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Abstract— Many modeling problems require to estimate a
scalar output from one or more time series. Such problems
are usually tackled by extracting a fixed number of features
from the time series (like their statistical moments), with a
consequent loss in information that leads to suboptimal pre-
dictive models. Moreover, feature extraction techniques usually
make assumptions that are not met by real world settings (e.g.
uniformly sampled time series of constant length), and fail
to deliver a thorough methodology to deal with noisy data.
In this paper a methodology based on functional learning
is proposed to overcome the aforementioned problems; the
proposed Supervised Aggregative Feature Extraction (SAFE)
approach allows to derive continuous, smooth estimates of
time series data (yielding aggregate local information), while
simultaneously estimating a continuous shape function yield-
ing optimal predictions. The SAFE paradigm enjoys several
properties like closed form solution, incorporation of first and
second order derivative information into the regressor matrix,
interpretability of the generated functional predictor and the
possibility to exploit Reproducing Kernel Hilbert Spaces setting
to yield nonlinear predictive models. Simulation studies are
provided to highlight the strengths of the new methodology
w.r.t. standard unsupervised feature selection approaches.

INTRODUCTION

Machine learning methodologies are nowadays applied
in many industrial and scientific environments including
technology-intensive manufacturing [5], biomedical sciences
[6], and in general every data-intensive field that might ben-
efit from reliable predictive capabilities. Machine learning
techniques exploit organized data to create mathematical
representations (models) of an observable phenomenon. It is
then possible to rely on such a model to provide predictions
for unobserved data. In mathematical terms, let

S =
{
xi ∈ R1×p, yi ∈ R

}N
i=1

(1)

be a training dataset of N observations of a certain phe-
nomenon. The i-th observation is characterized by p input
features, constituting the vector xi, and a scalar target value
yi. In practical terms, the input space usually relates to easily
obtained data, while the target value is either not always
available or results from a costly procedure; in a typical
industrial application, xi would collect sensor readings dur-
ing a process operation, while yi would be a quantitative
indicator of product quality. The goal is then to exploit the
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information provided by S to create a predictive model f
such that, given a new observation x̃ /∈ S, f(x̃) will provide
an accurate prediction of the unobserved ỹ: in the case of
the above mentioned industrial example, the model f would
be able to estimate the final product quality relying only
on sensor readings collected during process operation. It is
important to note that in real life applications data is rarely (if
ever) organized in a convenient N×p matrix ready to serve as
input for a machine learning procedure. Indeed, the transition
from a real life object to its mathematical representation will
necessarily destroy part of the original information.

In this paper, we consider the learning problem where the
input information is conveyed in the form of time series;
more specifically, every observation of the phenomenon is
described by p time series, that we know through an array
of irregularly sampled measurements whose size can vary
observation-wise. This setting relates to a common problem
in predicting process results in an industrial setting [8],
where the input space is often represented by non-uniformly
sampled sensor readings. The challenge is to aggregate the
information contained in each time series so that summary
features are produced that are good predictors of the tar-
get value. Assuming the existence of a continuous process
underlying such sensor readings, we adopt a functional
learning paradigm in order to tackle the presented problem:
specifically, we discuss suitable estimation techniques to
reconstruct the original continuous time series and derive
a feature extraction technique that can be employed with
regular machine learning techniques, which we refer to as
Supervised Aggregative Feature Extraction (SAFE). Further-
more, we prove the advantage of the proposed methodology
w.r.t. other approaches by means of numerical simulations.
The remainder of the paper is organized as follows: Section
I provides a mathematical formalization of the problem at
hand, as well as an overview of some feature extraction
techniques for time series. Section II presents and discusses
the proposed SAFE methodology for time series feature
extraction, while Section III is devoted to underpinning basis
expansion strategies and nonlinear regression techniques.
Finally, Section IV validates the proposed methodology by
means of numerical simulations. After the final remarks,
Appendix A is devoted to mathematical proofs.

I. PROBLEM STATEMENT

Given N observations consisting of p time series, where
the i-th observation Xi is defined as

Xi = [x
(1)
i (t) . . . x

(j)
i (t) . . . x

(p)
i (t)], t ∈ [0, 1],∀ j
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and a scalar target variable yi, let the training set be

S = {Xi, yi}Ni=1

The goal is then to learn, relying on S, a predictor function
f . Such a predictor must be optimal in the sense that, given
a new input Xnew, f(S,Xnew) will be close (in the sense of
a normed distance) to the unobserved ynew.

In practice, the continuous time series x
(j)
i (t) are not

available: instead it is necessary to rely on a set of discrete

samples
{
t
(j)
i,s , z

(j)
i,s

}Ni,j

s=1
where t(j)i,s and z(j)i,s are the time and

value of the s-th sampled point from the j-th time series of
the i-th observation. In general, the series may have difform
length (such that Ni,j 6= Ni,m, Ni,j 6= Nk,j) and sampling
timestamps (t(j)i,s 6= t

(m)
i,s , t

(j)
i,s 6= t

(j)
k,s). Furthermore, the noise

of the channel needs to be taken into account:

z
(j)
i,s = x

(j)
i (t

(j)
i,s ) + v

(j)
i,s

v
(j)
i,s ∼ N(0, ρ2j )

In order to employ machine learning techniques to find f ,
two main issues must be addressed: (i) it is in general
necessary to extract a homogeneous set of features from
every observation, and (ii) it is not possible to know in
advance what part of the time series (if any) has an impact
on the target variable. This lack of information must be taken
in account when choosing a feature extraction methodology:
indeed, a representation based solely on the global features
of a dataset is likely to yield suboptimal predictions. In the
next subsection, some of the most common feature extraction
techniques for time series are presented and discussed.

A. Feature extraction

The extraction of a set of features from an observation
will result in the loss of some information, especially when
the format of such information is expected to show inter-
example differences, such as in the presented case where
difform sampling times and length are present. The goal is
to build a regressor matrix Φ ∈ Rn×p, whose entry (i, j)
represents the j-th feature of the i-th observation that can be
subsequently used, along with the target variable vector Y ∈
Rn, to train a predictor using a machine learning algorithm.

One of the simplest approaches is to rely on statistical
moments: given p time series, let us build Φ as

Φ = [Φ1 . . . Φj . . .Φp]

where the [i, k] element of Φj ∈ Rn×kmax is

Φj [i, k] = m(k)

({
z
(j)
i,s

}Ni,j

s=1

)
Here kmax is the highest considered moment order and
m(k) (·) is the k-th sample moment of the input time series.
It is immediately evident that this approach suffers from a
major drawback, namely the inability to consider the depen-
dency between information and time. Furthermore, it should
be noted that the sample estimators of statistical moments
are consistent for independent data points: it follows that, in

the quite common case of autocorrelated time series, such
estimates bear very little statistical meaning.

A more sophisticated approach consists of a systematic
sampling of the input time series: specifically, the interval
[0, 1] is divided into N segments [τ1 . . . τN ]. The regressor
matrix is then populated with the segment-wise averages, as

Φj [i, k] = Avg[z
(j)
i,s : t

(j)
i,s ∈ τk].

When using this approach it is necessary to select the number
of segments, N , in advance: this usually translates to a
trade-off decision between locality (temporal resolution) and
stability of information (robustness to noise). Furthermore,
in the case of difform sampling, different features are likely
to be computed from a different number of values, as
the distribution of sampling points would privilege some
segments over the others: this can potentially lead to data
reliability issues. In order to overcome such instabilities, it
is possible to project the rows of the Φ matrix obtained using
the sampling approach on their direction of main variance.
This yields the Principal Component Analysis (PCA) [4]
transformation of the sampled input space.

B. Elements of machine learning and regularization
Once Φ is obtained, it is possible to employ a machine

learning technique to find a predictor model f . As a first
assumption, let the structure of the model be specified by a
vector of parameters θ. Consider the fitness function

L(θ) = F(θ) + λR(θ) (2)

and the solution of the optimization problem

θ∗ = arg min
θ
L(θ).

The error term F measures the approximation power of
f (w.r.t. S), while the regularization term R measures the
complexity of the model. Furthermore, λ ≥ 0 is a hyperpa-
rameter that acts as a tuning knob for the trade-off between
approximation and variability: too small a value results in
an overfitted model (specifically tuned on the training set,
with low predictive power), while too large a value results
in an underfitted model (which would not incorporate the
necessary information for making good predictions). The
insight is that the correct value of λ would result in only
the relevant information being incorporated into the model,
yielding the highest predictive power.

While a wide variety of choices are possible for both F
and R, most learning techniques require the minimization
problem to be convex w.r.t. θ; to exploit this desirable feature,
it is sufficient for F and R to be convex. Notably, if f is
defined as a linear function of θ such as

f(Φ; θ) := Φθ

and F is the sum of squared estimation residuals

F := ||Y − f(Φ; θ)||2 = ||Y − Φθ||2

the global minimum of F can be expressed in closed form
as the least squares solution

θ∗ = (Φ′Φ)−1Φ′Y (3)
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Equation (3) is prone to numerical issues and instability,
since there is no guarantee that Φ′Φ will be full rank or
well conditioned. A modification that preserves this closed-
form solution and resolves instability issues is represented
by Ridge Regression (RR), obtained by setting

R(θ) := θ′θ =
∑
i

θ2i .

The global RR minimizer is then

θ∗ = (Φ′Φ + λI)−1Φ′Y (4)

In order to obtain a nonlinear model f without giving up the
desirable convexity features of the optimization problem, it is
possible to exploit the kernel trick [1] to embed a nonlinear
projection of Φ on a Reproducing Kernel Hilbert Space
(RKHS) [2] in a quadratic optimization problem. Noting that

(Φ′Φ + λI)−1Φ′ = Φ′(ΦΦ′ + λI)−1

equation (4) may be rewritten as

θ∗ = Φ′(ΦΦ′ + λI)−1Y

and the prediction f(Φnew) as

f(Φnew) = 〈Φnew,Φ〉 (〈Φ,Φ〉+ λI)−1Y (5)

By replacing the linear inner product 〈·, ·〉 with a nonlinear
positive definite kernel function K, the Kernel Ridge Regres-
sion [10] coefficient vector c can be defined as

c∗ = (K(Φ,Φ) + λI)−1Y

and the corresponding predictor f is given by

f(Φnew) = K(Φnew,Φ)c∗

Thus, the resulting model yields nonlinear predictions w.r.t.
the elements of the regressor matrix. A thorough review of
machine learning techniques and Kernel-based techniques
is beyond the scope of this paper. The interested reader is
referred to [4] and [9].

II. SUPERVISED AGGREGATIVE FEATURE EXTRACTION

In this section the proposed supervised aggregative feature
extraction (SAFE) methodology is presented and motivated
from a theoretical point of view. In order to introduce SAFE,
we consider an ideal case, in which the continuous functions
x
(j)
i (t) are known and available. Employing the functional

regression paradigm, consider the following definition of f :

f(Xi) :=

p∑
j=1

〈
x
(j)
i (t), β(j)(t)

〉
L2

(6)

where 〈f, g〉L2 is the L2 inner product of real functions f
and g, defined as

〈f, g〉L2 =

∫ ∞
−∞

f(t)g(t)dt

It is apparent how the predictor defined by (6) assumes that
the continuous phenomenon x influences the target variable
y through a weighted integration with an unknown shape

function β. In the following we focus on the sum of squared
residuals approximation error term, defined as

F(β) =

N∑
i=1

 p∑
j=1

∫ ∞
−∞

β(j)(t)x
(j)
i (t)dt− yi

2

(7)

It is then possible to introduce the functional learning opti-
mization problem:

β∗ = arg min
β
F(β) + λR(β) (8)

β =
[
β(1)(t), β(j)(t), β(p)(t)

]
(9)

where F(β) is defined in (7) and R(β) is a regularization
term that penalizes the variability of β: for example,

R(β) =

p∑
j=1

〈
β(j), β(j)

〉
L2

It is apparent that the shape functions β(·)(t) are functional
parameters of the optimization problem (9). It is to be noted
that it is not possible to directly handle (7) for two reasons:
(i) the functions x(j)i (t) are observed only through a finite
number of noisy, irregularly sampled data points; (ii) the
generic functions β(j)(t) have infinite degrees of freedom. To
overcome such issues and solve (9), the next sections present
a Gaussian process estimation of the unobserved time series
and propose a parametrization for the shape functions β.

A. Time series approximation

Consider an approximation of the fitness function L

L̂ = F̂ + λR

where the approximated loss function is defined as

F̂ =

N∑
i=1

 p∑
j=1

∫ ∞
−∞

β(j)(t)x̂
(j)
i (t)dt− yi

2

and x̂(j)i (t) is an estimate of the unobserved x(j)i (t). In order
to obtain this estimate we consider the expected value of
a monodimensional Gaussian process posterior distribution.
According to Riesz’s representation theorem [7] a continuous
interpolation of x(j)i (t) from its samples is given by

x̂
(j)
i (t) =

Ni,j∑
s=1

K(t, t
(j)
i,s )c

(j)
i,s

where K is a suitable positive definite kernel function. The
vector c(j)i,· is obtained as

c
(j)
i,· = (K + ξjI)−1x

(j)
i,·

where the [w, z] entry of the kernel matrix K is

K[w,z] = K
(
t
(j)
i,w, t

(j)
i,z

)
and x(j)i,· is the column vector of the available observations. It
is immediately evident how every coefficient of c(j)i,· ∈ Ni,j
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depends on all the observed points. Considering the radial
basis function kernel and the Gaussian density, such that

K(t1, t2) := e
−

(t1 − t2)2

2ω2 (10)

G(a, b;x) :=
1√
2πb

e−
(a−x)2

2b2 (11)

it follows that

K(t1, t2) =
√

2πωG(t1, ω
2; t2)

x̂
(j)
i (t) =

√
2πω(j)

Ni,j∑
s=1

c
(j)
i,sG(t

(j)
i,s , ω

2
(j); t). (12)

Hence, the continuous-time approximation of x(j)i (t) is ob-
tained as a weighted sum of Gaussian densities. It should be
noted that, to obtain such approximation, it is necessary to
select two hyperparameters for each time series, namely the
regularization term ξj and the kernel bandwdith ω2

(j).

B. Shape function parametrization

Let us consider a linear combination of Gaussian densities
as parametrization for β(j), such that

β(j)(t) =

γ∑
k=1

α
(j)
k G(µ(k), σ2; t)

µ(k) =
k − 1

γ − 1

where the parameter γ controls the number of base Gaussian
components, and σ2 is the bandwidth of the Gaussian density.
The approximate loss function F̂ takes the following form:

F̂ =

N∑
i=1

(
p∑
j=1

∫ ∞
−∞

(
γ∑
k=1

α
(j)
k G(µ(k), σ2; t)×

×
Ni,j∑
s=1

√
2πω(j)G(t

(j)
i,s , ω

2
(j); t)c

(j)
i,s

)
dt− yi

)2

=

N∑
i=1

(
√

2π

p∑
j=1

ω(j)

γ∑
k=1

α
(j)
k

Ni,j∑
s=1

c
(j)
i,s ×

×
∫ ∞
−∞

(
G(µ(k), σ2; t)G(t

(j)
i,s , ω

2
(j); t)

)
dt− yi

)2

Considering the following Theorem (proof in Appendix A)

Theorem 2.1: Let a, b, x ∈ Rp and A,B ∈ Rp×p. It holds
that

∫∞
−∞G(a,A;x)G(b, B;x)dx = G(a,A+B; b) where

G is the Gaussian density as in (11).

allows F̂ to be rewritten as

F̂ =

N∑
i=1

(
√

2π

p∑
j=1

ω(j)

γ∑
k=1

α
(j)
k ×

×
Ni,j∑
s=1

c
(j)
i,sG(µ(k), σ2 + ω2

(j); t
(j)
i,s )− yi

)2

.

Defining the parameters

δ
(j)
i,s (k) =

√
2πc

(j)
i,sωjG(µ(k), σ2 + ω2

(j); t
(j)
i,s ) (13)

δ
(j)

i (k) =

Ni,j∑
s=1

δ
(j)
i,s (k), (14)

yields the compact version of F̂ as

F̂ =

N∑
i=1

 p∑
j=1

γ∑
k=1

α
(j)
k δ

(j)

i (k)− yi

2

= F̂ = ||Φθ − Y ||2

with Φ = ∆, where

∆ =


δ
(1)

1 (1) . . . δ
(1)

1 (γ) δ
(2)

1 (1) . . . δ
(p)

1 (γ)
...

...
...

...

δ
(1)

N (1) . . . δ
(1)

N (γ) δ
(2)

N (1) . . . δ
(p)

N (γ)


θ =

[
α
(1)
1 α

(1)
2 · · · α

(j)
k · · · α

(p)
γ

]T
and Y is the vector of output observations. Since F̂ is a
quadratic form of the coefficients α, it is convex. If R is
convex as well, the solution of the problem can be found
by solving ∂L̂

∂θ = 0 w.r.t. θ. For instance, the RR solution
follows from (4).

III. DERIVATIVES BASIS EXPANSION

In this section, the convenient properties of the proposed
approximation (12) are exploited to expand the regressors
matrix to include information about its derivatives. The
theory behind first- and second-order derivative expansion
is covered and the corrisponding formulae are provided. Let
us consider the first derivative of x̂(j)i (t)

∂x̂
(j)
i (t)

∂t
= −
√

2π

ω(j)

Ni,j∑
s=1

G(t
(j)
i,s , ω

2
(j); t)c

(j)
i,s (t− t(j)i,s )

By exploiting the following

Theorem 3.1: Letting all the quantities be as in The-
orem 2.1, it holds that

∫∞
−∞G(a,A;x)∂G(b,B;x)

∂x dx =

ΩG(a,A+B; b) with Ω =
(
b−a
A+B

)
it is possible to define

τ
(j)
i,s (k) = −

(
δ
(j)
i,s (k)

ω2
(j)

)(
µ(k)− t(j)i,s
σ2 + ω2

(j)

)
(15)

τ
(j)
i (k) =

Ni,j∑
s=1

τ
(j)
i,s (k) (16)

and use the matrix T , whose elements are T [j, k] = τ
(j)
i (k),

as a basis expansion for ∆, such that Φ = [∆ T ]. Similarly,
the second derivative of x̂(j)i (t) is

∂2x̂
(j)
i (t)

∂2t
=

√
2π

ω3
(j)

Ni,j∑
s=1

G(t
(j)
i,s , ω

2
(j); t)c

(j)
i,s ((t− t(j)i,s )2 − ω2

(j))

and, using the following
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Theorem 3.2: Letting all the quantities be as in The-
orem 2.1, it holds that

∫∞
−∞G(a,A;x)∂

2G(b,B;x)
∂2x dx =

ΓG(a,A+B; b) with

Γ =
(a− b)2 − (A+B)

(A+B)
2 = Ω2 − 1

A+B

where Ω is as defined in Theorem 3.1.

the second derivative basis expansion elements read

η
(j)
i,s (k) =

(
δ
(j)
i,s (k)

ω4
(j)

) (µ(k)− t(j)i,s )2 − (σ2 + ω2
(j))

(σ2 + ω2
(j))

2


η
(j)
i (k) =

Ni,j∑
s=1

η
(j)
i,s (k) (17)

The matrix H of the elements η(j)i (k) is then similarly
used to expand the matrix Φ, as Φ = [∆ T H].

IV. EXPERIMENTAL RESULTS

A. Experimental setup

The proposed methodology was tested against the feature
extraction techniques defined in Section I, namely Statistical
moments, Systematic sampling and PCA. The input matrices
resulting from such methodologies are employed to build an
optimal RR model; 500 instances of every synthetic dataset
were created, each one composed of a training set and a
test set (100 and 50 examples). Each example consists of
a single input time series (available through a number of
sampling points uniformly distributed between 35 and 45)
and an output target value. Gaussian distributed white noise
N (0, 0.1) was imposed on every sampled time series value
and on every target value. The methodologies were evaluated
using the Root Mean Squared Error (RMSE) on the test data
as a performance metric. For every experiment, the SAFE
technique was tested with and without the inclusion of the
time series first and second derivative expansions.

B. The sinusoid dataset

The purpose of the sinusoid dataset is to reproduce a
situation in which only an unknown part of the input time
series influence the target variable. In mathematical terms,
the input time series is defined as follows:

x(t) = sin(tω + δ)

ω ∼ U(0.01, 10) δ ∼ U(0, 2π)

while the target variable is computed as

y =

∫ 0.7

0.3

x(t)dt =
cos(0.3ω + δ)− cos(0.7ω + δ)

ω

Figure 1 shows the results for the sinusoid dataset: it is
apparent that, while the statistical moment-based feature
extraction is not able to learn a correct model, all the other
techniques yield almost the same performances. This is quite
unsurprising, since the statistical moment extraction relies
exclusively on global features, and is therefore unable to
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Fig. 1. Sinusoid dataset results (average over 500 simulations)
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Fig. 2. Ramp dataset results (average over 500 simulations)

select the correct range in the input time series. By analyt-
ically inspecting the RMSE results the SAFE methodology
yields marginally better results w.r.t. sampling- and PCA-
based feature extraction.

C. The ramp dataset
The goal of the ramp dataset is to highlight the advan-

tages of including time series derivative information in the
extracted features. The input time series is generated as

x(t) =

{
n1
√

2t t < 0.5

n1 + n2(t− 0.5) t ≥ 0.5

n1 ∼ U(0, 1), n2 ∼ U(1, 4),

while the output variable reads

y = n2.

In other words, the slope of the second part of x(t) (for t ≥
0.5) is the target variable. Figure 2 shows the test results for
the ramp dataset. As expected, the incorporation of derivative
information in the input dataset allows expanded SAFE to
outperform the other methodologies.
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CONCLUSIONS

In this paper, a novel feature extraction framework is
presented for dataset consisting of time series input spaces
and scalar target variable. The research is originally moti-
vated by real-life datasets representing industrial processes,
but the presented results are appliable to any time series-
intensive learning environment (such as bioengineering). The
proposed methodology, SAFE, derives from a functional
learning setting in which the time series input space is
reconstructed by means of Gaussian process inference, and
the unknown shape function is parametrized as a weighted
sum of Gaussian functions. This setup allows for a number of
interesting properties, including closed form solution and the
possibility of using the extracted information as input for any
machine learning methodology. The capabilities of the SAFE
methodology have been assessed by means of simulated
examples, with the purpose of testing the novel framework
against similar techniques. Such benchmarks yield promising
preliminary results, as the proposed methodology is able to
obtain in general better results than its competitors, including
situations where the target output is determined by global
features of the input time series.

APPENDIX A

Let G(b, B;x) be the univariate Gaussian probability
distribution function of expected value b and variance B as
in (11). By applying derivative rules, it follows that

∂G(b, B;x)

∂x
= −

(
x− b
B

)
G(b, B;x) (18)

∂2G(b, B;x)

∂2x
=

G(b, B;x)

B2
((x− b)2 −B) (19)

In the following we consider the theorem proposed in [11]
in the special case for which s = t = 1 and Q = 1.

Theorem 4.1: Let A ∈ Rs×s, a ∈ Rs, B ∈ Rt×t, b ∈ Rt
and Q ∈ Rs×t. Let x ∈ Rt be an input variable. It holds
that

G(a,A;Qx)G(b,B;x) = G(a,A + QBQ′;b) ×
×G(d,D;x)

with D = (Q′A−1Q + B−1)−1 and d = b +
DQ′A−1(a−Qb)

Proof of Theorem 2.1. Let

χ =

∫ ∞
−∞

G(a,A;x)G(b, B;x)dx

By applying Theorem 4.1,

χ = G(a,A+B; b)

∫ ∞
−∞

G(d,D;x)dx (20)

Since by definition
∫∞
−∞G(d,D;x)dx = 1 it holds that χ =

G(a,A+B; b). �

Proof of Theorem 3.1

χ =

∫ ∞
−∞

G(a,A;x)
∂G(b, B;x)

∂x
dx

= − 1

B

∫ ∞
−∞

(x− b)G(a,A;x)G(b, B;x)

= −G(a,A+B; b)

B

∫ ∞
−∞

(x− b)G(d,D;x)dx

= −G(a,A+B; b)

B
(d− b)

Since, following Theorem 4.1,

d− b = DA−1(a− b) =
A−1

A−1 +B−1
(a− b)

it holds that − 1
B

A−1

A−1+B−1 (a − b) = − a−b
A+B and therefore

χ = −
(
a−b
A+B

)
G(a,A+B; b). �

Proof of Theorem 3.2.

χ =

∫ ∞
−∞

G(a,A;x)
∂2G(b, B;x)

∂2x
dx

=
1

B2

∫ ∞
−∞

G(a,A;x)G(b, B;x)
(
(x− b)2 −B

)
dx

=
G(a,A+B; b)

B2

∫ ∞
−∞

G(d,D;x)
(
(x− b)2 −B

)
dx

Since (x − b)2 = (x − d)2 + b2 − d2 − 2bx + 2dx and∫∞
−∞G(d,D;x)(x− d)2dx = D it holds that∫ ∞
−∞

G(d,D;x)((x− b)2 −B)dx = D + (b− d)2 −B

and therefore

χ =
D + (b− d)2 −B

B2
G(a,A+B; b)

=
(a− b)2 − (A+B)

(A+B)
2 G(a,A+B; b).

�

REFERENCES

[1] A. Aizerman, E.M. Braverman, L.I. Rozoner Theoretical Foundations
of the Potential Function Method in Pattern Recognition Learning,
Automation and Remote Control 25, 821-837 (1964).

[2] N. Aronszajn, Theory of Reproducing Kernels, Transactions of the
American Mathematical Society 68(3), 337-404 (1950).

[3] H.-J. Dai, Y.-C. Chang, R.T.-H., Tsai, W.-L. Hsu New Challenges
for Biological Text-Mining in the Next Decade, Journal of Computer
Science and Technology 25(1), 169-179 (2010).

[4] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning. Data Mining, Inference and Prediction., Springer (2009).

[5] L. Monostori AI and machine learning techniques for managing
complexity, changes and uncertainties in manufacturing, Engineering
Applications of Artificial Intelligence 16(4), 277-291 (2003).

[6] G. Pillonetto, F. Dinuzzo, G. De Nicolao, Bayesian Online Multitask
Learning of Gaussian Processes, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 32(2), 193-205 (2010).

[7] W. Rudin, Real and Complex Analysis, McGraw-Hill (1966).
[8] A. Schirru, S. Pampuri, C. De Luca, G. De Nicolao, Multilevel Ker-

nel Methods for Virtual Metrology in Semiconductor Manufacturing,
Proceedings of the 18th IFAC World Congress, Milan (2011).

[9] B. Scholkopf, A. Smola Learning with Kernels, The MIT Press (2001).
[10] A.N. Tikhonov, On the Stability of Inverse Problems, C.R. (Doklady)

Acad. Sci. URSS (N.S.) 39, 176-179 (1943).
[11] K.S. Miller, Multidimensional Gaussian distributions, Wiley, 1964.

5259


