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Abstract:

In accounting for uncertainties in future simulations of hydrological response of a catchment, two approaches have come to the
fore: deterministic scenario-based approaches and stochastic probabilistic approaches. As scenario-based approaches result in a
wide range of outcomes, the role of probabilistic-based estimates of climate change impacts for policy formulation has been
increasingly advocated by researchers and policy makers. This study evaluates the impact of climate change on seasonal river
flows by propagating daily climate time series, derived from probabilistic-based climate scenarios using a weather generator
(WGEN), through a set of conceptual hydrological models. Probabilistic scenarios are generated using two different techniques.
The first technique used probabilistic climate scenarios developed from statistically downscaled scenarios for Ireland, hereafter
called SDprob. The second technique used output from 17 global climate models (GCMs), all of which participated in CMIP3, to
generate change factors (hereafter called CF). Outputs from both the SDprob and the CF approach were then used in combination
with WGEN to generate daily climate scenarios for use in the hydrological models. The range of simulated flow derived with the
CF method is in general larger than those estimated with the SDprob method in winter and vice versa because of the strong
seasonality in the precipitation signal for the 17 GCMs. Despite this, the simulated probability density function of seasonal mean
streamflow estimated with both methods is similar. This indicates the usefulness of the SDprob or probabilistic approach derived
from regional scenarios compared with the CF method that relies on sampling a diversity of response from the GCMs.
Irrespective of technique used, the probability density functions of seasonal mean flow produced for four selected basins is wide
indicating considerable modelling uncertainties. Such a finding has important implications for developing adaptation strategies at
the catchment level in Ireland. Copyright © 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

Global climate models (GCMs), representing dynamic
simulations of natural climatic processes, are the most
widely used tools for modelling future climate. However,
our limited understanding of the many components of the
climate system (e.g. cloud feedbacks) and their role in
climate change impose limitations on our ability to
reliably simulate the future climate using GCMs, resulting
in significant uncertainties being associated with future
simulations. Despite these uncertainties, top—down ap-
proaches to impact assessment has been widely used in
the international and grey literature with only limited
success in aiding the development of adaptation decisions
due to the associated wide range of outcomes (Wilby and
Dessai, 2010). When confronted with uncertainty,
defining an optimum approach in providing information
for developing policy has been, and continues to be, a
major source of contention and debate. A popular way of
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estimating a best guess climate projection is to take a
mean value estimated from a multimodel ensemble of
climate projection (Knutti ez al., 2010). An alternative to
this is to use performance-based weighting (e.g. Giorgi
and Mearns, 2003; Tebaldi et al., 2005), a subjective
approach, although Grubler and Nakicenovic (2001)
argued that we should research all the potential outcomes
and not try to guess which is more likely to occur.

Assigning relevant uncertainty estimates requires using
several models, running these models with different initial
conditions, different model parameterisations, parameters
and structures. Although a robust assessment of uncer-
tainty requires the construction of projected ranges from a
large number of emission scenarios and models, this is a
key limiting factor in many situations. For example,
because of constraints in computational resources, many
global simulations are only available for a limited number
of emissions scenarios.

Projected ranges can be constructed from the existing
atmosphere—ocean global circulation models that partici-
pated in CMIP3 (the details of data and model can be
found in Meehl et al., 2007) (e.g. Giorgi and Mearns,
2003; Greene et al., 2006; Min et al., 2007). However,
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they do not cover the full range of uncertainty in climate
sensitivity. Alternatively, another approach that has been
used in quantifying such uncertainties is based on
exploring modelling uncertainties of a single GCM by
sampling uncertain parameters from its prior distribution
(e.g. Murphy et al., 2004; Stainforth et al., 2005). In a
step towards realising a probabilistic climate prediction
system, Stainforth er al. (2005) used a super-ensemble
exploring uncertainty in a single GCM using a perturbed
physics ensemble, constructed using plausible, but
varying, sets of model parameters.

Apart from the uncertainty in emission scenario and
climate model selection, uncertainties arising from
downscaling method, hydrological model structure, para-
meters and observations also become relevant when
climate projections are to be used in water resource
applications (Wilby and Harris, 2006). Generally, al-
though GCM output reproduces global and continental
scale climate reasonably well, they are inadequate for use
in impact studies because of differences in the scale at
which GCMs provide output and the scale at which
impacts are usually assessed (Wilby and Wigley, 1997).
In recent decades, several methods have been used,
particularly empirical/statistical downscaling and increas-
ingly dynamical regional climate models (RCMs), to meet
the need for high spatial and temporal resolution climate
scenarios for use in impact studies (for a comprehensive
review, see Fowler et al., 2007; Maraun et al., 2010).
Many methods for the disaggregation of large-scale
climate projections for hydrological impacts have
emerged in the scientific literature. In particular, the
work of Maraun et al. (2010) assessed the current
downscaling literature, examining new developments in
the field specifically for hydrological impacts.

The ability of RCMs to reproduce the present-day
climate has improved significantly. However, the use of
output from RCMs is often limited by systematic errors in
the boundary conditions provided by both reanalysis data
(Mooney et al., 2010) and GCMs, representing an
additional contribution to the overall chain of uncertainty.
Despite the benefits of statistical downscaling approaches
in terms of simplicity of application, the use of
regression-based procedures is limited to locations where
good predictor—predictand relationships can be derived
and require long observational data sets. Both techniques
also require an assumption of time invariance with the
transfer functions in statistical downscaling and param-
eterisation schemes in the RCMs. Alternatively, synthetic
or statistical methods can also be used as a tool to develop
future climate scenarios on the basis of GCM-simulated
or subjectively introduced delta changes in climate for
impact models (e.g. Wilks, 1992; Semenov and Barrow,
1997), and although not assumption free, they do provide
a viable alternative to producing climate scenarios.

There are also several stochastic models for generating
synthetic climatic data (e.g. Richardson and Wright,
1984; Racsko et al., 1991). These models generate one or
more climatic variables from an existing set of data. A
review on the use of weather generation models can be
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found in Wilks and Wilby (1999). A stochastic weather
generator also allows temporal extrapolation of observed
weather data for risk assessment as well as in providing
an expanded spatial source of weather data by
interpolation between the point-based parameters used
to define the weather generators (Hutchinson, 1991).
Apart from the generation of long time series, they also
allow for the simulation of multiple realisations, thereby
providing for wide ranges. The approaches based on
stochastic weather generators are relatively simple,
making them feasible for modelling multiple variables.
They can also serve as a computationally inexpensive tool
for producing site specific climate change scenarios at a
more local scales.

Impact models are also inherently imperfect because
they abstract and simplify real processes that are
themselves imperfectly known and understood (Gupta
et al., 2003). Experiences with the calibration of
hydrological models suggest that their parameters are
uncertain. Several studies have evaluated the impact of
climate change and associated uncertainties at the
catchment scale (e.g. Horton et al., 2006; Cameron,
2006; New et al., 2007; Cloke et al., 2010). Most of these
impact studies have propagated the uncertainty in climate
scenarios through a single hydrological model. New et al.
(2007) examined the challenges of using probabilistic
climate change information in impact studies in the water
sector and showed that a probabilistic approach provides
more informative results that enables the potential risk of
impacts to be quantified but are conditional upon the
approach used for the analysis. Cameron (2006)
suggested that there is a need to consider multiple climate
change scenarios and account for model uncertainties
when estimating the possible effects of climate change
upon flood frequency. Similarly, Cloke et al. (2010)
observed the significant influence of model parameter
uncertainty under future climate as river flows become
lower. Although some studies have sought to address
issues associated with parameter uncertainty (e.g. New
et al., 2007; Cloke et al., 2010), very few have looked at
the uncertainties related to model structure (e.g. Bastola
et al., 2011), particularly in the context of climate change
impact assessments.

From an Irish perspective, research on climate change
impacts to date has been founded on the deterministic,
scenario-based approach, using empirical statistical
downscaling and RCMs to derive locally relevant climate
scenarios that are then used to drive impacts models.
More recently work has focussed on quantifying
uncertainties in impacts, particularly in the area of
catchment hydrology and water resources (e.g. Bastola
et al., 2011; Hall and Murphy, 2010a, 2010b; Steele-
Dunne et al., 2008; Murphy and Charlton, 2008).
Although this work has been effective in eliciting the
bounds within which future impacts are likely to occur,
their uptake by end users is likely to be slow because of
the wide range of impacts simulated. Moreover, the results
of the scenario-based approach are sensitive to the choice
of driving GCMs (as shown in Bastola et al., 2011).
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Therefore, in this study, probabilistic climate scenarios
are used in combination with a stochastic weather
generator to assess the uncertainty in hydrological
impacts while also accounting for hydrological model
uncertainty derived from the parameters and structure of
the selected models. The probabilistic approach presented
here is derived from the distribution of global temperature
change and regional scenarios. Such an approach is likely
to result in more robust climate change impact assessment
than the traditional single scenario-based approaches,
which are based on a small number of GCMs and
scenarios and which do not explicitly cater for uncertain-
ties. Subsequently, the probability density function (PDF)
for streamflow is constructed. However, because of the
many scientific and modelling uncertainties, the avail-
ability of different statistical estimation approaches and
imprecise information, a unique probability distribution
for streamflow is impossible. The work presented here
builds on that of Bastola et al. (2011) for Ireland by using
probabilistic climate change information and stochastic-
ally generating climate scenarios for simulating hydro-
logic impact. However, both studies use the same set of
catchments, hydrological models and basin simulators,
thus providing a basis for future intercomparisons.

The article is structured as follows: Section 2 briefly
describes the study region and data used. Section 3
provides a brief review of methods for developing
probabilistic climate scenarios and generating future
climate scenarios using a stochastic weather generator.
Results are outlined in Section 4.

STUDY REGION AND DATA

The area of focus for this study is the Republic of Ireland.
The location of synoptic weather stations, the boundaries
of the river catchments and the distribution of annual
rainfall are illustrated in Figure 1. Rainfall varies
considerably across Ireland, associated largely with orog-
raphy, with moderate seasonal variation, whereas
temperature displays more seasonal variation. The impact
of climate change on water resources at the catchment scale
is investigated using four catchments (see Figure 1), namely,
the river Blackwater at Ballyduff (2302 km?), the river Suck
at Bellagill (1219 km?), the Moy at Rahans (1803 km?) and
the Boyne at Slane Castle (2452 km?). These four
catchments were selected because they represent the
relatively diverse hydrological responses of catchments
located throughout the Republic of Ireland in terms of their
runoff coefficients and average rainfall conditions.
Probabilistic climate scenarios were developed initially
from statistically downscaled climate scenarios derived
from three GCMs and two Special Report Emission
Scenarios (SRES) emission scenarios, namely, the A2 and
B2 emission scenarios. These scenarios were previously
statistically downscaled for 14 synoptic weather stations
(Figure 1) by Fealy and Sweeney (2007, 2008) and were
used to characterise future climate evolution. These
downscaled data sets are interchangeably referred to as

Copyright © 2011 John Wiley & Sons, Ltd.
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Figure 1. Synoptic stations, selected river catchments and spatial
distribution of annual average rainfall

Kilometers

SDprob hereafter. The GCMs considered included
HADCM3 from the Hadley Centre for Climate Prediction
and Research (Met Office, UK), CGCM2 from the
Canadian Centre for Climate Modelling and Analysis
(CCCMA; Canada) and CSIRO-MKk?2 from the Common-
wealth Science and Industrial Research Organisation
(CSIRO, Australia). The A2 and B2 scenarios represent
future emissions levels that could be considered
‘medium-high’ (A2 emission) and ‘medium-low’ (B2
emission).

Probabilistic climate scenarios were also developed
from direct output from 17 GCMs, referred to within this
article as the change factor (CF) method. These GCMs
(shown in Table I) represent the results of experiments
from several international modelling centres that are
currently available from the IPCC Data Distribution
Centre (IPCC DDC) at http://www.ipcc-data.org. Each of
the GCMs was run with the A1B, A2 and B1 SRES
emission scenarios and comprise 51 future monthly
climate scenarios (17 GCMs x 3 SRES scenarios). As
the spatial resolution of the GCMs used in this study
varies, all GCMs were re-gridded to a common resolution
(3.75° x 3.75°) before extraction. The 20C3M run, which
is an experiment that runs with greenhouse gases
increasing as observed through the 20th century, is used
as a control run.

Future potential evapotranspiration (PET) is not a
direct output of the GCMs but is taken from Bastola et al.
(2011), who estimated PET on the basis of present
climate using the Hargreaves method, a radiation-based
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Table I. Name of the GCMs used for the construction of climate scenarios using the CF method

Scenario no. Model (GCM) Scenario no. Model (GCM) Scenario no. Model (GCM)

1 BCCR-BCM2.0 7 ECHO-G 13 MIROC3.2 (Medres)
2 CCSM3 8 GFDL-CM2.0 14 MRI-CGCM2.3.2

3 CGCM3.1 (T47) 9 GFDL-CM2.1 15 PCM

4 CNRM-CM3 10 GISS-ER 16 UKMO-HadCM3

5 CSIRO-MK3.0 11 INM-CM3.0 17 UKMO-HadGEM1

6 ECHAMS5/MPI-OM 12 IPSL-CM4

empirical model popularly used for the simulation of
PET, for each of the GCMs. A generalised form of the
Hargreaves method (Xu and Singh, 2000) that utilises
solar radiation and temperature to compute PET is used.
The solar radiation required by the Hargreaves method is
estimated from maximum and minimum temperature,
extraterrestrial radiation and coefficients (Hargreaves
et al., 1985) for estimating solar radiation from
temperature for Ireland (Supit, 1994). Observed stream
flow data were obtained from the hydrometrics section of
the Office of Public Works (available at http://www.opw.
ie/hydro/), and observed precipitation and temperature
data were obtained from Met Eireann, the Irish national
meteorological service.

METHODS

The likely impact of climate change and the associated
uncertainties in the hydrological response of the selected
river basins are assessed through three steps. First,
information on probabilistic estimates of future regional
climate change for Ireland is obtained. Second, climatic
time series were generated on the basis of the WGEN
weather model and probabilistic climate scenarios, the
parameters of which are calibrated on the basis of
observed data and suitably modified to account for future

changes in climate. Third, the generated synthetic time
series of climate data are used to force four conceptual
hydrological models. The schematic of the method is
shown in Figure 2. The SDprob method used results from
the statistically downscaled regional climate change
scenarios from Fealy and Sweeney (2007, 2008) in
conjunction with estimates of the transient climate
response (AT 2x CO,), representing the likely distribu-
tion of global temperature at the time that atmospheric
concentrations of CO, reach double their preindustrial
levels to generate probabilistic climate change scenarios
as shown in Figure 2a (Fealy, 2010). This method is
evaluated by comparing the derived probabilistic scenar-
ios and hydrological response with outputs on the basis of
the CF method estimated from the direct output of the
GCMs (Figure 2b).

Probabilistic climate scenarios

Probabilistic climate projections derived from multiple
GCMs and emissions combinations are likely to result in
more robust estimates of change, assuming a large
number of independent GCMs are used. For several
reasons, the independence between GCMs is not easily
definable. Edwards (2001) indicated that the development
of many existing GCMs can be traced from a small
number of GCMs used in the late 1970s. These GCMs

(a) (b)
,-{%‘ %‘ %" GCM (control Output from 17
5 = 5 5 period) GCM
O (=] =0 £ x
Range of % Range of AT b
in rai Transient climate :
change in rainfall iespcnse} % change in rainfall ‘ Monthly Change factor (CF) ‘

YLItIIIIglLIe
Adjustment/Generation
CEEEEEREEEEERY.

TOPMODEL

HyMOD
NAM
TANK

E
P
=

ITTLINLITLILY

Adjustment/Generation

I

=

HyMOD
AM
TOPMOD

=
Eu
E
S

TANK

Figure 2. Schematic of the method used to account for modelling uncertainties in climate change impact studies by propagating climate scenarios

through four hydrological models, namely, HyMOD, NAM, TANK and TOPMODEL. (a) Flow diagram for the estimation of probabilistic scenarios

constructed from the distribution of global mean temperature and regional scenarios. (b) Flow diagram for probabilistic scenarios constructed from
several GCMs
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often use the same set of physical equations, modelling
strategies and observational data. However, the argument
in favour of independency is that GCMs often use
different parameterisations, initial conditions and some-
times take into account different physical phenomena.
However, the use of output from different GCMs has
been taken as a strategy for increasing the robustness in
climate change impact studies. Such a strategy presents
limiting factors in developing fully probabilistic regional
scenarios, particularly due to the large computational and
storage requirements for running multiple global-scale
simulations. Consequently, climate modelling centres
generally only undertake century-scale simulations for a
restricted range of emissions scenarios, namely, the A2
and the B2 emission scenarios.

In response to the limited availability of particular
GCM emission scenario combinations is pattern scaling
(Santer et al., 1990), where the spatial and the climatic
responses from a limited number of GCMs are scaled
according to changes in global surface temperature (e.g.
AT 2x CQO,). Pattern scaling provides a simple means in
which regional responses can be rapidly calculated for
alternative emissions scenarios. Although the approach
assumes that the geographical or ‘response’ pattern of
change remains constant and that the regional response is
linearly related to the change in global mean surface
temperature, the technique has found widespread appli-
cation. The assumption of the local or regional climate
being proportional to the global mean surface temperature
seems to hold in many cases but is likely to be more
robust for temperature than for precipitation (Mitchell
et al., 1999; Mitchell, 2003; Murphy et al., 2004).

Development of probabilities from statistically downscaled
data(SDprob). New and Hulme (2000) used a wide range
of GCM output from several greenhouse gas emission
scenarios, a range of climate sensitivities and the output
from seven transient climate change simulations made
using GCMs. The authors produced probability distribu-
tions for changes in seasonal mean temperature and
precipitation over the United Kingdom using a hier-
archical model in Bayesian Monte Carlo simulations.
Fealy (2010) used a similar method to New and Hulme
(2000) to produce probabilistic-based regional climate
scenarios for Ireland on the basis of the statistically
downscaled scenarios of Fealy and Sweeney (2007,
2008). This is the first time that pattern scaling has been
applied to statistically downscaled scenarios, and the
assumptions of independence of response pattern and
regional response proportional to the global mean
temperature were tested on the basis of the empirically
downscaled A2 and B2 emissions scenario, which
seemed valid. The subsequent work in this article is
based on the probabilistic climate change scenario
produced by Fealy (2010), which was developed to
account for some of the key uncertainties associated
with projected warming. The scenarios are defined as
the estimates of future seasonal mean climate change
for the period from 2070 to 2099. A brief description

Copyright © 2011 John Wiley & Sons, Ltd.
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of the methodology adopted by Fealy (2010) is outlined
as follows:

1. Estimate the range of seasonal mean precipitation
change (%) for a future time period from two SRES
scenarios (A2 and B2) using the statistically down-
scaled data. A modified pattern scaling approach was
then used to scale the statistically downscaled A2 and
B2 scenarios for each of the three GCMs to calculate
changes for the A1FI and B1 emissions scenarios on
the basis of the global temperature change for each
GCM and emissions scenario.

2. The local or station climate response (change in
temperature, AT, and precipitation, AP) per degree of
global warming was then calculated for each GCM and
emission scenario (A1FI, A2, B2 and B1) [i.e. ATsution
(2070-2099)/ATGiopar (2070-2099)]. These ‘standar-
dised’ rates of change provided an upper and a lower
value for each location, which were assumed to
characterise a wide range of warming rates per degree
Celsius. This step also allows for the removal of the
effects of different GCM climate sensitivities.

3. The upper and the lower ranges estimated in step 2 were
ascribed a uniform (equal-probability) distribution on
the basis that it is not possible to determine ‘more’ or
‘less’ likely values for the local rate of warming.

4. The 5%-95% probability range (1.5°C-2.8°C) of
global AT, estimated from the transient climate
response and assuming a normal distribution (IPCC,
2007), was used to provide information on global AT.

5. A Monte Carlo analysis was then used to randomly
sample from (i) the range in global AT (step 4) and (ii)
the local climate response in precipitation (AP) (steps 2
and 3) from their respective probability distribution.

The climate scenarios generated from previous proced-
ure (Fealy, 2010) forms the basis for the construction of
daily climate scenarios and subsequent evaluation of their
role in climate change impact studies.

Development of CFs from direct GCM output (CF
method). In addition to the SDprob approach, probabil-
istic climate change scenarios based on CFs derived from
17 GCMs (Table I), corresponding to the A2 SRES
scenario, were also constructed. By calculating the CF
from these outputs, probabilistic estimates of the monthly
CFs are made. Contrary to the method based on Fealy
(2010), CF method approach only calculates a CF for a
single grid representing Ireland.

Generation of climate time series

There is now a large published literature on the strengths
and weaknesses of different downscaling methods. Few,
however, have evaluated the differences among various
downscaling methods on the basis of their implications for
hydrological predictions (e.g. Wilby et al., 2000). Because
of the tradeoffs in the computational cost (the cost involved
in using the regional climate change scenario obtained from
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RCM and statistical downscaling method for hydrological
application) and the need to include a wide range of GCMs
for fuller characterisation of uncertainties, this study opted
to use a stochastic approach for the generation of climate
scenarios for hydrological application. In the following
sections, further detail is given to the application of each
step in this process.

Weather generator. The weather generator model
WGEN (Richardson and Wright, 1984) used in this study
is a stochastic model that has been applied across wide
geographic regions such as USA (e.g. Richardson and
Wright, 1984), Europe and Asia (e.g. Semenov et al.,
1998). WGEN uses a first-order Markov chain to
determine whether a day is wet or dry by analysing
historic precipitation records for each location and by
using simple probability to define the wet or dry status of
a given day. WGEN uses a two-parameter gamma
distribution to synthesise the distribution of rainfall
amounts. The two parameters, that is, shape (o) and scale
(p), for each location is determined from the observed
records. Distributions with a low value of « are positively
skewed and become more symmetrical with an increase in
the value of o. The scale parameter characterises the scale
of intensity of the precipitation. A shape-dominated
distribution (high-value shape factor) describes a pattern
where rainfall tends to be symmetrically distributed and
rainfall is consistent, and a scale-dominated distribution
(high-value scale factor) describes locations where the
variances are relatively higher than the mean.

The first-order two-state Markov model used in WGEN
may fail to adequately model the time series of precipitation
that display extended wet or dry spells because of low
memory. Models such as WeaGETS (e.g. Caron et al.,
2008), which use a higher-order Markov model, can provide
a longer ‘memory’ to model data that has extended dry and
wet spells. LARS-WG (Semenov and Barrow, 1997) can
address this issue using a semi-empirical distribution of
precipitation series. However, both WeaGETS and LARS-
WG are not as parsimonious as WGEN. In addition, the
added complexity may offset the benefit brought by LARS-
WG and models with high memory, especially while
making adjustment under future climate change scenarios.

Stochastically generated climate scenarios. When using
the calibrated parameters of WGEN for generating scenarios,
it is necessary to adapt them to generate time series that are
consistent with assumed future climates. Wilks (1992)
provided a method to adjust the calibrated parameters of
WGEN to a changing climate. In this method, the monthly
change in mean and variance of the selected variables
between the simulated control and future is used.

W/p=mof [nof (1)

o = 7o B+ (1= 7)1 +d) /(1 —d)]
nofil +o (1 —n)1+d)/(1—d))

(@)
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where the primed quantities correspond to future and are
unknown, @ (pg; / (1 + por — pi11) represents the
unconditional probability of wet days and d (pg; — p11), a
parameter that reflects the strength of the persistence (Katz,
1985). po1 and p;, represent the probability of wet day
following dry day and wet day following wet day. Moreover,
1 and ¢ are the seasonal mean and variance of precipitation.

WGEN has four parameters that need to be adjusted to
a changing climate, that is, four constraints are required.
The probability distribution of seasonal mean values, AP,
is the only information available at present. Therefore,
further three assumptions or constrains are required.
Results from Waggoner (1989) that relate variability
changes in climate change with the mean change were
also used to constrain model parameters. Concerning the
additional two constraints, one of the simplest approaches
is to assume no changes in the nature of precipitation
occurrence (i.e. d'/d = n’ / © = 1). Alternatively,
additional constraints can be imposed based on the output
from GCM or regional climate data. The latter approach is
used in this study. Equation (3) shows the four constraints
used,

6% )a* = (i /)" 7 o = (W J); di/dy
= b;(u'/n);i = 1,12(month) 3)

where the primed quantities correspond to the future and
are unknown and coefficients a and b are the slope
coefficients representing seasons.

For both methods, we then generated 100 realisations
of future 30-year (2070-2099) daily precipitation data on
the basis of 100 different samples collected from the
probability distribution of seasonal mean precipitation
change. Subsequently, the parameters for each realisation
were adapted for the future using Equations 1-3.
Although a larger number of samples is desired, only a
small number (i.e. 100) of climate scenarios were sampled
because of the computational costs involved in propagat-
ing the climate scenarios through several parametrically
and structurally different hydrological models (discussed
later). Therefore, to increase precision, disproportionate
stratified sampling was adopted by dividing the popula-
tion of sampling units into five population strata (i.e.
minimum, Q1, median, Q3 and maximum) and subse-
quently sampling a fraction of the total sample randomly
from each strata in proportion to the area enclosed by the
probability function within each stratum.

The probabilistic scenario of the mean seasonal
precipitation change is used to generate daily climate
scenarios for each of the four catchments considered.
Table II shows the minimum, maximum, median, 1st
quartile (Q1) and 3rd quartile (Q3) that characterise the
probability distribution of seasonal mean precipitation
change (%) for the selected stations for both the SDprob
and CF methods. Although an increase in precipitation for
2080s is observed for all the four quartiles and for all
catchments, changes are largest in the Boyne and
Backwater catchments. Mean precipitation change for
the Irish grid using the CF method indicates that the
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Table II. Seasonal mean precipitation change (%) for the period 2070-2099 for synoptic stations located at Cork airport, Mullingar,
Belmullet, Claremorris and for the Grid representing republic of Ireland

Seasonal mean precipitation change (%)

Scenario no. Basin Season Minimum Q1 Median Q3 Maximum

1 Blackwater (Stn: Cork A.) DIJF —0.706 1.863 4.189 6.587 15.008
MAM —14.563 —5.756 —2.364 1.041 7.049
JJA —27.245 —13.554 —10.118 —6.925 —1.295
SON —22.209 —10.994 —8.108 —5.472 —1.084

2 Boyne (Stn: Mullingar) DIJF 2278 10.366 12.407 14.72 26.898
MAM —30.278 —12.897 —6.765 —0.668 8.338
JJA —29.423 —15.393 —12.555 —10.061 -2.301
SON 0.341 2.736 4.4 6.149 13.161

3 Moy (Stn: Belmullet) DIJF —3.012 —0.25 1.432 3.135 8.109
MAM —22.45 -9.303 —4.5 0.286 7.936
JJA —15.869 —8.204 —6.57 —5.125 —1.184
SON —9.759 —4.463 —2.923 —1.456 0

4 Suck (Stn: Claremorris) DIJF 2.278 10.366 12.407 14.72 26.898
MAM —30.278 —12.897 —6.765 —0.668 8.338
JJA —29.423 —15.393 —12.555 —10.061 —2.301
SON 0.341 2.736 4.4 6.149 13.161

5 17 GCM (A2) DJF —2.134 11.488 16.133 21.158 29.381
MAM —16.035 —7.088 0.327 14.442 25.550
JA —44.989 —35.605 —19.697 —7.834 10.252
SON —15.734 —5.407 —0.181 5.904 15.645

Also shown are values for minimum, maximum, median and quartiles (Q1, 1st quartile; Q3, 3rd quartile; following Fealy, 2010).

amplitude of change is larger in comparison with the
SDprob approach of Fealy (2010).

In applying WGEN, samples of changes in precipita-
tion (%) are randomly drawn from its probability
distribution for each season and for both the SDprob
and the CF approach, as characterised by values listed in
Table 1. The parameters of WGEN are then adjusted in
proportion to the precipitation change (%) using the
functional relationship derived between the parameters of
the weather generator and the mean precipitation.
Consequently, 100 climate scenarios are generated for
the 2070-2099 period for each of the catchments.
Because daily precipitation at local scales is the primary
input for rainfall-runoff models and plays an important
role in the assessment of impacts of climate change on
hydrologic response, this study only presents results for
the generation of precipitation time series. The results
section also compares the synthetic WGEN rainfall data
with the deterministic regional climate scenarios available
for Ireland from Fealy and Sweeney (2007, 2008).

Hydrological modelling

In hydrological modelling, uncertainty stems from a
variety of sources including; data uncertainty, parameter
uncertainty, model structural uncertainty and state
uncertainty. Despite their acknowledged limitations,
conceptual rainfall runoff models continue to be widely
used for assessing the impacts of climate change on water
resources and for projecting potential ranges of future
impacts. The uncertainties associated with hydrological
models have traditionally been given less attention in
impact assessments until relatively recently. Therefore, in
this study the uncertainty in the selection of hydrological

Copyright © 2011 John Wiley & Sons, Ltd.

models along with parameter uncertainty is accounted for
by using several plausible conceptual model structures
and their behavioural model parameters.

From among the large number of models that can be
used for the purpose of modelling flow in catchments, we
selected four conceptual rainfall runoff models: HyMOD
(see Wagener et al., 2001), NAM (see Madsen, 2000),
TANK (Sugawara, 1995) and TOPMODEL (Beven et al.,
1995). Each of these models varies in the way they
conceptualise the key hydrological processes and in
complexity, primarily related to the number of parameters
requiring calibration. Among the four selected models,
NAM and TANK describe the behaviour of each
component of the hydrological cycle at the catchment
level by using a group of conceptual elements.
TOPMODEL and HYMOD are both variable-contributing
area models. In TOPMODEL, the spatial variability is taken
into account through indices derived from topography
whereas in HYMOD, the model spatial variability within
basin is modelled using a probability distribution
function. All four models use a single linear reservoir to
model groundwater, and all models have been applied in
numerous applications and their potential for application
to simulate flow under changed climate has been
discussed previously (e.g. Tanakamaru and Kadoya,
1993; Dietterick et al., 1999; Andersen et al., 2006;
Najafi et al., 2010). The models used are independently
developed by different researchers and organisations. The
common assumption implicit in the application of
conceptual models for climate change impact assessment
is that the conceptual basis of the model enables the
hydrological processes to realistically respond to changes
in climatic input.

Hydrol. Process. 26, 2307-2321 (2012)
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The behavioural set of model parameters for each of the
models and catchments used in this study were taken from
Bastola et al. (2011). The authors used the period from
1971 to 1990 for model calibration and from 1991 to
2000 for model validation. A common assumption
implicit in most of climate change impact studies is that
hydrological models calibrated over the historical period
are valid for use in the future under a changed climatic
regime. However, only a small number of studies have
tested the validity of this assumption. Arnell (1993)
recommends that if model parameters are calibrated
against a long time series of historical data containing
both wet and dry periods, then these parameters can be
assumed to be valid under future climates, with a greater
degree of confidence. Similarly, Vaze et al. (2011)
assessed the validity of rainfall-runoff models for use in
climate change studies using the modelling result from
four models on 61 catchments located within Australia.
The authors infer that when the model is calibrated using
more than 20 years of data, it can generally be used for
climate impact studies where the future mean annual
rainfall is not more than 15% drier or 20% wetter than the
mean annual rainfall in the model calibration period. For
the Irish basins, selected for this study, the annual change
in precipitation is mostly within +10% change. As the
calibration period as selected by Bastola et al. (2011) is
sufficiently long to cover both wet and dry periods, that
is, the 1970s is a relatively dry decade whereas the 1980s
are relatively wet, and the change in annual precipitation
change compared with data that are used during model
calibration is within 10%. It is assumed that the calibrated
parameters are valid for future simulation.

The probabilistic climate scenarios, outlined previous-
ly, are then propagated through the hydrological models.
The method differs from the conventional multi-model
ensemble approach mainly in two aspects. First, the
conventional approach does not associate the likelihoods
with different scenarios as it assumes all scenarios to be
equally plausible. Second, the conventional approach is
limited by the lack of availability of regional data
corresponding to more extreme scenarios because no
climate modelling centre has performed GCM simula-
tions for more than a few emission scenarios. The use of
probabilistic seasonal mean climate scenarios along with
WGEN can help address this limitation. In this approach,
the resulting distribution of precipitation change attempts
to account for the uncertainties in the emissions scenarios
and climate sensitivity, as it was estimated taking into
account four marker SRES emission scenarios, GCM
sensitivity and regional response.

In this study, land use changes are not considered
separately, as the conceptual hydrological models used in
this study do not directly use the information relevant to
land use change. Therefore, the role of land cover is not
explicitly included. Land cover plays a key role in
controlling the hydrologic response of watersheds by
changing evapotranspiration rates, soil moisture content
and infiltration capacity, recharge and runoff. Further-
more, land use change and climate change form a

Copyright © 2011 John Wiley & Sons, Ltd.
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complex and interactive system that interacts differently
at different spatial and temporal scales. It has direct
implication on the way catchment response to input and
consequently on the simulation of future responses.

Generalised  Likelihood Uncertainty  Estimation
methodology. The Generalised Likelihood Uncertainty
Estimation (GLUE) developed by Beven and Binley
(1992) is used to quantify the modelling uncertainties.
The GLUE method is based on the premise that for a
physically based hydrological model, no single optimum
parameter set exists; rather, a range of different sets of
model parameter values may represent the process equally
well. Beven (2006) thoroughly reviews the equifinality
problem for hydrology and related disciplines. Different
model structures as well as different parameter sets in a
particular model structure can be easily combined within
this framework. In GLUE, a desired number of
behavioural predictions from the four selected hydro-
logical models are ranked and likelihood weighted to
characterise the parameter as well as structural uncer-
tainty. Details of the GLUE methodology can be found in
(Beven and Binley, 1992), whereas the application of
GLUE to the above models can be found in Bastola et al.
(2011).

Model outputs for each of the behavioural simulators
were weighted on the basis of the likelihood value derived
during model calibration. To derive weights for climate
scenarios, the individual scenarios are selected from
among the plausible scenarios with a probability
proportional to the area enclosed by the probability
function within each stratum. This is done by multiplying
the likelihood functions of the behavioural simulators and
then rescaling it, similar to a probability measure, to make
the cumulative sum equal to 1.

RESULTS

Deriving climate scenarios using WGEN

The parameters of WGEN were estimated using meteoro-
logical data from the 14 synoptic stations spanning a
30-year period. Figure 3 shows the spatial distribution of
WGEN parameters (generated using the Spline function
of ArcMap). Rainfall from stations in wet areas, such as
western Ireland, is characterised as having higher values
of alpha (shape parameter) as compared with the eastern
region of Ireland. The southern part of Ireland shows the
scale-dominated pattern in precipitation, that is, variable
and more extreme rainfall. Similarly, the unconditional
probability of wet days and the strength of persistence are
higher in the wetter western region in comparison to the
drier eastern region.

Figure 4, which compares the distribution of the
observed and the WGEN generated precipitation
(1961-1990) at the selected synoptic stations, shows
that the distribution of observed and generated data for
each of the 14 synoptic stations are linearly related. We
compared 15 indices from the Statistical and Regional

Hydrol. Process. 26, 2307-2321 (2012)
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Figure 3. Spatial variation of the unconditional probability of wet days (m), dependence parameter showing the persistence (d) and parameter of rainfall
amount model (i.e. « and f ). The parameters are estimated using the 30-year daily observed data for 14 synoptic stations

dynamical Downscaling of Extremes for European
Region (STARDEX) project, namely, mean climatologic-
al precipitation (mm/day) (pav); 20th, 50th and 90th
percentile of rain day amounts (mm/day) (pq20, pq50 and
pq90); number of days with precipitation greater than 10
mm (pnl0); maximum consecutive dry days (pxcdd);
mean wet day/dry day persistence (ppww/ppdd); mean,
median and standard deviation of dry spell length in days
(pdsav, pdsmed and pdssdv); and the greatest 3, 5 10 day
total rainfall (px3d/px5d/px10d) and simple daily inten-
sity (pint) to evaluate the generated time series. Figure 5

+ Valentia Obss EEOS] W Shannon A.(518)

reveals that average pav, pint, ppww, pwsav, px3d and
px10d for both observed and generated series are in close
agreement for 14 synoptic stations. Some of the
characteristics are not well reproduced by the model;
specifically, the model showed the tendency to under-
estimate the mean dry day persistence, mean dry spell
lengths and maximum number of consecutive dry days.
As expected, the first-order Markov model used in WGEN
seems poor in capturing these long timescale character-
istics. Conditioning variables incorporating longer time
memory of rainfall series as suggested by Harrold et al.
(2003) would likely improve this; however, the additional
complexity of such models was not considered to be of

Dublin A.(5 MalinHead ( 45]}

X Flochesgolnl (1004) ® Belmullet (1034 benefit to the present Study.
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A 13504 Birr (4919) WGEN and GCM output were sought to adapt the

£ 100 parameters of WGEN for future climatic conditions. The
E 80 changes in parameters m and d are estimated from
3 the relationship derived from the CF of n and d using
£ 60 the statistically downscaled regional scenarios obtained
_E 4 from HADCM3, CCCMA and CSIRO under the A2
o 40 . . . - .
= scenarios (see Figure 6). Figure 6 shows the relationship
E 20 between the change in mean precipitation and the mean
8 o change in 7. As the relationship shows a strong linear trend

0 20 40 60 80 100 for HADCM3, the functional form derived from HADCM3

Observed rainfall (mm)

Figure 4. Scatter plot showing the comparison of observed against
generated precipitation (sorted values) for 14 synoptic stations

Copyright © 2011 John Wiley & Sons, Ltd.

for each of the four seasons are selected to constrain
future changes in the probability of wet days (Figure 7).
The value of this coefficient for the four seasons

Hydrol. Process. 26, 2307-2321 (2012)
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Figure 5. Comparison of the synthetically generated and observed daily rainfall using indices from STARDEX, namely, mean climatological

precipitation (mm/day) (pav); 20th, 50th and 90th percentile of rain day amounts (mm/day) (pq20, pq50 and pq90); number of days with precipitation

greater than 10 mm (pnl10); maximum consecutive dry days (pxcdd); mean wet day/dry day persistence (ppww/ppdd); mean, median and standard

deviation of dry spell length in days (pdsav, pdsmed and pdssdv); and the greatest 3, 5 10 day total rainfall (px3d/px5d/px10d) and simple daily intensity
(pint) to evaluate the generated time series. Shown are the indices averaged over the time period

December—February (DJF), March-May (MAM), June-
August (JJA) and September—November (SON) was
estimated as 1.0032, 0.9961, 1.0056 and 0.99, respect-
ively. The sampling of the three regression equations
was not carried out because of the associated computa-
tional demand. No apparent relationship was observed
between the parameter d and the mean change in
precipitation extracted from the six regional climate
change scenarios for Ireland (data not shown). There-
fore, it was assumed that d will remain constant in
the future.

Figure 8 shows the comparison of metrics defining the
characteristics of the synthetic future rainfall data
generated with the modified parameters of WGEN with
the statistically downscaled regional climate scenarios,
derived from HADCM3, CCCMA and CSIRO and
forced with A2 SRES scenarios. Figure 8 shows that
average pav, pq20 and pg50 are in close agreement
for all stations and GCMs. As identified previously with
the observations, some of the characteristics are not
well reproduced; specifically, the model showed the

Copyright © 2011 John Wiley & Sons, Ltd.

tendency to underestimate the mean dry day persistence,
the mean dry spell lengths and the maximum number of
consecutive dry days.

Hydrological impact of climate change scenarios

Climate change scenarios derived from both the
SDprob and the CF method are then used to force each
of the four hydrological models to evaluate the impacts of
potential climate change on water resources (Figure 2).
The behavioural set of model parameters for each of the
models and catchments used in this study were taken from
Bastola er al. (2011). WGEN is capable of generating
large sets of statistically consistent time series. Therefore,
the catchment scale hydrological responses derived from
these climate scenarios will show varying responses
depending on the climate elasticity of a catchment, that is,
a catchment with high variability in discharge and a low
runoff coefficient is likely to be more sensitive to changes
in precipitation than a catchment with low variability in
discharge and higher runoff coefficient (e.g. Nemec and
Schaake, 1982).

Hydrol. Process. 26, 2307-2321 (2012)
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the A2 emission scenario. The primed and unprimed quantities correspond
to the future and present period, respectively

Therefore, before using the scenarios to simulate future
hydrological response under changed climatic conditions,
it is essential to understand the uncertainties in hydro-
logical response associated using generated climate data.
For this purpose, the regional scenarios obtained from
WGEN for the control period (1971-1990) were
propagated through the hydrological models (also called
Climvar). For the control period, the magnitude of
uncertainty in prediction for each of the six scenarios is
in the same order of magnitude derived during model
calibration (Figure 9). Although the orders of magnitude
are the same for all of the six statistically downscaled
regional scenarios, the flows simulated from each of the
GCMs under the A2 and B2 scenarios are different.
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Consequently, uncertainties in prediction tend to increase
when the six statistically downscaled scenarios are used
(called SD). This increase in the uncertainty of the
hydrological response, which varied among basins, can be
attributed to the variability within the scenarios and
differences in the climate elasticity among basins. Figure 9
shows that the magnitude of uncertainty for the control
period is much greater when the WGEN scenarios (i.e.
Climvar) are propagated through the hydrological models.
This high value with respect to SD can be attributed to
climate variability that is taken into account using 100
different scenarios and to the parameterisation and the
structure of the WGEN model. As a result, the
hydrological response simulated for the future period is
also likely to show a larger range when these probabil-
istic-based scenarios are used.

Block resampling with replacement was also used to
quantify the impact of natural climate variability. The
method uses the resampling procedure that randomly
selects 3-month blocks (consecutive months representing
each season) from the original series to create a new series
the same length as the original. The uncertainty in the
streamflow associated with natural variability in stream-
flow is also shown in Figure 9 (called NATVAR). In
comparison with the uncertainty associated with calibra-
tion, there is an increase in the uncertainty with the
addition of climate scenarios from WGEN because these
incorporate some element of natural variability. As can be
seen in Figure 9, in comparison to other sources, natural
variability is significantly high.

For the future period, the prediction uncertainty
associated with both the SDprob and the CF method
scenarios is very similar for all basins. However, it varies
among basins. The runoff coefficient for the Boyne and
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Figure 7. Scatter plot showing the CF in seasonal mean precipitation () and unconditional probability of wet days (n) derived from the control period
(1961-1990) and future data using HadCM3 under A2 scenarios. The primed and unprimed quantity corresponds to the future and present period,
respectively
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Figure 8. Comparison of the synthetically generated and

statistically downscaled data derived from HADCM3, CCCMA and CISRO model for the

2080s. Shown are the indices originated from STARDEX, namely, mean climatological precipitation (mm/day) (pav), 20th, 50th and 90th percentile of

rain day amounts (mm/day) (pq20, pq50 and pq90); number of days with precipitation greater than 10 mm (pnl0); maximum consecutive dry days

(pxcdd); mean wet day/dry day persistence (ppww/ppdd); mean, median and standard deviation of dry spell length in days (pdsav, pdsmed and pdssdv);
and the greatest 3, 5 10 day total rainfall (px3d/px5d/px10d) and simple daily intensity (pint) to evaluate the generated time series

Suck is markedly lower than that in the Blackwater and
Moy, and the nonlinear behaviours that are common in
basins that have low runoff coefficients can be attributed
to the larger prediction interval.

Future hydrological response

Figure 10 shows the median, upper 95% and lower 5%
seasonal flow on the basis of the time series calculated by both
SDprob and CF method. Both the SDprob and the CF-based
simulations use the same hydrological models and their
behavioural set of model parameters estimated from the
calibration data. The ranges of simulated flow derived with
SDprob are in general smaller than the ranges estimated with
the CF method in winter and larger in summer. This
corresponds well to the differences observed in the probabil-
istic scenarios obtained from two methods (see Table I).

Figure 11 shows the PDFs for seasonal mean stream flow
estimated for 2070-2099 using SDprob, CF method, SD
and Climvar, derived from multiple realisation of scenarios
from WGEN. The density is calculated on the basis of the

Copyright © 2011 John Wiley & Sons, Ltd.

proportion of daily future stream flow lying within the
specified interval. In general, the shape of the PDFs for both
SDprob and CF method is quite similar. In winter, PDFs are
shifted to the right, indicating an increase winter flows.
There is divergence between both approaches in spring for
all catchments, with the WGEN scenarios displaying a
decrease in spring flow and the CF method PDF displaying
an increase. Summer and autumn mean flows also show a
shift to the left. The large shift in the PDF in particular is
likely due to the strong seasonal signal found using the CF
simulated with 17 GCMs compared with the probabilistic
approach discussed in this article.

CONCLUSIONS

The importance of probabilistic estimates of climate change
impacts in policy formulation has been increasingly
advocated by many researchers and policy makers. This
study developed a probabilistic approach to simulate the
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(Climvar) for control period. The magnitude of uncertainty obtained during model calibration (Calibration) is also shown for comparison. The

uncertainty in model prediction using climate scenarios generated and adapted on the basis of probabilistic scenarios based on distribution of global mean
temperature and regional scenarios (SDprob) and probabilistic scenarios constricted from 17 GCMs (CF) is also shown

hydrologic impact of climate change for selected Irish
catchments by linking probabilistic climate scenarios with
hydrological models. The probabilistic climate change
scenarios (SDprob), representing four SRES scenarios, the
range of climate sensitivity the and regional responses, were
used along with a stochastic weather generator to construct
the input for hydrological models. The approach was
evaluated against probabilistic scenarios generated from 17
GCMs, used in model intercomparison projects, using a CF
method for the Irish grid. The derived PDFs for seasonal
mean flows using both approaches are somewhat similar.
However, the ranges in simulated flow derived with the CF
method are marginally larger than the same estimated with
the SDprob because of the strong seasonal cycle in the CF
estimated from the 17 GCMs. In both the SDprob and the
CF approaches, the simulations for the 2080s in general
showed a strong probability of decreases in summer flows in
all catchments because the climate change projected mean
winter flow for the 2080s is likely to increase.
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The results obtained are conditional on the assumptions
made and the models used in constructing the probabilistic
scenarios. The study is based on the assumption that the
hydrological model parameters are time invariant, which
may not hold true for future climate. Although this has been
addressed using a long and climatically variable period for
calibration and validation, the development of proper
guiding rules for adapting hydrological model parameters
for simulating future climate is required and needs further
investigation. Moreover, daily climate change scenarios
were generated by scaling the calibrated parameters of the
weather generator in direct proportion to the changes
sampled. Although a stochastic weather generator enables
the efficient production of a large ensemble of scenarios for
risk analysis, the method used to adapt these model
parameters for future climate conditions is not well
developed and requires strong assumption on the future
sequence of wet and dry days to be made. Because of
limited information on the structure of the future rainfall
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Figure 10. The 90% CI of the seasonal prediction (2070-2099) simulated using the behavioural parameters of four hydrological models forced with daily
probabilistic scenarios derived using SDprob and 17 GCMs (CF)
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Figure 11. Probability distribution of mean seasonal stream flow in (a) Blackwater, (b) Boyne, (c) Moy and (d) Suck basin estimated using the
behavioural parameters of four hydrological models forced with daily probabilistic scenarios derived using SDprob and 17 GCMs (CF)

patterns, a parsimonious model for rainfall was used.
Because of scientific and modelling uncertainties, the
availability of different statistical estimation approaches
and the imprecise nature of information available for future
climate, a unique probability distribution for streamflow is
impossible. However, this study represents a first attempt at
evaluating probabilistic hydrological impacts of climate
change for Irish river catchments. Moreover, in contrast to
the large number of studies that have generally disregarded
the uncertainties in the representation of hydrological
process used in hydrological models, this study focussed on
future hydrologic impact by accounting for uncertainties in
hydrological models along with uncertainties in regional
climate change scenarios.
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