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Abstract

Background

The Amoebozoa constitute one of the primary divisiof eukaryotes encompassing taxa of both bioraédic
and evolutionary importance, yet its genomic dignemains largely unsampled. Here we present an
analysis of a whole genome assemblAcdnthamoeba castellanii (Ac) the first representative from a

solitary free-living amoebozoan.

Results

Ac encodes 15,455 compact intron rich genes a sigmifinumber of which are predicted to have arisen
through interkingdom lateral gene transfer (LGT)mAjority of the LGT candidates have undergone a
substantial degree of intronization aitlappears to have incorporated them into establighedcriptional
programsAc manifests a complex signaling and cell communicatepertoire including a complete tyrosine
kinase signaling toolkit and a comparable diversitpredicted extracellular receptors to that foumthe
facultatively multicellular dictyostelids. An impi@ant environmental host of a diverse range of bactnd
viruses,Ac utilizes a diverse repertoire of predicted pattexognition receptors many with predicted

orthologous functions in the innate immune systefitigher organisms.

Conclusions

Our analysis highlights the important role of LGiTthe biology ofAc and in the diversification of microbial
eukaryotes. The early evolution of a key signafaugjlity implicated in the evolution of metazoan
multicellularity strongly argues for its emergeraaely in the Unikont lineage. Overall the availapibf an

Ac genome should aid in deciphering the biology ef dmoebozoa and facilitate functional genomic stadi

in this important model organism and environmehtet.
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Background

Ac is one of the predominant soil organisms in teofisopulation size and distribution whereadts both as
a predator and an environmental reservoir for alrarof bacterial, fungal and viral species [1]tHa
rhizosphere selective grazing By alters microbial community structure and is anam@nt contributor to
the development of root architecture and nutrigniéke by plants [2]JAc can also be isolated from almost
any body of water and manifests in a wide varidtsnan-made water systems including potable water
sources, swimming pools, hot tubs, showers anditabsiir conditioning units [3, 4]. Acanthamoebae a
frequently associated with diverse range of baaitsgimbionts [5, 6]. A subset of the microbes wigelhve
as prey forAc have evolved virulence stratagems to As@s both a replicative niche and as a vector for
dispersal are important human intracellular pathedé, 8]. These pathogens utilise analogous sfiegteo
infect and persist within mammalian macrophagésstilating the role of environmental hosts sucham
the evolution and maintenance of virulence [9, G3dmmonalities at the level of host response batwee
amoebae and macrophages to such pathogens haeeteduse of botbd andAc as model systems to

study pathogenesis [11, 12].

Published Amoebozoa genomes from both the obligatasiteEntamoeba histolytica (Eh) and the
facultatively multicellulaDd have both highlighted unexpected complexitiehatével of cell motility and
signaling [13, 14]. As the only solitary free-ligimepresentative, the genomelfafestablishes a unique
reference point for comparisons for the interpietadf other amoebozoan genomes. Experimentalas
been a more thoroughly studied organism than ntbst dree living amoebae (FLA) acting as a model
organism for studies on the cytoskeleton, cell maaet, and aspects of gene regulation, with a lbogly of

literature supporting its molecular interactionS-ii8].

Results and discussion

Lateral Gene Transfer (LGT)

LGT is considered a key process of genome evolatiwha number of studies have indicated that
phagotrophs manifest an increased rate of LGT cosajpim non-phagotrophic organisms [19]. As a
geographically dispersed bacteriovorous amoebdeanitenchant for harbouring endosymbioAts,
encounters a rich and diverse supply of foreign DiM@viding ample opportunity for LGT. Homology bdse

searches of the proteome illustrates the potéefiatialiverse contributions to the genome (Figure 1).



We therefore undertook a phylogenomic analysisterinine cases of predicted inter-domain LGT inAbe
genome (Additional file 1, Section 2). Our analyidisntified 450 genes or 2.9% of the proteome, ipted

to have arisen through LGT (Figure 2; Addition& fl, Section 2). To determine the fate and ultematlity
of the LGT candidates within th&c genome we examined their expression levels aerossnber of
experimental conditions using RNA.seq (Additiorikd i, Table S1.6.1). Our results show that moshef

LGT candidates are expressed in at least somesafdhditions tested (Additional file 2, LGT_anatysis).

Genetic exchange is also thought to occur betwaglogenetically disparate organisms that resid@iwit
the same amoebal host cell [20, 244.contains 3 copies of a miniature transposable em¢itiSSoc?2) of the
IS607 family of insertion sequences with a resdadistribution, being present in populations of
thermophilic cyanobacteria [22] and in the Mimidrgenome. The mimiviral IS elements are found withi
islands of genes of bacterial origin a number oicWlappear to have been contributed by a cyanotialcte
donor.Ac is both the host of Mimivirus and a predator cdmgbacteria [17] and the presence of these IS
elements underscore the complex intermediary haleAc may play in facilitating genetic transfer between

these sympatric species.

Comparison of predicted LGT across amoeboid genomes

In order to compare the impact and scale of LGDs®Ac and other amoeba we applied the same
phylogenomic approach used to identify LGT in fftegenome to published genomes of other amoeboid
protists includingDd, Eh, Entamoeba dispar (Ed) andNaegleria gruberi (Ng). Our findings predict thaic
and the excavatdg encode a notably higher number of laterally aaglbvacterial genes than either of the
more closely related parasitimtamoeba or the sociaDd amoebozoans (Figure 2A). The taxonomic
distribution of putative LGT donors is broadly slanifor bothEntamoeba species, but surprisingly also
betweenAc andNg (Figure 2B; Figure 2C; Additional file 1, Secti@h The genomes of both andEd are
predicted to have experienced a proportionatelhgrignflux from anaerobic and host-associated rhieso
than their free-living counterparfe andNg (Figure 2C; Additional file 2, LGT_analysis.xldikely
reflecting the composition of microbes within thieabitats. Many of the LGT candidates across athef
amoebae have predicted metabolic functions sugggestat in amoebae, LGT is reflective of trophiatgy

and driven by the selective pressure of new eccédgiiches. Our data illustrating LGT as a conttiitg



factor in shaping the biology of a diversity of agboid genomes provides further evidence suppoaimng

underappreciated role for LGT in the diversificatimf microbial eukaryotes [23].

Introns

Intron-exon structures exhibit complex phylogenettterns with orders-of-magnitude differences s&ro
eukaryotic lineages, which imply frequent transfations during eukaryotic evolution [24]. Some
researchers have argued that intron gain is egisaith long periods of stasis [25] punctuated byi@ds of
rapid gain while others argue for generally higtates [26]. StrikinglyAc genes have an average of 6.2
introns per gene, among the highest known in ewltasy[27]. Genes predicted to have arisen through L
have slightly lower but broadly comparable intr@mnslities offering an opportunity to study the ewick for
proposed mechanisms underpinning post LGT intram [§8]. An analysis of LGT candidate introns
however did not provide support for any of the megd mechanisms of intron gain (Additional file 1,
Section 2). Thus, while the preponderance of irtriarpredicted LGTs clearly indicates substantitian
gain at some point, it appears thatAorthese events have been very rare in more reeeesticonsistent

with a punctate model of intron gain.

Cell signaling

As a unicellular sister grouping to the multicedluDictyostelidsAc provides a unique point of comparison
to gain insight into the molecular underpinningsrefiticellular development in Amoebozoa. Cell-cell
communication is a hallmark of multicellularity an@ looked at putative receptors for extracellsignals
and their downstream targets. G-protein-coupledpers (GPCRSs) represent one of the largest fegrilie
sensors for extracellular stimuli. OverAlt encodes 35 GPCRs (compared to 6Ddk), representing 4 out of
the six major families of GPCRs [29] while lackingetabotropic glutamate-like GPCRs or fungal
pheromone receptors. We identified 3 predicted dliagsociated glucose sensing Git3 GPCRs [30] and a
expansion in the number of frizzled/smoothenedptrs [31] (Additional file 1, Figure S3.1.1). We
identified seven G-protein alpha subunits and glsiputative target, phospholipase C, for GPCR-atedi
signaling. The number and diversity of receptor8dmaises the question of what they are likely to be
sensing. Nematodes use a large number of GPCRgdotdompounds secreted by their bacterial food
sources [32] and given the diversityArfs feeding environments we predict that many ofAh&sPCRs

may fulfill a similar function.



Environmental sensing

We identified 48 sensor histidine kinases (SHK8Wwilaich 17 harbor transmembrane domains and may
function as receptors (Additional file 1, Figure.&52). Remarkably, there are also 67 nucleotidglases
consisting of an extracellular receptor domain s&ea by a single transmembrane helix from an
intracellular cyclase domain flanked by two settimedonine kinase domains. This domain configuraison
present in a number of the amoeba-infecting gianses but thus far appears unique for a cellulgamism
(Additional file 1, Figure S3.3.1Ac is able to survive under microaerophilic condii@uch as those found
in the deeper layers of underwater sediments diimihe rhizosphere. The genome encodes a number of
prolyl 4-hydroxylases that likely mediate oxygespense howevekc also contains a number of Heme-
Nitric oxide/Oxygen binding (H-NOX) proteins thainlike those in other eukaryotes are not found in
conjunction with guanylyl cyclases [33]. The H-NOXproteins lack a critical tyrosine residuetfe non-
polar distal heme pocket making it likely that theg for Nitric oxide (NO) rather than oxygen silimg

[34]. BothDd andAc are responsive to light, however the photorecepismirmediates phototaxis in
Dictyostelium has yet to be identified [35]. We identified twedopsins both with C-terminal histidine
kinase and response regulator domains with homdlog¢lye sensory rhodopsins of the green algae that

represent candidates for light sensor8dr{Figure 3).

Cellular response

Modulation of cellular response to environmenta<is enacted by a diversity of protein kinasesAmid
predicted to encode 377, the largest number pestiict date for any amoebozoan (Additional file 4ct®n

4). InAc MAPK kinase-mediated pathways have been showe foumlved in encystment [36] and its
genome encodes homologues of botBdk two MAPK proteins ErkA and ErkB [37]. Phosphaigme
signaling (pTyr) mediated through tyrosine kinas@s until recently thought to be generally absefthe
amoebozoan lineage [38]. This signaling capacitybieen associated with intercellular communicatioa,
evolutionary step towards multicellularity and #hgpansion of organismal complexity in metazoan$.[39
PTyr is thought to depend upon a triad of signafimagjecules; tyrosine kinase “writers” (PTKSs), tyires
phosphatases “erasers” (PTPs) and Src Homologii2)(Seader” domains that connect the phosphorglate

ligand containing domains to specify downstreamaligg events [39]. Remarkably the genoméof



encodes 22 PTKs, 12 PTPs, and 48 SH2 domain-camjginoteins (Figure 4A) revealing a primordial yet

elaborate pTyr signaling system in the amoebozio@ade (Figure 4B).

The Ac PTK domains are highly conserved in key catalsggidues resembling dedicated PTKs found in
metazoans (Additional file 1, Figure S4.2.1), aneldistinct fromDd andEh PTKs that are more tyrosine
kinase like (TKL) (Additional file 1, Figure S4.2.28c PTK homologues are present in the apusomonad
Thecamonas trahens and have also recently been described in two iestfilasterean specieGapsaspora
owczarzaki andMinisteria vibrans, [38]. One unusual feature of the pTyr machinargg is the 2:1 ratio of
SH2 to PTK domains as comparisons across Opisthelstiow a strong correlation and co-expansion of
these two domains with a ratio close to 1:1 (Figl@eD) [40]. This increased ratio Ac indicates either an
expansion to handle the cellular requirements gf gignaling or that aspects of PTK function are
accomplished by TKL or dual specificity kinasesappears to be the caseld [41]. We also found thakc
has fewer tyrosine residues in its proteome in @mspn toDd, which lacks PTKs (Figure S4.3.1). This
result is in line with recent analysis of metazganomes suggesting increased pressure for selegainst

disadvantageous phosphorylation of tyrosine residlugenomes with extensive pTyr signaling [42].

Domain organization and composition of pTyr compugaeeveal the selective pressures for adapting pTy
signaling into various pathways. Seven PTKs haeelipted transmembrane domains and may function as
receptor tyrosine kinases (RTKs). The presendteaofmembrane bound PTKsAn hints at the potential
for intercellular communication, a facility thatudd prove advantageous in navigating its complextaayy.
The majority of PTKs irAc however show unique domain combinations; six PE#t#ain a sterile alpha
motif (SAM) domain, which is found in members oétephrin receptor family (Additional file 1, Figure
S4.4.3). Theé\c SH2 proteins are conserved within the pTyr bingingket and resemble SH2 domains
from the SOCS, RIN, CBL and RASA families (Additarfile 1, Figure S4.4.2), however the domain
composition within these proteins differ betweeost ofMonosiga brevicollis and metazoans (Additional
file 1, Figure S4.4.3A). Approximately half of the SH2 proteins share domain architectures With
including the STAT family of transcription factofadditional file 1, Figure S4.4.3B). The presenée o
homologous SH2 proteins d coupled with the complete facility #c predicts an emergence of the
complete machinery for pTyr early in the Unikomeage. This finding is in contrast with models thagsit a

complete pTyr signaling machinery emerging latéhsnUnikont lineage [39] and has important impiicas
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for understanding the relationship between pTynaling and the evolution of multicellularity. Thack of
clear metazoan orthologues makes it difficult sxér the evolutionary paths of pTyr signaling netsdd 3]
or to accurately predict the cellular functions adéptations of pTyr iAc. However, with

phosphoproteomics and sequence analysis, insiglotshie ancient pTyr signaling circuits may be eded

through future studies iAc (Additional file 1, Figure S4.5.1).

Cell adhesion

Ac is not known to participate in social activity yaust adhere to a diversity of surfaces withingbi¢ and
practice discrimination between self and prey duphagocytosis [44]Ac shares some adhesion proteins
with Dd (Additional file 1, Table S5.1.1) however homoleguof the calcium-dependent, integrin-like Sib
cell-adhesion proteins are absent. Surprisingtycontains a number of bacterial-like integrin and
haemagglutinin domain adhesion proteins that maordne its ability to attach to bacterial cells dofttms
[45]. Ac encodes 2 MAM domain-containing proteins, a donfiaimd in functionally diverse receptors with
roles in cell-cell adhesion [46)c has a copy of the laminin-binding protein (AhLBP$t identified
Acanthamoeba healyi, which has been shown to act as a non-integrimiarbinding receptor [47].
RemarkablyAc also encodes proteins containing cell adhesionunayglobulin domains (Additional file 1,
Section 5). Both show affinity to the I-set subfgni8] and contain weakly predicted transmembrane

domains (Figure S5.1.1).

Microbial recognition through pattern recognition r eceptors

Ac grazes on a variety of micro fauna including a hanof pathogens, which requires the mobilizatiba o
set of defense responses initiated upon microb@gnition. In vertebrates molecular signaturesroft
termed microbe-associated molecular patterns (MANWS are detected by pattern-recognition receptor
(PRRs) that activate downstream transcriptiongdaeses. A#\c encounters a wide variety of microbial
prey and practices selective feeding behaviourookdd for the presence of predicted PRRs irAthe
genome (Figure 5). One of the best-studied MAMRip@polysaccharide (LPS) and self non-self
recognition via lectin mediated protein-carbohydrateractions is an important innate immunity tefgg in
both vertebrates and invertebrates [2@] contains 6 members of the bactericidal permegbilitreasing
protein (BPI) / Lipopolysaccharide-binding prot¢iBP) family and 2 peptidoglycan binding proteins

(Figure 5), (Additional file 1, Section 63c also encodes a membrane bound homologue of an iiated
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protein that in vertebrate immunity has been ingitd in opsonophagocytosis of Gram-negative bacteri

through its interactions with lipopolysaccharid& ][5

Receptor-mediated endocytosid efjionella pneumophila in Ac is mediated by the c-type lectin mannose
binding protein (MBP) [52] and in pathogenic Acaatioebae MBP is the principal virulence factor [38].
addition to MBP, thédc genome encodes two paralogues of MBP with sinylaoi the N-terminal region of
the protein that may fulfill similar functions. Rinaose-binding lectins (RBLs) serve a variety ofclions

in invertebrates, one of which is in their roleggsmline-encoded PRRs in innate immunity [54]. RBLs
absent from other Amoebozoa howegerencodes 11 D-galactoside/L-rhamnose binding (SU&dtjn
domain-containing proteins. Approximately half atsmtain epidermal growth factor (EGF) domains, a
combination reminiscent of the selectin family dhasion proteins found exclusively in vertebra&s.[An
L-rhamnose synthetic pathway has recently beertifazhin Mimivirus that is thought to contribute t
biosynthesis of the LPS-like outer layer of thaugiparticle and contribute to its uptake by phatugiyg [56,
57]. Ac also encodes a protein containing 3 copies oftgpd-lectin domain attached to an inhibitor of
apoptosis domain. The H-lectin domain is predittede N-acetylgalactosamine (GalNAc) binding and is
found inDictyostelium discoidin | & 1l [58] and in a number of inverteties where it plays a role in
antibacterial defence [59]. In the brown algatocarpus leucine-rich repeat (LRR) containing GTPases of
the ROCO family and NB-ARC-TPR proteins have besppsed to represent PRRs that are involved in
immune response [60Ac encodes a NB-ARC-TPR homologue with a diseaseteggie interpro domain

(IPRO00767) and an LRR-ROCO GTPase.

Antimicrobial defense

Ac encodes a number of genes with potential rolestiviral defense including homologues of the NCLDV
major capsid protein [61] as well as homologueBiokr and Piwi, both of which have been implicaited

RNA mediated antiviral silencing [62]. Our dataailbustrates early evolution of a number of ingzdn
inducible innate immunity proteins absent from otbequenced Amoebozoa. These include a homologue of
the interferony-inducible lysosomal thiol reductase enzyme (GlwWhjch is an important host factor

targeted byListeria monocytogenes during infection in macrophages [63]. In additidnencodes two
Interferon-inducible GTPase homologues, which inekzrates promote cell-autonomous immunity to

vacuolar bacteria includinglycobacteria andLegionella species [64]Ac also contains a natural resistance-
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associated macrophage protein (NRAMP) homologugpkban implicated in protection agaihst

pneumophila andMycobacterium avium infection in both macrophages abd [65].

Metabolism

Ac has traditionally been considered to be an oldigarobe, although the recent identification of the
oxygen-labile enzymes pyruvate:ferredoxin oxidodse and FeFe-hydrogenase perhaps pointed towards
cryptic capacity for anaerobic ATP production [68Btedictions for nitrite and fumarate reductionditogen
fermentation, together with a likely mechanismdoetate synthesis, coupled to ATP production iridiea
considerable capacity for anaerobic ATP generalibis clearly setéc apart fromDd which hunts within
the aerobic leaf litter, but provides parallelshiilg, the algaChlamydomonas reinhardtii and other soil-
dwelling protists that are likely to experience sigierable variation in local oxygen tensions [@#ese
protists achieve their flexible, facultative andgcometabolism, however, using different pathways
(Additional file 1, Figure S7.1). In addition, tlekassic anaerobic twists on glycolysis provided by
pyrophosphate-dependent phosphofructokinase antvgig phosphate dikinase [68] are absent ffom
This suggests that although multiple pathways aadlable for oxidation of NADH to NAD+ in the absan
of oxygen, including a capacity for anaerobic resfgin in the presence of NO2-, a shift to a mofdPA
sparing form of glycolysis is not necessary under bxygen-tensiorGiven genome-led predictions of
facultative anaerobic ATP metabolism, as well asm@sive use of receptors and signaling pathways
classically associated with animal biology, we aleosidered the possibility of a hypoxia-inducible
transcription factor (HIF)-dependent system forgety sensing, similar to that seen across the animal
kingdom, including the simple anim&tichoplax adhaerens [69, 70]. However, despite conservation of a
Skpl/HIFa-related prolyl hydroxylase iAc we found no genes encoding proteins with the gigdomain
architecture of animal Hizor HIFf. Currently, therefore HIF-dependent oxygen sensimgains restricted

to metazoan lineages.

Ac also retains biosynthetic pathways involved intatia metabolism which are absentdd — (e.g. the
shikimic acid pathway and a classic type | path¥eayfatty acid biosynthesis (Additional file 1, Tlal57.1.)
although investment in extensive polyketide biokgsts [71] is not evident. An autophagy pathway, as

defined by genetic studies of yed3tl and other organisms [72] is presenfmwith little paralogue
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expansion or loss of known ATG genes evident, (Addal file 1, Figure 7.2) and likely contributeshoth

intracellular re-modelling in response to enviromtaé cues and the interaction with phagocytosedahies.

Transcription factors

Ac shares a broadly comparable repertoire of tragoisen factors withDd excepting a number of lineage
specific expansions (Additional file 1, Table S8Ag encodes 22 zinc cluster transcription factors canexb

to the 3 inDd (Additional file 1,Fig S8.2.1) [73]. Ac has almost double the number of predicted homeobox
genes (25) as compared to the 1B[74]. Two are of the MEIS and PBC class respettjwgith an
expansion in a homologue of Wariai, a regulataargerior-posterior patterning Dictyostelium [75]
comprising most of the additional members (Addigibfile 1, Fig S8.3.2). Strikingly we also identitl 22
Regulatory Factor X (RFX) genes, which are absemhfother sequenced amoebozoan genomes [76]. RFX
genes are found solely in unikonts and AeeRFX repertoire is the earliest branching yet idieat and

forms an out-group to other known RFX genes (Addgi file 1, Section 8)Ac has been proposed to affect
plant root branching in the rhizosphere via iteef§ on auxin balance in plants [7&& encodes a number of
genes involved in auxin biosynthesis as well as¢hiovolved in free auxin (IAA) de-activation via
formation of IAA conjugates (Additional file 1, TEbS9.1). This data suggests thatplays a role in

altering the level of IAA in the rhizosphere thréug strategy of alternate biosynthesis and sequigstr Ac
may also respond transcriptionally to auxin asidoeles a member of the calmodulin-binding transorip
activator (CAMTA) family (Figure S8.4.1), which plants co-ordinate stress responses via effecéaigim

signaling [78, 79].

Conclusions

Comparative genomics of the Amoebozoa has until ne&n restricted to comparisons between the
multicellular Dictyostelids and the obligate pata&ih [80, 81].Ac while sharing many of their features
enriches the repertoire of amoebozoan genomesumider of important areas including signaling and
pattern recognition. LGT has shaped both the gereorddranscriptome @&c and our analysis of LGT
across a number of amoeboid genomes reveals urtedpEmilarities between phylogenetically distant
amoebaeAc plays host to some of the earth’s most unusuarosms [82] as well a number of important
human pathogens [7, 8] and appears likely to plalein facilitating genetic exchange in sympatric

organisms [83].
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Through LGTAc has adopted bacterial-like adhesion proteinsrttat increase its capacity to adhere to
bacterial cells and biofilms upon whiéle predates. Participation in NO signaling through phesence of H-
NOX proteins may aid in the dispersal of biofiln@g]. The adaptive value conferred by many of th& LG
candidates is difficult to establish however ouradéemonstrates diverse expression profiles aeross
sampling of conditions points to the incorporatadra large majority into new transcriptional netkar

Given the feeding behaviour At it seems plausible that as yet unidentified eubdsryo-eukaryote gene
transfers may also have providédwith adaptive advantages [23]. Increased samplitidoe necessary to
establish the level of eukaryote-to-eukaryote gemesfers into théc genome and the degree to which “you

are what you eat” also applies on a diet of eukas/{23].

As a solitary amoebAc participates in a myriad of as yet unexploredraatgons as reflected in the diversity
of genes devoted to sensory perception and sigaraduction of extracellular stimuhc’s survival in the
rhizosphere likely resides in interactions not omlth the microbes present but also through comuoatitn
with plant roots through manipulation of the levefghe plant hormone auxin. Some of the componefts
recognition and environmental sensingAmmay also have been acquired via LGT potentialbviating
selective advantages &x. An interesting parallel is the planktonic protam@®xyrrhis marina which utilizes
both MBP and LGT derived sensory rhodopsins, thknselective feeding behavior through prey dedecti
and biorecognition [85]. We predict that host resgofAc to pathogens and symbionts is likely modulated
via a diversity of predicted PRRs that act in aalegous manner to effectors of innate immunityighbr
organisms. Given the close associatioAofvith a number of important intracellular pathogénasill be
interesting to determine which host-pathogen imtimas can trace their origins to encounters witmjtive

cells such asc.

Ac devotes large numbers of genes to signal tranisduicicluding expansions found in other amoebozoans
(e.g. TKLs) while introducing new components basadovel domain architectures (nucleotidyl cyclases
which may act as small molecule receptors [86]earkable feature of thc genome is the presence of
the complete pTyr signaling toolkit including poti@hRTKs especially when contrasted with its ateseim

the multicellular Dictyostelids. The role of Tymidse signaling in both amoebozoan and mammalian

phagocytosis [87-89] indicates that it representarecestral function. The most parsimonious inetgtion
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of our analysis predicts that functions originalyried out by tyrosine kinases were replaced hgrot
kinases within the Amoebozoa. This finding emphesihe importance of representative sampling amd th

inherent difficulties in re-constructing ancessggnaling capacities.

Transcriptional response networks can be re-prograaneither through expansion of transcription fexcto
their target genes [90Ac andDd share a conserved core of regulatory proteins méage specific
amplifications of single or small numbers of TF fgnrmembers accounting for the majority of the
differences between them. These expansions irtrécted set are predicted to have resulted in suieo-
functionalization and have contributed to the aideptadiation of Acanthamoebae into new ecological

niches.

Our analysis suggests that many signal processidgegulatory modules of higher animals and plakety
have deep origins and are balanced with subsetpss®s in certain lineages e.g. the sensor histklimases
in metazoa and the tyrosine kinases in fungi, glantd many protists. Comparisonfafwith Dd highlights
a broadly similar apparatus for environmental semsind cell-cell communication and implies that the
molecular elements underpinning the transition toudticellular life style may be widespread. Such
transitions would likely have involved cooptionafcestral functions into multicellular programs &iagre

occurred multiple times.

The availability of artAc genome offers the first opportunity to initiatenétional genomics in this important
constituent of a variety of ecosystems and shaedtef a better understanding of the amoebic lifesty
Utilizing the genome as a basis for unravellingr@ecular interactions betweée and a variety of human
pathogens will provide a platform for understandimg contributions of environmental hosts to theleton

of virulence.

Materials and methods

DNA isolation

A. castellanii strain Neff (ATCC 30010) was grown at 30°C withdeoate shaking to an Os£3of ~1.0.
Total nucleic acid preparations were depleted adchiondrial DNA contamination via differential

centrifugation of cell extracts, [91]. High moleaulweight DNA was extracted from nuclear pellethesion

16



Cesium chloride-Hoechst 33258 dye gradients ag@gor by utilizing the Qiagen Genomic-tip 20/G ki

(Qiagen, Hilden, Germany).

Genomic DNA library preparation and sequencing

All genomic DNA libraries were generated accordinghe protocol Genomic DNA Sample Prep Guide -
Oligo Only Kit (1003492 A) — sonication was suhsgtitd for the recommended nebulization as the method
for DNA fragmentation utilising a Biorupter™ (Diagede, Liége, Belgium). The library preparation
methodology of end repair to create blunt endegnfirents, addition of’3 -A overhang for efficient adapter
ligation, ligation of the adapters, size selectidradapter ligated material was carried out utitisenzymes
indicated in the protocol. Adapters and amplificatprimers were purchased from Illumina (lllumitsan
Diego, CA, USA) both Single Read Adapters (FC-1023) and Paired End Adapters catalogue number PE-
102-1003 were used in library construction. All ymes for library generation were purchased from New
England Biolabs (Ipswitch, MA, USA). A limited 14rcle amplification of size-selected libraries was
carried out. To eliminate adapter-dimers libraniesre further sized selected 2.5% TAE agarose gels.
Purified libraries were quantified using a Qubitfofometer (Invitrogen, Carlsbad, CA, USA) and aafiu

iT™ double-stranded DNA High-Sensitivity Assay Kihvitrogen, Carlsbad, CA, USA). Clustering and
sequencing of the material was carried out as gewfacturers instructions on the Illlumina GAIl fdam in

the UCD Conway Institute (UCD, Dublin Ireland).

RNA extraction and RNA.seq library preparation and sequencing

For all tested conditions refer to Additional file Table S1.6.1 except the infection series, RNA wa
extracted from a minimum of 1xi@ells using TRIzol® (Invitrogen/Life Technologie®aisley, UK). For
infection material the detailed protocol is pubdidhin [93]. Strand specific RNA.seq libraries wgemerated
total RNA using a modified version of [94] whichdstailed in [93]. Briefly was total RNA was poly(A
selected, fragmented, reverse transcribed &hstrand cDNA marked with the addition of dUTP. $tar
lllumina methodology was followed — end-repair, ddiion, adapter ligation and library size selectio
with the exception of the use of ‘home-brew 6-mtexed’ adapters as per Craigal [95]. Prior to limited
amplification of the libraries the dUTP marke &trand was removed via Uracil DNA-Glycosylase (Bie,
London, UK) digestion. Final libraries were quaietif using the High Sensitivity DNA Quant-iT™ asddty

and Qubit™ Fluorometer (Invitrogen/ Life Technolegj Paisley, UK). All sequencing was carried out in
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UCD Conway Institute on an Illlumina GAIll as per méacturers instructions.

Sequencing and assembly

Genome assembly was carried out using a two-stageps. Firstly the Illumina reads were assembledyus
the Velvet [96] short read assembler to generagrias of contigs. These assembled contigs werktase
generate a set of pseudo-reads of 400 base pg)rs1(length. These pseudo reads were then asséiinble
conjunction with the 454 FLX and Sanger sequensegguwersion 2.3 of the GS De Novo Assembler using
default parameters (http://454.com/products/ansdgsitware/index.asp) (Table S1.1.1). The assembly
contained 45.1 Mb of scaffold sequence, of whiehN8b (7.5%) represents gaps and 75% of the gensme i
contained in less than 100 scaffolds. For assesthljstics see (Additional file 1, Table S1.2.1h)okder to
determine the coverage of the transcriptome waetigour genome assembly to a publicly available EST
dataset from Genbank (using the entrez query agamtbba EST) AND "Acanthamoeba
castellanii"[porgn:txid5755]). Of the 13,784 ESTgeences downloaded, 12,975 (94%) map over 50% of
their length with an average % identity of 99.2% 42,423 (90%) map over 70% of their length with an

average percent identity of 99.26%.

Gene structure prediction

Gene finding was carried out on the largest 38#ada of theAc assembly using an iterative approach by
firstly generating gene models directly from RNAjde train a gene-finding algorithm using a genome
annotation pipeline followed by manual curatiorrs#y predicted transcripts were generated using\Rag
data from a variety of conditions (Table S1.4rlgonjunction with the G.Mo.R-Se algorithm (Gene
Modelling using RNA.seq), an approach aimed atding gene models directly from RNA.seq data [97]
running with default parameters. This algorithmeyaed 20,681 predicted transcripts. We then usesbt
predicted transcripts to train the genefinder SN@# using the MAKER genome annotation pipeline
(http://www.yandell-lab.org/software/maker.htmIP[9MAKER is used for the annotation of prokaryotic
and eukaryotic genome project. MAKER identifiesaa{s, aligns ESTSs (in this case the transcriptergéed
by the G.Mo.R-Se algorithm) and proteins from ¢ora genome, produceb-initio gene predictions and
automatically synthesizes these data into genetations. The 17,013 gene predictions generated by

MAKER were then manually annotated using the Apgkmome annotation curation tool
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(apollo.berkeleybop.org/) [100]. Apollo allows tHeletion of gene models, creation of gene models fr
annotations and the editing of gene starts, s®@s)d 5' splice sites. Models were manually artadta
examining at a variety of evidence including expesssequence data and matches to protein databases
(Additional file 1, Section 1). Out of a total 013,574 exons 32,836 exons are exactly covered 471@46
are partially covered by transcripts and 7,193 gédrae at least 50% of their entire lengths covbyed

transcript data.

Functional annotation assignments

Functional annotation assignments were carriedisinlg a combination of automated annotation as
described previously [101] followed by manual amtion. Briefly gene level searches were performed
against protein, domain and profile databases detuJCVI in-house non-redundant protein databases,
Uniref (http://www.ebi.ac.uk/uniref/), Pfam (httfofam.sanger.ac.uk/), TIGRfam HMMs
(http://lwww.jcvi.org/cgi-bin/tigrfams/index.cgi),rBsite (http://prosite.expasy.org/), and InterPro
(www.ebi.ac.uk/interpro/). After the working geret $iad been assigned an informative name and &danc
each name was manually curated and changed wheas itelt a more accurate name could be applied.
Predicted genes were classified using Gene Ontql@@) [102]. GO assignments were attributed
automatically, based on other assignments fromeblaglated organisms using Pfam2GO, a tool tHatal

automatic mapping of Pfam hits to GO assignments.

Data access
This Whole Genome Shotgun project has been depasitBDBJ/EMBL/GenBank under the accession
AHJIO0000000. The version described in this papéhé first version, AHJI01000000. The RNA.seq daita

available under accessions (SRA061350 and SRA06SRANG61379).
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Figure Legends

Figure 1. Measures of the composition of the genome based on sequence similarity. For eackiprahe
best BLASTP hit to the non-redundant databasethieematch with the lowest e-value, was recoveretl a
the classification of the corresponding organisns extracted according to NCBI taxonomy. The certeal
represents the full complement of annotatedjenes exhibiting a best BLASTP hit respectivelgiagt the

four kingdoms: Eukaryota (blue), Bacteria (red)ctaea (green) and viruses (purple) with orphangene
depicted in yellow. Results for Eukaryota are suigigid according to the major taxonomic phyla inyiag

shades of blue. Subdivisions of phyla within thet®&a (red shading), Archaea (green shading) andes

(purple shading) are depicted in the expanded ugpefower sidebars.

Figure 2. Predicted_GT-derived genes from Bacteria, Archaea and vBuseoded in the genomes of free-
living and parasitic amoebae. LGT-derived genesweedicted using a phylogenomics approach congisti
of an initial similarity-based screening using SIMALO3], several filtering steps to extract amogivateins
with prokaryotic best hits, followed by automatalaulation and manual inspection of phylogenetesr

using PhyloGenie and PHAT [104]. (A) Percentagbnafage-specific LGT candidates in each genome; the
absolute number of LGT candidates per genome isatetl next to each bar. (B) Heat map illustrathmey
Bray-Curtis similarity of the taxonomic affiliatiofat the level of classes within the domain Baedeoif
putative LGT donors. (C) Ecological classificatiminputative LGT donors with respect to their oxygen
requirement and association with a host. The egaddgutative donors was extrapolated from thestifees

of the respective closest extant relatives.

Figure 3. Phylogenetic tree of rhodopsins from Amoebozoaaldpacteria and fungi. The tree was
constructed by the Neighbor-joining method basedmino acid sequence of rhodopsin domain using
MEGA version 5 [105]. The scale bar indicates thenher of substitutions per site. Detailed rhodopsin

information is listed in Additional file 1, Table3%.1.

Figure 4. The phosphotyrosine signaling circuitryAd. (A) Phosphotyrosine signaling is modulated by the
writers (PTKSs), erasers (PTPs) and readers (Srology 2, SH2; phosphotyrosine binding, PTB). (B) (B
The total number of PTKSs, classical PTPs (total §Té#Pd SH2 encoded genes across multiple eukaryote
genomes. Highlighted in yellow are branches thatmmse a complete phosphotyrosine signaling circuit.

The branched divergence times and lengths in méliof years (mya) are indicated. (C) The percentdge

26



the genome devoted to encoding PTKs and SH2 dom@ipsc displays the greatest ratio of SH2:PTKs

compared to other eukaryotes.

Figure 5. Potential PRRs iAc LBP/BPI= lipopolysaccharide binding protein/ baitielal permeability-
increasing protein; C-lectin = C-type lectin: MBRmannose binding protein; SUEL = D-galactoside/L-
rhamnose binding SUEL lectin domain containing; NRC-TPR = NB-ARC tetratricopeptide repeat

containing protein; ERVR = endogenous virus recepto

Additional files:
Supplementary online material: Additional_File_1 Nb@df

Supplementary material supporting LGT analysis: ifddal_File-2_LGT_Analysis.xIs
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