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Abstract

Digital holography is a two step process of recording a hologram on an electronic

sensor and reconstructing it numerically. This thesis makes a number of contri-

butions to the second step of this process. These can be split into two distinct

parts: A) speckle reduction in reconstructions of digital holograms (DHs), and

B) modeling and overcoming partial occlusion effects in reconstructions of DHs,

and using occlusions to reduce the effects of the twin image in reconstructions of

DHs. Part A represents the major part of this thesis. Speckle reduction forms an

important step in many digital holographic applications and we have developed

a number of techniques that can be used to reduce its corruptive effect in recon-

structions of DHs. These techniques range from 3D filtering of DH reconstructions

to a technique that filters in the Fourier domain of the reconstructed DH. We have

also investigated the most commonly used industrial speckle reduction technique

- wavelet filters. In Part B, we investigate the nature of opaque and non-opaque

partial occlusions. We motivate this work by trying to find a subset of pixels

that overcome the effects of a partial occlusion, thus revealing otherwise hidden

features on an object captured using digital holography. Finally, we have used an

occlusion at the twin image plane to completely remove the corrupting effect of

the out-of-focus twin image on reconstructions of DHs.
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Chapter 1

Introduction

Digital holography [BL66, GL67, YM80a, BHG+74, SJ94, YZ97] has been re-

searched since its inception in 1966 [BL66], but it is only recently that its true

potential is beginning to be realised. This is due to the advent of low-cost, high

resolution, and high dynamic range electronic sensors. Like holography, it involves

a two step process of recording and reconstructing wavefronts, albeit in a very

different way. For the recording step, digital holography uses an electronic sensor

instead of photographic material, and for the reconstruction step it uses a com-

puter to simulate optical reconstruction instead of physically reconstructing the

wavefront. This thesis makes a number of contributions to the second step of this

process, digital hologram reconstruction.

The contributions of the thesis are split into two distinct parts: A) speckle re-

duction in reconstructions of digital holograms (DHs), and B) modeling and over-

coming partial occlusion effects in reconstructions of DHs, and using occlusions to

reduce the effects of the twin image in reconstructions of DHs. Part A, comprising

chapters 3, 4, 5 is concerned with speckle reduction in DH reconstructions and

represents the major part of this thesis. Speckle is an artifact of all coherent imag-

ing systems, including ultrasound and synthetic aperture radar (SAR) imaging.
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Introduction

Since digital holography is essentially a coherent imaging process, the reconstruc-

tions display speckle. Denis Gabor, the father of holography [Gab48], stated in an

early paper on speckle reduction [Gab70] that speckle noise was the number one

enemy of holography. We note that there are applications that make use of speckle,

such as speckle photography and speckle interferometry [Goo06]. However, for the

purpose of this thesis, speckle is considered a noise and we investigate a number

of ways to reduce it. We are motivated by the fact that some digital holographic

applications require some level of speckle reduction in order to perform well. To

this end, we have developed a number of techniques that can be used to reduce

the corruptive effect of speckle in reconstructions of DHs.

All of our techniques require only a single DH to reduce the speckle effect.

This means that they can reduce the speckle content in reconstructions of DHs of

captured dynamic scenes. The first technique follows Dainty and Welford [DW71],

who optically reduced speckle in image plane hologram reconstructions by employ-

ing a rotating aperture in the Fourier plane of the hologram. Based on this idea we

have reduced speckle by filtering the discrete Fourier transform (DFT) of recon-

structed DHs. We have named this digital signal process the discrete Fourier filter

(DFF) [MHM+07] and we have used it successfully on DH reconstructions from

a number of different digital holographic architectures. In the following chapter

we offer a comprehensive analysis of applying wavelets to the problem of speckle

reduction in reconstructions of DHs [MMM+08]. Finally, we have developed is a

3D filtering technique that successfully reduces speckle using a convolution based

framework and Gaussian filtering on DH 3D intensity fields [MHM13].

In Part B, we have investigated the nature of different types of opaque occlu-

sions and the effect of reconstructing only certain parts of the DH. Part B comprises

of Chapters 6 and 7. Our analysis is based on the Wigner chart [Wig32, Bas97].

The motivation of this research is to reconstruct a subset of the DH in order
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Background Introduction

to reveal hidden features on a partially occluded object [EMM+05, MEH+06b,

MEH+06a]. By hidden features we mean features that are not visible at certain

reconstructive perspectives or that are not visible due to out-of-focus noise from

the occluding object. Finally, we have used an occlusion at the twin image plane

to completely remove the corrupting effect of the out-of-focus twin image on recon-

structions of DHs. This work is motivated by the need to increase the quality of

single capture DHs such that they can be used in the retrieval of three-dimensional

(3D) data from dynamic scenes.

1.1 Background

In this section, we review the literature relevant to this thesis. We begin with

the invention of holography in 1948, and then discuss a modification to Gabor’s

original setup, namely the off-axis hologram, which was the catalyst for holography

to become the popular field it is today. Digital holography is covered in some

detail, from the early work of Brown and Lohmann [BL66] through to and beyond

the seminal paper of Schnars and Jüptner [SJ94], which described the principle

of recording holograms directly on a CCD target and numerically reconstructing

them. This ushered in the era of digital holography as we know it today. This is

followed by a brief preview of the thesis.

1.1.1 Holography and digital holography

Denis Gabor published a paper in 1948 [Gab48], in which he proposed a novel

two step imaging process known as holography. In this work, which earned him

the Nobel prize for physics in 1971, Gabor realised that when a coherent reference

wave is present, together with the light diffracted from a rough object (or diffuse

light transmitted through a transparent object) then information about the full
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Background Introduction

complex wavefield of the object can be recorded. This is in spite of the fact that

the recording material only responds to the intensity of the light [Goo05]. Gabor

used an in-line (or on-axis) setup and thus his holograms were corrupted by the

DC terms and the twin image [see Section 2.1]. In those days it was also not

possible to produce good quality coherent light, which is essential to create high

quality holograms, and therefore holography only first received mild interest in the

area of electron microscopy.

However, with the advent of the laser, which is capable of producing pow-

erful coherent light, holography began to see an increase in interest. Leith and

Upatnieks [LU62] introduced a modification of Gabor’s original recording setup

in 1962 that solved the twin image problem, and thus extended the applicabil-

ity of holography. While Gabor had been restricted to using an in-line setup,

Leith and Upatnieks were able to offset the reference wave at an angle thus pro-

ducing hologram reconstructions that were free of the DC terms and twin image.

The off-axis technique was demonstrated by Leith and Upatnieks in the early

1960’s [LU62, LU63, LU64]. Around the same time Denisyuk [Den62] succeeded

in producing white light reflective holograms. This enabled the viewing of a holo-

gram using an incandescent light bulb. It was the work of Leith and Upatnieks,

and that of Denisyuk, that accelerated the interest in holography in the 1960’s.

Holography has had many applications since its discovery. Many of them stem

from Stetson’s work in 1965 on holographic interferometry [PS65, SP65]. This tech-

nique allows for measuring the change of the phase of a wavefield and thus changes

to any physical quantity that effects this change. This area is sometimes called

holographic nondestructive testing, and some of its applications are: measurement

of vibration modes [PS65, SP65], deformation measurement [BHW65], contour

measurement [HH66] and the determination of refractive index changes [SV73].

Digital holography [BL66, GL67, YM80a, BHG+74, SJ94, PZT95b, PZT95a,
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YZ97, JT00] differs from holography in that an electronic sensor, rather than pho-

tographic material, is used to capture the hologram during the recording step.

In addition the reconstructions are performed numerically on a computer instead

of physically reconstructing the hologram. They have advantages over traditional

holograms in that no chemicals or physical development is necessary and the use of

an electronic sensor allows video rates of capture [SJ94]. Of course, there are some

exceptions to this description when the recording step is modified and a photo-

graphically captured hologram is scanned into a computer [MLJ04], or when the re-

construction step is performed physically using a spatial light modulator [KSO06].

Many of the contributions outlined in this thesis may be applied to alternative

types of DHs. Digital holography has received increased attention over the last

decade due to the continuing advances in electronic sensors with high spatial res-

olution and high dynamic range.

The first significant steps towards digital holography began when Brown and

Lohmann [BL66] used a computer-guided plotter to draw a hologram in 1966.

Brown and Lohmann reconstructed their holograms optically and used them for

the purpose of pattern recognition. They found that their binary holograms yielded

reconstructions of similar quality to optical holograms of comparable dimensions.

The following year, Goodman and Lawrence [GL67] recorded a hologram on a

vidicon camera with the lens removed. They then used a digital PDP-6 computer

to reconstruct it.

In 1971 Huang [Hua71] published a paper on computer generated holography

and computerized reconstruction of holograms. He discussed Fourier and Fresnel

hologram reconstructions as well as digitization and quantization effects. This

work was followed by Kronrod et al. [KMY72] in 1972 and Demtrakopoulos and

Mittra [DM74] in 1974 who considered numerical reconstruction of holograms that

were recorded at acoustic or microwave frequencies. Also in 1974, Bruning et
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al. [BHG+74] used a 1024 photodiode array and a PDP-8 computer to measure the

phase in the interference pattern to an accuracy of λ
100

(where λ is the wavelength

of the light used). While trying to detect defects in the optical surfaces and lenses,

they were able to reduce error in the system by averaging the captured wavefronts

many times.

By 1980, the area of computer generated holography and numerical recon-

struction of holograms had matured. A complete description can be found in

Yaroslavskii and Merzlyakov’s [YM80b] book on digital holography. Kreis [Kre05]

points out that digital holography experienced a long period of stagnation in the

1980’s and that it was not until 1994 that interest in the field was revived. In that

year, Schnars and Jüptner [SJ94] successfully captured and numerically recon-

structed holograms using a CCD sensor. It was the first time that the numerical

reconstruction of Fresnel holograms recorded with a CCD camera was achieved.

They highlighted the fact that the method was limited to small objects at large

distances from the target because of the low spatial resolution of the CCD relative

to photosensitive materials. This limitation has become less of an issue with the

recent advances in CCD technology.

Soon after this paper was published, interest in digital holography increased

substantially. For the case of digital holograhy this was due to the fact that now

the phase could be easily reconstructed numerically. We note that the phase had

been calculated previously within the field of electronic speckle pattern interfer-

ometry [Løk84, PPT93, PT94]. However, after the initial paper by Schnars [Sch94]

in which he described the procedure for determining the phase in a DH, work in

the area of digital holographic metrology quickly followed [PZT95b, PZT95a]. In

these papers, Pedrini et al. investigated vibration analysis of surfaces using digital

double-pulsed holography [PZT95b] and compared two reflecting surfaces using

digital holographic interferometry [PZT95a]. Shortly after this, completely new
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applications including microscopy and pattern recognition were found for DHs.

In 1997, Yamaguchi and Zhang [YZ97] introduced a new technique of DH

recording, known as phase-shifted interferometry (PSI). In order to maximise the

detector capacity the angle between the object and the reference waves was reduced

to zero. This meant that, like Gabor’s first hologram, the resultant reconstruction

was affected by that of the twin image and DC terms. To overcome this, they

captured four separate interferograms and used them to compute the complex

wavefield of the scene. The mathematical extraction of the complex field, meant

that the dc-component and out-of-focus twin image were no longer present. This

technique has been used to capture many of the DHs used in this thesis. A de-

scription of it is given in Section 2.2. Unfortunately, PSI is limited to the capture

of static objects.

The following year, Zhang and Yamaguchi [ZY98] performed 3D microscopy

with their new PSI setup. Classical optical microscopy has the limitation that if

one wants to investigate samples that are thicker than the depth of focus of the

system, then one must perform mechanical scanning along the optical axis. Digital

holographic reconstruction is an efficient tool for investigating samples in depth

without the need for moving optical equipment. In 1999 Cuche et al. [CMD99]

investigated the numerical reconstruction in both amplitude and phase of off-axis

Fresnel microscopic DHs. By introducing a microscope objective they demon-

strated that digital holographic microscopy allows one to reconstruct the optical

topography of specimens with nanometric resolution. In fact the resolution is

equal to the diffraction limit of the imaging system as is true for classical optical

microscopy. Image focusing, phase reconstruction, and correction of the phase

aberrations were all performed digitally. An in-line digital holographic micro-

scope (DHM) system that uses a long distance microscope was proposed by Yu et

al. [XPMA01] in 2001. The in-line configuration of the system meant its resolution
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was greatly increased. The following year Pedrini and Tiziani [PT02] developed

a short-coherence DHM using a lensless system. The short-coherence of the laser

meant that a DH was only captured if the path lengths of the reference and the

object beam were exactly equal. A sequence of holograms were recorded and each

of these holograms were then reconstructed numerically. The advantages of the

system were a high spatial resolution and the ability to detect of the 3D shape.

Ferraro et al. [FGA+05] used the fact that post-capture various slices of 3D object

can be numerically reconstructed and focused at different depths using a DHM

system. These different slices can then be stitched together and an extended fo-

cus image (EFI) can be created in which the entire object under consideration is

in focus. Ferraro et al. [FGA+05] created EFIs of silicon microelectromechanical

system objects using a DHM. In 2005 Marquet et al. [MRM+05] produced DHM

images of living cells in a culture for the first time. Reconstructing the phase

allowed them to measure the captured cells with subwavelength accuracy. DHM

is an area of digital holography that shows great promise for the future, as the

inherent 3D nature of holograms allow biologists to study organisms in a more

complete manner than was previously possible.

In 2000, Javidi and Tajahuerce [JT00] performed 3D pattern recognition by

use of in-line digital holography. Using information about the 3D objects shape,

location, and orientation allowed them to perform 3D pattern recognition tech-

niques with high discrimination and to measure 3D orientation changes. In the

following year, Frauel et al. [FTCJ01] performed distortion-tolerant 3D pattern

recognition. The distortion tolerance is achieved by a nonlinear composite corre-

lation filter. Both of these techniques used PSI to capture the DHs. Recently 3D

pattern recognition [JK05] and distortion tolerance 3D pattern recognition [KJ04]

have been achieved using single exposure in-line digital holography. This tech-

nique has the benefit of being viable for dynamic scenes as only a single capture
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is required and the out-of-focus twin image is tolerated.

The potential of in-line holography to analyse flow in liquid or gas by means

of tracking particles has been known since as early as 1965 [Tho65]. Holography

enabled the determination of the size and distribution of moving particles in air

or liquids without significant disturbance of the sample volume. Conventional

optical reconstruction of the particle field involves reconstructing the hologram

with the same reference beam and then manually evaluating the resulting image

as a screen is moved through the image volume [LS87]. In more recent times, digital

holography has been used to analyse particles for flow field measurement [AKJ97,

OZ00, MY00]. The advantage of using DHs over optical holograms is twofold: the

tedious manual procedure of moving an imaging plane through the image volume is

eliminated and it is also possible to use numerical methods to suppress the effects

of the unwanted twin image [LS87]. In 2003, Pan and Meng [PM03] described a

technique that significantly improves particle axial-location accuracy by exploring

the reconstructed complex amplitude information. Soulez et al. [SDF+07] proposed

an inverse-problem approach in 2007, which yields the optimal particle set that

best models the observed hologram image. This was a departure from the usual

method of reconstructing using the Fresnel transform, which can present several

problems such as twin-image noise and border effects.

One of the advantages of using digital holography over traditional holography

is that the resultant hologram can be easily stored on a computer, and later trans-

mitted. Digital holograms encode multiple perspectives of a captured scene simul-

taneously, and effectively store this data in a distributed fashion. However, the re-

sultant data files can be quite large (approximately 64 MBs for a PSI hologram cap-

tured on a 2048×2048 CCD). This has meant that compression of digital holograms

has received some interest recently [NFJT02, MNF+02, NMJ03, NJ04]. In 2006,

Shortt et al. studied the compression of DHs using wavelets [SNJ06b] and nonuni-
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form quantization [SNJ06a]. In the same year Darakis and Soraghan [DS06a]

investigated the compression of PSI DHs using standard baseline JPEG. They

found that these standard compression methods worked well when applied to the

separate interferograms rather than the DH itself. Darakis and Soraghan have

also used Fresnelets [DS06b], which were introduced by Liebling et al. [LBU03],

to compress DHs. Issues involving security of data have been researched by en-

crypting digital holograms [TJ00], and the compression of encrypted DHs has also

recently been achieved [NJ04, SNJ06c].

In the following sections, we continue our literature review with an emphasis

on the two central topics of this thesis.

1.1.2 Speckle reduction in reconstructions of digital holo-

grams

The presence of speckle is due to the interference of coherent light scattered from

many points on a rough surface [Goo06]. If the illumination is incoherent this

interference has the same effect, however the integration of the many different

wavelengths produces a smooth speckle free image [Yam03]. Since digital hologra-

phy is essentially a coherent imaging system, the reconstructed images suffer from

the effect of speckle. It degrades the quality of the resulting images and makes

it difficult or impossible to resolve fine detail. All coherent imaging systems suf-

fer from speckle and when we consider the viewing of reconstruction of DHs this

speckle is an unwanted noise [Kre05]. We note however that there are a number

of fields in which speckle is used to determine the properties of the surface of an

object, whether that be strain, stress or vibration analysis. Goodman provides

a comprehensive treatment of these fields in his recent book [Goo06] on speckle

phenomena in optics, but they are beyond the scope of this thesis. See Section. 2.3

for a more thorough description of speckle and some of its statistical properties.
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The presence of speckle hinders the application of image processing techniques

to digital holographic data. The reduction of speckle is therefore an important

topic whenever reconstructions of DHs are to be used. Indeed a degree of speckle

reduction in reconstructions of DHs is important for certain digital holographic

applications. One such area which benefits from speckle reduction is the extraction

of 3D shape information from DHs. Existing focus measures [EMN+05, MLJ04,

LU04, GK89] are hampered by the speckled appearance of the reconstructions, and

results are improved when a pre-processing speckle reduction step is used. Another

area that benefits from speckle reduced DH reconstructions is that of pattern

recognition [JT00, FTCJ01, JK05, KJ04]. Speckle noise also impedes pattern

recognition algorithms and therefore a speckle reduction step is usually performed

first. The analysis of particles for flow field measurement using reconstructions of

DHs has also benefitted from speckle reduction [DRM+04]. However, some of these

digital holographic applications use standard noise reduction techniques that have

not been developed and optimised to address the underlying properties of speckle

in DHs. The techniques presented in this thesis have been developed specifically for

speckle reduction and hence are more suitable for digital holographic applications.

For example, one of the speckle reduction algorithms developed during the course of

this work, the DFF [MHM+07] [see Chapter 3], has been used as a pre-processing

step in the segmentation of 3D objects encoded in DHs [EMF+07], and for the

reduction of speckle in digital holographic displays [KMP+10]. In his recent book

on holographic interferometry, Kreis [Kre05] notes that there is a lot of scope for

more research to be carried out in the field of speckle reduction in DHs. This

thesis makes a number of contributions to this area. Speckle is present in all

coherent imaging systems and speckle reduction in ultra sound imaging [GCS05],

SAR imaging [USB03] and optical coherent tomography (OCT) imaging [AKF04]

is still being actively researched. The possibility of using some or all of our speckle
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reduction techniques in these and other areas could be investigated in the future

[see Chapter 8]. This is due to the fact that our techniques are designed to reduce

the effects of a fully developed speckle pattern such as is found in many other

imaging domains.

Some of the techniques in this thesis are numerical models of established op-

tical methods for reducing speckle. Therefore, we now present a chronological

review of some of the most important works in optical speckle reduction. Iwai and

Asakura [IA96] classified the principles of speckle reduction into five categories:

1) control of spatial coherence, 2) control of temporal coherence, 3) temporal av-

eraging based on spatial sampling, 4) spatial integration at the detector, and 5)

digital image processing. The speckle reduction techniques developed in this thesis

fall into the fifth category of digital image processing, or digital signal processing

(DSP) techniques. It is important to emphasise that speckle reduction has been

studied extensively within the fields of echography (i.e., ultrasound imaging) and

SAR imaging. However, here we restrict our review to important optical methods

as it is these that have inspired some of the techniques in this thesis.

In category 1, a reduction in spatial coherence is usually achieved through an

averaging process in which independent speckle patterns are added together on an

intensity basis. One way to produce a reduction of spatial coherence effect is to

use a rotating diffuser (i.e., ground glass) in the path of the capturing laser beam.

This randomly modulates the laser beam ensuring that the path length from a

point on the wavefront arriving at the diffuser to the detector changes over the

integration time of the detector. It means that the light arriving at the sensor is

only partially coherent in the spatial sense. In fact the differing path lengths also

introduce a time delay, which produces a reduction the temporal coherence of the

light. Therefore, light produced in such a setup can be described as a partially

coherent. In 1967, Martienssen and Spiller [MS67] showed that light produced
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from placing a moving diffuser in the path of a laser behaves like light produced

from a quasi-monochromatic light source. They were able to reconstruct holograms

showing reduced speckle. This work was extended in the early 1970’s by Arsenault

and Lowenthal [AL70] and Schröder [Sch71]. In 1978, Il and Baxter [IB75] used

random spatial phase modulation with two diffusers to reduce the coherence of

the source and thus reduce the speckle content. In 1986 Ambar et al. [AATA85]

studied the reduction of speckle in laser-microscope images when the object was

illuminated by a laser through a rotating multimode optical fiber. Once again the

principle of their speckle reduction technique is based on independent addition of

microscope images on an intensity basis. In 2002, Trisnadi [Tri02] used a diffuser

to produce independent speckle patterns and thus reduce the speckle contrast in a

laser projection display. Völker et al. [VZW+05] built on Ambar et al’s. [AATA85]

work in 2005 by reducing speckle in laser speckle imaging by illuminating the ob-

ject surface through a diffuser. Slow rotation of the diffuser leads to statistically

independent surface speckles on time scales that can be selected by the rotation

speed. Another way to produce a partially coherent source is by changing the

illumination of the angle of the laser during hologram recording or reconstructing.

In 1973, van Ligten [vL73] illuminated an object with a number of wavefronts, en-

suring that each wavefront was coherent with the reference beam at the detector.

Then, in the Fourier plane he created a filter that was designed to only allow light

from a single wavefront through at a given time. This filter was then moved in the

Fourier plane and the resultant intensities were summed at the detector simulating

a reduction in spatial coherence and thus a reduction in speckle. In 1973, Leger et

al. [LMP75] showed that changing the angle of illumination between two successive

captures of a speckle pattern, while depending on the surface roughness, will pro-

duce a decorrelation between the two patterns. They showed that the correlation

between the two speckle patterns decreases as the difference in angle increases. In
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that same year, Gama [Gam75] produced this change of angle by using a vibrat-

ing source and showed that the resulting holographic reconstructions displayed a

reduced speckle contrast pattern. He further showed that for certain classes of

objects, resolution was not affected. We have investigated this phenomenon and

developed a technique partly based on this principle [see Chapter 5].

In category 2, a reduction of temporal coherence is usually achieved using a

spectrum of wavelengths. In practice it is very difficult to physically construct a

laser multimode source with a high degree of spatial coherence over a wide range of

wavelengths. This means that there have been limited works that use a reduction

of temporal coherence in order to reduce speckle [IA96]. However, if such a source

is used, during reconstruction the speckle is reduced by temporally averaging a

number of independent speckle patterns. In 1973, George and Jain [GJ73] derived

an expression to find the wavelength spacing required to decouple the speckle

patterns arising from two different wavelengths in an imaging system and backed

up their theory with experimental verification. In 1990, Saloma et al. [SKM90]

reduced speckle using combined techniques from categories 1 and 2. They used

both a multi-wavelength laser ensuring a decrease in temporal coherence, and

a secondary light source that was virtually extended on a time integrated basis

producing a decrease in spatial coherence. In 1993, Dingel and Kawata [DK93]

used a laser diode to illuminate a conventional microscope with a continuously

changing speckle pattern. The decorrelated speckle patterns were averaged on

an intensity basis by a video detector in order to reduce the speckle. In 2001,

Kinell and Sjödahl reduced speckle in a temporal phase unwrapping system used

for shape measurement. A reduced spatial and temporal coherence effect was

achieved by projecting a set of fringes with varying fringe spacings and phase

shifts onto the object and each generated image was added on an intensity basis

reducing the speckle. In 2004, Kim et al. [KLT+04] used coherent backscattering
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spectroscopy of rat colon tissues for detection of early precancer. By reducing

both the spatial coherence (by adjusting the width of an aperture in the system)

and the temporal coherence (by using a broad spectrum of light, λ = 520 − 650

nm), they were able to dramatically reduce the speckle content. This required the

capture and summation of over a 1000 independent speckle patterns. Once again

we have investigated this phenomenon and developed a technique partly based on

this principle in Chapter 5.

The works in categories 3 and 4 can be viewed together as spatial integration

at the detector is a common aspect of both. Dainty and Welford [DW71] optically

reduced speckle in image plane hologram reconstructions in 1971, by rotating a

circular aperture in the Fourier plane of the image. This produced n decorrelated

speckle patterns and when these were summed the speckle was smoothed with some

loss in resolution. Three years later Hariharan and Hegedus [HH74] gave a full anal-

ysis of the effect of sampling in the Fourier plane. They then proceeded to experi-

mentally reduce speckle by superimposing the exposures from band passed filtered

images of a diffuse object. In 1973, Yu and Wang [YW73] used a movable random

mask instead of a rotating aperture. Ensuring that each speckle image is uncorre-

lated they achieve reduced speckle by averaging the reconstructions on an intensity

basis. In a number of papers in 1974 and then 1975, McKechnie investigated both

theoretically and experimentally the speckle reduction of time-averaged speckle

patterns produced by a rotating circular aperture [McK74a, McK74b, McK74c].

McKenhnie’s work was further extended in 1982 by Kawagoe et al. [YKA82]. In

1977, Östlund and Biedermann [ÖB77] investigated using a moving aperture and

a moving random mask for speckle reduction in recording images of diffuse objects

with coherent light. They conclude that these methods are equivalent to recording

the image with the full aperture in coherent light and re-imaging and recording

this speckled image in incoherent light with a smaller aperture or random mask
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in a fixed position. In 1981 Iwai et al. [TIA81] investigated the autocorrelation

function of the time-varying speckle intensity fluctuations at the detector. In 1998

speckle was reduced in a laser projection system by the introduction of moving

diffractive optic elements [LWP98]. The diffractive optic element splits the laser

beam into a number of independent beamlets with random phase distributions.

The n different speckle patterns produced by these beamlets are rotated and the

speckle in averaged by the observers eyes. The work of Dainty and Welford [DW71]

and Hariharan and Hegedus [HH74] was used as the basis for our development of

a digital speckle reduction technique called DFF [MHM+07] [see Chapter 3].

Image noise removal is traditionally achieved by linear processing techniques

such as mean, Wiener, low-pass, high-pass or band-pass filtering [GW02]. The

median filter is a classical nonlinear technique which has been used successfully

in the removal of salt and pepper noise. Some of these techniques such as the

mean [MNF+02, NJ04, JFH+05, YYMY06, SNJ06c, DS06a, DS06b] and median

filter [FTCJ01, NFJT02, NOK+05] have been used to reduce speckle in DHs. How-

ever, these techniques have not been developed specifically for the reduction of

speckle. There have been numerous DSP techniques developed since the 1980’s

that fall into category 5 in Iwai and Asakura’s scheme. In 1981, Lee [Lee81] pro-

posed a local minimum mean-square-error type filter to explicitly account for the

multiplicative nature of the speckle. Lee investigated reducing the speckle content

in SAR images and extended this work in [Lee83, Lee86]. In 1985 Crimmins [Cri85]

introduced a nonlinear iterative algorithm called a geometric filter. In tests per-

formed on SAR images he showed that it compared favorably against the median

filter. Following Lee, Kuan et al. [KSSC85, KSSC87] proposed a local minimum

mean-square-error type filter. However, they observed that unlike multiplicative

noise or Poisson noise, speckle noise is not only signal-dependent but is also spa-

tially correlated. In Kuan’s model the correlation of speckle was taken into account
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to improve reduction.

We now look at some of the recent contributions to the area of speckle re-

duction in DH reconstructions. In 2004, Dubois et al. [DRM+04] used a spa-

tially partially coherent source during recording to reduce the effects of speckle

in a digital holographic microscopy system. In order to create the spatially par-

tially coherent source a rotating diffuser was placed in the path of the coherent

light source. This technique was also used by Kim [Kim04] in 2004 to reduce

speckle in holographic 3D displays and by Sucerquia et al. [GSRC06] two years

later who introduced static (but different) diffusers during the recording stage

of capturing DHs and then added together the resulting reconstructions. Also

in 2006, Baumbach et al. [BKKJ06] added together reconstructions from later-

ally shifted holograms of an object to reduce the speckle content. Nomura et

al. [NONN08] proposed reducing speckle in reconstructions of DHs by superposing

reconstructed DHs recorded at different wavelengths. Using a wavelength-tunable

laser, they added together reconstructions from each of the captured DHs on an

intensity basis, thus reducing the speckle content. Pen et al. [PXL+11] and Xiao

et al. [XZR+11] recently introduced methods that reduce coherent noise in dig-

ital holographic phase contrast microscopy and off-axis DHs either shifting the

specimen under investigation or by slightly shifting the specimen under investi-

gation or by rotating the linear polarization state of both illumination and ref-

erence beams simultaneously. In each case they capture multiple DHs and add

their reconstructions together on an intensity basis to reduce speckle. The im-

plementation of a synthetic aperture for digital holography has been realised re-

cently [CGC01, Mas02, BCL02, KAJ02, HNM07, MLJ08]. It is achieved by moving

either the CCD or the sample, capturing multiple DHs between successive moves,

and then stitching together the resulting DHs to form a larger DH. The primary

purpose of a synthetic aperture is to increase the resolution of the resulting images.
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However, increasing the aperture size also causes the average speckle size to reduce

[see Chapture. 2.3.3.] All of these techniques required a change to the setup (i.e.,

the introduction of diffusers) and/or multiple captures of holograms to achieve a

reduction in speckle. This is in contrast to the techniques developed in this thesis,

which require no modification to the setup and only a single capture is required for

processing. This implies that our techniques can be directly applied to all existing

recorded DHs.

There have also been contributions to speckle reduction in which only a single

DH was used. To lessen the effects of speckle noise, while investigating compression

and Internet transmission of DHs, Naughton et al. [NMJ03] applied a subsampling

(spatial integration) operation. They applied this to the intensity in the recon-

struction plane and the operation integrates nonoverlapping blocks of n×n pixels

to a single value. Garcia-Sucerquia et al. [GSRP05] also used a subsampling oper-

ation to reduce the effects of speckle in reconstructions of DHs. Furthermore, they

suggested the merging of the subsampling operation with that of the median filter,

although no quantative results are given in terms of the effects on resolution or

edge preservation. In 2004, Bertaux et al. [BFRJ04], put forward an approach for

the removal of speckle, which was based on the maximum-likelihood technique and

used a general model for image reflectivity. The image was further improved by

applying a constraint on isoline gray levels, which results in smoothness without

blurring of the edges of the objects in the image. Finally, in 2006 Charrière et

al. [CPC+06] convolved reconstructions with a Gaussian filter to reduce noise in

images of cells captured by a DHM system. However as the focus of their paper

was not on speckle reduction, but on living specimen tomography, details of the

filtering process is not given.

In Chapter 4 we present a comprehensive analysis of applying standard wavelets

to the problem of speckle reduction in reconstructions of DHs. In our investigation

18



Background Introduction

of wavelet based speckle reduction of DH reconstructions we use both soft and

hard thresholding combined with four different thresholding schemes. Wavelets

have been used extensively to reduce the speckle content of ultrasound [ABT01],

computer generated television holography fringes [KG96], optical coherence to-

mography [AKF04] images and synthetic aperture radar [FH98]. Many different

wavelet techniques have been developed for the suppression of speckle noise [see

references in [PWV+06]].

1.1.3 Occlusions in digital holography

In this section, we review some of the relevant literature related to the second

contribution of this thesis, namely occlusions in digital holography. In preparation

for our contribution to this area in Chapter 6, we first review the literature related

to overcoming partial occlusion effects and then review the literature related to

overcoming the problem of the out-of-focus twin image in holography. This is in

preparation of our contribution to the removal of the out-of-focus twin image in

reconstructions of DH [see Chapter 7].

One of the more remarkable qualities of human vision is its ability to compen-

sate for missing visual information [RE98]. Although we have a blind spot, our

visual system appears to fill in this spot with the colors, textures, and forms ap-

propriate to that part of the visual input [Ram88]. Some computer vision systems

try to mimic this ability using complicated algorithms [EZ96]. However, these are

computationally expensive and at best provide an estimate of the occluded area.

Digital holography provides an alternative modality by using the information in-

herent in a DH to allow us overcome problems of partial occlusion. In Chapter 6

we present, to the best of our knowledge, the first investigation on overcoming

the effects of partial occlusions in reconstructions of DHs. To this end we employ

the Wigner distribution function (WDF), or more specifically the Wigner chart,
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a 2D graphical representation of the WDF [MEH+06b]. Recently, Nakatsuji and

Matsushima [NM08] also studied occlusions in the context of digital holography.

They explored the possibility of using digital holography to capture free-viewpoint

images of scenes with occlusions. In particular, they created a synthetic aper-

ture in order to increase the effective sensor size and therefore enlarge the field of

view. Exploiting the 3D propterties of DHs allowed them to reconstruct the scene

from different perspectives thus overcoming occlusions. Occlusions in other forms

have seen some limited research in digital holography, and the study of occlusions

similar to the situation we have studied have been actively researched in other

fields [HJ05, JPDH06, HHJ07].

In 2003, Kishk and Javidi [KJ03] studied the effects of occlusions in DHs that

had been watermarked by a hidden 3D object. One of their findings was that the

effect of occluding some of the DH pixels results in additive noise and reduction

in the energy of the reconstructed 3D objects. Kim and Lee [KL05] and Okman

and Akar [OA07] have also studied the effects of occlusions in digital hologram

watermarks. Like Kishk and Javidi [KJ03], they considered occlusions to be an

attack that occurs in the hologram plane.

There has been a recent resurgence in another field of 3D imaging called integral

imaging in which the effects of occlusions have been studied. Integral imaging is

based on ray optics and uses a microlens array to create different perspective views

of the captured scene. In 2005, Hong and Javidi [HJ05] used the 3D properties

of integral imaging to overcome foreground occlusions in a scene. The following

year Javidi et al. [JPDH06] proposed a method to recognize partially occluded 3D

objects by using 3D volumetric reconstruction integral imaging. The correlation

results of occluded 3D images for volumetric reconstruction show substantial im-

provements compared with those for conventional 2D imaging of occluded images.

In 2007, working in the same group, Hwang et al. [HHJ07] extended this work
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in integral imaging and investigated two different algorithms for overcoming the

effects of partially occluded objects.

We have also investigated the use of occlusions for twin image removal in in-

line digital holography [see Chapter 7] and we now provide a literature review of

previous methods that have sought to reduce the effects of the out-of-focus twin

image in holography. In 1951, soon after Gabor’s invention, Bragg and Rogers

developed an innovative solution to the twin image problem [BR51, Rog94]. They

realised that the disturbance caused by the unwanted twin image on the wanted

image plane is, in fact, its own hologram. If a second hologram is taken of the

original object, which accurately reproduces the disturbance that is due to the

unwanted twin image at the wanted image plane, the first reconstruction can be

corrected by subtraction. This method fell into obscurity until later advances in

digital technology allowed for a simplified subtraction process [Rog94]. A similar

subtraction based technique was reported by Kirkpatrick and El-Sum [KES56] in

1956, where two holograms must be recorded and the object must be repositioned

for the second recording enabling a canceling of the twin image term. In 1998, Xiao

et al. [XXZ+98] showed how the Bragg and Rogers method could be applied in

x-ray holography in real time by recording two holograms while taking advantage

of the penetration property of x-ray radiation.

In 1963, Leith and Upatnieks proposed [LU63] an off-line optical architecture

that enables the complete separation of the twin image term and the DC terms

from the wanted image [see Section 2.1]. However, the increased bandwidth needed

for this set-up poses a problem for digital holography. In digital holography, the

pixelated recording cameras have resolutions an order of magnitude less than com-

mercially available photo materials. Thus, in relation to holography, the bandwidth

is already severely limited and the use of an off-line architecture only serves to limit

it further. Nevertheless, Cuche et al. [CMD00] proposed and experimentally val-

21



Background Introduction

idated the off-line technique for real time digital holographic recording making it

possible to digitally spatially filter the DH in order to completely remove the DC

terms and the twin image.

In 1966, another twin reduction method was proposed by effectively recording

in the far field of the object [DJT66]. When replayed in the far field the image of

the object comes to a focus, but the twin image is so spread out that it appears as

a DC term and can be easily removed. This method was later successfully applied

to particle analysis [TWZ67, TT76]. In 2006, Garcia et al. [JGSJK+06] extensively

reviewed lensless in-line holographic microscopy and showed that the twin image

is of no consequence in the reconstructions. They comment that this is because

of the diverging reference beam. While the reconstruction of the object image

converges upon reconstruction, the out-of-focus twin image continues to diverge

and effectively forms the Fraunhofer case where it is a constant DC term in the

far-field.

Twin removal has been successfully accomplished with both deterministic phase

retrieval and iterative phase retrieval. Deterministic phase retrieval algorithms are

based on analysing the propagation of an intensity diffraction pattern. Iterative

methods on the other hand rely on recursive ping-pong algorithms that converge

over time based on some constraints that are imposed in every iteration of the

algorithm. In 2000, Tiller et al. [TBPN00] used deterministic phase retrieval in

combination with numerical simulations of light propagation to solve the twin im-

age problem. Earlier, Liu and Scott [LS85, LS87] performed the first investigation

of iterative phase retrieval for removing the twin image. They found that the re-

trieval of phase allowed for the separation of the twin image and the wanted image.

However, their algorithm is limited to purely absorbing objects and cannot recover

phase shifts caused by transmissive objects. Liu continued to improve upon these

algorithms by incorporating into them a noise constraint based on a model of ad-
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ditive noise [Liu90]. Koren et al. [KJP91, KPJ93] developed a new constraint for

these iterative twin removal algorithms. They used the fact that the out-of-focus

image was considerably larger in area than it is in its focused counterpart to form

their constraint. Their algorithm worked for complex objects as well as absorbing

objects. These phase retrieval twin removal algorithms were soon successfully ap-

plied to in-line x-ray holography [LHJK93, KYO+96]. In 1972 Gerchberg [Ger72]

demonstrated how phase retrieval could be used with electron microscopy to re-

cover the phase of the wavefield. The iterative phase retrieval algorithm was later

extended for the case of multiple recordings of different in-line holograms by Zhang

et al. [ZPOT03]. Recently [LF07] improvements have been made on the iterative

technique by using an improved model of the object. This improved method works

well for phase objects as well as for pure absorbing objects.

Marie et al. [MBA79] introduced the first DSP technique for the removal of the

twin image in 1979. Improved DSP based algorithms were developed some years

later by Onural and Scott [OS85, Onu85, OS87]. They described linear filtering

operations to decode the information contained in the holograms. However, their

work did not allow for phase objects. In 1990, Nugent [Nug90] made further

advances in linear filtering for twin image reduction that did allow for phase objects

in some cases. Yang et al. [YXZJ99] have developed an algorithm that is quite

similar to the previous work of Bragg and Rogers [BR51]. They devised a DSP

method that relies on multiple reconstructions and subtractions. A similar method

was developed by Zhang and Zhang [ZZ03], however their algorithm requires two

in-line holograms to be captured.

As discussed in Section 1.1.1, Yamaguchi and Zhang [YZ97] developed a new

method for recording DHs without the twin image in 1997. This is known as

phase shifting digital holography and is discussed in more detail in Section 2.2.2.3.

Recently, Chen et al. [CLY+07] presented a method that allows for the phase-
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shifting technique to be applied with an arbitrary phase shift and just two captures.

In 1966, Gabor and Goss [GG66] also implemented an early technique based on

phase shifting in which two holograms were captured with a quarter wave phase

shift was used between captures. Reconstruction was optical and required the use

of a quadrature prism to combine the previous captures and remove the virtual

image. A number of these phase modulation twin image removal methods are

reviewed by Takaki et al. [TKO99]. In the case of optical scanning holography,

techniques have been proposed [DPW+96, SX04, PKI+00, DPI96] to remove the

twin image that involved simultaneous acquisition of sine and cosine Fresnel zone-

lens plate coded images and adding together the resulting two holograms.

A number of techniques have appeared in the literature relating to twin image

removal in in-line electron holography [TLH91, Bar91, LC86]. One of the most

successful methods for twin image reduction in electron holography is by record-

ing multiple holograms of the same objects with different wavelengths and then

superimposing the intensities of the reconstruction. The out-of-focus twin image

will change for each wavelength and average out. A similar technique has also

been developed based on distance instead of wavelength [LC86]. By recording a

series of holograms of the same objects, but at different distances, implies that the

out of focus images will be different in each reconstruction and will integrate to

approximate a constant value. This technique has the added benefit of reduced

speckle.

In relation to the work presented in this thesis for the removal of the out-of-

focus twin image, the most relevant two references are by Pedrini et al. [PFFT98]

and Denis et al. [DFFD05]. Pedrini et al. [PFFT98] proposed the first instance of

spatially filtering the reconstruction planes of DHs. This involves cutting out the

wanted digitally reconstructed image from its surrounding pixels. However, this

area still contained considerable noise from the unwanted twin image. Denis et
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al. [DFFD05] also proposed spatially filtering the DH reconstruction domain and

it is their method that we have built on in Chapter 7. They showed that by remov-

ing the reconstructed focused unwanted twin image and returning to the plane of

the wanted image by numerical propagation, the affect of the out-of-focus twin im-

age could be removed. We propose the use of a similar technique for macroscopic

objects. We also discuss for the first time the relative spreading of the unwanted

twin image and the wanted image and how to manage this spreading using the

Wigner chart [see Chapter 7.]

1.2 Publications

Part of the work in this thesis has been presented in the publications listed in this

section.

Journal publications

J. Maycock, C. P. McElhinney, B. M. Hennelly, T. J. Naughton, J. B. Mc Donald,

and B. Javidi. “Reconstruction of partially occluded objects encoded in three-

dimensional scenes by using digital holograms”, Applied Optics, 45, pp. 2975-2985,

May, 2006.

J. Maycock, B. M. Hennelly, J. B. Mc Donald, T. J. Naughton, Y. Frauel, A. Cas-

tro, and B. Javidi. “Reduction of speckle in digital holography by discrete Fourier

filtering”, J. Opt. Soc. Am. A, 24, pp. 1617–1622, June, 2007.
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Accepted journal paper

J. Maycock, B. M. Hennelly and J. B. Mc Donald. “Speckle reduction of re-

constructions of digital holograms using three dimensional filtering”, accepted for

publication in Optics Communications, 2013.

Invited conference paper

J. Maycock, C. P. Mc Elhinney, A. E. Shortt, T. J. Naughton, J. B. McDon-

ald, B. M. Hennelly, U. Gopinathan, D. S. Monaghan, J. T. Sheridan, and B.

Javidi. “Holographic image processing of three-dimensional objects”,Proc. SPIE

Optics East, Boston, 6016, pp. 60160K, Oct., 2005.

Conference papers

K. M. Molony, J. Maycock, J. B. McDonald, B. M. Hennelly, and Thomas J.

Naughton. “A comparison of wavelet analysis techniques in digital holograms”,Proc.

SPIE Strasbourg, 6994, pp. 699412, Apr., 2008.

J. Maycock, B. M. Hennelly, J. B. Mc Donald, T. J. Naughton, Y. Frauel, A. Cas-

tro, and B. Javidi. “Speckle reduction using the discrete Fourier filter technique”,

IMVIP, National University of Ireland, Maynooth, pp. 201, Sept., 2007.

B. M. Hennelly, D. P. Kelly, J. Maycock, T. J. Naughton, and J. B. McDonald.

“Speckle reduction from digital holograms by simulating temporal incoherence”,

Proc. SPIE, San Diego 6696, pp. 66961I, Aug., 2007.
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B. M. Hennelly, J. Maycock, C. P. Mc Elhinney, J. B. McDonald, T. J. Naughton,

and B. Javidi. “Analysis of partially occluded objects encoded in digital holo-

grams using the Wigner distribution function”, Proc. SPIE, San Diego 6311, pp.

63110M, Aug., 2006.

J. Maycock, C. P. Mc Elhinney, B. M. Hennelly, J. B. McDonald, T. J. Naughton,

and B. Javidi. “Reconstruction of partially occluded objects using digital holo-

grams”, Proc. SPIE, Strasbourg 6187, pp. 61870V, Apr., 2006.

C. P. Mc Elhinney, J. Maycock, J. B. McDonald, T. J. Naughton, and B. Javidi.

“Three-dimensional scene reconstruction using digital holograms”, Proc. SPIE –

Opto-Ireland: Imaging and Vision, 5823, pp. 48-57, Jun., 2005.

1.3 Outline of the thesis

In Chapter 2 we review some of the basic theory behind holography, digital holog-

raphy and speckle. The setups for capturing in-line, off-line, and PSI DHs are

discussed. We review the first and second-order statistics of speckle, and the effect

of adding together independent speckle patterns on an intensity basis. There then

follows a number of chapters that describe new techniques for reducing the effects

of speckle in reconstructions of DHs. Chapter 3 presents a technique called the

DFF, which involves filtering reconstructions of DHs in the Fourier domain in an

effort to reduce the speckle content. Chapter 4 presents a comprehensive analysis

of applying wavelets to the problem of speckle reduction in reconstructions of DHs.

We have used hard and soft thresholding and a number of thresholding schemes

to reduce the speckle content. In Chapter 5 we report on new DSP techniques
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that reduce speckle by filtering using a convolution framework. We investigate 1D

filtering in the x,y and z directions, 2D filtering in the x and y directions and full

3D filtering. We rely on the fact that the adding together of different independent

speckle images on an intensity basis reduces the speckle content. Overcoming the

effects of partial occlusions in reconstruction of DHs is investigated in Chapter 6.

The analysis is done using the Wigner chart, and simulations are carried out to

verify our theoretical hypotheses. In Chapter 7, we present our contribution to

the removal of the out-of-focus twin image from reconstructions of in-line DHs.

Once again, our analysis is carried out using the Wigner chart. Finally, in Chap-

ter 8 we summarise the contributions that this thesis makes to the field of digital

holography and suggest future directions that could be pursued.
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Chapter 2

Theory and background

In this chapter we take a closer look at holography, including both the original

Gabor [Gab48] in-line hologram and the off-axis holograms of Leith and Upat-

nieks [LU62]. We proceed to review in-line and off-axis DHs [SJ94] and PSI

DHs [BHG+74, YZ97]. DH reconstructions suffer from a noise phenomenon known

as speckle. A large part of this thesis is concerned with the reduction of this noise

and therefore we review the properties of speckle here. A general explanation of

the speckle phenomena is given, including a review of its first and second order

statistics, and the effect of aperture size and propagation distance on speckle size

in DHs. We then investigate how to reduce the speckle content by adding together

independent speckle patterns. Finally, the Wigner distribution function, used to

analyse occlusions in DHs in Chapters 6 and 7, is is described.

2.1 Holography

Holograms have fascinated people since their invention. The fact that holograms

encode information about the phase of the wavefield means that different perspec-

tives of a 3D object can be recreated when they are reconstructed. This is not
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Figure 2.1: The capture (a) and reconstruction (b) of a Gabor hologram.

possible with conventional photography and thus has engaged minds for the last

60 years.

Gabor [Gab48] invented holography in 1948. He realized that when a coher-

ent reference wave is present with the light diffracted from a rough object then

information about the amplitude and the phase of the object wavefield can be

recorded. Figure 2.1 shows the two step process of recording and reconstructing

a Gabor hologram. We note that in Gabor’s original set up no lens was present

and a diverging wave illuminated the object. In order for this setup to work the

object should be highly transmissive. This type of hologram is known as an in-line

or on-axis hologram as the reference wavefield travels in the same direction as the

object wavefield, although it should be noted that in-line DHs generally employ a

separate object independent reference wave field, which is generated using beam

splitters; A Mach-Zehnder interferometer or a Michelson interferometer are two

such architectures. Figure 2.1 (a) shows a point source of coherent light illumi-

nating an object. As light passes through the object, the parts of the beam that
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are diffracted constitute the object wave, and the parts of the beam that pass un-

obstructed through the object constitute the reference wave. The intensity of the

light incident on the recording medium can be written as the sum of two wavefields

h(x, y) = R(x, y) + O(x, y), (2.1)

where R(x, y) is the amplitude of the reference wavefield, O(x, y) is the amplitude

of the object wavefield. The real-valued intensity |h(x, y)|2 is recorded and may

be written as

I(x, y) = |h(x, y)|2 = |R(x, y)|2 + |O(x, y)|2 + R∗(x, y)O(x, y) + R(x, y)O∗(x, y),

(2.2)

where I(x, y) is the intensity, ∗ denotes the complex conjugate, R∗(x, y)O(x, y) and

R(x, y)O∗(x, y) are the virtual and real image terms, and |R(x, y)|2 and |O(x, y)|2

are the DC terms. As the third term, R∗(x, y)O(x, y), is proportional to the object

wavefield, O(x, y), it produces a virtual image of the object. Consequentially the

fourth term, R(x, y)O∗(x, y), which is proportional to the conjugate of the object

wavefield, produces a real image [Goo05].

Figure 2.1 (b) shows the reconstruction of a Gabor hologram. Assuming the

hologram is illuminated by the same reference wave that was used to capture

the hologram, then the resulting reconstruction produces a virtual image in the

location where the object once stood, a real image at the same distance, but on

the opposite side of the hologram, and a bright spot, caused by the reference wave

intensity. A serious limitation of the Gabor hologram is that when the real image

is brought to focus it contaminated by the out-of-focus virtual image. Similarly,

when the virtual image is viewed by an observer, the out-of-focus version of the

real corrupts this image [Goo05].

Leith and Upatnieks [LU62] introduced a modification of Gabor’s original
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Figure 2.2: The capture (a) and reconstruction (b) of a Leith and Upatnieks’

hologram.

recording setup in 1962 that solved the problem of the overlapping out-of-focus

images and thus extended the application of holography. The major difference in

their technique was the introduction of a second separate reference wave, which

they offset at an angle to the object wave. The resultant hologram is known as

an off-axis hologram. Figure 2.2 illustrates one possible setup for capturing and

reconstructing the off-axis hologram. At the recording plane we observe the sum

of two mutually coherent waves, one representing the object wave and the other a

reference wave. The amplitude distribution at the recording plane is

h(x, y) = R(x, y) exp[−j2πuy] + O(x, y), (2.3)

where exp is the exponential function, j is the imaginary unit (with j2 = −1), and

32



Digital holography Theory and background

the spatial frequency, u, of the reference wave is given by

u =
sin θ

λ
, (2.4)

and λ is the wavelength of the light used, and θ the angle between the reference

and object waves. The captured intensity at the recording plane becomes

|h(x, y)|2 = |R(x, y)|2 + |O(x, y)|2

+ R∗(x, y)O(x, y) exp[j2πuy]

+ R(x, y)O∗(x, y) exp[−j2πuy]. (2.5)

When reconstructed the third term, R∗(x, y)O(x, y) exp[j2πuy], produces a virtual

image that is deflected away from the reference beam axis at an angle θ [see

Figure 2.2 (b)]. Likewise, the fourth term, R(x, y)O∗(x, y) exp[−j2πuy], produces

a real image that is deflected away from the reference beam axis at and angle −θ

[see Figure 2.2 (b)]. As long as the angle, θ, between the object and reference

waves is made large enough, the observer can obtain an unobstructed view of the

virtual image.

We have limited our discussion to transmissive Fresnel holograms, but there are

of course numerous other types of holograms. These include Fraunhofer, Fourier,

reflection, rainbow and multiplex holograms. For an excellent description of these

holograms consult Goodman [Goo05]. We now turn our attention to DHs.

2.2 Digital holography

Digital holography [BL66, GL67, YM80a, BHG+74, SJ94, YZ97] is a 3D imaging

technology that involves the capture of the complex wavefield emanating from real

world objects by a CCD and their numerical reconstruction of the image using a
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computer. In the early days of digital holography, the holograms were not recorded

directly, but rather captured on film and then scanned and digitized [Hua71]. Ad-

vances continue in the storage capacity and speed of processing of computers and

the spatial resolutions of electronic recording devices (e.g. CCDs). These advances

have made it possible to record holograms electronically and to reconstruct them

using computer simulation of light propagation. This means that the analysis of

wavefronts can be performed without physical reconstruction [Ras01].

In digital holography, the real-valued intensity |h(x, y)|2 (see Equation 2.1)

is recorded on a two-dimensional array of sensors (M × N cells) of dimension

∆ξ × ∆η. We now write the intensity recorded on the CCD as |h(m∆ξ, n∆η)|2,
where m and n are integer numbers. The corrupting effect of the DC terms can be

far noisier than that of unwanted out-of-focus-twin image. However, a number of

successful methods have been developed in the literature eliminate this negative

effect. These methods are based on high pass filtering of the DH [KJ97], sub-

tracting stochastically different holograms [DMS03], phase-shifting [ZLG04] and

by subtracting the numerical generated intensity of the object and reference waves

from the DH [GLCC07].

2.2.1 Digital hologram recording and sampling

The sampling requirements for the capture of DHs have been a subject of active

research over the past decade. In this section we give a brief overview of how

the physical parameters in recording digital holograms control the resolution in

the final image as well as the distance at which an object of a given size must be

placed from the camera. A detailed derivation of these properties may be found

in [KHP+09]. The various physical parameters that affect the image quality and

image formation in a reconstructed digital hologram are:

1. The aperture size of the digital camera in both dimensions, WCCDx and
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WCCDy

2. The sampling interval of the camera in both dimensions, Tx and Ty

3. The size of the pixels in both dimensions, ∆ξ in x and ∆η in y

4. The wavelength of the light, λ

5. The physical size of the object in both dimensions, Wx and Wy

6. The distance the object is placed from the camera, d

These six different parameters contribute in different ways in terms of image res-

olution, sampling requirements and object placement (from the camera). For the

sake of brevity we will consider only the parameters in the x dimension and the

results can be easily generalized to the y dimension.

2.2.1.1 Image Resolution

The camera aperture controls the resolution of the reconstructed complex image.

The camera aperture size determines the point spread function of the imaging

system and it therefore controls the maximum spatial frequency recordable in the

imaging system which is equal to WCCDx/λd. We can also see that the wavelength

of the laser and the object camera distance also control the bandwidth of the

reconstructed image. We note that the averaging effect that occurs within the pixel

results in an averaging of the complex wavefield. This also effect the bandwidth

of the reconstructed image but the limiting effect is usually determined by the

camera aperture. We do not discuss the theoretical image resolution any further

as it is somewhat outside the scope of this thesis. We note that the resolution

in DH is also limited by image quality degradation caused by speckle. Speckle is

discussed later in this chapter.
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2.2.1.2 Sampling and object distance

The pixel pitch or sampling interval determines the distance between overlapping

copies of the reconstructed image that are caused by sampling. They are separated

by integer multiples of λd/Tx. This forces a limit on the maximum object size

that we can record without adjacent copies of the image overlapping each other

(aliasing). Thus we can conclude that the maximum object size is given by

Wx = λdTx (2.6)

We can see that the smaller the pixel pitch, the greater the separation of the copies,

and therefore the larger the object size we can record for a given distance. For a

given object and a given CCD pixel size we can determine the minimum distance

at which we should place the object from the camera

d = WxTxλ (2.7)

Apart from repeating this result from [KHP+09] we do not give any further inves-

tigation to the effects of sampling in this thesis.

2.2.1.3 Quantization

In recording of a digital hologram the pixel values are quantized in accordance

with the bit-depth of the memory registers in the detection system. The bit-depth

in modern cameras is typically 8 to 12 bits per pixel. The effect of quantization

is to degrade the image quality of the reconstructed image. This is discussed in

detail in [PH11]. For the bit depth of the cameras used in this thesis the effect of

quantization is insignificant when compared with other sources of noise, such as

speckle noise.
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2.2.2 Digital holography setups

In this section, we review three setups for capturing DHs. The first setup, in-line

digital holography, is based on Gabor’s original optical in-line setup, except that

here we have separated the laser by amplitude division and are using a reflec-

tion object rather than a transparent object. The second setup, off-axis digital

holography, is based on Leith and Upatnieks [LU62] original off-axis optical setup.

Finally, we review the PSI setup introduced by Yamaguchi and Zhang [YZ97] in

1997.

2.2.2.1 In-line digital holography

In-line digital holography, like its optical counterpart, refers to an experimental

setup in which the reference wavefield travels in the same direction as the object

wavefield [see Figure. 2.3 (a)]. Both wavefields are incident on an electronic sensor

(e.g. CCD) with no angle difference between the wavefields. The DHs that are

used in this thesis were recorded with an optical system [JT00, FTCJ01] based

on a Mach-Zehnder interferometer. A linearly polarized laser beam is expanded

and collimated, and divided into object and reference beams. The reference beam

combines with the light diffracted from the object and forms an interference pattern

in the plane of the camera, thus forming a DH.

As in the optical case, this method suffers from poor reconstructed image qual-

ity due to the presence of the DC terms (the intensity of the reference and object

beams) and the out-of-focus twin image. We have already suggested a number of

ways to remove the DC terms from the resultant DHs [see Section 2.2]. In this the-

sis, we employ the method of spatial filtering of the hologram given by Kreis and

Jüptner [KJ97]. This method involves computing the Fourier transform (FT) of

the DH, using a Fast Fourier Transform (FFT), algorithm and removing the lower

(center) frequencies before applying an inverse FFT to return to the DH plane.
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Figure 2.3: Experimental setup for (a) In-line digital holography and (b) off-axis

digital holography. BE, beam expander; BS, beam splitter; M, mirror; CCD,

charged-coupled device; d, distance from the object to the camera.
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(b) (c)(a)

Figure 2.4: In-line setup with (a) the recorded intensity on the CCD, (b) the

amplitude of the Fourier Transform of the DH with the lower frequencies set to

zero, and (c) the reconstructed real image of the object.

This will effectively reduce the impact of the two intensity terms (DC terms) ap-

pearing on the left hand side of Equation 2.2 [Kre05]. However, the problem of

removing the out-of-focus twin image remains a difficult one. We have found two

methods in the literature [PFFT98, DFFD05] for the removal of the twin image in

digital holography [see Section 1.1.3]. In Chapter 7 we offer another contribution

to removing its effects.

Figure 2.4 (a) shows the recorded intensity of a DH taken of a stormtrooper

figure using an in-line setup. In order to eliminate the effects of the DC terms we

apply an FFT algorithm to this intensity DH and removed the lower frequencies

[see Figure. 2.4 (b)]. After removal of the DC terms an inverse FFT is applied.

Figure 2.4 (c) shows the real image of the object after application of the discrete

Fresnel transform. We note the corruptive influence of both the out-of-focus twin

image and speckle on the image.
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(a) (b) (c)

Figure 2.5: off-axis setup with (a) the recorded intensity on the CCD, (b) the

amplitude of the Fourier Transform of the DH (real image energy highlighted by

box), and (c) the reconstructed real image of the object.

2.2.2.2 Off-axis digital holography

Isolation of the real image may be achieved using an off-axis recording setup equiv-

alent to that used by Leith and Upatnieks [LU62] and illustrated in Figure. 2.3

(b). The difference between this setup and the in-line setup in Figure. 2.3 (a) is

that the reference beam and the object beam are incident on the CCD at different

angles. Figure 2.5 (a) shows the recorded intensity of a DH taken of a stormtrooper

figure using an off-axis setup. Elimination of the twin image is trivial when this

configuration is used, as the real image, DC terms and the out of focus twin im-

age are separated in space in the spatial frequency domain. The FT of the DH

can be spatially filtered [CMD00], thus allowing extraction of the real image [see

Figure. 2.5 (b)]. Figure 2.5 (c) shows the real image of the object after numerical

recontruction.

It would seem that the off-axis setup should be used in place of the in-line

setup, as it ensures easy removal of the twin image. However, increasing the angle

between the reference and the object wavefields increases the spatial resolution

requirements of the setup and forces us to place the object at a much greater
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Figure 2.6: Experimental setup for PSI: BE, beam expander; BS, beam splitter;

RP, retardation plate; M, mirror, CCD, charged-coupled device; d, distance from

the object to the camera.

distance from the CCD. The greater distance is needed to ensure that smaller

angular plane waves reach the CCD. In effect we are losing a large portion of

the bandwidth available to us and this is highly undesirable when one considers

the already limited resolution of CCDs. Therefore, if we want to maximize the

resolution of the CCD, an in-line setup should be used. In 1997, Yamaguchi and

Zhang [YZ97] used PSI to capture DHs using an in-line setup. In the next section,

we discuss how PSI overcomes the problem of the out-of-focus twin image.

2.2.2.3 Phase-shift interferometry

The PSI setup used in this thesis is shown in Figure. 2.6. The only difference

between this setup and the in-line setup introduced in Section 2.2.2.1 is the the

addition of two wave retardation plates. The linearly polarized reference beam

passes through half-wave plate RP1 and quarter-wave plate RP2. By rotating the

plates we can achieve four phase shift permutations of 0, π
2
, π, and 3π

2
. Once
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again the reference beam combines with the light diffracted from the object and

forms an interference pattern in the plane of the camera. For each of the four

phase shifts we record an interferogram, or in-line DH. The intensity of each of the

four interferograms is described by Equation 2.2, and the amplitude, A(x, y), and

phase, φ(x, y), of the object field can be calculated by

A(x, y) =

√
(I(x, y; 3π

2
)− I(x, y; π

2
))2 + (I(x, y; 0)− I(x, y; π))2

4
(2.8)

and

φ(x, y) = tan−1 I(x, y; 3π
2

)− I(x, y; π
2
)

I(x, y; 0)− I(x, y; π)
(2.9)

respectively. Therefore we use these four real-valued images (interferograms) to

compute the camera-plane complex field h(x, y) [BHG+74, YZ97],

h(x, y) = A(x, y) exp[−jφ(x, y)] (2.10)

Figure 2.7 (a) shows the intensity of the complex field h(x, y). There is no need

to do any extra processing to remove either the DC terms or the out-of-focus twin

image as they are not present. Figure 2.7 (b) shows the reconstructed real image

of the object after application of the discrete Fresnel transform, which we use to

simulate the propagation of the object wavefield back to the object plane. We

discuss the Fresnel transform in more detail in the following sections. An obvious

drawback to PSI is that the object needs to be completely static in order to capture

the four interferograms. Traditionally this has meant that for applications that

require the tracking of moving particles or the imaging of biological tissue, the

approach has not been suitable. However, recognizing this limit, researchers have

developed a novel way to capture multiple interferograms in parallel [ATK+08].
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(b)(a)

Figure 2.7: (a) The amplitude of the object wavefield in the camera plane, A(x, y)

for a stormtrooper object captured using an PSI setup and (b) the result of propa-

gating the back to the object plane using the discrete Fresnel Transform gives the

reconstructed real image of the object.

This method involved the addition of a phase-shifting array device located in the

reference beam.

2.2.2.4 Mathematical preliminaries

The Fourier transform is the single most useful mathematical tool in the analysis

of digital holograms. It allows us to describe almost any signal as the superposition

of weighted (in amplitude and phase) sinusoidally varying functions in some band

of frequencies. The FT calculates the weight of each component function for the

signal we operate on and these are viewed as weighted delta functions in the

frequency domain. Following Bracewell [Bra78] the FT of f(x) is

F (u) =

∫ ∞

−∞
f(x)exp[−j2πxu]dx. (2.11)

Using this notation x is considered the spatial domain and u the spatial frequency

domain. The original signal can be recovered by applying an inverse FT,
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f(x) =

∫ ∞

−∞
F (u)exp[j2πxu]du. (2.12)

Goodman [Goo05] gives the following existence conditions for the above transforms

to work. (i) f must be absolutely integrable over the infinite x domain, (ii) f must

have only a finite number of discontinuities and a finite number of maxima and

minima in any finite rectangle, and (iii) f must have no infinite discontinuities.

Bracewell [Bra78] has suggested that physical possibility is a sufficient condition

for the existence of a transform, and as we are dealing with optical wavefronts we

can use the FT with confidence.

The FT has a number of associated theorems [Bra78]:

1. Scaling theorem; If f(x) has the FT F (u), then f(ax) has the FT 1
|a|F (u

a
).

2. Linearity theorem; If f(x) has the FT F (u) and g(x) has the FT G(u), then

f(x) + g(x) has the FT F (u) + G(u)

3. Shift theorem; If f(x) has the FT F (u), then f(x−a) has the FT exp[−j2πas]

F (u). This means that if a function is shifted in position, no Fourier com-

ponent is altered in amplitude, only the phase changes.

4. Convolution theorem; If f(x) has the FT F (u) and g(x) has the FT G(u),

then the convolution of both functions f(x)∗g(x) has the FT F (u)G(u). This

result means that convolution of two functions is equivalent to multiplication

of their transforms. In cases where convolution is computationally expensive,

this becomes very useful.

5. Rayleigh’s theorem; This states that the integral of the squared modulus of

a function is equal to the integral of the squared modulus of its spectrum,
∫∞
−∞ |f(x)|2dx =

∫∞
−∞ |F (u)|2du. This was first derived by Rayleigh [Ray89]

and corresponds to Parseval’s theorem for the Fourier series.
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6. Autocorrelation theorem; If f(x) has the FT F (u), then its autocorrela-

tion function
∫∞
−∞ f ∗(s)f(s + x)ds has the FT |F (u)|2 Otherwise known as

Wiener’s theorem, the autocorrelation theorem can be summised as the au-

tocorrelation function of a signal is the FT of that function’s power spec-

trum [Wie49]. The squared term means that the autocorrelation function

contains no information about the phase of the Fourier components, and

therefore it is a non reversible operation.

Optical wavefronts in digital holography are usually represented in 2D, and

therefore we give the 2D FT of the function f(x, y) here,

F (u, v) = FT{f(x, y)}

=

∫ ∞

−∞

∫ ∞

−∞
f(x, y)exp[−j2π(ux + vy)]dxdy, (2.13)

where FT is the Fourier transform operator, and u and v are spatial frequencies

in the x and y directions, respectively. It follows that its inverse (using the inverse

FT operator, FT−1) is given by

f(x, y) = FT−1{F (x, y)}

=

∫ ∞

−∞

∫ ∞

−∞
F (u, v)exp[j2π(ux + vy)]dudv. (2.14)

In this thesis, we often employ a discrete version of the FT called the discrete

Fourier transform (DFT). The DFT can be thought of a string of equally spaced

delta functions whose amplitude is modulated by the Fourier coefficients. The

function fs(nxTx, nyTy) has the DFT,
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Fs(muTu,mvTv) = DFT{fs(nxTx, nyTy)}

=
1

NxNy

Nx
2
−1∑

nx=Nx
2

Ny
2
−1∑

ny=
Ny
2

fs(nxTx, nyTy)exp

[
−j2π

(
nxmx

Nx

+
nymy

Ny

)]
,

(2.15)

where DFT is the discrete Fourier Transform operator; the sampling rate in the

x and y dimensions are Tx and Ty respectively; Nx and Ny denote the number of

samples in the x and y directions and (nx, ny) and (mx,my) are integer indices in

the space and spatial frequency domains respectively. The DFT is itself a sampled

signal with sampling intervals of Tu and Tv in the u and v dimensions. It can be

shown that Tu = 1
NxTx

and Tv = 1
NyTy

[Bra78]. The inverse DFT, using the inverse

DFT−1 operator, is

fs(nxTx, nyTy) = DFT−1{Fs(muTu,mvTv)}

=
1

NxNy

Nx
2
−1∑

nx=Nx
2

Ny
2
−1∑

ny=
Ny
2

Fs(muTu,mvTv)exp

[
j2π

(
nxmx

Nx

+
nymy

Ny

)]
.

(2.16)

The DFT can be computed in NlogN calculations using the FFT [CT65]. Without

this optimisation it would require N2 calculations and even modest sized data sets

would run slowly on modern computers.

2.2.3 Numerical reconstruction of digital holograms

In this section we review the numerical reconstruction of a DH. We recall that

|h(x, y)|2 is the intensity recorded by the CCD. It is formed when the object wave

O(x, y), after propagation a distance d, interferes with the reference wave R(x, y).
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We also recall that the intensity term is made up of the sum of four terms, the

object and reference DC terms and the real and virtual images. The image plane

(reconstructed DH) is a distance d from the hologram (CCD) plane. It is at the

image plane where the virtual image of the object will be reconstructed. This

intensity is stored in a quantized and digitized form, and is first processed in order

to isolate the virtual image term (in the case of PSI a series of intensities are

processed to isolate the virtual image term). Numerical reconstruction produces

a discretely sampled complex distribution recon(mx′Tx′ ,my′Ty′) representing the

reconstructed image, where mx′ and my′ are integer indices and Tx′ and Ty′ are

the sampling intervals in the reconstruction plane (x′, y′). A number of different

algorithms exist to numerically reconstruct a digital hologram, and obtain values

for recon(mx′Tx′ ,my′Ty′). These different algorithms have different values for Tx′

and Ty′ . In this thesis we employ two methods; (i) the direct method and (ii) the

spectral method.

The direct method is briefly derived as follows; We begin by applying the

Fresnel Transform to the sampled signal O(nxTx, nyTy) which denotes the sampled

object term in the hologram (CCD) plane to obtain an equation for the continuous

reconstructed image recon(x′, y′). We assume that the object signal O has been

separated from the other four terms in the intensity hologram either by spatial

filtering suing the off axis method or by using the PSI approach. In the case where

we have not separated the four terms we can still use the derivation below since

the Fresnel Transform is linear and we can therefore consider the reconstruction

to be given by the sum of the four terms individually Fresnel Transformed. The

direct method is given by
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recon(x′, y′) =
exp[ikd]

jλd
exp

[
jπ

dλ
(x′2 + y′2)

]

×
∫ ∫

O(nxTx, nyTy)exp

[
jπ

dλ
(x2 + y2)

]

× exp

[
j2π

λd
(x′ + y′)

]
dxdy. (2.17)

The constant exp[jkd]
jλd

does not depend on the spatial frequency coordinates or

the object and so shall be omitted. We note that since the signal O exists only

at discrete spatial coordinates, only these discrete values of x and y need to be

considered in the above integral;

x = nxTx nx = −Nx

2
, .....,

Nx

2

y = nyTy ny = −Ny

2
, .....,

Ny

2
, (2.18)

where Tx and Ty are the CCD pixel pitch in the x and y directions respectively,

and where Nx and Ny are the number of pixels in the CCD camera in the x and

y directions respectively. We can conclude that WCCDx and WCCDy, the widths of

the camera in the x and y directions are given by NxTx and NyTy respectively.

If we sample the reconstructed complex image with sampling rate Tx′ and Ty′ in

the reconstruction plane and interest ourselves only in the samples over the range

of indices given by

x′ = mx′Tx′ mx′ = −Nx

2
, .....,

Nx

2
− 1

y′ = my′Ty′ my′ = −Ny

2
, .....,

Ny

2
− 1, (2.19)

then Equation 2.17 reduces to
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recon(mx′Tx′ ,my′Ty′) = exp

[
jπ

dλ
((mx′Tx′)

2 + (my′Ty′)
2)

]

×
Nx
2
−1∑

nx=Nx
2

Ny
2
−1∑

ny=
Ny
2

O(nxTx, nxTy)exp

[
jπ

dλ
((nxTx)

2 + (nyTy)
2)

]

× exp

[
j2π

λd
(mx′Tx′nxTx + my′Ty′nyTy)

]
. (2.20)

If we choose the output sampling intervals to be defined as follows

Tx′ =
λd

NxTx

=
λd

WCCDx

Ty′ =
λd

NyTy

=
λd

WCCDy

, (2.21)

then Equation 2.20 above will reduce to the following;

recon(mx′Tx′ ,my′Ty′) = exp

[
jπ

dλ
((λdmx′Tx)

2 + (λdmy′Ty)
2)

]

×
Nx
2
−1∑

nx=Nx
2

Ny
2
−1∑

ny=
Ny
2

O(nxTx, nxTy)exp

[
jπ

dλ
((nxTx)

2 + (nyTy)
2)

]

× exp

[
j2π

nxmx′

Nx

+ j2π
nymy′

Ny

]
. (2.22)

which is in the form of a DFT as discussed in the previous section. This equation

can be calculated using the very time efficient FFT algorithm. We note that the

output window size in the x′ and y′ dimensions can be calculated to be

NxTx′ =
λd

Tx

,

NyTy′ =
λd

Ty

. (2.23)
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It is clear that the output window size is directly proportional to the distance of

propagation, d, and inversely proportional to the sampling interval Tx and Ty in

both dimensions. We note that the direct method is discussed in more detail in

Chapter 5.

The resultant field recon(mx′Tx′ ,my′Ty′) is the numerical representation of a com-

plex optical wavefield and from it the intensity image Image(mx′Tx′ ,my′Ty′) and

the phase φ(mx′Tx′ ,my′Ty′) can be determined as

Image(mx′Tx′ ,my′Ty′) = |recon(mx′Tx′ ,my′Ty′)|2, (2.24)

and

φ(mx′Tx′ ,my′Ty′) = tan−1

(
Im{recon(mx′Tx′ ,my′Ty′)}
Re{recon(mx′Tx′ ,my′Ty′)}

)
(2.25)

respectively, where Im{} represents the imaginary part and Re{} the real part

of the resultant field recon(mx′Tx′ ,my′Ty′). Schnars [Sch94] notes that a DH re-

construction has an advantage over optical reconstruction in that it has phase

information. This is in contrast to the optical case where only intensity informa-

tion is available (i.e., we can not capture the phase information, although it is

present).

Another reconstruction method widely used throughout this thesis is known

as the angular spectrum approach (spectral method) [MZK97, MGF+99]. This is

based on the definition of the Fresnel transform as a chirp multiplication in the

Fourier domain, i.e. recon(x′, y′) is related to O(x, y) as follows;

recon(x′, y′) = F−1{F{O(x, y)}exp[jπλd(u2 + v2)]}. (2.26)

The discrete version consists of taking the DFT of the sampled object signal,

multiplying it by a sampled version of the quadratic phase version factor and then

performing an inverse DFT on the result.
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recon(mx′Tx′ ,my′Ty′) = DFT−1 {DFT{O(nxTx, nyTy)} × exp [A]} . (2.27)

where A = jπdλ

((
mx

NxTx

)2

+
(

my

NyTy

)2
)

and mx, my, nx, ny, mx′ and my′ all have

the same range as previously defined. In the case of the spectral method the

output sampling interval Tx′ and Ty′ are equal to the input sampling intervals,

i.e. the pixel pitch, Tx and Ty. Using the spectral method for reconstruction,

we transform the DH from the spatial domain into the spatial frequency domain

where it is multiplied by the free space transfer function. We then use the inverse

DFT to return to the spatial domain. The result is an image with the same

resolution as the CCD, and thus equivalent pixel size. The direct method is often

used to reconstruct far field diffraction patterns and the spectral method is usually

preferable when reconstructing near field diffraction patterns, with some overlap

between the two. In this thesis we have employed both methods.

As with conventional holography, a hologram encodes different views of a 3D

object from a small range of angles [Goo05, Cau79]. In order to reconstruct a

particular 2D perspective of the object, the appropriate windowed subset of pixels

must be extracted from the hologram using the Fresnel approximation or convo-

lution approaches described above. As the window explores the field, a different

angle of view of the object is reconstructed. The range of viewing angles is de-

termined by the ratio of the window size to the full CCD dimensions. For the

experiments in Chapter 6, the Kodak Megaplus CCD has approximate dimensions

of 18.5× 18.5mm and so a 1024× 1024 pixel window has a maximum lateral shift

of 9 mm across the face of the sensor. With an object positioned d = 350 mm from

the camera, viewing angles in the range ±0.74◦ are permitted. Smaller windows

will permit a larger range of viewing angles at the expense of image quality at

each viewpoint. It is easily seen that if a 1024 × 1024 pixel window is extracted

from 2048× 2048 pixel DH and used to reconstruct the particular viewpoint, the
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resolution of the resultant image is reduced by a quarter. We use this property of

DHs to overcome the effects of partial occlusions in Chapter 6.

It now becomes important to introduce the topic of speckle in digital hologra-

phy. Speckle is always present in holography, and by extension digital holography,

as it uses coherent light. Speckle occurs when coherent light is diffused by an

optically rough surface [Dai84]. It degrades the quality of the reconstructions and

makes the accurate viewing of small details difficult. In the next sections we will

discuss speckle as well as a way to reduce its effects. This will be used as a basis

for some of the techniques developed in this thesis.

2.3 Speckle

A speckle pattern is observed when coherent light is either (a) reflected from an

optically rough surface, or, (b) transmitted through a stationary diffuser. Most

objects in the physical world are rough at the scale of the wavelength of light (an

exception would be a mirror) and therefore speckle is the rule rather than the

exception [Goo06]. The variations in height on the surface of diffuse reflecting

objects, or the difference in thickness, absorption and changes in the index of

refraction for the case of transparent diffuse objects are the causes of the speckle

effect. Examples of diffuse reflecting objects include the rough surfaces of stones,

wood, and unpolished metal, whereas a good example of a transparent diffuse

object is ground glass [Fra79]. The reason that speckle is only apparent when

using coherent light, and not incoherent light, is that in the case of incoherent

light the number of fluctuations of the signal incident on the recording material

(or the eye for that matter) changes so rapidly over the integration period of the

detector. This means that the integral or average of these changes produces a

smooth intensity image. However, for the case of coherent light, the signal does
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Diffuser

Coherent 
light

Screen

(a) (b)
Figure 2.8: (a) a speckle pattern will be observed anywhere beyond the diffuser

and (b) shows a zoomed in region of a reconstruction of a DH in which a speckle

pattern is clearly seen.

not fluctuate nearly as much as in the case of incoherent light and thus a random

intensity pattern is observed [Dai70].

Goodman gives a very clear intuitive explanation of the cause of speckle in

his recent book [Goo06]. In it he explains that speckle occurs when a signal is

composed of many independent components having both amplitude and phase.

These components can have random lengths (amplitudes) and random directions

(phase) or they can have known lengths and random directions. The random

directions are generated by the roughness of the object or the diffuser in the system.

The addition of these components results in either constructive or destructive

interference at the observation plane and is known as a random walk. The square

of the amplitude at the observation point is the intensity at that point. Let us

now consider the production of a speckle pattern. In Figure. 2.8 (a) a coherent

light source is incident on a diffuser. A screen placed anywhere beyond the diffuser

will display a random intensity pattern, which is referred to as a speckle pattern.
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Figure 2.8 (b) shows a zoomed in region of a reconstruction of a DH displaying

such a random intensity pattern.

The contrast in a speckle pattern depends on the coherence properties of the

incident light [Dai70]. As we reduce the coherence of the illumination (moving to

partially coherent light), the contrast of the speckle pattern will decrease. This

reduction will occur if there is a reduction in either spatial of temporal coherence.

In Chapter 5 we have developed two separate speckle reduction techniques that

take advantage of this fact. In the limiting case of incoherent light the contrast will

reduce to zero and the speckle pattern will disappear. A speckle pattern can also be

thought of as the superposition of the amplitudes of the diffraction patterns due

to the different individual points on the diffuser, taking into account the phase

changes introduced by the varying structure diffuser [Fra79]. This results in a

large number of individual diffraction patterns that are superposed to produce a

distribution that is independent of the diffuser used.

Now that we know the reasons for speckle and how speckle patterns are pro-

duced, let us turn our attention to the statistical properties of a speckle pattern.

2.3.1 First-order statistical properties of speckle

In this section, we investigate the first-order statistical properties of speckle pat-

terns. By first-order we mean the statistical properties at a single point in space

or time. The first complete analysis of the first and second order statistical prop-

erties of speckle was given by Laue [Lau14, Lau16]. Although the speckle effect

was first observed as early as 1877 by Exner [Exn77], with the advent of the laser

in the 1960’s researchers thought that they were dealing with a new phenomenon.

From this time on, interest in speckle, or sparkle as it was then known, was accel-

erated [Goo06]. Goodman has been credited with establishing the basic statistical

properties of laser speckle in two early papers [Goo63, Goo65], but here we follow
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his analysis in his most recent book [Goo06].

In order to discover the first-order statistical properties of speckle, we will first

look at the statistics of the amplitude and phase of various kinds of random phasor

sums. A random phasor sum can be defined as

A = Bexp[jφ] =
1√
N

N∑
n=1

anexp[jφn] , (2.28)

where N represents the number of the phasor components in the random walk,

A, a vector, represents the resultant complex phasor, B is the length (or magni-

tude) of A, φ represents the phase of A, an represents the magnitude of the nth

component of the phasor sum, and φn is its phase. The scaling factor 1√
N

is used

to preserve finite second moments of the sum even as the number of component

phasors approaches infinity [Goo06]. The real and imaginary parts of the resultant

phasor are

Re = Re{A} =
1√
N

N∑
n=1

ancos φn (2.29)

and

Im = Im{A} =
1√
N

N∑
n=1

ansin φn (2.30)

respectively. We note that a number of assumptions are made about an and φn

and these are discussed in Chapter 2 of [Goo06]. The mean, or expectation, of Re

is

E[Re] =
1√
N

N∑
n=1

E[an]E[cos φn] = 0 (2.31)

and Im is

E[Im] =
1√
N

N∑
n=1

E[an]E[sin φn] = 0. (2.32)
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This is obvious when we assume the statistics of φ are uniform, which implies that

the averages of cos φn and sin φn are both zero. The variances of Re and Im are

equal to the second moments as the means are zero. They are

σ2
Re

= E[Re
2] =

1

N

N∑
n=1

N∑
m=1

E[anam]E[cos φncos φn] (2.33)

and

σ2
Im

= E[Im
2] =

1

N

N∑
n=1

N∑
m=1

E[anam]E[sin φnsin φn] (2.34)

respectively. It is clear that when n 6= m both expressions go to zero. It is only

the n = m terms that remain. The variance for Re becomes

σ2
Re

=
1

N

N∑
n=1

E[a2
n]

2
(2.35)

and similarly the variance for I becomes

σ2
Im

=
1

N

N∑
n=1

E[a2
n]

2
, (2.36)

and both derivations can be found in [Goo06].

Here we see that just like the means the variances of the real and imaginary

parts of the resultant phasor are identical. It turns out the correlation between

the real and imaginary parts is, like the mean, zero. We have

ΓRe,Im = E[ReIm] =
1

N

N∑
n=1

E[a2
n]E[cos2 φn sin2 φn] = 0, (2.37)

which indicates that there is no correlation between the real and imaginary parts of

the resultant phasor. The central limit theorem can now be applied as the sum of

N independent random variables is asymptotically Gaussian as N → ∞ [Mid58].

The joint probability function of the real and imaginary parts of the resultant

phasor becomes
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PRe,Im(Re, Im) =
1

2πσ2
exp

{
−R2 + I2

2σ2

}
, (2.38)

where σ2 = σ2
Re

= σ2
Im

. The resultant complex phaser A is therefore said to be a

circular complex Gaussian variate.

It is also important to consider the statistics of the amplitude A and phase

θ of the resultant phasor. The probability density function of the amplitude and

phase can be found using the rules of probability theory for the transformation of

variables. We have

A =
√

Re
2 + Im

2, θ = arctan

{
Im

Re

}
(2.39)

and

Re = A cosθ, Im = A sinθ. (2.40)

Now the joint probability function of A and θ is related to that of Re and Im

through

PA,θ(A, θ) = PRe,Im(A cos θ, A sin θ) ‖ J ‖ , (2.41)

where ‖ J ‖ represents the Jacobian of the transformation between the two sets of

variables,

‖ J ‖ =

∥∥∥∥∥∥

∂Re

∂A
∂Re

∂θ

∂Im

∂A
∂Im

∂θ

∥∥∥∥∥∥
=

∥∥∥∥∥∥
cosθ −Asinθ

sinθ Acosθ

∥∥∥∥∥∥
= A(cos2θ + sin2θ)

= A. (2.42)

After multiplication, the joint probability function for the amplitude and the phase

of the resultant phasor is
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PA,θ(A, θ) =
A

2πσ2
exp

{
− A2

2σ2

}
, (2.43)

for (A ≥ 0) and (−π ≤ θ < π), zero otherwise. Using the joint statistics of the A

and θ we can now find the probability density function for the amplitude A to be

PA(A) =

∫ π

−π

PA,θ(A, θ)dθ =
A

σ2
exp

{
− A2

2σ2

}
, (2.44)

for (A ≥ 0). This is the well known Rayleigh density function. In order to find

the probability distribution of the phase we integrate Equation 2.43 with respect

to the amplitude,

Pθ(θ) =

∫ ∞

0

A

σ2
exp

{
− A2

2σ2

}
dA =

1

2π
(2.45)

for (−π ≤ θ < π). Goodman [Goo06] points out that the joint density function

for A and θ factors into a product of PA(A) and Pθ(θ), which means that the

amplitude A and the phase θ of the resultant phasor are statistically independent

random variables. We will now use a rule of probability theory that will allow us

to find the probability density function for the intensity of a speckle pattern. The

rule states that if a random variable v is related to a random variable u through

the transformation v = f(u), then the probability density function Pv(v) of v can

be found from the probability density function Pu(u) of u through [DR58]

Pv(v) = Pu(u)(f−1(v))

∣∣∣∣
du

dv

∣∣∣∣ . (2.46)

We let v = I, the intensity, u = A, the amplitude, and

I = f(A) = A2. (2.47)

It follows that knowing the probability density function for PA(A) we can find the

probability density function for PI(I) through
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PI(I) = PA(
√

I)

∣∣∣∣
dA

dI

∣∣∣∣ =
1

2
√

I
PA(

√
(I)). (2.48)

This result now allows us to write an expression for the probability density func-

tion of the intensity as we already know the probability density function for the

amplitude (see Equation 2.44). We apply the transformation law of Equation 2.48

and find that the intensity is distributed according to a negative exponential prob-

ability distribution [Goo00].

PI(I) =

√
I

σ2
exp

(
− I

2σ2

)
· 1

2
√

I

=
1

2σ2
exp

(
− I

2σ2

)
(2.49)

for I ≥ 0. Speckle with a negative exponential distribution such as this is known

as fully developed speckle and is the speckle present in our DHs. The second

moment, variance, and standard deviation of the intensity are respectively given

by

I2 = 2Ī2

σ2
I = Ī2

σI = Ī ,

(2.50)

where Ī is the mean intensity. An important quantity that we use extensively in

this thesis is called the speckle contrast, or speckle index, and it is defined as

α =
σI

Ī
. (2.51)

Speckle index is a measure of how strong the fluctuations of intensity are in a

speckle pattern compared with the average intensity. The speckle reduction tech-

niques we have developed endeavor to reduce the speckle index. For the case of

fully developed speckle, α = 1. Therefore fluctuations of fully developed speckle
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patterns are of the same order as the average intensity. This means that this type

of noise can have a very corruptive effect on images of interest [Goo06].

In summary we conclude that the real and imaginary parts of the resultant

phasor have a Gaussian distribution, the amplitude has a Rayleigh distribution,

the phase of the resultant is uniformly distributed on the interval (−π, π) and the

intensity has a negative exponential probability distribution. We also note that

the speckle index of a fully developed speckle pattern is approximately 1.

2.3.2 Second-order statistical properties of speckle

We now investigate a second-order statistical property of speckle, which concerns

the statistics of two points and how this relates to the speckle size in a speckle

pattern. The basis of this work will be used in Chapter 5, when it becomes essential

to know the speckle size in reconstructions of DHs in order to optimize a speckle

reduction method that we propose. Consider the system in Figure 2.9 in which a

diffuse object is illuminated by a collimated plane wave (spatially and temporally

coherent light). The speckle pattern is caused by the interference in the image

plane between the waves from various points on the object. It is important to

point out that if we were to change the object with another diffuse object, the

size of the speckles at the observation plane would be of the same order. However,

there would be no correlation between the two speckle patterns produced.

We now proceed to calculate the normalized autocovariance function of the in-

tensity speckle pattern in the observation plane [see Figure 2.9] in order to estimate

the speckle size. This function corresponds to the normalized autocorrelation func-

tion of the intensity and provides a good measurement of the average width of a

speckle [Dai84, XMA00, PMC+04, Goo06]. If I(x1, y1) and I(x2, y2) are two points

in the observation plane [see Figure 2.9] the intensity autocorrelation function is

defined by [PMC+04, Goo06]
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Figure 2.9: Free space geometry for speckle size.

RI(∆x, ∆y) = 〈I(x1, y1)I(x2, y2)〉 , (2.52)

where ∆x = x1 − x2 and ∆y = y1 − y2 and the 〈〉 is an average over an ensemble

of rough surfaces. If we set x2 = 0, y2 = 0, x1 = x and y1 = x we can write

RI(∆x, ∆y) = RI(x, y) . (2.53)

Now we can write an expression for the normalized autocovariance function,

CI(x, y),

CI(x, y) =
RI(x, y)− 〈I(x, y)〉2
〈I(x, y)2〉 − 〈I(x, y)〉2 . (2.54)

Using the Wiener-Khintchine theorem this becomes

CI(x, y) =
FT−1[|FT[I(x, y)]|2]− 〈I(x1, y1)〉2

〈I(x1, y1)2〉 − 〈I(x1, y1)〉2 , (2.55)

where we have used the fact that autocorrelation of the intensity is given by the

inverse Fourier transform of the power spectral density. The width of CI(x, y)

provides us with a good measure of the average width of a speckle [PMC+04,
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Kre05, Goo06]. This allows us to measure the average width of speckle in our DH

reconstructions.

2.3.3 Speckle in digital holography

We will now investigate speckle in Fresnel DHs. The objects we capture are rough

on the scale of the wavelength used and therefore the speckle that arrives on the

face of the CCD [see Figure. 2.6] is fully developed as described in the previous

sections. Its intensity has a negative exponential probability distribution and it

has a speckle index of approximately 1. This of course assumes that the resultant

wavefront on the CCD has been sufficiently sampled.

We can accurately calculate the speckle size in a given reconstruction plane

using the results found in Section 2.3.2. However, when using the direct method of

reconstruction [see Equation 2.17], care must be taken to account for the increased

size of the pixels at the reconstruction plane when calculating the speckle size.

In the reconstructed field, the pixel size is a function of the distance d and is

given by ∆ξd = λd
WCCDx

and ∆ηd = λd
WCCDy

, where WCCDx = Nx∆ξ and WCCDy =

Ny∆η (with Nx and Ny being the number of pixels in the x and y directions

respectively, and ∆ξ and ∆η the size of the individual pixels at the sensor in

the x and y directions respectively) are the lateral dimensions of the CCD [see

Figure. 2.10] [PTZ96]. For the simple case when WCCDx = WCCDy, the transversal

(perpendicular to the direction of travel) size of the speckle Sx and Sy increases

linearly with the distance d from the CCD and is given by

Sx =
λd

WCCDx

, (2.56)

in the x direction (y direction is trivial and therefore omitted here) and the

speckle size in the direction of propagation increases with the square of the dis-

tance [PTZ96],
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Figure 2.10: Illustration of the changing size of the speckle in a digitally recon-

structed wavefront. [Adapted from Pedrini et al. [PTZ96]]

Sz = λ(
d

WCCDx

)2. (2.57)

Looking at Figure. 2.10 we see that speckles increase in size as a function of

distance. We also observe that they are larger in the z direction than the (x, y)

plane. The minimum speckle size that corresponds to the highest spatial frequency

of the pattern and is equal to the resolution limit of the system. In the propagation

direction the minimum size is equals the focal depth of the system [Gab70, Yam03].

Pedrini et al. [PTZ96] have shown that when an aperture is placed in the

hologram plane, effectively reducing the size of the wavefront that is propagated,

the speckle size in the reconstruction plane increases. We have confirmed this and

the results are shown in Figure 2.11. In Figure. 2.11 (a) we show a zoomed in

100×100 pixel region of a DH (in this case the stormtrooper DH, but any DH will

suffice), which was reconstructed using the direct method. The speckle pattern

is clearly observable. We have calculated the autocorrelation of this region using

the autocorrelation theorem [see Section 2.2.2.4]. This is achieved by subtracting

the mean of the region under consideration from each pixel and then applying the
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Figure 2.11: Zoomed in area (100 × 100 pixels) on a DH reconstruction in which

(a) 1024× 1024, (c) 512× 512 and (e) 256× 256 sized apertures have been placed

at the hologram plane. The corresponding autocorrelation peak for these, which

is used to measure average speckle size, is shown in (b),(d) and (f).
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FFT algorithm to the result. This is then multiplied by its own complex conjugate

and then the inverse FFT algorithm is applied [see Equation refeq:SpeckleSize:4].

Finally, the magnitude of this field is then taken and its center row is displayed

in Figure 2.11 (b). The width at 0.5 of this peak gives the average size of the

speckle at the reconstruction plane. The width is approximately 1.5 pixels, and

the pixels size of our CCD are 9µm. However, we must take into account the new

pixel size given by ∆ξd = λd
WCCDx

. For this experiment d = 291mm, λ = 6.33nm

and WCCDx = 1024 × 9µm. This results in an actual average speckle size of

1.5 × 19.9µm = 29.8µm at the reconstruction plane. It is interesting to observe

the speckle size increase as the aperture is reduced to first 512 × 512 pixels [see

Figure 2.11 (c) and Figure 2.11 (d)] and then to 256× 256 pixels [see Figure 2.11

(e) and Figure 2.11 (f)].

2.3.4 Addition of independent speckle patterns

In this section we analyse the effect of adding together speckle patterns in an effort

to reduce their corruptive influence. The result found here is used extensively in

Section A) of this thesis, especially in Chapters 3 and 5 as a basis for reducing

the speckle index of reconstructions of DHs. The following analysis is given by

Goodman [Goo06].

The total intensity for the sum of N independent speckle patterns is

Is =
N∑

n=1

In , (2.58)

where each In has a mean value of In. The mean of the total intensity is therefore

Is =
N∑

n=1

In . (2.59)

The second moment of the total intensity is
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I2
s =

N∑
n=1

N∑
m=1

InIm

=
N∑

n=1

I2
n +

N∑
n=1

N∑

m=1,m6=n

InIm , (2.60)

where the independence of In and Im for m 6= n has been used. We now use

the fact that the individual intensity patterns are speckle patterns, and therefore

they obey negative exponential probability distributions, for which I2
n = 2In

2
. The

expression for I2
s becomes

I2
s = 2

N∑
n=1

In
2
+

N∑
n=1

N∑

m=1,m6=n

InIm

=
N∑

n=1

In
2
+

(
N∑

n=1

In

)2

=
N∑

n=1

In
2
+ Is

2
. (2.61)

It follows that the variance of the total intensity is

σ2
s =

N∑
n=1

In
2
, (2.62)

and that the speckle index of the total intensity is

α =
σs

Is

=

√
N∑

n=1

In
2

N∑
n=1

In

. (2.63)

For the special case of components with equal mean intensities (In = I0, all n),

which is the case for the developed technique, the result reduces to
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α =
1√
N

. (2.64)

Therefore the speckle index falls in proportion to 1√
N

as the number of independent

speckle patterns N increases. This result assumes that the N individual speckle

patterns are statistically independent. This is an extremely important result for

us and it will be used continually through this thesis as a means of reducing the

effects of speckle on reconstructions of DHs. We wish to emphasise here that

the addition of speckle patterns on a complex amplitude basis does not reduce

the speckle index. Each of the complex fields contributed by one of the speckle

patterns can be thought of as a random walk in the complex plane. The addition

of N random walks simply results in a random walk with more steps [Goo76].

We now introduce the Wigner distribution function, which we use to analyse the

contributions presented in Part B of this thesis.

2.4 Wigner distribution function

In this section, we review the properties of the WDF in preparation for Section

B) of this thesis. We use the WDF to analyse overcoming partial occlusion effects

in reconstructions of DHs [see Chapter 6]. In this case an occlusion is something

in the foreground of a scene that occludes one view of a background object of

interest in the scene. We have also analysed using occlusions to reduce the effects

of the twin image in reconstructions of DHs [see Chapter 7]. Here, the occlusion

is a binary mask used to remove the energy of the twin image at the twin image

reconstruction plane.

The WDF of a complex optical amplitude distribution provides a graphical

means of simultaneously viewing a signal’s spatial and spatial frequency distri-

butions, and is particularly useful for visualizing localized signals [Wig32, Bas97,
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Loh93, OZK01]. Ψ{f(x)}(x, u), which represents the WDF of a signal f(x), is

defined in terms of its spatial distribution in the following way

Ψ{f(x)}(x, u) =

∞∫

−∞

f

(
x +

ξ

2

)
f ∗

(
x− ξ

2

)
exp[−j2πuξ]dξ (2.65)

where u represents spatial frequency, ∗ denotes complex conjugation and Ψ denotes

the WDF operator. Often a plan view outline of the signal’s energy is used for illus-

tration. Such a Wigner chart is shown in Figure. 2.12. The real valued WDF has

double the number of dimensions, i.e. a complex 1D signal has a two-dimensional

WDF while 2D signals have 4D WDFs.

The WDF is entirely reversible with the exception of a constant phase factor,

f(x)f ∗(0) =

∞∫

−∞

ψ{f(x)}(x/2, u) exp[j2πux]du (2.66a)

|f ∗(0)|2 =

∫
ψ{f(x)}(0, u)du. (2.66b)

An exactly equivalent definition of the WDF can be given using the FT of f(x),

ψ{f(x)}(x, u) =

∞∫

−∞

FT{f(x)}
(

u +
ξ

2

)
FT∗{f(x)}

(
u− ξ

2

)
exp[j2πuξ]dξ.

(2.67)

The WDF has many interesting properties [LDM+96].

1. The WDF is real valued,

ψ{f(x)}(x, u) = ψ∗{f(x)}(x, u). (2.68)

2. Shifting a signal in x correspondingly shifts its WDF as

ψ{f(x− ξ)}(x, u) = ψ{f(x)}(x− ξ, u). (2.69)
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3. Parseval’s Theorem,

∫
ψ{f(x)}(x, u)dx = |f(x)|2 =

∫
ψ{f(x)}(x, u)du = |FT{f(x)}(u)|2.

(2.70)

4. The WDF has a convolution property,

ψ





∞∫

−∞

f(ξ)g(x− ξ)dξ



 (x, u) =

∫
ψ{f(x)}(x− x

′
, u) (2.71a)

×ψ{g(x)}(x′ , u)dx
′
, (2.71b)

ψ{f(x)g(x)}(x, u) =

∞∫

−∞

ψ{f(x)}(x, u− u
′
) (2.71c)

×ψ{g(x)}(x, u
′
)du

′
. (2.71d)

5. The WDF is bilinear; When two signals are added, the WDF of the sum is

given by the sum of the individual WDFs plus an additional cross term,

ψ{f(x) + g(x)}(x, u) = ψ{f(x)}(x, u) + ψ{g(x)}(x, u)

+
∞∫
−∞

2< [
f

(
x− ξ

2

)
g∗

(
x + ξ

2

)]
exp[−j2πuξ]dξ.

(2.72)

6. The projection of the WDF normal to the u-axis (i.e. integrating along u)

gives the spatial intensity distribution of our signal and the projection normal

to the x-axis gives the frequency spectrum,

|f(x)|2 =
∞∫
−∞

ψ{f(x)}(x, u)du, |F (u)|2 =
∞∫
−∞

ψ{f(x)}(x, u)dx. (2.73)
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We note that it is possible for the energy of two signals that have been

added together to overlap in the projection along x and not to overlap in the

projection along u or vice versa. If the signals do not overlap in the projection

that we are interested in, we may omit the cross-term in Equation 2.72 in

all of the Wigner analyses.

In physical reality, we may only ever view the spatial intensity distribu-

tion of a signal, shown on the left of Equation 2.73 above. We may rotate,

x shear and u shear the WDF of the signal using a variety of optical sys-

tems [Bas97] and then view the new spatial intensity distribution. For exam-

ple, a FT [Goo05] rotates the WDF (x → u, u → −x) and then we integrate

along the new u. This is equivalent to the right hand side of Equation 2.73.

We note that if two signals are added and the resultant WDF, see Equa-

tion 2.72 above, is integrated along u, we obtain the fundamental equation

of holography,

|f(x) + g(x)|2 =

∞∫

−∞

ψ{f(x) + g(x))}(x, u)du

= |f(x)|2 + |g(x)|2 + 2<[f(x)g
′
(x)]. (2.74)

7. The Fresnel transform (FST) has the following effect on the WDF of a signal,

ψ{Fλd{f(x)}(x′)}(x′ , u′) = ψ{f(x)}(x + λdu, u). The effect of applying a

FST to the signal can be expressed in terms of a matrix operating on the

phase space coordinate vector.


 x

′

u
′


 =


 1 λd

0 1





 x

u


 . (2.75)

This matrix is known as the ABCD matrix or the ray-transfer matrix. The
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FST causes a shearing of a signal’s WDF along the x direction as shown in

Figure. 2.12 (b) and (c) where we have shown the resultant Wigner chart for

the original object signal after propagation of 0.1m and 0.2m respectively.

8. Signal localisation; If the FT of a function is finite in extent then the spatial

distribution must have an infinite extent. This implies that our bandlimited

signal must be sampled over all of space since it exists over its entire extent.

However, in many practical problems it is assumed with a very large degree of

accuracy that a signal is bounded within some finite region in both the spatial

and spatial frequency domains. The spatial extent, W , and the frequency

extent, B, are defined such that,

f(x) ≈ 0 |x| > W/2 (2.76a)

FT{f(x)}(u) ≈ 0 |u| > B/2 (2.76b)

and therefore, the signal energy is negligible outside these spatial and spatial

frequency regions.

9. Sampling; In Figure. 2.12 (a) we show the WDF of a localised signal f(x) in

which the signal’s energy lies within a rectangular area. The signal f(x) is

completely determined if it is sampled equidistantly in x with sample space T

such that the Nyquist criteria is satisfied. Therefore the number of samples,

N , required to completely describe f(x) is N = W
T
≥ WB. Clearly, for

the most efficient uniform sampling T = 1/B and N = WB, the space-

bandwidth product of the signal [OZK01, LDM+96]. In general signals may

have an irregular shaped WDF such as the case shown in Figure. 2.12 (b).

This shape is the result of applying a Fresnel Transform to the signal with

regular WDF shown in Figure. 2.12 (a). Such a signal could be fully described
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Figure 2.12: Wigner chart of a propagating signal showing (a) the wavefield im-

mediately after the object, (b) the Wigner chart after propagation a distance 0.1m

(c) the Wigner chart after propagation of a distance 0.2m. Object size for this

example is 0.01m and the wavelength of the light is 633nm.

with a number of samples less than the space-bandwidth product [LDM+96],

but this would require non-uniform sampling in the space domain. We note

that the WDF of a sampled signal has been investigated in detail by Stern

and Javidi [SJ04c, SJ04b].

Ideal sampling is accomplished by multiplying the signal by a train of Dirac

delta functions or a comb function defined by

δT (x) =
∞∑

n=−∞
δ(x− nT ), (2.77)
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where T is the sampling interval and δ(x) represents the Dirac delta func-

tion. This is equivalent to convolving the signals WDF, ψ{f(x)}(x, u), with

ψ{δ(x)}(x, u), the WDF of the comb function. We note that

ψ{δT (x)}(x, u) =
1

2T

∑
n

∑
q

(−1)qnδ

(
x− nT

2

)
δ
(
x− q

2T

)
. (2.78)

10. Ray tracing, the WDF and the corner coordinate matrix (CCM); The WDF

offers a unified interpretation of wave optics, geometrical optics and quantum

optics. Ray tracing is a widely used application of geometrical optics and

involves following the paths of light rays as they pass through an optical

system. For a specific ray with known position (x) and direction (spatial

frequency u) we may map any change in position and direction due to an

optical element, including free space, using the ray transfer matrix for that

optical element. We have shown above, in the case of free space propagation

in the paraxial approximation, that the ray transfer matrix may also be used

to map changes in the WDF of a signal. This has lead to the development of

the CCM [HS05a], a 2D array containing a series of x − u coordinates that

define the boundary of a localized signal in phase space. For example, for

the signal in Figure. 2.12 (a) we will have a CCM

S =


 −W/2 W/2 W/2 −W/2

B/2 B/2 −B/2 −B/2


 . (2.79)

After Fresnel propagation a distance d1, the signals WDF is shown in Fig-

ure 2.12 (b), and after a further propagation to distance d2, the signals WDF

is shown in Figure 2.12 (c). The new corner coordinates are given by the

following,
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S
′
=


 1 λd

0 1


S. (2.80)

These ideas have lead to an optimisation of all FST algorithms [HS05a]. We

note that Equation 2.79 and 2.80 may easily be extended for an arbitrary

number of coordinates [HS05b].

11. The WDF of a rectangular function; We define the rect function as,

eq : wdfrecdef
rect

(
W
2

)
= 1 ∀|x| < w

2

= 0 ∀|x| > w
2
.

(2.81)

The WDF of rect(x/w) has been investigated in the context of diffrac-

tion [RMOM03] from a thin slit and is given by

ψ
{
rect

(
x
w

)}
(x, u) = sin(u[−2|x|+w])

u
, |x| < w

2
, (2.82)

which is a type of sinc function in u for the range of x values allowed. The

scale of this sinc function, p(x,w) is a function of both the width of the rect

function and the value of x. For values of x that are much less than w the

sinc function will be very narrow. As x approaches the boundary the sinc

functions broadens in u. This effect is due to diffraction at the boundaries.

In this thesis we will assume that w À λ and that we may therefore ignore

the effect of diffraction at the edges. In this case we may write

ψ
{
rect

(
x
w

)}
(x, u) = δ(u), |x| < w

2
. (2.83)

We note that this approximation is in conflict with the existence conditions

of the WDF [Bas97], but it will simplify the analysis given in Chapter 6

considerably while at the same time retaining a high degree of accuracy.
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We use these properties to investigate occlusions in Chapters 6 and 7.

2.5 Summary

In this chapter, we have discussed the first holograms created by Gabor and subse-

quently discovered some of their properties. We investigated capturing DHs using

in-line, off-axis and PSI setups, and given some conditions that should be met

in order to sufficiently capture a DH. We also reviewed two numerical algorithms

that are used to reconstruct DHs. Part A of this thesis investigates ways to reduce

the corruptive effect of speckle on reconstructions of DHs. In order to address

this problem a sound foundation in the theory of speckle is needed. Therefore,

we have discussed the first-order statistical properties of speckle. This enabled us

to discover that the speckle inherent in our DHs is fully developed speckle with a

speckle index of 1. We reviewed the second-order statistical properties of speckle

and determined the average size of speckles in an intensity pattern. We have used

this result to determine the size of the speckle in our DHs in Chapter 5. We also

reviewed the propagation of a speckle pattern when reconstructing a DH using

the discrete Fresnel transform. We saw that the size of the speckle changes as a

function of the distance of propagation and the size of the recording CCD. We also

saw that the addition of independent speckle patterns could reduce the speckle

index by 1√
N

, where N is the number of patterns. This is an important result and

is used in Chapters 3, 5. Part B uses the WDF to analysis both partial occlusions

[see Chapter 6] and the twin image problem [see Chapter 7] in digital holography.

Therefore, we have reviewed the WDF and looked at some of its properties. In the

next chapter, we will look at the first contribution this thesis makes to the field

of digital holography, when we introduce a new technique, called the DFF, which

reduces the speckle content in reconstructions of DHs.
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Chapter 3

Discrete Fourier filter for speckle

reduction

3.1 Introduction

In this chapter we introduce a new DSP technique for the reduction of speckle in

reconstructions of DHs. Dainty and Welford [DW71] optically reduced speckle in

image plane hologram reconstructions by rotating a circular aperture in the Fourier

plane of the image. Hariharan and Hegedus [HH74] extended the method by

superimposing the exposures from band passed filtered images of a diffuse object.

By interpreting our DH as the complex wavefield at a particular intermediate plane

in the coherent imaging speckle removal system, we can apply the discrete analog

of this process to DHs. Furthermore, this DSP technique, which we call discrete

Fourier filtering (DFF), offers a number of considerable advantages both to its

optical counterpart and to other existing DSP methods. These advantages are

discussed after the analysis is presented. The work in this chapter is based on an

earlier publication by the author [MHM+07].

The optical setup in Figure. 3.1(a) is that used in Refs. [DW71, HH74]. The
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Figure 3.1: Optical setup for coherent imaging.

wavefront emanating from the diffuse object propagates through the 4f system in

which an aperture is placed in the Fourier plane. The aperture is moved between

each of several exposures, and the intensities in the image plane are integrated

over the exposures. This leads to a speckle-reduced image plane signal. The effect

of capturing the DH introduces an extra aperture between the object plane and

the first lens, namely the recording CCD sensor. We assume for simplicity that

the effect of this is only to bandlimit the object wavefield. We then simulate the

rest of the setup in the paraxial regime to a high degree of accuracy.

3.2 Analysis

The following analysis is based on previous work done by Lowenthal and Arse-

nault [LA70] and Hariharan and Hegedus [HH74], and for convenience follows

their notation. A plane, f(r), immediately in front of a diffuse non-uniform ob-

ject, which is illuminated by a coherent beam can be expressed as the product of

two terms

f(r) = t(r)d(r), (3.1)

where d(r) is a uniform diffuser, t(r) is a transparency that modulates the diffuser,
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and r is a vector (x, y) in the plane in front of the object. The image plane

amplitude g(r) is defined as g(r) = f(r)?h(r), where h(r) is the amplitude impulse

response of the imaging system and ? denotes a convolution. It will be shown that

the average power spectrum of the image intensity is related to the autocorrelation

of the image intensity [Pap65]. We will also show that the power spectrum of the

image intensity can be spilt into two terms. The first being the power spectrum

of the image itself and the second being the power spectrum of the speckle, which

we want to reduce. The autocorrelation of f(r) can be written [LA70]

Rff (r1, r2) = 〈f(r1)f
∗(r2)〉 = 〈t(r1)d(r1)t

∗(r2)d
∗(r2)〉 (3.2)

where 〈f(r1)f
∗(r2)〉 is an expectation, which is defined as 〈X〉 =

∞∫
−∞

xPx(x)dx,

where Px(x) is the probability density function for X having a value of x. Since t

is not a random function, it can be extracted from the expectation, as in

Rff (r1, r2) = t(r1)t
∗(r2)〈d(r1)d

∗(r2)〉 = t(r1)t
∗(r2)Rdd(r1, r2). (3.3)

d(r) is considered to be stationary and Gaussian with zero mean and its autocor-

relation may be approximated by a delta function

Rdd(r1, r2) = 〈d(r1)d
∗(r2)〉 = δ(r1 − r2). (3.4)

If j exposures are made with a shift of the aperture between them, the resultant

intensity I(r) at any point in the image is the sum of the intensities at this point

due to the individual j exposures,

I(r) =
∑

j

Ij(r), (3.5)

where Ij(r) = |gj(r)|2, where gj(r) = f(r) ? hj(r), and where hj(r) is the impulse

response of the system for the j th position of the aperture in the Fourier plane.
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Due to the linearity of convolution, the autocorrelation RII(r1, r2) of the image

intensity can be written as

RII(r1, r2) =
∑
m,n

RImIn(r1, r2)

=
∑
m,n

〈|gm(r1)|2|gn(r2)|2〉
(3.6)

where the summation is taken over all values of m and n, and each term is the

result of an expectation.

For two complex, Gaussian variables X1 and X2, with zero mean, the expecta-

tion 〈|X1|2|X2|2〉 is given by a theorem of Reed [Ree62] to be

〈|X1|2|X2|2〉 = 〈|X1|2〉〈|X2|2〉+ |〈X1X
∗
2 〉|2. (3.7)

As we are dealing with expectations, the autocorrelation of the image intensity

can be re-written as

RII(r1, r2) =
∑
m,n

〈|gm(r1)|2〉〈|gn(r2)|2〉

+
∑
m,n

|〈g∗m(r1)gn(r2)〉|2

=
∑
m,n

〈Im(r1)〉〈In(r2)〉

+
∑
m,n

|Rgmgn(r1, r2)|2.

(3.8)

The average power spectrum of the image intensity is Ω(u,u), where Ω(u1,u2) is

the double FT of the autocorrelation of the image intensity [LA70] [see Appendix

A] given by,

Ω(u1,u2) = F{RII(r1, r2)}
= F{∑

m,n

〈Im(r1)〉〈In(r2)〉}

+ F{∑
m,n

|Rgmgn(r1, r2)|2}
(3.9)
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where F is the double FT operator, defined by Lowenthal and Arsenault [LA70]

as F{RII(r1, r2)} =
∞∫
−∞

∞∫
−∞

RII(r1, r2)e
−i2π(u1·r1−u2·r2)dr1dr2.

The first term in Equation 3.9 is the power spectrum that would be given

by a spatially incoherent object having the same intensity as the object under

consideration. As the average intensity in the image plane is the same as that

which would be given by an incoherent object, this term is considered to be the

power spectrum of the image. Therefore we conclude that the other term represents

the power spectrum of the speckle [LA70]. We label the first term, the power

spectrum of the image, as Ω1(u1,u2) and the second term, the power spectrum of

the speckle, as Ω2(u1,u2).

It has also been shown by Lowenthal and Arsenault [LA70] that the average

intensity 〈I(r)〉 in the image of a coherently illuminated diffuse object is given by

the relation 〈I(r)〉 = |t(r)|2 ? |h(r)|2. This result means that Ω1(u1,u2) can be

given by

Ω1(u1,u2) =
∑
m,n

[T (u1) ? T ∗(−u1)][Hm(u1) ? H∗
m(−u1)]

?[T (−u2) ? T ∗(u2)][Hn(−u2) ? H∗
n(u2)]

(3.10)

where T (u) is the FT of t(r), and H(u) is the FT of h(r). We now evaluate the

other term Ω2(u1,u2) which gives the power spectrum of the speckle [HH74]. For

two linear systems with input f(r), impulse responses hm(r), hn(r) and outputs

gm(r), gn(r) respectively, the cross-correlation of the outputs can be written in

terms of the cross-correlation of the inputs. Using this result and the right hand

side of Equation 3.9, we have [LA70]

Ω2(u1,u2) =
∑
m,n

F{|Rff (r1, r2) ?r1 hm(r1) ?r2 h∗n(r2)|2} (3.11)

where the subscripts r1 and r2 mean that the convolution operation is carried

out on the variable r1 and r2 respectively, the other variable being treated as a
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constant, and Rff (r1, r2) is the autocorrelation function of the object amplitude

f(r).

Now, Ω2(u1,u2), which is the power spectrum of the speckle, can be written as,

Ω2(u1,u2) =
∑
m,n

[Γ(u1,u2)Hm(u1)H
∗
n(−u2)]

? [Γ∗(−u1,−u2)H
∗
m(−u1)Hn(u2)]

(3.12)

where Γ(u1,u2) is the double FT of Rff (r1, r2).

Finally, if Equation 3.12 is rewritten with u replacing u1 and u2 to obtain

the average power spectrum of the speckle, Γ(u1,u2) becomes the average power

spectrum of the object amplitude, which has been shown to be a constant and is

equal to the total power in the signal [LA70]. The power spectrum of the speckle

is rewritten as

Ω2(u,u) = |Rtt(0)|2
∑
m,n

[Hm(u)H∗
n(u)] ? [H∗

m(−u)Hn(−u)]. (3.13)

From this equation Lowenthal and Arsenault [LA70] have shown that the manner

in which the speckle spatial frequencies are distributed does not depend on the

signal t(r), but only on the coherent transfer function of the system. Using this

result and modeling our system’s aperture as a 2D rect function, Equation 3.13

becomes

Ω2(u,u) = |Rtt(0)|2
∑

mx,my ,nx,ny

[
rect

(
ux−mx∆ux

wx
, uy−my∆uy

wy

)
rect

(
ux−nx∆ux

wx
, uy−ny∆uy

wy

)]

?
[
rect

(
ux−mx∆ux

−wx
, uy−my∆uy

−wy

)
rect

(
ux−nx∆ux

−wx
, uy−ny∆uy

−wy

)]

(3.14)

where u = uxx̂ + uyŷ, and ∆ux, ∆uy is the displacement of the aperture between

two exposures in the x and y directions respectively. wx is the width of the rect
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function in the x direction and wy is the width of the rect function in the y

direction. This reduces to

Ω2(u,u) = |Rtt(0)|2
∑

mx,my,nx,ny

[1− |ux −∆ux(m + n)|
wx −∆ux|m− n| ][1− |uy −∆uy(m + n)|

wy −∆uy|m− n| ].

(3.15)

If wx−∆ux|m−n| ≤ 0 or wy−∆uy|m−n| ≤ 0 then the entire expression goes to

0. In the limiting case of ∆ux = 0 and ∆uy = 0, the power spectrum of the speckle

is at its maximum, being the same as the power spectrum of the speckle given by

a single aperture. When ∆ux ≥ wx and ∆uy ≥ wy, so that the two positions of

the aperture do not overlap, the power spectrum of the speckle is reduced to half

the value of the limiting case [HH74]. However, the power spectrum of the image

does not follow this trend. It follows that for n exposures the power spectrum

of the speckle is 1
n

times that obtained using a single exposure. For maximum

efficiency we have set ∆ux = wx and ∆uy = wy. Since we are limited by the

finite extent of the FT of our DH, we are limited in the number of independent

exposures. It should be noted that the smaller the exposure the greater the loss

in resolution in the reconstructed image. However, using basic Fourier theory one

may deduce that the bandwidth of the reconstruction intensity is twice the extent

of the rect function. For a more thorough analysis of the optical system, please

refer to Lowenthal and Arsenault [LA70] and Hariharan and Hegedus [HH74].

Figure 3.2(b) illustrates how our simulations were performed. In order to relate

the digital system back to an optical one, Figure. 3.2(a) shows the optical system.

Here the object plane is the diffuse stormtrooper object, and the position of the

captured hologram is also shown. The first step is to simulate the propagation from

the hologram plane to the Fourier plane, from here on referred to as the Fourier

domain to distinguish it from the optical case, as shown in Figure. 3.2(b). This can

be achieved efficiently in one step using a single discrete linear canonical transform
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Figure 3.2: Schematic diagram of how an optical setup, (a), relates to our dis-

crete setup,(b). DLCT: discrete linear canonical tranform, IDFT: inverse discrete

Fourier transform, Ap.: Aperture, and AS: absolute value of the output squared.

(DLCT). A number of methods to efficiently implement this transform are outlined

by Hennelly and Sheridan [HS05a]. Of course it could also be achieved by Fresnel

transforming to a reconstruction plane, and then using a DFT to propagate to

the Fourier domain. The Fourier domain data are then filtered and then inverse

discrete Fourier transformed to the image plane where their intensities are stored.

This is repeated n times and the resulting n intensities are summed. It is noted

that a computational speed up can be attained using our knowledge of basic Fourier

theory. We know that the bandwidth of the reconstruction intensity is twice the
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extent of the rect function [see Equation 2.82 in Section 2.4]. This means that we

only need to pad each of the Fourier filters with zeros up to twice the size of the

aperture used. This ensures that as the aperture is reduced in size we achieve a

speed up in terms of the computational speed of the algorithm.

3.3 Metrics

In this section, we introduce a number of metrics to evaluate the effectiveness of our

technique. These metrics will be used in subsequent speckle reduction chapters.

The first metric we use measures the speckle content of speckle patterns and is

called the speckle index [Lim81, Goo06]. We use the speckle index to evaluate

the reduction in speckle after application of a speckle reduction technique. It is

calculated as the ratio of standard deviation to the mean in a homogenous area of

a speckle image (in this thesis a reconstructed DH)

α =
σ(I(m,n))

µ(I(m,n))
(3.16)

where σ(I(m,n)) denotes the standard deviation of the homogenous area I(m,n),

µ(I(m,n)) denotes the mean of this area, and m and n are numbers of pixels. The

closer the speckle index is to 0 the better the speckle reduction achieved.

We also introduce a metric to calculate the effect on resolution of our technique.

The resolution chart [see Figure. 3.3(a)] we use is modeled on the U.S. Air Force

(USAF) 1951 three-bar resolving power test chart. It is 2048 × 2048 pixels in

size (matching the resolution of our DHs). The smallest details on the chart [see

Figure. 3.3(b)] are just a single pixel in width. We define the resolution level as

R = 1/X, (3.17)

where X is the width of the smallest bars on the resolution chart that can be
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(a) (b)

Figure 3.3: (a) USAF 1951 3-bar resolving power test chart (2048 × 2048 pixels

in size), (b) zoomed in 115 × 115 pixel region of the chart showing the smallest

details on the chart.

resolved. A speckle reduction technique with given parameters (i.e., neighborhood

size for mean and median filters) is said to cause no loss in resolution if the small-

est three bars (both vertical and horizontal) can be resolved. The technique is

thus classified as being at resolution level 1
1
. It follows that if the smallest three

bars cannot be resolved, but the next smallest can, then the technique for given

parameters is classified as being at resolution level 1
2
.

Finally, we introduce a metric to quantify the effect of the method on the under-

lying image data in terms of edge preservation. To this effect an edge preservation

metric introduced by Sattar et al. [SFSL97] is used;

β =
Γ(∆s−∆s, ∆̂s− ∆̂s)√

Γ(∆s−∆s, ∆s−∆s)× Γ(∆̂s− ∆̂s, ∆̂s− ∆̂s)

, (3.18)

where ∆s(i, j) is a high pass filtered version of s(i, j) (the original test pattern

without added speckle) obtained using the standard approximation of the Lapla-

cian operator. Therefore, β is a normalised cross correlation between two Laplacian

images. ∆s(i, j) is the mean of ∆s(i, j), ŝ(i, j) denotes the speckle reduced image,
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(a) (b)

Figure 3.4: (a) A DH reconstruction of a coin object with added test image and

resolution strips, and (b) zoomed in section (a) showing the test image.

and

Γ(s1, s2) =
∑

(i,j)

s1(i, j)× s2(i, j). (3.19)

The range of possible values that β can take on is between −1 and 1. Squared

correlation describes the proportion of variance in common between the two vari-

ables and allows us to transform a correlation into a percentage (by multiplying

the resulting value by 100) [Rum76]. Therefore, we use the square of β and the

closer this is to 1 the better the edge preservation.

We have inserted the test image into a real reconstructed DH [see the top left

of Figure 3.4(a)]. The test image is a binary image containing curves and straight

lines in various orientations and is 256 × 256 pixels in size [see Figure 3.4 (b)].

As speckle is approximately additive in the natural logarithm, we add the test

image to the natural logarithm of the reconstructed DH wavefield and this is then

exponentiated. Care is taken to ensure that the maximum grayscale value of the

added test image after the exponentiation operation is still less than the maximum

value of the DH reconstruction. Having ground truth data (in the form of the test
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(a) (b)

Figure 3.5: The original reconstruction is shown in (a), and the result of applying

the DFF technique is shown in (b).

pattern without added speckle) allows us to quantitively evaluate the DFF.

3.4 Results and discussion

Figure 3.5 shows the results of the DFF technique applied to a DH of a stormtrooper

object. In Figure 3.5(a), the original reconstruction is shown. It is 2048 × 2048

pixels in size, and has a speckle index of approximately 1.0. The application of

the DFF to a reconstruction of this DH is shown in Figure 3.5(b). In this example

we have set the width of the aperture, h(r), to 256 pixels in size (resulting in 64

apertures used at the Fourier domain). This results in a reduced speckle index

of 0.2 and a resolution level of 1
4
. It is clear that the technique has succeeded in

reducing the speckle content in this reconstruction.

The effectiveness of the DFF is now quantified is terms of speckle index, res-

olution and edge preservation. The resolution chart is 2048 × 2048 pixels in size

(matching the resolution of our DHs) and is modeled on the USAF 1951 3-bar

resolving power test chart. Figure 3.6 (a) shows a zoomed in section (115 × 115
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(a) (b) (c)

Figure 3.6: Zoomed in results of resolution chart after application of the (a) the

DFF technique with aperture width of 512, (b) median filter with a neighborhood

size of 3× 3, and (c) mean filter with a neighborhood size of 3× 3.

pixels in size) of the resolution chart after application of the DFF technique with

aperture size of 512×512. Figures 3.6 (b) and (c) show the same zoomed in section

after application of the mean and median filters respectively (with a neighborhood

region sizes of 3 × 3). For the parameters given, all of these techniques have a

resolution level of 1
2
. In this manner we quantitatively measure the effectiveness

of the DFF against the mean and median filters.

A graph of the results of speckle index verses resolution loss for the DFF

technique, and the median and mean filters, is shown in Figure 3.7. The techniques

have been applied to a reconstruction of a DH of the stormtrooper figure. It shows

that the speckle index can be reduced by nearly half with no loss in resolution

using the DFF technique. In comparison, using either the median or mean filters

to achieve a similar reduction in speckle index will result in a drop to a resolution

level of 1
2
. At each resolution level the discrete Fourier filter consistently has a

lower speckle index than either the median or mean filters. It is important to

note that any level of speckle reduction can be achieved by a given technique, but
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Figure 3.7: Graph showing the speckle index against resolution results of DFF

technique (points are labeled with the size of the aperture width used), and the

median and the mean filters (points are labeled with the neighborhood sizes used).

this needs to be checked against the destructive effect the technique has on image

details.

We have also investigated the effect the DFF has on edges by using the edge

preservation metric introduced above. Figure 3.8 shows how the DFF performed

against the median and the mean filters. It has performed better than both the

mean and median filters in terms of edge preservation. For example, applying

the DFF with a 256× 256 pixel aperture to the coin DH with added test pattern

results in a speckle index of α = 0.1851 and an edge preservation of β2 = 0.0312.

In contrast, a mean filter with neighbourhood region size of 9 × 9 results in a

speckle index of α = 0.1805 and an edge preservation of β2 = 0.0059, and a

median filter with neighbourhood region size 9 × 9 results in a speckle index of

of α = 0.2120 and an edge preservation of β2 = 0.0011. In the given example all

methods were parameterized to give approximately the same speckle index and it
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Figure 3.8: Graph showing the speckle index against edge preservation results of

DFF technique (points are labeled with the size of the aperture width used), and

the median and the mean filters (points are labeled with the neighborhood sizes

used).

is clear that DFF has performed best [see Figure 3.8]. Please refer to Appendix

B for tables detailing the speckle index, resolution and edge preservation results

presented here. We have also investigated the use of overlapping filters, but found

that they produce no benefit in terms of a reduced speckle content [see Appendix

C].

We now look at the reconstructions of DHs after application of the DFF, the

mean filter and median filter. For comparison the original reconstruction without

any speckle reduction technique applied is once again shown in Figure 3.9 (a).

Next to it, the DFF technique is shown in Figure 3.9 (b). The aperture has been

set to 512× 512 pixels. This results in a resolution level of 1
2
. Figures. 3.9(c) and

(d) show the median and mean filter respectively (with neighbourhood regions

set at 3 × 3), also with resolution level of 1
2
. The DFF has successfully reduced
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the speckle to a lower level than either the median or mean filters for the same

resolution level. Figure 3.10 shows the same reconstructions, but this time we

have zoomed into a 100× 100 pixel area on the chest of the reconstruction of the

stormtrooper DH. This is a homogenous area of the DH and it is clear to see the

destructive effect the speckle causes by looking at Figure 3.10 (a). In an area which

should be smooth, we see that both bright and dark speckles are present. The DFF

has reduced the speckle content to 0.31 and thus significantly smoothed this region

[see Figure3.10 (b)]. At the same resolution level of 1
2

the median filter has only

reduced the speckle index to 0.51 and the mean filter to 0.39 [see Figs. 3.10 (c)

and (d) respectively].

The DFF is now tested on three DHs captured using three different archi-

tectures. All of the DHs are corrupted by fully developed speckle patterns and

therefore have a speckle index of approximately 1.0. The first DH is of a die ob-

ject and like the stormtrooper DH was captured using PSI [see Chap. 2.2.2.3]. A

reconstruction from it is shown in Figure 3.11(a). After application of the DFF

with aperture size 256 × 256 pixels the speckle index is reduced to 0.17 and the

resultant image is shown in Figure 3.11 (b). The second DH is of a 2 cent euro

coin and was captured using the in-line setup described in Chap. 2.2.2.1 [see Fig-

ure 3.11 (c)]. After application of the DFF with aperture size 256× 256 pixels the

speckle index is also reduced to 0.17. The resultant image is shown in Figure 3.11

(d). This illustrates the generic nature of the DFF. It can be applied to two dif-

ferent DH architectures and reduce the speckle in them in a consistent manner.

By filtering in the FT domain and using non-overlapping filters we ensure that

the speckle patterns that are added together are statistically independent. The

results we have gotten are close to the theoretical result we would expect to get

when N = 64 (the number of apertures when the size is set to 256× 256) and the

speckle index is calculated as α = 1
N

, which results in a speckle index of 0.125.
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(a) (b)

(c) (d)

Figure 3.9: Results of applying different speckle reduction techniques to a DH of a

stormtrooper figure. (a) The original reconstruction, (b) the DFF with an aperture

size of 512× 512, (c) median filter with neighbourhood region size of 3× 3 and (d)

mean filter also with neighbourhood region size of 3× 3.
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(a) (b)

(c) (d)

Figure 3.10: Zoomed in area of the chest of the stormtrooper DH showing (a)

the original reconstruction, (b) the DFF with an aperture size of 512 × 512, (c)

median filter with neighbourhood region size of 3× 3 and (d) mean filter also with

neighbourhood region size of 3× 3.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Original reconstructions for (a) PSI DH, (c) in-line DH and (e) off-axis

DH. (b), (d) and (f) show the DFF applied to these reconstructions.
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The third and final DH is also a stormtrooper figure, but this time captured us-

ing the off-axis setup described in Chap. 2.2.2.2[see Figure 3.11 (e)]. As this is

an off-axis DH the resolution reduced to 1024 × 1024. Applying the DFF with a

128× 128 aperture (so that once again N = 64) reduces the speckle index to 0.29

[Figure 3.11 (f)]. The reason for this is that the energy of the power spectrum of

this DH does not take up the full bandwidth in the Fourier domain. Therefore a

number of the apertures in the Fourier domain do not contribute to a reduction in

the speckle index. To illustrate this Figure 3.12 (a) shows the power spectrum of a

reconstruction of the PSI die object DH, Figure 3.12 (b) shows the power spectrum

of the in-line coin object DH and Figure 3.12 (c) shows the power spectrum of a

off-axis DH of the same object. It is clear from these figures that the energy is

spread over the entire Fourier domain for the PSI and in-line DHs, but that their

are large areas in which there is little or no energy in the Fourier domain for the

off-axis DH. This explains the higher speckle index for the off-axis DH.

Finally, we note that the DFF has been employed as the speckle reduction

technique in a number of areas in digital holography: segmentation [EMF+07],

extraction of shape information [EMH+06a, EMH+06b] and extended focus imag-

ing [EHN08].

3.5 Summary

A new DSP technique that reduces the speckle content in reconstructed DHs has

been presented. It was shown that the speckle index can be reduced by half with

no loss of resolution, and further reductions in speckle can be achieved with some

loss in resolution. Furthermore, the DFF technique was shown to be superior to

the mean and median filters in terms of edge preservation. An important benefit

of this technique is that it requires no preprocessing of the input DHs, and thus
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(a) (b) (c)

Figure 3.12: Power spectrum of a reconstruction of a (a) PSI DH, (b) in-line DH

(DC terms removed) and (c) off-axis DH.

can be applied to all existing DHs. See Appendix D, where we present some initial

work in which the DFF is used to reduce speckle content in DH reconstructions

of an object embedded between layers of biological tissue. In the next chapter

we offer a comprehensive analysis of applying wavelets to the problem of speckle

reduction in reconstructions of DHs.
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Chapter 4

Speckle reduction using wavelets

4.1 Introduction

This chapter presents a comprehensive analysis of applying standard wavelets to

the problem of speckle reduction in reconstructions of in-line DHs. Wavelets are

a good candidate for noise reduction as the wavelet transform is good at energy

compaction, with the resulting small coefficient more likely to be due to noise

and the large coefficient due to important signal features [Jan01]. These small

coefficients can be thresholded without overly affecting significant features of the

image.

In 2007, Do and Javidi [DJ07] reduced speckle in reconstructions of DHs us-

ing wavelets. However, the focus of their paper was directed towards the use of

independent component analysis in fusing multiple reconstructed holographic im-

ages together that are at different distances from the CCD and therefore they did

not quantify their speckle reduction results. Sharma et al. [SSJM08] also applied

wavelets to the problem of speckle reduction in DHs. However they only inves-

tigated using a single mother wavelet, the Symlet wavelet, and did not mention

anything concerning the resulting resolution of the reconstructions. Previously,
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wavelets were applied to the problem of speckle reduction in replay holograms

by Yu et al. [YAW96]. They used hard thresholding and an iterative method

to obtain an optimal threshold value. We investigate the use of both soft and

hard thresholding combined with four different thresholding schemes (i.e., fixed

form [DJKP95], balance sparsity norm [MZK01], square-root balanced sparsity

norm, and sqtwolog [YXLH06, LJYY07], which are all available in the Matlab

Wavelet toolbox [Inc06]). The naming convention adopted in this chapter is that

the threshold type can be either soft or hard, and that the thresholding scheme

can be fixed form, balance sparsity norm, square-root balanced sparsity norm, and

sqtwolog. We test our technique on real valued intensities of DH reconstructions.

We have quantified our results using a combination of three metrics; speckle index,

edge preservation and resolution. We note that part of the work in this chapter

has already been published in [MMM+08].

4.2 Analysis

Wavelets are families of orthonormal basis functions, but unlike Fourier transform

basis functions, they do not need to have infinite duration. The wavelet transform

can be expressed in its 2-D continuous form as

WTc,ξ,η{f(x, y)} =
1

c

∫ ∫
f (x− ξ, y − η) Ψ∗

(x

c
,
y

c

)
dxdy. (4.1)

Here f(x, y) represents the 2-D signal or function, Ψ(x, y) is the 2-D mother

wavelet, c is a global scaling factor and (ξ, η) are shift variables for the correla-

tion. All the wavelet decomposition functions can be found by scaling the mother

wavelet and shifting the signal. When the mother wavelet is dilated, it accesses

lower frequency information, and when it is contracted, it accesses higher frequency

information in the signal.
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Figure 4.1: The results of applying a threshold of 0.4 to an original signal (a).

(b) shows the signal after hard thresholding, and (c) shows the signal after soft

thresholding. Figure adapted from Matlab [Inc06]

We use the discrete stationary wavelet transform (SWT) [NS95] to reduce noise

in reconstructions of DHs corrupted by speckle. Wavelets have been used to suc-

cessfully to recover signals from data corrupted by additive Gaussian noise [LGO+96].

Although speckle is not an additive noise, it has been demonstrated that when a

speckled image is captured by a finite aperture (i.e., a CCD) and logarithmically

transformed, it can be approximated to additive Gaussian noise [AA76]. Discrete

SWT denoising involves decomposition, level dependent thresholding and recon-

struction by inverse transforming. The natural logarithm of the DH reconstruction

is taken before wavelet analysis is applied. Then a mother wavelet is chosen (in

these experiments we test the full set of wavelets available in the Matlab tool-

box [Inc06]) and the wavelet decomposition of the input is computed at level N .

The detail level coefficients for each level 1 to N are thresholded using hard and

soft thresholding [Don95]. Using hard thresholding the signal is x if |x| > t, and is

0 if |x| ≤ t. In contrast, soft thresholding sets to zero those elements of the signal
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whose absolute values are lower than the computed threshold, and then shifts the

nonzero coefficients towards 0. Therefore the soft threshold signal is sgn(x)(|x|−t)

if |x| > t and is 0 if |x| ≤ t (where sgn(x) is the signum function). Unlike hard

thresholding, soft thresholding does not produce discontinuities not already present

in the signal. This is illustrated in Figure 4.1 in which discontinuities are observed

at ±t in the hard thresholding case. The threshold value, λi,j, is calculated in each

orientation i (i = 1 =horizontal, i = 2 =vertical, i = 3 =diagonal) at each level

j (j = 1, 2, ..., N, where N = number of levels). The wavelet coefficients are then

thresholded using λi,j to remove noise energy. The appropriate λ (3×N) matrix

is obtained using one of four potential methods [Inc06]:

1) fixed form [DJKP95]:

λi,j = si,j

√
2log(Xi,j), (4.2)

where s is the standard deviation of detail coefficient in orientation i at level j and

Xi,j is the number of pixels in the detail coefficient in orientation i at level j,

2) balanced sparsity norm: λi,j is calculated so that the ratio of remaining sig-

nal energy to original signal energy (remaining + noise energy) is equal to the

ratio of the number of zero coefficients after thresholding and the total number of

coefficients,

3) square-root balanced sparsity norm: λi,j is the square-root of balanced sparsity

norm, and finally

4) sqtwolog:

λi,j =
√

2log(Xi,j), (4.3)

where Xi,j is the length (number of pixels) of the detail coefficients in orientation

i at level j. After thresholding, the signal is reconstructed using the original
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approximation coefficients at level N and the modified detail coefficients of levels

1 to N . Finally, the logarithmic operation is reversed by exponentiation.

4.3 Metrics

We use speckle index and edge preservation [see Section 3.3] in this chapter. We

also employ a new resolution metric in order to allow for automatic detection of the

image resolution using an FFT based search algorithm. This was not required in

the previous chapter as the resolution is easily predicted by the size of the aperture

used in the DFF.

The new resolution metric is in the format of two embedded resolution strip

patterns, one horizontal and one vertical [see the bottom left and the top right

of Figure 4.2 (a)] into a real DH. For both the horizontal and the vertical cases

there are 10 sub-strips (each 10 pixels wide) and each a sampled sine wave of

a different frequency. The ten strips present in the resolution chart are at ten

different spatial frequencies as shown in Figure 4.2 (b). For the vertical case, the

highest frequency can be seen at the top of Figure 4.2 (b) and corresponds to the

maximum frequency, fmax, of the image, which is given by 1
2sp

, where sp is the

pixel size of our camera (i.e., 9µm × 9µm in this example). Proceeding from the

top to the bottom of Figure 4.2 (b), the frequencies shown are given by c
10
× fmax,

where c takes integer values from 10 down to 1. The lowest frequency in the chart

is therefore 0.1fmax.

The resolution strips are embedded into a reconstructed DH in the same way

as the test image is embedded in Section 3.3, once again making sure that the

maximum grayscale value of the added strips after the exponentiation operation

is still less than the maximum value of the DH reconstruction. The strips are no

longer sampled versions of perfect sine waves due to the exponential operation.

101



Metrics Speckle reduction using wavelets

(a) (b)

Figure 4.2: (a) A DH reconstruction of a die object with embedded test image and

resolution strips and (b) zoomed in section of (a) showing a section of the vertical

resolution strips.

However they have fundamental frequencies at the same frequencies of the original

sine waves. Importantly, these strips are now corrupted by a coherent speckle

noise. In order to test for the presence of a particular frequency we isolate each

particular sub-strip (of which there are 10 for both the horizontal and vertical

cases) and create 10 1-D vectors by integrating along the 10 pixel width. This

allows us to check for resolution in DHs corrupted by speckle noise. The Fourier

transform of the 10 1-D vectors are computed and we search for the presence of

a peak in the fundamental frequency region for that sub-strip. If the peak has

a power greater than some predefined threshold, we conclude that the resolution

for this sub-strip has been maintained. Figure 4.3 (a) shows the presence of five

fundamental frequencies (resolution levels in the horizontal direction looking from

right to left). The predefined threshold we set corresponds to our own ability

to visually identify the sub-strips. In Figure 4.3 (b) a graph of the result of

searching for the presence of the fifth lowest fundamental frequency is shown. The

two highest spikes in Figure 4.3 (b) correspond to the fifth lowest fundamental
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(a) (b)

Figure 4.3: This figure shows presence of certain fundamental frequencies. (a)

Shows the horizontal resolution chart after speckle reduction, and (b) shows the

result of the check done to see if the fifth lowest fundamental frequency is present

(it is). The two highest spikes represent this frequency. Note the presence of the

DC term (in the middle) and another frequency due to the embedding process.

frequency in the chart. The DC terms at the zero frequency is also visible, plus

frequencies due to the embedding process. It should be noted that when searching

for the presence of frequencies, we begin with the lowest and search through to

the highest in sequence. The search is terminated when we encounter the first

frequency below the predefined threshold.

We have combined these three metrics in order to create an overall metric

that was particularly useful as over 2000 tests were carried out making a manual

inspection of the results very difficult. The overall metric, ω, is defined as

ω = (1− α)× β2 ×
(

hr + vr

2

)
, (4.4)

where hr is the horizontal resolution and vr is the vertical resolution. The overall

metric is a measure that incorporates all three metrics. We have assigned each
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of the individual metrics equal importance, and therefore a direct comparison of

different speckle reduction methods can be carried out. This allows us to decide on

a best performing wavelet and thresholding scheme and thus display the relevant

images. However, a summary of the results for each separate metric are also

provided in tabular form in the next section, and more complete results can be

found in Appendix F.

4.4 Results and discussion

Figures 4.4 and 4.5 show the results for the best mother wavelet from each fam-

ily for each level and for each thresholding scheme (i.e., fixed form [DJKP95],

balance sparsity norm [MZK01], square-root balanced sparsity norm, and sqt-

wolog [YXLH06, LJYY07]) for both soft and hard thresholding. The wavelet

families we tested are the Haar, Daubechies (Db), Coif, biorthogonal (bior) and

reverse biorthoganal (rbio) wavelets. The Db1, bior1.1 and rbio1.1 wavelets are

identical to the Haar wavelet, and as these performed best in the respective family

group, their results are omitted from the graph. We have plotted the results for the

best performing mother wavelet from each of the following families; Db, Coif, bior,

rbio, along with the Haar wavelet. Regardless of the chosen thresholding scheme,

or whether soft or hard thresholding was used, the best mother wavelets for each

family (omitting the bior1.1 and rbio1.1 mother wavelets) are almost consistently

Db2, Coif1, bior1.3, and rbio1.3. The only exception is the case for soft thresh-

olding using the sqtwolog thresholding scheme when Coif5 outperforms Coif1 [see

Figure 4.4 (d)]. From these results we see that the Haar mother wavelet con-

sistently outperforms all the other wavelets regardless of the chosen thresholding

scheme. There is a single exception to this when a sqtwolog thresholding scheme

is used for hard thresholding. Here the bior1.3 is a superior choice. However, we
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Figure 4.4: This results for soft thresholding using (a) fixed form, (b) balance

sparsity norm, (c) square-root balanced sparsity norm, and (d) sqtwolog.
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Figure 4.5: This results for hard thresholding using (a) fixed form, (b) balance

sparsity norm, (c) square-root balanced sparsity norm, and (d) sqtwolog. Note

that the overall metric, ω, for these results is lower by an order of magnitude than

for those of soft thresholding.
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noted that the overall results for this thresholding scheme are poor.

Our results indicate that soft thresholding outperforms hard thresholding in

all cases. The best soft thresholding overall metric result is 0.0478. This is for a

balance sparsity norm thresholding scheme and is achieved by the Haar wavelet at

detail level 5. This compares very favorably to the best overall metric result for

hard thresholding of only 0.009. This was achieved once again using Haar wavelet

and a balance sparsity norm thresholding scheme, but this time at detail level 2.

It is noted that for the soft thresholding results a trend emerges; as the detail

levels increase so does the overall metric, ω, for all of the mother wavelets. The

same trend is not found for hard thresholding. A possible reason for the poor

performance of the hard thresholding scheme is that the thresholds are computed

in a level dependent fashion. This means that level j can in fact reduce the

speckle index more than level j +1 depending on where and in what level of detail

the majority of the speckle noise resides. Consider the case where a threshold

x11 is applied to the horizontal detail of a level 1 decomposition. For level 2

decomposition, thresholds y11 and y12 are applied to horizontal details at level 1 and

2 respectively. x11 > y11 and x11 > y12. If speckle resides in the intermittent band

of frequency, then it is kept rather than lost by the remove or preserve policy of

hard thresholding. Using hard thresholding also means that there is the potential

for false positive removal too. In this case high frequency information such as

edges can be inadvertently removed. Soft thresholding reduces those intermittent

detail values rather than keeps or removes them entirely. We also note that in the

hard thresholding case the overall metric values do not change significantly after

detail level 2, with the exception of a fixed form thresholding scheme when the

values do not change significantly after detail level 3. Figures 4.6 and 4.7 show the

best results for both soft thresholding and hard thresholding respectively, for each

wavelet family tested. We have used an in-line DH that is 2048 × 2048 pixels in
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size. We also show the best reconstructions (in terms of ω) for all four thresholding

schemes using both soft thresholding [see Figure 4.8] and hard thresholding [see

Figure 4.9].

Figure 4.10 shows the results for the best performing soft thresholding wavelet

(Haar using balance sparsity norm scheme) and the best performing hard thresh-

olding wavelet (Haar using balance sparsity norm scheme) against the mean filter,

median filter and the DFF [MHM+07]. The results clearly show that in terms of

the overall metric, ω, soft and hard thresholding are superior to all three other

methods. In particular it is noticeable that for soft thresholding ω improves sig-

nificantly at each subsequent detail level. The DFF outperforms both the mean

and median filters and performs comparatively against the best hard thresholding

wavelet, however it is significantly worse than the best soft thresholding wavelet.

The mean filter slightly outperforms the median filter. Table 1.1 shows the in-

dividual metric values, including the finer speckle index, edge preservation and

resolution results, for the best soft thresholding wavelet, the best hard threshold-

ing wavelet, the median filter, the mean filter and the DFF. It is interesting to

note that both soft and hard thresholding achieve full resolution [see Table 1.1] for

all levels (except detail level 1 in the case of soft thresholding). We also note that

the speckle index reduces at each subsequent level for soft thresholding, but this

trend is not found in the case of hard thresholding.

Looking at Table 5.3, it appears that the Haar wavelet using balance sparsity

norm scheme and soft thresholding should be the obvious choice when choosing

a speckle reduction technique. In fact, the excellent results the Haar wavelet

achieves are due to the structure of the resolution charts and and test pattern.

Both consist mainly of horizontal and vertical lines that particularly suit the form

of the Haar mother wavelet, which is a step function. Figure 4.11 demonstrates

this by showing the when the test pattern is replaced by an image of Lena, the Haar
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: The best of each wavelet family using soft thresholding. In all cases

the best performing thresholding scheme was a balance sparsity norm one at detail

level 5. (a) original reconstruction (no filtering), (b) Haar, (c) Db2, (d) Coif1, (e)

bior1.3, and (f) rbio1.3.
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: The best of each wavelet family using hard thresholding. In all cases

the best performing thresholding scheme was a balance sparsity norm one at detail

level 2. (a) original reconstruction (no filtering), (b) Haar, (c) Db2, (d) Coif1, (e)

bior1.3, and (f) rbio1.3.



Results and discussion 111

(a) (b)

(c) (d)

Figure 4.8: The best results for soft thresholding using the following thresholding

schemes: (a) fixed form, (b) balance sparsity norm, (c) square-root balanced spar-

sity norm, and (d) sqtwolog. For soft thresholding the best result is consistently

Haar detail level 5, regardless of the thresholding scheme used. Note that in (a)

and (d) the resolution bars are not visible. In fact they are still present, but have

been adversely affected by fixed form and sqtwolog thresholding [see Appendix F

for more details].
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(a) (b)

(c) (d)

Figure 4.9: The best results for hard thresholding using the following thresholding

schemes: (a) fixed form (detail level 5), (b) balance sparsity norm (detail level 2),

(c) square-root balanced sparsity norm (detail level 1), and (d) sqtwolog (detail

level 5). Note that one again the resolution bars are not visible in (a) and (d).

They are still present, but have been adversely affected by fixed form and sqtwolog

thresholding [see Appendix F for more details].
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Technique Detail level

/ Aperture

Speckle in-

dex

Edge

preser-

vation

Resolution

(H,V)

Overall

metric (ω)

Haar (Soft) 1 0.5238 0.0083 0.7, 0.7 0.0028

Haar (Soft) 2 0.3355 0.0545 1, 1 0.0362

Haar (Soft) 3 0.2727 0.0585 1, 1 0.0425

Haar (Soft) 4 0.2461 0.0614 1, 1 0.0463

Haar (Soft) 5 0.2374 0.0626 1, 1 0.0478

Haar (Hard) 1 0.5388 0.0186 1, 1 0.0086

Haar (Hard) 2 0.7253 0.0328 1, 1 0.0090

Haar (Hard) 3 0.7515 0.0324 1, 1 0.0081

Haar (Hard) 4 0.7503 0.0324 1, 1 0.0081

Haar (Hard) 5 0.7501 0.0322 1, 1 0.0080

Median filter 3× 3 0.5121 0.0055 0.5, 0.5 0.0013

Median filter 5× 5 0.3410 0.0011 0.3, 0.3 0.000022

Median filter 7× 7 0.2593 0.000047 0.2, 0.2 0.0000063

Median filter 9× 9 0.2120 0.0011 0.1, 0.1 0.000009

Mean filter 3× 3 0.3945 0.0045 0.5, 0.5 0.0014

Mean filter 5× 5 0.2685 0.0031 0.3, 0.3 0.000068

Mean filter 7× 7 0.2124 0.0052 0.2, 0.2 0.000082

Mean filter 9× 9 0.1805 0.0059 0.1, 0.1 0.000048

DFF 1024× 1024 0.5398 0.0177 0.8, 0.8 0.0065

DFF 512× 512 0.3156 0.0262 0.4, 0.4 0.0072

DFF 256× 256 0.1851 0.0312 0.2, 0.2 0.0051

DFF 128× 128 0.1142 0.0166 0.1, 0.1 0.0015

Table 4.1: Results for the best soft thresholding wavelet, best hard thresholding

wavelet, median filter, mean filter and the DFF.
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Figure 4.10: The results for the best soft thresholding wavelet (parameter indicates

detail level), best hard thresholding wavelet (parameter indicates detail level), DFF

(parameter indicates aperture size), mean filter (parameter indicates neighbour-

hood region size) and median filter (parameter indicates neighbourhood region

size). Note that the best soft thresholding wavelet is the Haar mother wavelet

using a balance sparsity norm thresholding scheme and the best hard thresholding

wavelet is also the Haar mother wavelet using a balance sparsity norm thresholding

scheme. DFF, discrete Fourier filter.

wavelet performs very poorly (β2 = 0.008) in comparison to the DFF (β2 = 0.143),

mean filter(β2 = 0.047) and median filter (β2 = 0.025). This illustrates the fact

that care needs be taken in order to make sure that the choice of wavelet matches

the input well.

Figure 4.13 shows the resultant reconstructions, in terms of the best ω value,

for each technique tested. These results suggest that Figure 4.13 (b) (i.e., Haar

wavelet at detail level 5 using soft thresholding and a balanced sparsity norm

thresholding scheme) is superior to all the other techniques investigated when
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: Images of the best performing (a) Lena image, (b) Lena image cor-

rupted with speckle, (c) Haar wavelet, with soft thresholding and a balance spar-

sity norm scheme results in the worst edge preservation value of 0.008, (d) DFF

(aperture size 512 × 512) achieves the overall best edge preservation of 0.143, (e)

mean filter (neighbourhood size 9 × 9) results in edge preservation of 0.047, and

(f) median filter (neighbourhood size 9× 9) results in edge preservation of 0.025.



Results and discussion Speckle reduction using wavelets

compared using our overall metric, which takes into account not only speckle index,

but also the adverse impact on edges and resolution too. However, we also note

that the reconstruction in Figure 4.13 (b) has a reduced speckle index of 0.2374,

whereas all the other reconstructions have higher speckle indexes, and therefore,

qualitatively it also looks better. This difference would not be as noticeable if all

images were displayed with equivalent speckle indices.

In Figure 4.12 we show the results for the best performing thresholding scheme

(balanced sparsity norm thresholding) using soft thresholding in terms of speckle

index [see Figure 4.12 (a)] and edge preservation [Figure 4.12 (b)]. The speckle

index results decrease (improves) from detail level 1 through to detail level 5 and

the edge preservation results increase (improve) in the same manner. The only

exception is a decrease for the Db2 mother wavelet between detail level 4 and detail

level 5. A graph for resolution is not shown as full resolution (both horizontal and

vertical) is achieved by all wavelets from detail level 2 onwards. At detail level 1,

the Haar and rbio1.3 wavelets have a horizontal and vertical resolution of 0.7, and

the Db2, Coif1, and Bior1.3 have a resolution of 0.6. A full list of results for the

best performing soft thresholding wavelet, the best hard performing thresholding

wavelet, the median filter, the mean filter and the DFF is shown in Table 14.

It is important wavelets with DHs that have been captured using other optical

architectures. Therefore, we have tested them on phase-shifting interferometry

(PSI) [YZ97, MHM+07] DHs and off-axis DHs. Our PSI DHs are, like our in-line

DHs, 2048× 2048 pixels in size. The result of applying the best soft thresholding

wavelet (Haar at detail level 5 using a balanced sparsity norm scheme) is shown in

Figure 4.14 (a) and (b). While the technique performs well for PSI, it is clear that

using the same parameters the technique has not performed well for the off-axis

case [see Figure 4.14 (c) and (d)]. The reconstruction is blurred, the explanation for

which is that the off-axis DH, at 1024×1024 pixels in size, has only a quarter of the
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Figure 4.12: The results for soft thresholding and the best performing wavelet

thresholding scheme (balanced sparsity norm thresholding) in terms of (a) speckle

index, and (b) edge preservation.

resolution of the PSI DH. Furthermore, in the case of off-axis digital holography,

objects must be placed at much greater distances from the CCD resulting in a

larger speckle size [see Section 2.2.2.2]. Finally, in Figure 4.15 we show the result

of the best soft thresholding wavelet applied to two in-line DHs [see Figure 4.15

(b) and (d)] and a PSI DH [see Figure 4.15 (f)]. The benefit of speckle reduction

can be readily seen in the case of the PSI DH in that the lego logo is visible in

Figure 4.15 (f) and not in the unprocessed version [see Figure 4.15 (e)].

Soft thresholding optimally recovers a signal from data corrupted by additive

Gaussian noise [Don95]. We therefore expected it to perform better than hard

thresholding and the results presented here corroborate that. The best of the Db,

bior and rbio families usually give the same result as the Haar mother wavelet.

Therefore, the only real alternative to the Haar mother wavelet is the Coif family

of wavelets. However, in our tests the Haar mother wavelet has outperformed the

Coif family of wavelets across every thresholding scheme. Although Figure 4.4
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: This figure shows (a) the original coin DH, and the best result in

terms of the overall metric, ω, for (b) Haar wavelet at level 5 (using soft threshold-

ing and a balance sparsity norm scheme, (c) Haar wavelet at level 2 (using hard

thresholding and a balance sparsity norm scheme, (d) mean filter (neighbourhood

size 3 × 3), (e) median filter (neighbourhood size 3 × 3), and (f) discrete Fourier

filter (aperture size 512× 512).
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(a) (b)

(c) (d)

Figure 4.14: Effect of applying the wavelet plus thresholding scheme found (Haar

at detail level 5 using a balanced sparsity norm scheme and soft thresholding) to a

PSI DH and an off-axis DH. (a) original reconstruction of the PSI DH (no filtering),

(b) wavelet filtered version of (a), (c) original reconstruction of an off-axis DH, and

(d) wavelet filtered version of (c).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Effect of applying the wavelet plus thresholding scheme found (Haar at

detail level 5 using a balanced sparsity norm scheme and soft thresholding) to two

more in-line DHs and another PSI DH. (a) and (c) are the original reconstruction

of in-line DHs (no filtering), (b) and (d) are wavelet filtered versions of these, (e)

is the reconstruction of a PSI DH, and (f) wavelet filtered version of (e).
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(b) indicates that there is a large difference between the best performing wavelet,

the Haar wavelet, and the worst performing wavelet, Coif1, qualitative viewing of

Figure 4.6 (b) and (d) suggests a strong similarity between the results. The success

of the Haar wavelet can be attributed to the fact that the inserted test image

used to calculate edge preservation is made up of a large number of straight edges.

Also, the resolution bars are all vertical and horizontal straight edges. As the Haar

wavelet is a step function, it matches the input image well. This was demonstrated

when we switched the test pattern used for edge preservation calculation with an

image of Lena [see Figure 4.11] resulting in the Haar wavelet performing performing

worse than the DFF, mean and median filters. In general, the performance of any

wavelet will depend on how well the mother wavelet matches the input signal.

Therefore, depending on the input image that needs to have speckle reduced,

another wavelet other than the Haar could be more suitable.

4.5 Summary

We have presented the first comprehensive analysis of applying wavelets to the

problem of speckle reduction in reconstructions of in-line DHs. In the current set

of tests, the Haar wavelet using soft thresholding and a balanced sparsity norm

thresholding scheme was shown to be superior to the DFF technique, and the mean

and median filters in terms of speckle reduction, edge preservation and resolution.

However, we note that this was in large part due to the choice of resolution charts

and test pattern used to calculate edge preservation. Qualitative results were also

provided for PSI DHs and off-axis DHs. An important benefit of using wavelets

(and the DFF, mean and median filters) is that no preprocessing of the input DHs

is required, and thus they can be applied to all existing DHs. In the next chapter

we introduce a 3D filtering technique that successfully reduces speckle using a
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convolution based framework and Gaussian filtering on DH 3D intensity fields.
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Chapter 5

Speckle reduction using three

dimensional filtering

5.1 Introduction

In this chapter we report on a new DSP technique that reduces speckle in re-

constructions of DHs. This is achieved by convolving the 3D intensity pattern

(the intensity of the propagated DH at a series of different distances) with a 3D

point spread function in all three dimensions (x,y,z ). This 3D filtering method is

based on the fact that the addition of different independent speckle images on an

intensity basis reduces the speckle content.

We begin by investigating the most basic 2D case, (x,y), where the DH recon-

struction planes are laterally shifted and added together. If the shift is greater

than a speckle correlation area (average speckle size), then the overlying speckle

patterns will be statistically independent [see Section 2.3.4]. Adding together a

number of shifted copies of the 2D intensities, each differently weighted in the

sum, may be described by a 2D convolution. Convolution provides a framework

for the application of different kinds of filters, e.g., Gaussian filter. Convolution
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also provides a framework for extension to the case of 3D filtering. In this case we

reconstruct a series of intensities at a range of different distances. If the sampling

distance along z is at least as large as the speckle size in the z direction we may

assume that each reconstruction has an independent speckle pattern.

It is important to note that the idea of adding shifted intensities for speckle

reduction in holography has precedent. In 1975, Gama [Gam75] used a vibrating

source during optical replay of holographic reconstructions of diffuse objects to

reduce the speckle contrast pattern. He showed that for certain classes of objects,

resolution was not affected. This was true when the object used was a grating

and the source was vibrated in a direction parallel to the lines of the grating.

Gama implemented his technique by reflecting the hologram reconstruction beam

off a mirror that was attached to a loudspeaker to create the needed oscillations.

Thus the oscillating image was time averaged. We can effectively simulate this

vibration numerically when we average along particular vectors in the 2D plane.

We note that shifting the object wavefield in the reconstruction plane of a DH

is exactly equivalent to tilting the reference beam during replay of an optical

hologram [Kre05].

Recently, Pen et al. [PXL+11] introduced a method to reduce coherent noise

in digital holographic phase contrast microscopy by slightly shifting the specimen

under investigation and at each shift capturing a DH, each with different speckle

pattern. By adding reconstructions from these DHs together the speckle content

was reduced. Another method by the same group introduced an approach based on

polarization to reduce speckle noise in off-axis DHs [XZR+11]. Once again multiple

DHs are obtained by rotating the linear polarization state of both illumination

and reference beams simultaneously. Speckle is suppressed by adding together

reconstructions from these DHs on an intensity basis. Nomura et al. [NONN08]

proposed a different method of reducing speckle by superposing the intensities of
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reconstructed DHs recorded at different wavelengths. They used a wavelength-

tunable laser and they captured their DHs in the range 567 to 624 nm, with

an interval of 8nm. They then added together reconstructions from each of the

captured DHs on an intensity basis, thus reducing the speckle content.

We propose to reduce speckle in a similar way, by convolving the reconstructed

wavefield intensity in the third dimension, i.e., by modifying the distance parame-

ter (or wavelength-distance product, λ×d) used in a series of different reconstruc-

tions rather than capturing a series of different holograms. There is an important

distinction between the method proposed by Nomura et al. [NONN08] and the

method that we are proposing. In the former cases each recording with a differ-

ent wavelength produces an identical reconstructed image with an independent

speckle pattern. In our case reconstructing the same recorded DH using a series

of different distances gives independent speckle patterns but also defocuses the

reconstructed image. A drawback of the approaches by Pen et al. [PXL+11], Xiao

et al. [XZR+11], and Nomura et al. [NONN08] is that they all require the capture

of multiple DHs and therefore are not suited to the capture of dynamic scenes.

Our technique does not suffer the same drawback.

To the best of our knowledge this is the first time that 3D filtering of a re-

constructed speckle field has been investigated. The resulting degradation of the

image produced by 3D filtering is investigated using a resolution chart. The tech-

nique does not require any change to the optical apparatus for capturing DHs and

can therefore be applied to all existing DHs. Finally, we note that the work in this

chapter has been accepted for publication in Optics Communication [MHM13].
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5.2 Analysis

An analysis of the technique is now presented. In Section 5.2.1 the convolution

framework, upon which our technique is built, is discussed. Then we address

the issue of generating a 3D signal along with the required sampling intervals

needed for convolving such a signal [see Section 5.2.2]. The differences between

reconstruction with the direct and spectral methods and possible implications for

our approach are treated in Section 5.2.2.1. Then in Section 5.2.3 we discuss

speckle size in 3 dimensions and compare the expected sizes given by theory to the

sizes numerically calculated using autocorrelation in all three dimensions. Finally,

the model we have developed is presented Section 5.2.4.

5.2.1 Convolution and filtering

Convolution of 2D signals f and g can be written as

(f ∗ g)(x, y) =

∫ ∞

−∞

∫ ∞

−∞
f(u, v)g(x− u, y − v)dudv, (5.1)

where u and v are position variables. We can convert this to the discrete case and

let f represent the image and g the kernel, and now in order to differentiate the

continuous case from the discrete case there is a change in variable names to r and

s for the position variables. The output image, h[x, y] is defined as

h[nx, ny] = f [nx, ny] ∗ g[nx, ny] =
∞∑

r=−∞

∞∑
s=−∞

f [r, s]g[nx − r, ny − s]. (5.2)

In practice the convolution is calculated over finite intervals [see its 3D version

in Equation 5.4 below] where the summation covers the range of samples −Nx/2

to (Nx/2) − 1 in the x direction and (−Ny/2) to (Ny/2) − 1 in the y direction.

In general the discrete convolution of two signals f and g with common sampling
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intervals Tx and Ty and number of samples (Nxf, Nyf) and (Nxg,Nyg) will also

have the sampling intervals Tx and Ty but will have a number of samples (Nxf +

Nxg − 1, Nyf + Nyg + 1). If both f and g have large dimension the convolution

can be implemented in a fast straightforward manner by first zero padding both

f and g up to a size (Nxf + Nxg− 1, Nyf + Nyg + 1), then implementing an FFT

algorithm to both. The results are multiplied and an inverse FFT is computed.

This is possible as convolution in the spatial domain reduces to multiplication in

the Fourier domain [see Section 2.2.2.4]. Alternatively if one of, or both, f and g

have small dimensions, direct implementation of Equation 5.2 over finite intervals

can be calculated in an efficient time. The conv2 function in MATLAB [MAT04],

which we make use of in the results section of this chapter, is an example of such

an algorithm.

Convolution in 2D is often used in image processing to reduce noise. However,

as we are using DHs, it is possible to create a 3D signal by calculating the intensity

pattern at a sequence of different distances within a certain range around the

correct object distance. For such a signal we can perform 3D filtering using 3D

convolution with a suitable 3D kernel. 3D convolution in the continuous case can

be written as

(g ∗ f)(x, y, z) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(u, v, w)g(x− u, y − v, z − w)dudvdw, (5.3)

and the discrete bounded case can be formulated as

h[nx, ny, nz] =

Nx
2
−1∑

r=−Nx
2

Ny
2
−1∑

s=−Ny
2

Nz
2
−1∑

t=−Nz
2

f [rTx, sTy, tTz]g[nxTx−rTx, nyTy−sTy, nzTz−tTz],

(5.4)

where f is the 3D signal, g the 3D kernel and Tx, Ty and Tz the sampling periods

in the (x,y,z ) directions, respectively.
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d

d -Tz d +Tz

+

DH

DH reconstruction 
to distance d

DH reconstruction 
to distance d +Tz

Speckle 
reduced DH 
reconstruction

Figure 5.1: Visualisation of the process of filtering in 1D in the z direction. Pic-

tured are the three reconstructions given by distances d, d − Tz, and d + Tz. A

speckle reduced reconstruction is shown after the addition of these reconstructions

on an intensity basis. We note that in reality d is much larger with respect to Tz

than depicted here.

Figure 5.1 illustrates the idea in which three reconstructions are computed using

d, the correct reconstruction distance, d−Tz, and d+Tz, where Tz is the step size

needed to produce a statistically independent speckle pattern. All three intensity

reconstructions are added together (and the result divided by three) to produce

a speckle reduced image. In this case the signal g(x, y, z) = Rect(z/2Tz) and

the discrete kernel matrix is a simple block filter ([1, 1, 1]1
3
). This example shows

one dimensional filtering along the z direction only. Instead of using a hard edge

filter, we can decide on a kernel based on important image feature directions, use a

Gaussian filter, or other image processing filters such as a Laplacian filter. For the
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Method Tx Ty Tz

Direct dλ
Nx∆ξ

dλ
Ny∆η

|d( 1
1+ dλ

min(Nx,Ny)2min(∆ξ,∆η)2

)− d( 1
1− dλ

min(Nx,Ny)2min(∆ξ,∆η)2

)|

Spectral ∆ξ ∆η |d( min(Nx,Ny)

min(Nx,Ny)+1
)− d( min(Nx,Ny)

min(Nx,Ny)−1
)|

Table 5.1: Direct and spectral reconstruction method parameters. Tx: Sampling

interval in x, Ty: Sampling interval in y, Tz: Sampling interval in z (depth of

focus), ∆ξ: sensor pixel size in x, ∆η: sensor pixel size in y, Nx, Ny: number

of pixels on the sensor in x and y respectively, d: distance that we numerically

propagate, λ: wavelength of the light used.

images and kernels of interest in this chapter we found the most efficient method of

calculating the filtered image was to numerically reconstruct the intensity patterns

at a sequence of different distances. We then implement 2D convolution on each of

these images independently (we deal with kernels that are separable in x, y and z ),

and finally to multiply each resulting image one by a specific weight that depends

on the z component of the 3D kernel, before adding them all together. We note

that for more complicated larger filters or for specific directional filters it may be

more efficient to use a 3D FFT algorithm in which the product of the 3D DFT

of the intensity stack and the 3D DFT of the kernel is computed and then an

inverse 3D DFT operation applied. Finally, a 2D slice can be extracted from this

3D signal to retrieve the filtered image.

5.2.2 Numerical computation of the 3D intensity field

Discrete convolution with a 3D filter kernel requires a discrete 3D signal. When

constructing such a signal, careful consideration needs to be given to the discrete

sampling intervals in all three dimensions. We must also take into account that

the sampling intervals of a reconstructed DH differ depending on the choice of

reconstruction algorithm chosen. Table 5.1 gives the equations used to calculate
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sampling intervals in the x, y and z directions [Kre05]. As can be seen from

the table, the sampling intervals in x and y (Tx and Ty) are proportional to the

reconstruction distance, d, when using the direct method and is the same size as

the sensor pixels when using the spectral method. If we wish to upsample the

reconstructed wavefield, i.e. to achieve a smaller Tx and Ty, different methods

may be applied in the case of the two algorithms. In the case of the direct method

we can simply zeropad the DH before reconstructing; Nx and Ny will increase and

therefore Tx and Ty will decrease accordingly. In the case of the spectral method if

we first upsample the DH we will consequently upsample the reconstruction since

the sampling interval is conserved. This can be achieved by zeropadding in the

Fourier domain. In both cases the output window will remain unchanged and only

the sampling interval will be reduced. The output window size for both methods

is discussed in more detail in the next subsection.

In order to decide which sampling interval we should choose along the z direc-

tion, we use the concept of depth of focus given by Kreis [Kre05]. Our assumption

is that the depth of focus is related to the rate of change along the z direction

and therefore the correct sampling rate in the Nyquist sense. In order to ensure

sufficient sampling, the 3D intensity signal should be made up of a number of 2D

reconstructions that are centered on the optimum reconstruction distance and are

separated in space by Tz. Before computing these 2D reconstructions the original

DH should have been zero-padded sufficiently (in the spatial domain when using

the direct method of reconstruction and in the spatial frequency domain when

using the spectral method). For our calculations we further reduced sampling in-

terval, Tz, to a quarter of its size in order to further ensure sufficient sampling of

the 3D intensity field. As can be seen in Table 5.1 Tz needs to be smaller to closer

distances than at distances further out, as the wavefield changes more quickly at

short distances. Nonetheless, we choose a constant value of Tz determined by the
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reconstruction distance, d, and the length of the shortest side of the sensor. We

believe this is acceptable because Tz does not appreciably change over the range

in which we calculate our discrete 3D signal.

5.2.2.1 Direct and spectral methods of reconstruction

We now briefly discuss the differences between the direct and spectral methods of

reconstruction in the context of calculating a 3D field. Both methods calculate

the Fresnel transform in different ways, allowing us to numerically simulate free

space propagation of light in the paraxial approximation. They differ primarily in

the output range that they display and the sampling rate at the output plane. For

the direct method the output is proportional to the distance, whereas the spectral

method has an output range equal to the size of the CCD camera. However, the

manner in which these approaches calculate planes in the z direction is important

for the work presented in this chapter. Figure 5.2 (a) shows a visualisation of

the direct reconstruction method. The output range is proportional to the recon-

struction distance λd/Tx in the x direction and λd/Ty in the y direction. For the

spectral method, shown in Figure 5.2 (b), the output window is the width of the

CCD NyTy [HKMP10]. These details are important when it comes to choosing a

reconstruction method to use for 3D filtering. A general rule of thumb is that if the

object is much larger than the CCD, then the direct method should be employed.

Otherwise costly zero padding of the DH needs to be done as a pre-processing

step before reconstruction to ensure no aliasing. There are NxNy lines emanating

from the DH and cutting through the x,y,z coordinate system; in the case of the

direct method they emanate from the centre and spread out and for the case of

the spectral method they are all horizontal and parallel to each other. These lines

therefore cut through and sample the 3D speckle field differently.

In Section 2.3.3 we discussed the size and shape of speckle grains in digital
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(a)

(b)

Figure 5.2: Output width when reconstructing with the (a) direct method and

the (b) spectral method. Also shown is the difference between how both methods

average along lines when we sum a series of reconstructions in the z direction. In

the case of the direct method averaging occurs along lines that are parallel with

the direction of the speckle, whereas in the case of the spectral method the lines

cut through the speckle. Adapted from Hennelly et al. [HKMP10].
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holography [PTZ96]. Assuming this holds true for both the direct and spectral

methods, Figure 5.2 (a) shows that for the direct method the speckle grains line

up along the lines emanating from the CCD plane and therefore we expect that

the calculated speckle size should closely match that given by the theory [LK90].

However, for the spectral method [see Figure 5.2 (b)] the lines cut through the

speckle grains and thus we expect that the calculated speckle size may be smaller

than that predicted by theory. In the next section we test this hypothesis and

discuss how it affects our filtering algorithm.

5.2.3 Speckle size and independent speckle patterns

The addition of independent speckle patterns on an intensity basis will reduce the

speckle index by 1
√

N where N is the number of independent speckle patterns

[see Section 2.3.4]. As we discussed in the previous section, a discrete convolution

returns a value for a particular image sample that is given by the weighted sum

of some region of the input image samples. In the case of a 3D convolution, this

region has three dimensions. The extent of this region in each dimension and

the weighting values depend on the extent and type of the kernel that we use for

convolution. In order to ensure a reduction in the speckle index by an amount

1/
√

N , N statistically independent speckles need to fit inside this region, and

therefore to achieve this reduction, the physical extent of the kernel should be at

least as large as the average speckle size in the given dimension. Therefore when

choosing an appropriate kernel in order to provide a desired speckle reduction, our

first consideration must be the size of the average size of the speckles in the image

in all three dimensions and this will directly influence our choice of the kernels

extent in these three dimensions.

Table 5.2 gives expressions for the theoretical speckle size in the x and y direc-

tions [Goo06] and the z direction [LK90]. As long as d is large compared with the
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Direction Equation

x Sx = 0.9λ( d
WCCDx

)

y Sy = 0.9λ( d
WCCDy

)

z Sz = 7.31
√

2λd2√
WCCDx

4+WCCDy
4

Table 5.2: Speckle size. Sx, Sy and Sz are the speckle sizes in x,y and z respectively.

d: distance of the object to the sensor, λ: wavelength of the light used, WCCD:

width of the sensor in a particular direction.

size of the sensor, then the speckle will have a much greater size in the z direction

than in the x or y directions.

We employ auto-correlation to determine the physical size of the speckle in a

numerical reconstruction of a digital hologram of a planar test object (a resolu-

tion chart object which is discussed in detail in Section 5.3) and to test whether

this approximates the theoretical values in Table 5.2. A uniform square feature

in the reconstructed image is extracted and auto-correlated. It is clear from Ta-

bles 5.1 and 5.2 that the direct method produces a reconstructed image with a

sampling interval approximately equal to one average speckle size. For the given

parameters it turns out that the same us true for the spectral method. In order

to ensure an accurate auto correlation we decided to upsample the reconstruction.

We interpolated the reconstruction of the DH by a factor of 4. For the resolution

chart hologram the expected speckle size in the x and y directions is 7.16µm and

9.59µm, respectively. Application of the direct method to this hologram without

interpolation provides a reconstructed image with a sampling interval of 7.96µm

and 1.06µm in x and y, which is approximately equal to the speckle size in x and

y. After interpolation, the sampling interval reduces to 1.99µm and 2.66µm, which

is significantly less than the speckle size. Similarly direct application of the spec-

tral method to the hologram without interpolation provides a reconstructed image
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Direction Theoretical Size Direct method Spectral method

x 7.16µm 7.88µm 7.88µm

y 9.59µm 9.59µm 9.59µm

z 729µm 638µm 396µm

Table 5.3: Theoretical and measured speckle sizes for the USAF resolution chart

DH

with a sampling interval of 6.45µm and 6.45µm in x and y (as the pixel sizes have

equal extent in x and y), which once again is close to the size of the speckle in x

and y. After interpolation the sampling interval reduces to 1.61µm and 1.61µm,

respectively, which is, again, significantly less than the speckle size.

For the 2D case the average 2D speckle size was calculated by measuring the

width of the autocorrelation peak of the intensity in the reconstruction plane [Kre05,

Goo06] [see Section 2.3.2]. We found that the width at half the height of the peak

matched the theoretical value well for the speckle size in the x and y directions [see

Figures 5.3 and 5.4] and that there were no differences in the calculated sizes be-

tween the direct and spectral methods of reconstruction [see Table 5.3]. This was

expected since both methods, numerically calculate the same field, the primary

difference between them is the sampling rate and output window size.

Calculating the speckle size in the z direction was not so straightforward, but

a solution we found was to save a row of pixels that run through the same homo-

geneous section of the resolution chart used in the 2D case at a stack of recon-

struction planes around the optimum reconstruction distance in the z direction.

These 1D rows of pixels were then stacked to create a 2D matrix. We note that the

speckle index of this 2D area was found to be approximately 1.0. The normalized

auto-correlation of a homogeneous area within this intensity speckle pattern was

then calculated. Figure 5.5 clearly shows that the measured speckle size is indeed
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Figure 5.3: 2D speckle size when the direct method of reconstruction is used.

Visualization of the speckle size in the (a) x direction and (b) y direction for the

USAF resolution chart DH. The measured speckle is 1.1 the size of the theoretical

size in the x direction and in the y direction matches closely the theoretical size.
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Figure 5.4: 2D speckle size when the spectral method of reconstruction is used.

Visualization of the speckle size in the (a) x direction and (b) y direction for the

USAF resolution chart DH. The measured speckle is 1.1 the size of the theoretical

size in the x direction and in the y direction matches closely the theoretical size.
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Figure 5.5: 3D speckle size. Visualization of the speckle size in the z direction for

the USAF resolution chart DH using (a) direct method and (b) spectral method.

The measured speckle is 0.87 the size of the theoretical size in the z direction for

the direct method and 0.54 the size of the theoretical size in the z direction for

the spectral method
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smaller when the spectral method is used to reconstruct than when the direct

method is used. This confirms what was hypothesized in the previous section that

averaging along different lines [see Section 5.2.2.1] in the z direction has an effect

on the calculated speckle size for each method. Table 5.3 gives the full list of

theoretical versus measured speckle sizes in the x, y and z directions for the USAF

resolution chart. This suggests that using Gaussian kernels with a smaller extent

in the z direction when reconstructing the 3D field with the spectral method can

reduce the speckle index just as much as when using a kernel with a larger extent

when the 3D field was calculated with the with the direct method. However, in

contrast to the direct method, stacks of images that are reconstructed using the

spectral method are not aligned in the z direction and this affects the speckle

index and indeed the amount of blurring in the final image. In this chapter we

make no allowance for this and only use the theoretically predicted speckle length

in z to derive the size of the Gaussian kernels created to filter the speckle field.

Consequences of this phenomenon will be investigated in future work.

5.2.4 Gaussian filtering and our model

Gaussian filtering is often chosen for image de-noising [GW02]. The advantage of

the Gaussian kernel over the rectangular kernel (mean filtering) is that no nulls

occur in the frequency domain. This can be explained as follows; the FT of a Rect

function is a Sinc function which contains a series of null (zero value) points in its

two dimensional distribution. Since convolution in space with a Rect function is

equivalent to multiplication in frequency by a Sinc function we can expect the FT

of the filtered image to contain a number of null frequencies which will inevitably

distort the image. Alternatively the FT of a Gaussian function is also a Gaussian

function which reduces smoothly in value, but does not contain null points. A 3D

Gaussian distribution has the following form
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G(x, y, z) = A exp

[
−

(
x2

2σ2
x

+
y2

2σ2
y

+
(z − z0)

2

2σ2
z

)]
(5.5)

where σx, σy and σz are the standard deviations in the (x,y,z ) directions, A is a nor-

malization factor 1/(
√

2πσx

√
2πσy

√
2πσz) and z0 is the reconstruction distance.

There exists no obvious direct relationship between the size of the Gaussian kernel

and the number of independent speckles that will be averaged together resulting

from the convolution. In order to simplify our analysis we attempt to apply an

approximately direct relationship between the standard deviation of the Gaussian

function and the reduction in speckle index. To do this we empirically investigate

2D Gaussian filtering of a test hologram of a USAF resolution chart with a range

of different standard deviation values. Our assumption is that our model will be

similar to the model used for predicting the speckle index when multiple indepen-

dent speckle patterns are added together. In that case the speckle index is given

by 1/
√

M where M statistically independent images are added together [Goo06].

In this case we assume that Gaussian filtering will result in a speckle index given

by 1/
√

Mx, where Mx is a linear function of σx. In order to derive this function we

use two expected values. The first is when σx → 0, the speckle index, C, should

be 1 indicating no speckle reduction. Thus as the Gaussian function narrows to

approximate a Dirac delta function, it allows the input to pass through unimpeded

and there will only be one independent speckle pattern giving C = 1. Upon inves-

tigation of our experimental measurements a second point of interest was chosen,

this time with σx = Sx and C ≈ 1
2
. Therefore we conclude that an approximate

model for the speckle index resulting from 1D Gaussian filtering in the x direction

is given by

C =
1√

1 + 3σx

Sx

. (5.6)
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A similar model can be used for 1D filtering in both the y and z directions. Ex-

tension to the 2D case is given by the product of the 1D values,

C =
1√

1 + 3σx

Sx

× 1√
1 + 3σy

Sy

(5.7)

and it follows that the 3D case is given by,

C =
1√

1 + 3σx

Sx

× 1√
1 + 3σy

Sy

× 1√
1 + 3σz

Sz

. (5.8)

The theoretical values for the speckle index resulting from 1D, 2D and 3D Gaussian

filtering will be presented in Section 5.4 and as will be readily seen they closely

agree with the experimental results.

Finally, we note that the result of the convolution of a 3D image with a 3D

kernel is another 3D image, with each slice being a smoothed version of itself. It

is possible to reduce the computational complexity of the operation if only one

slice, say the original reconstruction plane, is required. The convolution can be

calculated for this slice, resulting in one of the summations from Equation. 5.4

not having to be computed. If the kernel is separable, which means that it can

be described by the multiplication of a number of 1D vectors (2 for a 2D ker-

nel, 3 for a 3D kernel), then the convolution can be broken into a number of

parts. A 2D Gaussian kernel is an example of a kernel that can be separated into

two 1D kernels. This can significantly reduce the computational complexity of

the operation, although it requires some extra storage space to keep intermediate

computations. Finally, when dealing with large 3D images and kernels, it might

also be computationally less expensive to compute the DFT of both signals and

then the convolution operation reduces to a multiplication operation. The final

result being the inverse DFT of this multiplication. As efficiency was not the pri-

mary focus of this work, such considerations are only noted here, but were not
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(b)(a)

1

1

2

Figure 5.6: The USAF resolution chart used to quantify the loss of resolution. (a)

The full chart, and (b) a zoomed in section of smaller details (these are marked with

region of interest box 1 in (a)). The chart has a fully developed speckle pattern

(speckle index is calculated on the homogeneous section marked with region of

interest box 2 in (a)) and using visual inspection the minimum resolvable bars in

x and y is highlighted by the two dashed white lined rectangles in (b).

implemented.

5.3 Metrics

A reduction in speckle contrast often comes at the expense of a reduction in res-

olution. In order to take both factors into consideration we use speckle index [see

Section 3.3] and a resolution metric to quantify the results. Figure 5.6 shows a

reconstruction of a DH (with no speckle reduction applied) of a USAF resolution

chart, purchased from Edmund Optics, which is opaque except for the transparent
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areas [KHP+09]. Deciding upon the resolution is a subjective process involving

visual inspection. In order to ensure a consistent measurement of resolution across

the entire data set we define a set of measurement criteria for the detection of

a minimum value. The minimum resolvable set of lines must obey the following

rules;

1. There should be clear separation between the bars in a given group of three,

i.e., the contrast between the bars and the space between the bars should be

strong enough to preclude any doubt that there is a gap between the bars.

2. Individual bars do not need to be contiguous and can be corrupted by speckle

noise.

3. Each set of bars with a lower resolution than the chosen set should also be

resolvable.

4. A set of bars is not penalized if a neighboring set of bars blurs into it.

5. If it is not clear what the resolution is between two sets of bars then the

lower resolution is chosen.

When no speckle reduction is applied the resolution, seen in Fig. 5.6 (b), in the

x direction (vertical bars) is group 5 element 1, or 35.91 line pairs per millimeter,

and the resolution in the y direction (horizontal bars) is group 5 element 2, or 32

line pairs per millimeter. The resolution, R, which denotes the of the number of

lines per millimeter is given by R = 2G+(E−1)/6, where G is the group and E the

element within that group. Groups 2 and 3 both containing elements 1 through 6

are clearly visible in Figure 5.6 (a). For the remainder of the paper the resolution

is given in line pairs per millimeter.

We now discuss the expected theoretical resolution for the resolution DH. The

approximate bandwidth limit for a DH system is imposed by the aperture of the
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camera, WCCDx,y, the wavelength of the laser used in the system, λ, and the object

camera distance, z0 [KHP+09];

Bandwidthx,y
∼= WCCDx,y

λz0

, (5.9)

where the x, y subscript denotes that the equation is valid for both the x and the

y parameters. We can rewrite the equation above in terms of system parameters

Bandwidthx
∼= Nx∆ξ

λz0

, (5.10)

Bandwidthy
∼= Ny∆η

λz0

. (5.11)

Therefore we can expect a complex image that is recorded by a DH system will

have a frequency range in fx and fy (spatial frequency coordinates corresponding

to x and y respectively) given by;

|fx| / Nx∆ξ

2λz0

, (5.12)

|fy| / Ny∆η

2λz0

. (5.13)

The maximum recoverable spatial frequency is given by

fxmax
∼= Nx∆ξ

2λz0

, (5.14)

fymax
∼= Ny∆η

2λz0

. (5.15)

We note that the maximum recordable frequency is directly proportional to the

camera width in the direction of interest and is inversely proportional to the wave-

length and the camera object distance. We also note that there are at least three
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other factors that further reduce the bandwidth of the system [KHP+09]; these

include (i) the averaging effect of the pixel, which for a Fresnel system amounts to

an averaging of the complex reconstruction; (ii) the effect of sampling which can

result in overlapping replicas of the reconstruction; and (iii) the pixel quantiza-

tion, which can lead to errors in the reconstructed image [PH11]. Furthermore, we

expect the speckle noise (and indeed other sources of noise) to further impact on

resolution. Thus, it should be stated that the limits given above in Equations. 5.14

and 5.15 are approximate and should be treated as upper limits. In practice we

can expect that the maximum recordable frequencies will be less than the values

determined by Equations. 5.14 and 5.15.

The unit of lines per millimeter can be related to maximum recoverable fre-

quency of the system. This unit is based on the number of bright and dark line

pairs that can be found in a length of 1mm. Equations 5.14 and 5.15 can be in-

terpreted as the number of bright and dark lines that can be found in a length of

1m, assuming that all of the parameters in the equations are defined in meters.

Therefore we can redefine the theoretical maximum frequencies in terms of the

pairs per millimeter as follows

fxmax
∼= Nx∆ξ

2λz0

, (5.16)

fymax
∼= Ny∆η

2λz0

. (5.17)

For the resolution chart DH, the parameters of which are defined in Table 5.4 (DH

1), and we can calculate the values of the theoretical maximum frequencies to be

fxmax
∼= 62.85(line pairs / mm), (5.18)

fymax
∼= 46.95(line pairs / mm). (5.19)
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DH λ(µm) ∆ξ(µm) ∆η(µm) Nx Ny z0(m)

1 0.785 6.45 6.45 1392 1040 0.091

2 0.785 6.45 6.45 1392 1040 0.279

3 0.785 6.45 6.45 1392 1040 0.3

4 0.785 6.45 6.45 1392 1040 0.394

5 0.785 3.45 3.45 2448 2050 0.105

Table 5.4: Parameter details for DHs used in the experiments. The numbers 1

through 5 are labels for DHs of the USAF resolution chart, two screws, a toy

spindle, a stormtrooper object and two small chairs. λ: wavelength of the light

used, ∆ξ: sensor pixel size in x, ∆η: sensor pixel size in y, Nx, Ny: number of

pixels on the sensor in x and y respectively, z0: distance of the object to the sensor.

As expected the experimental values of 35.91 and 32 lines pairs / mm respectively

fall some way short of the expected theoretical maximum values. We add one

final note. If we are correct in our previous assumption that the speckle noise will

impact on the maximum recordable frequencies, then we can expect that speckle

reduction may increase the number of line pairs per millimeter that can be observed

in the image.

5.4 Experimental results

In order to test our approach, reconstructions of the resolution chart DH introduced

in the previous section were used to quantify the improvement in speckle contrast

and the resulting loss in resolution. We investigated 1D filtering in the x, y and z

directions separately, 2D filtering in the x y plane, and finally full 3D filtering in all

three spatial directions. In all cases resolution results are provided separately for

x and y. We provide evidence that our model closely approximates the theory in
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DH Sx(µm) Sy(µm) Sz(µm)

1 7.16 9.59 729

2 21.2 29.4 6800

3 23.6 31.6 7900

4 31 41.5 13600

5 8.74 10.43 1000

Table 5.5: Theoretical speckle size for each DH. Sx, Sy and Sz are the sizes in x, y

and z respectively. These values are calculated using Equations in Table 5.2, and

the DH parameters given in Table 5.4.

terms of speckle reduction for a given number of independent speckle patterns. We

also provide evidence that an improvement in the depth of focus can be achieved

when filtering in the z direction, if the object of interest has an appreciable extent

in this direction.

Following our analysis with the resolution chart DH, we investigate the per-

formance of the method on a number of different holograms. Tables 5.4 and 5.5

provide details such as sensor pixel sizes, number of pixels on the sensor, recon-

struction distances, wavelength of the light used during capture and the theoretical

speckle sizes (based on Equations in Table 5.2) for the DHs tested in this paper.

Table 5.6 gives details of the sampling intervals in and around the reconstruction

plane used in all three directions for both reconstruction methods (direct and spec-

tral method). We note here again that the sampling interval in the z direction

is calculated using the concept of depth of focus given by Kreis [Kre05]. In Sec-

tion 5.2.2.1 we postulated that the effective speckle size could be smaller in the

z direction when the images are stacked using the spectral method because the

direction of the lines along which the averaging occurs in the z direction is different

to the direction of the speckle and indeed in Section 5.2.3 we measured a slightly
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Direct Method Spectral Method

DH Tx(µm) Ty(µm) Tz(µm) Tx(µm) Ty(µm) Tz(µm)

1 7.96 10.66 161.64 6.45 6.45 175.19

2 24.39 32.65 1500 6.45 6.45 536.54

3 26.23 35.1 1800 6.45 6.45 576.92

4 34.45 46.11 3000 6.45 6.45 757.69

5 9.71 11.59 240.37 3.45 3.45 101.95

Table 5.6: Sampling intervals in x, y and z for both the direct and spectral methods

for the DHs used in this paper. Tx: Sampling interval in x, Ty: Sampling interval

in y, Tz: Sampling interval in z (given by the depth of focus). We note that these

are the calculated theoretical sampling intervals and that these are reduced further

to ensure sufficient sampling of the 3D field.

smaller speckle size. For the experiments carried out on the resolution chart DH

we do not adapt the size of the Gaussian kernels to take this into account as the

difference in speckle size was quite small due to the small camera object distance

(0.091m) at which the resolution chart was recorded. For larger camera object

distances this effect is more pronounced and the size of the filter used should be

adapted accordingly if the spectral method is used to reconstruct the DH. As all of

our tests were carried out on the resolution chart DH, we determined the width of

the Gaussian kernel based on the dimensions of the theoretical speckle size (given

in Table 5.5, DH 1). Table 5.6, by giving values for the depth of focus for all

DHs used, also gives an insight into the size of the sampling period need to ensure

sufficient sampling is performed. The values in Tab 5.6 were calculated using the

equations given in Table 5.1 and the parameters in Table 5.4. In the following

sections tests are carried out with the resolution chart DH and using both the

direct and the spectral method of reconstruction.
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5.4.1 1D filtering

Our initial tests involve filtering with Gaussian kernels that have extent in only one

direction (x, y or z ). Figure 5.7 (a) plots the resolution in x and y for 1D filtering

in the x direction. Initially the resolution in x is better than that in y due to the

fact that the CCD is rectangular and is larger in the x direction (0.009m versus

0.0067m) [KHP+09]. We observe an improvement in the y resolution, before a

slight dip, and then the resolution remains constant at 35.91 line pairs per mm. It

is an interesting phenomenon that the resolution can increase through filtering (as

was predicted in Section 5.3), but it can be attributed to an improvement in image

quality brought about by the reduction in speckle. As expected, the resolution in x

steadily degrades as the width of the Gaussian filter increases until, when σx = 5

(units of Sx), only 4.49 line pairs per mm can be observed. Figure 5.8 shows

the effect on speckle index when filtering in the x, y and z directions using both

the direct and the spectral methods of reconstruction. It confirms that our model

reflects the actual speckle index very well. We note that there are small differences

between the direct and spectral methods with the latter method having a slightly

smaller speckle index. Figure 5.9 shows a section of the resulting resolution chart

after filtering is applied only in the x direction. Figure 5.7 (b) plots the resolution

in x and y for 1D filtering in the y direction. This time we observe an improvement

in resolution in the x direction from 35.91 line pairs per mm up to 45.25 line pairs

per mm. However this degrades to 32 lines as the filter size reaches larger sizes (for

σy = 4.5Sy to 5Sy). The reason for this is that sets of 3 vertical bars start to blur

into each other, thus reducing the resolution. Figure 5.7 (c) plots the resolution in

x and y for 1D filtering in the z direction. As we are averaging along a direction

that is orthogonal to both x and y there is no improvement in resolution as the

filter kernel size increases, only a degradation. We note that for this method of

filtering there was more noise between pairs of bars that we consider resolved than
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(a) (b)

(c)

Figure 5.7: Resolution in x and y when filtering only in the x direction (a), only

in the y direction (b) and only in the z direction (c). These results are applicable

to both the direct and spectral methods of reconstruction as the resolution was

the same regardless of which method was chosen.
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(a) (b)

(c)

Figure 5.8: Speckle index when filtering only in the x direction (a), only in the y

direction (b) and only in the z direction (c).
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(a) (b)

Figure 5.9: Filtering only in the x direction with σx = 1.25Sx (a) Using the direct

method of reconstruction, and (b) using the spectral method of reconstruction.

In both reconstruction cases the x resolution is 17.95 line pairs per mm and the

y resolution is 40.31 line pairs per mm. The speckle contrast was reduced to a

speckle index of 0.5025 in the case of the direct method and 0.4984 for the spectral

method.

for the similar 1D x and y filtering. We also note that for larger filter kernels this

method outperforms the previous two conditions in at least one direction and if

the desired goal is to have good resolution in both x and y directions, this could

be the method of choice in the event only 1D filtering is to be carried out. If

improved resolution is required is another direction then the Gaussian kernel can

be rotated as required.
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(a) (b)

Figure 5.10: (a) Resolution in x and y when filtering in 2D. These results are ap-

plicable to both the direct and spectral methods of reconstruction as the resolution

was the same regardless of which method was chosen. (b) Graph showing the ex-

pected theoretical value of the speckle index versus the actual speckle index when

filtering in 2D in x and y. As there were only negligible differences in speckle index

between the direct and spectral reconstruction methods, only the direct method

is plotted here

5.4.2 2D filtering

In this section, we take the next logical step and filter using a Gaussian kernel

with extent in both the x and y direction. Figure 5.10 (a) plots the resolution in

x and y for 2D filtering in the x and y directions. The resolution in x is better

than that in y due to the larger extent of the sensor in the x direction for all tests

conducted. We note an initial improvement in the x direction resolution from 35.91

line pairs per mm (with no filtering) to 40.31 line pairs per mm, and thereafter

as the filter kernel increases in size the resolution reduces. At first the resolution

in the y direction remains the same as when no filtering is applied at 35.91 line

pairs per mm, but then resolution degrades at approximately the same rate as
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(a) (b)

(c) (d)

Figure 5.11: Filtering in 2D in the x and y directions with Mx and My set to 2.

(a) Using the direct method of reconstruction (speckle index = 0.5292), and (b)

using the spectral method of reconstruction (speckle index = 0.5285). In both

cases the x resolution is 35.92 line pairs per mm and the y resolution is 28.51 line

pairs per mm. Filtering in 2D in the x and y directions with σx = Sx

4
and σy = Sy

4
.

(c) Using the direct method (speckle index = 0.3005), and (d) using the spectral

method (speckle index = 0.3005). In both cases the x resolution is 22.63 line pairs

per mm and the y resolution is 17.96 line pairs per mm.
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that in x. If maintaining resolution in both x and y directions is important, then

2D filtering provides large gains over 1D filtering. Figure 5.10 (b) plots the actual

speckle index achieved when filtering in 2D against the expected theoretical speckle

index. The model once again approximates the theoretical expected speckle index

values well. Figure 5.11 (a) and (b) shows that with σx and σy set to Sx

2
and Sy

2
,

respectively, the x resolution is 40.31 line pairs per mm and the y resolution is 32

line pairs per mm, and the speckle index is approximately 0.52. In comparison,

if we were to filter in 1D in any direction and our aim was to achieve a similar

speckle index (i.e., a value close to 0.5), the best case would be filtering in the x

direction which provides 20.15 line pairs per mm in x resolution, while of course

having better resolution in the y direction at 40.31 line pairs per mm. Comparing

2D filtering with 1D filtering is difficult, but a general rule of thumb is that if

resolution is required in both spatial directions then 2D filtering should be chosen

over 1D filtering. Furthermore, due to the separability of the Gaussian kernel, the

2D filter can be implemented as a pair of orthogonal 1D Gaussians, which reduces

the computational complexity from O(n2) to O(2n).

5.4.3 3D filtering

In this section, we take advantage of the inherent 3D nature of DHs and and filter

using a Gaussian kernel with support in the x, y and z directions. Figure 5.12

(a) plots the resolution in x and y for 3D filtering, where σx, σy and σz are

increased by equal multiples of Sx, Sy and Sz, respectively. The resolution in x is

better than that in y for the first two kernel sizes, but after that the resolution

is the same in both directions. The trend is for resolution to degrade in both

directions as the kernel size increases in x, y and z. Figure 5.12 (b) plots the

actual speckle index achieved when filtering in 3D against the expected theoretical

speckle index. We note that there are larger differences between the model and
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(a) (b)

Figure 5.12: (a) Resolution in x and y when filtering in 3D. These results are

applicable to both the direct and spectral methods of reconstruction as the reso-

lution was the same regardless of which method was chosen. (b) Graph showing

the expected theoretical value of the speckle index versus the actual speckle index

when filtering in 3D in the x, y and z directions.

theoretical expected speckle index values than for the 1D or 2D filtering cases.

Figure 5.13 shows a result for 3D filtering when σx, σy and σz are set to Sx

2
, Sy

2

and Sz

2
, respectively. If resolution in both the x and y directions is important

then 3D filtering outperforms 1D filtering. For this example the speckle index is

approximately 0.4 for both reconstruction methods and the resolution in x is 25.4

line pairs per mm and resolution in y is 22.63 line pairs per mm. In comparison,

if we were to filter in 1D in any direction and our aim was to achieve a similar

speckle index (i.e., a value close to 0.4), the best case would be filtering in the z

direction which provides 14.25 line pairs per mm in both the x and y directions.

However, when compared with 2D filtering, 3D filtering performed slightly worse

for every test, when the criteria is to have good resolution in both the x and y

directions coupled with a low speckle index. We note that the USAF resolution

DH is a planar object and thus has no extent in the z direction. We expect 2D
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(a) (b)

(c) (d)

Figure 5.13: Filtering in 3D in the x, y and z directions with σx = Sx

2
, σy = Sy

2
and

σz = Sz

2
. (a) Using the direct method of reconstruction (speckle index = 0.4079),

and (b) using the spectral method of reconstruction (speckle index = 0.4037). In

both reconstruction cases the x resolution is 25.4 line pairs per mm and the y

resolution is 23.63 line pairs per mm. Filtering in the x, y and z directions with

σx = Sx

4
, σy = Sy

4
and σz = Sz

4
. (c) Using the direct method of reconstruction

(speckle index = 0.2252), and (d) using the spectral method of reconstruction

(speckle index = 0.2267). In both reconstruction cases the x and y resolution is

14.25 line pairs per mm.
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filtering to perform extremely well on such an object. This does not, however,

mean that 3D filtering should be dismissed, as it can perform well if the object

has extent in the z direction. Then we actually observe, with astute positioning

of the filter, an improvement in the depth of focus too.

We also performed 2D and 3D filtering on in-line DHs 2-4 from Table 5.4.

Figure 5.14 shows the results when filtering was applied to a stormtrooper DH for

the 2D and 3D cases for with different sized Gaussian kernels. In the following

exemplar figures the original reconstruction is shown with no speckle reduction

applied, then the result of applying 2D filtering with σx = 2Sx and σy = 2Sy

and finally the result of applying 3D filtering with σx = 1.75Sx, σy = 1.75Sy

and σz = 1.75Sz. The resulting speckle index for the reconstructions with 2D

filtering applied is ≈ 0.14 (theoretical value given by our model is 0.16) and for

the reconstructions with 3D filtering applied is ≈ 0.09 (theoretical value is 0.064).

For these settings the 3D filtering result [ Figure 5.14 (d)] is slightly more blurred,

but has a lower speckle index, than the 2D filtering result [Figure 5.14 (c)]. Similar

figures are shown for a DH of two bolts [see Figure 5.15] and a DH of a small spindle

object [see Figure 5.16].

Although our quantitative results using the resolution chart DH revealed no

benefit in choosing 3D filtering over 2D filtering, the ability to average in another

dimension can be advantageous under certain circumstances. Filtering in the z

direction with objects that have extent in that direction can improve the depth

of focus of resulting image. To illustrate this we investigated filtering a DH of

two small chairs in the z direction and provide qualitative evidence that the depth

of focus is indeed improved. The DH was recorded with the parameters shown

in row 5 in Table 5.4. The same laser was used to record this hologram as in

the case of the resolution chart but the recording distance was a little further

from the camera at 0.105m. We note that the expected speckle size is a little
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(a) (b)

(c) (d)

Figure 5.14: Filtering in 2D and 3D applied to an in-line DH of a stormtrooper

object. (a) the original reconstruction with no speckle reduction applied, (b) 2D

filtering applied with parameters σx = 0.5Sx and σy = 0.5Sy resulting in a speckle

index of 0.4916, x resolution of 35.92 line pairs per mm and y resolution of 28.51

line pairs per mm. (c) 2D filtering applied with parameters σx = 2Sx and σy = 2Sy

resulting in a speckle index of 0.1253, x resolution of 16 line pairs per mm and y

resolution of 14.25 line pairs per mm, and (d) 3D filtering applied with parameters

σx = 1.75Sx, σy = 1.75Sy and σz = 1.75Sz resulting in a speckle index of 0.0975, x

resolution of 10.08 line pairs per mm and y resolution of 10.08 line pairs per mm.
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(a) (b)

(c) (d)

Figure 5.15: Filtering in 2D and 3D applied to an in-line DH of two bolt objects.

(a) the original reconstruction with no speckle reduction applied, (b) 2D filtering

applied with parameters σx = 0.5Sx and σy = 0.5Sy resulting in a speckle index

of 0.5076, x resolution of 35.92 line pairs per mm and y resolution of 28.51 line

pairs per mm. (c) 2D filtering applied with parameters σx = 2Sx and σy = 2Sy

resulting in a speckle index of 0.1344, x resolution of 16 line pairs per mm and y

resolution of 14.25 line pairs per mm, and (d) 3D filtering applied with parameters

σx = 1.75Sx, σy = 1.75Sy and σz = 1.75Sz resulting in a speckle index of 0.1611, x

resolution of 10.08 line pairs per mm and y resolution of 10.08 line pairs per mm.
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(a) (b)

(c) (d)

Figure 5.16: Filtering in 2D and 3D applied to an in-line DH of a spindle object.

(a) the original reconstruction with no speckle reduction applied, (b) 2D filtering

applied with parameters σx = 0.5Sx and σy = 0.5Sy resulting in a speckle index

of 0.5308, x resolution of 35.92 line pairs per mm and y resolution of 28.51 line

pairs per mm. (c) 2D filtering applied with parameters σx = 2Sx and σy = 2Sy

resulting in a speckle index of 0.1722, x resolution of 16 line pairs per mm and y

resolution of 14.25 line pairs per mm, and (d) 3D filtering applied with parameters

σx = 1.75Sx, σy = 1.75Sy and σz = 1.75Sz resulting in a speckle index of 0.1258, x

resolution of 10.08 line pairs per mm and y resolution of 10.08 line pairs per mm.
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larger than for the resolution chart as shown in Table 5.5. The speckle size in

the x and y directions are given by 8.74µm and 10.43µm respectively, while Sz is

equal to 1mm. This particular object has a large depth; The front of the object

is in focus at a reconstruction distance of 0.0975m as shown in Figure 5.17 (a),

while the back of the object is in focus at a reconstruction distance of 0.1125m

as shown in Figure 5.17 (b), which gives us an object depth of 1.5cm and a mid-

point reconstruction distance of z0 = 0.105m. Both of these reconstructions were

calculated after first zero padding the DH up to a size of 6150 × 7344 pixels and

reconstructing using the direct method. The resulting image in Figure 5.17 (a) has

a pixel size of 3.61µm and 3.02µm in the x and y dimensions respectively, and in

Figure 5.17 (b) has a pixel size of 4.16µm and 3.48µm in the x and y dimensions

respectively. In both Figure 5.17 (a) and (b) we show zoomed in regions of the

reconstruction which highlight small features in the front and back parts of the

object. We note that no filtering was applied to either of these reconstructions.

It is interesting to apply our 3D filtering algorithm with a Gaussian filter that

has a standard deviation that is wide enough to cover a large range of the full object

depth. We implement the method with σx = Sx, σy = Sy and σz = 7Sz. The result

of using this 3D filter using the direct method is shown in Figure 5.18 (a), where

we have chosen the reconstruction distance to be the midpoint object distance

z0 = 0.105m. We can see that the effect of the wide z filter significantly blurs the

image. While this filter will ensure that all of the object will come into focus as

part of the summation, it will also ensure that each part will go significantly out

of focus as well and the out of focus contribution to the final summation is much

greater. The result of this filter is a blurred image. However this problem can be

overcome adapting the Gaussian filter. We redefine the filter with a delay in the

z direction with a delay parameter f(x, y) that is a function of x and y.
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G(x, y, z) = A exp

[
−

(
x2

2σ2
x

+
y2

2σ2
y

+
(z − f(x, y))2

2σ2
z

)]
(5.20)

with normalization factor A defined as before.

This delay parameter f(x, y) is given by the distance at which that part of the

image at location (x, y) approximately comes into focus. This can be implemented

using the algorithm presented in Ref [EHN08]. The intensity of the reconstructed

image is calculated over a series of distances and the variance of the image is

calculated at each location (x, y) for a particular block size. This is repeated

for each reconstruction distance. For a given value of x and y the variance is

compared across the sequence of intensity reconstructions. When the variance is

at a maximum we take the corresponding distance to be the in focus distance for

that part of the image and we set f(x, y) equal to that value. In our case we

use a block size of 400 × 400 pixels. The depth map calculated, f(x, y), is shown

in Figure 5.18 (b). Applying the standard 3D Gaussian filter, defined above in

Equation 5.5, using z0 equal to the middle distance 0.105m and using σx = Sx,

σy = Sy and σz = 7Sz we obtain the speckle reduced image shown in Figure 5.18

(a). We can see that this image is out of focus and of poor quality. However

using the improved filter defined in Equation 5.20 with the variable delay with

σx = Sx, σy = Sy and σz = Sz we obtain the considerably improved image shown

in Figure 5.18(c). Further speckle reduction can be achieved at the expense of

some blurring by increasing the filter size. In Figure 5.18 (d) we show the result

for σx = 2Sx, σy = 2Sy and σz = 2Sz. Comparing these latter two results with

Figure 5.18 (a) demonstrates that the filter with the variable delay affords a much

improved resulting from us being able to employ a more controlled and narrower

filter in the z direction. We note that the improved filter employing the variable

depth parameter is not without disadvantage. It necessitates the calculation of a

depth map f(x, y) as described above, which requires the calculation of multiple
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(a) (b)

Figure 5.17: Reconstructions of a DH of two small chairs with (a) front in focus,

and (b) back in focus.

reconstruction depths prior to even beginning the filtering process. This can be

time intensive and for the two results shown in Figure 5.18 (a), the overall process

required approximately two hours on a modern computer processor.

5.4.4 Comparison with other techniques

Here we present results of a comparison between the best performing filter from

this chapter, the 2D filter, other standard speckle reduction techniques (mean

and median filters), the DFF [see Section 3] and the best performing wavelet from

Appendix A. Figure 5.19 shows exemplar results for the case when all have reduced

speckle to approximately half. 2D filtering has outperformed the other techniques,

achieving a similar level of speckle reduction but maintaining a higher resolution.

The next best performing technique is the DFF, followed by the mean, median

filters and Haar mother wavelet (at detail level 2 using soft thresholding with a
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(a) (b)

(c) (d)

Figure 5.18: (a) Result of filter with size σx = Sx, σy = Sy and σz = 7Sz, (b)

the depth map,f(x, y) [EMN+05, MLJ04], (c) filter of size σx = Sx, σy = Sy and

σz = Sz, using the delay in z described in Equation 5.20 and (d) filter size of

σx = 2Sx, σy = 2Sy and σz = 2Sz, also using the delay in z from Equation 5.20.
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balance sparsity norm scheme). Table 5.7 provides a more comprehensive set of

results.

5.5 Summary

In this chapter, we have reported on a Gaussian filtering technique to reduce

speckle in digital holograms. Our main contribution was to use the inherent 3D

nature of DHs to construct suitable 3D filters to reduce the speckle content. Using

a convolution approach, a large set of quantitative results were generated for the

1D, 2D and 3D cases to show the effectiveness of the technique. We demonstrated

that a reduction of the speckle content could be attained, while at the same time

resolution improved in directions orthogonal to the filtering direction. We also

provided qualitative evidence that 3D filtering can have a positive impact on the

depth of focus of the resulting filtered image. In the following, we provide more

details of the main findings in this work.

The model developed was shown to predict the reduction in speckle contrast

well in the x and y directions, but performed less well for the z direction case.

This is primarily because tuning the model parameters were optimized on data

taken from 2D filtering. Nonetheless, the general trend of the reduction in speckle

contrast is also approximated well for filtering in z.

We also discussed the expected theoretical maximum recoverable frequencies

and how these values relate the observable line pairs / mm in the image. We

pointed to the fact that the theoretical values are upper limits as there are at least

three factors that further reduce the bandwidth of the system; (i) the averaging

effect of the pixel, which for a Fresnel system amounts to an averaging of the

complex reconstruction; (ii) the effect of sampling which can result in overlapping

replicas of the reconstruction and (iii) the pixel quantization, which can lead to
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(a) (b)

(c) (d)

Figure 5.19: Visual comparison of 2D filtering verses the DFF, mean filter and

wavelet denoising. (a) Filtering in 2D in the x and y directions with Mx and

My set to 2 resulting in a speckle index of = 0.5292 and x and y resolution of

35.92 and 28.51 line pairs per mm, respectively, (b) DFF with a square aperture

(768× 768 pixels) resulting in a speckle index of = 0.5231 and x and y resolution

of 28.51 and 25.4 line pairs per mm, respectively, (c) 3× 3 mean filter resulting in

a speckle index of = 0.4742 and x and y resolution of 25.4 and 22.62 line pairs per

mm, respectively, and finally (d) Haar wavelet at resulting in a speckle index of

= 0.5362 and x and y resolution of 25.4 and 22.62 line pairs per mm, respectively.
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Technique SI RES x RES y

2D filtering (Mx = 2,My = 2)∗ 0.52 35.92 28.51

2D filtering (Mx = 3, My = 3) 0.37 32 22.62

2D filtering (Mx = 4, My = 4) 0.3 22.62 17.96

2D filtering (Mx = 5, My = 5) 0.24 20.16 16

DFF (768× 768)∗ 0.52 28.51 25.4

DFF (512× 512) 0.42 25.4 20.15

DFF (256× 256) 0.23 17.95 16

DFF (128× 128) 0.14 8.97 8.97

Haar (detail level 1) 0.66 35.92 25.4

Haar (detail level 2)∗ 0.53 25.4 22.62

Haar (detail level 3) 0.47 20.15 16

Haar (detail level 4) 0.45 16 14.25

Mean filter (4× 4)∗ 0.47 25.4 22.62

Mean filter (5× 5) 0.39 22.62 17.95

Mean filter (7× 7) 0.29 20.15 16

Mean filter (9× 9) 0.23 17.95 14.25

Median filter (4× 4) 0.54 25.4 22.62

Median filter (5× 5) 0.46 22.62 20.15

Median filter (7× 7) 0.35 20.15 17.95

Median filter (9× 9) 0.29 17.95 16

Table 5.7: Comparison of 2D filtering versus various speckle reduction techniques.

Results in bold marked with an ∗ can be viewed in Figure 5.19. SI: speckle index,

RES x : resolution in the x direction, RES y : resolution in the y direction.
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errors in the reconstructed image [PH11]. Furthermore, we postulated that the

speckle noise could further impact on resolution and showed that by reducing

speckle noise it was possible to increase the resolution of the image.

We discussed the shape and orientation of the speckle in the 3D intensity field

and postulated that the spectral method averages along lines that cut through

the speckle grains. This suggests that the effective speckle size in the z direction

is smaller when using the spectral method to reconstruct over when the direct

method is used. A numerical calculation of the speckle size confirms this. However,

using the spectral method to filter in the z direction has the disadvantage that

reconstructions at each subsequent plane are not aligned as the field is expanding.

This of course can have a negative effect on the resulting resolution.

When filtering in the x direction only, resolution in the y direction initially

improved (over a non-filtered reconstruction) and then after a slight degradation

was maintained, all the while resolution in the x direction decreased steadily with

increasing kernel size. Filtering in the y direction produced similar effects, with an

observed slight improvement in x resolution, followed by a slight degradation and

leveling off, but this time with some further resolution loss. This was due to the

design of the resolution chart itself, which allows for the blurring of the vertical

resolution bars into each other and was not a discovery that warranted further

investigation. 2D filtering in x and y directions resulted in a slight improvement

in x resolution and no change to the y resolution, before a steady decrease in

resolution for both x and y. There was no initial improvement in resolution in

either direction for 3D filtering and as the kernel size was increased resolution

decreased steadily in both directions. As expected, in terms of resolution and

speckle index, 2D filtering outperformed both 1D and 3D filtering when the criteria

was to maintain resolution in both the x and y directions and achieve a certain

level of speckle reduction. This is because the test object was planar and it can
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be reasonably asserted that the results might favour 3D filtering if the test object

were to have an appreciable extent in the z direction.

Finally, we provided qualitative evidence that 3D filtering can have a positive

impact on the depth of focus of the resulting filtered image. Using a DH of two

small chairs with extent in the z direction, we showed that both the front and the

back of the chairs could be in focus more after filtering, with the added benefit of

a reduced speckle contrast, than when no filtering is applied.

The first chapter in Part B of this thesis is presented in the next chapter. It

concerns overcoming partial occlusions in reconstructions of DHs.
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Chapter 6

Occlusions in digital holography

6.1 Introduction

We explore the potential use of DHs for 3D scene reconstruction, where particular

regions of interest are occluded under certain views. The study of occlusions in

digital holography has been actively researched of late. For the case of digital

hologram watermarking [KJ03, KL05, OA07], occlusions are considered attacks

and occur in the hologram plane, resulting in a direct loss of data at that plane.

The integration of computer graphics and holograms has also been investigated,

necessitating the study of occlusion effects [BZG+05, Bim06]. Occluding certain

parts of the a reconstruction plane in an effort to reduce the effects of the out-of-

focus twin image has been studied previously [PFFT98, DFFD05] [see Chapter 7

for contribution to this topic]. Another technique, which attempts to overcome

the problems of foreground occlusions in a complex scene is integral imaging,

which uses the concept of ray phase space to reconstruct the occluded images.

It is based on ray optics and uses different view perspectives with a microlens

array [HJ05, JPDH06, HHJ07]. This is a passive sensor as opposed to active

sensing as in digital holography. For a more thorough review of occlusions in
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digital holography and other imaging systems see Section 1.1.3. The work in this

chapter has emanated from a collaborative effort between the author, Conor P.

Mc Elhinney and Bryan M. Hennelly [MEH+06b, MEH+06a, HME+06].

A technique that uses the inherent properties of DHs to improve the viewing

of certain regions of interest in the presence of occlusion in now presented. We

have previously simulated the addition of occlusions in free space [EMM+05] (i.e.,

in the region between the object of interest and the camera) and here we use this

technique to model lightless opaque and light diffracting opaque occlusions as they

occur in nature. In our simulated experiments, we use optically-captured digital

holograms of real-world objects. We show that by reconstructing the entire holo-

gram it is possible to overcome the problems of foreground occlusions in a scene.

This is achieved by propagating the wavefront to the calculated in-focus plane

of the object of interest. However, for the purpose of this chapter, we investigate

finding a subset of pixels that can successfully reconstruct partially occluded back-

ground objects, by selectively incorporating information from additional views of

the scene. There are three reasons why this is useful. The first is that different

windows in the hologram plane give different perspectives. In situations where a

light diffracting opaque occlusion is present, the reconstruction plane of the object

of interest may be corrupted by non-physical light emanating backwards from the

occlusion. The non-physical light is present because DH reconstruction algorithms

[see Section 2.2.3] do not distinguish between forward or backwards traveling light.

This light acts as a noise and can saturate features on the object of interest. By

careful selection of windows from the hologram plane, the influence of this noise

can be reduced and features that are not discernable when the whole hologram

is used to reconstruct, become visible. The second benefit is that the computa-

tional complexity of hologram reconstruction is reduced if less pixels are used to

reconstruct the scene. The third benefit is that reducing the numbers of pixels
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that have to be sent over a communication channel will produce increased com-

munication efficiency. The second and third benefits are investigated thoroughly

in [MEH+06b], but omitted here.

6.2 Wigner distribution function

We now present an analysis of digital holography using the WDF, and then apply

WDF theory to the problem of investigating occlusions in reconstructions of DHs.

6.2.1 The WDF and Digital Holography

Following from the analysis given in Section 2.4, we now describe the WDF of

a rectangular occlusion. The transmission function of a rectangular occlusion of

width w may be written as

occlusion(x) = 1− rect
( x

w

)
. (6.1)

Using Equations 2.72 and 6.1 we may calculate the WDF of the occlusion to be

ψ{occlusion(x)}(x, u) = ψ
{

1− rect
( x

w

)}
(x, u)

= δ(u)− ψ
{

rect
( x

w

)}
(x, u)

− cos(πxk)sinc(wk). (6.2)

As long as w À λ, we may ignore the effect of diffraction at the edges and use the

following approximation for ease of analysis,

ψ{occlusion(x)}(x, u) = δ(u), |x| > w
2
. (6.3)
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We are now in a position to discuss digital holography from the perspective of

Wigner and to analyze (i) the effect of taking different windows within our holo-

gram for reconstruction and (ii) the effect of occlusions on a digital holography

system.

In the following we consider (without any loss of generality) such a system to

be summarised by a single camera capable of measuring the complex amplitudes

at the individual pixel positions. The wavefield emanating from an object, in

the plane just after the object (plane of focus) is denoted O(x) and has a WDF

denoted by ψ{O(x)}(x, u). The Wigner chart for the signal will be of the form

shown in Figure 7.2(a). After Fresnel propagation the signal’s chart now takes the

form shown in Figure 7.2(b) and the WDF of the propagated signal is given by

ψ{O(x)}(x+λdu, u). Capture by the CCD is equivalent to multiplying by a comb

function (sampling interval equal to T , the distance between the pixels), which

has been convolved by a rect function with width equal to that of a CCD pixel,

wp. This is followed by multiplying by a rect function of size (i.e., side-length), wc

and position, x0, of the CCD aperture. Thus the CCD function is given by

CCD(x− xc) =

[
δT (x) ∗ rect

(
x

wp

)]
× rect

(
x− xc

wc

)
. (6.4)

Using Eqs 2.69, 2.71a, 2.71b, 2.82 and 2.83 we may calculate the WDF of

CCD(x) given Equation 6.4. It is

[
ψ{δT (x)}(x, u) ∗x ψ

{
rect

(
x

wp

)}
(x, u)

]
∗u ψ

{
rect

(
x

wc

)}
(x− xc, u), (6.5)

where the superscript on the asterisk denotes the coordinate vector along which

the 1-D convolution takes place. Capturing the DH is equivalent to multiplying

our complex signal by CCD(x). The WDF is therefore equivalent to a convolution

of the WDFs along the u axis,
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ψ{O(x)}(x− λdu) ∗u ψ{CCD(x)}(x, u). (6.6)

Recently, Wigner analysis has found a significant application in digital hologra-

phy. The generalized sampling theorem [SJ04c, SJ04b], which can be derived from

Equations 2.78 and 6.6 above, allows us to improve the capacity of any digital

holographic system [SJ04a]. Simply stated, we need only ensure that the CCD

bandwidth is greater than the local bandwidth of the incident signal even if this

local bandwidth lies far outside the bandwidth of the CCD. From this point on, we

will assume that the optical recording is set up to ensure that no aliasing occurs in

the process and that the sampling is ideal (i.e. the pixels are ideal delta functions).

Thus we will entirely ignore the effect of sampling. Numerical implementations

of the FSTs will also assumed to be ideal. The true effect of CCD sampling and

numerical Fresnel may be found in great detail [Kre05], but these effects have little

impact on the results presented. As such, recording is summarised as convolving

the signals WDF with Equation 2.83. The position of the WDF of the rect func-

tion can shift in x depending on the centre of the CCD (hologram) window. In the

next sub-section, we discuss lightless opaque and light emitting opaque occlusions

using the WDF. In the latter case, we show how astute positioning of the camera

(or equivalently a choice of some sub-section of the CCD recording) can lead to a

higher signal to noise ratio in numerical object reconstruction.

6.2.2 The WDF and occlusions

We consider first the case of an lightless opaque planar occlusion of width wo

positioned a distance d1 from the object and a position d2 from the CCD. The

plane of the occlusion is normal to the axis of propagation. The occlusion may

be modelled with the aid of a rect function as shown in Equation 2.83. We may

change the lateral position of the occlusion by setting x → x−xo in Equation 2.83
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where x0 is the position of the center.

The object wavefield has a Wigner chart shown in Figure 7.2(a). The object

has a width W and at each position over this width we assume rays of light to be

traveling in all directions over a range of angles proportional to the bandwidth B.

The power of the light in a given position-direction is represented by the height of

the WDF at that coordinate. Since we are considering the general case we may

use the plan view of a square WDF for illustrative purposes. O(x), with WDF

ψ{O(x)}(x, u), propagates a distance d1. The CCM, defining the shape, is given

by Equation 2.79. After propagation the WDF becomes ψ{O(x)}(x + λd1u, u).

The resulting Wigner chart is shown in Figure 6.1(a) and the new CCM is defined

by Equation 2.80 where we set d = d1. In this plane the wavefield is multiplied by

occlusion ((x − xo)/wo). The WDF of the occlusion, ψ{occlusion(x/wo)}(x, u) is

defined with an approximation in Equation 6.2 and is illustrated in Figure 6.1(b).

Using Equations 2.69, 2.71 we may define the WDF of the wavefield immediately

after the occlusion as

ψ{O(x)}(x′ , u) ∗u ψ
{

rect
(
occlusion

(
x
′

wo

))}
(x

′ − xo, u), (6.7)

where x
′
= x + λd. Taking the definition of the WDF of the occlusion given in

Equation 6.2 we illustrate the new Wigner chart in Figure 6.1(c). We now require

two CCMs. The coordinates for these two CCMs can be easily derived using

geometry on the original CCM.

The signal now propagates a distance d2 and there is further shearing along

the x-axis. The Wigner chart is shown in Figure 6.1 (d). The two new CCMs may

be calculated by finding the product of the old CCMs with the Fresnel matrix in

Equation 2.80. The WDF of the signal at this point is

ψ{O(x)}(x′′ , u) ∗u ψ
{

rect
(
occlusion

(
x
′

wo

))}
(x

′′ − xo, u), (6.8)
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Figure 6.1: (a) Wigner chart of the object signal after propagating a distance

d1 to the occlusion, (b) the occlusion Wigner chart, (c) the Wigner chart of the

occluded wavefront obtained by convolving (a) and (b), (d) the Wigner chart after

the occluded wavefield propagation of a distance d2 to the CCD plane, (e) the

Wigner chart of the CCD and the captured wavefield, and (f) the Wigner chart of

the reconstructed signal against the total reconstructed signal.
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where x
′′

= x+λ(d1+d2)u. The signal is then multiplied by CCD(x−xc), the CCD

transmission function. Based on previous discussions concerning CCD sampling

it is sufficient for present analysis to assume ideal sampling and interpolation and

describe the CCD only using CCD(x) = rect(x/wc). We show the WDF of such a

signal in Figure 6.1(e) with the approximation that it is a delta function over some

region of space as in (Equation 2.72). In this figure we also show the section of the

signal that would be removed by this finite delta function after convolution along

u. Once again the new CCM may be found by applying geometry in an obvious

fashion to the old CCMs. The WDF of the signal after capture by the CCD is

given by

ψ{hol(x
′′
)}(x′′ , k) =

[
ψ{O(x)}(x′′ , k) ∗k ψ

{
rect

(
occlusion

(
x
′

wo

))}
(x

′′ − xo, k)

]

∗k ψ{
{

rect

(
rect

(
x
′′

wo

))}
(x

′′ − xc, k). (6.9)

A numerical FST of distance −(d1+d2) is then applied to the signal. Assuming the

numerical transform to be ideal, the reconstructed signal is given by ψ{hol(x
′′}(x−

λ(d1 + d2), k). The intensity can be found using Equation 2.72. The Wigner chart

for this signal is illustrated in Figure 6.1(f), plotted against the backdrop of the

original Wigner chart. We have recovered a certain amount of the signals energy

in phase space. We may interpret this in one sense as having recovered a specific

range of angles for different positions. As we vary the position of the camera xc,

and its width, wc we may vary the range of angles recovered for each x. In certain

cases the recovered angles will not exist because they have been removed by the

occlusion. The effect of the occlusion will vary depending on the position and

size of the camera. We note that while we have made large approximations in

our illustrations, Equation 6.9 is free of these approximations if we use the correct

definitions of the WDF of a rect function.

178



Wigner distribution function Occlusions in digital holography

When we consider the case of a light emitting opaque occlusion we immediately

find an application of the theory outlined above. In this case we have the sum of

two signals to deal with; as before we have the occluded wavefield a distance d2

from the CCD and we have a second signal that lies within the occlusion. If these

two complex signals are recorded and an inverse Fresnel used to return to the

in-focus plane of the first object we find that non-physical light from the second

object will be present as a source of noise. Not only will the intensity of this

the second signal be a source of noise but so will its interference with the desired

wavefield. We now demonstrate how to increase the signal to noise ratio for the

desired signal by appropriate choice of CCD position.

The bilinear property (v) above implies that the WDF of the sum will be given

by the sum of the WDFs plus some cross term. From property (xii) we know

that for a given projection the cross term will exist only in the region of overlap

of the signals for that projection. We show the Wigner charts of the two signals

in Figure 6.2(a). We have the occluded WDF as before and now we also have

a second wavefield. At this point we have three CCMs: two describing the first

signal and one for the second. After propagation a distance d2 both signals are

sheared along the x-axis and the new CCMs may be easily calculated as before.

The Wigner charts of the sheared wavefields are illustrated in Figure 6.2(b). A

CCD then captures the wavefield in some region and the resulting Wigner chart

is shown in Figure 6.2(c). The new CCMs can be calculated geometrically. Had

the entire wavefield been captured and an inverse numerical FST applied to return

to the plane of the first object, the Wigner chart would look like that shown in

Figure 6.2(d). In this case we have recovered all of the information that we can for

the first object but it overlaps with the second signal and it is saturated with the

second signals’ intensity and their common interference. In Figure 6.2(e) we show

the Wigner chart for the CCD hologram having been inverse Fresnel transformed.
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We can see that while we have less of our signals energy we have an even smaller

amount of the corrupting signals energy. Thus, by changing our CCD position (or

equivalently the region of the recorded hologram that we use in our reconstruction)

we may recover multiple projections each with a higher signal to noise ratio for

a given region and over a different angle of view. We demonstrate these results

using experimental data in the next section.

6.3 Results and discussion

Any complex scene can contain foreground objects that occlude one’s view of back-

ground objects of interest. Digital holography provides a novel way to overcome

these occlusions by permitting unobstructed reconstructions of desired objects to

be computed [EMM+05]. The 3D objects used in our simulations were recon-

structed from DHs of a die object. They were captured using the PSI described in

Section 2.2.2.3. The DHs are represented as a 2048×2048 complex-valued matrix.

In order to demonstrate the ability of digital holography to overcome prob-

lems of occlusion, we simulated the addition of a light diffracting opaque occlusion

to a scene containing a die object. This simulation provides a demonstration of

the situation depicted in the Wigner chart in Figure 6.1. The simulated exper-

imental set-up is shown in Figure 6.3. This is the part of the optical apparatus

from Figure 2.6 in Section 2.2.2.3 between the object and camera. It depicts a

situation where a foreground occlusion is obstructing the view of a background

object of interest. Each pixel in the occlusion has a phase value chosen with uni-

form probability from the range [0, 2π), which simulates a diffuse reflective object.

The occlusion was positioned 260mm from the object. The object was placed

325mm from the camera (hologram plane). The hologram plane describes a 2D

complex-valued signal representing a coherent wavefront that was incident on, and
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Figure 6.2: (a) The Wigner chart of both the occluded wavefield (having already

propagated a distance d1 and the second wavefield), (b) the two Wigner charts

after propagation to the CCD plane, (c) the Wigner charts after propagation to

the CCD and the result of convolution with the signal’s WDF, (d) the Wigner

chart of the reconstructed signals in the plane of the first object, if the CCD

had been large enough to capture the entire wavefields during recording, and (e)

reconstruction using the signal in (c) plotted against total reconstruction.
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wave
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Figure 6.3: Simulated experimental set-up with an occlusion positioned at 260mm

from the object.

reflected from, a diffuse 3D object. By applying the discrete Fresnel transform

[see Section 2.2.3] to this DH, we can generate the whole complex wavefield in any

plane.

In this simulation, we demonstrate how DHs, through Fresnel propagation to

the correct distance, have the ability to overcome the problems of foreground oc-

clusions, which can be present in a scene. In Figure 6.4 (a), both the object and

the occlusion are in focus simultaneously, as would be the case under the weak per-

spective model. Figure 6.4(b) shows the object wavefront 260mm from the camera,

where the lightless opaque occlusion was positioned. In Figure 6.4 (c), we see the

reconstruction of the object using the full hologram. Although the quality of this

reconstruction is not equivalent to a reconstruction of the unoccluded die, object

information that is not visible due to the occlusion in the weak perspective model,

becomes visible through the use of digital holography and Fresnel propagation to

the object plane.
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(a) (b) (c)

Figure 6.4: Occlusion positioned at 260mm from 3D object, (a) shows a weak

perspective view of the scene, (b) shows the occlusion plane, (c) shows the recon-

struction along the optical axis of the die.

We will now investigate task specific scene reconstruction using a subsection

of the hologram. The task we are interested in is one of trying to reveal a hidden

feature on an occluded object, and we achieve this by taking a subset of pixels

(a window) from the hologram and reconstructing from that perspective. This is

equivalent to changing the position of the camera and provides a demonstration

of the situation depicted in the Wigner chart in Figure 6.2. By taking a smaller

window from the hologram plane, we can reduce the effects of the out of focus

occluding object on the background object of interest, and thus it is possible to re-

veal features that had been saturated by noise, and therefore not visible. In order

to verify this phenomena, we deal with a situation using experimentally recorded

PSI data. We have two object wavefields at two different distances from the holo-

gram plane. The wavefield from the background object has been occluded by the

presence of the foreground object [see Figure 6.5]. When propagating to the recon-

struction plane of the background object, non-physical light from the foreground

object saturates this reconstruction. In Figure 6.6(a), the entire hologram is used
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Figure 6.5: Simulated experimental set-up where one die acts as an occlusion to a

second die.

to reconstruct the object of interest. However, the three dots that are on the right

side of the die have been completely saturated by the out of focus occluding object,

and cannot be discerned. When the top right corner (1024×1024 pixels, compared

with the available 2048 × 2048 pixels) of the hologram is used to reconstruct the

object, as is shown in Figure 6.6 (b), at least two of the ”dots” come into view.

We argue that the ability to reveal hidden features of a partially occluded

object is one of the benefits of using smaller windows in the hologram plane for

reconstructing. It should be noted that this is only relevant if a light diffracting

opaque occlusion is present. This is due to the fact the the out-of-focus light from

the foreground occlusion can saturate background object features. In the case of

an lightless opaque occlusion, smaller windows will not have any benefit over using

the entire hologram in revealing object features.

6.4 Summary

The nature of lightless opaque and light diffracting opaque occlusions, and the

effect of reconstructing subwindows from the hologram plane, has been analyzed
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(a) (b)

Figure 6.6: Advantage of using a smaller window of pixels over the entire set of

pixels when reconstructing an occluded object, (a) reconstruction using the entire

set of pixels, (b) reconstruction of the scene using a top right 1024×1024 windows

of pixels.

thoroughly using the Wigner chart. We have shown that in the presence of a light

diffracting opaque occlusion, using a subset of pixels in the DH to reconstruct can

have the benefit of revealing hidden features on a partially occluded object. In the

next chapter, we use an occlusion to remove the effects of the out-of-focus twin

image.
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Chapter 7

Occluding the twin image

7.1 Introduction

Since its discovery by Gabor [Gab48] in 1948, images obtained using in-line holo-

graphic techniques have been affected by the presence of the out-of-focus twin

image and the zero order terms. After the invention of the laser methods were

developed to cleverly evade the twin image by using new experimental off-axis ar-

chitectures [LU62] [see Section 2.2.2.2]. However, this placed greater demands on

the resolution of the film. Indeed for certain radiation sources these off-axis experi-

mental architectures have no physical implementation or only crude and expensive

equivalents. In these cases, one must rely upon the initial Gabor architecture and

the out-of-focus twin image remains a problem that must be dealt with. This

is true for many cases including: x-ray holography, gamma-ray holography and

electron holography [see Section 1.1.3]. In the case of digital holography, the in-

line architecture [see Section 2.2.2.1] also suffers from the out-of-focus twin image

and we now present a technique for its removal. For a more thorough review of

literature relating to the twin image problem see Section 1.1.3.

In Section 1.1.3 we discussed some previous work by Pedrini et al. [PFFT98]
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who successfully eliminated a large portion of the twin image in a DH by bringing

the real image to focus and filtering the out-of-focus twin image around this image.

We also discussed of the work by Denis et al. [DFFD05] who used an iterative

scheme to filter out the effects of the twin images (we use the plural as they were

dealing with multiple objects) in DHs of particle fields. As they were dealing

with multiple objects at different depths, it was necessary to iteratively repeat the

process a number of times to successfully reduce the effects of the twin images. We

propose the use of a similar technique for macroscopic objects. We discuss for the

first time the relative spreading of the unwanted out-of-focus twin image and the

wanted image and how to manage this spreading in the numerical reconstruction

techniques. We use the Wigner chart to provide us with first order approximations.

While this chapter focuses on digital holography, we note that it may be applied

to other holographic fields including x-ray, electron, and gamma ray holography.

7.2 Analysis of the technique

We recall from Section 2.2 that a complex signal h(x, y) incident on the CCD can

be given by the sum of two wavefields

h(x, y) = R(x, y) + O(x, y). (7.1)

The CCD records the real-valued intensity |h(x, y)|2, which may be written as

|h(x, y)|2 = |O(x, y)|2 + |R(x, y)|2 + O(x, y)R∗(x, y) + O∗(x, y)R(x, y). (7.2)

where O(x, y)R∗(x, y) and O∗(x, y)R(x, y) are the real and virtual images respec-

tively. In this chapter we use the terms wanted image and twin image to make

it clear that we want one image over another. In practice these are completely
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interchangeable as it does not matter which we remove and which we keep. The

point is that when either of these terms are reconstructed, they are corrupted by

an out-of-focus version of the other. |O(x, y)|2 and |R(x, y)|2 are the DC terms.

In some cases this is far noisier than the unwanted out-of-focus-twin image. How-

ever, a number of methods have been developed to successfully remove the DC

terms [KJ97, DMS03, ZLG04, GLCC07].

We also recall from Section 2.4 that the WDF of a complex optical amplitude

distribution provides a graphical means of simultaneously viewing a signal’s spa-

tial and spatial frequency distributions, and is particularly useful for visualizing

localized signals [Wig32, Bas97, Loh93, OZK01]. Ψ{f(x)}(x, u), which represents

the WDF of a signal f(x), is defined in terms of its spatial distribution in the

following way

ψ{f(x)}(x, u) =

∞∫

−∞

f

(
x +

ξ

2

)
f ∗

(
x− ξ

2

)
exp(−j2πuξ)dξ (7.3)

where u represents spatial frequency, ∗ denotes complex conjugation and ψ denotes

the WDF operator. We use the Wigner chart to give a graphical view of the signals

and also as an aid to explain our technique. However, unlike the previous chapter,

we have this time computed the exact Wigner chart using an object of width 0.01m,

a camera of width 0.0148m (calculated by multiplying the pixel pitch, 7.4µm (the

pixel pitch of one of the CCDs that we use to record the digital holograms in this

thesis) by the number of pixels, 2000), and a wavelength of 633nm. The wavefield

immediately after the object is shown in Figure. 7.1 (a). From the figure we note

that the signal’s spatial extent is finite, but that its bandwidth is infinite. After

propagation of 0.2m using the FST the signal is shown to have spread out [see

Figure. 7.1 (b)]. We recall that the FST has the following effect on the WDF of a

signal:
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Figure 7.1: Wigner chart of a propagating signal with (a) the wavefield immediately

after the object and (b) the Wigner chart after propagation a distance of 0.2m.

ψ{Fλd{f(x)}(x′)}(x′ , u′) = ψ{f(x)}(x + λdu, u). (7.4)

The affect of applying a FST to a signal can be expressed in terms of the ABCD

matrix operating on the phase space coordinate vector,


 x

′

u
′


 =


 1 λd

0 1





 x

u


 . (7.5)

Figure 7.2 (a) shows the WDF of the CCD which we is limited in both spatial

distribution and spatial frequency. The FST causes a shearing of a signal’s WDF

along the x direction as shown in Figure 7.2 (b). The CCD can only capture a finite

area of this sheared wave field. Figure 7.2 (c) shows the part of the propagated

signal that is captured by the CCD, and Figure 7.2 (d) shows the twin image which

is the O∗(x, y)R(x, y) term from Equation 7.2 and is present due to the fact that

the CCD can only capture intensity.

The WDF of the CCD is denoted as ψ{CCD(x)}(x, u) and the WDF of the

wavefield emanating from the object is ψ{O(x)}(x, u). After Fresnel propagation

189



Analysis of the technique 190

(a) (b)

(c) (d)

x (m)

u 
(c

yc
le

s 
pe

r 
m

)

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

-6

-4

-2

0

2

4

6

x 10
4

x (m)

u 
(c

yc
le

s 
pe

r 
m

)

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

-6

-4

-2

0

2

4

6

x 10
4

x (m)

u 
(c

yc
le

s 
pe

r 
m

)

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

-6

-4

-2

0

2

4

6

x 10
4

x (m)

u 
(c

yc
le

s 
pe

r 
m

)

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

-6

-4

-2

0

2

4

6

x 10
4

Figure 7.2: Wigner chart of (a) the CCD, limited in both spatial distribution

and spatial frequency, (b) the Wigner chart after propagation a distance 0.289m

ensuring no aliasing, (c) the captured object signal, and (d) the twin image signal

that is present due to the fact that the CCD only captures intensity.
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Figure 7.3: Wigner chart of (a) the wanted image signal at the twin image in-focus

plane and (b) the twin image at its in-focus plane. Note that the twin image has

a narrower spatial distribution and can be removed by occlusion, leaving a large

portion of the wanted image signal intact.

the signal’s chart now takes the form shown in Figure. 7.2(b) and the WDF of the

propagated signal is given by ψ{O(x)}(x−λdu, u). Capturing the DH is equivalent

to multiplying the complex signal by the CCD signal CCD(x). The resultant WDF

is therefore equivalent to a convolution of the WDFs along the u axis,

ψ{hol(x)}(x, u) = ψ{O(x)}(x + λdu, u) ∗u ψ{CCD(x)}(x, u), (7.6)

However, as we have seen from Equation 7.2 above, the twin image will also be

present as the CCD can only capture intensity. Therefore, our captured DH is

ψ{hol(x′)}(x′ , u) = ψ{O(x)}(x + λdk, u) ∗u ψ{CCD(x)}(x, u)

+ ψ{O∗(x)}(x + λdk, u) ∗u ψ{CCD(x)}(x, u). (7.7)

and as Figures 7.2 (c) and (d) show, the spatial distribution and spatial frequency

distribution of these two signals cannot be easily separated. The technique we
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use is to propagate both signals to the in-focus plane of the twin image, thus

localizing its spatial distribution so that a simple occlusion can remove it. In the

process some of the wanted image signal is lost, but the majority is kept and when

it is propagated to its in-focus plane the noise from the twin image is no longer

present. The Wigner chart of the signals after they have been propagated to the

in-focus plane are shown in Figure 7.3 (c) and (d). These are then multiplied by

a rectangular lightless opaque planar occlusion (see Equation 6.3 from Section 6)

and the resultant WDF is given by

ψ{WantedMinusTwin(x)}(x, u) = [ψ{O(x)}(x) ∗u ψ{CCD(x)}(x, u)]

∗u W{occlusion

(
x

wo

)
(x, u)}

+ [ψ{O∗(x)}(x) ∗u ψ{CCD(x)}(x, u)]

∗u W{occlusion

(
x

wo

)
(x, u)}. (7.8)

where wo is the width of the occlusion. If the width of the occlusion is large enough

to cover the spatial distribution of the twin image then the second term goes to

zero. Propagating the resultant signal back to the in-focus plane of the wanted

image results in a reconstruction that is free from the corrupted effect of the twin

image.

The Wigner chart also provides a graphical means to illustrate how much

padding of the DH is needed to ensure that no aliasing occurs when the signal

is propagated back to the wanted image using the angular spectrum method of

simulating the Fresnel Transform which was discussed in Section 2.2.3 [see Figure

7.3 (a)]. The angular spectrum method [MZK97, MGF+99] for propagation has

a constant output window size which is equal to the input window size. The ob-

ject signal will be wrapped within the reconstruction window if the reconstruction

window is not large enough to contain the entire spatial support of the object.
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Therefore, using the angular spectrum method we have to pad the DH with zeros

to ensure that the reconstruction window is at least as large as the spatial extent

of the object signal at the reconstruction plane of the twin image. We have cal-

culated this spreading for an object with size 0.01m positioned at 0.289m from

the CCD. It is clear from the Wigner chart that in order to avoid aliasing in this

scenario, the DH should be padded to twice its size. In the next section we further

motivate the application of our technique by providing results of experiments we

have carried out on both in-line and PSI DHs.

7.3 Results and discussion

Depending on the resolution requirements, it may be necessary to choose a Gabor

in-line DH setup [see Section 2.2.2.1]. In these cases the resultant DHs will invari-

ably suffer from the presence of the unwanted out-of-focus twin image. Using the

technique described in the previous section we now demonstrate the benefits of our

technique for removal of this unwanted noise. Figures 7.4 (a) and (b) show the in-

focus reconstruction of the twin image and the in-focus wanted image respectively.

The zero order terms have been removed, but both images are still corrupted by

each others out-of-focus signals and speckle. Figure 7.4 (c) shows the occluding

mask that has been created just large enough to occlude the in-focus twin image.

Figure 7.4 (d) shows the after effect of the twin image plane multiplied by the

mask. It has been cropped to 2900× 2900 pixels for display purposes, but in fact

had to be padded to 4096× 4096 in order to ensure no aliasing. The signal is then

propagated back to the in-focus wanted image plane and is shown in Figure 7.4

(e). Zoomed in versions of the improvement in image quality are shown in Figures

7.5 (a) through (f).

Figure 7.6 shows the effects of sampling and the copies of the image that it
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(a) (b) (c)

(d) (e)

Figure 7.4: (a) Twin image, (b) wanted image corrupted by out-of-focus twin

image (minus the DC terms), (c) the occluding mask, (d) the twin image plane

after multiplication by the occluding mask, and, (e) the wanted image (minus the

out-of-focus twin image and the DC terms.) Note all reconstructions are cropped

to 2900 × 2900 pixels in size and all have the same display settings, except (c),

which is a binary image.



(a) (b)

(c)

(e) (f)

(d)

Figure 7.5: (a) Wanted image corrupted by out-of-focus twin image (minus the

DC terms), (b) the wanted image (minus the out-of-focus twin image and the DC

terms.), (c) zoomed in version of (a) (1000×1000 pixels), (d) zoomed in version of

(b), (e) zoomed in version of (a) (500× 500 pixels), (f) zoomed in version of (b).



Figure 7.6: Wanted image of coin DH showing aliasing effects (4096× 4096 pixels

in size)

creates. It shows that in order to localize the spatial distribution of either the

wanted or twin image, sufficient padding at the DH plane is required, but not so

much as to introduce the sampling copies of the image. Using the analysis in the

previous section and the Wigner chart as an aid we can determine the spreading

of the wanted image signal at the point when the twin image has been brought to

focus so that it can be removed.
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7.4 Summary

We have presented a DSP technique for removing the corruptive effect of the

twin image in digital holography. The WDF was used to provide a theoretical

grounding for the technique and we saw how the Wigner chart can be used as

an add to indicate the amount of padding needed to capture the wanted image

without aliasing effects. The application of this technique allows for the use of in-

line DHs instead of PSI or off-axis DHs. In-line DHs are single shot DHs and are

therefore suited to the capture of dynamic scenes unlike PSI DH which are multi-

shot DHs. Although off-axis DHs are also single shot, they are restricted to using

only a quarter of the camera’s bandwidth and therefore in-line DHs post-processed

with our technique could be used instead. A disadvantage is that the technique

cannot be used for digital holographic microscopy as removing the twin image

corrupts the phase. Another disadvantage is that it is computationally expensive

involving an additional application of the spectral method of reconstruction and

determination of the correct occlusion mask. At its core the technique brings to

focus the twin image and occludes it using a binary mask. The remaining wanted

images’ signal energy is then propagated back to the DH plane and resulting in a

DH minus the twin image. All subsequent reconstructions of the DH are free of

the contaminating effects of the twin image. This results in much clearer, noise

free (except for the presence of the speckle) reconstructions.
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Chapter 8

Conclusion

This thesis detailed a number of contributions to the improvement of reconstruc-

tion of DHs. These contributions are divided into two categories: A) speckle

reduction in reconstructions of DHs, and, B) modeling and overcoming partial

occlusion effects in reconstructions of DHs, and, using occlusions to reduce the

effects of the twin image.

8.1 General discussion

The first area in which this thesis makes a contribution is in the area of speckle

reduction in reconstructions of DHs. Iwai and Asakura [IA96] classified the prin-

ciples of speckle reduction into five categories: 1) control of spatial coherence, 2)

control of temporal coherence, 3) temporal averaging based on spatial sampling,

4) spatial integration at the detector, and 5) digital image processing. In this

thesis, we have investigated new techniques for reducing speckle content in recon-

structions of DHs are in category 5. We note that some of our methods are based

on simulating earlier optical methods that fall into some of the other categories.

For instance in Chapter 5 we introduced a new DSP technique that was inspired
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by earlier work by Gama [Gam75] who reduce the spatial coherence of the recon-

struction beam. Chapter 3 followed the work of Dainty and Welford [DW71] and

Hariharan and Hegedus’ [HH74], whose work is categorized in the third category.

We note that within the first four categories there are numerous techniques that

could also be adapted into the fifth category of digital image processing in the

future. We discuss some of these in Section 8.2.

Image quality assessment plays an important role in many image processing

applications. A lot of research has been carried out in an effort to develop ob-

jective image quality metrics that correlate with perceived quality measurement,

unfortunately with only limited success [WBL02]. Peak signal-to-noise ratio and

mean squared error are two of the most popular objective image quality metrics,

but they are criticized for not matching up well with perceived qualtity [WBL02].

Wang et al. [WBL02] suggest that the best way to assess the quality of an image is

to use a subjective process, called the mean opinion score. They then state how-

ever that the mean opinion score method is too inconvenient, slow and expensive

for practical usage. In this thesis, we have not actively used subjective processes

to decide on the quality of an image. We instead have relied on a number of

well known objective metrics, namely speckle index, edge preservation and resolu-

tion [MHM+07, SFSL97]. Of course, depending on the particular application that

requires a level of speckle reduction, the use of subjective expert analysis could

well be needed to ensure optimum results are achieved.

This thesis has contributed a number of techniques to the general field of speckle

reduction in DHs and we expect that each of them will be used in future varied

applications. According to the objective metrics that we have employed, the use of

wavelets in Chapter 4 is superior to the DFF [see Chapter 3]. However, we argue

that there are certain situations in which wavelets would not necessarily be the

optimum choice. For instance, the DFF can potentially produce speckle reduced
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DH reconstructions of natural scenes of a better quality (in the subjective sense),

than could be produced by the Haar mother wavelet, whose simple step edge

design is not suitable to naturally occurring shapes and curves [see Figure 4.11].

Likewise, if important features are orientated a certain way, then the 2D and 3D

filtering techniques presented in Chapter 5 could be the best choice for a given

application. In fact when we later captured a DH of a USAF resolution chart

for Chapter 5 the 2D filtering technique performed best. Unlike the automatic

detection of the image resolution using an FFT based search algorithm that was

applied in Chapter 4, this subjective visual inspection process revealed different

outcomes in terms of maintained resolution. This issue of calculating resolution

is one which, in the opinion of the author, deserves further attention. It would

be helpful for a standard to emerge that could then be used in an objective way

by all researchers. Once we used 3D filtering we observed an advantage over the

other techniques in the thesis due to the resulting increase in the depth of focus

of the resulting reconstructions [see Figure 5.18].

An important question naturally arises when using a given speckle reduction

technique, and that is: What level of speckle reduction should one strive for? For

the purpose of this thesis speckle has been considered a noise and therefore the

answer is that we should try to reduce it as much as possible. However, we have

seen that reduction of speckle can result in loss of resolution and edge blurring.

These effects have to be taken into account when choosing a speckle reduction

technique for a particular application. The techniques developed in this thesis

are generic and are designed to be used in multiple situations. Depending on the

application domain, the use of subjective expert analysis may need to be used

to determine the optimum level of speckle reduction. However, in the absence

of subjective analysis, the objective quantitative metrics we have employed are a

suitable indication of the performance of the various techniques we have developed
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in this thesis.

We note that all of our techniques require only a single DH to reduce the

speckle effect. This means that our techniques can reduce the speckle content in

reconstructions of DHs of dynamic scenes. We demonstrated this in Appendix D

when we used a transmissive single shot in-line digital holographic setup to capture

an object embedded between two layers of tissue, and then used the DFF to reduce

the speckle of subsequent reconstructions.

The second area in which this thesis makes a contribution to is the area of oc-

clusions in digital holography. In Chapter 6 we investigated the nature of different

types of opaque occlusions and the effect of reconstructing only certain parts of the

DH using the Wigner chart [Wig32, Bas97]. The motivation of this research was

to reconstruct a subset of the DH in order to reveal hidden features on a partially

occluded object [EMM+05, MEH+06b, MEH+06a]. With the aid of the Wigner

Chart we were able to show that the properties of DHs allow for the overcoming

of partial occlusions under certain circumstances. We went on to verify our theory

in a simulated experiment in which a subset of pixels was used to reconstruct an

object, and these pixels were chosen in such a way as to reveal occluded features

on the object. In Section 8.2.4 we propose to extend this work by integrating its

benefits with that of an object recognition algorithm. In this thesis we also inves-

tigated the use of occlusions for the purpose of removing the twin image. In 1996

Pedrini et al. [PFFT98] successfully eliminated a large portion of the twin image

in a DH by bringing the real image to focus and filtering out the out-of-focus twin

image around this image. The filtering process can be thought of as an occlusion

at the reconstruction plane. Following on from this work, we instead brought the

twin image plane to focus [see Chapter 7] and directly occluded the twin image.

This had the added benefit of entirely removing the twin image’s energy. The

technique worked well with in-line DHs who by their nature are severely corrupted
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by the out-of-focus twin image, but we also found that the technique worked for

PSI DHs. These DHs are also affected by the out-of-focus twin image due to prob-

lems of non-perfect alignment and tuning of optical equipment in the experiment

capture phase. This technique should facilitate the the ability to choose inline DHs

over PSI DHs in future applications. This is especially important for applications

that require the capture of dynamic scenes.

8.2 Future work

In this section, we highlight a number of ideas for future work. One of these has

already been partially developed and in this case the reader is directed to the

initial results achieved in the relevant Appendix.

8.2.1 Discrete Fresnel filter

The discrete Fresnel filter is similar to the DFF in that it produces independent

speckle patterns and adds those patterns together to reduce the speckle content of

the DH reconstruction. However, it has one main disadvantage over the DFF in

that the different speckle patterns it produces are all representations of different

perspectives of the object under consideration. This suggests that the discrete

Fresnel filter can only work on 2D objects. However, as the resolution of the todays’

CCDs is still quite limited, only small angular perspectives can be achieved in DHs.

This means that the reduction in speckle can be more beneficial than the resultant

blur that occurs when different perspectives of the image are superposed. In fact,

the addition of different perspectives to reduce speckle was previously employed

in an integral imaging system that used coherent light [RA03]. Like the DFF, this

technique simulates an optical technique that falls into the third category called

spatial sampling given by Iwai and Asakura [IA96] [see Section 1.1.2]. Although
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outperformed by the DFF, the discrete Fourier filter technique has performed

well when compared with the mean and median filters in terms of speckle index,

resolution and edge preservation. Please see Appendix E for some initial results.

8.2.2 Extension of the Discrete Fourier filter

In Chapter 3 we introduced the DFF and showed it was superior to the mean and

median filters in terms of resolution and speckle index. However, we observed that

in terms of the edge preservation metric [SFSL97], the DFF performed poorly. We

suggested that this could be due to the fact the the filter used in the Fourier domain

is a simple bandpass filter. In future work, we propose to investigate complex,

Butterworth [HV93] and Chebyshev [MOL01] filters in an effort to improve the

quality of DH reconstructions.

8.2.3 Speckle reduction by simulation of other optical meth-

ods

In this thesis, we have detailed a number of methods to reduce the speckle con-

tent in reconstructions of DHs that simulate optical techniques for the reduction

of speckle in holography. However, there are many other optical techniques for

reducing speckle that could be digitized and used for digital holography. In par-

ticular, we propose to investigate the use of random shaped and sized apertures

in the hologram plane. Yu and Wang [YW73] studied this in 1973 and concluded

that the speckles in reconstructed images can be completely eliminated by using

a moving random mask at the hologram plane, without losing image resolution.

The use of moving diffusers to average out the effect of speckles has been popu-

lar [Sch71]. The introduction of a moving diffuser into the object beam during

hologram recording results in a number of independent speckle patterns being in-
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tegrated in the hologram plane. We will investigate ways to simulate this effect

during the reconstruction stage of digital holography. There are many more optical

techniques for reducing speckle that could be digitized [see references in [IA96]].

We suggest that some or all of these could be digitized in the future.

8.2.4 Object recognition of partially occluded objects in

reconstructions of DHs

One of the main challenges in pattern recognition is overcoming the effects of

partial occlusions is a system [Ull93, JPDH06]. In most cases, algorithms are

developed and applied to the partially occluded object in an effort to complete

the missing parts. Recently, Javidi et al. [JPDH06] used a 3D integral imaging

system to overcome the effects of partial occlusions. They found that the perfor-

mance of the proposed recognition system with 3D volumetric reconstruction for

occluded objects was superior to the performance of the correlation of occluded

2D images. Using the theoretical foundations laid in Chapter 6, we propose a

digital holographic pattern recognition system to overcome the effects of partial

occlusions. Javidi and Tajahuerce [JT00] initially proposed a 3D object recogni-

tion using digital holography in 2000 and this was extended to distortion-tolerant

object recognition with digital holography the following year [FTCJ01]. We sug-

gest that this work could be extended to incorporate the recognition of partially

occluded objects in 3D scenes captured using digital holography.

8.3 Outlook

Digital holography is a relatively new imaging technique that shows a lot of

promise for the future. Its inherent 3D properties coupled with the fact that

phase information is readily available and given that DHs can be electronically
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stored, transmitted, compressed, and processed, mean that it has been adopted

in many fields of science, including: metrology [PZT95b, PZT95a], particle analy-

sis [AKJ97, OZ00, MY00, PM03, SDF+07], microscopy [ZY98, CMD99, XPMA01,

PT02, FGA+05, MRM+05], and, pattern recognition [JT00, FTCJ01, KJ04, JK05].

In using DHs, all of these fields (with the possible exception of microscopy, due

to the use of a large objective lens), suffer from the corruptive effects of speckle.

In certain cases where in-line DHs are used they also suffer from the effects of the

out-of-focus virtual image. We envisage that the contributions made in this thesis,

in the area of speckle reduction and twin image suppression, will be of benefit to

these and other fields that use DHs.

We previously pointed out that speckle is present in all coherent imaging sys-

tems, i.e., ultra sound imaging [GCS05], SAR imaging [USB03] and optical coher-

ent tomography (OCT) imaging [AKF04]. We have also hinted at the possibility

of using some of the our speckle reduction techniques in these and other areas

could be investigated in the future. This is based on the fact that as long as the

speckle that is corrupting these imaging systems is fully developed speckle, our

techniques will work in exactly the same manner in which they work for DHs. We

intend to investigate the use of these techniques with these other imaging systems

in the near future.

Finally, it could be very advantageous to develop speckle reduction techniques

that reduce speckle at the hologram plane, rather than at the reconstruction plane.

This would have the benefit that every reconstruction of a speckle reduced DH

would display reduced speckle. We have been unable to find other works, whether

optical or digital, that reduce speckle in this way. However, in 2006, Shortt et al.

studied the compression of DHs using wavelets [SNJ06b] and nonuniform quan-

tization [SNJ06a]. This compression was done at the DH plane, not the recon-

struction plane. Also, Darakis and Soraghan [DS06a] compressed PSI DHs by
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applying standard JPEG compression to the four interferograms rather than the

DH itself. These works benefited from applying their techniques to the DH or the

interferograms directly. We suggest that new speckle reduction techniques could be

developed to reduce speckle at the DH plane that will have huge benefits in terms

of computational time for certain applications that rely on the multiple rendering

of speckle reduced DH reconstructions (i.e., depth independent segmentation of

DHs [EMF+07]), although we add a word of caution that a viable way to do this

has not been yet found.

206



Chapter 9

Appendix A

This appendix is taken from Lowenthal and Arsenault [LA70], and is included here

for convenience.

If a nonuniform diffuse object has a complex amplitude f(r), the Fourier trans-

form of which is F (u), we define the average power spectrum as the average illu-

minance in the Fourier plane of the optical system,

S̄f (u) = 〈|F (u)|2〉. (9.1)

Since

F (u) =

∞∫

−∞

f(r)e−2πiu¦rdr, (9.2)

where dr is an element of the area dxdy, we have

S̄f (u) =

∞∫

−∞

∞∫

−∞

〈f(r1)f
∗(r2)〉e−2πiu¦(r1−r2)dr1dr2. (9.3)

The ensemble average inside the brackets is the autocorrelation Rff (r1, r2) of f(r).

We can therefore write
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S̄f (u) =

∞∫

−∞

∞∫

−∞

Rff (r1, r2)e
−2πiu¦(r1−r2)dr1dr2. (9.4)

If the double Fourier transform of Rff (r1, r2) is

F{Rff (r1, r2)} = Γ(u1, u2), (9.5)

then the average power spectrum is equal to the double Fourier transform of the

autocorrelation, with u1 = u2

S̄f (u) = Γ(u1, u2). (9.6)

After some algebra, Eq. 9.4 may be written

S̄f (u) =

∞∫

−∞

ρ̄f(τ)e−2πiu¦τdτ. (9.7)

with r1 − r2 = τ, r2 = r, and

ρ̄f(τ) =

∞∫

−∞

Rff (r + τ, r)dr. (9.8)

The quantity ρ̄f(τ) is the average autocorrelation. Equation 9.7 states that

the average autocorrelation and the average power spectrum are a Fourier trans-

form pair, which means that they satisfy the Wiener-Khinchin theorem. These

two quantities, respectively, defined by Eqs. 9.4 and 9.8 are the two-dimensional

space analogs of the same quantities used in signal theory [Pap65]. But in optics,

the existence of the Fourier plane gives a special meaning to the average power

spectrum.
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Appendix B

The results of speckle index and resolution for the DFF technique [VZW+05] are

given in Table 10.1 and for the median and mean filters are given in Table 10.2.

Discrete Fourier filtering technique

Aperture Speckle index Resolution

2048 1.02 1 (no loss)

1024 0.5398 1 (no loss)

512 0.3156 1
2

256 0.1851 1
4

128 0.1142 1
8

Table 10.1: This table shows the results of speckle index verses resolution for the

DFF technique.

The results of speckle index and edge preservation for the DFF technique are

given in Table 10.3 and for the median and mean filters are given in Table 10.4.
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Median filter Mean filter

Neighbourhood Speckle index Resolution Speckle index Resolution

(1× 1) 1.02 1 (no loss) 1.02 1 (no loss)

(3× 3) 0.51 1
2

0.39 1
2

(5× 5) 0.34 1
4

0.27 1
4

(7× 7) 0.26 1
7

0.21 1
7

Table 10.2: This table shows the results of speckle index verses resolution for the

median and the mean filters.

Discrete Fourier filtering technique

Aperture Speckle index Edge preservation

1024 0.54 0.018

512 0.31 0.026

256 0.18 0.031

128 0.11 0.017

Table 10.3: This table shows the results of speckle index and edge preservation for

the DFF technique.

Median filter Mean filter

Neighbourhood Speckle index Edge pres. Speckle index Edge pres.

(3× 3) 0.51 0.0055 0.39 0.0045

(5× 5) 0.34 0.0011 0.27 0.0031

(7× 7) 0.26 0.000047 0.21 0.0052

Table 10.4: This table shows the results of speckle index and edge preservation for

the median and the mean filters.



Chapter 11

Appendix C

In Hariharan and Hegedus’ [HH74] paper on the reduction of speckle in coherent

imaging, they give the analysis for a continuously moving aperture in the Fourier

plane of a 4f imaging system [see Figure 3.1 in Chapter 3]. They conclude that

the power spectrum of the speckle can be reduced by between 33 and 50 per

cent, if a continuously moving aperture is used rather than simply sampling the

independent positions that the aperture can take on. However, according to Dainty

and Welford [DW71], the power spectrum of the speckle is only effected by the

number of independent positions that the aperture can take on in the Fourier

plane. Furthermore, we know from Goodman [Goo06] [see Chap. 2.3.4] that it is

only through the addition of independent speckle patterns on an intensity basis

that we can achieve a 1√
N

reduction in the speckle index. In this section a simple

experiment is run in order to determine whether the improved speckle reduction

Hariharan and Hegedus spoke off could be achieved using overlapping blocks. The

experiment setup is the same as shown in Figure 3.1(b), except that this time the

apertures are allowed to overlap each other. Depending on the amount of overlap

this can result in many more reconstructions to sum up in order to create the final

reconstruction. We investigated a non-overlapping approach verses an overlapping
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approach. Figure 11.1(a) shows the reconstruction obtained when a 1024 × 1024

aperture is used, and Figure 11.1(b) shows the reconstruction obtained when the

same size aperture, but with a step size (indicates the level of overlap) of 128

pixels. In order to calculate the number of samples taken in the Fourier plane the

following equation is used

S = (
h− w

s
+ 1)2 (11.1)

where h is the width of the hologram (in this experiment, h = 2048), w is the width

of the aperture (in this experiment, w = 1024), and s is the step size. Therefore, the

number of samples used to create the reconstruction in Figure 11.1(b), which used a

step size of 128 pixels, was 81, compared with only 4 used the non-overlapping case

[shown in Figure 11.1(a)]. However, as can be seen from Figure 11.1, there is no

noticeable reduction in the speckle content for the overlapping case. The results of

different step sizes, along with their effect on speckle index (once again calculated

on a homogenous area of the stormtrooper reconstruction) is shown in Table 11.1.

These results show that there is no advantage in using overlapping filters with the

DFF technique. It confirms Dainty and Welford [DW71] and Goodman’s [Goo06]

assertion that the reduction in speckle that can be obtained depends entirely on

the number of independent speckle patterns that are added together.

212



(a) (b)

Figure 11.1: A non-overlapping reconstruction with aperture size 1024 pixels is

shown in (a), and, an overlapping approach with aperture size 1024 and step size

128 is shown in (b).

Overlapping discrete Fourier filtering technique

Aperture Speckle Index Step size

1024 0.53 1024

1024 0.53 512

1024 0.54 256

1024 0.56 128

Table 11.1: This table shows the results of incorporating overlapping filters with

the discrete Fourier filtering technique.
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Appendix D

Optical imaging of biological tissue in the visible and near-infrared has become

an important area of research due to the many benefits it possesses compared to

other tomographic techniques. Radiation at these wavelengths is non-ionizing, and

so offers the possibility of non-invasively imaging structures within the body, for

example, in mammography [DVG06] and brain imaging [SBS02]. One of the stated

aims of these spectroscopy techniques is to provide 3D mapping of tissue structures

using non-invasively light [DVG06]. The relative cost of building such systems is

also much lower than its counterparts (e.g. functional magnetic resonance imaging

or computed axial tomography scans), and in many cases is less bulky, allowing

it to be used in bedside monitoring [BRRO05]. The work in this appendix has

emanated from a collaborative effort between the author and Aoife Cuddihy.

Many techniques have been developed in the area of optical tomography [ZT02].

Optical tomography is used to generate full 3D images from measurements taken

from sources and detectors widely spaced over the surface of an object. Both co-

herent [DF03] and diffuse light [GHA05] have been used in optical tomography.

Two such techniques include optical coherence tomography (OCT) [HSL+91] and

noninvasive optical imaging by speckle ensemble (NOISE) [RA03]. OCT oper-
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ates strictly in the reflection mode and is an interferometric method that utilizes

spatially coherent illumination with a low temporal coherence. The latter prop-

erty enables focusing on layers of biological tissue with sub-micron accuracy. A

layer at a particular depth may be isolated through adjustment of the optical set-

up [HSL+91]. However, it is not ideal for recording dynamic scenes as only one

layer at a time may be recorded. NOISE requires the use of coherent illumination

in order to generate multiple images of an object using a microlens array (MLA),

each with an independent speckle noise. These sub-images are superimposed to

strengthen the image of the object, which is common to all of the images, while

the various speckles average out in the process. However, although diffraction of

the object wavefield occurs, it is not regarded as an interferometric technique, and

so does not take full advantage of the complex wavefront scattered by the object.

Furthermore, due to the need to capture an array of sub-images the resolution is

low. Each of the images captured by the MLA will contain slightly different per-

spectives of the object. When these are added together, not only will the speckle

average out, but blurring along the edges of the object will occur.

We investigate the use of digital holography and the DFF for imaging an object

embedded between two layers of biological tissue. It overcomes the disadvantage

of OCT in that dynamic scenes can be recorded, and overcomes the disadvantages

of the NOISE [RA03] technique in terms of resolution and unnecessary blurring

of the edges caused by multiple perspectives of the object being added together.

The method is based on a transmissive single shot in-line digital holographic setup

to record the complex wavefield emanating from the front tissue surface. The

wavefield is reconstructed at the depth of interest using the discrete Fresnel ap-

proximation method [see Chap. 2.2.3]. The DFF [MHM+07] from the previous

chapter is then applied to this complex reconstruction to reduce the effects of the

noise caused by the front scattering layer. We compare our developed technique
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with the NOISE [RA03] technique described above.

Digital holography offers significant advantages over 2D imaging methodologies

due to its ability to generate a large number of different angular perspectives of an

object off-line. The most commonly used techniques for capturing DHs include in-

line PSI and off-line DH [Kre05] [see Section 2.2.2]. While PSI has the advantage

of removing the d.c.-components and the out-of-focus twin image that are inherent

in holography, it requires multiple sequential captures of the scene. This makes

the technique unsuitable for the capture of dynamic scenes. The off-line technique

only involves one capture and is therefore suitable for dynamic scenes. It also

allows for simple removal of the d.c.-components and out-of-focus twin image, but

this time at the expense of resolution. We use the simplest of all architectures:

an transmissive single shot in-line digital holographic setup. We remove the d.c.-

components by computing the Fourier transform of the DH and removing the

lower (center) frequencies before inverse Fourier transforming back to the DH

plane [KJ97]. Our technique does not overcome the problem of the out-of-focus

twin image, but its negative effects are outweighed by the superior resolution we

achieve in our DHs. Furthermore, the twin image could be removed using the

technique given in Chapter 7. A single shot in-line digital holography setup was

recently used to perform 3D object recognition and distortion tolerant 3D object

recognition [KJ04, JK05].

The setup for the new technique is shown in Figure 12.1. A linearly polarized

helium-neon (633.6 nm) laser beam is expanded and collimated, and divided into

object and reference beams. The object beam illuminates a reference object placed

at a distance of approximately d = 350 mm from a Kodak KAI-4021 camera, with

2032 × 2048 pixels, each having dimension 7.4µm × 7.4µm. As with all coherent

imaging systems the resultant reconstructions suffer from speckle. In order to

improve the image of the object it is important to reduce the speckle content in
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Figure 12.1: Experimental setup for single shot in-line digital holography DH: BE,

beam expander;BS, beam splitter; M, mirror; O, object; s1, s2, scattering layers.

these reconstructions.

While any speckle reduction technique could be used, we have used the DFF [MHM+07]

as it has been shown to be superior to the mean and median filters in terms of

speckle index, resolution and edge preservation. The plane, f(r), immediately

in front of layer S2 on the CCD side [see Figure 12.1], can be expressed as the

product of two terms, f(r) = t(r)d(r), where d(r) is a uniform diffuser, t(r) is

a transparency that modulates the diffuser, in our case the object, O [see Fig-

ure 12.1], and r is a vector (x, y) in the plane in front of layer S2. In Chapter 3

it was shown that the average power spectrum of the image intensity is related to

the autocorrelation of the image intensity [?]. It was further shown that the power

spectrum of the image intensity can be spilt into two terms; the first being the

power spectrum of the image itself and the second being the power spectrum of

the speckle, which we want to reduce. The DFF was initially developed to reduce
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Figure 12.2: Experimental setup for NOISE [RA03] technique: BE, beam ex-

pander; s1, s2, scattering layers, MLA, microlens array, L, imaging lens.

speckle in reconstructions of DHs of diffuse three-dimensional objects. However,

the description of f(r) in this chapter in the context of imaging through two layers

of tissue shares the same form as f(r) in Chapter 3. We therefore propose that the

DFF can be equally applied to DHs captured using the setup shown in Figure 12.1

to remove noise introduced by the tissue layers.

Two experiments are considered with a view to testing the imaging capabilities

of our transmissive single shot in-line digital holography system in conjunction with

the DFF technique; (a) embedding an opaque object between layers of plastic,

and (b) embedding the same object between layers of bacon [see Figure 12.1].

For comparison, the same experiments were carried out using the NOISE [RA03]

technique [see Figure 12.2]. The NOISE technique can be easily implemented by

removing the reference beam from the digital holography setup and introducing a

MLA and an additional imaging lens after the front scattering layer s2.

In the first set of experiments a 0.509 ± 0.001 mm thick piece of high den-

sity polyethylene (HDPE) was placed 2 mm behind the object. This layer re-
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Sample Average thick-

ness of s2 (mm)

±0.001mm

Distance of s2 from

the object for the DH

experiments (mm)

±0.001mm

Distance of s2 from

the object for the

NOISE [RA03] ex-

periments (mm)

±0.001mm

a 0.09 2.5, 7, 16, 30 0, 2.5, 13, 24

b 0.13 2.5, 7, 16, 30 0, 2.5, 13

c 0.25 2.5, 7, 16 0, 2.5, 13

d 0.39 2.5, 7, 16 0, 2.5, 13

e 0.86 2.5, 7 0, 2.5

bacon 2.5 0,3 0,2.5,13

Table 12.1: Thickness and distance of sample layer s2 from object.

mained constant for the experiment. A number of different polytetrafluoroethy-

lene (PTFE) layers of various thickness were used for s2 and these were placed at

ever increasing distances from the object [see Table 12.1]. The object, a thin piece

of metal wire [see Figure 12.3], was placed at a distance of 347 mm from the CCD

plane.

For each thickness of layer s2, a DH was captured with the distances be-

tween the object and layer s2 indicated in Table 12. In order to remove the

d.c.-components we Fourier transformed the DH, set the center 200×200 pixels to

zero, and then inverse Fourier transformed back to the DH plane [Kre05]. We then

reconstructed the DH using the direct method of reconstruction [see Section 2.2.3].

In order to reduce the speckle content in the resultant images the DFF technique

is applied with an aperture size of 256 × 256 pixels. Figure 12.3 (a) shows the

resultant image for sample b (thickness 0.13± 0.001 mm) at distance 2.5 mm. The

object is visible, but heavily corrupted by speckle. Figure 12.3 (b) shows the effect
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of applying the DFF. For comparison, Figure 12.3 (c) shows one of the subimages

produced by the NOISE [RA03] technique for the same sample and distance. The

object is not visible. However when all 128 subimages are added together, the

speckle is averaged out and the object becomes visible [see Figure 12.3 (d)]. It is

clear that the image of sample b produced by our new technique is much shaper

in terms of resolution than that produced by the NOISE technique.

In the second experiment the object is placed between two layers of bacon, both

of thickness 2.5 mm. As in the first experiment layer s1 was placed 2 mm behind

the object. In order to produce images in which the object was visible we found

that it was necessary to place layer s2 had to be placed as close to the object as

possible (effectively 0 mm away from it). Figure 12.4 (a) shows the resultant image

before application of the DFF technique and (b) shows the resultant image after

application of the DFF technique (once again with an aperture size of 256 × 256

pixels). For comparison, Figure 12.4 (c) shows one subimage from the captured

image using the NOISE [RA03] technique, and (d) shows the result of averaging

the 128 subimages using the NOISE technique. Once again the qualitative results

indicate that our new technique the NOISE technique.

In order to quantify the variation in image quality as the diffuser thickness

and distance changed for experiment 1 and the tissue distance changed for exper-

iment 2, a correlation metric is employed. A calibrated image was calculated for

each experiment. This was done by removing layer s2 imaging the object. The

correlation between the calibrated image and the images produced in each exper-

iment was then calculated. Figure 12.5 (a) shows the results of our technique and

Figure 12.5 (b) shows the result of the NOISE technique. Each figure plots the

correlation versus the distance of layer s2 from the object, for each sample, with

the correlation normalized with the calibrated images autocorrelation.

In general, we see that with increasing sample thickness and distance from the
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Figure 12.3: (a) Image from our new technique for PTFE sample b at distance

2.5 mm, (b) DFF version of (a) using an aperture size of 256 × 256 pixels, and

for comparision (c) shows one subimage from the NOISE [RA03] technique for the

PTFE sample b at distance 2.5 mm, and, (d) shows the resultant image for the

NOISE technique in which 128 subimages were averaged for the same sample at

distance 2.5 mm.



(a) (b)

(d)(c)

Figure 12.4: (a) Image from our new technique for the bacon sample at distance

0 mm, (b) DFF version of (a), and for comparision (c) shows one subimage of

the NOISE [RA03] technique for the bacon sample at distance 0 mm, and, (d)

shows the resultant image for the NOISE technique in which 128 subimages were

averaged for the same bacon sample at distance 0 mm.
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Figure 12.5: (a) Correlation versus distance of layer s2 from the object for each

sample using our new technique, and, (b) correlation versus distance of layer s2

from the object for each sample using the NOISE [RA03] technique. (Note that

our technique outperforms the NOISE by whole order of magnitude in terms of

correlation).

object, the correlation decreases. This indicates that the objects shape can no

longer be resolved. The correlation values are approximately a factor of 10 times

greater for our proposed technique than that of the NOISE technique. This is a

considerable improvement. We note that in order to produce images in which the

object is visible, the front scattering layer s2 had to be placed close enough to the

object so that the object was visible to the naked eye even in incoherent light.

This suggests that a photograph of the object could be taken instead. However,

it is noted that a photograph is a 2D imaging technology and our new technique

and the NOISE technique are 3D imaging technology. This makes it possible to

to generate different perspective views of the object under consideration. If the

object is changed for one that has a large depth, it would be possible to create an
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extended focused image in which all of the object is in focus [FGA+05, EHN08].

We have demonstrated a new technique for imaging through diffusers and bio-

logical tissue. The method uses a single shot in-line digital holography system to

record the wavefield emanating from the front scattering layer. Digital algorithms

enable us to numerically reconstruct the wavefield at the sub-tissue object depth.

The method relies upon our ability to significantly reduce the speckle noise in the

reconstructed image which is due to the diffusing nature of the tissue layers and

the fact that we have to use coherent light. The speckle reduction algorithm is

based on the mathematical properties of diffuse coherent imaging. We have noted

the relationship of our method with the recently proposed NOISE [RA03] imaging

technique and we offer an experimental comparison between the two methods. It

is evident both from the qualitative and quantitative results presented here our

new technique offers an improved performance. In fact the correlation values are

approximately a factor of 10 times greater for our proposed technique than that

of the NOISE technique. Further experimental and analytical work is planned to

progress this research.
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Appendix E

An illustration of the discrete Fresnel filter is shown in Figure 13.1. The DH plane

is filtered into non-overlapping m×m blocks. Each of these blocks is numerically

propagated to the reconstruction plane where their intensities are stored. In order

to ensure that each of the reconstructions is positioned correctly we modify the

input linear shift variables to our numerical reconstruction algorithm. This is

achieved by modifying the impulse response of the free space propagation [see

Chap. 2.2.3] to

gα,β(x′ − ξ, y′ − η) =
i

λ

eik
√

(x′ − α− ξ)2 + (y′ − β − η)2 + d2

√
(x′ − α− ξ)2 + (y′ − β − η)2 + d2

, (13.1)

where α denotes the shift in the x′-direction and β gives the shift in the y′-direction.

By modifying the impulse response for each block we can shift the object field in

such a way as to line up all of the reconstructions on top of each other [Kre05].

Of course each of the reconstructions give a different perspective of the object,

but as the perspectives differences are small due to the size of the CCD used to

capture the DHs, the resulting reconstructions when added together produce a

single speckle reduced reconstruction. The addition of different perspectives to
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Figure 13.1: Setup for discrete Fresnel filter. DH, digital hologram; DFST, discrete

Fresnel transform

reduce speckle was previously employed by Rosen and Abookasis [RA03] using

an integral imaging system [RA03]. We reconstruct n blocks and the resulting n

intensities are summed in order to reduce the speckle content.

Figure 13.2 shows the results of applying the discrete Fresnel filter to a DH

reconstruction of a die object. The die reconstruction is corrupted by a fully

developed speckle pattern and has a speckle index of approximately 1.0. It was

captured using PSI [see Section 2.2.2.3] and a reconstruction from it is shown in

Fig. 13.2(a). Figures. 13.2 (b) through (d) show the result of applying the discrete

Fresnel filter with aperture sizes 1024×1024, 512×512 and 256×256 respectively.

We have found that the speckle index reduces in approximately the same fashion

as that of the DFF, when the same size apertures are used.

In Figure 13.3 we show the results of the discrete Fresnel filter against the DFF,

mean and median filters, in terms of the edge preservation metric introduced in

Section 3.3. We note that unlike the other techniques, the discrete Fresnel filter

improves edges as its aperture size is increased and as speckle reduces. In terms

of resolution the discrete Fresnel filter is superior to both the mean and median

filters. It matches the DFF except when the largest aperture is used resulting in

a horizontal and vertical resolution [see Section 4.3] of 0.7, whereas the DFF has
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(a) (b)

(c) (d)

Figure 13.2: (a) Shows the original reconstruction of a die object, (b) shows the

result of applying the discrete Fresnel filter technique to (a) with aperture 1024×
1024, (c) shows the result of applying the discrete Fresnel filter technique to (a)

with aperture 512× 512, and (d) shows the result of applying the discrete Fresnel

filter technique to (a) with aperture 256× 256.
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Figure 13.3: Graph showing the speckle index against edge preservation results of

the discrete Fresnel filter technique (points are labeled with the size of the aper-

ture width used) DFF technique (points are labeled with the size of the aperture

width used), and the median and the mean filters (points are labeled with the

neighborhood sizes used).

a better resolution of 0.8 in both directions.
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Appendix F

We present the results for the best performing mother wavelet from each of the

following families; Haar, Db, Coif, bior, rbio. Results for the four thresholding

schemes for both soft and hard thresholding are presented. The tests were carried

out on a DH of a coin with added test pattern and resolution charts [see Chapter 4].

In all of the tables that follow, these abbreviations are used: α = speckle index,

β = Edge preservation, hr = vertical resolution, vr = vertical resolution, and ω =

overall metric.
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Wavelet Detail level α β2 hr, vr ω

Haar 1 0.52396 0.0065 0.6, 0.6 0.0019

DB2 1 0.56835 0.0044 0.6, 0.6 0.0011

Sym2 1 0.56835 0.0044 0.6, 0.6 0.0011

Coif1 1 0.57032 0.0044 0.6, 0.6 0.0011

Bior1.3 1 0.56746 0.0031 0.6, 0.6 0.0008

Rbio1.3 1 0.56713 0.0041 0.6, 0.6 0.0011

Haar 2 0.27707 0.0169 0.3, 0.3 0.0037

DB2 2 0.31369 0.0072 0.3, 0.3 0.0015

Sym2 2 0.31369 0.0072 0.3, 0.3 0.0015

Coif1 2 0.31483 0.0067 0.3, 0.3 0.0014

Bior1.3 2 0.31534 0.0051 0.3, 0.3 0.0010

Rbio1.3 2 0.31649 0.0075 0.3, 0.3 0.0015

Haar 3 0.15759 0.0764 0.2, 0.2 0.0129

DB2 3 0.18188 0.0211 0.2, 0.2 0.0035

Sym2 3 0.18188 0.0211 0.2, 0.2 0.0035

Coif1 3 0.18372 0.0204 0.2, 0.2 0.0033

Bior1.3 3 0.18292 0.0335 0.2, 0.2 0.0055

Rbio1.3 3 0.18305 0.0313 0.2, 0.2 0.0051

Haar 4 0.09608 0.1205 0.2, 0.2 0.0218

DB2 4 0.11006 0.0215 0.2, 0.2 0.0038

Sym2 4 0.11006 0.0215 0.2, 0.2 0.0038

Coif1 4 0.11014 0.0210 0.2, 0.2 0.0037

Bior1.3 4 0.10994 0.0536 0.2, 0.2 0.0095

Rbio1.3 4 0.10806 0.0405 0.2, 0.2 0.0072

Haar 5 0.07226 0.1432 0.2, 0.2 0.0266

DB2 5 0.07841 0.0226 0.2, 0.2 0.0042

Sym2 5 0.07841 0.0226 0.2, 0.2 0.0042

Coif1 5 0.07753 0.0221 0.2, 0.2 0.0041

Bior1.3 5 0.07741 0.0623 0.2, 0.2 0.0115

Rbio1.3 5 0.07851 0.0480 0.2, 0.2 0.0088

Table 14.1: Soft thresholding results for fixed form.



Wavelet Detail level α β2 hr, vr ω

Haar 1 0.52381 0.0083 0.7, 0.7 0.0028

DB2 1 0.56835 0.0048 0.6, 0.6 0.0021

Sym2 1 0.56835 0.0048 0.6, 0.6 0.0021

Coif1 1 0.57036 0.0049 0.6, 0.6 0.0013

Bior1.3 1 0.56666 0.0044 0.6, 0.6 0.0012

Rbio3.1 1 0.6726 0.0066 0.7, 0.7 0.0015

Haar 2 0.33553 0.0545 1, 1 0.0362

DB2 2 0.36121 0.0219 1, 1 0.0140

Sym2 2 0.36121 0.0219 1, 1 0.0140

Coif1 2 0.36193 0.0194 1, 1 0.0124

Bior1.3 2 0.36328 0.0437 1, 1 0.0278

Rbio1.3 2 0.36682 0.0233 1, 1 0.0148

Haar 3 0.27277 0.0585 1, 1 0.0425

DB2 3 0.28489 0.0262 1, 1 0.0188

Sym2 3 0.28489 0.0262 1, 1 0.0188

Coif1 3 0.28415 0.0220 1, 1 0.0157

Bior1.3 3 0.28317 0.0474 1, 1 0.0340

Rbio1.3 3 0.29281 0.0278 1, 1 0.0197

Haar 4 0.24611 0.0614 1, 1 0.0463

DB2 4 0.25096 0.0284 1, 1 0.0213

Sym2 4 0.25096 0.0284 1, 1 0.0213

Coif1 4 0.25055 0.0241 1, 1 0.0180

Bior1.3 4 0.24767 0.0500 1, 1 0.0376

Rbio1.3 4 0.25958 0.0302 1, 1 0.0223

Haar 5 0.2374 0.0626 1, 1 0.0478

DB2 5 0.23953 0.0235 1, 1 0.0223

Sym2 5 0.23953 0.0235 1, 1 0.0223

Coif1 5 0.23878 0.0249 1, 1 0.0189

Bior1.3 5 0.23499 0.0513 1, 1 0.0393

Rbio1.3 5 0.24923 0.0313 1, 1 0.0235

Table 14.2: Soft thresholding results for balanced sparsity norm.



Wavelet Detail level α β2 hr, vr ω

Haar 1 0.53973 0.0308 1, 1 0.0142

DB2 1 0.5801 0.0160 1, 1 0.0067

Sym2 1 0.5801 0.0160 1, 1 0.0067

Coif1 1 0.58133 0.0156 1, 1 0.0065

Bior1.3 1 0.57512 0.0256 1, 1 0.0109

Rbio1.3 1 0.58006 0.0172 1, 1 0.0072

Haar 2 0.43385 0.0461 1, 1 0.0261

DB2 2 0.45093 0.0244 1, 1 0.0134

Sym2 2 0.45093 0.0244 1, 1 0.0134

Coif1 2 0.45168 0.0232 1, 1 0.0127

Bior1.3 2 0.45578 0.0399 1, 1 0.0217

Rbio1.3 2 0.45816 0.0245 1, 1 0.0133

Haar 3 0.39592 0.0488 1, 1 0.0295

DB2 3 0.40382 0.0274 1, 1 0.0163

Sym2 3 0.40382 0.0274 1, 1 0.0163

Coif1 3 0.40338 0.0252 1, 1 0.0150

Bior1.3 3 0.40829 0.0422 1, 1 0.0249

Rbio1.3 3 0.41411 0.0278 1, 1 0.0163

Haar 4 0.37948 0.0509 1, 1 0.0316

DB2 4 0.38284 0.0291 1, 1 0.0180

Sym2 4 0.38284 0.0291 1, 1 0.0180

Coif1 4 0.38288 0.0270 1, 1 0.0166

Bior1.3 4 0.38782 0.0441 1, 1 0.0270

Rbio1.3 4 0.39415 0.0298 1, 1 0.0181

Haar 5 0.37373 0.0517 1, 1 0.0324

DB2 5 0.37549 0.0298 1, 1 0.0186

Sym2 5 0.37549 0.0298 1, 1 0.0186

Coif1 5 0.37533 0.0276 1, 1 0.0173

Bior1.3 5 0.38013 0.0449 1, 1 0.0278

Rbio1.3 5 0.38741 0.0307 1, 1 0.0188

Table 14.3: Soft thresholding results for square-root balanced sparsity norm.



Wavelet Detail level α β2 hr, vr ω

Haar 1 0.52393 0.0067 0.6, 0.6 0.0019

DB2 1 0.56832 0.0044 0.6, 0.6 0.0011

Sym2 1 0.56832 0.0044 0.6, 0.6 0.0011

Coif5 1 0.63395 0.0019 0.5, 0.5 0.0003

Bior1.3 1 0.56728 0.0033 0.6, 0.6 0.0008

Rbio1.3 1 0.5671 0.0042 0.6, 0.6 0.0011

Haar 2 0.27714 0.0244 0.3, 0.3 0.0053

DB2 2 0.31377 0.0078 0.3, 0.3 0.0016

Sym2 2 0.31377 0.0078 0.3, 0.3 0.0016

Coif5 2 0.34791 0.0016 0.4, 0.4 0.0004

Bior1.3 2 0.31555 0.0099 0.3, 0.3 0.0020

Rbio1.3 2 0.31652 0.0088 0.3, 0.3 0.0018

Haar 3 0.1579 0.0839 0.3, 0.3 0.0212

DB2 3 0.18218 0.0219 0.3, 0.4 0.0063

Sym2 3 0.18218 0.0219 0.3, 0.4 0.0063

Coif5 3 0.205 0.0152 0.4, 0.4 0.0048

Bior1.3 3 0.18347 0.0413 0.3, 0.4 0.0118

Rbio1.3 3 0.18325 0.0349 0.3, 0.4 0.0100

Haar 4 0.09661 0.1021 0.3, 0.3 0.0277

DB2 4 0.11066 0.0251 0.4, 0.4 0.0089

Sym2 4 0.11066 0.0251 0.4, 0.4 0.0089

Coif5 4 0.11955 0.0193 0.4, 0.4 0.0068

Bior1.3 4 0.11068 0.0527 0.4, 0.4 0.0187

Rbio1.3 4 0.10846 0.0433 0.4, 0.4 0.0154

Haar 5 0.072612 0.1076 0.3, 0.3 0.0299

DB2 5 0.080343 0.0265 0.4, 0.4 0.0097

Sym2 5 0.080343 0.0265 0.4, 0.4 0.0097

Coif5 5 0.084633 0.0206 0.4, 0.4 0.0075

Bior1.3 5 0.07745 0.0562 0.4, 0.4 0.0207

Rbio1.3 5 0.079004 0.0469 0.4, 0.4 0.0173

Table 14.4: Soft thresholding results for sqtwolog.



Wavelet Detail level α β2 hr, vr ω

Haar 1 0.52381 0.0075 0.6, 0.6 0.0021

DB2 1 0.56816 0.0045 0.6, 0.6 0.0012

Sym2 1 0.56816 0.0045 0.6, 0.6 0.0012

Coif1 1 0.57023 0.0045 0.6, 0.6 0.0012

Bior1.3 1 0.56672 0.0038 0.6, 0.6 0.0009

Rbio1.3 1 0.56696 0.0045 0.6, 0.6 0.0012

Haar 2 0.28047 0.0133 0.4, 0.4 0.0038

DB2 2 0.31445 0.0067 0.4, 0.4 0.0018

Sym2 2 0.31445 0.0067 0.4, 0.4 0.0018

Coif1 2 0.31499 0.0065 0.4, 0.4 0.0018

Bior1.3 2 0.31785 0.0073 0.4, 0.4 0.0021

Rbio1.3 2 0.31855 0.0071 0.4, 0.4 0.0019

Haar 3 0.16959 0.0181 0.5, 0.5 0.0075

DB2 3 0.18526 0.0072 0.4, 0.4 0.0024

Sym2 3 0.18526 0.0072 0.4, 0.4 0.0024

Coif1 3 0.18547 0.0050 0.4, 0.4 0.0016

Bior1.3 3 0.19218 0.0071 0.5, 0.5 0.0029

Rbio1.3 3 0.19043 0.0138 0.5, 0.5 0.0056

Haar 4 0.12178 0.0170 0.5, 0.5 0.0075

DB2 4 0.11961 0.0068 0.4, 0.4 0.0024

Sym2 4 0.11961 0.0068 0.4, 0.4 0.0024

Coif1 4 0.11486 0.0054 0.4, 0.4 0.0019

Bior1.3 4 0.13293 0.0067 0.5, 0.5 0.0029

Rbio1.3 4 0.12834 0.0126 0.5, 0.5 0.0055

Haar 5 0.10702 0.0170 0.5, 0.5 0.0076

DB2 5 0.09303 0.0069 0.4, 0.4 0.0025

Sym2 5 0.09303 0.0069 0.4, 0.4 0.0025

Coif1 5 0.08432 0.0053 0.4, 0.4 0.0020

Bior1.3 5 0.10939 0.0068 0.5, 0.5 0.0030

Rbio1.3 5 0.10629 0.0124 0.5, 0.5 0.0055

Table 14.5: Hard thresholding results for fixed form.



Wavelet Detail level α β2 hr, vr ω

Haar 1 0.5388 0.0186 1, 1 0.0086

DB2 1 0.57689 0.0082 1, 1 0.0035

Sym2 1 0.57689 0.0082 1, 1 0.0035

Coif1 1 0.57558 0.0073 1, 1 0.0031

Bior1.3 1 0.59521 0.0146 1, 1 0.0059

Rbio1.3 1 0.58486 0.0094 1, 1 0.0039

Haar 2 0.72536 0.0328 1, 1 0.0090

DB2 2 0.74835 0.0203 1, 1 0.0051

Sym2 2 0.74835 0.0203 1, 1 0.0051

Coif1 2 0.75401 0.0202 1, 1 0.0050

Bior1.3 2 0.75276 0.0309 1, 1 0.0076

Rbio1.3 2 0.75848 0.0194 1, 1 0.0047

Haar 3 0.75152 0.0324 1, 1 0.0081

DB2 3 0.76089 0.0200 1, 1 0.0048

Sym2 3 0.76089 0.0200 1, 1 0.0048

Coif1 3 0.77297 0.0207 1, 1 0.0047

Bior1.3 3 0.7631 0.0286 1, 1 0.0068

Rbio1.3 3 0.78709 0.0200 1, 1 0.0043

Haar 4 0.7503 0.0324 1, 1 0.0081

DB2 4 0.76057 0.0201 1, 1 0.0048

Sym2 4 0.76057 0.0201 1, 1 0.0048

Coif1 4 0.76699 0.0208 1, 1 0.0048

Bior1.3 4 0.76292 0.0286 1, 1 0.0067

Rbio1.3 4 0.78506 0.0203 1, 1 0.0044

Haar 5 0.75016 0.0322 1, 1 0.0080

DB2 5 0.76116 0.0202 1, 1 0.0048

Sym2 5 0.76116 0.0202 1, 1 0.0048

Coif1 5 0.77263 0.0210 1, 1 0.0048

Bior1.3 5 0.75973 0.0287 1, 1 0.0069

Rbio1.3 5 0.78151 0.0203 1, 1 0.0044

Table 14.6: Hard thresholding results for balanced sparsity norm.



Wavelet Detail level α β2 hr, vr ω

Haar 1 0.77794 0.0337 1, 1 0.0075

DB2 1 0.8104 0.0210 1, 1 0.0040

Sym2 1 0.8104 0.0210 1, 1 0.0040

Coif1 1 0.80655 0.0221 1, 1 0.0043

Bior1.3 1 0.80451 0.0311 1, 1 0.0061

Rbio1.3 1 0.81108 0.0215 1, 1 0.0041

Haar 2 0.89736 0.0283 1, 1 0.0029

DB2 2 0.90771 0.0226 1, 1 0.0021

Sym2 2 0.90771 0.0226 1, 1 0.0021

Coif1 2 0.90942 0.0225 1, 1 0.0020

Bior1.3 2 0.90788 0.0264 1, 1 0.0024

Rbio1.3 2 0.91211 0.0223 1, 1 0.0020

Haar 3 0.90021 0.0280 1, 1 0.0028

DB2 3 0.91212 0.0222 1, 1 0.0019

Sym2 3 0.91212 0.0222 1, 1 0.0019

Coif1 3 0.90998 0.0220 1, 1 0.0020

Bior1.3 3 0.90975 0.0261 1, 1 0.0024

Rbio1.3 3 0.91623 0.0222 1, 1 0.0019

Haar 4 0.89861 0.0279 1, 1 0.0028

DB2 4 0.90747 0.0221 1, 1 0.0020

Sym2 4 0.90747 0.0221 1, 1 0.0020

Coif1 4 0.90827 0.0221 1, 1 0.0020

Bior1.3 4 0.90992 0.0262 1, 1 0.0024

Rbio1.3 4 0.91587 0.0223 1, 1 0.0019

Haar 5 0.89717 0.0279 1, 1 0.0029

DB2 5 0.907 0.0222 1, 1 0.0021

Sym2 5 0.907 0.0222 1, 1 0.0021

Coif1 5 0.90735 0.0222 1, 1 0.0021

Bior1.3 5 0.9101 0.0262 1, 1 0.0024

Rbio1.3 5 0.91623 0.0223 1, 1 0.0019

Table 14.7: Hard thresholding results for square-root balanced sparsity norm.



Wavelet Detail level α β2 hr, vr ω

Haar 1 0.52381 0.0085 0.8, 0.7 0.0030

DB2 1 0.5692 0.0049 0.6, 0.7 0.0014

Sym2 1 0.5692 0.0049 0.6, 0.7 0.0014

Coif1 1 0.57167 0.0050 0.6, 0.6 0.0013

Bior1.3 1 0.56672 0.0055 0.6, 0.6 0.0014

Rbio1.3 1 0.56692 0.0049 0.9, 0.7 0.0017

Haar 2 0.27942 0.0077 0.5, 0.5 0.0028

DB2 2 0.32231 0.0037 0.5, 0.5 0.0012

Sym2 2 0.32231 0.0037 0.5, 0.5 0.0012

Coif1 2 0.3236 0.0025 0.4, 0.5 0.0007

Bior1.3 2 0.31804 0.0178 0.5, 0.5 0.0061

Rbio1.3 2 0.31783 0.0028 0.5, 0.5 0.0009

Haar 3 0.16574 0.0059 0.6, 0.5 0.0032

DB2 3 0.20577 0.0032 0.5, 0.5 0.0013

Sym2 3 0.20577 0.0032 0.5, 0.5 0.0013

Coif1 3 0.20696 0.0013 0.5, 0.5 0.0005

Bior1.3 3 0.19406 0.0132 0.5, 0.5 0.0053

Rbio1.3 3 0.19074 0.0026 0.9, 0.8 0.0018

Haar 4 0.10681 0.0055 0.6, 0.5 0.0032

DB2 4 0.14508 0.0032 0.5, 0.5 0.0014

Sym2 4 0.14508 0.0032 0.5, 0.5 0.0014

Coif1 4 0.14529 0.0013 0.5, 0.5 0.0005

Bior1.3 4 0.12783 0.0125 0.5, 0.5 0.0055

Rbio1.3 4 0.12397 0.0022 0.9, 0.9 0.0018

Haar 5 0.08484 0.0056 0.6, 0.5 0.0034

DB2 5 0.12582 0.0032 0.5, 0.5 0.0014

Sym2 5 0.12582 0.0032 0.5, 0.5 0.0014

Coif1 5 0.1237 0.0014 0.5, 0.5 0.0006

Bior1.3 5 0.09844 0.0127 0.5, 0.5 0.0057

Rbio1.3 5 0.10003 0.0023 0.9, 0.9 0.0019

Table 14.8: Hard thresholding results for square-root balanced sparsity norm.
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