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A beam shaping method is presented where a diffractive optical element (DOE) is designed by optimizing the
complex mode coefficient weights of a set of Gaussian beam modes. This method is compared with the more
standard unidirectional approach. Differential evolution is used for the optimization in both the unidirectional
and Gaussian beam mode optimization methods. For the particular transforms carried out, the Gaussian beam
mode set optimization (GBMSO) approach achieved more optimal solutions. The GBMSO approach is extended
to design DOEs that control the amplitude distribution of a beam at multiple planes, rather than at just a
single plane (i.e., the far field). © 2010 Optical Society of America
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1. INTRODUCTION

Diffractive optical elements (DOEs) can be used to trans-
form a coherent beam of light to some desired intensity
pattern at another plane (for example, the far field) by im-
posing a phase distribution on a field [1]. The phase
modulation of the DOE may be discrete or continuous.
Discrete modulation may be necessitated by the manufac-
turing process, but may result in a less optimal solution
(in terms of the far-field distribution achieved) compared
to continuous profile. In this paper we consider continu-
ous phase-only transmissive DOEs that impose a phase
on the field by means of a profiled dielectric.

Due to the ill-posed nature of the problem, no analyti-
cal solution exists for finding the phase profile required to
transform a given arbitrary input field to a given arbi-
trary output field, and in fact an exact transform may not
even be possible [2]. Stochastic optimization algorithms,
such as simulated annealing or genetic algorithms, have
been applied to find optimal phase solutions [3,4]. The
same algorithms that are applied to phase retrieval are
used in DOE design. These algorithms can find solutions
with the specified phase or amplitude constraints; how-
ever (depending on the target amplitude distribution),
they can be computationally expensive [1].

First, this paper describes a typical method of DOE de-
sign where the phase of a scalar electric field, which was
encoded as an array of elements, was optimized by itera-
tively modifying the phase, transforming to the far-field,
and evaluating some merit function. Simulated annealing
and differential evolution (DE) were both used to perform
this optimization. Next, a method based on the optimiza-
tion of a set Gaussian beam modes (GBMs) is introduced
and the results are compared.

2. DIFFERENTIAL EVOLUTION

DE [5,6], a type of evolutionary strategy (ES), uses
mechanisms inspired by biological evolution, whereby
with each generation (or iteration), the “selection” of the
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“fitter individuals” from a “population” of designs is per-
formed; perturbations (or “mutations”) are then applied to
the individuals, which are then “bred” by means of “cross-
over.” Whereas genetic algorithms perform logical opera-
tions on bit strings, ESs perform arithmetic operations on
floating point numbers. This makes them very suitable
for a continuous parameter space optimization, as they
are less complicated algorithms and provide greater con-
trol over the distribution of the mutant vector [5]. DE was
used here for beam shaping, as it tends to be more robust
than the more standard simulated annealing technique
[7].

Only a brief description of DE is given here; a detailed
description can be found in [5]. DE is generally initialized
with a population of individuals, x; 4, of index i and gen-
eration g, each of which consists of parameters that en-
code the phase of the DOE. DE selects an individual la-
beling it x,( . (the base vector) and randomly selects two
other individuals, which are labeled x,; ; and x,9 ;. A mu-
tant vector is created as follows:

Vig=Xr0gt F(xrl,g _xr2,g)> (1)

where F e(0,1) is a real constant scaling factor, with a
range recommended in [5].

DE then performs a type of discrete recombination, also
known as the linear crossover, on each mutant vector of
the intermediate population as follows:

{vi,g if (rand(0,1)=C),
u; 8= . (2)
x;, otherwise,

where the crossover probability, C, [0,1], controls the
fraction of parameters that are passed from each of the
two randomly selected vectors to the trial vector. The op-
timal choice for parameters is problem specific; here a
population size of 50, C,.=0.5, and F=0.5 are used.

The objective function values of v; , and u;, are com-
pared and the more optimal replaces x, , in the next gen-
eration. All vectors (individuals) in turn are labeled x, ,
and mutation, crossover, and selection are performed as
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above, before proceeding to the next generation. Muta-
tion, crossover, and selection are performed on subse-
quent generations in this way until the convergence
criterion—for example, that no improvement on the best
solution is made for a given number of iterations—is met.

3. UNIDIRECTIONAL OPTIMIZATION

A Gaussian to rect( ) function far-field amplitude distribu-
tion transform was used here to compare the unidirec-
tional and Gaussian beam mode set optimization
(GBMSO) beam shaping methods. This transform is com-
monly used in the literature and is a challenging problem;
beam shaping algorithms, such as the Gerchberg—Saxton
algorithm or the unidirectional method, tend to get stuck
at suboptimal solutions for this particular target function.
Here, a 100 mm radius Gaussian beam with a flat phase-
front was taken as the input field, and the DOE was used
to obtain both 1° and 10° radii rect( ) function amplitude
distributions in the far field.

In unidirectional optimization (also called the direct
method), the field is transformed in one direction only
(e.g., from the DOE plane to the far field)—as apposed to
bidirectional optimization, such as the Gerchberg—Saxton
algorithm [8], in which the field is also transformed in the
conjugate direction. The DOE imposes a phase ¢pog(x,y)
on the input field which has an amplitude distribution of
T;,(x,y). In the Fraunhofer approximation, the far field is
given by the Fourier transform as follows:

E(kx7ky) = f{Tln(x,y)eXp[L ¢DOE(x7y)]}7 (3)

where the Fourier transform operation F{ } is computed
using a fast Fourier transform (FFT) and %’s are the spa-
tial frequencies.

For simplicity, the optimization was restricted to the
one-dimensional case. The DOE was divided into a num-
ber of discrete elements, ¢por(*1,0),Ppor(x2,0),...,
dpor(xy,0), as shown in Fig. 1; the depth of each of these
elements was optimized using DE. The phase element, of
depth d, imposes a phase ¢pog=27d(n—1)/\ on the input
field, where n is the refractive index of the DOE material.
As a symmetric DOE was sought, each parameter in the
optimization controlled the depth of two elements that
were equidistant from the axis of symmetry (except the
parameter that controls the central element). The radius
of the DOE was 250 mm (2.5 times the radius of the
Gaussian field incident on the DOE); the field outside of
this region was padded with zeros.

A population of DOE designs, ¢pog(x;,0), imposing ran-
dom phase values between 0 and 27 was optimized. The

Input Plane ?DOE element i
i I
[ I
i I
Input beam | i
p! égAX|s of symmetry i
% Far-Field
| Output Plane
Fig. 1. For a DOE designed using unidirectional optimization,

the global optimization algorithm optimizes the depth of each el-
ement of the DOE.
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following mean squared error (MSE) metric was used to
quantify the design’s “fitness:”

N
MSE = ]—VE (E(R;,0) = Tyy(k;,0))%, (4)

i=1

where E(k;,0) is the modeled far-field distribution,
T,u:(k;,0) is the target far-field amplitude distribution,
and N is the number of samples in the field. Although it is
the MSE that was minimized in the optimization, the
power coupling (PC) between the optimized and target
field distributions, assuming that the distributions have
identical phases, is also quoted as it can be physically
more meaningful. The PC is given by
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Fig. 2. (Color online) The results of the optimizations to trans-
form a 100 mm radius Gaussian input field to a 1° radius rect( )
function far-field distribution. (a) The phase that gives the DOE
profile designed by unidirectional optimization (dotted line) and
GBMSO (solid line). (b) The amplitude distribution given by the
GBMs at the DOE plane (solid line) and the target amplitude dis-
tribution (dashed line). (c) The far-field target amplitude distri-
bution (dashed line), the far-field amplitude distribution given by
the GBMs at the DOE plane (solid line), the far-field amplitude
distribution from the DOE designed using GBMSO with the
Gaussian amplitude input distribution (thick dotted-dashed
line), and the far-field amplitude distribution from the DOE de-
signed by the unidirectional method (dotted line).
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i=1

N 2
PC= (2 |E<ki,0>|Tm<ki,0>Ak) , (5)

where Ak is the far-field sampling interval. The absolute
value of E(k;,0) was used, as it was the amplitude distri-
bution of the field that was optimized and the distribution
of the phase was left free.

The results of the optimization are shown in Figs. 2
and 3 (with dotted lines) and the figures of merit are
given in Table 1. The 10° radius rect( ) function far-field
distribution was better than the 1°, but the optimized
phase that gives the shape of the DOE was much less
smooth than for the 10°. Whereas the phase distribution
and the figure of merit resulting from the 1° optimization
were independent of the starting phase for all trials, for
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Fig. 3. (Color online) The results of the optimizations to trans-
form a 100 mm radius Gaussian input field to a 10° radius rect( )
function far-field distribution. (a) The phase that gives the DOE
profile designed by unidirectional optimization (dotted line) and
GBMSO (solid line). (b) The amplitude distribution given by the
GBMs at the DOE plane (solid line) and the target amplitude dis-
tribution (dashed line). (¢) The far-field target amplitude distri-
bution (dashed line), the far-field amplitude distribution given by
the GBMs at the DOE plane (solid line), the far-field amplitude
distribution from the DOE designed using GBMSO with the
Gaussian amplitude input distribution (thick dotted-dashed
line), and the far-field amplitude distribution from the DOE de-
signed by the unidirectional method (dotted line).
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Table 1. Results of the Optimization to
Convert a A=3 mm 100 mm Gaussian Field to
Target 1° and 10° Radii rect( ) Function Amplitude
Distributions, Using the Unidirectional and
GBMSO Methods®

Unidirectional GBMSO
rect( ) Function Radius MSE PC MSE PC
1° 0.001646 0.908 0.001474 0.917
10° 0.000611 0.965 0.000263 0.985

“For an exact amplitude match, MSE=0 and PC=1.

10° they where highly dependent, indicating that a global
optimum was not reliably being found.

4. GBMSO

A. Introduction
A beam can be described in terms of GBMs by the follow-
ing modal expansion [9,10]:

2 2 an,m exp(l ¢n,m) lﬁn,m(wmx,y"z)
E(.y,)=—— G

PIPI
M N

where a,, ,, and ¢, ,, are the amplitude and the phase of
the mode coefficients, respectively; #, ,,(wg,x,y,2) are the
GBMs of waist wg; z is the propagation distance; and M
and N are the maximum index numbers of the mode co-
efficients used to construct the field. The denominator in
Eq. (6) normalizes the power in the field. The Gauss—
Hermite basis set, used here, is given by

9(1/2)-n \‘Ex V'Ey
lr/jn,m(wOax’y’Z) = /——Hm - Hn _
\Jmwn! w w

x+y? im(x? +y?)
Xexp|:— T —ikz - W
ipo(m +n+1)
2 }

(7)

+

where H,, and H, are Hermite polynomials of order m
and n, and the beam radius w(z), the radius of curvature
R(z), and the phase slippage ¢(z), are given by

222 wzwé
w(z)= ;2 +1 wg, R(iz)=z s t1/,
0 PN

Tw

A
bo(2) =tan‘1(z—2>.
W

0

The algorithm used to design the DOE—referred to here
as GBMSO—involves optimizing the parameters
@0,0,20,15 -+ aNM; $0,0>%0,15--- > PNu5 Wo; and z of Eq. (6)
to achieve a field with the prescribed amplitude distribu-
tions at the input (DOE) and output (far-field) planes or
the closet approximation to it. This was achieved by maxi-
mizing the following merit function:
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+ f f |E(0x) ay,z + §)|Tuut(6x’ ey)daxday, (8)

where Tj,(x,y) is the field that illuminates the DOE,
T,ui(x,y) is the target amplitude distribution, and z is the
separation between the input and output planes (if the
output plane is located in the far field, z=).

Given a sufficiently large number of modes, any field
may be constructed exactly, irrespective of the values of
wy and z used; however, a limited number of modes are
used in the optimization. Therefore the values wy and z
are optimized to more accurately construct the field (in
this way the optimal values of the radius of curvature and
the radius of the modes were found).

DE was used for the optimization, as the parameter
space is nonlinear and DE is a global optimization algo-
rithm. The phase that gives the DOE profile is given by

¢DOE(3C,3’) = arg[E(x7y>Zo)]7 (9)

where z( is the value of z found by the optimization pro-
cedure. The field at the DOE is therefore given by

EDOE(xvy) = Tin(x,y)eXp[i%OE(x,y)] . (10)
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B. Example: Gaussian Input Field to Uniform Far-Field
Distribution

The following examples were carried out in one dimension
for simplicity. In each case the input field T}, (x,0) was a
A=3 mm 100 mm radius Gaussian with a flat phase-front.
The target far-field distributions were rect( ) functions
with far-field angular radii of 1° and 10°. The modes with
even indices between 0 and 20 were used in the optimiza-
tion (only even indexed modes were used in order to ob-
tain a symmetric DOE).

Whereas DE is capable of finding solutions outside the
range of parameter values with which it is initialized, it is
more robust if initialized with narrow ranges that encom-
pass the optimum values [5]. In order to construct the
DOE plane and output plane target amplitude distribu-
tions from the basis modes accurately, the extent of the
highest order mode used in the optimization should be at
least as large as the extent of the distributions, but not
greatly larger. This is the consideration that was applied
in choosing the upper and lower limits of wy and w as
shown below.

Figure 4 shows the 1° and 10° radii target far-field dis-
tributions plotted along with the 20th order mode (the
highest order mode used in the optimizations); the mode
is plotted for the lowest and highest values of w at the
DOE plane, and 6, at the far field. For the 10° radius
rect( ) target function, the lower limits of 6, and w were
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Fig. 4. (Color online) The upper and lower limits of the random values for the radius of the mode coefficients with which the optimi-
zation is initialized were chosen to encompass the likely optimal value (see text). The 20th order mode, the highest order mode used in
the optimizations, is shown for a radius at the lower and upper limits (thick solid and dotted-dashed lines, respectively), along with the
target amplitude distributions (dashed line). In the far field, the mode radius is given a divergence angle, whereas at the DOE plane, the
mode radius is given as a distance. (a) The target (input) Gaussian amplitude distribution for the 1° target far-field amplitude distribu-
tion. (b) The target (output) rect( ) function amplitude distribution for the 1° target far-field amplitude distribution. (¢) The target (input)
Gaussian amplitude distribution for the 10° target far-field amplitude distribution. (d) The target (output) rect( ) function amplitude

distribution for the 10° target far-field amplitude distribution.
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chosen such that the highest order mode used in the op-
timization had a similar extent to the target distributions
at the DOE and far-field planes; the upper limits chosen
for 6, and w were three times the values of the lower lim-
its. The modes were propagated a distance z from the
waist location [where the waist radius is wy=N/(76y)] to a
radius of w. The propagation distance to the input plane,
z(wgy,w), was optimized, rather than optimizing w di-
rectly, in order to avoid the generation of infeasible values
of w (with w<w,) during the optimization. z(wy,w) is

given by
Trw% w?
zZ(wg,w)= £ ——[—-1. 11
(wo,w) N \/wg (11)

The minimum and maximum values of z from the range of
values of wy and w were calculated and used to initialize
the optimization.

For the 1° radius target rect( ) function, shown in Figs.
4(a) and 4(b), when 6, is chosen such that the 20th order
mode has a similar extent to the rect( ) function, the mini-
mum mode radius (w=w,) at the DOE plane is much
larger than the target Gaussian distribution, and vice
versa when the 20th order mode waist is set to have a
similar extent to the Gaussian at the DOE plane; these
radii were used as upper and lower limits with which to
initialize the optimization, and the optimization found an
intermediate mode waist radius.

As the output plane was located in the far field, in Eq.
(8), z is equal to «. For the 10° radius target far field, the
optimization was initialized with positive values of
z(wgy,w) [it was only necessary to use positive values, as
using a negative value of z(wq,w) along with conjugate
values for the mode coefficient in Eq. (6) gave the same
amplitude distribution at the target plane] and random
values of amplitude and phase of mode coefficients within
the ranges 0-1 and 0—2, respectively. The range values
of wg and z with which the optimization was initialized
are given in Table 2.

The values of wy and z found by the optimizations are
given in Table 2. The results of the optimization for the 1°
and 10° rect( ) functions are shown in Figs. 2 and 3, re-
spectively. The deviation of the optimized amplitude dis-
tribution, |[Epog(x,y)|, from the target amplitude distribu-
tion T}, (x,y) (in this case a Gaussian distribution), shown
in Figs. 2(b) and 3(b), causes a corresponding deviation in
the far-field distribution when the DOE designed from the
optimized phase was used to transform the Gaussian in-
put field. The far field from the DOE with a Gaussian in-
put field is given by

J. Lavelle and C. O’Sullivan
Edky,k,) = HT;,(x,y)exp(i arg[Epog(x,y)])}.  (12)

E(k,,0) is shown as a dotted-dashed line in Figs. 2(c) and
3(c), for the 1° and 10° rect( ) function far-field amplitude
distributions, respectively. The PC figures of merit for
these fields are given in Table 1. In both cases this
GBMSO method performs better than the unidirectional
one.

In the case of the 1° target rect( ) function distribution,
the unidirectional method and GBMSO achieved a com-
parable performance in terms of the MSE and PC merit
functions. In the case of the 10° target rect( ) function dis-
tribution, whereas the MSE of the GBMSO far-field am-
plitude distribution is reduced by a factor of 2.3 over the
unidirectional result, the difference in the PC metric is
approximately 2%; thus the relatively small percentage
difference in the PC accounts for a large qualitative dif-
ference in the shape of the two far-field amplitude distri-
butions.

These algorithms were implemented in Python with
the NumPy extension to efficiently compute the FFT. The
most computationally expensive part of the optimization
for the unidirectional method was the FFT operation of
Eq. (3), and for GBMSO it was the computation of the
near- and far-field amplitude distributions given by Eq.
(6). For GBMSO, the mode set is stored in discretely
sampled arrays. Rather than recomputing the entire
mode set for each vector, the array containing the dis-
cretely sampled modes was calculated only once and the
target fields were rescaled to achieve the correct scale
relative to the mode set. Each iteration in GBMSO could
be computed much more quickly than the unidirectional
optimization, as it took approximately 400 times longer to
compute the FFT for the unidirectional optimization than
to compute the field at both the near- and far-field planes
with the dot product for GBMSO.

A significant benefit of GBMSO over the unidirectional
approach is that, while producing a better shaped field,
the DOE profiles designed are smoother and easier to
manufacture. A further advantage of this method is that
the output plane need not be at infinity; in fact the beam
amplitude distribution can be optimized at one or more
intermediate planes as described in the next section.

C. Multiple Plane Beam Shaping

The so called “diffraction-free beams,” in which the ampli-
tude does not change in form or scale while propagating,
were identified in 1987 [11]. These beams have an ampli-
tude cross-section of a Bessel function and are given by

Table 2. Range of z Values after Optimization Was Initialized with Random Values w and w,, and Values of
w, and z Found by the Optimization

Initialization Range

Optimization Result

(mm) (mm)
rect( ) Function Radius wy w z wy w z
1° 47— 220 47— 220 0—25,342 90.4 107.5 5500.8
10° 75—-225 47141 364.4— 3280 11.6 55.4 661.0
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E(",Z) =EO exp(ikzz)JO(krr)? (13)

where J is the zeroth order Bessel function, %k, and &, are
the longitudinal and radial components of the free-space
wave vector related by kzzkz +k3, and kg is the free-space
wavenumber. Ideal Bessel beams have infinite extent and
power—but experimentally generated pseudo-Bessel
beams can only approximate them, having finite extent
and power. Pseudo-Bessel beams have been generated us-
ing dielectric conical shaped lenses called axicons [12-14].

An axicon was designed and fabricated, and the field it
produced was measured, by colleagues at the National
University of Ireland Maynooth [13]. The high-density
polyethylene axicon had a slant angle of @=20° and a ra-
dius of 30 mm. It was illuminated with a 78 mm radius
Gaussian beam of wavelength A\=3 mm, with a flat phase-
front, to achieve a 5 mm radius central spot over a dis-
tance of 150 mm. The simulated field from this axicon is
now compared with that of a DOE designed to be “non-
diffracting” using GBMSO.

The GBMSO algorithm described above may be ex-
tended to control the amplitude distribution of a radially
symmetric beam over a region in the near-field of the
DOE. Gauss—Laguerre modes are used in place of the

77= ZWJ 'J/O,O(wspot’ry0)(|EL(r:Oa_Za)| + |EL(7‘,0,+Za)|)7‘d7‘ +W

+ 2Wf ¢0,0(wt?r,0)‘EL(r90?+Z)|rdr’

where i o(Wgpot,x,0) is the target fundamental Gaussian
mode, ¢ o(w;,r,0) is a Gaussian mode of radius w,, and W
is a weighting constant. As shown in Fig. 5, with this
merit function, the optimization searches for a solution

Target Gaussian

Target Gaussian

Input Gaussian with variable z=0
radius and distance

Radius of mode set

Zp
Fig. 5. (Color online) The merit function of Eq. (16) calculates
the overlap of the GBM field at the target line and target Gauss-
ian distributions to achieve a non-diffracting beam of constant
amplitude at the center of the beam. The propagation distance z,
from the DOE plane to the non-diffracting region and the radius
of the input Gaussian beam incident on the DOE are optimized.
The reference plane, z=0, of the GBMs is located equidistant be-
tween the two target Gaussians at +z,,.
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Gauss—Hermite modes used above, as they can efficiently

describe circularly symmetric beams. The modeled field is
given by

2 E ap,m exp(id)p,m) wp,m(wO?x’yrz)
P M

X Xap,

M N

where P and M are the maximum radial and azimuthal
index numbers of the mode coefficients used to construct
the field and ¢, are the Gauss—Laguerre modes given by

. 7\ Iml

ml/2( __

2 p! 2 (w) 26°
Vpm = p (p +|ml)! w Lo w?

)
2
Xexp(imqﬁ— r—2>, (15)
w

EL(x’y’Z) = s (14)

where the radial index p =0 and the azimuthal index is
m. GBMSO is used to design a circularly symmetric DOE
that creates a non-diffracting beam over the same range
as the beam produced by the axicon described above, by
maximizing the following metric:

22
f l,/fo’o(w,x = O’Z = 0)|EL(r’0’+2)|dZ
21

Z9 Z9
\/f lr/IO,O(w,x = O’Z = O)Zdz \/J |EL(r’0’+Z)|2dZ
z z1

1

(16)

that has a Gaussian amplitude distribution at the ex-
treme planes over which the field was non-diffracting, a

uniform central amplitude distribution between these
planes, and an input Gaussian for which the radius and
distance to the non-diffracting beam were optimized. This
merit function was used to achieve a field that is approxi-
mately Gaussian, while maintaining a constant ampli-
tude at the center of the beam. Optimizing w; and the
propagation distance to the non-diffracting beam allows
more freedom to achieve a more optimal solution than fix-
ing these parameters.

In order to reduce the number of parameters to be op-
timized, the waist radius w( of the modes was fixed dur-
ing the optimization. In order that the GBMs can describe
the target field well, it was critical to minimize the dif-
fraction of the mode set used to construct the field across
the non-diffracting region. Therefore, firstly, the waist lo-
cation was centered between the two target Gaussian
beams as shown in Fig. 5 and, secondly, w, was chosen
such that z, is the confocal distance, with wq=yz\/ .

The optimization was initialized using the first 20
Gauss—-Laguerre modes with wg,=5 mm, 2,=75 mm
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(Color online) The results of the optimization to achieve a non-diffracting beam. (a) The amplitude of the mode coefficients found

by the optimization. (b) The target amplitude distribution at the DOE plane (dashed line) shown with the amplitude distribution of the
optimized solution at this plane (solid line). (¢) The phase that gives the shape of the DOE.
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Fig. 7. (Color online) The amplitude at the center of the beam as
a function of distance of the non-diffracting beam. The solid line
shows the optimized field given by Eq. (14) and the dashed line

shows the field from the DOE with the Gaussian input field.
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Fig. 8. (Color online) The intensity of the field from the DOE
which produces a non-diffracting beam as a function of distance.

(giving a total non-diffracting region of 150 mm), and W
=10. Figures 6-9 show the results of the optimization.
Figure 6(a) shows the mode coefficients found by the op-
timization. Figure 6(b) shows a radial cross-section of the
amplitude of the field at the DOE plane (at the location
found by the optimization, —197 mm from the waist loca-
tion) with the amplitude of the input Gaussian—which
has an (optimized) radius of 28.8 mm. A radial cross-
section of the phase that gives the shape DOE is shown in
Fig. 6(c). The field at the DOE is given by
Epog(r, 0) = ¢ o(w;,r,0)exp(i arglE(r, 6,2,)]).  (17)
The field at the DOE was reconstructed and propagated
using Gauss-Laguerre modes. Figures 7-9 show the
propagation of the optimized field E(r, 6,z) and the simu-
lated field from the DOE from the location of the DOE
plane. The optimized field maintains an approximately
uniform intensity over the non-diffracting region. The
field from the DOE is slightly less uniform due to inter-
ference from the field that did not couple to ¢ o(w;,r,0).
Figure 9 shows cuts of the simulated field from the DOE
in the non-diffracting region and the simulated field from
the axicon described earlier. Compared to the beam from
the axicon, the field from the GBMSO DOE maintains a
greater intensity on-axis for a greater proportion of the
non-diffracting region than the field from the axicon.

5. COMPARISON WITH THE
GERCHBERG-SAXTON ALGORITHM

The widely used Gerchberg—Saxton method was com-
pared to the unidirectional and GBMSO methods else-
where [7]. For narrow far-field distributions all three
methods found similar solutions. As the scale of the target
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(Color online) Plots of the amplitude of the field from the axicon (thick solid line) and the field from the DOE designed by op-

timizing GBMs (thin solid line). These fields are shown with the target 5 mm radius target Gaussian distribution (dashed line).
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far-field distribution was increased, however, the solution
from the Gerchberg—Saxton and unidirectional methods
became more dependent on the initial phase distribution;
for a 9° target rect( ) function distribution, after 1000 it-
erations only 2.3% of multiple trials achieved the most op-
timal solution, which was consistently achieved by the
GBMSO method. In this paper we have concentrated on
comparing the unidirectional method with the GBMSO
because, unlike the Gerchberg—Saxton algorithm, they
can be used for multiobjective optimization; for example,
they can be used to optimize an amplitude distribution
over a bandwidth or to optimize the plane of the target
distribution.

6. CONCLUSION

In this paper, DE was used to design DOESs, using the
standard unidirectional method and what we believe to be
a new GBMSO approach. Both the phase profile found by
the optimization and the linearity of the optimization are
dependent on the scale and distribution of the target far-
field distribution and the field incident on the DOE. The
GBMSO technique was extended to control a beam over a
region of the near-field.

For the Gaussian to rect( ) function amplitude distribu-
tion conversion, it was found that increasing the scale of
the far-field distribution allowed a more optimal solution
to be obtained, a relationship which held for a number of
other target distributions [7]. GBMSO achieved more op-
timal solutions than unidirectional and a smoother phase
for the 10° radius rect( ) function far-field target distribu-
tion.

GBMSO is more intuitive than the unidirectional
method. For a rect( ) function amplitude distribution, the
more modes that are used in the reconstruction, the more
power can be reconstructed. For beam shaping, the opti-
mal radius of the mode set is determined by the scale of
the target distributions at both the input and output
planes. Increasing the scale of the target distribution at
either the DOE plane or far field allows a greater propor-
tion of the higher order modes to contribute to the power
of the optimized field.

GBMSO reduced the number of parameters to be opti-
mized compared with the number required in unidirec-
tional optimization. However, reducing the number of pa-
rameters does not necessarily in itself make the problem
more or less computationally demanding. With unidirec-
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tional optimization using the FFT to transform to the far
field, trial phase distributions can have arbitrarily high
spatial frequencies, and therefore much of the power in
the far field may be directed away from the target. This
results in the optimization being more likely to get stuck
at local optima. GBMSO is much more efficient in this re-
spect, as the powers of the trial near- and far-field distri-
butions are constrained by the extent of the modes, and
the DOE design tends to be smoother and therefore easier
to manufacture.
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