review of the more traditional methods of sleep monitoring

(namely PSG, sleep diaries, sleep tests and subjective measures, and wrist actigraphy) in

Chapter 4 provides a justification of the need for the development of modalities suitable

for long-term deployment. Only recent advances in sleep monitoring technologies are

appropriate for long-term placement in the homes of older adults.

The remainder of this thesis focusses on: 1) the development of an ambient sleep moni-

toring system from describing the sensor through to the validation of the technology and

the implementation of a data collection platform, 2) the development of feature extrac-

tion algorithms (inclusive of bed restlessness, nocturnal movement and respiration rate),

3) exploratory work comparing clinical and domestic data amongst older and younger

adults, and 4) the development of an ambient sleep/wake discriminating system that

competes favourably with wrist actigraphy and alternative non-contact systems (such

as BiancaMed’s SleepMinder (De Chazal et al., 2011; Fox et al., 2007)). An investiga-

tion into predicting sleep stages was made, however a low performance was found. Some

competing systems report better accuracy, however such systems use the heart rate, or

the rhythmicity of the heart cycle, a feature which was not possible with the UMBS.

The core contributions of this thesis are summarised as followed:

9.1.1 Literature Review

A literature review, presented in Chapter 4, provides a comprehensive review of multiple

types of sleep measurement modalities. It begins with the traditional clinical method

of PSG and describes the types of signals which need to be recorded so that a trained

manual scorer can determine the sleep stage the individual is currently experiencing

(as detailed in Section 2.2). Typically, PSG is performed while under observation of

technicians, however unattended and even ambulatory systems have been instantiated

and tested. While this may allow a more unencumbering system (by allowing the person

to sleep in their own homes or continue to perform activities of daily living after donning

electrodes), it increases the likelihood of recording more movement artifacts and lowering

signal quality (as a result of inefficient electrode attachment through application by

non-specialists). Additionally during clinical PSG, when electrodes become unattached
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a technician can be alerted and the fault corrected (most likely through re-applying the

electrode). A description of typical sleep diaries, commonly administered sleep tests and

subjective scales has also been provided.

The ambulatory gold standard for sleep/wake monitoring, wrist actigraphy, was also

introduced, described and its clinical performance (compared to PSG) detailed. The

low specificity rates reported have been attributed to the high prevalence of quiescent

wake in individuals attempting to fall asleep and lying still, yet remaining awake. An

overview of a common algorithm catering for this was detailed, however while specificity

increases through its application, the overall specificity rate is still relatively low. Due to

the bias in the data set (as it generally contains a majority of sleep epochs), the overall

performance of the system remains high.

A detailed and wide ranging description of the recent advances in sleep monitoring was

also presented in this chapter. The advances in automated methods of predicting sleep

stage using either full or partial compliment PSG was provided. A significant number of

these methods utilise machine learning algorithms and often focus on neural networks,

advanced classification methods or some derivation from rule-based methods. Optimal

feature extraction and selection methods have also often been employed. Other electrode

advances include the novel placement of electrodes, the use of dry electrodes (which are

more suitable for unsupervised placement), embedding electrodes in bed linen and bed

clothes, and the detection of less obtrusive physiological signals which can be related to

sleep/wake state (such as peripheral arterial tonometry).

Non-contact sleep monitoring remains a challenging problem although the numerous ad-

vances include the use of video cameras in the bedroom during sleep, the use of smart-

phones on/near the bed, and bed posture detection. Significant research has focussed

of the detection of physiological signals (mainly respiration and heart rate) through a

system which is completely unobtrusive. These have mainly focussed around the place-

ment of pressure sensitive sensors in/on/under a mattress or under the bed posts, and

radar-based systems. Many systems have recently produced reasonably accurate solu-

tions to measure respiration and heart rate; these have subsequently been used to predict

sleep/wake state. Machine learning techniques are often used to generate algorithms to

accurately and reliably predict sleep state. The large overhead (in terms of time, ex-

pense and discomfort for the subject) in collecting PSG data is a considerable barrier in

collecting concomitant data and generally limits large-scale validation studies. As such,

patients suffering from various sleep disorders are often recruited as they are attending

sleep clinics; this is often at the expense of collecting data from healthy normal adults.

The initial results from the deployment of some of these systems as part of smart home-

s/ambient assisted living research projects are also discussed. Additionally, an overview
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of the development of advanced systems for detecting sleep apnoea, suited to non-clinical

settings, is also given. A brief discussion regarding brain imaging systems during sleep

is also provided.

Initially evident in this review was a lack of suitable technologies for long-term sleep

monitoring. As such, the focus of this thesis was in the development of such a system.

However, concommitant research was undertaken by many other groups in similar areas

(and their technologies are included in this review) justifying the need for advances in

ambient sleep monitoring modalities.

9.1.2 Experimental Validation of Movement and Respiration Extrac-

tion Algorithms

Chapter 5 provides a detailed description of the unobtrusive under mattress bed sensor

(UMBS), that is the main focus of this thesis, and its inner workings, the data produced

by the device, the communications protocol and sampling rate, and introduces some

notation. The data captured by the sensor is further illustrated through initial small

scale experimental deployments which provide an insight into the sensitivity of the device

for physiological signal and nocturnal movement detection. The deployment of the device

in the domestic homes of ten older adults provides insights into the ability of the sensor

to capture rest/activity cycles, bed restlessness, and to estimate a number of standard

sleep metrics (such as TIB). Comparisons against wrist actigraphy and daily activity

levels provide a description of the utility of the sensor in capturing nocturnal activity

levels directly, or daily activity levels indirectly.

A comprehensive validation of the detection of physiological signals, the development

of algorithms to automatically estimate respiration rate, and the validation of UMBS

features quantifying motion levels is detailed in Chapter 6. Initial experiments show

the presence of respiration and heart rate signals in the time and/or frequency domain

UMBS data; however heart rate is not present over all instances. This provides the basis

for an algorithm which automatically derives respiration rate. The optimal algorithm

was selected and tuned using data collected over two conditions (sensor placed both

over and under the mattress) in a sample cohort of eight healthy young adults. Peak

detection (time-based) techniques were found to outperform frequency based techniques

over the entire data set and the system was found to be comparable to other recently

developed systems.

Four UMBS motion metrics were proposed and subsequently validated against a gold

standard video based system. For comparative purposes, the UMBS metrics were also

compared to wrist actigraphy and PIR based systems. Three out of four optimally tuned
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metrics were found to reliably and accurately detect movement, and to outperform the

wrist actigraphy and PIR based systems.

9.1.3 Deployment of the UMBS in Clinical and Domestic Environ-

ments

The deployment of the UMBS in multiple settings allows us to contrast its usefulness

across cohorts and environments as discussed in Chapter 7). This is illustrated through

studies in clinical and domestic environments amongst healthy young, healthy old, and

individuals at high risk of having a sleep disorder (most likely sleep apnoea). This

produced four UMBS data sets which were directly compared:

1. Summerhill: 10 relatively healthy community dwelling older adults over approxi-

mately two weeks.

2. Maynooth: 3 healthy community dwelling younger adults over less than five nights.

3. Peamount: 10 individuals at high risk of having a sleep disorder (mixed age)

assessed in a sleep clinic for a sleep disorder over one night.

4. Boston: 12 healthy younger and older adults participating in a research study in

an intensive physiological monitoring unit over approximately three nights.

Comparisons between these cohorts were facilitated through the extraction of movement

features from the UMBS data. These included discretely sampled temporal, spatial, and

statistical descriptions of in-bed movement occurring throughout the night. Addition-

ally, spatiotemporal descriptions of major movements in bed were extracted from the

sensor. Comparisons of each of these features both within and between cohorts were

suggestive of distinguishing characteristics. As a result, features such as these may fa-

cilitate the detection of decrements in sleep quality resultant from a degrading overall

health status. An inter-daily investigation of the features allowed an investigation of the

consistency in these metrics across multiples days (although this was only available for

a reduced set of individuals). Some features were found to be consistent within a cohort

and/or over multiple days while others were not. It was concluded that some features

are environment specific (for example some features being dependent on body weight

and mattress thickness), while others are not (particularly spatial movement features).

The non-environment specific movement features may be particularly suitable for use

in pressure based systems when directly comparing populations while all features may

be used to identify longitudinal decrements in sleep quality or quantity. Longer-term
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studies may be used to elucidate which metrics, if any, relate to short and long-term

deviations in sleep quality.

An investigation into the ability to distinguish the cohort based on spatiotemporal move-

ment features proved not to be fruitful. As such, it was deemed that no discriminating

characteristic of each individual movement exists; however the number of occurrences of

these movements were very different between cohorts. This may warrant further investi-

gation as it suggests that the occurrence of such movements, and not how the movement

is performed, disturbs sleep and may discriminate cohorts. A large and more varied

cohort is required to investigate this fully.

9.1.4 UMBS Sleep Classification

A comprehensive data set was collected in order to assess the capacity of the UMBS

in discriminating both sleep from wake and the sleep stages in a cohort of older and

younger adults (as discussed in Chapter 8). In order to pursue this rigorously, the

sizeable data set over more than 12 sleeping episodes from a large cohort was split into

training, testing and validation data sets. This data was collected concomitantly with

PSG and as such a direct comparison was performed. These data were collected during

both naturally and artificially imposed day times and day lengths, however this only

affect the subject’s sleep state and, as such, should not affect the relationship between

sleep stage and UMBS data.

The features described in previous chapters were calculated for each epoch of PSG data

and used as inputs into multiple classifying functions which were tuned for optimal per-

formance. Results from training and testing using each feature and a combination of

all features were generated on cohort-specific and subject-specific data and the opti-

mal sleep/wake discriminating function found. Subsequently, feature reduction methods

(including sequential forward feature selection and dimensionality reduction methods)

were imposed in order to provide an insight into the redundancy in the data and also to

evaluate the classifiers with respect to computational efficiency. Results were generated

individually for each cohort (younger adults only, older adults only, all subjects) and

also tested using independent cohorts in order to provide an insight into the performance

of each classifier for unseen data sets. The subject-specific classifiers performed better

than cohort-specific classifiers as each set of data was trained and and subsequently

tested on data from each person singly. The cohort-specific classifier performed compa-

rably against wrist actigraphy and a radar based system and reported favourable rates

of sensitivity. However, a distinction must be made when reporting this comparison

as all data in this investigation was taken from a healthy population whereas the RF
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system used a population undergoing assessment for a sleep disorder (de Chazal et al.,

2008). Additionally it is worth noting that the classifiers in this thesis were generated,

and tested using an unbiased data set containing equal proportions of sleep and wake.

An investigation into sleep stage classification using UMBS data was also performed,

however it did not provide sufficient accuracy to be comparable to PSG. The multiclass

classification approaches used were implemented using a One-Versus-All scheme and a

hierarchical classification approach. Due to intermingled data belonging to each sleep

stage this process was considered overly complex, and advanced classification meth-

ods (for example, using Kernel methods) were deemed likely to overfit and thus not

considered appropriate for further investigation. Some systems (mainly contact based

technologies) report higher accuracies in predicting sleep stages, however these systems

often use heart rate as a feature (which was not possible in this case), and also inves-

tigate the rhythmicity of respiration and heart rate (which was not undertaken as the

sampling rate of the UMBS was too low).

9.2 Further Work

The research in this thesis provides several avenues for further research. Some of these

topics include the following:

9.2.1 User-Acceptance Testing of Domestic Sleep Monitoring Technol-

ogy

Multiple modalities for sleep monitoring have been developed in recent years (as dis-

cussed in Chapter 4). These have ranged from modifications of PSG (in the forms of

advances in electrodes or automated scoring techniques) to non-contact vital signs and

movement monitoring (including PIR, video, pressure, and RF based systems). While

the accuracy and reliability of these technologies is sufficient for sleep monitoring, the

user acceptance of such modalities remains to be investigated. Potential pitfalls for such

technologies may range from the physical discomfort when using a potential device to

increased anxiety and decreased humanisation of the environment (resultant from the

user feeling they are being monitored, becoming excessively mindful of a potentially

decreased health status, or from the stigma associated with availing of such a system by

visitors to the environment). For example, technologists should be mindful when choos-

ing a video monitoring application which may not be adopted by all users due to privacy

concerns. Townsend et al. (2011c) investigated the trade-offs older adults are willing to

make between privacy and autonomy (living independently), in particular they noted
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“The concept of video monitoring seemed to participants to be a violation of privacy,

but when alternatives and usefulness were considered, some concerns were diminished.

In all cases, video compared favorably to a nursing home environment”. This suggests

video monitoring technologies are only appropriate when all other options for staying in

the environment are removed. Qualitative data from focus groups and pilot deployments

should be used to assess which instantiation of sleep monitoring technologies are optimal

for user (particularly older adults) adoption.

9.2.2 Addition of Markov Models in Predicting Sleep State Transitions

for UMBS data

In this thesis, an approach is taken which relates the current state of the subject (wake

or sleep) to the UMBS derived features measured from that person at that instant.

However, many wrist actigraphy scoring approaches use data from previous and future

epochs to define the current wake/sleep state in an effort to reduce the errors from scoring

periods of quiescent wake as sleep (as discussed in Section 4.4). This implies that an

individual is definitely currently awake if they move excessively in the next one or too

minutes. While this is untrue, it is not unjustified to use data from surrounding epochs

to inform current sleep/wake state. Ltjnen et al. (2003) proposed a series of rules, for

example re-labelling short arousals as sleep, and short sleep fragments as wake. However,

Markov models may also be used to implement such a system.

Markov models define the state of a random variable which changes over multiple itera-

tions using previous states of that variable. For example, if a random variable represents

when the subject is awake or asleep, the associated Markov model could be used to pre-

dict the likelihood of the person remaining in that state or transitioning to the other

state. Future work could investigate specific configurations of Markov models which use

UMBS features and previous sleep/wake states to predict the current sleep/wake state.

9.2.3 Assessment of Ambient Methods for Long-Term State Transition

Analysis

Recent work has investigated the transitions between rest and activity using wrist actig-

raphy in a sample of community dwelling older adults (Lim et al., 2012). Increased levels

of fragmentation in rest and activity were associated with cognitive impairment in these

individuals, independent of total amount of rest or activity. Ambient sleep monitoring

may provide an unobtrusive means to assess and longitudinally track the fragmentation

of rest periods and subsequently be used to infer a decline in cognition. Future work
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may involve the large scale deployment of inexpensive, unobtrusive sleep monitoring

technologies which may be able to validate the longitudinal association between the

fragmentation of rest periods and cognitive decline.

9.2.4 An Investigation into Behavioural Change Technologies for Adopt-

ing Healthy Sleep Patterns

While much work has focussed on the development of the technologies to capture quan-

titative statistics of sleep, little emphasis has been placed on how this data will be

subsequently used. Providing clinicians with such information may result in an over-

burdening of data, especially as extra sensors (inclusive of non-sleep sensors) collect

data. Feeding the sleep data back to the user may become ineffective over time, even

when providing a context of ’healthy‘ boundaries for each metric are included, due to

waining interest levels. Recent work investigating the development of persuasive perva-

sive technologies which provide peripheral feedback (perhaps through the background

or wallpaper of a user’s smartphone) relating to a user’s attainment of their goals has

shown positive results in increasing levels of physical activity (Consolvo et al., 2009).

Subsequent more recent work includes educating users of healthy sleep behaviours (in

terms of caffeine use, alcohol use and timing of exercise) and relating these to their own

patterns highlighting causes of possible sleep disruptions (Bauer et al., 2012). However

such a system requires active user journalling of their activities (and sleep) which may

not be sustainable over extended periods of time (due to waining user engagement). Am-

bient methods of sleep monitoring may be used to provide the objective sleep data which

may, in turn, inform the user of better sleep practices (such as maintaining a consistent

bed time). Long-term studies should be used to elucidate whether such interventions

result in increased quality of life, wellness and health status.

9.2.5 An Investigation into the Electronic Delivery of Cognitive Be-

havioural Therapy for Insomnia

Insomnia is associated with an inability to either initiate or remain asleep. It is the most

common sleeping disorder and has a particularly high prevalence among older adults.

Insomnia is associated with co-morbid conditions, medication use, circadian rhythm dis-

turbances, primary sleep disorders and daytime dysfunction. Chronic insomnia has been

found to be an independent risk factor for cognitive decline. Currently, the assessment

of insomnia in a sleep laboratory is inaccessible due to high operational costs, and its

clinic-based nature is inappropriate for vulnerable populations. The cautious use of sleep
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medications for older adults is recommended since they are associated with poor health

outcomes and mortality in older adults.

Ambient sleep monitoring modalities (such as the system described in this thesis) and

subjective reports may facilitate the development of a home-based, inexpensive insomnia

assessment system for older adults. Such a system may provide an insomnia risk factor

to clinicians and will inform potential medication / non-medication treatment options.

A subsequent further avenue of research may investigate the novel electronic delivery of

cognitive behavioural therapy for insomnia. Additionally, there is evidence to suggest

that when shown their actual sleep, insomniacs anxiety and sleep-related pre-occupations

are reduced, and sleep quality improves. Such a project would investigate the diagnosis

and treatment of insomnia in older adults delivered through a non-invasive, inexpensive,

home-based system.

9.3 Overall Summary

The fundamental focus of this thesis is the development of an appropriate technology

for the long-term monitoring of sleep, particularly suited for placement in the homes

of older adults. In its original clinical instantiation (mainly in nursing homes), the

Under Mattress Bed Sensor (UMBS) provides measurements of presence in bed and

quantifies the timing between bed movements for inferring the development of bedsores.

The contributions of this work are in the development of algorithms which extend the

capacity of this sensor, and are shown to accurately provide metrics of in-bed movement

levels, respiration rates and sleep state. This was performed using data collected in

experimental, domestic, clinical, and clinical research settings. Through the long-term

deployment, it is envisaged that this system may be used to provide unobtrusive insights

into overall health status, the progression of the symptoms of chronic conditions, and

allow the objective measurement of daily (sleep/wake) patterns and routines.
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Figure A.1: Movement Area
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Figure A.3: Movement duration
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Figure A.4: Maximum movement magnitude
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Figure A.5: Lateral change in position
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0

50

100

150

200

M
H

10
1

M
H

10
2

M
H

10
3

S
H

10
1

S
H

10
3

S
H

10
4

S
H

10
5

S
H

10
7

S
H

10
8

S
H

10
9

S
H

11
0

B
N

10
2

B
N

10
5

B
N

10
6

B
N

10
7

B
N

10
9

B
N

11
0

B
N

11
1

B
N

11
2

P
T

10
1

P
T

10
2

P
T

10
3

P
T

10
5

P
T

10
7

P
T

10
8

P
T

10
9

P
T

11
0

P
T

11
2

P
T

11
4

(c) Magnitude of movement over all subjects (reduced range).
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Figure A.6: Magnitude of movement
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Figure A.7: Percentage to peak movement
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UMBS Spatiotemporal Features -

Variance over Multiple days
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