
THE DOMAIN OF VALIDITY
OF THE PUT-CALL PARITY

PATRICK LEONI

Abstract. We give an example where the put-call parity does not hold,

and we give the domain of validity of this formulae.

Consider a European call option and a European put option on the same

non-dividend paying stock, with same maturity date T and same strike price

K > 0. Let the current price of the stock be S0, and denote by c (resp. p)

the current price of the call (resp. put) option. Let also r denote the

continuously compounded risk-free interest rate for an investment maturing

in time T .

As described in Hull [1] p. 212, the put-call parity in this case states that

(0.1) c + Ke−rT = p + S0.

We next give an example where Equation (0.1) is violated. Consider a

stock whose initial price is $120 and in each of two time steps may go up

by $10 or down by $5. Each time the step is three months long. Consider a

call and a put option written on this stock, with same maturity time of six

months and same strike price K = 140.

It is straightforward to see that the call option will never be exercised,

and thus we must have c = 0. The next figure represents the value of the

put predicted by Eq. (0.1) as a function of the interest rate r.

Figure 1 shows that, for high enough interest rates, the predicted put

price is negative. However, it is easy to see that for such high rates the put
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Figure 1. Predicted put prices as a function of r

option is dominated by the risk-free investment, and thus its price should

be 0. Thus, the put-call parity misprices the put in this simple case.

Even if innocuous in appearance, our example has practical implications.

First, it is easy to see that the put-call parity holds when K is chosen within

the range of all possible values of the underlying asset at maturity time for

continuity reasons (for instance, options prices can be calculated separately

with a binomial tree algorithm, and the prices are consistent with Eq. (0.1)).

Our counter-example is set so that K lies outside of this range. Thus, it

is critical in practice to forecast accurately this range when issuing such

options, for otherwise basic pricing methods will lead to severe mispricing.
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