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Abstract 
The paper is dedicated to the study of non-linear waves acting on three dimensional surface-piercing 
structures. A time-domain non-linear potential-flow model has been developed to predict the large-
amplitude motions of devices in a prescribed seaway. While earlier models have been developed for single 
wave energy devices, this paper addresses multi-body devices, with particular application to the 
WAVEBOB wave energy device.  
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1. Introduction 

Environmental loads on wave energy 
converters arise essentially from waves, current 
and wind. In most cases the operational and 
extreme loads are due to waves. Most general 
theoretical formulations developed for 
applications within seakeeping of ships and 
offshore structures and within coastal 
engineering problems may be useful for 
analyzing wave energy devices. The problem of 
wave energy converters (WEC) in waves have 
been extensively studied in the frequency 
domain. This approach is meaningful only if the 
oscillatory response is linear. However, wave 
energy converters are floating bodies which may 
have large amplitude motions and nonlinear 
responses. Time-domain formulations are more 
general, and are able to deal with motions. 

The present paper deals with a non-linear 
time model. In a first section, the resolution of 
the equations of motion is covered. The body 
orientation has been described by using 
quaternions and the non-linear equations of 
motions are solved in the time-domain by the 
fourth-order Runge-Kutta technique. A second 
section deals with the hydrodynamic modelling. 
The pressure of the incident wave train is 
integrated over the instantaneous wetted surface 
to obtain the Froude-Krylov forces. The first-
order diffraction-radiation forces are computed 
by a linear potential flow formulation [1] and 
second-order terms are added. The quadratic 

term of Bernoulli’s equation is taken into 
account and the first-order force is expanded to 
the second-order via Taylor series expansions. 

This approach has already been used to 
predict large amplitude motions of a single wave 
energy device [3] and is adapted for multi-body 
devices. An application to the WAVEBOB 
device is presented in this paper. This device is a 
wave energy point absorber, composed of two 
concentric circular cylinders. This WEC is as 
two separate bodies but its geometry implies that 
the only relative motion between them is in the 
vertical direction. Therefore the device could be 
also seen as a single body with seven degrees of 
freedom corresponding to three rotations (roll, 
pitch, yaw) and two translations (surge, sway) 
for the whole system, plus two translations 
representing the heave motions of each body. 
 
2. Methodology 

2.1. Resolution of the Newton's law 
Under the latter hypothesis, the whole 

system is considered as a single floating body 
and the two body approach is just used for the 
heave case.  

In a first step we define an initial inertial 
frame of reference R0 linked to the physical 
space, assimilated to a Galilean referential. The 
origin O of this referential is fixed to the center 
of mass of the body at the initial time. A rigid 
motion moving R0 to a new referential Rb is then 
carried out to place the body in space. 
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The Newton’s second law leads to the two 
Eq.(1) and Eq. (2) where G is the center of 
gravity of the system, fG

b the total force acting on 
the bodies and mG

b the torque. 
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Eq. (1) corresponds to the translation motion of 
the centre of gravity in body-fixed coordinates 
and Eq. (2) describes the attitude dynamics of 
the whole body in the body-fixed frame. 
The bodies orientation has been described by 
using quaternions. This alternative method, in 
comparison to the classical Euler or Cardan 
angle representation, has been used to avoid 
singular configurations which can appear for 
large amplitude motions. This technique has 
already been used by McDonald and Whitfield 
[6] and Leroyer and Visoneau [5]. One can show 
that for any rotation around the unit vector u

�
 

with an angle θ is associated to only one 
quaternion cos sin

2 2
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e
� in the quaternion-

space basis (e, i, j, k) and that the time-
derivative can be related to the instantaneous 

rotation vector b
ObΩ
�

. 
In vectorial settings Eqs. (1) and (2) may be 
expressed as 
 

+ =Mv τ τCoriolis  
 
Where 
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G Ob T Cv u v w w p q r = Ω = v is the 

generalized velocity vector decomposed in the 
body-fixed frame where wT and wC correspond 
respectively to the Torus and the cylinder 
vertical velocity. 

 
� M the inertia matrix. 
 
� τCoriolis the Coriolis forces.  
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G G T Cf m X Y Z Z K M N = = τ is the 

generalised vector of external forces and 
moments where ZT and ZC correspond to the 
vertical external forces applied, respectively, to 

the Torus and the cylinder. τ is composed by the 
pressure forces due to the fluid-structure 
interactions, the power-take-off (PTO) loads 
modeled here as a linear damper and the 
mooring loads. 

 
Therefore, using Eqs. (1) and (2) the 

motion decomposition leads to the following 
coupled system 
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Eq. (4) corresponds to the Newton’s second law 
Eqs. (1) and (2), giving the generalised velocity 
components of the body. Then, Eq. (5) gives the 
translation displacement and Eq. (6) the 
rotational motion. Eq. (7) is redundant because a 
quaternion rotation has always a unit length. 
However, the numerical resolution of Eq. (6) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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does not maintain precisely this length and a 
renormalization is then necessary. 
 

2.2. Fluid-structure interactions 
The fluid is considered homogeneous, 

uncompressible, inviscid and with an irrotational 
flow. Surface tension is not taken into account 
and the depth is considered infinite and a 
linearized free surface and body boundary 
conditions are used. The moon pool effects 
between the two bodies are also not taken into 
account in the present work. 

The fluid forces acting on the two bodies can 
then be non-linear with respect to certain motion 
variables, e.g. the quadratic component of the 
Bernoulli’s equation, the nonlinear incident 
potential flow. Froude-Krylov forces contain 
“geometric” non-linearities as the forces are 
computed by integrating over the exact 
instantaneous position and wetted surface. In 
addition, the incident wave field applied on the 
bodies is given by a higher-order method 
allowing the simulation of highly non-linear 
waves [7]. 
 

� Froude-Krylov forces 
The Froude-Krylov forces are the loads 
introduced by the unsteady pressure field 
generated by undisturbed waves. In this model, 
the Froude-Krylov forces are completely 
nonlinear. The pressure of the incident wave-
train is integrated on the instantaneous wetted-
surface S(t) defined by the intersection between 
the non-disturbed incident free-surface and the 
shifted floating bodies, as follow 
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The dynamic pressure Iφ  is derived from the 
nonlinear incident potential of a higher-order 
method. 

A robust geometry processing is 
essential for large amplitude motions. 

Consequently, an automatic remeshing routine is 
used for this task. At each time step, the 
underwater geometry is represented by a number 
of panels (Fig. 1). As the bodies move, their new 
locations and orientations are updated in the 

 
Figure 1: Screen capture of simulation 

 
global coordinate system and the new waterline 
is found from the intersection with the 
instantaneous free surface. The underwater 
portion of each panel is then repanelized using 
the transfinite method [4]. 
 

� Radiation forces 
The radiation forces are the hydrodynamic forces 
associated with the motion of the floating bodies. 
The linear radiation forces have been expressed 
as a convolution product according to the well-
known Cummins’ decomposition 
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0
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t

rad t v t t dτ τ τ τ∞= − − −∫µ K v  

 
where µ∞ is the added masses matrix and K the 
impulse response function for the radiation 
forces which are previously computed by the 
commercial software ACHIL3D [1]. 
It can be first transformed in order to remove the 
convolution product by using Prony’s method. 
This method has been developed by Clément [2] 
for the computation of impulse response of 
radiation forces. This method computes couples 
of variables (αi, βi) defining the following 
approximation of the real function K of the Eq. 
(10) 
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Figure 2: Comparison of the mean amplitudes of radiation forces, diffraction forces, and of static and 
dynamic part of Froude-Krylov forces (Fkstat, Fkdyn) in heave. 
 
K being a real function, either (αi βi) are real, 
either they are complex and systematically 
associated with their complex conjugates. So, if 

( ) ( )
0

( )
t

ij ijI t K t dτ τ τ≈ −∫ v  

 
the computation of the convolution product in 
the equation gives the following result 
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� Diffraction forces 

The diffraction forces are associated with the 
disturbance introduced into the wave system by 
the presence of the floating bodies. Like the 
radiation forces, the diffraction forces are based 
here on linear time-domain theory. The 
diffracted wave forces are computed as 
 

 ( ) ( )( )diff It t dτ τ η τ τ
+∞

−∞
= −∫ 7K  

 
where ηI is the free-surface elevation of the 
incident-wave train at a given reference point 
and K7 the impulse response function for the 
diffraction forces. 
 

� Expansion to the second-order 
The expansion to the second order is performed 
in two steps. In the first step, the linear 
hydrodynamic force, computed by ACHIL3D, is 
developed up to the second-order. This 
development can be done by using two 

approaches. The first approach consists to 
expand to the second-order the forcing terms 
around the mean wetted surface. The other 
approach is to expand directly the equation of 
the hydrodynamic force 
The latter solution is used here. A Taylor series 
expansion of the time derivative of the total 
potential and of the normal to the wetted surface 
is performed around the mean position of the 
body to obtain the following force 
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In the second step, the quadratic term of the 
Bernoulli’s equation is added, the considered 
hydrodynamic force is then as follow 
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 where ,pδφ∇  corresponds to the gradient vector 

of the velocity potential computed by 
ACHIL3D. The potential gradients radφ∇  and 
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diffφ∇ are then computed by convolution between 

,pδφ∇ and the bodies velocity for the radiation 

forces and with the incident waves velocity for 
the diffraction forces. 
 
3. Results 

Simulations with different regular waves 
have been performed in order to assess the 
interest of such numerical model for a wave 
energy device like WAVEBOB. The wave field 
is considered regular and no control was applied 
on the relative motion. Nine different regular 
waves have been considered with a period range 
between 5 to 10 s and with a wave amplitude 
range between 0,1 to 1 m. 
Fig. 2 shows the mean amplitudes of the 
radiation, diffraction and Froude-Krylov forces 
for the different regular wave trains. We can see 
that the Froude-Krylov forces are predominant 
for all of the cases. Indeed, the hydrostatic 
restoring force is the main component and the 
force associated with the dynamic component of 
the Froude-Krylov forces is also significant. 
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Figure 3: Fourier components of heave motion 
for the Torus and the cylindrer for a wave period 
of 5 s and 3 different wave amplitudes (0.1m, 
0.5m and 1m ). 

 
Figs. 4, 5 and 6 show the variations of 

the first two harmonic components of the heave 
motion. For each body, components have been 
computed using a Fourier decomposition of the 
time history of the heave motion in a moving 
window of one wave period long. We can see 

that 2nd-order terms are insignificant in 
comparison to the first-order terms for all wave 
conditions. Their influence increase as the 
amplitude and the period increase but stay 
insignificant. 
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Figure 4: Fourier components of heave motion 
for the Torus and the cylinder for a wave period 
of 7 s and 3 different wave amplitudes (0.1m, 
0.5m and 1m ). 
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Figure 5: Fourier components of heave motion 
for the Torus and the cylinder for a wave period 
of 10 s and 3 different wave amplitudes (0.1m, 
0.5m and 1m ). 
 
4. Conclusion 

In this work a numerical model has been 
presented to determine the large amplitude 
motions of a floating wave energy converter 
subjected to incoming regular waves and 
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composed by two bodies. The body orientation is 
modeled with quaternions and the non-linear 
equations of motion are solved by using the 
fourth-order Runge-Kutta method. Regarding the 
hydrodynamic model, the theory is based on the 
linear potential program ACHIL3D for 
determining the first-order diffraction-radiation 
forces. The Froude-Krylov forces are obtained 
by integrating the wave pressure over the 
instantaneous wetted surface, taking into account 
the large amplitude motion of the floating body. 
Then, the first-order diffraction-radiation forces 
are expanded to the second-order by using a 
Taylor’s development and the quadratic term of 
the Bernoulli’s equation is taken into account by 
convolution. 

The results show that the Froude-Krylov 
forces are dominant in all wave conditions. 
Thus, the approach seems to be relevant for this 
kind of wave energy converter. Concerning the 
body motions, the results show that the second-
order terms are insignificant in all wave 
conditions. 
 In terms of perspectives, validations 
with the WAVEBOB device have to be done. 
Wave tank tests are planned in this way and for 
quantifying moon pool and viscosity effects in 
order to be included in the numerical model. 
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