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ABSTRACT

TheWeather Research and Forecasting model (WRF) is used to downscale interim ECMWFRe-Analysis

(ERA-Interim) data for the climate over Europe for the period 1990–95 with grid spacing of 0.448 for 12
combinations of physical parameterizations. Two longwave radiation schemes, two land surface models

(LSMs), twomicrophysics schemes, and two planetary boundary layer (PBL) schemes have been investigated

while the remaining physics schemes were unchanged.WRF simulations are compared with Ensemble-Based

Predictions of Climate Changes and their Impacts (ENSEMBLES) observations gridded dataset (E-OBS)

for surface air temperatures (T2), precipitation, and mean sea level pressure (MSLP) in eight subregions within

the model domain to assess the performance of the different parameterizations on widely varying regional

climates. This work shows that T2 is modeled well by WRF with high correlation coefficients (0.8, R, 0.95)

and biases less than 48C. T2 shows greatest sensitivity to land surface models, some sensitivity to longwave

radiation schemes, and less sensitivity to microphysics and PBL schemes. Precipitation is not well modeled

by WRF with low correlation coefficients (0.1 , R , 0.3) and high root-mean-square differences (RMSDs;

8–9 mm day21). Precipitation shows sensitivity to LSMs in summer. No significant bias has been observed in

theMSLPmodeled byWRF. Correlation coefficients are typically in the range 0.7,R, 0.8whileRMSDs are

in the range 6–10 hPa. MSLP output is sensitive to longwave radiation scheme in summer but is relatively

insensitive to eithermicrophysics or the choice of LSM. The optimum combination of parameterizations for all

three state variables examined is strongly dependent on subregion and demonstrates the need to carefully

select parameterization combinations when attempting to use WRF as a regional climate model.

1. Introduction

The Advanced Research Weather Research and

Forecasting model (ARW-WRF, hereafter WRF) de-

veloped at the U.S. National Center for Atmospheric

Research (NCAR) in Boulder is a nonhydrostatic me-

soscale numerical weather prediction system originally

designed for weather forecasting that is freely available

to the atmospheric community for research. It is in-

creasingly in use throughout the world as a regional

climate model (RCM) for dynamical downscaling of

global models for two separate purposes. The first of

these is its use with different global climate models

(GCMs) in an attempt to determine long-term trends in

the climate of a given region (e.g., Caldwell et al. 2009;

Zhang et al. 2009; Salathé et al. 2010). An alternative

and sometimes complementary application ofWRF is to

increase the resolution beyond that available from the

GCM (or reanalysis data) for a particular geographic

region and often with a particular state variable or local

phenomenon in mind (e.g., Borge et al. 2008; Flaounas
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et al. 2010; Evans and McCabe 2010; Mercader et al.

2010; Prabha et al. 2011).

Salathé et al. (2010) compared two 100-yr regional

climate simulations for the State of Washington using

WRF. One simulation was forced by the NCAR Com-

munity Climate System Model version 3 (CCSM3) and

the second was driven by the Max Plank Institute

Hamburg ECHAM5 global model. These two meso-

scale simulations produced regional changes that sub-

stantially altered the temperature and precipitation

trends over the region relative to global model result or

statistical downscaling. Caldwell et al. (2009) performed

a 40-yr WRF-based dynamical downscaling simulation

centered on California forced with CCSM3. They re-

ported a precipitation bias (overestimated rainfall along

windward slopes) that was caused by processes internal

to WRF, and a coastal (warm) temperature bias due to

an SST bias inherited from CCSM3. Evans and McCabe

(2010) used a WRF regional climate model simulation

over Australia’s Murray–Darling basin, which was ini-

tialized by NCEP–NCAR reanalysis data. They evalu-

ated the simulated climate against gridded precipitation

and temperature observations at daily, monthly, in-

terannual, and multiannual time scales, and found that

WRF successfully reproduced daily statistics compared

with observations, and it improved monthly and in-

terannual statistics relative to NCEP–NCAR reanalysis.

One of the reasons for the popularity of WRF as an

RCM is that it includes a wide range of physical pa-

rameterizations, and it can be initialized either by data

from a GCM or by reanalysis data. This makes it ideal

for the study of phenomena that require high resolution

(e.g., precipitation distribution in an orographically

complex region). Typically, RCM applications of WRF

use only one combination (or at best a small number) of

the available parameterization schemes because of the

high computational cost associated with running all

possible combinations. TheWRF parameterizations are

generally held constant in these investigations, which

represent a test of the different GCMs. The difficulty

with this type of investigation is that a givenGCMmight

perform better (or worse) with a particular parameter-

ization, and the investigator is often faced with the dif-

ficulty of disentangling the error contribution of WRF

from that of the GCM. In both of these instances con-

siderable energy is expended in determining the opti-

mum set of parameterizations for the particular purpose.

Borge et al. (2008) studied the sensitivity of WRF for

air quality applications over the Iberian Peninsula for

two 1-week periods in the winter and summer of 2005.

They found that a particular scheme or option rarely

produced the best results for all the statistical parame-

ters and/or geographical locations examined.As a result,

they provided the optimum configuration for the model

based on aggregated performance. Flaounas et al. (2010)

examined the sensitivity of WRF to convection and

planetary boundary layer (PBL) parameterization in

a study of the 2006 West African monsoon (WAM).

They found that PBL schemes had the strongest effect

on the vertical distribution of temperature, humidity,

and rainfall amount, whereas dynamic and precipitation

variability were particularly sensitive to convection pa-

rameterization schemes. Bukovsky and Karoly (2009)

examined the effects of different land surface models

and cumulus schemes on precipitation over North

America modeled byWRF for themonths ofMay, June,

July, and August over the period 1991–95. Their study

showed that the precipitation was sensitive to the choice

of land surface model and cumulus scheme. Bukovsky

and Karoly (2009) emphasized the importance of testing

WRF output for sensitivity to parameterizations for

regional climate modeling applications.

Typically, the performance of a climate model is

evaluated based on its ability to simulate the present

climate. Ideally, the model should capture annual and

interannual variability and the spatial patterns of tem-

perature, precipitation and mean sea level pressure.

Reichler and Kim (2008) define a Model Performance

Index (MPI) for GCMs based on a standardized average

mean squared error and combine the performance of

multiple climate variables in a single number. In the

evaluation of regional climate models there appears to

be no general set of performance metrics. In the Fourth

Assessment Report (AR4) of the Intergovernmental

Panel on Climate Change (IPCC; Solomon et al. 2007),

the skill of regional climate models in simulating the

present climate is discussed in terms of biases and in-

terannual variability. This approach was also adopted by

Jacob et al. (2007) for evaluating the performance of the

regional climate models used in the Prediction of Re-

gional Scenarios and Uncertainties for Defining Euro-

pean Climate Change Risks and Effects (PRUDENCE)

project. Their evaluation focused on the long-termmean

climate and the interannual variability of near surface

temperature and precipitation over land during the

winter and summer seasons.

Perkins et al. (2007) employed probability density

functions (PDFs) in their evaluation of coupled climate

models over 12 regions in Australia for the daily sim-

ulation of precipitation, minimum temperature, and

maximum temperature. They point out that simulating

a whole PDF is a far harder test of a model than simu-

lating the mean and one standard deviation alone. They

used a simplemetric that evaluates the area of overlap of

the PDFs of the observed parameter and the modeled

version. Amodel that simulates the observed parameter
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perfectly would score one, while a model that simulates

the observed PDF poorly would have a score close to

zero.

In this study, we examine WRF as an RCM for a Eu-

ropean domain [World Climate Research Programme

(WCRP) Coordinated Regional Climate Downscaling

Experiment (CORDEX) region 4; http://wcrp.ipsl.jussieu.

fr/cordex/domains.html] over the period 1990–95 with a

view to identifying the optimum choice of parameteriza-

tions for climatemodeling studies withWRF over Europe.

We employ reanalysis data to provide the initial condi-

tions and the lateral boundary information at 6-hourly

intervals, thereby avoiding the uncertainty associated

with the use of a GCM. The most advanced reanalysis

data available for this purpose is the interim European

Centre for Medium-RangeWeather Forecasts (ECMWF)

Re-Analysis (ERA-Interim), where recent studies have

shown that it provides the best representation of certain

aspects of the climate system (Mooney et al. 2011; Troy

and Wood 2009; Screen and Simmonds 2010). We use a

grid spacing of 0.448 3 0.448 to economize on the com-

putational effort required over the relatively large domain.

Our assessment of different WRF parameteriza-

tions involves a detailed examination of three state

variables over eight Rockel subregions (Christensen

and Christensen 2007) representing very different re-

gional climates within the domain. The WRF output of

surface air temperature at 2 m (T2), precipitation (PR),

and mean sea level pressure (MSLP) are assessed by

comparison with the Ensemble-Based Predictions of

Climate Changes and their Impacts (ENSEMBLES)

observations gridded dataset (E-OBS) observational

dataset (Haylock et al. 2008; van den Besselaar et al.

2011). Unlike previous studies (Bukovsky and Karoly

2009; Jin et al. 2010; Flaounas et al. 2010), we investigate

the sensitivity of a greater range of parameterization

schemes over a longer continuous period of time. All

three state variables are assessed for bias in spatial

distribution, seasonal (summer/winter) patterns, and

monthly averages, for mismatch in the temporal com-

ponent through correlation coefficients, and in the ex-

tent of variability through standard deviation, PDF, and

root-mean-square difference (RMSD).

2. Experimental setup

a. Model details for initialization and domain

The climate over the CORDEX European domain

shown in Fig. 1 was simulated using the fully com-

pressible nonhydrostatic WRF (ARW-WRF version

3.1; Skamarock et al. 2008) at a horizontal grid spacing

of 0.448 3 0.448 over the period 1990–95. We chose 40

full eta levels in the vertical as follows: 1.000, 0.993,

0.983, 0.970, 0.954, 0.934, 0.909, 0.880, 0.843, 0.805, 0.768,

0.731, 0.664, 0.602, 0.546, 0.493, 0.444, 0.400, 0.359, 0.321,

0.286, 0.254, 0.225, 0.199, 0.174, 0.152, 0.132, 0.114, 0.098,

0.083, 0.070, 0.058, 0.047, 0.038, 0.029, 0.022, 0.015, 0.010,

0.005, and 0.000. ERA-Interim was used to provide ini-

tial conditions, lateral boundary values, and sea surface

temperatures (SSTs) at 6-hourly intervals for each sim-

ulation. The period 1990–95 was chosen for this study

based on availability of ERA-Interim data and limited

computational resources due to the relatively largemodel

domain. A 1-yr spinup period was employed for all the

results presented below. We discuss the effect of this

spinup period on our results in section 3a. We consider

that for a preliminary study of WRF as a regional cli-

mate model, a 6-yr period will enable us to determine its

sensitivity to different parameterization schemes with

a view to longer-term simulations.

b. Parameterization schemes—Configurations

Parameterization schemes in WRF can be broadly

categorized into 1) microphysics, 2) longwave radiation,

3) shortwave radiation, 4) land surface model, 5) con-

vective schemes, and 6) planetary boundary layer.Within

each of these categories there exist numerous parame-

terization schemes, some of which are more applicable to

climate modeling while others are better suited for

weather forecasting. The sensitivity ofWRFmodel to the

parameterization schemes illustrated in Table 1 is as-

sessed by examining its ability to reproduce spatial and

temporal patterns of the mean European climate.

Land surface models (LSMs) evaluated were the

Noah (Ek and Mahrt 1991) and Rapid Update Cycle

(RUC) (Smirnova et al. 1997, 2000) schemes. Both of

these models have soil temperature and moisture, snow

FIG. 1. Map showing the CORDEX European domain modeled

by WRF (dashed line) and the eight European subregions

(Christensen and Christensen 2007) (solid lines). The subregions

are 1: British Isles (BI), 2: Iberian Peninsula (IP), 3: France (FR),

4: mid-Europe (ME), 5: Scandinavia (SC), 6: Alps (AL), 7: Medi-

terranean) (MD), and 8: eastern Europe (EE).
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cover, and frozen soil physics. The main difference be-

tween Noah and RUC is the treatment of snow; the

Noah LSM includes fractional snow cover while the

RUC LSM includes multilayer snow.

Longwave radiation schemes most suited for regional

climate simulations are the Rapid Radiative Transfer

Model (RRTM) scheme (Mlawer et al. 1997) and the

Community Atmosphere Model (CAM) longwave ra-

diation scheme (Collins et al. 2004, 102–143). Both of

these schemes have been investigated in this study. The

CAM shortwave radiation scheme (Collins et al. 2004) is

used in all simulations. CAM is the most suitable

shortwave scheme for climate simulations as its ozone

distribution varies during the simulation according to

monthly zonal-mean climatology data.

Two microphysics schemes have been examined rep-

resenting opposite ends of the spectrum in terms of

complexity and computational cost. The WRF single-

moment three-class (WSM3) scheme (Hong et al. 2004)

is considered one of the simpler and computationally

least expensive schemes, whereas the Morrison two-

moment scheme (Morrison et al. 2009) is one of the

more advanced schemes and is computationally much

more demanding.

The two planetary boundary layer schemes chosen for

study are the widely used Yonsei University (YSU)

scheme (Hong et al. 2006), and the Mellor–Yamada

Nakanishi and Niino level 3.0 (MYNN3) scheme

(Mellor and Yamada 1982; Nakanishi and Niino 2004).

In an attempt to get an indication of the sensitivity of

WRF to the choice of PBL scheme, we selectedMYNN3

because it is significantly different from YSU.

In this investigation, the widely used Kain–Fritsch

(Kain and Fritsch 1990; Kain 2004) convective scheme

and the CAM longwave radiation scheme and were

employed in all simulations. At a grid spacing of 0.448,
convection is not resolved explicitly and must be pa-

rameterized in the convective parameterization schemes

(CPSs). It is well known (e.g., Zhang et al. 1994) that the

CPS scheme chosen will be at least as important as the

microphysics scheme selected. There are several reports

published on the sensitivity ofWRF to the choice of CPS

(Molinari and Dudek 1992; Wang and Seaman 1997;

Mercader et al. 2010). Rather than repeating their work,

we have decided to build on these results by adopting

the more successful Kain–Fritsch convective scheme in

this study.

c. Gridded datasets

1) ERA-INTERIM

ERA-Interim provided the initial conditions, lateral

boundaries, and sea surface temperatures. The data

were obtained from the ECMWF data server on a fixed

grid of 1.58 (Dee et al. 2011). ERA-Interim uses 4D

variational analysis on a spectral grid with triangular

truncation of 255 waves (corresponding to;80 km) and

a hybrid vertical coordinate system with 60 levels.

2) OBSERVATIONAL DATASETS

(E-OBS AND CRU)

We compared WRF outputs with two different grid-

ded observational datasets: E-OBS (Haylock et al.

2008; van den Besselaar et al. 2011) and CRU TS 3.0

(Mitchell and Jones 2005). E-OBS is a high-resolution

gridded dataset of surface temperature and pre-

cipitation over the European terrestrial domain for the

period 1950–2006 (Haylock et al. 2008). Recently, the

dataset has been extended to include mean sea level

pressure over the domain (van den Besselaar et al. 2011).

It has a temporal resolution of 24 h and it is available

at grid spacings of 25 and 50 km on both the regular

latitude–longitude grid and rotated-pole grid. The data

used in this study were obtained on a regular latitude–

longitude grid. CRU TS3.0 represents a gridded database

(0.58 3 0.58) of monthly climate observations for

TABLE 1. Physical parameterizations schemes used in each of the WRF simulations.

Simulation No. Microphysics PBL scheme Land surface model Longwave radiation Shortwave radiation Convective scheme

Simulation 1 WSM3 YSU Noah RRTM CAM Kain–Fritsch

Simulation 2 WSM3 YSU Noah CAM CAM Kain–Fritsch

Simulation 3 WSM3 YSU RUC RRTM CAM Kain–Fritsch

Simulation 4 WSM3 YSU RUC CAM CAM Kain–Fritsch

Simulation 5 Morrison YSU Noah RRTM CAM Kain–Fritsch

Simulation 6 Morrison YSU Noah CAM CAM Kain–Fritsch

Simulation 7 Morrison YSU RUC RRTM CAM Kain–Fritsch

Simulation 8 Morrison YSU RUC CAM CAM Kain–Fritsch

Simulation 9 Morrison MYNN3 Noah RRTM CAM Kain–Fritsch

Simulation 10 Morrison MYNN3 Noah CAM CAM Kain–Fritsch

Simulation 11 Morrison MYNN3 RUC RRTM CAM Kain–Fritsch

Simulation 12 Morrison MYNN3 RUC CAM CAM Kain–Fritsch
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FIG. 2. (a). Plot of the bias (WRF2EOBS) in themeanwinter (DJF) surface air temperature (8C) at 2m (T2) in the

period 1990–95 for all 12 simulations. (b). As in (a), but for summer (JJA).
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temperature and precipitation for the period 1901–2002

over the global land surface constructed from meteo-

rological stations and is publicly available from the

British Atmospheric Data Centre (http://badc.nerc.ac.

uk/). Comparisons of WRF with CRU andWRF with E-

OBS produced similar results. For clarity in this report,

we present only one of these studies and we have

chosen E-OBS in preference to CRU TS 3.0 data as it

has a higher temporal resolution and includes mean sea

level pressure.

3. Simulation results

Before commencing our detailed study of the 12WRF

simulations listed in Table 1, we comparedWRF output

with ERA-Interim data in order to test WRF’s ability

to reliably reproduce its parent data. Key atmospheric

variables such as mean sea level pressure, the 500-hPa

temperature, and geopotential height were examined.

The time-averaged values of these three parameters were

compared with ERA-Interim values for bias throughout

the entire domain (not shown). WRF reproduced the

average values of all three variables to within 61%

with the regions farthest from the domain boundary

showing the greatest difference as expected.

a. Surface temperature

Figures 2a and 2b show bias (WRF 2 EOBS) in the

surface air temperature modeled by WRF for winter

[December–February (DJF)] and summer [June–August

(JJA)] respectively averaged over the 1990–95 period.

In winter (Fig. 2a, LSM does not show a strong in-

fluence with (the plots in) columns 1 and 2 (which use

NOAH LSM) more or less repeated in columns 3 and 4

(RUC LSM). The quite marked differences between

columns 1 and 2 (and also between columns 3 and 4) are

the result of different LWR schemes, which appear to

have a strong influence. Columns 1 and 3 use the RRTM

LWR scheme, while columns 2 and 4 use CAM. The

clear differences between row 1 and row 2 are due to the

change from WSM3 to the Morrison microphysics

scheme. Row 3 also uses Morrison microphysics but

differs from row 2 in the PBL scheme used. In contrast,

LSM has a substantial influence in the summer results

shown in Fig. 2b, with columns 3 and 4 standing out quite

markedly from columns 1 and 2. Some evidence of the

LWR influence still persists, but it is now overshadowed

by the LSM influence. In summer, microphysics and

PBL schemes do not seem to have a strong influence, as

indicated by relatively small changes between the three

rows in Fig. 2b.

Over such a large domain, no single combination of

parameterizations yields optimal results. To facilitate

a comparison of all 12 simulations for surface air

FIG. 3. Bias in the mean surface air temperatures (T2) relative to

E-OBS for each of the 12WRF simulations averaged over 1990–95

by subregion (shown in Fig. 1) in (a) winter and (b) summer.

FIG. 4. Mean monthly surface air temperature for all 12 simu-

lations and E-OBS (black line) over the 6-yr period for Iberian

Peninsula. Simulations represented in green use the Noah land

surface model, while those in blue use the RUC LSM.
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temperature we adopted the matrix representation of

the Rockel regions used by Christensen and Christensen

(2007). Figures 3a and 3b show the winter and summer

bias, respectively, in surface air temperatures for each of

the 12 WRF simulations averaged over 1990–95. In

winter, simulations (9 and 11) with the RRTM longwave

radiation scheme, the Morrison two-moment micro-

physics scheme, and the MYNN3 PBL scheme have the

least bias across all geographical regions. Summer biases

show clearly that simulations using the Noah land sur-

face model (1, 2, 5, 6, 9, and 10) have the least offset.

Biases are more easily observed in mean monthly sur-

face temperatures, of which Fig. 4 for the Iberian Pen-

insula is a typical example. It shows that the span of

WRF simulations include the E-OBS values over the

6-yr period. Simulations using Noah LSM (colored

green) exhibit lower bias in both winter and summer

compared with those in which RUC are used (blue).

Geographically, biases are greatest over Scandinavia in

winter while the Mediterranean and eastern Europe

have the largest biases in summer. Several regional

models for Europe have shown a winter bias in Scandi-

navia (Jacob et al. 2007).

Probability density functions of surface air tempera-

ture in winter for the 12 simulations are compared with

the corresponding E-OBS plot for the Iberian Peninsula

in Fig. 5a. The PDFs of the simulations agree remark-

ably well with the observations and are consistent with

the bias plot of the Iberian Peninsula shown in Fig. 3a.

Differences between simulations are not very pronounced.

On the other hand, PDFs of the summer simulations in

Fig. 5b show a greater spread that includes the E-OBS

results in the center of the spread. The general patterns

shown in Figs. 5a and 5b are repeated in the simulations

of the seven other subregions, and they provide addi-

tional information about the offsets that are evident in

Figs. 3a and 3b.

A Taylor diagram (Taylor 2001) showing the correla-

tion, RMSD, and standard deviation for each simula-

tion over the Iberian Peninsula is shown in Fig. 6. The

FIG. 5. Plot of the PDF of surface air temperature (T2) for all 12 simulations for the Iberian Peninsula in (a) winter

and (b) summer.

FIG. 6. Taylor diagram showing correlation coefficient, RMSD,

and standard deviation of surface air temperature relative to

E-OBS for the 12 simulations listed in Table 1 over the Iberian

Peninsula. Simulations represented by gray points use the Noah

land surface model, while those in black use the RUC LSM.
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general pattern shown in this plot, with the simulations

divided into two distinct groups lying broadly speak-

ing along a radius, is repeated in the remaining seven

Rockel regions (not shown). The first group (simulations

1, 2, 5, 6, 9, and 10; colored gray) use the Noah LSM and

lie inside and closer to the dashed arc on the diagram,

indicating that their standard deviations are in better

agreement with the E-OBS standard deviation than the

second group (simulations 3, 4, 7, 8, 11, and 12, colored

black), which use the RUC LSM. Simulation 2, which

uses the Noah land surface model, CAM longwave

radiation, WSM3 microphysics, and YSU planetary

boundary layer, shows closest agreement with observa-

tions in this subregion.

Since studies of the type described here frequently

employ a ‘‘spinup’’ period, (e.g., Yu et al. 2010), we

examined the effect of using a spinup period on the

results of the WRF output for all three state variables

considered. Spinup times of 0, 1, 2, and 3 years were

considered in the case of winter bias, summer bias,

correlation coefficient and standard deviation. Figure 7

showing the winter bias in surface temperature for

simulation 1 is a typical example of the output of this

investigation. The error bars represent the 95% confi-

dence level of the 3-yr spinup values. Based on the re-

sults of this examination, we deduce that the results

without spinup are not significantly different from those

that did employ a spinup period. We present the results

for simulations that used a 1-yr spinup as a compromise

between including some spinup period, while maximiz-

ing the length of time under investigation (6 yr).

In summary, our results for temperature show a sig-

nificant dependence on the land surface model with

Noah superior to RUC particularly in summer. This

result supports the finding of Jin et al. (2010), who car-

ried out WRF simulations using four land surface

schemes over the western United States for the period

1 October 1995 through 30 September 1996. The four

LSM schemes included the soil thermal diffusion (STD)

scheme and the sophisticated NCAR Community Land

Model version 3 (CLM3) scheme as well as the two

schemes used in this study. They found that land surface

processes strongly affected temperature simulations

over the domain in question. Our results show that

surface air temperatures simulated by WRF are less

sensitive to microphysics and PBL parameterizations

than to longwave radiation scheme and land surface

scheme. The combination of CAM longwave radiation

and NOAH LSM is slightly better than the other com-

binations examined.

b. Precipitation

Biases in the mean daily precipitation of WRF sim-

ulations from E-OBS (WRF 2 EOBS) are shown in

Figs. 8a and 8b for winter and summer, respectively. It is

difficult to single out any one of the 12 winter simula-

tions as being superior to the other 11. Differences are

far more obvious in summer with the 12 simulations

clearly divided by LSM. Simulations that use Noah LSM

(columns 1 and 2) have a greater tendency to show

a positive bias in mean daily precipitation than those

using the RUC (columns 3 and 4). LWR has a smaller

but still noticeable effect as illustrated by the difference

between columns 1 and 2 (and also between columns 3

and 4). Microphysics has a comparable effect on the

simulation to LWR, but the effect of the two different

PBL schemes appears negligible.

Figure 9 uses the matrix representation of the Rockel

regions to allow a more detailed comparison of the bias

in daily precipitation for all 12 simulations in winter and

summer. With the exception of the British Isles and

Scandinavia subregions, all simulations overestimate

winter precipitation. The winter pattern in Fig. 9a is

dominated by regional differences with relatively little

distinction between the different simulations. These

results are consistent with Jin et al. (2010), who reported

that precipitation was overestimated by WRF with all

four land surface schemes in their study and it did not

show a close relationship with land surface processes. In

contrast, the summer pattern in Fig. 9b shows a strong

simulation influence dominated by the land surface

model; simulations that use the RUC LSM (3, 4, 7, 8, 11,

FIG. 7. Plot of winter bias in surface air temperature in the case of

simulation 1 for simulations with 0-, 1-, 2-, and 3-yr spinup for the

eight Rockel regions shown in Fig. 1. The error bar represents the

95% confidence level on the 3-yr spinup.
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FIG. 8. (a). Plot of the bias (WRF 2 EOBS) in the mean winter (DJF) daily precipitation (mm day21) in the

period 1990–95 for all 12 simulations. (b) As in (a), but for summer (JJA).

1010 JOURNAL OF CL IMATE VOLUME 26



and 12) have a much smaller bias than those using the

Noah scheme. A high-resolution study of large-scale

cold-pooling events over southern Georgia (United

States) using the Noah and RUC parameterizations by

Prabha et al. (2011) found that LSM schemes play

a significant role in the accuracy of mesoscale numerical

models by accounting for the exchange of energy and

water between the soil and the atmosphere. They noted

the importance of these results for regional downscaling.

The second most influential parameterization on

precipitation in this study is themicrophysics scheme.Of

the two schemes examined here,WSM3 has a larger bias

than the Morrison scheme. These results agree quite

well with Jankov et al. (2011), who examined five dif-

ferent microphysical schemes (Lin, WSM6, Thompson,

Schultz, and double-moment Morrison) in a WRF sim-

ulation study of a significant precipitation event that

occurred along the California coast in December 2005.

All schemes exhibited comparable performance when

using accumulated precipitation and other commonly

used observational data. The Lin and Schultz schemes

showed the lowest prediction skill, while the Morrison

scheme was only slightly better than either WSM6 or

Thompson in terms of RMSE. By comparing synthetic

satellite images using all five microphysics schemes

with observational data from Geostationary Opera-

tional Environmental Satellite 10 (GOES-10), Jankov

et al. (2011) found that simulations using WSM6 and

Morrison produced cloud coverage patterns closest to

observations.

Figures 9a and 9b show that averaged daily pre-

cipitation levels appear to be relatively insensitive to the

longwave radiation scheme chosen, with CAM holding

a slight advantage over RRTM. The distinction between

summer and winter patterns shows up clearly in Fig. 10

(Alps subregion), which is a typical example of themean

daily precipitation for each month over the 6-yr period.

Simulations that use the RUC land surface model (blue)

show good agreement with observations in summer.

PDFs of the simulations are compared with the corre-

sponding plot for the observations for the Alps sub-

region in Figs. 11a and 11b for winter and summer,

respectively. PDFs of the simulations for winter show

very few differences and generally agree reasonably well

with observations. The range of PDFs in the simulations

is much greater for summer and E-OBS falls comfort-

ably in the middle of this range. A representative Taylor

diagram of precipitation is shown for the Alps region in

Fig. 12. It is immediately obvious that the correlation

coefficients are much lower and that the RMSD values

are substantially larger for precipitation than for surface

air temperature (cf. Figs. 12 and 6). The range of vari-

ability of all simulations is comparable to the observa-

tions, albeit greater in all instances. In general, Fig. 12

shows that simulations using theRUC scheme tend to be

FIG. 9. Bias (WRF–EOBS) (mm day21) in daily mean precipi-

tation for each of the 12 WRF simulations averaged over 1990–95

by subregion (shown in Fig. 1) in (a) winter and (b) summer.

FIG. 10. Daily mean precipitation by month for the 12 WRF

simulations and E-OBS dataset (black line) over the 6-yr period for

the Alps subregion.
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slightly closer to the observations than those using the

Noah scheme, with simulation 7 having statistical values

that best match E-OBS precipitation.

c. Mean sea level pressure

Biases in WRF mean sea level pressure compared

with E-OBS (WRF 2 E-OBS) over the 6-yr period are

shown in Figs. 13a and 13b for winter and summer, re-

spectively. WRFmodels the seasonal values of MSLP to

within 61% of the E-OBS data. This result is further

illustrated in the matrix plots of the Rockel regions

(Figs. 14a,b) and the monthly mean plots (Fig. 15). It is

also clear from all of these figures thatWRF consistently

underestimates MSLP in both winter and summer, with

the largest bias occurring in the winter season in the

Alps and eastern Europe. The matrix form plot in Fig.

14a is dominated by differences between regions rather

than by simulation. Figure 14b shows evidence of dis-

tinction on the basis of simulation number but regional

differences remain strong. Longwave radiation is the

parameterization that appears to have greatest influence

on the pattern, with simulations using CAM marginally

ahead of those using RRTM.

The consistent underestimation in the WRF simula-

tions (,1%) is well illustrated in Fig. 15, which shows

the average MSLP by month for all simulations and for

the observations (black line) over the 6-yr period for

France. PDFs of the MSLP from simulations are com-

pared with observations for France in winter and sum-

mer in Figs. 16a and 16b, respectively. The winter plot

illustrates the deviation of all simulations from the ob-

servations, while the summer plot shows much better

agreement with observations in both the distribution

and in overall shape. A Taylor diagram of MSLP for the

12 simulations over France is shown in Fig. 17. All of the

simulations are bunched closely together with correla-

tion coefficients in the range 0.7–0.8, RMSD values of

the order of 6 hPa or greater and slightly larger vari-

ability than the E-OBS values.

A Taylor diagram of all three variables for the

mid-Europe region, which is representative of all eight

Rockel regions, is shown in Fig. 18. To represent the

FIG. 11. Plot of the PDF of daily mean precipitation (PR) for all 12 simulations for the Alps subregion in (a) winter

and (b) summer. For clarity, the main part of the figure shows a zoomed-in region of the full PDF in the inset.

FIG. 12. Taylor diagram showing correlation coefficient, RMSD,

and standard deviation of daily precipitation relative to E-OBS of

the 12 simulations listed in Table 1 for the Alps subregion.
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FIG. 13. (a). Plot of the bias (WRF 2 EOBS) in the average winter (DJF) mean sea level pressure (hPa) in the

period 1990–95 for all 12 simulations. (b). As in (a), but for summer (JJA).
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three variables on a single plot, the standard deviation of

each modeled parameter has been normalized to the

standard deviation of the observed values. It is imme-

diately evident from this figure that, of the three vari-

ables considered in this study, WRF performs best when

modeling surface air temperature; WRF is weakest

when modeling precipitation and is intermediate be-

tween these two extremes when modeling MSLP. This

plot also shows that MSLP is sensitive to the PBL

scheme chosen, with simulations 9, 10, 11, and 12 (all of

which use the MYNN3 PBL scheme) clearly separated

from, and with higher standard deviations than, the

other eight simulations that use the YSU PBL scheme.

This pattern can also be discerned in Fig. 17 for the

France subregion and is evident in some extent to all

subregions.

For each variable examined, simulations 6 and 8 tend

to capture patterns in observed data better than other

simulations. Taylor diagrams of these simulations for all

eight geographical regions are shown in Figs. 19a and 19b.

It is evident from the large spread in correlation co-

efficient and RMSD of MSLP in these plots that WRF’s

ability to model MSLP depends more on the region

than any other variable. This contrasts with the two

tightly bunched groups of MSLP in Fig. 17. WRF ap-

pears to be most successful in modeling regions 1

(British Isles) and 2 (Iberian Peninsula), whereas it

seems to be weakest in regions 7 (Mediterranean) and 8

(eastern Europe).

4. Summary

This investigation of the sensitivity of surface vari-

ables modeled by WRF to parameterization schemes

used for microphysics, land surface, planetary boundary

layer, and longwave radiation has shown the following:

d WRF is capable of modeling surface air temperature

across several very different climatic regions in the

European domain with small biases in the average

values over the 6-yr period and high correlation

coefficients in all simulations.
d WRF surface air temperatures show greatest sensitiv-

ity to land surface model with simulations using Noah

closer to observations than those using RUC particu-

larly in summer. Temperature shows some sensitivity

to longwave radiation in winter only, but very little

sensitivity to either microphysics or PBL.
d Modeling precipitation is problematic for WRF with

biases of up to 100% at certain times of the year, and

generally low temporal correlation coefficients (0.2 ,
R , 0.3) with observations.

d WRFprecipitation is sensitive to the land surfacemodel

especially in summer with simulations using RUC

ahead of of those using Noah. Precipitation output

is sensitive to longwave radiation andmicrophysics in

FIG. 14. Bias in mean sea level pressure relative to E-OBS for

each of the 12 WRF simulations averaged over 1990–95 by sub-

region (shown in Fig. 1) in (a) winter and (b) summer.

FIG. 15. Mean sea level pressure by month for the 12 WRF

simulations and E-OBS (black line) over the 6-yr period for the

France subregion.
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summer but not to such a large extent as the land

surface model. Precipitation shows negligible sensi-

tivity to the PBL scheme chosen.
d MSLP is modeled well by WRF with only a small

negative bias (,1%), which is consistent across all

simulations. Temporal correlation coefficients are

relative high, typically in the range 0.7 , R , 0.8.

MSLP output appears to be insensitive to any of the

four parameterizations in winter but shows slight sen-

sitivity to longwave radiation in summer. Simulations

that employ the MYNN3 PBL scheme show a greater

degree of variability compared with the observations

than those using the YSU scheme.
d Of the eight Rockel regions examined, WRF appears

to be better at simulating the climate of regions 1

(British Isles) and 2 (Iberian Peninsula), while it is

FIG. 16. Plot of the PDF of mean sea level pressure for all 12 simulations for the France subregion in (a) winter and

(b) summer.

FIG. 17. Taylor diagram showing correlation coefficient, RMSD,

and standard deviation of mean sea level pressure relative to

E-OBS of the 12 simulations listed in Table 1 for the France

subregion.

FIG. 18. Taylor diagram showing correlation coefficient, RMSD,

and standard deviation of all three variables—surface air temper-

ature (1–12 circle), daily mean precipitation (1–12 triangle), and

mean sea level pressure (MSLP) (1–12 square)—relative to E-OBS

of the 12 simulations listed in Table 1 for the mid-Europe sub-

region. To represent all three variables on this diagram, the stan-

dard deviation of each modeled variable has been normalized to

the standard deviation of the observations.
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weakest in regions 7 (Mediterranean) and 8 (eastern

Europe). Different combinations of the four parame-

terizations are seen to suit different Rockel regions,

demonstrating the importance of undertaking thor-

ough preliminary studies of WRF prior to any appli-

cation.
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