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1. INTRODUCTION

When a pulsed laser beam is focussed into a low-
pressure gas of atoms, a large number of photo-elec-
trons and ions may be generated by multiphoton ioniza-
tion of the atoms in the gas. During and shortly after the
laser pulse collective effects depending on the mutual
interaction of the photo-electrons and the ions in the
transient plasma affect the spatial and temporal distri-
bution of both charged species. In an ongoing research
programme [2] we investigate the collective effects in
transient non-equilibrium plasmas produced by three-
photon ionization of deuterium atoms with a pulsed
laser beam. In the experiment the laser wavelength is
tuned to 243 nm, so that the photoionization is resonant
with the metastable 2

 

s

 

1/2

 

 state. The ion yield, the ion
time-of-flight spectra and the yield of metastable atoms
are measured as a function of the laser intensity, the
laser wavelength, and the target density. During and
shortly after the laser pulse collective effects depending
on the mutual interaction of the electrons and the ions
affect the spatial and temporal distribution of the ions.
As a result the time-dependent yields of ions and of
metastable atoms are modulated by the interplay of two
processes: (i) the multiphoton ionization of the atoms,
and (ii) the collective effects in the plasma. Multipho-
ton ionization of deuterium presents an ideal situation
for the study of this interplay. Deuterium is almost the
lightest element and therefore deuterium ions are very
susceptible to the collective field, and the near-degener-
acy of the 2

 

s

 

1/2

 

, 2

 

p

 

1/2

 

 and 2

 

p

 

3/2

 

 states makes that the res-
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onant multiphoton ionization is affected by the Stark
mixing of these states in the collective field.

In order to be able to model the time evolution of the
transient plasma one needs to include a description of
the production of photo-electrons and ions by photo-
ionization during the laser pulse. The collective model
used by Bowe 

 

et al.

 

 [2], which is based on a fluid-
dynamics description of the coupled motion of the ions
and electrons based on the Boltzmann transport equa-
tions [3], incorporates two-level rate equations to
describe the photoionization process. In this paper we
develop an improved description of the photoionization
process by using a four-level density matrix descrip-
tion. The four-level density matrix describes a hydro-
gen atom in a chaotic finite-bandwidth laser field and a
static electric field, and can be used in the modelling of
transient plasmas as a function of the laser detuning
around the 1

 

s

 

–2

 

s

 

 resonance. In the collective model an
array of density matrices will be needed to represent the
interaction region and to allow for temporal and spatial
variations of the collective electric field across the
interaction region. New fluid-dynamics calculations
will be compared with new experimental results in a
future paper. The purpose of this paper is to discuss the
density matrix description and to present several calcu-
lations for the photoionization of a single hydrogen
atom. Because of the close similarity of the electronic
wavefunctions of hydrogen and deuterium the density
matrix equations are applicable to deuterium as well.

As discussed by Holt 

 

et al.

 

 [4] and Dörr 

 

et al.

 

 [5]
multiphoton ionization of an atom with one intermedi-
ate resonant state may be modelled as a two-level sys-
tem with a time-independent 2 

 

×

 

 2 Hamiltonian. If the
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 level. The electric field causes Stark mixing of
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 level with the 2
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 and 2
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 levels. Because the electric field is taken in the same direction as the linear
polarization of the laser, only states with equal 

 

m

 

j

 

 are coupled, and the atom can be described with a four-level
density matrix. The laser bandwidth is taken into account by using the stochastic model of a chaotic laser field
introduced by Zoller [1]. We present a few calculations of the probabilities for ionization and excitation of a
single hydrogen atom as a function of laser intensity and wavelength.
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matrix elements of the Hamiltonian are known as a
function of intensity and laser frequency, then ioniza-
tion rates and population probabilities are obtained by
solving the time-dependent Schrödinger equation for
the wavefunction or the Liouville equation for the den-
sity matrix. Holt 

 

et al.

 

 [4] have calculated the two-level
Hamiltonian matrix elements for multiphoton ioniza-
tion of hydrogen using a generalized Floquet formula-
tion. Dörr 

 

et al.

 

 [5] have shown that for resonant two-
photon coupling of the hydrogen 1

 

s

 

1/2

 

 and 2

 

s

 

1/2

 

 states, a
2 

 

×

 

 2 effective Hamiltonian reproduces to satisfactory
accuracy the solution of the full Schrödinger equation.

The purpose of this paper is to apply the density
matrix formalism to three-photon resonant ionization
of atomic hydrogen and to extend it in two ways.
Firstly, in order to describe Stark mixing of the resonant
2

 

s

 

1/2

 

 level with the adjacent 2

 

p

 

1/2

 

 and 2

 

p

 

3/2

 

 levels in an
external static electric field, we use a four-level descrip-
tion with a 4 

 

×

 

 4 effective Hamiltonian. Conform our
experimental set-up, we assume that the laser beam is
fully 100% linearly polarized and that the linear polar-
ization is in the same direction as the static electric
field. Under these circumstances only levels with equal

 

m

 

j

 

, are coupled, and a four-level description is ade-
quate. In case the electric field would not be aligned
with the laser polarization all 

 

m

 

j

 

 levels would have to be
included, resulting in a 10-level description.

Secondly, we include a realistic description of the
finite laser bandwidth. Two particular stochastic mod-
els have been well studied (see Georges and Lam-
bropoulos [6] and references therein). The phase diffu-
sion model describes the field of an intensity-stabilized
cw laser, which has only phase fluctuations. The cha-
otic field model describes the field of a pulsed multi-
mode laser which has fluctuations in both phase and
amplitude. In this paper we adopt the stochastic model
for a chaotic laser field introduced by Zoller [1]. In this
model the system of stochastic differential equations
for the density matrix elements is reduced to a tractable
infinite set of differential equations. For a given laser
bandwidth, this set of equations can be truncated and
numerically integrated. For large laser bandwidths the
zero-order set of equations already gives quite good
results.

The effects of finite laser bandwidth on two-photon
resonant three-photon ionization of sodium atoms have
been studied by several groups. Agostini 

 

et al.

 

 [7]
present measurements of the ion yield as a function of
laser intensity for two different laser bandwidths. They
also derive two-level density matrix equations assum-
ing that the populations of the atomic levels can be
decorrelated from the field variables. Zoller and Lam-
bropoulos [8] have applied the chaotic field model of
Zoller [1] to a two-level density matrix description of
multiphoton ionization of sodium. They compare cal-
culations of the ionization probability for a chaotic field
with calculations using a phase diffusion model. In this
paper we extend the model of Zoller [1] to a four-level

density matrix description of multiphoton ionization of
hydrogen.

2. THEORY

 

2.1. A Hydrogen Atom in a Monochromatic Laser Field 
and a Static Electric Field

 

The four atom + field eigenstates used as basis states
are:

(1)

where  is the average number of 243 nm photons in
the field. We only consider states with 

 

m

 

j

 

 = 1/2, because
the linear polarization of the laser and the static electric
field are taken to be in the same direction, along the

 

z

 

-axis, and they do not couple states with different 

 

m

 

j

 

.
The laser field causes a two-photon coupling of the
states 

 

|

 

1

 

〉

 

 and 

 

|

 

3

 

〉

 

, and the static electric field causes
Stark mixing of the states 

 

|

 

2

 

〉

 

, 

 

|

 

3

 

〉

 

, and 

 

|

 

4

 

〉

 

. The couplings
are illustrated in Fig. 1. On this basis of eigenstates, the
4 

 

×

 

 4 Hamiltonian matrix has the diagonal elements:

(2)

 

I

 

 is the laser intensity, 

 

Δ

 

 = 

 

�

 

ω

 

 – 

 

E

 

3

 

/2 is the laser detun-
ing (single-photon detuning), and 

 

δ

 

1

 

, 

 

δ

 

2

 

, 

 

δ

 

3

 

, and 

 

δ

 

4

 

 are
the ac Stark shifts. Because the 1

 

s

 

–2

 

s

 

 two-photon cou-
pling is included in our model as an off-diagonal matrix
element, 

 

δ

 

1

 

 and 

 

δ

 

3

 

 are the ac Stark shifts due to all
hydrogen states other than the 1

 

s

 

 and 2

 

s

 

 states, whereas

 

δ

 

2

 

 and 

 

δ

 

4

 

 include contributions from all states.

1| 〉 1s1/2 m j = 1/2 n, ,| 〉,=

2| 〉 2 p1/2 m j = 1/2 n 2–, ,| 〉,=

3| 〉 2s1/2 m j = 1/2 n 2–, ,| 〉,=

4| 〉 2 p3/2 m j = 1/2 n 2–, ,| 〉,=

n

H11 E1 δ1+ δ1,= =

H22 E2 2�ω– δ2+ E2 E3– 2Δ– δ2,+= =

H33 E3 2�ω– δ3+ 2Δ– δ3,+= =

H44 E4 2�ω– δ4+ E4 E3– 2Δ– δ4,+= =

IP

2p3/2

2p1/2

243

243
243

243

243

2s1/2

2Δ S

Γ
Γ

2– S

1s1/2

Fig. 1. Energy level diagram.
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The non-zero off-diagonal elements of the Hamilto-
nian matrix are:

(3)

with

(4)

E is the static electric field in the interaction region, Ω
is the Rabi frequency for the two-photon coupling of
the states |1〉 and |3〉, and ϕ is the phase of the laser field.
E can be interpreted either as an external electric field,
or as the collective field generated by a laser-produced
plasma. E could be slowly varying in time but in this
paper is taken to be constant during the laser pulse. It is
assumed that the laser light is monochromatic and
100% linearly polarized, and the polarization direction
coincides with the direction of the static electric field.

Loss due to photoionization and Lyman-α radiative
decay is described by introducing the diagonal matrix:

(5)

where Γ is the inverse lifetime of the 2p1/2 and 2p3/2
states, and γ2, γ3, and γ4 are the ionization widths of the
states |2〉, |3〉, and |4〉.

Using both the Hamiltonian matrix H and the loss
matrix G, the Liouville equation for the slowly-varying
density matrix ρ becomes [9]:

(6)

The spontaneous decay term is Γ(ρ22 + ρ44); it only
enters the equation for ρ11 and describes the incoherent
increase in population of the ground state |1〉 due to the
spontaneous decay of the excited states |2〉 and |4〉.

This equation can also be written in the form

(7)

where r is a column vector of the density matrix ele-

ments and  is a 16 × 16 matrix. The equations for the
individual density matrix elements are

,

H13 H31*
1
2
---Ωe

2iϕ
,= =

H23 H32 S,= =

H34 H43 2S–= =

S 3ea0E,=

G

0 0 0 0

0 γ 2 Γ+ 0 0

0 0 γ 3 0

0 0 0 γ 4 Γ+⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

dρ
dt
------ = 

1
i�
----- H ρ,[ ] 1

2
--- Gρ ρG+( )–

+ spontaneous decay term.

i
d
dt
----- Q I t( ) ϕ t( ),( )+⎝ ⎠

⎛ ⎞↔
r t( ) 0,=

Q
↔

dρ11

dt
---------- Γ ρ22 ρ44+( ) i

1
2
---Ω e

2iϕρ31 e
2iϕ– ρ13–( )–=

,

,

, (8)

The equations for the elements in the lower-left corner

of the density matrix are easily obtained using ρji = .

2.2. A Hydrogen Atom in a Finite-Bandwidth Chaotic 
Laser Field and a Static Electric Field

According to the formalism discussed by Zoller [1],
the average populations of the atomic levels can be
found using the system of partial differential equations:

(9)

dρ22

dt
---------- Γ γ 2+( )ρ22– 2S Im ρ23( )–=

dρ33

dt
---------- γ 3ρ33– i

1
2
---Ω e

2iϕρ31 e
2iϕ– ρ13–( )+=

+ 2S Im ρ23( ) 2 2S Im ρ34( ),+

dρ44

dt
---------- Γ γ 4+( )ρ44– 2 2S Im ρ34( )–=

dρ12

dt
----------

1
2
--- Γ γ 2+( )– i E2 E3– 2Δ– δ2 δ1–+( )+ ρ12=

– i
1
2
---Ωe

2iϕρ32 iSρ13,+

dρ13

dt
----------

1
2
---γ 3– i 2Δ– δ3 δ1–+( )+ ρ13=

+ i
1
2
---Ωe

2iϕ ρ11 ρ33–( ) iSρ12 i 2Sρ14–+

dρ14

dt
----------

1
2
--- Γ γ 4+( )– i E4 E3– 2Δ– δ4 δ1–+( )+ ρ14=

– i
1
2
---Ωe

2iϕρ34 i 2Sρ13,–

dρ23

dt
----------

1
2
--- Γ γ 2 γ 3+ +( )– i E3 E2– δ3 δ2–+( )+ ρ23=

+ i
1
2
---Ωe

2iϕρ21 iS ρ22 ρ33–( ) i 2Sρ24,–+

dρ24

dt
---------- – Γ 1

2
---γ 2

1
2
---γ 4+ +⎝ ⎠

⎛ ⎞ i E4 E2– δ4 δ2–+( )+ ρ24=

– iSρ34 i 2Sρ23,–

dρ34

dt
----------

1
2
--- Γ γ 3 γ 4+ +( )– i E4 E3– δ4 δ3–+( )+ ρ34=

– i
1
2
---Ωe

–2iϕρ14 – iSρ24 i 2S ρ33 ρ44–( ).–

ρij*

i
d
dt
----- L+⎝ ⎠

⎛ ⎞ Q I ϕ,( )+
↔

r I ϕ t, ,( ) 0,=
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where L is the Fokker–Planck operator. This system of
equations can be solved by expanding each element of
the column vector r as

(10)

with

(11)

In these equations ϕαn(I, ϕ) and Pαn(I, ϕ) are eigenfunc-
tions of L, as given in [1]. By inserting Eq. (10) into
Eq. (9) we obtain an infinite set of differential equa-

tions for the unknown coefficients (t). If we use the

initial condition

, (12)

we obtain the following set of equations:

ρij I ϕ t, ,( ) Pαn I ϕ,( )ρij
αn

t( )
αn

∑=

ρij
αn

t( ) ϕαn* I ϕ,( )ρij I ϕ t, ,( ) I ϕ.dd

0

∞

∫=

ρij
αn

ρij
αn

t = 0( ) δi0δ j0δα0δn0=

d
dt
----- Λ0n+⎝ ⎠

⎛ ⎞ ρ11
0n Γ ρ22

0n ρ44
0n

+( )=

– i
1
2
---Ω 0n –2m( )ρ31

2m–
0n 2m( )ρ13

2m
–[ ],

m

∑

d
dt
----- Λ0n+⎝ ⎠

⎛ ⎞ ρ22
0n

=  –Γρ22
0n

 – γ 2 0n 0m( )ρ22
0m

2S Im ρ23
0n( ),–

m

∑

d
dt
----- Λ0n+⎝ ⎠

⎛ ⎞ ρ33
0n γ 3 0n 0m( )ρ33

0m

m

∑–=

+ i
1
2
---Ω 0n –2m( )ρ31

2m–
0n 2m( )ρ13

2m
–[ ]

m

∑
+ 2S Im ρ23

0n( ) 2 2S Im ρ34
0n( ),+

d
dt
----- Λ0n+⎝ ⎠

⎛ ⎞ ρ44
0n

=  –Γρ44
0n

 – γ 4 0n 0m( )ρ44
0n

2 2S Im ρ34
0n( ),–

m

∑

(13)

,

d
dt
----- Λ2n+⎝ ⎠

⎛ ⎞ ρ12
2n 1

2
---Γ– i E2 E3– 2Δ–( )+ ρ12

2n
=

+
1
2
---γ 2– iδ2 iδ1–+⎝ ⎠

⎛ ⎞ 2n 2m( )ρ12
2m

m

∑

– i
1
2
---Ω 2n 0m( )ρ32

0m

m

∑ iSρ13
2n

,+

d
dt
----- Λ2n+⎝ ⎠

⎛ ⎞ ρ13
2n

2iΔρ13
2n

–
1
2
---γ 3– iδ3 iδ1–+⎝ ⎠

⎛ ⎞+=

× 2n 2m( )ρ13
2m

i
1
2
---Ω 2n 0m( ) ρ11

0m ρ33
0m

–( )
m

∑+
m

∑

+ iSρ12
2n

i 2Sρ14
2n

–

d
dt
----- Λ2n+⎝ ⎠

⎛ ⎞ ρ14
2n 1

2
---Γ– i E4 E3– 2Δ–( )+ ρ14

2n
=

+
1
2
---γ 4– iδ4 iδ1–+⎝ ⎠

⎛ ⎞ 2n 2m( )ρ14
2m

m

∑

– i
1
2
---Ω 2n 0m( )ρ34

0m

m

∑  – i 2Sρ13
2n

,

d
dt
----- Λ0n+⎝ ⎠

⎛ ⎞ ρ23
0n 1

2
---Γ– i E3 E2–( )+ ρ23

0n
=

+
1
2
---γ 2–

1
2
---γ 3– iδ3 iδ2–+⎝ ⎠

⎛ ⎞ 0n 0m( )ρ23
0m

m

∑

+ i
1
2
---Ω 0n –2m( )ρ21

2m–

m

∑ iS ρ22
0n ρ33

0n
–( ) – i 2Sρ24

0n
,+

d
dt
----- Λ0n+⎝ ⎠

⎛ ⎞ ρ24
0n

–Γ i E4 E2–( )+[ ]ρ24
0n

=

+
1
2
---γ 2–

1
2
---γ 4– iδ4 iδ2–+⎝ ⎠

⎛ ⎞ 0n 0m( )ρ24
0m

m

∑
– iSρ34

0n
 – i 2Sρ23

0n
,

d
dt
----- Λ0n+⎝ ⎠

⎛ ⎞ ρ34
0n 1

2
---Γ– i E4 E3–( )+ ρ34

0n
=

+
1
2
---γ 3–

1
2
---γ 4– iδ4 iδ3–+⎝ ⎠

⎛ ⎞ 0n 0m( )ρ34
0m

m

∑

– i
1
2
---Ω 0n 2m( )ρ14

2m

m

∑  – iSρ24
0n

 – i 2S ρ33
0n ρ44

0n
–( ).
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In these equations Λαn = γL  where γL the

bandwidth of the laser. The matrix elements are defined

(αn |βm) ≡ (I)IPβm(I)dI, with the functions ϕαn(I)

and Pβm(I) as given in [1]. The matrix elements used in
the equations above are

,

(14)

,

The equations for the , , , , , and

 elements can be obtained by using  = ( )*.
Solving this set of equations the average populations of
the atomic levels are obtained from

(15)

A zero-order set of equations is obtained by using
n = m = 0, Λ00 = 0, and Λ20 = γL. If we simplify the nota-

tion by writing ρij ≡ , and introduce new elements

ρ12 ≡ , ρ13 ≡ , ρ14 ≡  most of the
equations obtained are identical to Eqs. (8) with ϕ = 0.
The only equations that change are:

(16)

The subset of equations for ρ11, ρ33, and ρ13 are equiva-
lent to the two-level-atom equations of Agostini et al.
[7] and Dai and Lambropoulos [10]. The factors 3
appearing in front of δi and γi as well as the replacement

of  by Ω in the equations for ρ12, ρ13, and ρ14 have

n
1
2
--- α+⎝ ⎠

⎛ ⎞

ϕαn0

∞∫

0n 0m( ) 2n 1+( )δnm n 1+( )δn m 1–,– nδn m 1+,–=

2n 2m( ) 2n 3+( )δnm=

– n 1+( ) n 3+( )δn m 1–, n n 2+( )δn m 1+, ,–

0n 2± m( ) n 1+( ) n 2+( )δnm=

– 2 n n 1+( )δn m 1+, n 1–( )nδn m 2+,+

2n 0m±( ) = n 1+( ) n 2+( ) δnm 2δn m 1–,– δn m 2–,+[ ].

ρ21
2n– ρ31

2n– ρ41
2n– ρ32

0n ρ42
0n

ρ43
0n ρ ji

αn– ρij
αn

ρij t( )〈 〉 ρij
00

t( ).=

ρij
00

2ρ12
20

2ρ13
20

2ρ14
20

dρ12

dt
---------- γ L

1
2
---Γ 3

2
---γ 2+ +⎝ ⎠

⎛ ⎞–=

+ i E2 E3– 2Δ– 3δ2 3δ1–+( ) ρ12 iΩρ32– iSρ13,+

dρ13

dt
---------- γ L

3
2
---γ 3+⎝ ⎠

⎛ ⎞– i 2Δ– 3δ3 3δ1–+( )+ ρ13=

+ iΩ ρ11 ρ33–( ) iSρ12 i 2Sρ14,–+

dρ14

dt
---------- γ L

1
2
---Γ 3

2
---γ 4+ +⎝ ⎠

⎛ ⎞–=

+ i E4 E3– 2Δ– 3δ4 3δ1–+( ) ρ14 – iΩρ34 – i 2Sρ13.

1
2
---Ω

their origin in amplitude fluctuations; the presence of γL

accounts for phase fluctuations.

2.3. Numerical Values for the Parameters 

The sets of equations (8) and (13) can be evaluated
numerically by using the following values for the
parameters in the equations. The energy differences
between the n = 2 states are E2 – E3 = –1.0 GHz and
E4 − E3 = 10.0 GHz. Because the 1s–2s two-photon
coupling is included in our model as an off-diagonal
matrix element, δ1 and δ3 are the ac Stark shifts due to
all hydrogen states other than the 1s and 2s states,
whereas δ2 and δ4 include contributions from all states.
Values of δ1 and δ3 as a function of laser intensity are
obtained from [4]; values for δ2 and δ4 are obtained
from Floquet calculations by Dörr [11]:

δ1 = (–1.68 × 10–3)I GHz,

δ3 = (8.81 × 10–3)I GHz, (17)

δ2 = δ4 = (7.37 × 10–3)I GHz,

where I is the laser intensity in MW/cm2. Ω as a func-
tion of laser intensity is obtained from tabulated values
in [4]:

Ω = (4.60 × 10–3)I GHz. (18)

γ3 as a function of laser intensity is obtained from tabu-
lated values in [4]; γ2 and γ4 are obtained from [11]:

(19)

The other relevant parameters are Γ = 0.625 GHz, and
S = (2.22 × 10–3)E GHz, where E is the electric field
strength in V/cm.

3. RESULTS AND DISCUSSION

In this section we compare our model with Floquet
calculations, and we present a few calculations for pho-
toionization of a hydrogen atom in the presence of a
static electric field.

Dörr [11] has performed Floquet calculations for a
hydrogen atom with 1s, 2s, and 2p basis states without
fine structure, using the STRFLO code of Potvliege
[12]. The calculations have been done for a laser wave-
length of 243 nm (ω = 0.187503518 a.u.). The results
are listed in Table 1. As can be seen from the numbers
in Table 1, the 2p state is perturbative over the range of
laser intensities considered. Because the 1s and 2s
states are resonantly coupled (there is a nearby com-
plex-energy degeneracy, see Latinne et al. [13]), the
shifts and widths for these states do not behave in a
smooth manner. However, at low intensity both the shift
and the width of the 1s and 2s states behave as
expected, namely the shift is linear in intensity and the

γ 3 7.56 10
3–×( )I  GHz,=

γ 2 γ 4 5.93 10
3–×( )I  GHz.= =
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width is proportional to I n where n is the multiphoton
ionization order (n = 3 for 1s, n = 1 for 2s).

In order to compare our model with Dörr’s calcula-
tions we have set up a 3 × 3 complex Hamiltonian
matrix using 1s, 2s, and 2p basis states without fine
structure. The imaginary parts of the diagonal elements
specify ionization rates in the laser field. The complex
eigenvalues of this matrix need to be compared with
Dörr’s calculated complex energies. The only off-diag-
onal coupling in the 3 × 3 matrix due to the laser field
is the 1s–2s coupling, and the complex energies E1s and
E2s can be obtained by diagonalizing the 2 × 2 1s–2s
submatrix. The results are shown in Table 2, and are in
good agreement with Dörr’s results at lower laser inten-
sities in Table 1. Because there are no off-diagonal 1s–
2p and 2s–2p laser-couplings in our model (these cou-
plings are included in the 2p ac Stark shift), our 2p
diagonal term in the 3 × 3 matrix is exactly equal to E2p

from Dörr [11].

Comparison of Table 1 with Table 2 shows that per-
turbative calculations based on Eq. (8) for the 4-level
hydrogen atom should yield accurate results for laser
intensities below about 1000 MW/cm2. We expect
therefore that the finite bandwidth equations (Eq. (13))
provide a good first-order model for the multiphoton
ionization of hydrogen and deuterium atoms in laser-
produced transient plasmas.

We have implemented the sets of equations (8) and
(13) into computer programs written in Fortran and in
Delphi. These equations have been solved numerically
using a fourth-order Runge–Kutta approximation with
a time step of 0.01 ns. In a few cases a smaller time step
of 0.0025 ns had to be chosen in order to obtain conver-
gence. Results obtained with both programs were com-
pared and found to be in agreement.

All calculations have been performed for a hydro-
gen atom in a laser field and a static electric field.
Unless indicated otherwise, the laser field has intensity
I0 = 100 MW/cm2, wavelength 243 nm, and bandwidth
0.2 GHz, and the static electric field strength is

Table 1.  Floquet results [11]

I (MW/cm2) ReE1s (a.u.) ImE1s (a.u.) ReE2s (a.u.) ImE2s (a.u.) ReE2p (a.u.) ImE2p (a.u.)

100 –0.50000002 –5.821 × 10–15 –0.50000704 –9.134 × 10–9 –0.50000702 –7.172 × 10–9

300 –0.50000007 –1.593 × 10–13 –0.50000703 –2.740 × 10–8 –0.50000698 –2.152 × 10–8

105 –0.50000469 –8.551 × 10–6 –0.50002567 –5.836 × 10–7 –0.49998922 –7.167 × 10–6

106 –0.49998603 –8.768 × 10–5 –0.50025420 –3.744 × 10–6 –0.49982903 –7.125 × 10–5

107 –0.49979352 –8.829 × 10–4 –0.50253804 –3.880 × 10–5 –0.49824501 –6.713 × 10–4

Table 2.  2 × 2 diagonalization results

I (MW/cm2) ReE1s (a.u.) ImE1s (a.u.) ReE2s (a.u.) ImE2s (a.u.)

100 –0.50000000 –5.722 × 10–15 –0.50000701 –9.130 × 10–9

300 –0.50000001 –1.567 × 10–13 –0.50000697 –2.739 × 10–8

105 –0.49998442 –8.556 × 10–6 –0.50000539 –5.737 × 10–7

106 –0.49978331 –8.765 × 10–5 –0.50005142 –3.652 × 10–6

107 –0.49777182 –8.779 × 10–4 –0.50051221 –3.505 × 10–5
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Fig. 2. Ionization probability as a function of laser detuning
for a hydrogen atom in a laser field of 100 MW/cm2 and a
static electric field of 1000 V/cm. The laser has wavelength
243 nm and a Gaussian pulse of 13 ns. The curves for finite
bandwidth are calculated using a 9th order expansion of
equation (13). The curve for zero bandwidth is calculated
using Eq. (8).
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1000 V/cm. The laser temporal profile is a Gaussian
pulse I(t) = I0 exp[–(2t/w – 1)2], t ∈ [0, w] with a pulse
width w = 13 ns. All finite bandwidth calculations have
been performed by evaluation of Eq. (13) up to
9th order.

Figure 2 shows the effect of the laser bandwidth on
the ionization probability as a function of laser detun-
ing. The mixed s–p character of each of the three Stark
states is demonstrated by the fact that each Stark state
acts as a resonant intermediate state in the photoioniza-
tion. The laser bandwidth has a profound effect on the
laser’s ability to resolve the three atomic states. Nota-
bly, at a bandwidth of 5 GHz only a single peak is vis-
ible, with no indication of any structure in the line pro-
file. The curves for finite bandwidth have been calcu-
lated using a 9th order expansion of Eq. (13). Even for
the most narrow bandwidth of 0.2 GHz there is rapid
convergence: there is very little difference between the
2nd order and the 9th order equations. For bandwidths
of 5 GHz and higher the zero order equations provide a
very good approximation.

Figure 3 shows the photoionization as a function of
laser intensity for three different laser bandwidths. For
each bandwidth the laser detuning is chosen at the max-
imum of the middle peak in Fig. 2: the detunings are
1.2, 1.4, and 0.90 GHz for bandwidths of 0.2, 1, and
5 GHz, respectively. All curves show an I 3 dependence

at low intensities, as expected because in each case the
probability of finding the hydrogen atom in the 2s1/2
state is much smaller than one. The probabilities for
excitation of the 2s1/2 state only show an approximate I 2

dependence at low intensities, and reach a maximum
between 100 and 200 MW/cm2.

Figure 4 shows the ionization probability as a func-
tion of detuning for several values of the static electric
field strength. As the electric field is increased photo-
ionization via the 2p1/2 and 2p3/2 Stark states increases
at the cost of photoionization via the 2s1/2 Stark state.
The curves also illustrate the shifts in energy of the
Stark-mixed states with increasing electric field
strength. The peak positions are determined by both the
dc Stark shifts due to the static electric field and the ac
Stark shifts due to the laser field.

4. CONCLUSION

We have derived a set of density matrix equations
describing photo-excitation and ionization of a hydro-
gen atom in a finite-bandwidth laser field and a static
electric field. Our calculations show that due to the
near-degeneracy of the 2s1/2, 2p1/2, and 2p3/2 levels the
finite laser bandwidth and the static electric field both
have a profound effect on the ionization and excitation
probabilities.
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Fig. 3. Probabilities for ionization and 2s1/2-excitation as a
function of laser intensity for a hydrogen atom in a static
electric field of 1000 V/cm. The laser has wavelength
243 nm and a Gaussian pulse of 13 ns. The curves show the
effect of the laser bandwidth on the probabilities. For each
bandwidth the laser detuning is taken at the maximum of the
middle peak in Fig. 2.
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Fig. 4. Ionization probability as a function of laser detuning
for a hydrogen atom in a laser field of intensity
100 MW/cm2 and a static electric field of variable intensity.
The laser has wavelength 243 nm, bandwidth 0.2 GHz, and
a Gaussian pulse of 13 ns. The curves show the effect of the
static electric field on the ionization probability.
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The equations are useful as a description of photo-
ionization in the numerical modeling of collective
effects in transient plasmas produced by multiphoton
ionization of atomic hydrogen and deuterium. When
modeling collective effects an array of density matrices
will be needed to represent the interaction region and to
allow for spatial and temporal variations of the collec-
tive electric field.
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