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Abstract

The combination of reducing birth rate and increasing life expectancy continues to drive

the demographic shift toward an ageing population and this is placing an ever-increasing

burden on our healthcare systems. The urgent need to address this so called health-

care “time bomb” has led to a rapid growth in research into ubiquitous, pervasive and

distributed healthcare technologies where recent advances in signal acquisition, data

storage and communication are helping such systems become a reality. However, similar

to recordings performed in the hospital environment, artifacts continue to be a major

issue for these systems. The magnitude and frequency of artifacts can vary significantly

depending on the recording environment with one of the major contributions due to

the motion of the subject or the recording transducer. As such, this thesis addresses

the challenges of the removal of this motion artifact removal from various physiological

signals.

The preliminary investigations focus on artifact identification and the tagging of physi-

ological signals streams with measures of signal quality. A new method for quantifying

signal quality is developed based on the use of inexpensive accelerometers which fa-

cilitates the appropriate use of artifact processing methods as needed. These artifact

processing methods are thoroughly examined as part of a comprehensive review of the

most commonly applicable methods. This review forms the basis for the comparative

studies subsequently presented. Then, a simple but novel experimental methodology

for the comparison of artifact processing techniques is proposed, designed and tested

for algorithm evaluation. The method is demonstrated to be highly effective for the

type of artifact challenges common in a connected health setting, particularly those con-

cerned with brain activity monitoring. This research primarily focuses on applying the

techniques to functional near infrared spectroscopy (fNIRS) and electroencephalography

(EEG) data due to their high susceptibility to contamination by subject motion related

artifact.

Using the novel experimental methodology, complemented with simulated data, a com-

prehensive comparison of a range of artifact processing methods is conducted, allowing

the identification of the set of the best performing methods. A novel artifact removal

technique is also developed, namely ensemble empirical mode decomposition with canon-

ical correlation analysis (EEMD-CCA), which provides the best results when applied on

fNIRS data under particular conditions. Four of the best performing techniques were

then tested on real ambulatory EEG data contaminated with movement artifacts com-

parable to those observed during in-home monitoring.



It was determined that when analysing EEG data, the Wiener filter is consistently

the best performing artifact removal technique. However, when employing the fNIRS

data, the best technique depends on a number of factors including: 1) the availability

of a reference signal and 2) whether or not the form of the artifact is known. It is

envisaged that the use of physiological signal monitoring for patient healthcare will grow

significantly over the next number of decades and it is hoped that this thesis will aid in

the progression and development of artifact removal techniques capable of supporting

this growth.
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Chapter 1

Introduction

The worlds population has been steadily increasing and is set to continue to do so over the

next number of decades. The current estimated population of the world is over 7 billion

[143], however this figure is expected to reach anywhere between 9 and 10.5 billion by

2050 [142] [139]. In addition to the increasing number of people, the average life span

around the world is also rising and is set to do so over the next forty years [126]. It is

expected that the proportion of the world’s population over 60 years of age will double

from about 11% to 22%, from 605 million to 2 billion over the same period [140]. The

Old Age Dependency Ratio, which is the ratio of the number of people over 65 to the

number of working age adults, is therefore expected to increase dramatically from 25.9 %

in 2010 to 52.6 % in 2060 in Europe and from 16.8 % to 36.7 % in Ireland [189].

This ageing of the population demographic will inevitably lead to a rise in the number

of people living with chronic illnesses such as cardiovascular diseases, diabetes, cancer,

epilepsy and respiratory diseases. Chronic diseases are long-lasting conditions that can

be controlled but are not currently curable. Chronic illnesses affect the population

worldwide. As highlighted by the Center for Disease Control in the U.S., chronic disease

is the leading cause of death and disability in the United States. It accounts for 70 % of

all deaths in the U.S., which is 1.7 million each year [105]. Data from the World Health

Organisation (WHO) show that chronic disease is also the major cause of premature

death around the world even in places where infectious disease are rampant [148].

The combined increases in both the worlds population and the ageing demographic

will place further stress on already stretched healthcare systems. Since the 1960s, expen-

diture on national healthcare has grown faster than the gross domestic product (GDP)

in most EU member states. A study conducted by the Ministry of Health and Social

Affairs in Sweden found that the expenditure has risen from an average of 3.1 % in 1960
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to 8.8 % in 2006 [63]. In the U.S., healthcare costs were eight times higher in 2008

than in 1980 and accounted for 16.2 % of the national GDP [144]. Additionally, due

to the rise in the Old Age Dependency Ratio, there will be proportionally less people

contributing tax for government expenditure in the future. The increase in national

healthcare expenditure is unsustainable and, as a result, a more cost-effective delivery

of health services is imperative.

Figure 1.1: Growth in healthcare expenditures over the last 40 years. Source: [56]

Recent advances in information and communications technology (ICT) have allowed

for the generation of cheaper and more widely available monitoring systems and have

enabled many clinic-based examinations to be performed using connected-health in a

community-clinic or personal healthcare (p-health) domain. Connected health is a model

for healthcare delivery that uses technology to provide healthcare remotely. Connected

health is becoming increasingly utilised due to the advent of smart phones, tablets

etc. [18]. Connected health is primarily used in the areas of cognitive monitoring,

behavioural monitoring, activity recognition and cardiology. This ability to monitor the

patient outside of the hospital environment can greatly improve quality of life, while

out-patient care can cost as little as 50 % of in-patient counterparts, thus making them

a more feasible option in many instances [198]. However despite the recent advances

in monitoring systems, the presence of undesired artifacts on the desired physiological

signals is still a significant area of concern and thus further advances in the area of signal

processing are required in order to allow for the recording of clean useful clinical data.

2



Introduction

1.1 Objective

During recording of the various physiological signals, both within and outside of the

hospital environment, contamination of the desired signals due to artifacts is a constant

problem. Artifacts are defined as being any unwanted variations in a signal caused by

an external source. These unwanted variations can manifest themselves in a number

of different forms depending on the source of the artifact. For example, Figure 1.2

illustrates the difference between clean, clinically recorded, EEG data and data recorded

while the subject was in motion. It can be observed that the presence of these artifacts

seriously contaminates the recorded physiological signals. Artifacts contaminate signals

recorded in all domains, however their presence is more difficult to prevent outside of the

hospital environment. Due to its ad hoc nature, motion artifact can often be the most

difficult artifact to remove whilst also commonly having the largest detrimental affect

on the desired signal. Therefore, there is a considerable need for automated algorithms

capable of detecting and removing these artifacts from the desired true signals.

Figure 1.2: Contaminating effect of artifacts on recorded EEG signals. In the lower
figure, the subject began walking after 5 seconds. Data recorded using EEG system

described in Section 4.1.2.

The objective of this thesis is to analyse novel and existing artifact removal tech-

niques and validate the efficacy of each algorithm. The thesis focuses on the artifacts

3



Introduction

arising from subject motion using both the electroencephalography (EEG) and the func-

tional near-infrared spectroscopy (fNIRS) signal modalities.

1.2 Contributions of the Thesis

This thesis aims to analyse both novel and existing artifact removal techniques to deter-

mine the best techniques to employ in given situations and environments. In its entirety,

this thesis has produced a number of contributions which are described below.

1. A comprehensive literature review of the state of the art in artifact removal tech-

niques utilised in physiological signal analysis is presented. The review consists

of a short description of the operation of each of the selected techniques, example

results obtained using the algorithms on different signal modalities as well as any

comparisons completed between the different algorithms.

2. To allow for an accurate evaluation and comparison between the analysed tech-

niques, a novel recording methodology was developed. This methodology, pre-

sented to record either electroencephalography (EEG) or functional near-infrared

spectroscopy (fNIRS) data, permits the recording of two separate but highly cor-

related channels, allowing for the recording of an artifact-contaminated and an

artifact-free signal concurrently. Using the two available signals, accurate mea-

surements of an artifact removal technique’s efficacy can be determined.

3. A novel tagging algorithm is presented which employs dual accelerometers to gen-

erate a quality-of-signal (QOS) metric. This QOS metric can be used for a number

of different purposes:

(a) To inform a technician as to the epochs of contaminated data within a signal.

(b) Classification of motion artifact types, permitting the use of the correct arti-

fact removal technique for each specific corrupting artifact.

(c) To permit the activation of artifact removal techniques. This switching of

the technique allows the algorithms to be used solely when required, thus

improving their efficacy.

4. A novel artifact removal technique is presented which combines the decomposition

method of the ensemble empirical mode decomposition (EEMD) algorithm with

the source separation canonical correlation analysis (CCA) technique. The use

of this combination allows for the CCA algorithm to be employed on recordings

with a lower number of channel recordings than underlying sources. This method
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is shown to have improved performance over all existing similar techniques when

employed on fNIRS data.

5. A detailed evaluation and comparison of the most commonly implemented artifact

removal techniques is presented using both simulated data and data collected using

the novel recording methodology. The efficacy of the techniques is measured by

the change in signal-to-noise ratio (SNR) and the change in correlation between

the contaminated signal and the available “ground truth” signal.

6. A comparison between two previously implemented artifact component selection

techniques is presented. A number of tested artifact removal techniques are only

able to separate the signal and the artifact into source components. The selection

of the components relating to artifacts is a current area of research. The use of

the autocorrelation function and the Hurst exponents are both tested and the best

technique for use with the EEG and fNIRS data identified.

7. A case study is presented which employs a number of the best artifact removal

techniques determined in the thesis on real ambulatory recorded EEG data. This

novel recorded dataset is contaminated with artifacts ranging from those due to

simple head movements, to artifacts present due to the subject running on a tread-

mill. The efficacy of the removal techniques is evaluated on their ability to remove

or reduce the contaminating effect.

8. The benchmark datasets collected to test the efficacy of the various artifact removal

techniques, namely the fNIRS and EEG data recorded using the novel methodology

and the EEG data recorded during the case study, have been made available online.

This contribution provides a valuable resource for future artifact removal research.

1.3 List of Publications

A list of the publications produced from the thesis is presented below. A further de-

scription of each paper is provided in Appendix A.

1. Sweeney, K.T. Ward, T.E. and McLoone, S.F., “The use of empirical mode decom-

position with canonical correlation analysis as a novel artifact removal technique”,

IEEE Transactions on Biomedical Engineering, (Accepted), 2012.

2. Sweeney, K.T. Ayaz, H. Ward, T.E. Izzetoglu, M. McLoone, S.F. and Onaral, B.,

“A methodology for validating artifact removal techniques for physiological brain

5



Introduction

signals”, IEEE Transactions on Information Technology in Biomedicine, vol. 16,

no. 5, pp 918-926, Sept., 2012.

3. Sweeney, K.T. Ward, T.E. and McLoone, S.F., “Artifact Removal in Physiological

Signals -Practices and Possibilities”, IEEE Transactions on Information Technol-

ogy in Biomedicine, vol. 16, no. 3, pp 488-500, May, 2012.

4. Sweeney, K.T. Ayaz, H. Ward, T.E. Izzetoglu, M. McLoone, S.F. and Onaral,

B., “A Methodology for Validating Artifact Removal Techniques for fNIRS”, In

proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC),

pp 4943-4946, Sept., 2011.

5. Sweeney, K.T. Kelly, D. Ward, T.E. and McLoone, S.F., “A Review of the State of

the Art in Artifact Removal Technologies as used in an Assisted Living Domain”,

IET Conference on Assisted Living, pp 1-6, April, 2011.

6. Sweeney, K.T. Leamy, D.J. and Ward, T.E. and McLoone, S.F., “Intelligent arti-

fact classification for ambulatory physiological signals”, In proceedings of the IEEE

Engineering in Medicine and Biology Society (EMBC), pp 6349-6352, Sept., 2010.

7. Sweeney, K.T. Ward, T.E. and McLoone, S.F., “A simple bio-signals quality mea-

sure for in-home monitoring”, In proceedings of the 7th IASTED International

Conference, Feb., 2010.

1.4 Outline of the Thesis

This thesis is comprised of seven subsequent chapters, the content of which is described

below.

Chapter 2 provides a background to the physiological signals that are most com-

monly measured for clinical purposes. These signals are separated into two groups:

Photoplethysmography (PPG) and electrocardiography (ECG) signals which monitor

the cardiovascular system, and EEG, fNIRS and electromyography (EMG) which mon-

itor the central and peripheral nervous systems. A description of each of the signal

modalities and their utility in diagnosis, health and wellness is provided in the chap-

ter. Additionally, the chapter presents a description of the artifact modalities which can

affect recorded physiological signals.

Chapter 3 presents a comprehensive review of the current research into artifact re-

moval methods which are frequently employed in the biomedical field. A description of
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each of the techniques is provided as well as any comparisons between techniques pre-

sented in the literature. The review separates the techniques into two groups, namely

single stage and two stage algorithms. Single stage algorithms can directly remove the

artifact signal from the desired signal of interest while two stage algorithms decom-

pose the signal and artifact into individual sources but require additional techniques to

identify the artifact components and facilitate their removal.

Chapter 4 outlines the various methods used to analyse the artifact removal tech-

niques described in the thesis. A novel recording methodology is proposed which allows

for the concurrent recording of two channels of either EEG or fNIRS data with one

channel contaminated with artifacts while the second channel remains artifact-free. The

benefit of the recording methodology is that the two channels of recorded data are highly

correlated. Therefore the artifact-free signal acts as a “ground truth” signal from which

the efficacy of the various artifact removal techniques can be evaluated. This chapter

also details a number of techniques used to aid in the selection of artifact components

for the two stage techniques outlined in Chapter 3. The chapter concludes by describing

the generation of simulated data that is used to test the efficacy of the analysed artifact

removal techniques.

Chapter 5 begins by documenting a novel tagging algorithm which is used to provide

a QOS metric. The QOS metric can be used to inform a trained clinician as to the

location of the artifact components in a signal, to determine which artifact removal

technique should be employed (depending on the artifact) or to permit the switching of

the artifact removal techniques thus allowing them to be used only when required. The

chapter continues by providing a detailed evaluation of four of the single stage artifact

removal techniques described in Chapter 3. These techniques are compared, using both

the simulated data and the real EEG and fNIRS datasets, and the best techniques to

use for motion artifact removal are presented.

Chapter 6 continues on from Chapter 5 by reporting on the evaluation of a number of

novel and existing two stage artifact removal techniques. The operation of the techniques

and their determined efficacy are again presented and compared with the other two stage

techniques as well as the single stage techniques presented in Chapter 5. The chapter

also analyses a number of the artifact selection techniques presented in Chapter 4. A

comparison of results is presented and the best technique to employ for both EEG and

fNIRS is determined.

Chapter 7 concludes the analysis of the artifact removal techniques by employing

four of the best algorithms determined from the previous two chapters on ambulatory

recorded EEG data. This EEG data is recorded using a mobile EEG system while the
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subject performed a number of described tasks. Each task represents a normal daily

movement that could be performed by patients in a p-health environment, providing a

realistic dataset for examination.

Chapter 8 concludes the thesis by providing a summary of the novel contributions

of the thesis and discussing possible further avenues of research arising from the work

performed for this thesis.
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Chapter 2

Physiological Background

Physiological signal monitoring has long been an important and widely implemented

form of patient observation and supervision. As stated previously recent advances in

ICT have allowed some of the monitoring systems to be employed outside of the hospital

environment. There are a number of advantages of this shift; for the patient it represents

a reduction in healthcare costs and a greater quality of life as more time can be spent

in the comfort of their own home while also alleviating the burden on healthcare pro-

fessionals, the health care system and caregivers. This chapter provides a background

introduction into a number of the different physiological signals monitored both within

and outside of the hospital environment as well as their utility in diagnosis, health and

wellness. These measurements include ECG/PPG and POX, which are used to monitor

the cardiovascular health of a patient, EEG and fNIRS, which measure the function of

the neural system and EMG which records the electrical activity produced by skeletal

muscles. The origin and form of these signals, their diagnostic value and the methods

employed to monitor them are described.

The chapter also presents a description of the different artifact modalities that can af-

fect all recorded physiological signals. These modalities include environmental artifacts,

experimental error as well as artifacts arising from the concurrent recording of undesired

physiological signals. The origin of the different forms of artifacts are detailed as well

as their contrasting contaminating effect on the different available recording modalities.

2.1 Circulatory System

The circulatory system is a collection of organs whose purpose is the transport of the

required gases, nutrients and blood etc. around the body to the demanding cells. These
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transported compounds are then used to maintain the daily operation of the body by

fighting diseases, stabilising the body temperature and pH and to maintain homeostasis.

The cardiovascular system, which distributes the blood around the body, is a closed loop

system implying that the blood never leaves the network of veins, arteries and capillaries,

although other substances such as nutrients, and gases do.

The main organ of the cardiovascular system is the heart. This muscle is designed to

pump the required gases and nutrients around the cardiovascular system to the required

cells. The heart is divided into four main chambers, namely the right and left Atrium

and the right and left Ventricle (see Figure 2.1). The Atria are used to store the blood

returning from the body or lungs and the Ventricles are used to pump the blood from

the heart [172].

Figure 2.1: Diagram of the human heart.

Monitoring of the heart, or the cardiovascular system in general, is therefore ex-

tremely important. In addition to the obvious complications with a problematic heart

(including angina, heart attacks or cardiac arrest), improper blood circulation can also

reduce the bodies capability to rid the body of its wastes, weaken the ability maintain

a constant body temperature and increases the possibility of infectious diseases [67].

Three methods often employed to monitor the cardiovascular system are described

below. Photoplethysmography (PPG) and pulse oximetry (POX) monitor the volumetric
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change and haemoglobin concentration of the blood while electrocardiography (ECG)

monitors the electrical activity of the heart.

2.1.1 Photoplethysmography (PPG)

Photoplethysmography (PPG) is the optically obtained volumetric measurement of an

organ. In conventional PPG the system monitors the changes in blood volume from a

position on the body and is usually obtained from transmissive absorption (as in the

finger tip or ear) but can also be obtained reflectively (as on the forehead). During each

cardiac cycle (contraction/relaxation) the heart pumps blood to the periphery. Each

contraction sends a wave of oxygenated blood into the arteries. This wave can then

be recorded using the PPG at any position on the body which has a detectable pulse.

The shape of the PPG waveform can vary depending on the subject and also in the

manner and location where the sensor is attached. Figure 2.2 presents an example of a

PPG recorded from a finger when the hand is held at two different positions. It can be

observed that the pulse rate of the heart can be easily determined from the recordings.

The PPG signal is slow varying compared to some other physiological signals and has a

frequency range of between 0.04 Hz and 0.6 Hz [128].

Figure 2.2: Examples of Photoplethysmography (PPG) output. Top plot presents an
example where the recording was taken from the middle finger with the hand supported
at chest height. The lower plot represents a recording from the same finger with the
hand relaxed by the waist. Signals recorded using the BioSemi system (Section 4.1.2)

with the PPG adaption.
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A PPG sensor consists of a light source, which can take the form of a light emitting

diode (LED) or a laser, and a detector (photodiode). Although laser sources have been

used by a multitude of researchers [116], LEDs are still predominantly used [204][199].

Laser sources can pose a safety risk due to the possibility of interaction with the users

retina or cornea where the lasers can cause thermal damage, or burning, if sustained

for a period of time [10]. As the LED sources do not have the same safety issues, they

are most often employed in the clinical setting where inaccurate patient usage can often

lead to misuse of systems.

The source transmits light, at two different wavelengths, into the tissue to be studied

and the detector determines the changes in blood volume over time, inferred from the

change in light intensity received [168]. This is typically determined using the modified

Beer-Lambert law (MBLL) which states

a = log10

(
i0
i

)
, (2.1)

where a is the absorption of the blood, i0 is the incident light intensity and i is the

transmitted intensity. The MBLL can then be utilised to calculate the relative change

in concentration levels of oxy and deoxy-hemoglobin using the following formula [41]:

∆a = (αHbO∆CHbO + αHb∆CHb)LB, (2.2)

where ∆a is the change in absorption, αHbO and αHb are the specific extinction coef-

ficients of oxy-hemoglobin and deoxy-hemoglobin respectively. These extinction coef-

ficients describe the levels of absorption of light for certain media at predefined wave-

lengths. CHbO and CHb are the concentration levels for oxy-hemoglobin and deoxy-

hemoglobin respectively, L is the distance between the source and detector optodes and

B (constant) is the differential path-length factor. Using the concentration levels (CHbO

and CHb) the volumetric variations can be determined.

Figure 2.3 shows how the absorption spectra of both the HbO and Hb compounds

changes with varying incident light wavelength. As the two compounds have independent

spectra, by recording the light absorption at two wavelengths spectroscopic separation of

the chromophore concentrations is possible. Throughout recording there are a number of

absorption factors that remain relatively constant including the absorption levels of the

skin, tissue and venous blood. The absorption level of the arterial blood changes however

with the rhythmic pulsing of the cardiac cycle. If the absorption of the incident light is

detected separately at both the trough (which should include all the constant absorbers)
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and crest of the pulse, then the difference in these absorption levels is equivalent to the

absorption of the added blood volume only. This is called pulse oximetry (POX).

Figure 2.3: Absorption spectra for oxy-haemoglobin (HbO) and deoxy-haemoglobin
(Hb). Values taken from [164] and [134].

Pulse Oximetry (POX) uses the PPG wave form, as stated above, to create an indi-

cator of arterial oxygen saturation (SpO2). This quantity responds rapidly to hypoxemic

events and is very simple to interpret [150]. It is often used in situations where there is

a need to monitor a patients oxygenation levels, as in intensive care, critical care, and

emergency department areas of a hospital, but can also be utilised in a p-health envi-

ronment to supervise recovery after heart problems or to aid the diagnosis of some sleep

disorders such as apnea and hypopnoea [27]. The PPG waveform is often used as a heart

rate and cardiac cycle monitor due to its ease of use in comparison to other techniques

such as ECG. The application of the PPG monitor simply requires the connection to a

finger or ear lobe and thus error due to poor patient usage is not a major concern. PPG

can also be used for monitoring respiration due to the respiratory systems effect on the

pressure placed on the heart during inhalation and exhalation as described by Shelley

et al. [167].

Due to the relatively inexpensive nature of the systems, this measurement is in-

creasingly utilised in a p-health environment. A more sophisticated variation of PPG
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is functional near-infrared spectroscopy (fNIRS) which uses the same principles as the

PPG to measure the changing oxygen levels in the brain and is described in Section 2.2.2.

2.1.2 Electrocardiography (ECG)

Electrocardiography (ECG) is a transthoracic measurement of the electrical activity

of the heart recorded externally by skin electrodes. As the heart muscles contract and

expand (for the purpose of pumping the oxygenated and deoxygenated blood around the

circulatory system and to the lungs respectively) they generate a small voltage difference

that can be measured non-invasively across the chest.

Figure 2.4: Example P QRS and T wave for ECG.

A typical ECG recording consists of P, QRS and T waves, each a consequence of the

independent contraction or expansion stages of the cardiac cycle. Figure 2.4 presents an

example epoch of an ECG recording. The P wave can be directly related to the spread

of changes in electrical activity through the atrial musculature of the heart. This wave

has a duration of not more than 0.11 seconds and should be gently rounded in shape.

The QRS wave is the most dominant complex in the ECG recording as it represents

the spread of the electrical impulse through the ventricular muscle which pumps the

blood around the periphery [82]. This complex is usually around 0.05-0.12 seconds in

duration and its amplitude is greater than the P or T waves and varies depending on

the recording location but is commonly not larger than 2.5-3.0 mV. The T wave then

represents the recovery of the ventricles and usually lasts around 0.16 seconds. Again

the amplitude is dependent on the location of the recording electrodes but is usually
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around 0.2 mV. The interval between consecutive waves is known as the RR interval

and is dependent on a number of different parameters including the sex, fitness and

health of the patient, however normal durations range from 0.6 to 1.2 seconds. The

frequency range of a normal ECG signal is 0.1 - 250 Hz however 1 ms accuracy heart

rate detection is obtainable at a 0.5-35 Hz frequency range [75]. The wider frequency

range is required if arrhythmia detection is required.

ECG signals are obtained through the amplification of the tiny electrical changes

associated with cardiac activity via electrodes applied to the skin. ECG instrumentation

usually consists of a 3, 5 or 12 lead setup depending on the scenario and duration of the

recording. In the p-health domain, 3 and 5 lead setups are most common as a 12 lead

system is more complicated to structure. The systems employed for monitoring outside

of a clinical environment primarily use adhesive active electrodes [207] to detect the

voltage changes. Active electrodes have a high input impedance preamplifier placed very

close to the skin which reduces the susceptibility of the system to power-line interference

and cable motion artifacts, thus improving signal quality. Also no preparation of the

skin, such as skin abrasion, is required prior to adhesion when using active electrodes.

The use of highly conductive electrode gel placed between the electrode and the skin

also aids in the securing of low noise data, however this can often degrade over long

term use. This limits the number of complications which can arise from recording the

physiological signals outside of the hospital environment.

The ECG recording is one of the most predominantly employed monitoring sys-

tems utilised by clinicians due to the variety of ailments which can be detected. Any

variation of the signal from the model ECG signal morphology can inform a trained

technician as to the presence of a large number of different disorders. As an example,

the detection of low-level, alternating changes in T wave amplitude, is established as an

indicator of increased risk for sudden, life threatening arrhythmias [170]. Arrhythmias

often arise within a limited time span and occur quite infrequently thus are not often

detected during routine ECG examination due to the conventional short measurement

time. Therefore longer ECG measurements during a patients normal activity are re-

quired to diagnose arrhythmias and to determine the effectiveness of treatment [102],

giving merit to in-home measurements. The detection of atrial fibrillation and flutter

after acute stroke also calls for prolonged measurements of the ECG signal [89]. These

are just a few of the many ailments where the use of the p-health systems can, and

do, aid in the monitoring of a patients health and increase the likelihood of a correct

diagnosis.
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2.2 The Nervous System

The nervous system is an organ system which contains a network of neurons and other

cells which are used to control the functions of the body. The organ system contains

all the parts required for the human body to interact with the outside world including

the brain, spinal cord, and the nerves. The brain and spinal cord are part of the central

nervous system which controls the activity of the human body. The nerves outside of

the brain and spinal cord form the peripheral nervous system.

The brain is the driving force behind the nervous system with the other elements

used to send/receive and channel the information. Therefore, accurate recordings of the

function of the brain can inform a great deal of information regarding the workings of

the body. The signals transmitted to and from the brain are electrochemical in nature

and so signal monitoring in the form of electroencephalography (EEG) can be employed.

These recordings operate in a similar manner to the ECG recordings described above

in that EEG records the small changes in voltage that can be detected over the scalp.

However, as the brain also requires oxygen to function, the change in blood oxygenation

throughout the various cortical regions can also divulge information as to the functions

currently being executed.

The non-invasive measurement of brain activity outside a clinical setting is difficult,

and the only two practical methods available are electroencephalography (EEG) and to

a lesser extent functional near-infrared spectroscopy (fNIRS). The function of the pe-

ripheral nervous system can be monitored using a technique known as electromyography

(EMG). The next section describes these measurements at a level appropriate for the

applications described in this thesis.

2.2.1 Electroencephalography (EEG)

Electroencephalography (EEG) is the recording of electrical activity along the scalp,

produced by the firing of neurons within the brain [141]. When neurons in the brain

need to communicate with their neighbours they do so by discrete electrochemical signals

called action potentials. These individual action potentials are however too small to be

detected. The detected EEG activity is therefore always a reflection of the sum of the

synchronous activity of the thousands or millions of neurons that are orientated in a

similar spatial manner. The EEG signal also usually reflects the processes taking place

at positions close to the surface of the brain. Activity from sources deep in the brain

are more difficult to detect than sources in closer proximity to the skull as the potential

fields fall off with the square of the distance from the source [99].
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The amplitude of the EEG recorded data can vary between subjects however a

typical adult human EEG signal is about 10 to 100 µV in amplitude when measured

from the scalp [7] and is about 10 to 20 mV when measured from subdural electrodes as

described below. The analysis of the EEG data is most commonly focused on the low

frequency ranges however the frequency can range from 0 to 100+ Hz. The EEG signal

is normally broken down into a number of frequency bands during analysis as shown in

Table 2.1.

Table 2.1: Frequency bands of signal recorded by electroencephalography (EEG).

Name Frequency Band Predominantly Observed

Delta Up to 4 Hz
Adult slow wave sleep
In babies

Theta 4 to 8 Hz
Young children
Drowsiness in adults

Alpha 8 to 13 Hz
Resting in adults
Eyes closed

Beta 13 to 30 Hz
Alert/Working
Active concentration

Gamma 30 to 100+ Hz
Multisensory semantic matching
Perceptual functions

Figure 2.5: Example of EEG recorded data shown over a 100 second and 10 second
epoch. Data recorded using the system described in Section4.1.2.
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The EEG signal can be recorded in two ways; either non-invasively, with the elec-

trodes secured to the scalp with conductive gel, or invasively with the subdural, or depth

electrodes placed on the surface or within the substance of the brain respectively [159].

The invasive technique produces results with less noise and higher amplitude than the

noninvasive technique, however it is a far more complicated manner in which to record

the EEG data. The contrast in information content between the two recording methods

is due to the path that the signal must pass through before being measured. The in-

vasive method measures the signals directly from the surface of the brain, whereas the

signals recorded by the non invasive method must pass through the dura matter, the

cerebrospinal fluid, the skull bone and the skin of the scalp (also possibly the hair on

the scalp) before it reaches the scalp electrode [4]. This additional path length distorts

the recorded signal due to the differing volume conduction effects [190] and the low pass

filter effect of the skull [70]. However, for the p-health domain, non-invasive EEG data

acquisition is the only viable option available.

EEG recording systems used outside of the clinical setting generally employ a rela-

tively low number of electrodes (< 8), due to the limitations of the available power of the

system. These electrodes are active electrodes, similar to those used for the ECG record-

ing. An example of an ambulatory recording system commonly used is the Starstim R©
(Neuroelectrics, Barcelona, Spain) system which allows for 8 channels of EEG record-

ings. Recordings acquired using this system can be seen in Chapter 7 where a number

of the best performing algorithms analysed in this thesis are tested on real ambulatory

EEG data.

EEG has a wide range of applications in modern medicine. One of the most common

uses is in the area of epilepsy [169]. Epileptic activity can be very difficult to measure

due to the (sometimes) uncertainty in the occurrence of events. Therefore long term

monitoring is often employed to increase the probability of detection. This long term

monitoring can cause discomfort to the patient who must remain in a motion free state

for a extended period of time. The recording of the EEG signals in an in-home, p-

health, domain can increase the users level of comfort and allow for longer recording

durations while still recording the data to a satisfactory level of quality. Advances in

data reduction techniques have also aided in the reduction in the quantity of recorded

data being stored [33], [32] and have therefore facilitated longer recordings. The EEG

setup is more complicated than some other recording techniques, requiring the user to

be given some basic training in its configuration before implementation. Other uses of

EEG include the detection of sleep/drowsiness levels [16], [15], [149], cognitive workload

[15], [173] and in brain-computer interfaces (BCI) [13], [108], [175], [203].
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2.2.2 Functional near-infrared spectroscopy (fNIRS)

In order to function properly, the human brain requires a sufficient level of oxygen

which is delivered as required by the blood supply in response to local metabolic needs.

As specific areas of the brain are employed, more energy is required necessitating an

increase in oxygen which is achieved through changes in the neurovasculature system

(typically a dilation of capillaries and related vessels). By recording these changes in

blood oxygenation in specific areas it is therefore possible to analyse the activation of

the brain. NIRS is a imaging technique to determine the oxygen concentration in the

haemoglobin in the blood. Functional NIRS is the use of the technique to monitor the

functional activity of the brain. fNIRS imaging is gaining popularity in cognitive and

clinical neuroscience as it can be used in settings and on populations, where the use

of other functional imaging techniques would be too expensive, difficult, or impossible

[155].

Functional near-infrared spectroscopy (fNIRS) employs light at multiple wavelengths

(in the infrared band) to penetrate the skull, and to indirectly measure the change in

the concentration levels of oxygenated (HbO) and deoxygenated hemoglobin (Hb) in the

brain, through changes in the optical absorption [28]. Figure 2.6 presents the absorption

values from an example recording of fNIRS recorded from the prefrontal cortex. fNIRS,

when applied in human neuroimaging, produces a narrowband signal with frequencies

ranging from 0.01 Hz to 0.8 Hz [81].

The fNIRS apparatus consists of a low level light source (typically between 5 to

10 mW) which transmits the light into the tissue and a detector which receives the

rebounded light. These sources and detectors are placed non-invasively onto the scalp

of the subject. The near-infrared frequency range is chosen as the biological tissue and

water in the head both have a low absorption rate at these wavelengths and thus the

light can penetrate a few centimeters into the scalp [28]. This allows the NIRS technique

to detect the changes in the outermost cortex, allowing optical measurements to be

used for imaging brain functions [81]. Applications of NIRS center on the non-invasive

measurement of the quantity and oxygen content of hemoglobin. These measurements

are then used in the determination of cognitive tasks [86] and in BCI [124]. Recent

technological advances are allowing for the development of fNIRS systems for use outside

of the clinical setting. An example system currently available is the Artinis PortaLite

system (Artinis, AS Zetten, Netherlands) which provides a three light source device

capable of an absolute measure of HbO for up to 10 hours.
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Figure 2.6: Example recording of light absorption using fNIRS.

2.2.3 Electromyography (EMG)

Electromyography (EMG) is a technique for evaluating the electrical activity of the

skeletal muscles [156]. An electromyograph detects and measures the electrical potential

produced by muscle cells when these cells are electrically or neurologically activated.

This electric potential has a range of less then 50 µV up to 20 to 30 mV while having

a typical repetition rate of muscle motor unit firing of between 7 and 20 Hz, depending

on the muscle group under observation. Figure 2.7 presents an example signal recorded

using EMG.

There are two types of EMG in widespread use, surface EMG and intramuscular

EMG. In the out-patient domain, the non-invasive surface EMG technique is most com-

mon as intramuscular EMG is seen as too invasive. However, as the electrodes during

surface EMG are placed on the skin and not on the muscle directly, there is a greater

chance of artifact contamination and the signal strength is also diminished due to the

extra path length of the signals through the subcutaneous tissue and epidermis. The

EMG system uses similar active electrodes and electrolyte gel as that employed when

recording ECG signals.
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Figure 2.7: Example recording of EMG recorded from the extensor digitorum muscle
on the forearm. Plot shows variation from rest to muscle activation.

EMG recordings are employed in a number of different areas of both research and

treatments [151]. Azzerboni et al. [9] used long term EMG recordings to differentiate

between parkinsonian and essential tremor and correctly diagnosed in 93% of their cases.

In 2002 researchers [157] used EMG patterns to determine the effect of medication on

individuals with Parkinson’s disease. Another major application of EMG recordings

is in the control of prosthesis [109], [20], [174]. By utilising the available functional

muscles in the body, a subject is capable of controlling an inactive muscle group or limb

through the use of a prosthetics system. All the uses of EMG stated above, along with

many others, require long term or constant operation thus presenting the requirement

for accurate out-patient measurements.

There are many other clinically relevant signals that can be measured from the

human body. Some of these include body temperature, blood pressure, pH levels and

perspiration levels [42]. These signals exhibit only slow fluctuations and consequently

do not normally warrant the use of continuous monitoring and thus are considered spot

measurements. Therefore for the purpose of this thesis only the physiological signals

already described above will be explored further. In particular the next section describes

the various sources of noise and artifact that can corrupt such signals.
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2.3 Artifact Modalities

The presence of artifacts seriously degrades the clinical utility of recorded physiological

measurements. This is particularly true for recordings made outside of the hospital

environment where the lack of a trained technician can add additional complications.

There are three distinct sources of artifacts that impact all physiological recordings;

environmental artifacts, experimental errors and systemic physiological artifacts [81].

These three sources have different properties and thus manifest themselves distinctively

on the individual measured signals.

2.3.1 Environmental Artifacts

Environmental artifacts primarily originate from the mains power leads that surround

the body during day to day living and can be seen in the form of 50/60 Hz hum. The

artifacts can additionally arise from electromagnetic interference (EMI); a disturbance

that affects the signal due to the electromagnetic radiation emitted from an external

source. This EMI can interact with the measurement cables, or the human body which

acts as an antenna to the RF interference. Instrumentation artifact is a type of environ-

mental artifact which is said to originate from within the circuit components themselves

and can be observed in the form of thermal noise (due to the changing temperature of

components), shot noise (due to the quantised nature of the electric charge) or 1/f (pink)

noise (due to the slow fluctuations of the condensed-matter materials of the devices). A

further major source of interference in bioelectric measurements is due to the capacitive

coupling of the measurement cables with the mains (Cca and Ccb in Figure 2.8) [191]

and other devices.

A poor electrode-skin interface can be the source of undesirable artifacts, however

this impact can be greatly reduced by using a suitable electrode-skin interface electrolyte

gel and an active electrode system. However the electrolyte gel is not suitable for long

term monitoring. The recording leads can also be susceptible to magnetically induced

interference, but this can be reduced by shortening the lead lengths and twisting the ca-

bles so both receive the same interference. Further, the recording leads are also shielded

to avoid RF interference and capacitative coupling. Optical measurement devices, such

as PPG and NIRS, are not intrinsically susceptible to capacitive coupling interference

as no bioelectric measurement is conducted (Figure 2.8(a)). However, they are sensitive

to environmental artifacts from other natural and artificial light sources. These interfer-

ences can be reduced by using correct procedure and ensuring that no external lighting

can affect the recording.
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Figure 2.8: Block diagram of sources of artifact on an optical measurement (a) and
bioelectric measurement (b) system [191].

2.3.2 Experimental Error

Experimental error is seen as uncontrolled/unwanted variation in the experimental setup.

This category of error can be reduced by proper procedure and planning, but it is almost

impossible to eliminate completely. This inability to completely eradicate the error is,

in most part, due to human error during experimental setup or subject motion during

data acquisition. Incorrect procedural setup, for example the poor application of the

electrodes, can create discrepancies in the measured signal. In the p-health environment,

the user is not always a trained technician, and thus the correct procedure in preparation

and recording may not always be adhered to. However these errors can often be observed

prior to recording, and thus corrected. Motion of the subject can create a large amount

of experimental error and is commonly the most detrimental for many physiological

signal recordings, due to changes in the underlying measurement geometry. This source

of error, although present in most recordings, is far more prominent in the p-health

environment due to the patient having more freedom of movement. Subject motion can

also cause changes to the coupling between the sensors and the tissue surface introducing

further distortion to the recorded signals.
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With respect to optical methods, PPG and fNIRS for example, motion of the subject

causes two distinct types of artifact. Firstly, movement of the source or detector optodes

with respect to the skin causes a change in the path-length taken by the light transmitted

by the source optode before it enters the detector. Subject movement also causes a blood

pooling effect observable in the measurements. This blood pooling creates an increase

in the overall blood levels at the recording site [179] and disrupts the ability to resolve

the functional induced change.

Motion also has a damaging effect on bio-potential measurements in the body, such

as ECG and EEG. Subject motion can cause the position of the electrode on the skin

to alter. This movement can cause a variation in the distance (d) between the recording

electrode and the skin (Figure 2.9), which results in a corresponding change in the

electrical coupling, causing signal distortion. Subject motion can also cause a change

in the conduction volume between the electrode and the signal source which induces

potential changes at the recording sites [180]. These changes culminate in the production

of artifact on the recorded output. The movement of the recording devices with respect

to the underlying skin can be reduced by correct preparation of the interface surface by

abrasion and cleansing of the skin and ensuring a strong adhesion of the electrodes [80].
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Figure 2.9: Block diagram of the interface between an electrode and the skin.
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2.3.3 Physiological Artifacts

Physiological artifacts are variations in the desired signal due to other physiological

processes in the body. Major contributors of artifacts most commonly detected in phys-

iological measurements are eye movement-related artifacts, cardiac signals, respiration

signals and muscle tension signals measured using EMG. Other physiological signals,

such as brain signals, do not have sufficient signal strength to cause major complications

to the desired measurements.

Eye movement-related artifacts have the largest detrimental effect on EEG record-

ings. As the eye alters position the resting potential of the retina changes and can be

measured using an electrooculogram (EOG). Blinking also causes involuntary movement

of the retina as well as muscle movements of the eye lid. Due to the eyes’ close proximity

to the brain, as the signal propagates over the scalp it can appear in the EEG signal as

an artifact that can present serious complications in EEG analysis [73]. The amplitude

of these signals can be many times greater than the EEG signals of interest. This ocular

signal can easily be measured using electrodes placed above and below the eye.

Muscle movements can cause artifacts on a broad range of electrophysiological signals

as they can originate from any muscle on the body, and thus can be in very close

proximity to the signal recording site. The muscle fibres have a typical repetition (firing)

rate of about 7-20 Hz, depending on the size of the muscle. In terms of EEG recording,

the tension of the facial or jaw muscles has a large detrimental effect on the desired

signal as the magnitude of the EMG signal can be many times larger than the desired

EEG signal. EMG signals do not however have an adverse effect on the signals recorded

using light, for example fNIRS and PPG, due to the different recording modalities.

The cardiac signal can cause artifacts on a number of different recordings including

EEG and EMG. The electrical signal outputted from the heart has a high signal strength

and so can be picked up at numerous positions around the body. The beating of the heart

also causes pulse artifacts where the expansion and contraction of the vessel introduce

voltage changes into the recordings [100]. The ECG and pulse signals have a frequency

range of around 0.5-40 Hz and 1.2 Hz respectively making it difficult to remove them

from most physiological signals, due to the overlapping frequency spectra.

2.4 Conclusion

The accurate non-invasive measurement of physiological signals has a number of different

and important applications. These signals provide information that can be used to
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inform a trained technician of the presence of a wide range of different ailments and

conditions ranging from heart problems to epilepsy. The recordings can also be used

as part of a person’s treatment especially when used as part of a closed loop system,

for example in operation of a prosthetic device or as biofeedback for a rehabilitation

technology.

The feasibility of the above hinges on the viability of appropriate quality measure-

ment in uncontrolled environments. This chapter served to describe this context and

in particular highlighted a number of the most common physiological measurements in

use today for such systems. The physiological origin, examples and characteristics of

these signals are given to allow for a comparison between the different signal modalities.

For example, it can be seen that the amplitude of the signals recorded using EEG are

smaller by at least an order of magnitude to those measured using ECG and EMG, thus

making them more sensitive to artifact contamination.

In addition to the physiological signals, different categories of artifact which can con-

taminate these measurements are described. These include artifacts from environmental

sources (such as 50 Hz hum), experimental error (subject motion) and from the recording

of unwanted independent physiological signals (such as eye movement on EEG signals).

It is the presence of these artifact signals which degrades the desired signal quality and

therefore the ability to perform the measurements in uncontrolled environments. An

important area of research is therefore in the removal of these undesired artifacts.

Chapter 3 will next provide a review of a number of artifact removal techniques

which are most commonly implemented in the physiological signal monitoring domain.
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Chapter 3

Review of Existing Artifact

Removal Methods

The accurate separation of artifact components from the desired signal of interest is

an important processing step for all physiological measurement and it is an especially

challenging one for measurements acquired outside laboratory and clinical conditions.

This chapter presents a thorough review [178] [181] of the most commonly implemented

artifact removal techniques employed in physiological signal analysis. The review con-

sists of a short description of the operation of the techniques, example results obtained

using the algorithms on different signal modalities as well as any comparisons completed

between the different algorithms.

There are a number of general techniques used for artifact separation and removal.

This removal can often be accomplished using simple classical filtering techniques (for

example low-pass filtering). However, these simple methods can only be employed when

the frequency bands of the artifact and the desired signal do not overlap. When there

is spectral overlap alternative techniques must be adopted.

Figure 3.1 presents the general form of the artifact suppression techniques discussed

in this review. The signal recorded during an experiment (x(n) ∈ RP ) is a combination

of the original desired signal
(
s(n) ∈ RM

)
and contaminating artifact v(n). P is the

number of recorded signals and M is the number of underlying sources. The function f is

used to describe how the two signals are combined to produce the signal at the recording

site. This allows for both multiplicative [61] and additive artifacts, however additive

artifacts are predominantly assumed as this leads to tractable problem formulations, i.e.
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Figure 3.1: A General Framework for Artifact Removal

x(n) = s(n) + v(n). (3.1)

Therefore, Figure 3.1 evolves to Figure 3.2. Label (i) depicts situations in which a refer-

ence signal u(n) is used by the function h to aid in the estimation of v(n) (for example

adaptive filtering) and (ii) depicts where v(n) is estimated directly from x(n) (for ex-

ample BSS techniques). As u(n) will seldom be a direct proxy for the contaminating

artifact v(n), the function g is presented to imply that the two signals are related. While

both (i) and (ii) can be employed together, in practice the methods developed usually

fall into one or other of (i) or (ii). Many of the artifact removal techniques using (ii) also

assume that the number of recorded signals must be equal to or larger than the number

of sources, i.e. P ≥ M . Section 3.6 describes algorithms that operate when this is not

the case.
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g(v)

s(n)
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S S 

(i)

(ii)

Figure 3.2: A Linear Framework for Artifact Removal

The remainder of this chapter will expand on a number of the most commonly

implemented artifact removal techniques employed on physiological signals. A review

is presented of the signals with which they have been used and also their calculated
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efficacy. Section 3.7 then analyses the reviewed techniques and classifies them into

techniques which are either single stage or two stage in nature (see Table 3.1).

3.1 Adaptive Filtering

Original
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v(n)

Reference
Signal

u(n)

Estimated
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s(n)
Recorded

Signal

x(n)

w
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Figure 3.3: Adaptive Filter Framework for Artifact Removal

Adaptive filtering operates under the assumption that the desired signal s(n) and

the artifact v(n) are uncorrelated, i.e.

E[s(n)v(n)] = 0, (3.2)

where E [.] is the expectation operation. Using a tapped delay line (TDL) the filter

generates a signal v̂(n) which is correlated with the actual artifact signal v(n) from a

reference signal u(n). This estimate of the artifact is then subtracted from the recorded

signal x(n) and the residual ŝ(n) is an estimate of the original signal s(n) [121]. The

filter coefficients continue to adapt until the artifact in the output, which is correlated

with the provided reference, has been minimised.

Reference Signals

The choice of artifact reference u(n) is very important when utilising an adaptive filter

as the reference is used as a proxy for the contaminating artifact. The higher the

correlation between the reference and the contaminating artifact the better the adaptive

filter will perform. For motion artifact, accelerometers are predominantly selected [40]

[131] due to their high sensitivity combined with an ease of application, however other
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sources such as anisotropic magnetoresistive (AMR) sensors [188], optical bend sensors,

impedance sensors [69] and skin stretch sensors [68] have also been considered.

References for artifacts originating from undesired electrophysiological signals can

often be recorded using general recording techniques. Examples of this include the

recording of EOG for the removal of eye movement artifact from EEG signals [73] and

EMG recording for removing muscle movement artifact from ECG signals [214]. How-

ever, other methods have also been proposed which develop a model of the artifact to

use as a reference [186]. These model based methods can however add unnecessary

complexity to the system and are not often implemented.

Algorithms

The choice of algorithm dictates the computational cost and accuracy of the adaptive

filter. The most common algorithm employed in adaptive filtering is the least mean-

square (LMS) algorithm with a computational complexity of O(L) (L is the filter length)

[5] and which has a weight update equation [94]:

ŝ(n) = x(n)−wT (n)u(n) (3.3)

w(n+ 1) = w(n) + 2µŝ(n)u(n). (3.4)

This algorithm produces an estimate of the desired signal ŝ(n) through adaption of the

filter coefficients w(n). The filter coefficients are adjusted so as to minimise the mean

squared amplitude of the estimated signal. The step size µ controls the rate of adaption

and hence the overall stability of the filter.

Another family of algorithms commonly used in adaptive filtering is based on the re-

cursive least square (RLS) algorithm. This is a computationally more complex algorithm

with a computational complexity of O(L2 ) [5] and an update equation [14]:

G(n) =
R−1(n− 1)u(n)

λ+ uT (n)R−1(n− 1)u(n)
(3.5)

R−1(n) = λ−1R−1(n− 1)−G(n)uT (n)λ−1R−1(n− 1) (3.6)

w(n) = w(n− 1) + ŝ(n)G(n), (3.7)

where R(n) is an estimate of the input signal covariance matrix and λ is a forgetting

factor. The RLS algorithm exhibits extremely fast convergence due to its 2nd order

nature. Many papers describe the advantages of both families of algorithms including
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others such as least mean absolute value (LMAV) and sign (SIGN) [122]. The RLS family

of algorithms consistently perform to a higher accuracy than the other algorithms but

in doing so have a higher computational cost [131] [152]. In [122] the authors tested

5 different algorithms from the two families of algorithms and found that the RLS

algorithms achieved the highest accuracy (computed using correlation values) in 23 of

the 28 computed tests when removing ECG artifacts from EMG recordings. This was

especially true when the signal was assumed stationary and a simplified formulation was

used. In 2009, Zia Ur Rahman et al. [214] used a normalised signed LMS algorithm in

the calculation of simulated artifacts on an ECG signal. This algorithm was found to

converge faster than the basic LMS algorithm, had a lower computational cost and also

had a greater signal to noise ratio (SNR) improvement (3.9 dB versus 9.2 dB in some

cases) all of which are desired for operation in the p-health domain.

The adaptive filter is easy to implement and it also has an ability to operate on-line

and without preprocessing or calibration, but the requirement of additional sensors to

provide reference inputs can add to the complexity of the hardware system. Further,

if the reference signals do not provide an accurate representation for the artifact signal

the technique will not perform well.

3.2 Wiener Filtering

Wiener filtering is another parametric technique used to remove unwanted artifacts

from the measured signals [49]. The Wiener algorithm is based on a statistical approach

and thus does not require the use of an external reference signal. The signal and the

(additive) artifact are assumed to be stationary linear stochastic processes with known

spectral characteristics or known autocorrelation and cross-correlation. The desired

signal and artifact are also assumed to be uncorrelated with each other.

The purpose of the Wiener filter is to produce a linear time invariant filter so that

the mean square error between the true desired signal s(n) and the estimated one ŝ(n)

is minimised [88] as stated in Equation 3.10. This filter is determined using the power

spectral densities (PSD) of the signal and the artifact as described in [88] and in Sec-

tion 5.3. These PSD are generally not available a priori and must be estimated from

measurements.

The necessity for calibration prior to usage, and its inability to be employed in

realtime applications, is a disadvantage of the Wiener filter with respect to the adaptive

filter. However it eliminates the requirement for additional hardware on the recording

device necessary with the adaptive filter. In 2005, Izzetoglu et al. [88] used both adaptive
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filtering and Wiener filtering individually to try to remove motion artifact from recorded

NIRS data. After calibration of the Wiener filter, the output was discovered to have

a better SNR than that achievable using the adaptive filter (average ∆SNR = 3.25dB

determined using epochs of clean data as the true signal) demonstrating the advantage

of the Wiener filter.

3.3 Bayes Filters

Bayesian filtering is a method of probabilistically estimating a given systems state from

available noisy observations. Bayes filters express the state at the current time sample

as x(n). The probability distribution over these random variables x(n) (known as belief ,

Bel(x(n))) is a representation of the uncertainty. Bayes filters operate by estimating

the beliefs over the state space using all the available information encompassed in the

observed data [58] using the assumption that the dynamic system is Markov. Markov

systems assume that the current state variable x(n) contains all the relevant information

about the system.

Bayes filters are implemented using a predictor-corrector methodology. The pre-

dictor uses a time update model to describe the relationship between the states from

one time sample to the next. The corrector step then utilises a measurement model to

describe the relationship between the observed data and the internal state.

This approach overcomes some of the limitations of adaptive filtering and Wiener

filtering. Like Wiener filtering, the Bayes filter technique does not require a reference

signal to be capable of removing the embedded artifact. However, unlike the Wiener

algorithm, Bayes filtering is capable of operating in real time due to its recursive nature.

The Bayes filter technique is not itself implemented as it is computationally in-

tractable. There are however, a number of different methods that implement approxi-

mations of the technique. Two of the most popular are detailed next.

3.3.1 Kalman Filtering

Kalman filtering was first described by Rudolph E. Kalman in 1960 [96]. The Kalman

filter essentially implements a mathematical predictor-corrector type estimator as stated

above. The filter uses feedback control to estimate a process: the filter first estimates

32



Review of Existing Artifact Removal Methods

the process state at a given time and then obtains feedback in the form of (noisy) mea-

surements [200]. This creates 2 layers of calculations; time update equations and mea-

surement update equations as detailed by Welch and Bishop in [200] and are discussed

in detail in Section 5.4.

After each time and measurement update pair have completed, the process is re-

peated with the previous a posteriori estimate used to predict the new a priori esti-

mate [200]. The filter models must be created prior to implementation of the algorithm.

These models can be determined using a number of different modeling methods, such

as autoregressive (AR) and moving average (MA) models. The requirement that the

algorithm be calibrated before use [87] could lead to problems in the personal health

care environment.

There are a number of approaches to achieving artifact removal using a Kalman

filter. Firstly, a model of both the desired signal and the contaminating artifact can be

produced. The recorded signal can be described as the summation of these two model

signals and thus the process and measurement models can be determined. The Kalman

filter can then be implemented to estimate the unknown system parameters by reducing

the variance of the error between the recorded output and the modeled output. With

the system parameters now known, artifact removal can be accomplished by setting the

parameters affiliated with the artifact in the measurement model to zero. This method

was implemented by both Seyedtabaii et al. [166] and Morbidi et al. [136] to remove

motion artifact and transcranial magnetic stimulation (TMS)-induced artifact from PPG

and EEG signals respectively, with promising results. A second method models just one

of the combined signals, either the desired true signal or the contaminating artifact.

Using this model the Kalman update equations are then produced. Again the Kalman

filter update equations are employed and the desired signal can be determined either as

the function of the state space equation or as the residual [87] [154]. Reference signals

can be used as an aid in the modeling of the signals [166] if available. The Kalman filter

has also been implemented as part of an adaptive filtering scheme in [19], in which the

Kalman filter update equations were employed to update the tap weights of the adaptive

filter.

The Kalman filter operates on the assumption that the initial uncertainty (belief) is

Gaussian and that the system dynamics are linear functions of the state [58]. However

as most systems are not strictly linear, the Kalman filter has also been extended to

the non-linear domain through the extended Kalman filter (EKF) [200]. This EKF is

capable of performing to the same degree by linearising around the current mean and

covariance. The main advantage of the Kalman filter is in the computational efficiency

of the algorithm due to its efficient use of matrix operations. However the filter can only
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function with unimodal distributions which can be a problem in biomedical applications

where many signals are multimodal.

In 2001, Rohalova et al. [158] presented results showing the advantage of the EKF in

the detection of artifacts in sleep EEG data. Their results show that for that application,

the non-linear Kalman filter has a sensitivity of almost twice that of the linear Kalman

filter. The EKF was also utilised by Sameni et al in 2005 [161] and 2007 [162] for

denoising simulated ECG signals. Here the filter was used to remove environmental and

muscle artifact from noisy ECG signals showing positive results with a ∆ SNR ranging

from 8.5dB to 0.8dB depending on the input SNR.

If the process and measurement models are available for the required system, the

Kalman filter stands as a very attractive alternative to the adaptive filter for two major

reasons. Firstly it produces a superior SNR and secondly it does not require an external

reference thus reducing the hardware costs of the system.

3.3.2 Particle Filtering

Particle filtering also implements the Bayes filter technique but unlike the Kalman filter,

does not require the model to be linear or the distribution to be unimodal. In order to

overcome the mathematical intractability of the Bayes method while incorporating multi-

modal distributions, a Monte Carlo sampling approach is implemented as described in

[51]. In order to be capable of expressing the state changes, N samples (particles) are

randomly selected from the probability density function (pdf). These particles have

weights proportional to the amplitude of the pdf at their sample point and the weights

have the property that their sum is equal to 1. Each particle is then passed through

the process model to determine the next state of that particle. As a result, the particle

filter becomes more computationally complex but more accurate the more samples you

choose, to the point where if N = ∞ then the system will give the optimal Bayesian

solution. The weights of the new particles are determined using an update equation

that incorporates the measurement model, and the estimated state is the mean of the

determined pdf. One issue with the particle filter is that over time a small number of

the particles become dominant, to the point where only a single particle will have a

non-zero weighting. To prevent this from occurring, a number of different solutions have

been described [31]. One of the most common techniques used to stop degeneracy is

called the sampling-importance-resampling (SIR) technique. Using this technique, if the

number of effective particles is less than a given threshold then the particles are sampled

with replacement from the current batch of particles proportional to the weights of the

particles. Once N particles have been sampled the weights of each particle are reset to
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1/N. These new particles are then passed through the process model to determine the

new states and the algorithm repeats.

Little work has been done to date on artifact removal using the particle filter in

physiological signals. However, artifact removal using the particle filter is similar to that

accomplished using the Kalman filter. Process and measurement models are required

prior to employing the algorithm. In 2010 Hongxia and Jifang [76] used the particle filter

to remove noise from simulated and actual motor bearing vibration signals. This was

accomplished by determining a non-linear process model for the system and having the

measurement model as the current state plus the added noise. Therefore by determining

the next state of the system, the algorithm is determining the best estimate of the signal

without the added artifact.

Kalman filters require sensors with high accuracy levels and fast update rates to

perform optimally [58]. They are one of the most efficient filtering techniques, that use

the Bayes’ method, in relation to computation time and memory. However, if accurate

sensors are not available, or if there is no detailed model of the process and measurements

then particle filtering becomes the more viable option. Particle filters do not require a

detailed model of the systems and thus are a very flexible tool with a relatively low

implementation overhead [58].

3.4 Blind Source Separation

Blind source separation (BSS) is based on a wide class of unsupervised learning algo-

rithms with the goal of estimating sources (which are not necessarily independent) and

parameters of a mixing system [37]
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where si, vi, xi ∈ R1×L are row vectors of L samples for the ith original underlying source

signal with specific statistical properties, the ith contaminating artifact signal and the

ith recorded signal. A is the unknown mixing matrix and N is an unknown matrix

representing noise and error values. For the remainder of this thesis, the combined

source and artifact signal matrix will be referred to as S.
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Source separation is performed using only the recorded sensor signals and some as-

sumptions on the underlying signals; therefore no additional reference signal is required.

Most BSS models can be expressed algebraically in terms of matrix factorisation: given

observation X perform the matrix factorisation, X = AS. This is the general form of

the additive artifact model in which Equation 3.1 is a special case, that is Equation 3.1

is obtained when P = M = Q and A = [IM ; IM ], where IM is the M ×M identity

matrix. As only the observations X are known, BSS techniques estimate an un-mixing

matrix to determine the original sources.

Ŝ = WX, (3.9)

where Ŝ is the estimation of the original sources (and artifact) and W is the un-mixing

matrix. Once the estimations of the original sources are known, the sources representing

the artifact signals can be removed.

There are number of different algorithms available to perform BSS, including inde-

pendent component analysis (ICA) and canonical correlation analysis (CCA) described

below. Each algorithm performs matrix factorisation with the aid of some particular

assumptions about the signals, such as independence for ICA. The fundamental ap-

proaches underpinning source separation algorithms, as described in Choi et al. [37],

are: (i) the use of higher order statistics (HOS) including skewness and kurtosis; (ii)

second order statistics (SOS) including delayed correlations and spectral diversity; (iii)

SOS with non-stationarity; and (iv) the use of the signal characteristics (time, frequency)

to separate the sources.

The choice of the best algorithm to employ depends on a priori knowledge of the

signal. Below, some of the most common BSS algorithms employed in research are

described.

3.4.1 Independent Component Analysis (ICA)

Independent component analysis (ICA) is a blind source separation technique [39] in

which recorded, multi-channel, signals are separated into their independent constituent

components or sources [83]. There are many assumptions that the sources and mixing

must adhere to for ICA to be allowed to be employed, including linear mixing, square

mixing and stationary mixing. These assumptions are here clarified further: [90].

1. Linear Mixing: This assumes that the recorded signals are mixed linearly (and

generally instantaneously). This assumption holds true for most physiological

36



Review of Existing Artifact Removal Methods

signals, however it has been reported that, for example, the propagation of the

EOG signal through the scalp creates a time delay in the signal viewed at separate

positions [100].

2. Noiseless Mixing: This assumption states that the underlying sources are noiseless

and remain so until mixed with the noise at the sensors. This assumption may

not be fully accurate, however it allows the ICA algorithm to isolate the desired

sources even if the sources are themselves contaminated with noise.

3. Square Mixing: For ICA it is assumed that the number of sources is equal to the

number of measurement sensors. This assumption is less then desirable in certain

cases in which there are a large number of sensors recording over a short period

of time. Often data reduction techniques are used prior to ICA to reduce this

problem [83], however this can cause additional problems in certain cases.

4. Stationary Mixing: The fourth assumption made is that the mixing of sources does

not change over time. This assumption holds strong for most recordings, however

can cause some problems when recording ECG where the act of breathing can

change the signal mixing.

5. Statistical Independence of Sources: The final and probably most important as-

sumption is in the independence of the sources. Other BSS techniques assume the

sources are un-correlated, this however does not guarantee independence. Inde-

pendence states that each source signal is generated by a random process which

is independent of the random processes generating the other sources. Data must

have independent components for ICA to be able to accurately separate.

One of the major limitations of ICA is the requirement for the independent sources

to be non-Gaussian. ICA can obtain an estimate ŝ of the sources s iff (if and only if)

the sources are non-Gaussian. If a single independent component is Gaussian it can be

estimated as the residual that is leftover after extracting all other independent compo-

nents, but ICA cannot account for more than one Gaussian component. Unfortunately

a component is generally not known to be Gaussian or non-Gaussian a priori . The data

is commonly whitened prior to the computation of the ICA. This can be achieved with

principle component analysis (PCA). By doing so, the correlation between the signals is

canceled and the dimensionality of the data can often be reduced.

There are a number of different algorithms used to determine the un-mixing matrix

W. Some of the most commonly employed include fast ICA [83], the Bell-Sejnowski

algorithm [12], extended ICA [110] and JADE [52]. Fast ICA separates the sources by
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maximising the magnitude of the kurtosis or by maximising the negentropy. The Bell-

Sejnowski algorithm uses negentropy to try and separate the sources. The extended

ICA algorithm is similar to that proposed by Bell and Sejnowski but allows for sources

that have a negative kurtosis. Finally the JADE algorithm maximises the kurtosis

of the probability density function through a joint diagonalization of the fourth order

cumulants.

When the recorded signals have been passed though the un-mixing matrix W the

outputs are deemed to be the original independent sources. The sources considered to

be artifacts can then be removed. The artifact signals can often be determined using

heuristics such as signal shape, frequency and amplitude [65]. The remaining sources

are thus the original desired signal sources and when put through the inverse of the

un-mixing matrix W−1 the resulting outputs are the artifact corrected signals [112] [95]

[34].

While propagation delays associated with physiological signals are generally small

they could potentially be sufficient to violate the ICA assumptions of instantaneous

mixing of the sources. An extension to the ICA algorithm, known as Convolutive ICA

(CICA), has been developed which takes into account both weighted and delayed contri-

butions of sources in the generation of the observations [192]. In doing so, the coefficients

of the unknown mixing matrix A are substituted by finite impulse response filters and

the product term of Equation 3.9 is replaced by the convolution operator ?. Milanesi et

al. [132] used a frequency domain approach with the CICA algorithm for the removal

of motion artifacts from ECG signals and illustratively showed it to provide improved

results compared to basic ICA. The algorithm has also been shown to improve the sep-

aration of EEG components [206] compared to the ICA algorithm.

ICA, as a non-parametric algorithm, has a major advantage over some other para-

metric algorithms, such as adaptive filtering, in that no a priori information is required

for the algorithm to function. Thus no reference signals are required, reducing the num-

ber of sensors allowing for a more portable device. However if a priori information is

used in the model the ICA algorithm becomes much more informative as a technique

[90].

There have been a number of papers detailing the differences between a number of

the different ICA algorithms described above. The studies however do not clearly nomi-

nate a single method as the optimal, instead it depends on the problem [52]. Zibulevsky

and Pearlmutter [216] ran tests on simulated data comparing JADE, Fast ICA and In-

fomax and found very little difference in the error rate detected, 8.8 %. 8.6 % and 7.1 %

respectively. In a separate study, Karvanen et al. [97] report that JADE slightly out
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performed Fast ICA, with the Infomax algorithm performing significantly worse. Again,

Ziehe et al [217] report no significant difference between the Fast ICA and JADE algo-

rithms when removing noise from a MEG signal. However, due to the computational

complexity of the JADE algorithm it is usually restricted to operate solely in low di-

mensional data sets with the result that the Fast ICA algorithm becomes the algorithm

of choice.

3.4.2 Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) [77] is another BSS method for separating a num-

ber of mixed or contaminated signals. The CCA method uses second order statistics

(SOS) to generate components derived from their uncorrelated nature. CCA solves the

BSS problem by forcing the sources to be maximally autocorrelated and mutually un-

correlated [46]. By looking for uncorrelated components, the approach uses a weaker

condition than statistical independence sought by the ICA algorithm. ICA does not

take temporal correlations into account, thus the samples can be arranged arbitrarily in

time and the method will return the same solution. CCA addresses this point by being

capable of finding uncorrelated components that, in addition, have maximum spatial

or temporal correlation within each component. Details on the algorithm used to find

the un-mixing matrix W using CCA can be found in [23] and are described in detail

in Section 6.4. Artifact removal can then be introduced by setting the columns of the

estimated source ŝ matrix which represent the artifacts in the recording to zero when

performing the reconstruction.

Borga and Knutsson [23] compared both CCA and Fast ICA for the problem of sep-

arating 5 different EEG channels. Both methods had qualitatively the same results, but

as CCA employs SOS, where ICA employs HOS, the CCA method is more computation-

ally efficient. The authors repeated this test with fMRI data in [22] and again showed

that the CCA algorithm performed better in terms of computational complexity by at

least an order of magnitude while having similar qualitative results thus lending itself

towards implementation in the p-health domain. It is also noted that the CCA method

always returns the same result when employed with a given data set, this however is not

true when using the ICA algorithm.

In 2006 Clercq et al. [46] used CCA to successfully remove muscle artifacts from

EEG signals. This method was also shown on simulated data to outperform an ICA-

based technique (JADE) where the overall Relative Root MSE (RRMSE) for CCA was on

average 2.48 times lower than that achieved using ICA. This result was again documented
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by Gao et al. [62] in 2010. The possible reason for CCA’s improved performance over

the ICA method is due to the form of the muscle activity. As ICA employs statistical

independence to separate the sources it is able to isolate those artifacts with stereotyped

scalp topographies into a single independent component. Muscle artifacts, however,

involve the movement of a group of muscles, which do not have a stereotyped topography

and thus ICA does not function correctly.

3.5 Single-Channel Decomposition Methods

Artifact removal using signal decomposition methods has become more widely used over

the last number of years. These decomposition methods are capable of operating on

single channel signals which increases their ability to be used in the home healthcare

domain where the number of recorded signals is usually far less than that recorded in

the hospital domain. Three such decomposition methods are described below.

3.5.1 Wavelet transform

The wavelet transform decomposes the noisy signal into approximations and details

using a specified mother wavelet (see Section 6.1). These approximations and details

can then be examined and the components corresponding to the artifact signals can be

removed. The wavelet transform has been used previously by a number of authors to

remove artifacts from biomedical signals [104] [160] [114]. Kumar et al. [104] used the

algorithm to remove ocular artifacts from recorded EEG signals where the “artifacts

were adequately attenuated, without removing significant and useful information” while

Rosso et al. [160] used the wavelet algorithm to remove muscle artifacts from EEG

signals recorded during epileptic activity again with positive results.

3.5.2 Empirical Mode Decomposition

The empirical mode decomposition (EMD) method was first described in 1998 [79] as

a technique for non-linear signal processing and is well suited to non-stationary signals.

The EMD algorithm decomposes the signal into components called intrinsic mode func-

tions (IMF) with well defined instantaneous frequencies. When decomposed, the IMF

can then be analysed and the components relating to artifacts can be removed, before

recombining the clean IMF to generate the cleaned signal.
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Wang et al. [197] used the EMD algorithm to remove motion artifact from recorded

PPG signals. Using the algorithm the SNR was observed to rise from 1.7 dB to 6.2 dB

and the peak detection rose from 39.3 % to 86.9 %. Tang et al. [184] also employed

the EMD algorithm to de-noise a simulated ECG signal contaminated with Gaussian

white noise. The algorithm was shown to produce a 6.24 dB increase in SNR, slightly

outperforming the DWT algorithm which was employed as a reference technique.

Liu et al. [117] employed the EMD algorithm to remove tissue artifact from respira-

tory signals. Simulations showed that the EMD algorithm was an effective alternative

to low-pass filters and ICA-based techniques, as it did not require a priori knowledge

for choosing the cutoff frequency as was the case for the LPF, and was computationally

more efficient than ICA.

3.5.3 Morphological Component Analysis (MCA)

Morphological component analysis (MCA) operates by decomposing the recorded signal

into components that have different morphological characteristics. Each component is

sparsely represented in an overcomplete dictionary which is comprised of a collection of

waveforms, called atoms, which can be used to describe the different underlying signals.

The overall signal is thus a linear combination of these individual atoms multiplied by

their coefficient vectors. The basis pursuit denoise model [210] is then used to find the

sparsest representation. Once this has been completed, the bases that represent the

artifact signal(s) can be removed.

In [210] the authors used the MCA algorithm to remove artifacts originating from

eye-brow raising, jaw clenching swallowing and eye blinks from a single channel EEG

recording. Three dictionaries were chosen to represent the EEG signal, namely the

Daubechies wavelet, the discrete cosine transform (DCT), and the Dirac basis. These

bases were chosen as they are capable of representing the different morphologies of the

recorded EEG and artifact [210]. Their results visually demonstrate that the MCA

algorithm reduces the artifacts in the simulated contaminated EEG signal while also

producing an improved correlation with the true signal (R = 0.5485) over that produced

using the stationary wavelet transform (R = 0.2925). The artifacts due to 60 Hz hum

are not removed using this method however, as this artifact is also represented using the

DCT basis. This can be removed by post processing using basic filtering. The system

can be improved by adding more applicable dictionaries to the already over-complete

dictionary. This method has also been applied in multi-channel systems by Yong et al.

[211] and was shown to provide a decrease in mean square error following the removal

of artifacts from EEG data.
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3.6 Extension of BSS Methods for Single Channel Mea-

surements

Many of the BSS algorithms described above are incapable of operating on single channel

measurements. However decomposition techniques generate multidimensional data from

the single channel measurements thus permitting the combined use of decomposition

methods with the BSS methods. Four algorithms are described below which make use

of the presented combination.

3.6.1 Single-Channel ICA (SC-ICA)

As stated in Section 3.4.1, the independent sources ŝ can only be separated from the

recorded mixed signals x if the inverted matrix W of the mixing matrix A can be

determined, i.e. ŝ = Wx. However basic ICA does not function if there are more

sources than sensors. In 2007 Davies and James [45] demonstrated that ICA can be

implemented on single channel signals, if the power spectral density of the mixed signals

is disjointed. If this is the case, the recorded time series is then fragmented into a

sequence of contiguous blocks. With these new vector observations, the problem of

single-channel ICA (SCICA) transforms into a multiple channel ICA (MICA) problem.

Using the original ICA method each signal can be decomposed and reconstructed in the

observation domain achieved through the implementation of the mixing and un-mixing

matrices as described by Davies and James [45]. This algorithm was shown to be able

to extract a number of spikes, seizure components and ocular artifacts from a recorded

single channel EEG signal.

3.6.2 Dynamical Embedding (DE)

Dynamical embedding (DE) creates a series of delay vectors of the recorded signal and

uses these vectors to create an embedded matrix, also known as a trajectory matrix,

as observed in [91]. This matrix needs to be further decomposed so as to access the

information required from the signal. There are a number of different methods used to

decompose these matrices, two of which will be described in more detail below.

James and Lowe [91] used fast ICA to deconstruct the embedding matrix, created

using single channel recordings from both EEG and magnetoencephalogram (MEG)

signals embedded with ocular and 50 Hz hum artifact, into to its informative components.

The Fast ICA algorithm was chosen due to its ease of implementation and speed of
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operation. The fast ICA algorithm performs as stated in Section 3.4.1 and deconstructs

the embedded matrix into m IC’s. The next step in the process is the selection of the

IC’s that are not a result of artifacts, which is not always a trivial task. With these IC’s

chosen, they are then projected back onto the measurement space in isolation, where

the embedding is reversed thus producing the resultant single channel signal free of the

detected artifacts.

Teixeira et al. [185] used an alternative method to extract the desired information

from the embedded matrix. In this work the authors used local singular spectrum analy-

sis (Local SSA) to extract high amplitude and low frequency artifacts from single channel

EEG recordings. Similar columns of the trajectory matrix are grouped together using

a clustering algorithm such as k -means creating a number of sub-trajectory matrices.

PCA is then used to determine each individual cluster’s eigenvalues and eigenvectors.

Denoising is achieved by projecting the data onto the eigenvectors corresponding to the

k largest eigenvalues, with the value of k (which can be different for each cluster) deter-

mined using the minimum description length (MDL) criterion [185]. After de-noising,

each sub-trajectory matrix is reconstructed as described in [185]. Each column of the

new sub-trajectory matrices is then assigned to a column of a new trajectory matrix.

The columns, to which they are assigned, are determined according to the columns of

the original trajectory matrix used to create the sub-trajectory matrix. Finally, the

one-dimensional signal is regenerated by averaging over the entries of the corresponding

descending diagonals of the reconstructed trajectory matrix. This technique, unlike con-

ventional ICA methods, does not require any user input in the selection of components

of the reconstruction thus allowing for fully automatic artifact removal. It is capable

of removing artifacts such as line noise, baseline drift and eye and head movements, all

common in the p-health measurement domain [185].

3.6.3 Wavelet ICA (WICA)

WICA utilises both the wavelet transform and ICA in the removal of artifacts from

the desired signal. The discrete wavelet transform (DWT) is unable to remove arti-

facts which overlap in the spectral domain, for example ECG artifact embedded on an

EMG signal. ICA also has limitations as described above in Section 3.4.1. One main

assumption and limitation is the requirement that the number of sources is equal to the

number of measurement sensors. The method of wavelet ICA (WICA), as described

in [9], combines the positive aspects of both independent algorithms to overcome some

of their individual shortcomings. WICA can be used for single channel recordings due

to the wavelets creating multi dimensional data from a single channel measurement as
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described by Lin and Zhang in 2005 [115]. The DWT is first applied to the single chan-

nel recording. The resulting wavelet resolutions are analysed and the resolutions that

contain artifacts components are manually selected. These artifact corrupted wavelet

resolutions are then used to create a new data set which is used as the input to the

chosen ICA algorithm. ICA is applied as specified in Section 3.4.1 and the components

determined to be artifacts are removed. Wavelet reconstruction is then performed using

both the unselected coefficients and the coefficients cleaned during the ICA step. This

produces the multichannel signals with the artifact removed. Mijović et al. [129] demon-

strated how this approach can be used to remove ECG artifacts from contaminated EMG

recordings.

The WICA algorithm has currently only been compared to the basic ICA algorithm

in [9] in which WICA showed a visual improvement in being able to remove the artifacts

in the case where there were not enough redundant recordings. In the p-health domain,

there is a greater likelihood that there will be a reduced number of recording sources

and thus the WICA algorithms advantages become more relevant.

3.6.4 Empirical Mode Decomposition ICA (EMD-ICA)

As stated in Section 3.5.2 the EMD algorithm generates a decomposition of the data

into IMF’s. These IMFs can then be used as inputs to an ICA algorithm and the mixing

and un-mixing matrices can be found [129]. The IC’s corresponding to the artifact can

be removed and the original signal minus the artifact can be obtained by adding all the

new derived IMFs.

Ensemble EMD-ICA was tested against WICA and SCICA as a method for the

removal of simulated artifacts from recorded physiological signals [129]. EEMD-ICA

was seen to perform slightly better than the WICA algorithm (Relative Root Mean

Square Error (RRMSE) ranging from 50.73 % to 64.79 % for EEMD-ICA and RRMSE

= 66.22 % for WICA) at removing the artifacts from EMG and EEG data, with both

outperforming the SCICA algorithm. As most biological signals are non-stationary and

non-linear, the EEMD-ICA algorithm adapts itself effectively to real world situations.

3.7 Discussion and Conclusion

The requirement for algorithms, capable of removing the undesired artifacts from recorded

physiological signals, has increased over the past number of decades due to the increased

clinical usage of the recorded signals. This chapter has reviewed the most commonly
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implemented artifact removal techniques in use today [181]. Although each technique

differs in the manner in which it performs the artifact removal, it is possible to classify

each technique into two distinct groups; those which directly remove the artifact signal

from the desired signal of interest (Single stage techniques) and those which decompose

the signal and artifact into individual sources but still require the use of additional tech-

niques to identify the artifact components therefore facilitating their removal (Two stage

techniques).

Single stage artifact removal techniques

Algorithms within the first group include adaptive filters, Wiener filter, Bayes filters,

MCA etc. These algorithms use a number of different techniques to reduce the power of

the artifact. For example the adaptive and Wiener filter use parametric and statistical

methods respectively to reduce the mean squared error between the output ŝ(n) and the

desired original signal s(n), i.e.

min
w
‖ s(n)− ŝ(n) ‖2, (3.10)

MCA on the other hand separates the artifact signal from the desired signal using the

assumption that the two signals have different morphological characteristics. As the

basis contributing to the artifact is known, it can be automatically removed from the re-

constructed signal post separation. Although the artifact removal process is different for

each technique, when each technique belonging to this single stage group has completed,

the artifact signal has been removed to the best ability of the particular technique and

therefore no further processing is required.

Two stage artifact removal techniques

The algorithms belonging to the second group use a different methodology to reduce the

effect of the artifact signal. These techniques do not reduce or remove the artifact signal

themselves but instead decompose the signals into components such that artifacts and

the desired signals are contained in different components. After separation these artifact

components can then be removed, with the combination of the residual components

generating the desired signal. Examples of algorithms within the second group include

ICA, CCA and EMD. When employing techniques belonging to this second group the

artifact components are not explicitly identified by the technique. Therefore further

analysis is required to determine which components are artifacts. These techniques are
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thus known as two stage techniques. This 2-stage requirement adds an extra level of

complexity to the techniques. Section 4.7 describes a number of the currently available

techniques for automatic artifact component identification which are used as the second

stage of the techniques.

Table 3.1 (viewable at the end of the chapter) provides an overview of all the tech-

niques described in this chapter and outlines under which of the two groups (single

stage or two stage) each technique falls. It can be seen from the table that the adaptive

filter is the sole technique analysed in this chapter which requires additional sensors

for a reference signal. However, the inclusion of a reference signal to other techniques

can also aid in their capability to accurately remove the artifact as is shown with the

Kalman filter in Section 5.4. Although the single stage techniques do not require the

use of additional techniques to remove the artifacts, the majority do require some input

from the user prior to employment, such as the development of signal models or filter

parameters. The majority of the two stage systems are incapable of operating on-line,

due to the requirement for signal decomposition. For example, when using the EEMD

algorithm, the signal is decomposed N times and so is incapable of operating in real

time. This induced delay can be minimal however if short epoch of data are analysed

(see Figure 6.17). However, with the use of automatic artifact selection techniques (Sec-

tion 4.7) many of these techniques are capable of running in quasi real time, where there

is a small delay between recordings and the output of the cleaned signals. Finally, only

MCA and dynamical embedding SSA have yet to be shown be capable of operating in

the non-linear domain.

Chapter 5 expands on some of the single stage techniques described in this chapter.

The formulation of the Wiener and Kalman filters, the MCA algorithm and the adaptive

filter are described and their efficacy is analysed using both fNIRS and EEG data. The

chapter also describes a novel use of accelerometers to develop a data tagging algorithm

and quality of signal (QOS) measurement which is capable of determining between

different forms of contaminating artifacts [180] [179]. By doing so, the appropriate

artifact removal techniques can be used for the particular artifact type. Chapter 6

continues by describing a number of the two stage methods (EEMD, wavelets, ICA and

CCA). This chapter also describes the novel combination of the EEMD and wavelet

algorithms with the CCA algorithm [182] allowing for more accurate removal of the

contaminating artifacts. The chapter concludes by providing a comparison of the artifact

removal techniques developed and analysed in the thesis.

Prior to the extended description and analysis of the techniques described in this

chapter, Chapter 4 describes a novel recording methodology [177] developed to allow an

accurate comparison of the efficacy of the different techniques. This methodology also
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allows for an evaluation of the automatic artifact component identification techniques

not previously available.
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Chapter 4

Methodology for Comparison of

Artifact Removal Techniques

Since the introduction of electrophysiological recording, the contamination of the signal

of interest by undesired artifacts has been a consistent hinderance. Researchers have

been competing to determine the best algorithms or techniques to remove these artifacts

for many decades and the search for the optimum artifact removal technique will continue

for many more. A number of signal processing algorithms have been previously employed

to remove motion artifacts from physiological signals [181]. One dilemma, faced by all

researchers, when trying to remove motion artifact from the desired signal, is the lack of

knowledge of the true form of the original (noise-free) signal. Without knowledge of this

signal it is not possible to accurately determine the efficacy of a given artifact removal

technique. It also proves to be difficult to perform a valid comparison of the different

possible methods.

Currently, the efficacy of a particular artifact removal technique is most commonly

calculated using either simulated data or artifact contaminated real world data. Simu-

lated data generally consists of two components; real recorded physiological data, such

as ECG or EEG signals, and an artifact segment which is either manually generated

or recorded separately (for example 50/60 Hz hum [215] or EMG signals [46]). The

complete simulated data signal can then be created by combining the two components

in some known manner (i.e. linearly [46]). By creating an artifact contaminated signal

using this simulation method, the true desired signal is known and thus the artifact

removal techniques can be tested to determine how proficiently they each remove the

artifact from the contaminated signal. However, the method of combining the true signal

and the artifact signal is usually overly simplistic (i.e. purely linear) and thus the results

are not directly comparable to real world data. The second method of data acquisition
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uses real artifact contaminated recorded signals (e.g. fNIRS signals contaminated with

motion artifact [87]). Although, using this method, the combination of the artifact and

the desired signal is real, the researchers are incapable of acquiring any accurate knowl-

edge of the true form of the underlying clean signal. The efficacy of the artifact removal

techniques, when using this data type, is therefore most often quantified by a reduction

of a particular evaluating metric, such as the SNR of the signal. Unfortunately, using

this data type, researchers cannot accurately determine the effect that the artifact re-

moval technique has on the true signal and thus the results may not reflect the true

performance of the system.

This chapter details a novel recording methodology for physiological signals which

facilitates a more accurate comparison of artifact processing methods alleviating some

of the problems highlighted above. This novel methodology permits the recording of

two separate but highly correlated channels [176] [177], allowing for the recording of a

noise-contaminated and a noise-free signal concurrently. The noise-free signal, labeled

the “ground truth” signal, can then be used by researchers for a number of different

applications. Firstly, it can be used to test the efficacy of individual motion artifact

removal techniques employed on the noise-contaminated data as the “true” underlying

signal is now known. This can be seen as a combination of the two techniques currently

used to analyse artifact contaminated data, in that the contamination of the artifact onto

the signal is not simulated but the underlying signal is known. Therefore, the method-

ology also allows for an accurate comparison between a multitude of artifact removal

methods, which was not previously attainable. Secondly, the new availability of this

“ground truth” signal also permits methodical testing of the various automatic artifact

component selection techniques required for the two stage artifact removal algorithms,

as described in Chapter 3. Using the “ground truth” signal, the best case results can be

determined for each of the artifact removal techniques as described in Section 4.7 and

then the automatic component selection algorithms can be compared to this best case.

The artifacts analysed in this thesis are focused on those due to movement of the

subject or recording optodes/electrodes as these are often the most detrimental to the

signals. The described methodology therefore also incorporates accelerometer record-

ings, used to determine the time and magnitude of the induced motion. The information

from these accelerometers can then be used for illustration purposes as well as a refer-

ence signal, as required in certain artifact removal techniques such as the adaptive filter

technique, described in Section 5.6.

The remainder of the chapter describes the steps performed to record the required

signals. The measurement systems used to record the analysed physiological signals are

described in Section 4.1 followed by the novel experimental setup and protocol used to
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record the required signals (Section 4.2). The chapter also describes the post-processing

performed on all the recorded signals to ensure that they each adhere to the desired

form.

In addition to the novel recording methodology, the chapter also discusses a number

of different automatic artifact component selection techniques required by the two stage

techniques reviewed in Chapter 3, and from these the best performing artifact component

selection techniques for the EEG and fNIRS data are determined. Finally the techniques

described in this thesis are also tested on synthetic data and the generation of this data

is portrayed in Section 4.8.

4.1 Recording Systems

To detail and verify the new methodology proposed in this chapter, recordings using

both EEG and fNIRS were acquired. In the sections below the two systems used to

record the different data modalities are described.

4.1.1 fNIRS

A TechEn continuous-wave (CW6) system (TechEn Inc., USA) was used to record the

change in both oxygenated and deoxygenated haemoglobin in the blood cells of the brain

as described in Section 2.2.2. This system is capable of measuring up to 32 individual

channels simultaneously. The input light intensity recorded at each individual detector is

passed by optical fibre to the receiver module before being transported to the computer

through the control module. A 16-bit successive approximation register (SAR) ADC

was used to convert the analog data to digital and the sampling rate was set to 25 Hz.

The system uses a series of frequency encoded lasers as sources and an array of

avalanche photo-diodes (APD’s) as detectors. APD’s are highly sensitive electronic

devices that exploit the photoelectric effect to convert light to electricity. Each source

optode is connected to two laser sources of differing wavelengths through a bifurcated

fibre cable. The CW6 system uses source wavelengths of 690 nm and 830 nm for reasons

described in Section 2.2.2. The output at each of the 32 individual source optodes is a

modulation of the two chosen wavelengths at a different frequency (between 6,400 Hz

and 12,600 Hz at 200 Hz spacing and a duty cycle of 50 %). The system is therefore

capable of determining which source signal is being recorded at the detector site and

allows each individual channel to be resolved independently. The typical power settings

of the lasers is 12 mW for the 690 nm source and 6 mW for the 830 nm source, both
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below the American National Standards Institute (ANSI) standard. The power required

for the 690 nm source is greater than that for the 830 nm source as the lower frequency

requires more power to obtain the same penetration into the tissue.

4.1.2 EEG

A BioSemi ActiveTwo biopotential measurement system (BioSemi Inc., Netherlands)

was used to record the electrical impulses in the brain as described in Section 2.2.1.

The system is capable of recording up to 256 channels of EEG concurrently with a user

defined sampling rate of 2, 4, 8 or 16 kHz per channel. The recorded channels are passed

through an analog-to-digital converter (ADC) before being multiplexed into a serial data

stream. This data can then be passed, through an optical cable to a USB2.0 receiver

before finally being connected to the PC for post processing.

The raw EEG signals are recorded using active electrodes, thus offering a solution

to some of the environmental artifacts described in Section 2.3.1 such as high electrode

impedance and cable shielding. The silver-silver chloride (Ag-AgCl) sintered electrodes

have an integrated amplifier stage which allows for an output impedance lower than

1 Ohm and therefore measurements with extremely low noise levels are possible. Further,

due to the use of the active electrodes, common procedures such as skin abrasion are

no longer required. A highly conductive electrolyte gel (see Figure 2.9) should be used

for all measurements as it ensures that there is a satisfactory connection between the

electrode and the scalp.

The BioSemi ActiveTwo system makes use of both the common mode sense (CMS)

and the driven right leg (DRL) electrodes. These electrodes are used to drive the average

potential of the patient as close as possible to the ADC reference potential. This ensures

that the common mode voltage (the average potential of the subject) is within the normal

range of the ADC. The CMS is usually placed around the top of the head (approx. Cz

on the 10-20 system - see Figure 4.1) however the exact position is not overly critical.

The DRL electrode can be connected to anywhere on the body away from the location

of recording.

4.1.3 Accelerometer Data

The acceleration data was collected in conjunction with the EEG and fNIRS data to

allow for accurate visualisation and tagging (see Section 5.1) of the time, magnitude

and direction of the induced motion as well as acting as a reference for some artifact
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Figure 4.1: The International 10-20 electrode placement.

removal, techniques such as the adaptive filter. The accelerometer employed was the

Analog Devices ADXL327 (Analog Devices Inc., USA). This is a low-power, complete

tri-axial accelerometer with signal conditioned voltage outputs. It has a minimum full

scale range of ±2 g and is capable of recording both the static acceleration due to

gravity and the dynamic acceleration resulting from motion. The full specifications of

the accelerometer are available in Appendix B.

The outputs of the accelerometers are passed to a fabricated circuit to perform some

basic processing steps before progressing to the PC. The first stage of the circuit consists

of an input buffer. This buffer is required to stop any loading effects on the accelerometer

outputs due to their low output current and high impedance. The second stage of the

circuitry encompassed a summing amplifier to remove the DC offset. The DC offset

has to be removed prior to the amplification of the signal to ensure the signal does not

become saturated. As the frequency of the accelerometer signal can be quite low, a very

high order filter would be required to remove the DC offset without affecting the desired

frequencies. Therefore instead of employing a filter, a simple summing amplifier was

used to remove the offset from the signal. The third stage of the circuitry applied a gain

to the system using an instrumentation amplifier (INA114) and the gain was set to 35.

Finally the output signal was passed through a low pass filter circuit for anti-aliasing
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purposes. A schematic of the circuitry described above for the three channels (i.e. x,y,z

axis) can be found in Appendix B.

The output of the accelerometer circuitry is then connected to a PC-based data

acquisition system (Humusoft S.R.O., Czech Republic). The data can then be read into

the PC using the real-time Simulink toolbox in MATLAB (2008b, The Mathworks Inc.,

Natwick, MA) at a sampling frequency of 200 Hz, where it is stored for later processing

as described in Section 4.3.

4.2 Recording Methodology

This section describes the novel experimental setup of the equipment used to record the

fNIRS and EEG data. It also details the protocol adhered to during recording to ensure

that the measured data encapsulated the ideology of the methodology. Recording of the

two modalities (EEG and fNIRS) was performed independently.

4.2.1 fNIRS Experimental Setup

The fNIRS optodes are held in position using a housing called a probe. These probes can

be designed to encase any number of source and detector optodes. An example probe,

used to house a single source and detector, is shown in Figure 4.2. The plastic housing,

comprised of low-density polythene, allows for a rigid and secure connection between the

fNIRS optode and the head; however it is also flexible and therefore capable of reforming

to the curvature of the head. This plastic housing is backed by a polyurethane foam

which grants a more comfortable fit for the user. The probe can then be attached to

the head in the required position using the attached velcro straps.

The purpose of the methodology is to record two highly correlated signals con-

currently; one noise-contaminated and the second noise-free. The aim is to acquire a

“ground truth” signal for the artifact corrupted signal, thus allowing for accurate testing

of the various artifact removal techniques. To be capable of fulfilling this aim there is a

necessity for two separate recording optodes, so the artifact induced to one will have no

effect on the second. The first probe encompasses both a source and detector optode,

as can be seen on the lower strap of Figure 4.3. The spacing between the two optodes is

set rigidly to 30 mm conforming with common practice. The second detector is housed

on a separate probe which is not coupled to the first, save the coupling through the

head itself. This second detector is strategically positioned above the first, as shown in
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(a) (b)

Figure 4.2: An example probe used to house the fNIRS source and detector optodes.
(a) presents the front of the probe while (b) shows the back, which is in contact with

the subjects scalp.

Figure 4.3, so as to preserve the 30 mm inter-optode spacing between it and the source

optode on the lower probe. Moreover, the spacing between the detectors is kept very

small (approx. 20 mm) so that the overall monitored volume within the head highly

overlaps between these two channels. The distance between the centroid points of each

source-detector pair is approximately 10 mm. Section 4.6 details the importance of

having this distance between centroids as small as possible.

fNIRS Source

Acc 2

Acc 1

fNIRS 
Detectors

Ch 1

Ch 2
Velcro
Strap

Figure 4.3: Positioning of the fNIRS optodes and the accelerometers.

As stated previously, the two accelerometers utilised during the experiment are em-

ployed to determine a measure of the differential acceleration of the detector optodes.

To accomplish this, one accelerometer is placed securely onto each individual detector

as shown in Figure 4.3. Any differential acceleration between the two accelerometer

outputs can now be used to determine the motion induced on the detectors. Care is

taken to ensure the orientation of each individual accelerometer is kept consistent with
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respect to the other. When the system is connected to the subject, the leads of the

fNIRS system and the accelerometers are secured to ensure that there is no undesired

movement of the recording optodes. It should be again noted that the two detectors

and accelerometers are not directly coupled (i.e. not on the same probe) and therefore

the movement of one will have little or no effect on the position of the second.

4.2.2 EEG Experimental Setup

The setup of the EEG experiment is similar to that of the fNIRS experiment. The

EEG (Ag-AgCl) active electrodes, used to record the two separate channels, are secured

to the scalp of the subject using a 256 array electrode cap (Electro-cap International,

Inc., USA) shown in Figure 4.4. The cap covers the cranium and is held in place using

the available chin strap. The cap is manufactured using a fabric material allowing for

the movement of a single electrode without altering the position of any of the adjacent

electrodes. The spacing of the recording electrodes is fixed by the cap at 20 mm allowing

for the two channels to be recorded in close proximity as required by the methodology.

The close proximity ensurers that the recorded signals are as correlated as possible as

described in Section 4.6.

Figure 4.4: The 256 array electrode cap used to house the EEG electrodes. (Electro-
cap International, Inc., USA)
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Electrolyte gel is placed below each electrode prior to recording to ensure that the

electrode maintains the required coupling with the scalp as outlined in Section 2.2.1.

Similar to the fNIRS experiment, the two accelerometers are attached to the individual

recording electrodes, again ensuring that the orientation of each individual accelerom-

eter is kept consistent with respect to the other. The accelerometers will record the

acceleration of each electrode and therefore any differential acceleration between them.

4.2.3 fNIRS Experimental Protocol

fNIRS measurements were obtained from ten healthy subjects in order to demonstrate

the validity of the proposed methodology. The cohort comprised of 4 males and 6 females

(mean age: 29 years, standard deviation: 5.62 years). Each recording resulted in two

useable trials for each channel due to recording at the two wavelengths (690 nm and

830 nm). Therefore in total, 4 signals were recorded simultaneously for each subject;

690 nm and 830 nm light intensities for both Channel 1 and Channel 2. Recording took

place in a contained room with no natural light to reduce the possibility of contaminating

artifacts due to light contamination as described in Section 2.3.2.

The 3 fNIRS optodes (1 source and 2 detectors) were positioned on the left pre-frontal

cortex of each subject, as illustrated in Figure 4.3. This particular optode positioning

was chosen to reduce the possibility of contamination of the signal due to interference

by the subjects hair. If positioned elsewhere on the head, the movement of the optodes

could allow hair to fill the space between the optode and the scalp and thus disrupt

the baseline signal. Further, as the methodology proposed is designed to allow for

the recording of two highly correlated signals, one with and the second without motion

artifact contamination, the underlying cortical activity was not of significance. Therefore

the positioning of the recording optodes was not of great concern and was chosen so as

to invoke the least number of complicating issues. In addition, the subjects were not

required to perform any specific activity for the duration of the experiment as again the

cortical activity itself was not of importance.

Due to the setup of the new methodology, the two channels were recorded in close

proximity. As the fNIRS optode measures from the volumetric region in between the

light source and detector [8], by using the same light source and two separate detectors

in close proximity, the optode measurement volumes overlap and the measured cortical

activities are expected to be highly correlated for the two optodes. Each individual trial

of the experimental session lasted a total of 9 minutes. At regular 2 minute intervals the

experimenter induced a positional disturbance to the detector attached to Accelerome-

ter 2 for a random duration of between 10 and 25 seconds. This source detector pairing
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was labeled Channel 2 (Figure 4.3). This slight disturbance, which was performed man-

ually by pulling on the optode cable, induced motion artifact on Channel 2. However,

as the detector optode, connected to Accelerometer 1, and the source optode were not

disturbed, Channel 1 remained free of contamination throughout the duration of the

experiment. This result can be observed in the optical density plots in Figure 4.5. A

spectrogram of the data in Figure 4.5 is shown in Figure 4.6. The artifact signal is

visible in Channel 2 at the time epochs highlighted in Figure 4.5, and it is also possible

to see that the artifact resides in the frequency band of the desired fNIRS signal making

it impossible to remove using simple filtering techniques alone.

Figure 4.5: An example output from an fNIRS recording. The plot shows the optical
density values for the 830 nm signal. The shaded sections highlight the regions contain-
ing motion artifact as determined using the tagging algorithm described in Section 5.1.
Average correlation over clean epochs for trial shown: 0.87. Average correlation over

movement epochs for trial shown: 0.31.

The sections of the signal which are not shaded in Figure 4.5 are epochs of motion

free data where Channel 2 can be observed to follow the output of Channel 1 closely. The

epochs of corrupted data (shown in highlighted sections) were determined using a simple

tagging algorithm [179] using the available data outputted from the accelerometers (see

Section 5.1).

Tamura et al . [183] describes the use of NIRS trajectory plots to better understand

the different brain activities engaged at given points in time. The NIRS trajectory uses
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Figure 4.6: Spectrogram of the two channels of fNIRS data from Figure 4.5.

both the oxygenated (HbO) and the de-oxygenated (Hb) haemoglobin to create a plot of

their variation over time. These plots can then be used to easily demonstrate the phase

of the signals. If the signals are out of phase (i.e. HbO = -Hb) then the trajectory will

have an average slope of -1. Due to the setup of the experiment protocol, there will be a

low level of blood flow into the area being monitored. In these situations the trajectory

plot often reflects the diagram typical to oxygen consumption and deoxy Hb production,

which have round cocoon like shapes. An example of this can be seen in Figure 4.7(a)

where the trajectory plot is displayed for Channel 1 for the trial shown in Figure 4.5.

Figure 4.7(b) shows the trajectory plot for the artifact contaminated data. It can be

clearly seen that when the artifact signal is present, the HbO and Hb signals become

highly correlated and thus the trajectory plot has a positive slope of approximately 1.

These plots can therefore be very useful in displaying the success of the artifact removal

techniques employed.

Before each individual recorded trial (combination of “ground truth” and noisy sig-

nal shown in Figure 4.5) was selected for use in analysing the different algorithms, the

artifact contaminated signal was analysed against its corresponding “ground truth” sig-

nal. Signals whose clean epochs had an average correlation lower than 0.65 (calculated

using the Pearson product-moment correlation coefficient and decided upon empirically)

with the corresponding epoch of the “ground truth” signal were discarded. This ensured
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Figure 4.7: NIRS trajectory plot for the data shown in Figure 4.5. (a) “Ground
Truth” signal recorded from Channel 1. (b) Artifact contaminated signal recorded

from Channel 2.

that only the most correlated signal pairs were employed to analyse the artifact removal

techniques. Low correlation values during the clean epochs could be due to many factors

including poor connection between the optode and the skin.

Following the removal of the low correlated trials there remained 16 fNIRS trials for

analysis. These 16 trials were calculated to have an average correlation (r) of 0.77 (std =

0.2) during motion free epochs over all trials. However the average correlation over the

full signal for all trials is significantly lower (r = 0.58, std = 0.16) due to the intermittent

presence of motion artifacts. Over all trials it has been calculated that motion artifacts

are deemed to be present in 19.75 % of the data.

4.2.4 EEG Experimental Protocol

EEG recordings were obtained, over 4 sessions, from 6 healthy subjects (mean age:

27 years, standard deviation: 4.29 years) resulting in 24 useable trials. The cohort con-

sisted of 3 males and 3 females. Two channels of EEG were simultaneously recorded from

the frontal cortex from positions FPz and FP1h (using the 10-5 system as described in

[145]), labeled Channel 1 and Channel 2 respectively. The DRL (Driven Right Leg) and
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CMS (Common Mode Source) electrodes were placed at positions P2 and P1 respectively

using the 10-20 system.

Similar to the fNIRS recording, an understanding of the underlying EEG signals was

not important in this study and thus subjects were not required to perform any cognitive

activity during recording. During experimentation each subject was instructed to keep

their eyes closed and to maintain a stationary head position throughout the experiment,

therefore limiting the number of artifacts originating from sources such as eye blinks,

saccades and head motion (Section 2.3.3). The sources of artifact arising from eye

movement were of no consequence when recording the fNIRS data due to the optical

nature of the recording, however, when recording the EEG signals these artifacts could

contaminate both signals (i.e. “ground truth” and artifact contaminated) in a distinct

manner and thus reduce the effectiveness of the methodology. Again, each trial lasted

a total of 9 minutes with motion induced to Channel 2’s electrode at regular 2 minute

intervals. This motion artifact was induced by mechanically disturbing the electrode

by pulling on the connecting lead. An example output from the two channels can be

observed in Figure 4.8 with the corresponding spectrogram provided in Figure 4.9.

Figure 4.8: An example output from an EEG recording. The shaded sections highlight
the regions containing motion artifact as determined using the accelerometer data.
Average correlation over clean epochs for trial shown: 0.83. Average correlation over

movement epochs for trial shown: 0.09.
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Figure 4.9: Spectrogram of the two channels of EEG data from Figure 4.8.

During epochs of no motion the two recording channels were calculated to have

an average correlation coefficient (r) of 0.83 (std = 0.2) over all trials but this value

again drops (r = 0.40, std = 0.19) when analysing the full signal due to the presence of

artifacts. The artifact components are present in 15.74 % of the total recorded data.

4.3 Postprocessing of Recorded data

Following the recording of the EEG, fNIRS and accelerometer data a number of post

processing techniques were performed to ensure that each trial was consistent (in terms

of length, frequency spectrum etc) prior to further analysis to allow for accurate com-

parisons. The following section will describe the multiple processing steps undertaken

on each modality for each of the individual recorded trials.

4.3.1 Triggers

When recording signals of different modalities using different recording equipment it is

very important to be able to determine a consistent start and end point for the recorded

data. This ensures that when analysing the data for a particular event in the EEG

data, for example, the corresponding event recorded in the accelerometer data can be

accurately selected.

A program (compiled using Visual C#) was used to generate a trigger signal which

was then capable of signifying the start and end of the experiment. The program outputs
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a pre-determined voltage, on the parallel port of the PC, depending on the current state

of the trigger. This trigger signal is then available to each individual modalities recording

equipment. Before beginning and following the conclusion of the experiment, a voltage

of 0 Volts (V) is outputted by the trigger. When the trigger signal is activated by the

program, signaling the commencement of the experiment, the output voltage increases

to 5 V.

The output signal from the parallel port can be read in simultaneously by the em-

ployed recording equipment (i.e. the EEG and accelerometer recording devices or the

fNIRS and accelerometer recording devices). In doing so, the start and end times of each

of the recordings can be aligned accurately in the time domain after post processing the

data as described below.

4.3.2 EEG Post Processing

In comparison to the other recordings employed, the EEG data did not require a great

deal of post processing prior to being employed in the analysis. The first step undertaken

was to filter the EEG data so as to analyse only the frequency range of interest. It has

been previously documented that the primary frequencies of interest recorded by the

EEG lie below ∼ 35 Hz, which are often grouped into pre-defined frequency bands

(Delta: up to 4 Hz, Theta: 4-8 Hz, Alpha: 8-13 Hz, Beta: 13-35 Hz). The EEG data

was therefore filtered using a 2nd order butterworth bandpass filter with a low frequency

cut-off of 0.5 Hz and a high frequency cut-off of 35 Hz. The 0.5 Hz cut-off frequency

removes any DC drift affecting the underlying signal while the 35 Hz cut-off removes all

un-desired high frequency components.

Following the filtering of the data, it is truncated to correspond to the information

in the trigger signal. The Bio-Semi recording system has an available trigger input

port and so a trigger signal is recorded at the same sampling frequency as the EEG.

Only the EEG data which is recorded when the trigger is high is retained. Following the

truncation of the data, it was next down-sampled to reduce the sampling frequency from

2048 Hz to 80 Hz to reduce data size. This new sampling frequency was chosen in order

to reduce the overall number of samples in the recording while still remaining above the

Nyquist frequency (twice the highest frequency component in the signal), ensuring that

all required frequency components could still be reconstructed. Figure 4.10 shows an

example of all the post processing steps undertaken for one recording of a contaminated

EEG channel.
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Figure 4.10: Post processing steps undertaken with each trial of the EEG data.

4.3.3 fNIRS Post Processing

When analysing the fNIRS data in this thesis, two separate representations of the data

were used. The first representation was the change in optical density at the two wave-

lengths, namely ∆OD690 and ∆OD830. The second form presents the change in concen-

tration levels of the oxygenated and deoxygenated haemoglobin in the blood, namely

∆CHbO and ∆CHb. The former representation was employed in analysing the artifact

removal techniques while the latter was primarily used for illustration.

The fNIRS TechEn CW6 system records the raw intensity of the light received from

the source (I) that has passed through the scalp at a sampling rate of 25 Hz. This raw

data is first bandpass filtered using a 4th order butterworth filter with a low frequency

cut-off of 0.01 Hz and a high frequency cut-off of 0.4 Hz. These frequencies were chosen

to remove any DC drift present in the signal and also any higher frequency fluctuations

due to heart-beat and respiration. Following the filtering of the data, the amended

signals were next truncated to the length of the trigger signals, processed in the same

manner as that performed for the EEG data. This again insured that the analysed data

would be aligned correctly in time with the accompanying accelerometer data. The

optical density values (also known as absorption (A)) for the 690 nm and the 830 nm

data could then be calculated using
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∆OD690,830 = −log10(I690,830) (4.1)

A =

[
∆OD690

∆OD830

]
.

In order to perform the next step and to calculate the change in concentration levels

of ∆CHbO and ∆CHb the modified Beer Lambert law (MBLL) described in Equation 2.2

must be implemented. A rearranged form of this equation is shown below.

C =
1

α

(
A

BL

)
(4.2)

C ≡
[

∆CHb

∆CHbO

]
.

The parameter (L), known as the path length, is calculated as the distance between the

source and detector for that particular channel. When setting up the recording, using

the TechEn CW6 system, the source and detector optode positions are defined and this

information is outputted by the system in conjunction with the transfer of the recorded

data. The path length can therefore be easily calculated using the simple Euclidean

distance formula. The differential path length (B) is a pre-selected number used to

describe the adjustment of the path length due to the curvature of the light through the

scalp, set to 6 for fNIRS recordings. Finally, the extinction coefficients (α) are a set of

coefficients that have been pre calculated to describe the absorption of light at specific

wavelengths for specific media [41].

Once the change in ∆CHbO and ∆CHb have been calculated the corresponding overall

change in blood volume (BV ) can be easily determined as:

BV = ∆CHbO + ∆CHb. (4.3)

An example of the post processing steps taken for a single trial of the fNIRS data is

provided in Figure 4.11.
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Figure 4.11: Post processing steps undertaken with each trial of the fNIRS data.

4.3.4 Accelerometer Post Processing

The recorded accelerometer data is primarily used for data tagging, which is used for

illustration purposes (to show where the motion artifact was induced into the signal) as

can be seen in Figure 4.5 and Figure 4.8. However, the data can also be employed as

a reference signal for the reference aided artifact removal techniques (e.g. an adaptive

filter). The additional processing steps taken to generate this reference signal are not

described here but instead are described in the section relating to the use of the adaptive

filter (Section 5.6).

The raw accelerometer data was first bandpass filtered using a 4th order butterworth

filter with cut-off frequencies of 0.05 Hz and 2 Hz. The low-pass frequency was chosen to

remove the DC offset of the signal and the high-pass cut-off frequency was chosen as it

removed the undesired high frequency components while still encapsulating the frequency

content of the movement of the optodes/elecrodes. The filtered data was next truncated

using the available trigger information which was read in using the Humusoft card. The

accelerometer data was then re-sampled to the sampling rate of the methodology being

used (80 Hz for EEG or 25 Hz for fNIRS).

As the interest surrounds the differential acceleration of the optodes/electrodes, i.e.

how one optode/electrode moves in relation to the other and therefore with respect to the
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underlying skin, the differential acceleration of the accelerometers must be calculated.

To begin, the differential acceleration (DA) over each individual axis is calculated by

simply calculating the difference between the two filtered outputs and then the overall

differential acceleration was calculated as follows:

DAx,y,z = Acc1x,y,z −Acc2x,y,z (4.4)

DA = DAx + DAy + DAz. (4.5)

As the output signals from the accelerometer have a very small amplitude, the baseline

noise can often cause problems, therefore to combat this the low amplitude noise is

removed from the signal by setting all values below an empirically calculated threshold

to zero. Figure 4.12 displays the steps taken in the post processing of the accelerometer

data.

Figure 4.12: Post processing steps undertaken with each trial of the accelerometer
data. The accelerometer data shown here was recorded from the same trial as the
fNIRS data in Figure 4.11. Plots (a-c) show the outputs for the Z-axis only, whereas

plots (d,e) represent the overall differential acceleration (i.e. Equation 4.4)
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4.4 Split of Training and Testing Data

This section provides a brief overview as to the initialisation of the training and test

datasets used throughout the thesis. When analysing each of the individual techniques,

a separate training and test dataset is imperative to ensure that over-fitting of the data

does not occur. This split allows the various analysed techniques to be trained on a small

portion of the available data whilst the results are presented from a separate independent

test dataset.

For both the fNIRS and EEG data, two recorded trials were randomly selected to

represent the training data. This resulted in 14 fNIRS trials and 22 EEG trials to be

available to be used as the test dataset. The training data is used in a different manner

for each technique. For example, each of the single stage artifact removal techniques

described in Chapter 5 require the use of the training data to initialise some model

parameters a priori, whilst the two stage techniques described in Chapter 6 only require

the training data to determine the optimum threshold value for the automatic artifact

component selection techniques. In each of the techniques analysed in this thesis, a brief

description will be provided as to the use of the training data to initialise the required

parameters.

4.5 Efficacy Metrics

In order to fairly compare any artifact removal techniques employed on data recorded

using the recording methodology described in this chapter, the following two efficacy

metrics will be employed. The signal-to-noise (SNR) of a signal is a commonly employed

metric which is used to specify the power of the signal with respect to the power of the

contaminating noise. A SNR value greater than 0 dB indicates that the power of the

signal is greater than the power of the noise. Using the SNR metric, the improvement in

a signals SNR post artifact removal can be calculated using a metric known as ∆ SNR

[87]. First, SNR is commonly defined as:

SNR = 10 log10

(
Psignal
Pnoise

)
. (4.6)

However, a signals power is equivalent to its variance when the signal has zero mean

(i.e. σ2x = Px − µ2x). Therefore the signal variance can be used to calculate the ∆ SNR

metric (the difference between the SNR after artifact removal and the SNR before) when

the signals are known to have zero mean using the following formula [87]:

68



Methodology for Comparison of Artifact Removal Techniques

∆SNR = 10 log10

(
σ2x

σ2eafter

)
− 10 log10

(
σ2x

σ2ebefore

)
(4.7)

where σ2x is the variance of the “ground truth” signal and σ2ebefore and σ2eafter are the

variances of the error signal before and after employing the artifact removal technique.

The error signal is determined as the difference between the noisy signal and the “ground

truth” recording, assuming that the motion artifact is additive.

In order to describe the signal improvement more comprehensively a second met-

ric, based on the correlation function, was also employed. This metric, namely the

percentage reduction in artifact λ, is used to describe how the correlation between the

contaminated signal and the “ground truth” signal changed following the use of the

artifact removal techniques, and is defined as:

λ = 100

(
1− Rclean −Rafter

Rclean −Rbefore

)
. (4.8)

Here Rbefore is the correlation between the full “ground truth” (clean) signal and the

artifact contaminated signal, whereas Rafter is the correlation of the full “ground truth”

signal with the contaminated signal following processing by an artifact removal algo-

rithm. Rclean is calculated as the correlation between the “ground truth” and noisy

signals but only over the epochs of known clean data (i.e. the non-shaded areas of

Figure 4.5 and 4.8) and is an estimate of the maximum achievable correlation between

the two signals for the experimental setup considered. As such, the denominator of

Equation 4.8 is the improvement in correlation possible if complete artifact removal

is achieved while the numerator is the actual correlation improvement obtained for a

given artifact removal technique. A high λ therefore equates to good efficacy in artifact

removal.

4.6 Importance of electrode/optode distance

In Section 4.2 the experimental setup for recording both the EEG and fNIRS data was

described. During the description of the steps, it was stated that the electrodes/optodes

should be positioned as close as possible to each other to ensure that the underlying

signals were as correlated as possible. By ensuring these signals were highly correlated,

the assumption that the clean signal available from Channel 1 could be employed as a

“ground truth” signal for Channel 2 becomes legitimate.
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Figure 4.13 shows how the correlation values of the recorded signals change with

increasing distance between the recording electrodes. A similar plot is shown in Fig-

ure 4.14 for the fNIRS data. It can be seen from both figures that as the distance between

the recording electrodes/optodes increases, the correlation between the underlying sig-

nals decreases. Therefore, in order to confidently assume that the “ground truth” signal

from Channel 1 provides an adequate reference signal for the underlying true signal from

Channel 2, the distance between the electrodes/optodes should be kept to a minimum.

Figure 4.13: Changing correlation between recorded EEG signals with increasing
distance between recording electrodes.

4.7 Automatic Artifact Removal

A number for the artifact removal techniques described in Section 3 (e.g. ICA, CCA,

EEMD, wavelet), known as two stage techniques, require that the decomposed signals

artifact components be selected and removed prior to the reconstruction of the signal.

Quite often these components are selected manually using a number of properties such

as frequency content, amplitude or morphological characteristic. However, this man-

ual selection can be time intensive and is prone to human errors and bias when being

performed by different technicians. This selection technique also prohibits the artifact

removal techniques from being employed on-line and in real-time. Therefore the devel-

opment of an automatic artifact component selection criterion is desired. A number of
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Figure 4.14: Changing correlation between recorded fNIRS signals with increasing
distance between recording optodes.

authors have described many techniques which are capable of selecting the artifact com-

ponents automatically when some assumptions are made on the signal and the artifact

[1, 47, 53, 71, 92, 111, 113, 135, 163, 194, 195, 213, 218].

Hassan et al . [71] describe the use of the autocorrelation function to determine

artifact components when using the CCA algorithm to denoise labor electrohystero-

grams. An algorithm is employed to determine the optimum threshold value below

which all components, whose autocorrelation falls below this threshold, are removed.

The technique therefore assumes that the desired signal components will have a greater

autocorrelation than the contaminating artifact signal. A number of other authors have

also detailed methods for automatic artifact removal when using the CCA algorithm

due to the decreasing order of the correlation coefficients. For example, Zhao and Qiu

[213] removed ocular artifacts from EEG signals by first using CCA to decompose the

signals. The first component was then consistently determined to be ocular in origin

and was then further decomposed using the wavelet transform. Each individual level

was then compared to their corresponding threshold and were removed if they exceeded

this threshold. Finally the signal was reconstructed with the ocular artifact removed.

Vorobyov et al . [195] also used the autocorrelation of the signals, but instead used it to

calculate the Hurst exponent which is the rate at which the autocorrelation of a signal

changes with increasing lag. The assumption was then made that this exponent remains
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constant for artifacts of the same type and so the corresponding components could be

identified and removed.

Reference signals have also been utilised to improve the automatic artifact reduction.

Vos et al . [47] removed any components from a decomposed neonatal EEG signal that

were correlated with a simultaneously recorded polygraphic signal while James et al .

[92] used an EOG reference signal to remove any component, from a cICA decomposi-

tion, that had similar characteristics. Viola et al . [194] used a similar technique which

employed a user defined template to determine the artifact components.

A further method proposed in a number of papers details the use of the artifact

signals characteristics (such as amplitude, frequency, skewness etc.) [53] [113] or spatial

and temporal features [135] [111] to determine the artifact components. Each of these

techniques operated well for the particular situation (signal and artifact combination)

that they were utilised in, however the artifacts must have highly defined characteristics

in order to be distinguishable.

Two automatic artifact removal techniques are analysed for this thesis. The first

novel method, described in Section 4.7.1 uses the available “ground truth” signal to

determine the optimum components to remove so as to increase the correlation of the

cleaned signal with the available “ground truth”. This situation is the ideal case, in that

the result will always give the best possible result for each of the analysed techniques.

However, as the “ground truth” signal will not always be available, two further tech-

niques are described in Section 4.7.2 and 4.7.3 for fNIRS and EEG that function in the

absence of a “ground truth” reference. For practical applications, the “ground truth”

methodology can be employed in a calibration experiment to enable optimisation of the

tuning parameters of the practical artifact selection methods.

4.7.1 Ideal Automatic Artifact Removal for both fNIRS and EEG

As the purpose of this thesis was to study a number of different and novel artifact

removal techniques, the selection of the correct artifact components was imperative to

ensure a fair comparison. In order to be capable of performing this fair comparison the

authors utilised the available “ground truth” signal to determine the correct components

to remove. As the “ground truth” signal (Channel 1) was assumed to be the equivalent

to the true underlying signal of Channel 2, which was later contaminated with artifact,

the purpose of each the artifact removal techniques was to “return” the contaminated

signal to this “ground truth” signal.
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Figure 4.15: Flow chart depicting the steps undertaken to chose the optimum artifact
components using the “ground truth” signal, known as the “ground truth” component

(GTC) selection technique.

Figure 4.15 provides a flow chart of the steps undertaken to determine the artifact

components using the available “ground truth” signal. It was proposed that any com-

ponent that, when removed, increased the correlation of the cleaned signal with the

“ground truth” signal was an artifact and therefore should be removed. To begin, the

correlation of the noisy signal with the “ground truth” was calculated and was set as the

current maximum correlation. Next, the first component from the decomposed signal

was removed and a “cleaned” signal was generated. The correlation of this new signal

was then calculated against the “ground truth” signal. This step was next repeated

for each of the individual components and it was assumed that whichever component

showed the greatest increase in correlation was the component most correlated with the

artifact.

This process was then repeated, but for each iteration of the next run a combination

of two components were removed; the artifact component determined from the first run,

and each of the remaining components. By doing so, the aim was to find the second

component most correlated with the artifact. It should be noted that the components

are only determined to be artifacts if by their removal, the correlation of the “cleaned”

signal with the “ground truth” is greater than the previous maximum correlation. This

loop was then completed for combinations of 3, 4, ..., N components where N was the

total number of components.

Figure 4.16 displays the change in maximum correlation obtained for an example

73



Methodology for Comparison of Artifact Removal Techniques

fNIRS signal decomposed using EEMD. For this example the original correlation of the

noisy signal with the “ground truth” signal was 0.33. It can be seen that up to a com-

bination of 5 different components the maximum determined correlation of the cleaned

signal with the “ground truth” increased. Following this, any additional components

that were removed did not increase this maximum correlation. Therefore, for the exam-

ple shown, the “ground truth” component (GTC) selection technique determined that

the components removed to generate the maximum correlation on that 5th run are the

artifact components (as their removal provided the highest correlation of the cleaned

signal with the “ground truth” signal).

Figure 4.16: Choice of optimum artifact components using “ground truth” signal.

Using this process guaranteed that each individual technique removed the compo-

nents that would ensure that it performed optimally during evaluation. Although it is

not possible to employ this technique for determining artifact components in practical

applications, as the required “ground truth” signal will not be available, it effectively

decouples the artifact separation process from the component selection process and thus

provides the fairest method for comparing the two stage algorithms considered in this

thesis.

To ensure completeness of the two stage artifact removal techniques, an automatic

artifact component selection criterion for both the fNIRS and EEG are described below.

These techniques were deemed to be the best at selecting the artifact components in the

described scenarios for when the “ground truth” signal was not available.
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4.7.2 Automatic Artifact Selection for fNIRS

A number of the techniques mentioned above were analysed for selection of the artifact

components from the decomposed fNIRS signals. The method of using the autocorre-

lation of the signal components, as described by Hassan et al . [71], was determined to

be the best tested technique due to its simplistic nature and its consistency with the

results returned using the GTC selection technique.

Figure 4.17: An example output of the EEMD algorithm for contaminated fNIRS
data. Artifact components can be clearly seen in components 1-4, with the fNIRS data
in components 5 - 13. The corresponding autocorrelation values can been seen in the

right plot.

This technique calculates the autocorrelation, at lag 1 (assumed from here on), of

the individual signal components after decomposition, performed using either EEMD,

wavelets, ICA or CCA. Autocorrelation, which can also be seen as cross-correlation of a

signal with itself, is the similarity of a signal with itself as a function of the time between

them. The autocorrelation of x at lag k can be calculated as

Rxx(k) =

N−k∑
i=1

(xi − x̄) (xi+k − x̄)

N−k∑
i=1

(xi − x̄)2
, (4.9)

where x̄ =
N∑
i=1

xi is the overall mean and N is the total number of samples.
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Figure 4.17 shows an example signal decomposed using the EEMD technique and

the corresponding autocorrelation coefficients for each of the components. It can be

seen from this figure that the artifact components (i.e. components 1-4) have a lower

autocorrelation coefficient than the true fNIRS signal due to their more random nature.

The fNIRS signal consistently have coefficients close to one, and so a threshold value

was required to determine the boundary between artifact and real signal components.

This threshold value was chosen with the aid of the available “ground truth” signal.

Using the GTC selection technique the optimum components to remove to maximise the

correlation with the cleaned signal can be determined. Therefore, as the autocorrelation

coefficients are known for each component and it is known whether each component is

an artifact (according to the GTC selection technique) the threshold value can be tuned

so as to reduce the number of false positives and false negatives, known as the misclas-

sification rate (MCR). A false positive indicates that the autocorrelation coefficient was

below the threshold but the “ground truth” analysis determined the component to be

true signal. A false negative indicates that the autocorrelation coefficient was above the

determined threshold but the “ground truth” analysis determined the component to be

artifact. Figure 4.18 shows the change in MCR with changing threshold value when cal-

culated using the available training data. The square pointers show the minimum values

obtained and thus the optimum threshold values for each technique. These threshold

values were then used in the resulting analysis to determine the efficacy of the individual

artifact removal techniques.

4.7.3 Automatic Artifact Selection for EEG

Two techniques performed well for selection of the artifacts from the EEG signal de-

composition and were thus fully analysed. The first was the autocorrelation function

described above for the fNIRS modality and the second used the Hurst exponent. As

can be seen from Figure 4.19, when using EEG data the autocorrelation of components

corresponding to the true EEG data is less than that of the artifact components. There-

fore, in contrast to the fNIRS data, a threshold needs to be determined above which all

components are deemed to be artifacts. A plot of the misclassification rate was again

created using the training data to determine the optimum threshold value for the EEG

as shown in Figure 4.20.

The second technique used the Hurst exponent as described by Vorobyov et al . [195].

The Hurst exponent can be seen as a measure of the long range dependence within a
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Figure 4.18: Miss classification rate (MCR) as a function of the threshold value for the
described techniques. The threshold value that minimised the number of false positives

and negatives (MCR) for each technique is shown by the square pointer.

signal and relates to the autocorrelations of the time series and the rate at which they

decrease as the lag between the pairs increases. The Hurst exponent lies between 0 and 1.

Although the Hurst exponents were observed to be more variable than the corresponding

autocorrelation components (i.e. they were not as tightly bunched), the EEG exponents

were still discovered to have a lower value then the artifact components. Therefore a

threshold value was again required. Figure 4.21 displays the determined threshold values

for the different techniques used. This threshold could then used to select the artifact

components and therefore aid in the cleansing of the signal.

Results from the two stage artifact removal techniques using both the autocorrelation

function and the Hurst exponent are provided in the results section of Chapter 6.

4.8 Synthetic Data

As well as testing the algorithms on the real data recorded using the methodology

described in Section 4.2 the different techniques were also tested on synthetic data. The

purpose of this synthetic data was to create ideal scenarios in which the true signal, the
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Figure 4.19: An example output of the CCA algorithm for contaminated EEG data.
Artifact components can be clearly seen in components 8-13, with the EEG data in

components 14 and 15.

artifact signal and the form of the combination (i.e. linear) was known. Comparisons

could then be made between the ideal results and the true signal results.

For the purpose of this thesis, two types of artifact contaminated signals were created

for both the EEG signal and the fNIRS signal; the first created artifacts similar to those

observed in the real signal and the second were of a more basic form in which the artifact

signal takes the form of a single intermittent sine wave crests. These artifacts were then

combined with accurate representations of the underlying EEG or fNIRS signals. The

methods used to create the different synthetic data are described below.

4.8.1 EEG

As stated above, an accurate representation of the EEG signal characteristics is required

when producing simulated data. Simulated EEG data has previously been developed

by Yeung et al . [208] [209] for evaluating different detection methods of synchronised

oscillations in the EEG data. This simulated data has been shown to match the empirical

data well and thus the simulation setup described was repeated for this thesis. The EEG

signal was generated by first creating short trials of data. These trials consisted of a

summing together of 100 sinusoids of randomly varying frequencies in the range of 1 Hz to
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Figure 4.20: Choice of the threshold value for automatic artifact removal using the
Autocorrelation function.

Figure 4.21: Choice of the threshold value for automatic artifact removal using the
Hurst exponent.

80 Hz. Each individually generated sinusoidal wave also had a random phase associated

with it in the range of 0 to 2 π (Equation 4.10). The full simulated EEG signal was

then created by concatenating together the desired number of trials therefore ensuring

that the final signal is non-periodic.
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EEG Trial =
100∑
i=1

A sin (2πfit+ φi) ,

fi ∈ [1 Hz, 80 Hz]

φi ∈ [0, 2 π].
(4.10)

EEG Signal = (EEG Trial1, EEG Trial2, ... EEG Trialn) . (4.11)

When creating the individual trials care was taken to ensure the simulated data

would approximate the true EEG signal as much as possible. Therefore the amplitude

(A) of each sinusoid added to the signal was scaled to match the power spectrum of

the EEG for that particular frequency. Accordingly, the frequency spectrum of the

simulation signal closely mirrors that of the real data as can be seen in Figure 4.22 and

so it can be said that, although very simple in structure, the simulated data accurately

replicates the primary features of the empirical data.

Figure 4.22: The simulated signal is plotted in both the time and frequency domain
and is shown to closely mirror the characteristics present in the real data.

4.8.2 fNIRS

In order to reproduce the results of the artifact removal techniques on the real data,

using simulated data, an accurate representation of the fNIRS data was required. In
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1998, Buxton et al . [30] developed a biomechanical model for the dynamic changes in de-

oxygenated haemoglobin content during brain activation. This model incorporated the

conflicting effects of the dynamic changes in blood oxygenation as well as the increase in

blood flow and was shown to match well with measurements of the blood oxygenation

level dependent (BOLD) signal recorded using MRI. Leamy et al . [107] extended this

work to develop a model for synthetic fNIRS data generation and proved it capable of

accurately modeling real-world signals in both the time and frequency domain, shown

using both temporal and spectral features. As stated previously this thesis uses both

the optical density (OD) and the oxygenated and deoxygenated haemoglobin (HbO &

Hb) forms of the data, and therefore the employed model has to be capable of recreating

each signal. The model produced by Leamy et al . consisted of a model of the vascular

response (to produce ∆CHbO and ∆CHb) in addition to a spectrophotometric model

which related the hemodynamics to changes in optical density (OD). The model is fur-

ther extended to incorporate the other signals commonly contained within the recorded

fNIRS signal including the cardiac pulse, the Meyer wave, broadband interference due

to environmental and instrumental noise and signal offset. For the purpose of this thesis

only the pure underlying signals are desired and thus the additional steps mentioned

above are not undertaken.

The change in ∆CHbO and ∆CHb due to the activation of a particular area of the

brain, as measured using fNIRS, is due to the vascular response. The Buxton balloon

model [30] models this vascular response as a function of the blood flow. A differential

equation description for the model is presented in [43] as follows:

E(t) = 1− (1− E0)
1

fin(t) (4.12)

q̇(t) =
fin(t)

τ0

(
E(t)

E0
− q(t)

v(t)

)
+

1

τv

(
fin(t)− v 1

α

) q(t)
v(t)

(4.13)

v̇(t) =
1

τv

(
fin(t)− v 1

α

)
(4.14)

ṗ(t) =
1

τv

(
fin(t)− v 1

α

) q(t)
v(t)

. (4.15)

E(t) is the unidirectional extraction fraction of oxygen where E0 is the net oxygen ex-

traction fraction. E(t) can be seen as the fraction of oxygen molecules that are available

for tissue metabolism (which is a function of the blood flow fin(t)) while E0 is the

fraction that is extracted and metabolised (constant) [29]. q(t), v(t) and p(t) represent

deoxygenated haemoglobin (∆CHb), blood volume and total haemoglobin respectively.

A measure for oxygenated haemoglobin (∆CHbO) can be determined by subtracting de-

oxy haemoglobin from total haemoglobin. τ0 is the mean transit time, given by the ratio
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of the blood volume to blood flow at rest, and τv describes an additional resistance to

rapid volume changes [133]. Finally α is the Grubb’s relation between cerebral blood

volume and cerebral blood flow [153]. The constant parameters were set similar to [43];

E0 = 0.4, τ0 = 2, τv = 30 and α = 0.4. The input blood flow (fin(t)) is specified by

the user and was set as a combination of variable frequency and amplitude sine waves

within the sampling frequency of the fNIRS data.

In order to increase the similarity between the simulated signal and the real data, the

resultant values for ∆CHbO and ∆CHb were scaled to a typical amplitude before further

processing. Figure 4.23 displays an example output of the simulated data generation.

Figure 4.23: An example output of ∆CHb and ∆CHbO using the simulated fNIRS
data generated using Equation 4.12-4.15. Time series and frequency spectrum of the

real fNIRS data is plotted for comparison.

With ∆CHbO and ∆CHb now calculated, the next step was to determine the optical

density values for both 690 nm and 830 nm. The change in optical density for a particular

wavelength (λ) can be calculated using the modified Beer-Lambert law as follows:

∆Aλ(t) =
(
αλHb∆CHb(t) + αλHbO∆CHbO(t)

)
BL, (4.16)

82



Methodology for Comparison of Artifact Removal Techniques

Figure 4.24: An example output of optical density for 690 nm and 830 nm using
the simulated fNIRS data generated using Equation 4.16. Time series and frequency

spectrum of the real fNIRS data is plotted for comparison.

where the parameters are as described in Section 2.2.2 and 4.3.3. An example of the

optical density signals can be seen in Figure 4.24. Using these steps, a database of

optical density signals were generated on which to test the implemented algorithms.

4.8.3 Motion Artifact

In order to be capable of testing the artifact removal techniques described in this thesis

with the simulated data outlined above, the contaminating artifact also needs to be

modeled. Two different types of motion artifact were generated for both the fNIRS and

EEG data. The first is described in detail below for both modalities and represents the

morphology of the real artifact observed on the recordings. The second artifact that will

be tested will be more rudimentary in nature, and consists of waves of limited duration

and of single frequencies etc.

fNIRS

In order to model the motion artifact contaminating the fNIRS signal an understanding

was first required into how motion affected the signal. As stated in Equation 4.16 the
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absorbance of light is proportional to the distance between the source and detector

optode, i.e A = αCBL. Therefore a change in this length (L + ∆L) due to motion

would create a signal contaminated with artifacts (Ā). The artifact signal due to the

changing path length can thus be determined as the difference between the two signals

(Ā−A) as shown in Equation 4.17.

A = αCBL

Ā = αCB (L+ ∆L)

= αCBL+ αCB∆L

Noise Signal(η) = (Ā−A)

= αCB∆L

η =
A∆L

L
(4.17)

This artifact signal is therefore multiplicative in nature as it is affected by both a

change in L and by a change in A. However as the offset of the parameter A is on average

a factor of around 10 times larger than the variation in the signal, the parameter A can

be assumed stationary. With this new assumption the equation above now becomes

linear with the noise signal proportional to the change in length η = β∆L.

Figure 4.25 demonstrates the addition of the motion artifact to the simulated fNIRS

data. The third subplot shows the noise signal (η) for both the 690 nm and 830 nm

signals as well as the changing length signal (∆L). It can be seen from this figure that

the assumption that the contaminating noise is proportional to the changing length is

legitimate, thus permitting the use of techniques such as the adaptive filter which assume

linear addition of the noise signal (see Section 5.6).

EEG

Unlike for fNIRS there is no simple relationship available to map a change in the position

of the electrode to the addition of artifact to the signal. This change in electrode

position can have multiple effects including an effect on the impedance associated with

the electrode-electrolyte interface and with the resistance associated with the electrolyte

itself.

To induce artifacts, similar to those observed during the experiments described in

Section 4.2, intermittent short duration sine waves or differing frequencies were added.
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Figure 4.25: Effect of changing the path length (L) during recording. Data plotted
is simulated using the step described in Section 4.8.2.

As can be seen from Figure 4.26 the addition of these simulated artifact signals create

a signal of similar morphology, in both the time and frequency spectrum, to the real

signal.

Therefore when analysing the artifact removal techniques using the simulated data

(for both the EEG data and the fNIRS data), the form of the data will be very similar

to the real recorded data, however the true underlying signal is now accurately known.

In this way the results produced using the real data and the “ground truth” data can

be supported using the simulated data.

4.9 Conclusion

In this chapter a number of important techniques which will be employed over the re-

mainder of the thesis have been described. To begin, a novel recording methodology was

detailed [181] which provides a number of important possibilities in terms of the evalua-

tion of different artifact removal techniques. This methodology provides the researcher

with both a real signal contaminated with motion artifacts as well as a “ground truth”

signal which is highly correlated with the true (uncorrupted) underlying signal. Using

these two signals the interested researcher can now effectively and accurately compare
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Figure 4.26: An example of the simulated motion artifact added to the EEG data.

the efficacy of a number of different artifact removal techniques. An added advantage to

this methodology is the ability to determine the optimum components to remove from

the two stage artifact removal algorithms, described in Chapter 3, so as to remove as

much of the artifact from the desired signal as possible.

It follows that the “ground truth” signal also allows for an accurate measure of

the effectiveness of the currently available automatic artifact component selection tech-

niques. A description of some of the currently available automatic artifact component

selection techniques was given and the best techniques for operation with the EEG and

fNIRS modalities were described. The use of the autocorrelation function to determine

the artifact components functioned well the fNIRS data, while both the autocorrelation

function and the Hurst exponent showed promising results when operating on the EEG

data.

The techniques expanded upon and analysed in Chapters 5 and 6 are also evaluated

on synthetic data and the production of this data for both fNIRS and EEG was described.

When using the synthetic data, the exact underlying signal is available and thus the

results obtained using the data from the novel recording methodology can be verified.
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In the next chapter, the data obtained using the recording methodology described in

this chapter is used to test the efficacy of a number of the single stage artifact removal

techniques described in the literature review. The algorithms are tested on the fNIRS,

EEG and simulated data and an evaluation is provided comparing the methods.
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Chapter 5

Single Stage Artifact Removal

Techniques

The content of this chapter is divided into two parts; firstly the chapter details a novel

tagging algorithm developed with the use of multiple accelerometers. This novel algo-

rithm provides an accurate quality-of-signal (QOS) metric which can be used to reliably

inform a technician as to the epochs of contaminated data within a signal [180]. Through

the novel use of dual accelerometers this QOS metric is also capable of distinguishing

between different motion artifact types, thus permitting the use of the correct artifact

removal technique for the specific corrupting artifact [179]. Finally the data tagging also

permits the switching of artifact removal techniques allowing the best technique to be

used for a particular artifact type, therefore enhancing individual methods contributions

while permitting the algorithms to be employed only when required.

Secondly, the chapter provides a critical and rigorus evaluation of the principal

single stage artifact removal techniques, as introduced in Chapter 3. Initially some

basic filtering methods will be described which can be used to remove contaminating

artifacts in situations where the frequency spectrum of the artifact and the signal do

not overlap. However, as the frequency range of many artifact signals lie within the

frequency spectrum of the desired signals, more complex techniques must be employed.

These include the Wiener filter, Kalman filter, morphological component analysis (MCA)

and adaptive filter, all of which either use signal models to reduce the artifact or use the

morphology of the signals to separate the signal from the artifact.

The operation and mathematical description of each of these methods is first de-

scribed. The techniques will be benchmarked for motion artifact removal on real fNIRS
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and EEG datasets, recorded using the methodology described in Section 4.2, and the gen-

erated simulation data introduced in Section 4.8 using the performance metrics outlined

in Section 4.5. Results are presented, for two scenarios: (1) the algorithms are employed

over the full signal and (2) the algorithms are only applied to the epochs identified as

being contaminated by motion artifact, as determined by the tagging algorithm.

5.1 Data Tagging

Reference signals have a very important role to play in a number of artifact removal

techniques. When available, these signals can convey information regarding the form

and position of a contaminating artifact. These reference signals can be from a number

of different sources, such as accelerometers [180] [179] or additional physiological signal

recordings (e.g. EOG [73] EMG [214]).

In this section the use of reference signals for data tagging [180] is described, allowing

for an accurate representation of the position and type of artifact in the signal [179].

Data tagging is a method of using an available reference signal to assign a metric to

specific epochs of the data. These assigned metrics are usually in the form of a “quality

of signal” (QOS) measure which can be used to define the quality of the data in the given

epoch. This information can be useful in determining where in a signal an artifact is

likely to be present; with this information the artifact contaminated epoch can either be

removed or can be processed using artifact removal techniques. A number of authors have

previously employed reference signals to generate QOS metrics, with the vast number

used in conjunction with ECG recordings. One possible reasoning for this would be that

a large number of the available ECG monitoring devices have in-built accelerometers

which can be easily employed as a reference.

In 2004, Muhlsteff et al. [138] tested a new design for a wearable ECG belt, with

integrated dry electrodes. Although attempts to remove the motion artifacts using the

accelerometer data failed, the accelerometer output was used to determine states of rest

and activity of the subjects. By using these known states of activity, the author was

able to apply a simple QOS metric and thus determine the epochs of clean, artifact free,

data. In 2005 Healey and Logan [74] used the accelerometer data in their “Wearable

Wellness Monitoring System” to estimate the quality of the signal data and give a

confidence rating on the results of their analysis algorithms. As the subjects activity level

increased the quality of the ECG signal deteriorated, thus giving merit to their approach.

Kishimoto et al. [98] recorded ECG signals from subjects as they slept. Any positional

changes in the sleeping subject caused a disruption in the observed ECG signal. An
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accelerometer was attached to the body to detect when these body movements took

place and used this detected movement as a basis for a QOS measure for the recorded

ECG signal.

Accelerometer 1

Accelerometer 2

ECG Negative 
Electrode

ECG DRL 
Electrode

ECG Positive 
Electrode

Figure 5.1: Accelerometer placement for generating quality of signal (QOS) metric
for ECG signal.

Although all the methods mentioned above do provide a QOS metric signal, they

were all deemed to have an important limitation. ECG is used to measure the changing

voltage across the torso as described in Section 2.1.2. When subject motion causes the

torso to contort, the path between the two recording electrodes is altered, creating an

artifact on the desired signal. However, if movement of the subject doesn’t cause this

path to change then there will be no artifact contamination. The previously mentioned

QOS techniques would however class this type of movement as generating a low QOS

and thus would label the data incorrectly as being of bad quality. Therefore, in a number

of recording situations the presence of subject motion does not mean that artifact will

be created. While it is a necessary condition it is not a sufficient condition. It is changes

to the electrophysiological properties of the tissue under measurement due to motion

which is important. Not all motion will have an appreciable change in such properties.

The same is true when analysing the EEG and fNIRS data. An algorithm was therefore

developed to generate a QOS metric for ECG signals calculated with the use of two

individual accelerometers [180]. These two accelerometers were placed on each of the

recording electrodes as shown in Figure 5.1. Using these two accelerometers both overall

body acceleration and the differential electrode acceleration could now be calculated.
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Figure 5.2: Determining the novel QOS metric. Lower plot shows the absolute value
of the difference between the two accelerometer signals. Threshold is shown in red. All

samples above this line are determined to be movement samples.

This preliminary novel QOS metric operated solely on the differential acceleration

between the two accelerometers and thus any movement which did not alter the path

length of the ECG signal was not analysed. Figure 5.2 shows the output of the ac-

celerometers during an example experiment, where the accelerometers were located as

shown in Figure 5.1. During this experiment 60 seconds of ECG data was recorded

with three separate epochs of activities. During the first 20 seconds the subject was

instructed to move their body “freely” without distorting the torso. These movements

included twisting and bending from the waist. Over the second 20 seconds epoch the

subjects were asked to move their body including their torso so as to alter the path

length between the electrodes and finally over the last 20 seconds the subject was at

rest. The absolute value of the difference between the accelerometers (calculated using

Equation 4.4) was used as the measurement criterion for the QOS. A threshold value

β, determined empirically, was set and all differential acceleration sample points, whose

amplitude was greater than the set threshold, were assigned as detected motion. Fi-

nally the QOS metric could be determined. This algorithm calculated the number of

movements that were detected over a 1 second period, centered at the current sample.

The current sample (k) was then assigned a QOS value between 0 and 1 indicating

the number of movements detected in that one second epoch. A value of 1 was given

to a detected clean signal (ie no detected movements) with 0 implying all surrounding

samples had also detected movement.

91



Single Stage Artifact Removal Techniques

QOS(k) = 1−
k+n

2
−1∑

i=k−n
2

α(i)

n
, α(i) =

1 if |DM(i)| > β

0 otherwise
(5.1)

where n is the number of samples per second, k is the current sample, DM is the

differential movement of the accelerometers determined using Equation 4.4 and β is the

chosen threshold value.

Figure 5.3: Recorded ECG signal with respective QOS signal. P-QRS and T waves
which could not be manually deciphered are marked with an “X”.

An example of the ECG recorded in conjunction with the accelerometer data shown

in Figure 5.2 can be viewed in Figure 5.3. The ECG data was manually analysed and

the P-QRS-T waves that could not be accurately determined manually are marked with

an “X”. The data was tagged using the QOS as described [180] and can be seen to

correlate well with the noisy ECG signal. Figure 5.4 shows the same ECG data over

shorter epochs to allow for a greater understanding.

The QOS metric specified above was also expanded in [179] to operate with both EEG

and fNIRS data. In this paper it was demonstrated that the different possible variations

of motion which can effect fNIRS and EEG recordings can have different effects on both

signals, as can be seen in Figure 5.5. For the selected modalities two different QOS

metrics were calculated. The first employed only one of the available accelerometer

signals, and thus the QOS metric would decrease when any movement was detected.
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Figure 5.4: Magnified version of Figure 5.3. It can be observed that over the first
20 seconds, although there is subject motion this does not generate artifact on the
signal. The QOS metric can be seen to accurately represent the artifact position in the

data.

The second QOS metric was similar to that described for the ECG signal above, and

used both available accelerometers to detect differential movement. The location of the

accelerometers is described in Section 4.2 and can be seen in Figure 4.3 for the fNIRS

setup. Results showed that differential movement, generated due to the movement of

the recording optodes or electrodes with respect to the head created artifact signals on

both signal modalities (shown by yellow shading). However, overall head motion, in

which there was no differential movement, only generated artifacts on the fNIRS signal

due to blood pooling (blue shading in Figure 5.5); the EEG signal remained artifact

free. These results again showed the importance of using the differential movement of

the accelerometers as an individual QOS tagging metric. If only a single accelerometer

was employed all data shaded in both blue and yellow would be regarded as containing

artifacts for the EEG signal which can be observed to be inaccurate.

In addition to tagging the data, the QOS metric can also be used to aid in the

decision of which artifact removal technique to use or the pre-processing steps to take.

When using fNIRS, for example, the artifact can either be due to a change in blood

volume (due to blood pooling) or due to a change in light intensity due to movement of

the optode. If due to blood pooling (determined using overall head movement) then the

artifact removal techniques would be better performed on the HbO and Hb data as these

directly relate to blood volume (∆BV = ∆HbO+ ∆Hb). However if the artifact is due

to the movement of the optode then the artifact removal techniques should be applied

to the optical density values discussed in Section 2.2.2. As will be demonstrated later in
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Figure 5.5: How different movements affect the different signal modalities. Optode/-
electrode movement (shown in yellow) affects both signals whereas head movement

(shown in blue) only affects fNIRS. Shading generated using tagging algorithm.

the chapter, tagging offers the possibility of determining when to apply artifact removal

techniques, and in the case of some algorithms, inform the tuning of their operating

parameters.

5.2 Linear Time Invariant (LTI) Filtering Methods

Before attempting to remove contaminating artifacts from the desired signals using the

more elaborate techniques discussed in this thesis, a number of standard linear filtering

methods can be used to first reduce their number and power. Most noise is broadband

(with white noise having a flat spectrum), and most signals are narrowband. Therefore,

it should always be possible to improve a signal’s signal-to-noise ratio (SNR) by reshaping

the spectrum of the waveforms using a filter. Thus, although contaminating white noise

is a broadband signal, and therefore corrupts all frequencies, including the frequencies

containing the signal of interest, filtering the undesired frequency components can greatly

reduce the noise power, thereby improving the SNR of the remaining signal. Accordingly,

a filter can be seen as a linear method of reshaping a signals spectrum in some well-

defined and desirable manner [165].

Depending on the morphology of the desired signal, artifacts from environmental

sources (Section 2.3.1) can normally be suppressed by means of a simple LTI filter.

For example, if the artifact signal has a narrow frequency band (e.g. 50/60 Hz hum),

which is disjoint from the spectrum of the desired signal, then a notch filter can be
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employed to attenuate the power of the signal at these chosen frequencies. Similarly

if the frequency range of the signal and artifact are disjoint (e.g. fNIRS-measured

neurovascular response and the cardiac pulse [24]) then standard LTI filtering methods

can again be implemented.

Experimental artifacts (particularly those relating to motion) in the recorded signals

are more difficult to remove than instrumental artifact as they generally do not have

a predetermined narrow frequency band and their spectrum often overlaps that of the

desired signal [186]. Further, artifacts due to motion are often non-stationary in nature.

A signal is said to be non-stationary if the frequency or spectral content can change with

respect to time. This changing of the frequency spectrum therefore further invalidates

the use of the LTI filters for the removal of artifacts of this type.

Due to the overlapping spectra of the various physiological signals, the majority of

artifacts that can be embedded on a signal have to be removed in a way that does not

involve basic LTI filters so as to minimise information loss. In the remainder of this

chapter and in Chapter 6 a number of the most commonly used algorithms, available at

present, which are capable of artifact removal, in situations where basic filtering methods

will not suffice, are compared.

5.3 Wiener Filter

Wiener filters were first introduced by Norbert Wiener in the 1940’s for use in extrap-

olating, interpolating and smoothing stationary time series [202]. Wiener filters, which

are a type of optimum linear filter, can be used to estimate a desired signal from a

contaminated recorded signal. The filter uses a statistical approach to the linear filter-

ing problem and thus makes certain assumptions on the availability of particular signal

characteristics such as correlation or power spectrum. The goal is to determine the op-

timum filter weights so as to minimise the error between the true underlying signal and

the estimated signal, calculated using some statistical criterion. The most common sta-

tistical criterion implemented for the Wiener filter is the reduction of the mean-square

value of the error signal (Equation 5.3).

5.3.1 The mathematics behind the Wiener filter

With a recorded wide-sense-stationary (WSS) signal x(n) the Wiener filter attempts to

find the weights of the linear-time-invariant (LTI) system, with an impulse response h(n),
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 h(n)x(n) s(n)

s(n)

v(n)

Linear
Mixing

LTI filter 

Figure 5.6: Discrete time LTI filter for linear MMSE estimation.

such that the filter output ŝ(n) is the minimum-mean-square-error (MMSE) estimate

of the true desired signal s(n) prior to being contaminated by noise v(n) as shown in

Figure 5.6. There are three main variations of the LTI system; the causal filter, the non-

causal filter and the finite impulse response (FIR) filter. For the purpose of this thesis

the discrete time FIR form of the filter, with tap weights w (w = [w0, ..., wL−1] where L

is the number of tap weights), will be used to represent the LTI impulse response. The

output of an L tap FIR Wiener filter can be calculated as

ŝ(n) =
L−1∑
k=0

wkx(n− k), (5.2)

the error signal e(n) can therefore be defined as:

e(n) , ŝ(n)− s(n) (5.3)

and the minimisation of the error in the MMSE sense can be described as:

min
w

e = E{e2(n)}. (5.4)

The resulting filter w is then known as the Wiener filter for estimation of s(n) from

x(n) [146]. In order to determine the optimal choice for w, Equation 5.4 must first be

expanded.

e = E

{(
L−1∑
k=0

wkx(n− k)− s(n)

)2
}

(5.5)

The L weights of w that minimise the error can be determined by setting the derivative of

the equation with respect to w equal to zero, i.e. δe
δw = 0 where δe

δw = [ δeδw0
, ... δe

δwm
, ... δe

δwL−1
].

Therefore for the mth element we can write,
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δe

δwm
= E


2

(∑
k

wkx(n− k)− s(n)

)
︸ ︷︷ ︸

e(n)

x(n−m)

 = 0. (5.6)

This equation therefore specifies that

E{e(n)x(n−m)} = 0, or equivalently

Rex(m) = 0 for all m. (5.7)

Rex corresponds to the cross correlation between the error signal and the input. These

equations, specifying the relationship between the input and the error signal, are forms

of the commonly known orthogonality principle which states that the error vector is

orthogonal to any possible estimator [48]. Using the equations above it is also possible

to show that

Rex(m) = E{e(n)x(n−m)}
= E{(ŝ(n)− s(n))x(n−m)}
= Rŝx(m)−Rsx(m), and therefore

Rŝx(m) = Rsx(m). (5.8)

This equation states that for the optimum filter, the cross-correlation between the input

and the estimated signal is equal to the cross-correlation between the input and the

actual signal. As the estimate ŝ(n) is calculated by filtering x(n) with the LTI filter w

the following relationship applies:

Rŝx(m) = wm ∗Rxx(m), which from Equation 5.8 means

wm ∗Rxx(m) = Rsx(m) and therefore∑
k

wmRxx(m− k) = Rsx(m), (5.9)

where Rxx is the autocorrelation of the input x(n).

Therefore for a filter of length L there will be L equations to determine the L values

of the filter weights w. These linear equations, with as many equations as unknown,

can be also viewed in matrix form as follows:
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
Rxx(0) Rxx(−1) · · · Rxx(1− L)

Rxx(1) Rxx(0) . . . Rxx(2− L)
...

...
. . .

...

Rxx(L− 1) Rxx(L− 2) · · · Rxx(0)




w0

w1

...

wL−1

 =


Rsx(0)

Rsx(1)
...

Rsx(L− 1)

 (5.10)

These equations, known as the Wiener-Hopf equations, can now be solved to determine

the impulse response values, i.e. w = R−1xx rsx. As autocorrelation (R) and power spectral

density (S) form a fourier transform pair (i.e. Sxx(f) = F{Rxx(n)}) the Wiener-Hopf

equations can also be transformed into the frequency domain [88]:

w = R−1xx (n)rsx(n)

w(f) =
Ssx(f)

Sxx(f)

w(f) =
Sss(f)

Sss(f) + Svv(f)
. (5.11)

Therefore if the power spectral density of the true signal Sss and the noise Svv are known

then the Wiener filter weights can be calculated as the inverse fourier transform of w(f).

5.3.2 Requirements and limitations of the filter

The Wiener filter differs from some of the other filtering techniques described in this

chapter in a number of ways. Unlike the adaptive filter, described in Section 5.6, the

Wiener filter does not require a reference signal to be employed. This is a major ad-

vantage to the algorithm as the addition of reference signals also requires additional

hardware which can often be a limiting factor for any system to be employed outside of

the clinical environment. However, due to the statistical nature of the Wiener filter it

is inadequate for dealing with situations in which non-stationarity of the signal and/or

noise is intrinsic to the problem. As stated previously the algorithm only requires the

autocorrelation or the power spectral density (PSD) of the true signal and the noise in

order to operate. The filter also assumes that the signals are zero-mean and uncorrelated

with each other. The Kalman filter, described in Section 5.4, is capable of solving the

corresponding filtering problem in greater generality for non-stationary signals but with

a greater computational complexity.
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5.3.3 Employing the Wiener filter

In order to apply the Wiener filter, the PSD of the clean signal (Sss) and the noise signal

(Sss + Svv) must be estimated a priori. This measurement can be performed off-line

prior to employing the filter. The PSD is a measurement which describes how the power

of a signal is distributed with frequency and can be calculated for a signal z(t) as :

F(ω) =
1√
T

∫ T

0
z(t)e−iωtdt (5.12)

PSD(ω) = lim
T→∞

E[|F(ω)|2].

The measurement of the clean signal PSD (Sss) was performed using the “ground

truth” signals from the available training data. The noisy signal PSD can be calculated

independently for each trial prior to employment. Once the PSD have been determined

the vector w containing the frequency domain filter weights can be calculated as de-

scribed in Equation 5.11.

The time domain noisy signals which require the artifact removal are then trans-

formed into the frequency domain prior to processing, i.e. x(f) = F{x(n)}. Once in

the frequency domain the noisy signals can be cleaned by simply multiplying them by

the filter weights:

ŝ(f) = x(f)�w(f), (5.13)

where � denotes component-wise multiplication.

The inverse fourier transform of ŝ(f) yields the time domain estimate of the clean sig-

nal (s(n)). This process is repeated for each trial of the fNIRS and EEG benchmark test

datasets. An example output of the technique plus the efficacy results for both datasets

are presented in Section 5.7 with Section 5.8 presenting an evaluation and comparison

of the technique with the other analysed single stage artifact removal techniques.

5.4 Kalman Filter

The Kalman filter can be viewed as a set of mathematical equations, used to provide an

efficient computational means to estimate the state of a process. This state is approxi-

mated in a way that minimises the variance of the estimation error [200]. The filter is
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an optimal linear estimator, similar to the optimal Wiener filter developed by Norbert

Wiener [202], however the Kalman filter does not require that the deterministic dynam-

ics or the random processes have stationary properties. This is an important extension

as many real applications have non-stationary data distributions. The Kalman filter

can be seen as optimal with respect to virtually any criterion that makes sense [125];

that is to say that the average performance of the Kalman filter, over a finite number

of runs, on the same application will always exceed the average performance from any

other filter.

One of the major benefits of the Kalman filter is its ability to exploit all of the

available information (regardless of the precision of that information) when trying to

estimate the values of the variables of interest. As a result, no information, no matter

how insignificant, is unused when estimating the required state. Examples of these

elements of information can include a knowledge of the system and measurement device

dynamics, initial conditions or system noise and measurement error statistics. As no

mathematical system model is perfect (due to approximations or indeterminacies) and

also sensors do not provide perfect and complete data about a given system (due to

imprecise sensors or noise), the combined use of all information will always prove to

increase the performance of the filter. A further advantage of the Kalman filter is its

recursive nature. Consequently, all previous recorded data is not required to be stored

and re-processed at each iteration and hence the complexity of the algorithm is reduced,

improving the practicality of the filter.

As stated previously, the basic Kalman filter is an optimal linear estimator and thus

only capable of operating on processes that can be described using a linear system.

However, the filter has also been extended to be capable of operation in the non-linear

domain through the Extended Kalman filter [200]. The EEG and fNIRS signals that

are being analysed as part of this thesis are assumed to be linearly corrupted by the

undesired artifact, and thus the progression onto the Extended Kalman filter is not

necessary for this work. The interested reader should refer to Welch and Bishop [200]

for more information. Two further assumptions underpinning the Kalman filter are that

the system and measurement noises are 1) white and 2) Gaussian. Whiteness implies

that the noise signals contain equal power at all frequencies and are not correlated

with time while the Gaussianity describes the distribution of the probability density

function of the signal. These 3 basic assumptions help to reduce the complexity of the

mathematics involved and thus make the filter more tractable.

The basic equations used to describe the linear systems used by the Kalman filter

are described in Equations 5.14 and 5.15 [200].
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State equation:

sn+1 = Ansn + Bnun + wn, (5.14)

Output Equation:

xn = Hnsn + vn, (5.15)

where sn is the k-dimensional state vector (unknown, desired), un is the m-dimensional

input vector (known, optional), xn is the p-dimensional output vector (known,measured),

An, Bn, Hn are appropriately dimensioned system matrices (known) and wn and vn

are zero-mean, white Gaussian noise with (known) covariance matrices Qn and Rn re-

spectively.

p(w) ∼ N(0,Q), (5.16)

p(v) ∼ N(0,R). (5.17)

In practice the process noise covariance matrix Q and the measurement noise covariance

matrix R might change over the length of the measurement signal, however they are

assumed to be constant. This assumption is analysed further later in the section. The

A matrix relates the state at the previous time sample (n−1) to the state at the current

time sample (n). Although A may change slightly with respect to time it is assumed

to remain constant. The matrix B relates the (optional) control input u to the state s.

Finally, the matrix H relates the state s to the measurement x and is again assumed

constant over time.

Although desirable, it is not possible to measure the state s directly. Instead mea-

surements x which are a function of the state are available, but are also contaminated by

some noise factor v, shown in Figure 5.7. It is therefore not possible to simply use the

information from the measured signal to determine the current state; instead the extent

to which the measurement values are used is determined by the “trust” that can be

placed on their estimated accuracy. This “trust” value is determined using a parameter

known as the Kalman gain factor, and will be described in the next section.
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Figure 5.7: Block diagram of the basic Kalman filter application [125]

5.4.1 The mathematics behind the filter

The Kalman filter addresses the problem of estimating the state s using both a model of

the state and the recorded noisy measurements. The filter uses a method of formulation

known as prediction-correction; it uses the process model to predict the next state of the

system given the current state, and then corrects that prediction based on the available

noisy measurements. The prediction stage projects the current state sn−1 forward in

time to generate the a priori estimates for both the state ŝn and the error covariances P−n

for the next time sample using the time update equations shown in Equation 5.18-5.19.

ŝ−n = Aŝn−1 + Bun−1 (5.18)

P−n = APn−1A
T + Q (5.19)

The Kalman filter can thus be seen to be projecting forward the conditional prob-

ability density function, described by the first two moments of the state distribution

(mean and variance). As the system is described through a linear model and both the

process and measurement noise are assumed Gaussian, the mean and variance of the

system completely describe the processes conditional probability density function. The

measurement update equations, shown below in Equation 5.20-5.22, are then employed

to perform a correction of the a priori estimate of the current state ŝ−n using the available

noisy measurements xn.
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Kn = P−nHT (HP−nHT + R)−1 (5.20)

ŝn = ŝ−n + Kk(xn −Hŝ−n ) (5.21)

Pn = (I−KnH)P−n (5.22)

The matrix K is known as the Kalman gain and determines the “trust” that should

be placed on the measurement value. From Equation 5.20 it can be seen that as the mea-

surement error covariance matrix R approaches zero, the Kalman gain matrix increases,

i.e.

lim
Rn→0

Kn = H−1. (5.23)

Conversely, if the a priori estimate error covariance P approaches zero then the Kalman

gain matrix also tends to zero, i.e.

lim
P−
n→0

Kn = 0. (5.24)

Therefore, from Equation 5.21, it can be seen that when the measurement error covari-

ance R is low (i.e. K is high) the measurement xn is trusted more and the state estimate

gets corrected by K times the difference between the current measurement and the pre-

dicted estimate. However if the estimate error covariance P is low or the measurement

error covariance R is high (i.e. K is low) then there is very little, if any, correction to

the state estimate. The difference between the measured value and the predicted value

(xn −Hŝ−n ) is known as the innovation or the residual.

Figure 5.8 illustrates the prediction correction loop performed by the Kalman filter.

Using initial estimates for the state and error covariance, the time update equations

predict the next state and error covariance matrix. The filter then updates the Kalman

gain matrix using the current a priori error covariance matrix P−n , and the measurement

error covariance matrix R. The state and estimate covariance is next corrected to deter-

mine the a posteriori estimates ŝn and Pn. The loop then repeats with the a posteriori

estimates becoming the previous sample estimates in the time update equations.
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Time Update (“Predict”)

(1) Project the state ahead

ŝ−
n = Aŝn−1 +Bun−1

(2) Project the error covariance ahead

P−
n = APn−1AT +Q

Measurement Update (“Correct”)

(1) Compute the Kalman gain

Kn = P−
n HT (HP−

n HT +R)−1

(2) Update estimate with measurement xn

ŝn = ŝ−
n +Kn(xn −Hŝ−

n )

(3) Update the error covariance

Pn = (I −KnH)P−
n

Initial estimates for ŝn−1 and Pn−1

Figure 5.8: A flow diagram of the prediction correction formulation of the Kalman
filter [200]

5.4.2 What input parameters are required by the user a priori?

Before the Kalman filter can be employed on any given process, a number of parameters

must be first initialised. The initial estimate of the state, ŝn−1, is usually set to zero as

normally an accurate estimate of the state is not available. An incorrect initial estimate

will not prevent the filter from converging on the correct answer, but instead will only

cause the initial convergence speed to be slower. The initial estimate error covariance

Pn−1 must also be set. The choice of this parameter is arbitrary, so long as it is not

set to zero. If set to zero the filter would initially and always believe the choice for

ŝ (Equation 5.24). Therefore, any other choice (i.e. Pn−1 6= 0) and the filter will

eventually converge. For the purpose of this thesis the initial Pn−1 was set to the initial

signal value (i.e. xn(1)) as implemented by Izzetoglu et al. [87].

The covariance matrices for the (zero-mean, white, Gaussian) process Q and mea-

surement R noise parameters also have to be set a priori . The choice of R, as stated

above in Section 5.4.1, will determine how much “trust” the filter will place on the

acquired measurements. When employing the filter to operate on the EEG or fNIRS
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signals, recorded using the methodology described in [177], the measurement error co-

variance R was initially set as the variance of the artifact signal, where this signal was

calculated as the difference between the recorded clean and noisy signals. However this

static selection of R is a disadvantage of the Kalman filter. The Kalman filter assumes

that the noise signal is consistent throughout the signal and therefore a static R is ad-

equate. In the recordings analysed in this thesis the variance of the artifact signal is

changing quite dramatically between epochs of movement and no movement. If a single

value for R is used the filter output will be of one of two types. Either the R value will

be too high meaning that there is very little “trust” placed on the recording even dur-

ing the epochs of no movement (Figure 5.9(a)). During these epochs the signal will be

highly attenuated thus reducing the effectiveness of the algorithm. Or, conversely, the

value of R will be too low and the artifact will not be removed due to the high “trust”

placed on the recorded signal (Figure 5.9(b)). Figure 5.9(c) provides an example of the

output of the novel algorithm when a variable R value is employed. It can therefore be

easily seen that a variable value for R is required. Unfortunately this requirement also

requires a method for determining when the artifact has occurred in the signal, however

using the recording system described in Chapter 4 a reference signal in the form of an

accelerometer is available and thus the tagging algorithm, described in Section 5.1, can

be employed. Using the training data, two values for R were determined. The first

was calculated as the variance of the epochs of clean data from the artifact signal (i.e.

difference between clean and noisy signal) (R = 1.351× 10−5) while the second was cal-

culated similarly but instead employed the epochs of known noisy data (R = 1.1×10−3).

The process error covariance is often difficult to determine, and can be “tuned” to help

improve the performance of the filter. For use with the EEG and fNIRS signals, Q

was calculated as the variance of the true signal times the error of the AR model, as

implemented by Izzetoglu et al. [87] (Q = 3.5× 10−10).

The system matrices A, B and H must also be initialised prior to the use of the

Kalman filter. As stated previously the A matrix relates the state at the previous time

sample to the state at the current time sample. The Yule-Walker method was used to

calculate the parameters of a 5th order auto-regressive (AR) model for both the EEG

and fNIRS data. A model order of 5 was determined to be sufficient to model both

signal modalities using the “System Identification Tool” in MATLAB which determines

the optimal tradeoff between model fidelity and model complexity. Therefore the next

estimate of the state was a function of the previous 5 samples. The final A matrix thus

has the following form:
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Figure 5.9: Effect of changing R value when using the Kalman filter. The output of
the filter is shown in red, with the true signal shown in blue. A static value for R can

be seen to be sub-optimal with intermittent artifacts.

A =



−yw(2) −yw(3) −yw(4) −yw(5) −yw(6)

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


, (5.25)

where yw are the parameters of the AR model determined using the Yule-Walker equa-

tions. As no control input, u, was being applied to the employed system, there was no

requirement for the B matrix and therefore it was set to zero. As the measurements

were a direct recording of the current state, with added noise, the H matrix could simply

be initialised as:

H =
[
1 0 0 0 0

]
. (5.26)

5.4.3 Employing the Kalman filter

Prior to employing the Kalman filter the training data was used to determine the AR

model coefficients and, using these coefficients, the process error covariance Q was cal-

culated. With all the required a priori parameters initialised, the Kalman filter can
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then be employed to estimate the underlying desired signal ŝ. The filter passes through

each sample of the signal, performing both the time update (Equation 5.18-5.19) and

the measurement update equations (5.20-5.22) as shown in Figure 5.8. During epochs

of no detected movement, the value of the variance R is low and so the filter places a lot

of “trust” on the actual recorded signal. However, during epochs of motion, determined

using the detailed data tagging algorithm , the value of R is changed to the pre-defined

variance of the artifact signal. During these epochs, the recorded measurements have

less “trust” placed in them and consequently the model of the signal output is trusted

more. By doing so, the Kalman filter removes the artifact from the measurement signal.

Figure 5.23 and 5.24 provide examples of the outputs of the Kalman filter when employed

on contaminated fNIRS and EEG data. The improvement in SNR and correlation after

employing the Kalman filter is detailed in Section 5.7.

5.5 Morphological Component Analysis

Morphological component analysis (MCA) was first described by Stark et al. [171] in

2005 as a means for separating sources which have differing underlying morphological

characteristics. Unlike other techniques such as ICA or CCA which separate the con-

taminated signal into sources which are deemed independent or uncorrelated, the MCA

technique uses the morphological diversity of the individual sources contained in the data

and uses this diversity to associate each morphology to a particular dictionary of atoms

for which a fast transform is available [17]. The morphology of a signal describes the

shape or form of the signal, i.e. does it have a smooth or spiky impulse-like waveform.

As the assumption is that the recorded single channel signal is a combination of the

desired EEG or fNIRS signal s(n) plus the undesired artifact v(n), i.e.

x(n) = s(n) + v(n) (5.27)

it becomes possible to use the MCA technique to separate the components that are

known to be morphologically dissimilar.

5.5.1 Operation of the Morphological Component Analysis technique

As stated previously the artifact signal v (v = [v(1), ...v(N)], whereN is the length of the

signal) can be viewed as an individual independent source signal and thus the recorded

signal x can be calculated as the sum of k sources, each with differing morphologies, i.e.,
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x =

k∑
i=1

si. (5.28)

The MCA technique makes the following assumptions on these individual sources [171]:

• For every possible source signal si there exists a dictionary Φi (which can be

overcomplete), such that solving

αopt
i = argmin

α
‖α‖0, subject to s = Φα

leads to a very sparse solution. Sparse representations are representations that

account for most or all information of a signal with a linear combination of a

small number of elementary signals called atoms (i.e. ‖αopt
i ‖0 is very small). ‖z‖0

denotes the `0 pseudo-norm of the vector z, i.e. the number of non-zero coefficients

of z (`0 ≡ ‖z‖0 , #(i; zi 6= 0)).

• Also for every possible source signal sj , where j 6= i

αopt
j = argmin

α
‖α‖0, subject to sj = Φiα

leads to a very non-sparse solution (i.e. ‖αopt
j ‖0 is very large).

Therefore the obtained dictionary is composed of atoms built by associating several

transforms Φ = [Φ1, ...,Φk] such that, for each i (i = 1, ..., k), si is sparse in Φi and is

non-sparse in Φj , i.e.

∀i, j 6= i ‖ΦT
i si‖0 < ‖ΦT

j si‖0. (5.29)

In order to obtain the sparsest of the possible representations over the overcomplete

dictionary (Φ) the MCA technique is required to solve the following equation:

{αopt
1 , ...,αopt

k } = argmin
{α1,...,αk}

k∑
i=1
‖αi‖0 (5.30)

subject to x =
k∑
i=1

Φiαi.

However, the problem formulated in Equation 5.30 can be difficult to solve due to the

use of the `0 norm. The complexity of the algorithm will grow exponentially with the
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number of columns in the dictionary. When using the basis pursuit model Chen et al.

[35] proposed the use of the `1-norm instead of the `0-norm thus allowing for a less

computationally expensive optimisation problem. The `1-norm can be defined as:

`1 ≡ ‖z‖1 ,
n∑
i=1

|zi|. (5.31)

Further, the constraint on Equation 5.30 can be relaxed slightly to reduce the processing

time and improve the algorithms robustness and thus the equation becomes

{αopt
1 , ...,αopt

k } = argmin
{α1,...,αk}

k∑
i=1
‖αi‖1 (5.32)

subject to ‖x−
k∑
i=1

Φiαi‖2 < σ.

where σ is the noise standard deviation and ‖ . ‖2 represents the Euclidean norm. The

MCA algorithm, described below, is based on an iterative, alternate, matched filter-

ing and thresholding scheme. The algorithm is presented for the case in which two

underlying signals are to be separated (i.e. signal and artifact).

1. The dictionaries to be employed are selected and are used to create the overcom-

plete dictionary Φ. (The choice of dictionaries is described in Section 5.5.2.)

2. The total number of iterations Imax and the initial threshold value δ are set. The

threshold value is used to help maintain the sparsity of the matrices. The starting

threshold (δinit) is set as the minimum of the maximum coefficient of the signal in

each dictionary.

(i.e. calculate αi = ΦT
i x, for i = 1, 2. δinit = min( max(α1),max(α2)) )

3. While the current iteration number is less than Imax perform the following steps

to calculate the current approximation for the underlying signals si for i = 1, 2.

For the first iteration si is set to 0;

(a) Calculate the residual signal to be analysed

r = x−
2∑
i=1

si. (5.33)

(b) The total signal to be analysed using dictionary i is thus

ri = r + si. (5.34)
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(c) Calculate the coefficients αi for the signal ri by running the fast analysis for

the chosen dictionary.

αi = ΦT
i ri. (5.35)

(d) Perform hard thresholding on the coefficients, retaining only the coefficients

whose values are above the pre-defined threshold δ, to calculate the new

coefficients α̂i. i.e.

α̂
(n)
i =

α
(n)
i if α

(n)
i > δ

0 if α
(n)
i ≤ δ

for n = {1, ...N} (5.36)

where N is the number of coefficients. This step ensures the matrices remain

as sparse as possible.

(e) Use these new coefficients to reconstruct the new estimate of si

ŝi = Φiα̂i. (5.37)

4. The threshold value δ is reduced after each iteration to allow each dictionary to

better represent the residual signal [17]. The threshold is reduced by λ on each

iteration where

λ =
δinit − λmin

Imax
. (5.38)

Therefore on the last iteration the threshold value will equal to λmin, where λmin

is equal to three times the standard deviation of the noise.

5.5.2 Choice of the optimum dictionaries

As stated previously, the MCA uses dictionaries of atoms for which a fast transform is

available [17]. In order to determine the optimum dictionaries to employ to represent the

desired and artifact signal a range of different dictionary combinations were analysed.

Fadili et al. [54] present a number of dictionaries which can be implemented with the

MCA algorithm and the tested dictionaries are listed below.

• DCT - Discrete cosine transform (DCT) dictionary. Expresses a sequence of finitely

many data points in terms of a sum of cosine functions oscillating at different

frequencies.

• LDCT - Local transform using a DCT dictionary. It is local as is computed over

windows of the data, similar to the short time fourier transform (STFT).
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• ALDCTiv - Adaptive Local DCT-iv transform [103]. DCT-iv is another variant

of the DCT transform with a slightly modified definition. The DCT-iv algorithm

outperforms the DCT-ii transform used above for large transform sizes [26].

• LDST - Local transform using a discrete sine transform (DST) dictionary. DSTs

express a function or a signal in terms of a sum of sinusoids with different frequen-

cies and amplitudes.

• LDSCT - Local transform using a DCT-DST dictionary.

• ATrou - Fast Dyadic wavelet Transform [101]. This algorithm is more famously

known as “algorithme à trous” in French (the word trous means holes in English)

which refers to inserting zeros in the filters. It uses a biorthonormal quadratic

spline filter pair.

• UDWT - Undecimated wavelet transform. This uses wavelet algorithms that are

shift invariant.

• LWP - Wavelet Packet dictionary.

The choice of the optimum dictionary is crucial to the operation of the MCA al-

gorithm. The chosen dictionaries must be capable of accurately representing only the

desired signal type. As the dictionaries employing the DCT or DST variations represent

similar waveforms they were only compared against the dictionaries which employed

wavelets (i.e. ATrou, UDWT, LWP). This resulted in 18 different possible combinations

of dictionaries.

In order to chose the optimum dictionary pair the performance was evaluated using

the benchmark fNIRS and EEG training datasets introduced in Chapter 4. Using the

available “ground truth” signal it is also possible to extract an estimate of the artifact

signal (i.e. difference between the noisy signal and the clean “ground truth” signal).

The MCA algorithm was run for each dictionary combination on both the EEG and

fNIRS training data and the correlations of the separated signals (s1 and s2) with the

“ground truth” and artifact signals were calculated. The results for the EEG and fNIRS

data can be seen in Figure 5.10 and 5.11 respectively.

The first subplot represents the correlation of the first signal s1 with the “ground

truth” signal and the second signal s2 with the artifact. The second subplot then shows

the opposite with the correlation of the first signal s1 with the artifact signal and the

second signal s2 with the “ground truth”. The optimum dictionaries were determined as
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Figure 5.10: Correlation of the outputs of the MCA technique with the desired clean
EEG signal and the artifact. Combinations of dictionaries are shown on the side.
Ideally signals should have high correlation on one plot and very low correlations on
the second. It can be seen that the combination of DCT and ATrou gives the best

results, with DCT representing the signal and ATrou representing the artifact.

Figure 5.11: Correlation of the outputs of the MCA technique with the desired clean
fNIRS signal and the artifact. Combinations of dictionaries are shown on the side.
Ideally signals should have high correlation on one plot and very low correlations on
the second. It can be seen that the combination of LDSCT and ATrou gives the best

results, with ATrou representing the signal and LDSCT representing the artifact.

the pair which returned a high correlation for both signals in one subplot, while having a

low correlation in the second. This pair could then be said to conform to Equation 5.29.
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For the EEG signal it can be seen that the combination of the discrete cosine trans-

form (DCT) and the ATrou dictionaries gives the best results in terms of correlation

with the desired signals. This representation of the EEG signal by the DCT dictio-

nary also ties in with the results found by Yong et al. [210] [211] when denoising EEG

contaminated with spikes, muscle and ocular artifacts. The ATrou dictionary is more

proficient at representing the slower changing artifact signal.

For the fNIRS contaminated signal the dictionaries ATrou and LDSCT were deemed

to be the optimum in terms of separation. However as the morphology of the artifact

signal and the desired signal were not as distinct as for the EEG signals, the dictionaries

did not yield results as accurate as those obtained with the EEG data. The local discrete

sine cosine transform (LDSCT) dictionary was deemed to be the best at representing

the artifact signal while using the ATrou dictionary to represent the desired signal. In

truth, the choice of dictionary for the artifact could also have been chosen to be either

the DCT or LDCT as all three results are similar.

5.5.3 Optimising the dictionary parameters

After the optimal dictionaries were chosen, the parameters of the dictionaries were tuned

so as to give the best results for the lowest computational time. The ATrou dictionary

requires a parameter called the scale value as input which determines the number of

detail levels to omit in the decomposition. The DCT dictionary takes in a fineness

parameter as its input. This parameter determines the fineness or coarseness of the DCT

coefficient quantisation; the higher the fineness the more coefficients used to represent

the signal. Figure 5.12 shows how the computational time of the MCA technique changes

when operating on EEG data, using the ATrou and DCT dictionaries, with changing

parameter values. Figure 5.13 then shows how the correlation of the output with the

“ground truth” signal changes with changing parameter values. From these figures the

optimum parameter values were chosen. The scale parameter for the ATrou was set

to 9, and the fineness parameter was set to 2. This ensured that the correlation value

remained high while the computational time remains as low as possible.

When using the MCA algorithm on the fNIRS data the LDSCT dictionary is em-

ployed. The input parameters for this dictionary are the window width and the amount

of overlap of the windows. Figure 5.14 shows how the computational time of the MCA

technique changes when operating on the fNIRS data, using the ATrou and LDSCT dic-

tionaries, with changing parameter values. Figure 5.15 then shows how the correlation

of the output with the “ground truth” signal changes with these changing parameter
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Figure 5.12: Change in computational time of the MCA algorithm employed on
the corrupted EEG with changing input parameters to the two dictionaries DCT and

ATrou.

Figure 5.13: Change in correlation between the output of the MCA algorithm and
the “ground truth” EEG signal with changing input parameters to the two dictionaries

DCT and ATrou.

values. From the information shown in these figures the optimum parameters for the

LDSCT dictionary were chosen to be 16 for the window width and 0.25 for the overlap.

A scale of 10 was also found to be optimum for the ATrou dictionary.
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Figure 5.14: Change in computational time of the MCA algorithm employed on the
corrupted fNIRS with changing input parameters to the two dictionaries LDSCT and

ATrou.

Figure 5.15: Change in correlation between the output of the MCA algorithm and the
“ground truth” fNIRS signal with changing input parameters to the two dictionaries

LDSCT and ATrou.

5.5.4 Employing the MCA algorithm

With the optimum parameters set for the fNIRS and EEG dictionaries the MCA al-

gorithm could be employed to separate the artifact signal from the desired signal for

each of the trials in the test dataset. The number of iterations (Imax) was set to 100

to allow for a small change in the threshold value (λ) on each iteration and thus a

more accurate separation of the signals. Once the signals have been separated using the
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employed dictionaries, the cleaned signal can simply be selected. For the fNIRS data

this was the signal represented using the ATrou dictionary and for EEG data it was the

DCT dictionary. The efficacy results for the technique are presented in Section 5.7 with

Figure 5.25 and 5.26 showing an example output of the technique.

If further artifact signals are known to be contaminating the signal, additional dictio-

naries can be added. Yong et al. [210] [211] employed three dictionaries for the removal

of spike and muscle artifacts from EEG signals.

5.6 Adaptive Filter

The adaptive filter is an extension to the artifact removal technique employed by the

Wiener filter. As stated in Section 5.3 the Wiener filter uses statistical techniques to aid

in the removal of the undesired noise from signals of interest. The filter computes the

optimal filter coefficients in the situations where the original source signals are known

to be stationary. When the signals are stationary the “error” surface E[ε 2] forms a bell

shape which is fixed in position, similar to that shown in Figure 5.16. Using statistical

properties the minimum of the bell can be found, corresponding to the minimisation of

the error. However, when the signals are not stationary this bell shape, corresponding

to the error at different filter weights, shifts over time. The optimal weights at one time

point will therefore no longer be optimal at another. In these situations an adaptive

filtering technique is required which will be capable of adapting the weights over time.

An adaptive filter is defined as a self-designing system that relies on a recursive

algorithm for its operation. This enables the filter to perform in environments where

there is insufficient knowledge of the statistics of the signals to compute filter parameters

a priori [72]. The first designed linear adaptive filter algorithm was the least-mean-

squared (LMS) algorithm developed by Widrow and Hoff in 1959 [201].

As stated in Section 3.1, the two families of algorithms most commonly implemented

for the adaptive filter are the LMS and RLS algorithms. The recursive least square (RLS)

algorithm attempts to estimate approximations for Rxx and rsx from Equation 5.11

and therefore compute wopt. The RLS class of algorithms have very fast convergence,

however this benefit comes at a cost of high computational complexity O(L2). The LMS

based algorithms do not use the statistical properties of the signals to determine wopt

but instead iteratively approximate the gradient of the error surface and use gradient

descent to determine the next best approximation for wopt. The LMS algorithms are the

most commonly implemented adaptive filter algorithms to date due to their simplicity
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Figure 5.16: The Wiener filter finds the optimum weights wopt using statistical meth-
ods so as to reduce the error. However when the signals are non-stationary this bell
changes shape and location at each iteration and thus wopt will no longer be optimum.

and low complexity (O(L)) and are the family of algorithms that were employed for the

analysis in this thesis.

Operation of the adaptive filter

From Figure 5.17 it can be seen that the desired signal ŝ(n) can be calculated as [94]

ŝ(n) = x(n)− v̂(n)

= x(n)−
L−1∑
i=0

wi(n)u(n− i)

= x(n)−wT (n)u(n), (5.39)
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Figure 5.17: Adaptive Filter Framework for Artifact Removal

where x(n) is the recorded signal which is contaminated with noise, u(n) is the reference

signal and v̂(n) is the output of the adaptive filter. u(n) is the output of the tap-delay-

line and can be defined as u(n) = [u(n), ...u(n − L − 1)]T . The desired signal and the

artifact signal are assumed to be uncorrelated and therefore the signal v̂(n) will only

be capable of modeling the artifact within the recorded signal x(n). As can be seen

in Figure 5.16 the filter aims to find the coefficients which will result in the minimum

“error”, in this case the minimum E[ŝ2(n)]. To reduce the “error” the filter attempts

to represent all the artifact in the signal thus leaving the desired approximation of the

true signal. To determine the optimum coefficients the adaptive filter uses the gradient

descent method.

The purpose of the gradient descent algorithm is to find the direction of maximum

gradient of the “error” signal (ŝ2(n)) as shown in Figure 5.18. The gradient (O) points

in the steepest uphill direction of the surface at the current location, with its magnitude

proportional to the slope at that point. Using this information the LMS algorithm

updates the filter coefficients by taking a step in the direction opposite to the gradient,

therefore stepping towards the minimum point of the bell.

w(n+ 1) = w(n)− µ∇(n). (5.40)

µ is the step size and determines how quickly the algorithm will converge to the mini-

mum. If µ is too small the algorithm will require a large number of iterations and thus

a long time to converge to the optimum thus giving poor results. However, if µ is too

large the algorithm will take steps that are too large and thus the algorithm can become

unstable. The choice value for µ will be dealt with later in this section.
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W1

W0

Figure 5.18: An example of the gradient of a contour plot. The gradient ∇ shows
the steepest uphill direction of the surface at the current position.

In order to be capable of updating the weights, the current gradient (∇(n)) at each

step must first be calculated using:

∇(n) =
∂

∂w

(
E[ŝ2(n)]

)
. (5.41)

This equation is not tractable, however Widrow and Hoff showed that ŝ2(n) can be used

as a noisy approximation to E[ŝ2(n)] and thus Equation 5.41 can be can approximated

by:

∇̂(n) =
∂

∂w

(
ŝ2(n)

)
= 2ŝ(n)

∂

∂w

(
x(n)−wT (n)u(n)

)
= −2ŝ(n)u(n). (5.42)

Using this formula the full LMS adaptive filter algorithm can be developed.
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v̂(n) = wT (n)u(n)

ŝ(n) = x(n)− v̂(n)

w(n+ 1) = w(n)− µ∇̂(n)

= w(n)− µ(−2ŝ(n)u(n) )

= w(n) + 2µŝ(n)u(n). (5.43)

As stated previously the convergence rate of the filter is dependent on the choice of

the step size µ. A number of different authors present different bounds for the values to

ensure stability of the system. A common criterion is that the choice of µ be less than

λ−1max where λmax is the largest eigenvalue of the autocorrelation matrix R.

µ <
1

λmax
. (5.44)

However λmax may not be known or it could be time varying [94]. A more conservative

bound is given as [123]:

µ <
1

Lσ2x
(5.45)

where σ2x is the mean squared value of the input signal, i.e. the signal power, a quantity

that can be readily estimated directly from the input signal and L is the number of filter

taps.

This requirement of the LMS algorithm to have a fixed step size for every iteration

is a disadvantage [36]. The normalised LMS (NLMS) algorithm was developed as an

extension to the LMS algorithm which calculates the maximum step size value. The

step size (µ) is now calculated as:

µ =
µ̂

uT (n)u(n) + α
. (5.46)

µ̂ is usually set to 0.5 and α is a very small number used to ensure that the denominator

doesn’t become zero. The step size is proportional to the inverse of the total expected

energy of the instantaneous values of the coefficients of the input vector u(n). The

recursive formula for the NLMS algorithm therefore becomes:

w(n+ 1) = w(n) +
1

uT (n)u(n) + α
ŝ(n)u(n). (5.47)
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There are also a number of other deviations on this formula, however the displayed

recursive formula is the most commonly implemented.

Reference for the adaptive filter

In order to apply the adaptive filter, an appropriate reference signal must be obtained.

As stated in Section 3.1 these reference signals can be of a number of different forms.

The recording systems employed to record the fNIRS and EEG data, as described in

Section 4.1, also incorporated accelerometers and thus these were used to generate the

required reference. These accelerometers provide acceleration information on the move-

ment of the recording optodes or electrodes. As this movement can be assumed to be

completely independent from the underlying signals of interest the accelerometer outputs

became a useful reference source.

The acceleration signal alone was not an accurate enough representation of the con-

taminating artifact to be an effective reference (in terms of cross-correlation), so a num-

ber of processing steps were completed to increase this correlation. A Kalman filter

was first employed to model the velocity (vel(n)) and positional (pos(n)) data from the

available noisy acceleration (acc(n)) data using the following equations [57]:

vel(n+ 1) = vel(n) + acc(n) t (5.48)

pos(n+ 1) = pos(n) + vel(n) t+
1

2
acc(n) t2. (5.49)

Figure 5.19 shows an example output of the Kalman filter showing the correspond-

ing calculated positional and velocity change for the inputted acceleration. It is also

assumed that the position of the optode or electrode always returns to its starting posi-

tion following the disturbance and thus the positional and velocity graphs have a steady

state value of 0.

The acceleration, velocity and positional signals were then used as inputs to a single

hidden layer neural network (NN) to generate a model of the artifact signal to use as

a reference signal as a simple linear model did not produce the desired correlation with

the artifact signal. This NN was trained a priori using the available training datasets

for both the fNIRS and EEG data. Figure 5.20 presents a comparison between the

actual artifact signal (difference between the two recorded channels) and the determined
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Figure 5.19: Calculated change in velocity and position from an example acceleration
input signal calculated using a Kalman filter.

reference signal for a given example. The reference signal can be seen to have a high

similarity with the artifact signal. For this example the correlation between the artifact

signal and the reference was calculated as 0.91 over the full signal.

Employing the adaptive filter

With a valid reference signal, the adaptive filter can then be employed. The adaptive

filter coefficients (filter length L, µ and α) were tuned using the available training data so

as to produce the best case results. For fNIRS the values were set as L = 4, µ = 0.5 and

α = 0.05. For the EEG data the values were set as L = 16, µ = 0.5 and α = 0.05. With

the coefficients set the adaptive filter could be run on the remaining test data. Once

the adaptive filter has been run, the filter output is the original signal with the artifact

signal removed. Section 5.7.4 provides an overview of the results obtained when using the

adaptive filter on artifact contaminated fNIRS and EEG data with Figure 5.27 and 5.28

showing an example output of the algorithm when employed on the fNIRS and EEG

data respectively.
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Figure 5.20: Calculated reference signal for an example fNIRS trial.

5.7 Results

Using the novel recording methodology, as described in Chapter 4, it is now possible

to accurately test the efficacy of artifact removal techniques described in this chapter

using the benchmark fNIRS and EEG test datasets. The goal of each artifact removal

technique is to return the artifact contaminated signal to its true state. Thus using

evaluating metrics, such as ∆ SNR (Equation 4.7) and the percentage improvement in

correlation (λ) (Equation 4.8), it is possible to quantify the particular technique’s ability

to remove the undesired artifact.

When analysing the fNIRS dataset, the calculated average correlation over all trials

over the epochs of clean data between the “ground truth” signal and the noisy signal

was calculated as 0.769 while the average correlation over the whole signal was 0.584.

This value of 0.769 can therefore be seen as the realistic best case result for the various

artifact removal techniques. In terms of SNR, before employing any of the removal

techniques the average SNR over the full signals was -3.65 dB, whereas when calculated

solely over the epochs of clean data this value was calculated as 1.53 dB (calculated

using the SNR described in Equation 4.7).
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For the EEG data the correlation over the clean data was determined to be 0.836,

while the correlation over the full signal was 0.397. Finally the SNR prior to employing

the various techniques was -6.13 dB when calculated over the average of the full signals.

When only the clean epochs were analysed, the SNR rose to 6.06 dB.

The results obtained using the various single stage artifact removal techniques are

presented below. For each technique the calculated ∆ SNR and λ values are presented

as well as plots of sample outputs from the technique when applied to both the fNIRS

and EEG data. In addition, any input parameters required are highlighted as well as

any deviation from the normal operation of the technique. Two different scenarios are

considered:

• Scenario 1: The techniques are applied over the full signals (contaminated epochs

and clean epochs).

• Scenario 2: The techniques are only employed on the epochs containing artifact

contamination as determined using the data tagging algorithm presented in Sec-

tion 5.1.

In both scenarios the λ and ∆ SNR values are still calculated over the full signal to

facilitate direct comparison.

5.7.1 Wiener Filter

As noted in Section 5.3.3, prior to running the Wiener filter the power spectral densi-

ties (PSD) of the clean “ground truth” signal and the noise signal were required. This

measurement was performed off-line prior to applying the filter as described in Sec-

tion 5.3.3. Figure 5.21 and Figure 5.22 present an example output of the filter for fNIRS

and EEG data respectively. The original noisy signals from these trials can be seen in

Figures 4.5 and 4.8.

The efficacy of the artifact removal technique was determined using the ∆ SNR

and λ metrics described in Section 4.5. For the fNIRS data, the Wiener filter provided

an average ∆ SNR of 4.67 dB over all trials. The standard deviation of this metric

was also calculated to assess the variability of the results. The ∆ SNR metric had a

standard deviation of 2.55 dB, which in future will be presented in brackets (i.e. ∆ SNR

was 4.67 dB (2.55)). The percentage improvement in correlation (λ) was calculated as

33.64 % (55.82) therefore providing a new average correlation over all trials of 0.65.
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When the data tagging algorithm was employed, the artifact removal techniques

were only used during epochs of detected motion. However, to allow for comparison,

the λ and ∆ SNR values were still calculated over the full signal. The ∆ SNR value was

calculated as 5.04 dB and the λ value was determined to be 64.03 %.

Similarly, over all trials of the EEG test data, the ∆ SNR was calculated as 9.66 dB (3.64)

with a λ value of 65.41 % (32.46). This λ value represents an average increase in cor-

relation from 0.29 to 0.68 over all trials. When only employing the algorithms during

detected epochs of movement the λ value increased to 86.35 % and the ∆ SNR value

became 10.31 dB.

5.7.2 Kalman Filter

In order to compare the generic Kalman filter algorithm with the “adaptive” Kalman

filter proposed in this thesis, results are presented for both implementations. Prior

to applying the Kalman filter the parameters were set as stated in Section 5.4. For

the original Kalman filter the measurement noise covariance matrix (R) was set as

the variance of the artifact signal (noisy signal minus the “ground truth” signal). For

the adaptive Kalman filter R was set as the variance of the artifact signal calculated

during epochs of motion when movement was detected by the reference signal and as

the variance of the artifact signal calculated during epochs of no movement when the

reference signal did not detect any motion.

The results show that the adaptive Kalman filter is far superior to the basic Kalman

filter. Using the basic Kalman filter on the fNIRS test dataset the ∆ SNR was 4.82 dB (2.3)

while λ was -43.74 % (74.18). However for the adaptive Kalman filter with changing

R, the ∆ SNR was 6.6 dB (2.3) and the percentage improvement in correlation was

74.33 % (68.84). When the Kalman filter was only employed during the determined

noisy epochs the ∆ SNR was5.37 dB and the λ value was 70.24 %.

Similar results were also observed when operating on the EEG test dataset. The

original filter produced a ∆ SNR of 7.01 dB (3.63) and a λ of -12.14 % (20.45) whereas the

adaptive Kalman filter produced a ∆ SNR of 9.98 dB (4.73) and a λ of 82.43 % (38.06).

An example of the output produced by the adaptive Kalman filter for fNIRS and EEG

data is shown in Figure 5.23 and in Figure 5.24, respectively. When the Kalman filter

was employed on the noisy epochs only, the correlation improvement over the full signal

became 84.03 % and the ∆ SNR value was 9.11 dB.
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Figure 5.21: Example fNIRS trial showing cleaned signal following artifact removal
using a Wiener filter.

Figure 5.22: Example EEG trial showing cleaned signal following artifact removal
using a Wiener filter.

5.7.3 Morphological Component Analysis

Once the optimum dictionaries and parameters to employ have been determined (Sec-

tion 5.5.2 and 5.5.3) the MCA algorithm can be applied to the test datasets. Figure 5.25
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Figure 5.23: Example fNIRS trial showing cleaned signal following artifact removal
using a Kalman filter.

Figure 5.24: Example EEG trial showing cleaned signal following artifact removal
using a Kalman filter.

shows an example output of the MCA algorithm for a noisy fNIRS input signal. This

technique was capable of producing an average ∆ SNR of 5.25 dB (1.94) over all trials

and a correlation improvement (λ) of 72.9 % (57.53). When the technique was only

used during epochs of movement data, the ∆ SNR reduced to 4.69 dB and the λ score
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reduced to 68.67 %.

Similarly good results were also observed when operating on the EEG data where

the technique had a ∆ SNR of 9.35 dB (4.5) and a λ of 71.55 % (38.91). Figure 5.26

shows an example output of the MCA algorithm for the EEG data. Again these metrics

were also determined when the algorithm was applied over the epochs of movement data

only yielding an ∆ SNR of 9.29 dB and a λ score of 75.66 %.

5.7.4 Adaptive Filter

As stated in Section 5.6 the adaptive filter parameters were tuned using the training

dataset. When operating on the fNIRS data, the adaptive filter was capable of pro-

ducing ∆ SNR of 4.83 dB (2.6) and a percentage improvement in correlation (λ) of

46.86 % (85.16). An example output is shown in Figure 5.27. When employed on the

movement epochs only the ∆ SNR was 4.75 dB and the λ value was 64.88 %.

When contaminated EEG data is used as the input to the filter the technique had

an average ∆ SNR of 6.19 dB (2.9) and a λ value of 21 % (25.64). An example output

trace can be seen in Figure 5.28. The ∆ SNR value increased to 7.29 dB and the λ value

became 57.7 % when the adaptive filter was solely employed during epochs of detected

motion.

Table 5.1 and Table 5.2 provide an overview of the results obtained with each of

the artifact removal techniques on the full signal and the movement epochs only. In the

next section a detailed discussion and evaluation of these results will be presented.
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Figure 5.25: Example fNIRS trial showing cleaned signal following artifact removal
using morphological component analysis (MCA).

Figure 5.26: Example EEG trial showing cleaned signal following artifact removal
using morphological component analysis (MCA).

Table 5.1: The average % reduction in artifact (λ) and ∆ SNR for the benchmark
fNIRS and EEG datasets achieved with each of the single stage artifact removal tech-
niques considered in the chapter when applied to the full signal (Scenario 1). The

standard deviation of results across trials is indicated in brackets in each case.

Wiener filter Kalman filter Kalman filter MCA Adaptive filter

(adaptive)

fNIRS

λ
33.64 % -43.74 % 74.33 % 72.9 % 46.86 %

(55.82) (74.18) (68.84) (57.53) (85.16)

∆SNR
4.67 dB 4.82 dB 6.6 dB 5.25 dB 4.83 dB

(2.55) (2.3) (2.46) (1.94) (2.6)

EEG

λ
65.41 % -12.14 % 82.43 % 71.55 % 21.0 %

(32.46) (20.45) (38.06) (38.91) (25.65)

∆SNR
9.66 dB 7.01 dB 9.98 dB 9.35 dB 6.19 dB

(3.64) (3.63) (4.73) (4.5) (2.9)

129



Single Stage Artifact Removal Techniques

Figure 5.27: Example fNIRS trial showing cleaned signal following artifact removal
using an NLMS adaptive filter.

Figure 5.28: Example EEG trial showing cleaned signal following artifact removal
using an NLMS adaptive filter.

5.8 Discussion and Conclusion

In this section a comparison and evaluation of all of the techniques investigated in this

chapter will be performed. The results obtained when analysing the real data are used
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Table 5.2: The average % reduction in artifact (λ) and ∆ SNR for the benchmark
fNIRS and EEG datasets achieved with each of the single stage artifact removal tech-
niques considered in the chapter when applied to the motion artifact tagged epochs only
(Scenario 2). The standard deviation of results across trials is indicated in brackets in

each case.

Wiener filter Kalman filter Kalman filter MCA Adaptive filter

(adaptive)

fNIRS
λ 64.03 % 70.24 % 70.24 % 68.67 % 64.88 %

(54.17) (57.12) (57.12) (57.4) (61.62)

∆SNR 5.04 dB 5.37 dB 5.37 dB 4.69 dB 4.75 dB

(2.36) (2.36) (2.36) (2.24) (2.4)

EEG
λ 86.35 % 84.03 % 84.03 % 75.66 % 57.7 %

(35.77) (36.6) (36.6) (37.5) (28.93)

∆SNR 10.31 dB 9.11 dB 9.11 dB 9.29 dB 7.29 dB

(4.4) (4.35) (4.35) (4.53) (2.96)

Table 5.3: Average computational time for the analysed single stage artifact removal
techniques.

Wiener filter Kalman filter MCA Adaptive filter

fNIRS
0.13 sec 4.66 sec 18.46 sec 0.12 sec

(0.24) (0.31) (0.30) (0.002)

EEG
0.31 sec 16.12 sec 37.24 sec 0.39 sec

(0.41) (0.33) (1.07) (0.01)

for evaluation, and the chapter concludes by comparing these results to those obtained

using the simulated datasets. The availability of the required a priori information for

each algorithm, the possible requirement for additional sensors for use as a reference,

the computational time of the algorithm and the efficacy of the techniques all have a

impact on the usefulness of the techniques for employment for artifact removal from

physiological signals.

The Wiener filter only requires that the PSD of the clean and noisy signal be available

prior to application of the algorithm. This requirement is not overly onerous as test data

can easily be recorded prior to using the technique and the PSD of the signals is simple

to determine. Compared to a number of the other techniques considered, the Wiener

filter performed quite poorly for the fNIRS test dataset. However, when the filter was

only applied during the known contaminated epochs, its performance greatly improved

with the percentage increase in correlation (λ) almost doubling. This would suggest

that, although proficient at removing the artifact from the signal, the Wiener filter also

significantly degrades the clean epochs of the signal. This can again be seen with the

EEG data, although to a lesser degree. Again there is a significant improvement in the

value of λ when the technique is employed over the contaminated epochs only, compared
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to application to the full signal. When the algorithm is employed over the movement

epochs only, the technique has the highest efficacy of all the analysed techniques for both

λ (86.35 %) and for ∆ SNR (10.31 dB). The reason for the degradation of the signals

over the clean epochs is that the filter is optimised using the PSD of the clean and noisy

signals. Therefore when analysing the clean epochs, the PSD of the noisy signal can

degrade the quality of the clean, artifact free data. Further complications can arise if

the form of the added artifact changes dramatically during analysis from that used to

calculate the PSD during training as this PSD would no longer accurately represent the

signal. As an added advantage, the Wiener filter is a very fast algorithm with the average

computational time for the fNIRS and EEG data calculated as 0.13 seconds (0.24) and

0.31 seconds (0.41) respectively.

As stated in Section 5.4, the Kalman filter analysed in this chapter was run using

two different approaches. Firstly the common form of the filter was run, where the noise

covariance matrix R remained static throughout the analysis. In order to utilise the

algorithm a number of system and process models must first be initialised as discussed

in Section 5.4.2. This, similar to the Wiener filter, requires that there be an initial

training stage prior to the running of the algorithm. The accuracy of the models used

will have an affect on the efficacy of the employed filter. Using the common form of

the filter the determined efficacy was extremely poor. The main reason for this was

the serious degrading effect of the filter on the clean data as can be seen in Figure 5.9.

Due to this poor result, the second form of the Kalman filter was introduced. In this

form the noise covariance matrix was altered, depending on the position of the current

sample. Therefore when analysing samples within the clean epochs the value of R was

different then when analysing data within the contaminated epochs. The results shown

in Table 5.1 show the overall improvement after employing the novel technique. For both

the fNIRS and EEG data, the Kalman filter with adaptive R performs to the highest

standard. Applying the Kalman filter, only during epochs of contaminated data, does

not improve results. In fact there is a slight degradation in performance. This maybe

because adapting R already takes advantage of the opportunity for improvement. The

Kalman filter is a computationally intensive algorithm, and its computational time can

be many times greater than some of the other single stage artifact removal techniques

investigated. For the fNIRS data the average computational time for the algorithm was

4.66 seconds (0.31) and it was longer again for the EEG data at 16.12 seconds (0.33).

The reason for the longer duration with the EEG data is the greater number of data

samples in this dataset, due to the higher sampling frequency.

The dictionaries used to represent the underlying signals need to be chosen prior to

running MCA. In common with the Wiener and Kalman filters this initialisation step
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only has to be completed once so long as the signal and artifact morphologies do not

change. If the technique was to be used to remove artifacts of a different nature then

a new independent dictionary would be required. MCA performed very well for both

the fNIRS and EEG data with λ values of 72.9 % and 71.55 % respectively. Although

both efficacy values are below those obtained using the adaptive Kalman filter, MCA

does not require the use of the reference signal facilitating a reduction in the complexity

of the recording system required. Further using the reference signal as part of the

scenario 2 implementation, where MCA is only applied during epochs of clean data

does not add substantially to the efficacy of the results. In fact for the fNIRS data

both λ and ∆ SNR decrease in value. A possible reason for this decrease could be

that when performed over the full signal the MCA algorithm removed some of the

low amplitude artifacts in the clean signal not due to subject motion. The MCA is a

computationally complex algorithm due to the number of iterations required to estimate

the morphological component representations of the signals. As specified in Section 5.5.4

the algorithm was run for 100 iterations to allow for a small change in the threshold value

on each iteration and thus a more accurate separation of the signals. The algorithm

took, on average, 18.46 seconds (0.30) to complete each trial of the fNIRS data and

37.24 seconds (1.07) when employed with the EEG data.

The NLMS adaptive filter parameters were optimised prior to the application of

the filter. In comparison to the other single stage artifact removal techniques, the

Adaptive filter’s efficacy was low for both the fNIRS (46.86 %) and EEG (21.0 %)

data. This value increased significantly when only the epochs contaminated with the

artifacts were analysed using the technique. During this analysis the adaptive filter had

comparable results to both the Wiener and MCA algorithms when utilised on the fNIRS

data, whereas for the EEG dataset the algorithm remained sub-par when compared

to the other single stage techniques. When comparing the computational time, the

adaptive filter is very similar to the Wiener filter in that the average time taken to

analyse each trial of fNIRS data is 0.12 seconds (0.002) and for EEG data this becomes

0.39 seconds (0.01).

Overall the MCA algorithm presents itself as a highly efficient algorithm for artifact

removal while also having the benefit of not requiring any additional sensors to be used

as a reference signal. This algorithm therefore lends itself well to home-health recording

systems for which the addition of external sensors is undesired. The computational time

of the algorithm and the iterative nature prevents it from being employed in real time.

However, the 9 minutes of fNIRS data took, on average, 18.46 seconds to analyse, hence

the overall delay in recordings could be quite small if the algorithm was utilised on a

shorter data set. The requirement to select and optimise the dictionaries is however
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a disadvantage as it restricts the signals which can be used with any particular setup.

When the reference signal is available both the Wiener and Kalman filters have a sig-

nificantly higher efficacy score when applied on the EEG dataset. It can also be seen

from Figure 5.22 and 5.24 that the Wiener filter retains the morphology of the EEG

signal better than the Kalman filter, which often retains some of the lower frequency

oscillations. The Wiener filter is therefore seen as the best single stage artifact removal

technique when the reference signal is available as it is very simple to setup, it has a low

computation time and provides accurate results.

Figure 5.29: Determined results using the simulated data. The results shown rep-
resent the use of the algorithms over the full signal (both clean and contaminated

epochs).

Each of the algorithms above were also tested on the simulated data described in

Section 4.8. The bar chart in Figure 5.29 shows the results for λ and ∆ SNR for the

simulated data when applying the algorithms over the full signal. These results are

similar (in terms of the best algorithms) to those obtained using the real data. One

striking difference is that the adaptive filter yields the greatest improvement in λ for

both the fNIRS and EEG data. The probable reason for the improved performance

is the availability of an accurate reference signal for the noise (which was actually the

noise signal itself). The Wiener filter provided the poorest results when employed on

the simulated contaminated fNIRS data, which is the same pattern observed with the
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real data. Similarly, these results greatly improved when the algorithm was applied to

the artifact contaminated sections only, becoming competitive with the Kalman filter

and the MCA algorithm.

The results presented above highlight the value of two of the contributions of this

thesis. Firstly, the use of the novel QOS metric greatly improves the efficacy results

obtained by allowing the switching of the algorithms so that they are solely employed

when the artifacts are detected. Secondly the results also highlight the importance of

the benchmark real dataset obtained by utilising the novel recording methodology. By

using exclusively simulated data, the results (such as those for the adaptive filter) can

be overly optimistic and can therefore distort the true artifact removal capabilities of

particular artifact removal techniques.
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Chapter 6

Two Stage Artifact Removal

Techniques

In the previous chapter a number of single stage artifact removal techniques, which

are capable of performing artifact removal on single channel measurements without the

requirement for any additional algorithms, were evaluated. In this chapter two sig-

nal processing algorithms which can be employed for two stage artifact removal are

detailed, namely wavelet analysis and ensemble empirical mode decomposition. As

stated previously, the techniques are labeled two stage as they require the use of ad-

ditional algorithms to aid in the identification of the artifact components from the de-

composed signals. Significantly, these two techniques are also capable of generating a

multi-dimensional representation of the single channel signal enabling the use of some of

the more intricate multi-dimensional artifact removal algorithms described in Chapter 3.

The aim of this joint use of two artifact removal techniques is to further increase the

overall artifact removal capability provided by each individual technique.

The combination of the multi-dimensional canonical correlation analysis algorithm

with the wavelet transform (W-CCA) and the EEMD algorithm (EEMD-CCA) for ar-

tifact removal constitute the novel contributions of this chapter [182]. Importantly the

novel EEMD-CCA combination is shown to have an increased artifact removal efficacy

compared to the previously available two stage removal techniques when analysing fNIRS

data. This result is verified with respect to two previously documented two level tech-

niques, namely Wavelets with independent component analysis (W-ICA) and EEMD

with independent component analysis (EEMD-ICA).

The operation of the four aforementioned techniques (Wavelet, EEMD, ICA, CCA)

is initially described in detail in the chapter. Following this, a description of both the

136



Two Stage Artifact Removal Techniques

novel (EEMD-CCA, W-CCA) and the previously documented combinations (W-ICA,

W-CCA) of the techniques are provided. The chapter continues with a comparison

of the various techniques discussed in this chapter, using both the benchmark real and

simulated fNIRS and EEG datasets where the results are presented in Tables 6.1 and 6.2.

It should be again noted that the novel EEMD-CCA algorithm is shown to provide the

best efficacy results when analysing the fNIRS data under certain conditions. The

chapter concludes with an overall comparison of all techniques (both single and two

stage) described in the thesis with a view to providing a suggestion as to the best

technique to employ for motion artifact removal from physiological signals.

6.1 Wavelet Transform

Wavelet transform analysis, as it is now known, is a fairly new analysis technique emerg-

ing in the early 1980’s where it was first developed by Morlet et al . [137] to analyse

seismic signals. Prior to the development of the wavelet transform, Fourier transforms

[196] were the most common method to analyse the frequency content of a signal, and

are still widely used today. A Fourier transform takes any function and converts it to

an equivalent set of sine and cosine functions and can thus be used to determine the fre-

quency content of the function. However, the basic Fourier transform algorithms (such

as the discrete Fourier transform (DFT) and the fast Fourier transform (FFT) [25])

contain time-averaged frequency information (Figure 6.1) and therefore if the signal is

non-stationary, the algorithms are incapable of determining the position in the signal

where a particular frequency component changes.

This limitation can be overcome, somewhat, by use of the short time Fourier trans-

form (STFT) [2]. The STFT introduces a window function and computes the Fourier

transform over specific portions of the input signal. The STFT is therefore capable of

determining the sinusoidal frequency and phase content of local sections of a signal as it

changes over time. The output of the transform has two parameters, time and frequency

(Figure 6.1). However, due to the fixed window size the STFT has a fixed resolution;

the width of the windowing function relates to how the signal is represented. If there is

a wide window function then the STFT will have a high frequency resolution but poor

time resolution whereas if the window is short the function will produce a good time

resolution but inadequate frequency resolution.

It was recognized that to represent a signal sufficiently, there was a requirement

for a technique capable of both good temporal and frequency resolution (i.e. a short

window width for high frequency components and a longer window to represent the slow
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Figure 6.1: Figure showing the different information available using some of the
different available transforms.

changing low frequency components). This desire lead to the development of the theory

of wavelets, where the windowing functions can be scaled and localised to represent the

underlying signal components as required. Wavelet theory has been developed over the

past three decades by a number of researchers (e.g. [44] [38] [119] [127]) and is now

employed in many different areas including science, engineering and mathematics and is

particularly useful for the analysis of transients, aperiodicity and other non-stationary

signal features.

6.1.1 Continuous Wavelet Transform

Similar to the FFT and other transforms, the wavelet transform is a method of trans-

forming a signal into a different form, allowing for a simpler investigation. The wavelet

transform uses localised waveforms (“wavelets”) to represent the desired signal in a sim-

ilar manner to the use of sine waves in the FFT. The continuous wavelet transform

(CWT) is defined as:
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X(a, b) =
1√
a

∫ ∞
−∞

x(t)ψ∗
(
t− b
a

)
dt,

a ∈ [0,∞}

b ∈ (−∞,∞)
(6.1)

where X(a, b) are known as the wavelet coefficients (or detail coefficients), ψ∗ is the

complex conjugate of the mother wavelet ψ, a is the scaling (dilation) parameter of the

wavelet and b is the location parameter. Note that a is any positive real number and

b is any real number. There are a number of different commonly implemented wavelets

ψ, (some examples are shown in Figure 6.2) and each must satisfy a number of specified

requirements or constraints.

Figure 6.2: Examples of some available mother wavelet functions.

1. A wavelet must have Compact Support which is to say that the width of the regions

where the mother wavelet is not zero is not infinite. Another way of stating this

requirement is that the wavelet must have finite energy:

E =

∫ ∞
−∞
|ψ(t)|2dt <∞. (6.2)
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2. The wavelet is required to have at least one Vanishing Moment . A wavelet is said

to have p vanishing moments if for all positive integers k < p, it satisfies [118]∫ +∞

−∞
tkψ(t)dt = 0. (6.3)

The higher the number of vanishing moments, the more sensitive the wavelet is to

the high frequency component of the signal.

3. If ψ̂(f) is the Fourier transform of ψ(t), i.e.

ψ̂(f) =

∫ ∞
−∞

ψ(t)e−i(2πf)tdt (6.4)

then the following condition must hold:

Cψ =

∫ ∞
0

|ψ̂(f)|2
|f | df <∞. (6.5)

If this constraint is met, then the inverse wavelet exists while also ensuring the

wavelet will have zero mean.

By taking a closer look at Equation 6.1 it can be seen that it contains both the

original signal x(t) and also a dilated and translated wavelet ψ((t − b)/a). Figure 6.3

shows how a change in dilation or translation can affect an example wavelet. An increase

in the parameter a corresponds to an increase in the width of the wavelet function. This

increase allows the wavelet to more accurately represent the lower frequency components

of the signal x(t). The parameter b is then used to determine the position of the wavelet

in the signal. The CWT is not commonly used however, as for most functions the

transform has no analytical solutions; in order to cover the entire spectrum, an infinite

number of decomposition levels would be required. As it is also not possible for a digital

computer to computationally compute an integral over the infinite interval (i.e. over b),

an extension of the CWT, called the discrete wavelet transform (DWT), was developed.

6.1.2 Discrete Wavelet Transform

When employing the discrete wavelet transform (DWT) the choice of the parameters a

and b are no longer arbitrary and are instead constrained to be discrete values, (usually

a = 2j and b = k2j). The wavelet function ψjk can thus be defined as:

ψjk(t) =
1√
2j
ψ

(
t− k2j

2j

)
, (6.6)
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Figure 6.3: An example Mexican hat wavelet with changing location (i.e. translation)
and scale (i.e. dilation). (a) Original Mother wavelet, (b) dilated version, (c) translated

version and (d) translated and dilated version.

where j now controls the wavelet dilation and both j and k control the translation of

that particular wavelet function. Therefore, the size of the translation steps is directly

proportional to the size of the wavelet dilation, i.e. if the wavelet function width increases

by two, so does the step size. It can also be observed that the window width of the

wavelet increases by a factor of two with incrementing j and thus the wavelets are also

known as dyadic wavelets. The wavelet function can also be regarded as a high-pass

filter where each increase in the level, j, has the effect of halving the cutoff frequency.

Therefore, to ensure that the full spectrum of the signal is analysed, an (undesirable)

infinite number of levels would be required. To overcome this inconvenience, a second

function (known as the scaling function) is introduced.

Each individual dyadic discrete wavelet is associated with a scaling function ϕ and

its particular dilation equations. This function is similar in form to the wavelet function

and can be associated with a smoothing of the signal (i.e. a low-pass filter):

ϕjk(t) =
1√
2j
ϕ

(
t− k2j

2j

)
. (6.7)
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These scaling functions, for each wavelet family, are selected so their spectrum encom-

passes the frequencies below the current cut-off frequency of the wavelet function (i.e.

the functions are orthogonal). At each step of the decomposition the wavelet function

selects the detail components from the signal within the current spectrum and the scal-

ing function selects all frequencies below. These wavelet and scaling functions can then

be used to decompose the signal at the first level, i.e. j = 1 as shown in Figure 6.4. As

the bandwidth of the signal is reducing by half (each function selects half the original

bandwidth of the signal), both signals can be down-sampled by a factor of 2 while still

conforming with the Nyquist frequency. In doing so, the combination of the output

components (approximation (x1,L[n]) and detail (x1,H [n]) components) will always be

the same length as the original signal.

g[n]

h[n]

2

2

Input
x[n]

Low Pass Filter

High Pass Filter

Down-Samplers

x [n]1,L

x [n]1,H

Figure 6.4: Single step of the discrete wavelet transform.

To compute the next level of the decomposition, the approximation component is

taken as the input and the calculations are repeated for the next scale (i.e. j = 2). This

decomposition continues up to the chosen M th level as is shown in Figure 6.5. As the

number of levels of decomposition increases, so does the level of detail that is extracted

from the signal. An example decomposition of a signal using the wavelet transform up

to Level 6 is presented in Figure 6.6.

To regenerate the approximation and detail signals and therefore the original signal,

each approximation and detail component pair must be passed through the inverse DWT

as shown by the diagram presented in Figure 6.7. The output of the synthesis filters (ḡ

and h̄) are the approximation and detail signals respectively. The approximation and

detail signals corresponding to the components from Figure 6.6 are shown in Figure 6.8.
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Signal

A1 D1

D1

D3

A2

A3

D2

D2 D1

Figure 6.5: Diagram of the decomposition of a signal using the wavelet transform.

The complete discrete wavelet expansion of a signal (x(t)) can thus be written as

[9]:

x(t) =
∑
k

cMkϕMk(t) +
M∑
j=1

∑
k

djkψjk(t), (6.8)

where

cjk =

∫
x(t)ϕ∗jk(t)dt (6.9)

are called the scaling coefficients and the scaling functions ϕ are as defined in Equa-

tion 6.7. The wavelet coefficients (d) for the wavelet function ψ (Equation 6.6) are given

by:

djk =

∫
x(t)ψ∗jk(t)dt. (6.10)

These scaling and wavelet coefficients are then used to determine the details and ap-

proximations of the discrete wavelet transform at each level (j):
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Figure 6.6: An example decomposition of an EEG signal using the wavelet transform
(Mother wavelet - Daubechies 5). The Details (or wavelet coefficients) correspond to
djk for j = 1 : M and the approximation (or scaling coefficients) correspond to cMk for

M = 6 from Equation 6.8.

Aj(t) =

+∞∑
k=−∞

cjkϕjk(t)

Dj(t) =

+∞∑
k=−∞

djkψjk(t). (6.11)
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g[n]

h[n]

2

2

Up-Samplers

x [n]1,L

x [n]1,H

Output

Figure 6.7: Single step of the Inverse DWT

The original signal x(t) can be easily reconstructed by adding up all the details calculated

and also the approximation for the final level (M), i.e.

x = AM +
M∑
n=1

Dn. (6.12)

6.1.3 Employing the wavelet transform

To perform artifact removal using the wavelet transform the contaminated signal is

selected as the input to the algorithm and the output details Dj and approximation

AM are set as the source components. The Daubechies 5 mother wavelet was chosen

as the mother wavelet. As wavelet transform based artifact removal is a two stage

approach, the components relating to artifacts are not yet known and therefore an

additional technique must be employed for them to be determined. There are a number of

approaches currently employed to determine the artifact components for various signals.

Section 4.7 described the artifact selection techniques considered in this thesis. As

previously mentioned, the wavelet transform can also be used to permit the usage of

multi-dimensional artifact removal techniques. The transforms novel employment with

the CCA algorithm is described in Section 6.5. Section 6.7 describes the efficacy of the

wavelet transform based artifact removal technique when employed on both the fNIRS

and EEG datasets and finally Section 6.8 provides a comparison, first with the other two

stage techniques analysed in this chapter and then with all of the techniques described

in the thesis.
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Figure 6.8: Approximation and detail signals corresponding to the components shown
in Figure 6.6. The detail signals correspond to Dj(t) for j = 1 : M and the approxima-

tion signal corresponds to AM (t) for M = 6 from Equation 6.11.

6.2 Empirical Mode Decomposition

Empirical mode decomposition (EMD) was first introduced by Huang et al . [79] as a

method to decompose a signal into components, called intrinsic mode functions (IMFs),

that admit well behaved Hilbert transforms. The Hilbert transform is similar to the

well known Fourier transform. The Fourier transform, however, has some restrictions
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in contrast to the Hilbert transform in that the transform requires the input data to be

both linear and stationary and is capable of representing the data in only the energy-

frequency domain. However, as the Hilbert transform does not require the data to be

stationary (or linear) it is capable of representing the data in the energy-frequency-time

domain, similar to wavelet analysis. An advantage of the EMD algorithm, compared

to wavelets, is its adaptive nature, as its IMFs derive their basis from the data, unlike

wavelet analysis whose basis is chosen a priori .

The EMD algorithm is therefore a very useful algorithm which is capable of decom-

posing an input signal into its corresponding IMF adaptively, where the signal can be

both non-linear and non-stationary.

6.2.1 Operation of the technique

As stated previously, the EMD algorithm operates by decomposing an input signal into

a small number of intrinsic mode functions (IMFs) which admit well behaved Hilbert

transforms. An IMF is defined as a function that satisfies the following two conditions

[79]:

1. The number of extrema (i.e. maxima or minima) and the number of zero crossings

of the IMF over the full data set must be equal or differ by at most one.

2. Over all points, the mean of the envelope that is defined by the local maxima and

the envelope that is defined by the local minima is zero.

The first condition ensures that the determined IMF will be a stationary Gaussian

signal while the second condition will ensure that the IMF signal will not be asymmetric,

and thus the resulting instantaneous frequencies will not have any undesired fluctuations.

An example of an IMF is shown in Figure 6.9.

As the majority of real world signals do not meet the criteria required for an IMF,

the EMD algorithm is used to decompose the original data into a small number of sub-

signals that do. As stated previously, this decomposition is adaptive with the basis

used for the decomposition derived directly from the data. The basic foundation of the

approach is to identify the individual intrinsic oscillatory modes by their characteristic

time scales in the data empirically, and then to decompose the data accordingly [79].

This foundation is based on a number of assumptions regarding the data:
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Figure 6.9: The first intrinsic mode function determined using the EMD algorithm
from the data shown in Figure 6.10 (a). It can be seen that the number of extrema and

the number of zero crossings are identical and the signal has zero mean.

1. There are at least two extrema in the signal; one maximum and one minimum.

2. The characteristic time scale of the mode is described by the time between the

local extrema.

3. If there are no extrema present in the data but there are inflection points, the data

can be differentiated to locate the extrema. The final results can then be obtained

by integration of the components [79].

Once the data is determined to conform to the assumptions described above, the

EMD algorithm can then be employed to determine the individual IMF of the data.

The EMD algorithm is a simple algorithm that uses envelopes of the extrema of the

data to determine the IMF. The algorithm can be broken down into a number of simple

operations. The first step in the algorithm is to determine the positions of all the extrema

of the input signal x (example shown in Figure 6.10 (a)). Once all the extrema have

been found, an upper and lower envelope are created. The upper envelope is created by

connecting a cubic spline to all the maxima of the data and the lower envelope is the

connection of all the minima, again by a cubic spline. These envelopes can be seen in

Figure 6.10 (b). The mean (m1) of the two envelopes is then calculated (Figure 6.10

(c)) and the first component h1 is calculated as:

h1 = x−m1, (6.13)
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Figure 6.10: Example of the EMD sifting process: (a) the original example input data
(x(t)); (b) the upper and lower envelopes (dashed lines) determined from the maxima
and minima of the data; (c) the mean of the two envelopes (thick solid line); (d) the
first component h1 calculated as the residual of the original data minus the mean of the
envelopes. The current component cannot be considered an IMF due to the undershoot

of the signal, highlighted using the red circle.

and can be observed in Figure 6.10 (d).

Although the steps described above were developed to create IMF it is not usually the

case that the resulting components (h1 in this case) can always be considered an IMF.

This is due to the components themselves often having some overshoots or undershoots

which will result in the number of extrema and zero crossings not differing by at most one

as specified in the IMF requirements. An example of an undershoot can be observed in

Figure 6.10 (d), highlighted using the red circle. In order to determine the first true IMF

component, the sifting process must be repeated until the output component conforms

with the conditions of the IMF. For the second iteration, the output component of the

first step, h1, is treated as the data, and thus the upper and lower envelopes of this

signal are determined. After repeating the steps outlined above it follows that:

h11 = h1 −m11. (6.14)
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Again this component is analysed to determine if it is a true IMF (more detail of how

this is determined below). If this component is also determined not to be an IMF the

steps above are repeated until

h1n = h1(n−1) −m1n (6.15)

is an IMF. An example of the first IMF from the data shown in Figure 6.10 (a) is shown

in Figure 6.9. It can clearly be seen from this figure that the number of zero crossings

and the number of extrema (maxima or minima) are equal and also that the signal has

zero mean. Once the first IMF has been determined it is retained, i.e.

c1 = h1n (6.16)

and then the EMD process is repeated with the new data (r1) set as the original data

minus the calculated first IMF:

r1 = x− c1. (6.17)

In order to ensure that the resulting IMF continue to retain some sense in terms of

physical meaning for both amplitude and frequency, it is necessary to have a stopping

criterion to limit the number of iterations of the sifting process. If the sifting process

is continued, then the resulting IMF signal will be a pure frequency modulated signal

of constant amplitude [79]. The original stopping criterion proposed by Huang et al .

was associated with limiting the size of the standard deviation of two consecutive sift-

ing components. The standard deviation between two consecutive components can be

calculated as:

SD =
K∑
t=0

[
|h1(n−1)(t)−h1n(t)|2

h2
1(n−1)

(t)

]
(6.18)

with a typical value for the threshold set to 0.2 or 0.3. However this stopping criterion can

be problematic as the appearance of new extrema post sifting can cause large deviations

in SD. A simple and adequate stopping criterion is just when the number of extrema

matches the number of zero crossings. The sifting process continues until the residual

signal rn becomes monotonic (i.e. a function that is constantly increasing or decreasing,

see Figure 6.12). When this occurs, the original signal x is said to be decomposed into

its n IMFs and can be described as:
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Original Data
( x(t) ≡ r0 )

Find Extrema

Calculate Envelopes

Calculate mean of 
envelopes

Subtract mean (m) from
Data

Stopping Criterion:
Is component an IMF?

Save component as IMF
( cn = h1n )

New Data = Data - IMF
( rn = r(n-1) - cn )

New Data = Data - Comp
( h1n = h1(n-1) - m1n )

Is new data monotonic?
No

No

Finish EMD

Figure 6.11: A flow chart of the steps involved in determining the intrinsic mode
functions of an input data signal.

x =

n∑
i=1

ci + rn. (6.19)

A flow chart describing the steps of determining the intrinsic mode functions is

presented in Figure 6.11. Figure 6.12 displays the resulting IMF after running the EMD

algorithm for the same example data used to illustrate wavelet decomposition.
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Figure 6.12: Figure presents the original noisy signal (same as Figure 6.8) along with
the individual IMF outputs from the EMD algorithm.

6.2.2 Ensemble Empirical Mode Decomposition (EEMD)

One of the major complications with the EMD algorithm is that often the determined

IMF can be affected by “mode mixing”. Mode mixing is said to have occurred if a single

IMF consists of signals of vastly different scales or if signals (e.g. Figure 6.13) of similar
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Figure 6.13: This figure shows an example of mode mixing in a signal. The signal
intermittency in the original data has resulted in the first IMF containing signals of

vastly different scales. Only the first two IMF are shown.

scales are present in different IMFs. The presence of mode mixing in the IMF can cause

aliasing in the time-frequency distribution and/or cause the physical meaning of the

IMF to become unclear. Initially, Huang et al . [78] defined an intermittency test based

on period length to separate waves of different period into different modes. However, by

using this intermittency test, the EMD algorithm was no longer adaptive and thus the

test negated some of the advantages of the algorithm.

Wu et al . [205] developed an extension to the EMD algorithm in 2009 called ensemble

EMD (EEMD), following on from the pioneering work by Gledhill [64] and Flandrin et

al . [55]. This new noise assisted data analysis method defined the newly calculated IMF

to be the average of an ensemble of trials and in doing so eliminated the mode mixing

problem without discarding the adaptive nature of the algorithm. The foundation of the

algorithm is the addition of white noise to a given number of ensembles of the original

data. Therefore the new ensemble data can be thought of as a number of observations of

the same data, each contaminated by different random white noise of similar standard

deviation. By adding this uniform noise, the components of the signal of different scales

are automatically projected onto proper scales of reference, established by the white
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noise in the background. The EEMD algorithm, run on the same data as shown in

Figure 6.13, is shown in Figure 6.14. It can be seen that the previous problem of mode

mixing has been removed and the true signal can be clearly seen in IMF 5.

Figure 6.14: This figure shows an example of how the EEMD algorithm solves the
mode mixing problem. The original data, similar to that shown in Figure 6.13, is shown
in red in the first subplot, with the original data mixed with an example white noise
shown in blue. Scaling is independent for each IMF to better illustrate the contained

components.

The steps to perform EEMD are similar to those undertaken when employing EMD

shown in Figure 6.11. There are however 3 additional steps that must be taken:
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1. Prior to running the EMD algorithm, white noise (whose standard deviation is a

set ratio of that of the original signal) is added to the original input data x. The

n IMFs are then calculated as described previously and shown in Figure 6.11.

2. Step one above is repeated (for the chosen number of ensembles) with a random

white noise added to the original data on each iteration.

3. The final output IMFs of the EEMD algorithm can then be calculated as the mean

of the ensemble of the previously calculated IMFs.

When running the EEMD algorithm there are two parameters that need to be set

prior to implementation; the amplitude of the added white noise and the number of

ensembles to run. The noise amplitude is required to be of a significant level to ensure

that it introduces the change in extrema that the EEMD algorithm relies on. However

if the amplitude is too large then a greater number of ensembles is required to negate

the resulting additive noise. It follows that the number of ensembles required should

be large enough to negate the effect of adding the random white noise, however as the

number of ensembles increases so too does the computational time of the algorithm.

Wu et al . suggest the added noise should have a standard deviation of approximately

0.2 times the standard deviation of the data and so was thus set for the performed

analysis. The number of ensembles can then be chosen empirically ensuring that the

mode mixing problem has been negated and the added white noise has been canceled

sufficiently. The number of ensembles was set to 3 when analysing the fNIRS data and

to 5 when analysing the EEG data.

Once the IMFs have been determined, the components deemed to be artifacts can be

removed. For the results produced in this thesis the artifact components were determined

as specified in Section 4.7. The resulting cleaned signal can then be calculated as the

sum of the remaining “clean” IMFs. The determined efficacy of the EEMD technique is

presented in Section 6.7 where an example output of the algorithm is also presented for

the fNIRS and EEG data.

In Section 6.5 the EEMD algorithm is used to create a multi-dimensional signal from

the signal channel fNIRS and EEG data, allowing the novel use of the CCA algorithm

[182]. This novel combination will be shown to provide the best efficacy results when

employed on the fNIRS data under certain circumstances.
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6.3 Independent Component Analysis

As stated in Section 3.4.1 independent component analysis (ICA) is a blind source sepa-

ration technique in which recorded, multi-channel signals are separated into their inde-

pendent constituent components or sources [83]. Figure 6.15 demonstrates the purpose

of the ICA algorithm; given recorded sources x(t), the algorithm endeavours to acquire

an estimate ŝ(t) of the true underlying sources s(t) by use of an un-mixing matrix W,

i.e.

ŝ = Wx. (6.20)

As the underlying sources s are often contaminated by noise n, the recorded sources

are often described as x = As + n. However, the contaminating noise can be assumed to

be independent of the underlying sources and thus it can be incorporated into ŝ through

increasing the dimension. Therefore the noise signal will emerge as an independent

component (IC) of ŝ. As ICA is a blind source separation (BSS) problem, neither the

original sources s or the mixing matrix A are known. Accordingly, in order to be

feasible to separate the underlying sources, additional assumptions must be made. The

ICA algorithm makes a number of assumptions (as detailed in Section 3.4.1) with the

most important stating that all underlying sources are assumed independent of each

other, that is to say that the output of one source has no impact on any other.

Independent
Components

s(t) x(t)

Sensors
S(t)
^

Mixing Matrix Un-mixing Matrix

A W

Figure 6.15: Model of the ICA algorithm. The sensors x detect a linear mix of the
underlying independent sources s, ie. x = As. The goal of the ICA algorithm is to

create the un-mixing matrix W such that ŝ = Wx
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Using this assumption of independence, Comon [39] showed that if the sources con-

tain at most one Gaussian component then the sources could be separated with the

only indeterminacies being scaling and permutation [187]. These indeterminacies can be

outlined as follows:

x = As (6.21)

=
n∑
i=1

aisi

=
n∑
i=1

(
1

αi
ai

)
(αisi) ,

where αi ∈ R, αi 6= 0. As multiplying the sources by a non-zero constant (αi) does

not change their independence, each column of A can only be found up to a scaling

factor. Further, as permuting the sum in the equation does not change the result, only

the columns of A can be found and not their order.

The central limit theorem states that the sum of independent random variables

(IRVs) lies closer to a Gaussian than the independent random variables themselves:

Gaussianity
(∑

IRVs
)
> Gaussianity (IRVs) (6.22)

and thus by increasing the non-Gaussianity of the random variables you simultaneously

increase their independence. A number of different algorithms use differing techniques

to separate the sources based on their non-Gaussian nature such as negentropy and

kurtosis as described in Section 3.4.1. FastICA [84] is currently one of the most widely

employed ICA techniques and therefore it is the approach adopted for this work. The

rest of this section will deal exclusively with the implemented FastICA algorithm and

the technique of maximising the kurtosis to separate the sources.

6.3.1 FastICA

FastICA is currently one of the most referenced ICA techniques available. First described

in 1997 [84] this algorithm has many advantages over alternative ICA implementations.

The algorithm uses an efficient fixed-point iteration scheme for finding the local extrema

of the kurtosis of a linear combination of the observed variables. To separate the sources

using non-Gaussianity, the aim is to maximise the magnitude of the kurtosis. The
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kurtosis is a measure of the “peakedness” of the probability distribution of a real-valued

random variable and is described for a zero-mean random variable x as

kurt(x) = E{x4} − 3(E{x2})2. (6.23)

The kurtosis is negative for source signals whose amplitude has sub-Gaussian prob-

ability densities, positive for super-Gaussian and zero for Gaussian densities [193]. An

example of some distributions is presented in Figure 6.16. Thus, maximising the norm

of the kurtosis forces the sources to be as non-Gaussian as possible.

Figure 6.16: Figure shows the change in kurtosis from super-Gaussian to Gaussian
to sub-Gaussian signals. The normal distribution is a Gaussian function and thus has
a kurtosis of 0. The Laplace and hyperbolic secant distributions are super-Gaussian
and have a positive kurtosis. The raised cosine, Wigner semicircle and the Uniform

distributions all have sub-Gaussian distributions with a kurtosis less than 0.

The FastICA algorithm has many advantages over other implemented ICA methods,

with some listed below [84]:

• The algorithm is very simple to utilise as there is no learning rate or other ad-

justable parameters as required in other techniques.

• The convergence speed of similar fixed-point algorithms is often linear in nature.

The FastICA algorithm’s convergence rate is cubic. This increased convergence
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rate usually ensures the FastICA algorithm is 10 to 100 times faster then other

implemented ICA methods.

• The algorithm is capable of finding the independent components in series (defla-

tion approach) rather then in parallel (symmetric approach) like other methods.

This allows certain independent components to be estimated, without the required

computation of detecting all components, again decreasing the computational time

of the algorithm.

One preprocessing step commonly performed before employing the FastICA algo-

rithm is pre-whitening. The use of pre-whitening considerably simplifies the BSS prob-

lem by removing any autocorrelations present in the time series data in both space and

time. Using a technique such as principal component analysis (PCA) [93], to pre-whiten

the signal, results in the number of parameters to be determined being reduced from n2

to 1
2n(n+ 1) [212] thus further increasing the speed of the FastICA algorithm.

Following the whitening of the data, the deflation FastICA algorithm can be ex-

pressed as follows:

1. Initialise the algorithm by setting p := 1 (Where p is the current independent

component number).

2. Choose wp(0) ∈ Sn−1. wp(0) represents the weights for IC p and Sn−1 denotes

the (n-1) dimensional unit sphere, that is:

Sn−1 := {x ∈ Rn| |x| = 1}. (6.24)

3. Perform a single fixed-point kurtosis maximisation step:

vp(t+ 1) := E
((

wp(t)T z
)3

z
)
− 3wp(t), (6.25)

where z is the data whitened using a technique such as PCA.

4. To ensure that the current weight vector vp is orthogonal to all previously found

weights wj , the so-called deflationary orthogonalisation can be performed after

each FastICA update iteration.

up(t+ 1) := vp(t+ 1)−
p−1∑
j=1

(vp(t)wj ) wj . (6.26)
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5. Normalise the weight vector to ensure it stays on the Sn−1 sphere:

wp(t+ 1) :=
up(t+ 1)

|up(t+ 1)| . (6.27)

6. Check for the convergence of the algorithm using the stopping criterion. A com-

monly used stopping criterion for the FastICA algorithm is when the mean-squared

difference of wp is less than a given ε [212], i.e.

|1− |wp(t+ 1)Twp(t)| | < ε. (6.28)

If the algorithm has not converged, return to step 3 and perform a further kurtosis

maximisation step.

7. If the stopping criterion has been met and the value of p is less than the desired

number of independent components, increment p and return to step 2. If the value

of p is equal to the desired number of independent components, return the final

W = [w1,w2,w3, ...wp] matrix.

Although FastICA is a simple technique to implement, it can be affected by a few

troublesome issues. One of the problems with FastICA, and ICA in general, occurs

with oscillatory activity within the signal, which is often present in brain signals. The

kurtosis of this oscillatory signal changes depending on length of the bursts of activity.

For short bursts there is a positive kurtosis and this kurtosis goes negative the longer

the duration of the bursts become. However, at a given length of oscillatory activity the

kurtosis can be zero [193]. This causes the signal to appear Gaussian to the FastICA

algorithm with the result that it is no longer able to separate it from the other sources.

This situation is, however, improbable but future techniques may have to overcome this

problem by using approaches based on the time correlation in the data [11].

Although the kurtosis of a signal is extremely simple to calculate, because it is

a fourth-order statistic it’s estimators are highly sensitive to outliers in the data [6].

The kurtosis value can sometimes be based on only a few samples in the tails of the

distributions which can lead to poor statistical significance. Therefore, although the

sources continue to be separated, they may not be as independent as possible. Finally,

the use of pre-whitening can sometimes impose a restriction on separation performance

and for short data sizes can sometimes introduce an estimation bias due to residual

source bias [212]. However, due to the improvement in computational time and the use

of long data sets, the pre-whitening stage was retained.
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After using the FastICA algorithm to determine the un-mixing matrix W, and there-

fore the estimated underlying sources ŝ, the sources that are deemed to be artifactual in

nature can be set to zero. The methods employed to determine which sources are arti-

facts are discussed in Section 4.7. The remaining sources ŝCLEAN are then understood

to be the artifact free sources and the artifact free signals at the recording site can be

determined as follows:

xCLEAN = AŝCLEAN , (6.29)

where A (the mixing matrix) is the inverse of the determined un-mixing matrix (i.e.

A = W−1. If W is not square it is not possible to compute the true inverse of the matrix,

however the pseudoinverse can be calculated which can serve as a good approximation for

the “true” inverse. Although the ICA algorithm can not itself be employed on the fNIRS

and EEG datasets analysed in this thesis, its combination with the wavelet transform

and the EEMD technique is described in Section 6.6. The FastICA algorithm does not

require any additional parameters to be set prior to employing the algorithm.

6.4 Canonical Correlation Analysis

Canonical correlation analysis (CCA) [77] is a multi-channel blind source separation

(BSS) technique (Section 3.4) for separating a number of mixed or contaminated sig-

nals. The CCA technique, similar to the ICA method described in Section 6.3, requires

that there be a greater than or equal number of recorded signals x as underlying sources

s and thus cannot be used on single channel measurements. However, unlike ICA, the

CCA algorithm separates the underlying sources using the assumption that the sources

are uncorrelated with each other. The CCA method uses second order statistics (SOS)

to generate components derived from their uncorrelated nature. CCA solves the BSS

problem by forcing the sources to be maximally autocorrelated (at lag one) and mu-

tually uncorrelated [46], i.e. CCA makes xi(t) and xi(t + 1) as correlated as possible

while ensuring xi(t) and xj(t) are uncorrelated (as they are statistically independent).

Separating components due to their uncorrelated nature is a weaker condition than the

statistical independence required by ICA (independent components are also uncorre-

lated, but the opposite is not necessarily true) but is also less computationally complex

due to the use of SOS rather than higher order statistics (HOS) used by ICA.
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6.4.1 Operation of CCA

With a zero mean input signal x, let y be a linear combination of neighbouring (but

not overlapping) samples (i.e. y(t) = x(t− 1) + x(t + 1)). From these two available

vectors two new scalar random variables x and y, called the canonical variates, can be

generated as a linear combination of the components in x and y.

x = wx1x1 + wx1x2 + ...+ wxmxm = wT
xx (6.30)

y = wy1y1 + wy1y2 + ...+ wymxm = wT
yy (6.31)

CCA attempts to find the weight vectors wx and wy that will maximise the correlation

ρ between x and y [23]. The simple solution of wx = wy = 0 is not permitted. By

maximising this correlation it is possible to conclude that the algorithm will not select

a mixture of the source signals as this mixture would have a lower correlation than if

one of the original source signals was chosen. When the first pair of weight vectors

(wx,wy)1 has been determined, the CCA algorithm then continues to find a second pair

of weights (wx,wy)2 that produces canonical variates that are also maximally correlated

but simultaneously uncorrelated with the canonical variates produced using the first set

of weights. The CCA algorithm is a recursive algorithm and therefore proceeds to find

a total of m variates, where m is the number of recording sites. To find the maximum

correlation between the variates x and y the following equation must be solved:

ρ =
E[xy]√
E[x2]E[y2]

=
E[wT

xxyTwy]√
E[wT

xxxTwx]]E[wT
yyyTwy]]

(6.32)

=
wT

xCxywy√
wT

xCxxwxwT
yCyywy

.

The matrix Cxy is the between-sets covariance matrix and Cxx and Cyy are the nonsin-

gular within-set covariance matrices, i.e.

C = E

( x

y

) (
x

y

)T =

[
Cxx Cxy

Cyx Cyy

]
. (6.33)
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The calculation of the maximum of ρ can be found by setting the derivatives of Equa-

tion 6.32 to zero with respect to wx and wy. This equation then results in the following

equations [60] [59]:

Cxyŵy = ρλxCxxŵx

Cyxŵx = ρλyCyyŵy,
(6.34)

where the scaling factors λx and λy are calculated as

λx = λ−1y =

√
ŵT

yCyyŵy

ŵT
xCxxŵx

. (6.35)

Substituting wx for wy and vice versa in Equation 6.34 results in the following two

eigenvalue problems:

C−1xxCxyC
−1
yy CT

yxŵx = ρ2ŵx (6.36)

C−1yy CyxC
−1
xxCT

xyŵy = ρ2ŵy.

wx and wy can be determined as the eigenvectors of the matrices C−1xxCxyC
−1
yy CT

yx

and C−1yy CyxC
−1
xxCT

xy respectively and the corresponding eigenvalues ρ2 are the squared

canonical correlations. As x is our original signal it is sufficient to only calculate ŵx from

Equation 6.36; if desired ŵy can then be calculated using Equation 6.34. This approach

ensures that ŵx and ŵy have correct signs to produce the desired positive canonical

correlation coefficient. The first pair of variates are the eigenvectors of wx and wy

that correspond to the largest square correlation coefficient (or eigenvalue) ρ2max. The

following pairs of variates (wx,wy)2...m are then the remaining eigenvectors in decreasing

order of correlation [3]. The canonical correlation analysis technique therefore creates

a weight matrix Wx = [wx1,wx2...wxm]T that can be used to separate the recorded

sources x into the self correlated and mutually uncorrelated sources.

ŝ = Wxx. (6.37)

Artifact removal can then be conducted, in a similar manner to the ICA algorithm

as previously described in Section 6.3.1. Components in the output matrix ŝ which are

deemed to have been produced by artifact sources are identified and the corresponding
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columns are set to zero (Section 4.7). In doing so the artifact components will not have

an affect on the cleaned signal after reconstruction, i.e.

xCLEAN = Aŝ, (6.38)

where A = W−1. If W is not a square matrix (i.e. the number of sources is not equal

to the number of signals) then it does not have an inverse. However, in these cases the

pseudoinverse of the matrix can be calculated which can serve as a good approximation

for the “true” inverse.

One major advantage of the CCA algorithm over the ICA algorithm is its ability to

take temporal correlations into account [23]. With ICA, the samples can be arranged

arbitrarily in time and the ICA algorithm will return the same result. In doing so the ICA

can lose a lot of information about the signal and can make the separation technique

more difficult then it is required to be. CCA addresses this issue and is capable of

finding uncorrelated components that, in addition, have maximum spatial or temporal

correlation within each component. In doing so, the CCA algorithm will always return

the same result in terms of source separation which is not true for the ICA algorithm.

Further, it is known that if a random vector has a multivariate normal distribution then

any two or more of its components that are uncorrelated are also independent [21] and

thus CCA can often return the same result as ICA. If this is not the case, then CCA

will return components which are uncorrelated but not necessarily independent.

The CCA algorithm does not require any additional parameters to be set prior to

employing the algorithm. Similar to the ICA algorithm, the CCA technique cannot be

applied directly to the fNIRS and EEG datasets generated in this thesis as they are

single channel signals. Section 6.5 below describes the novel combination of the CCA

algorithm with both the EEMD algorithm and the wavelet transform, which overcomes

this limitation.

6.5 Novel Combination of EEMD/Wavelets with CCA

As stated in Section 6.4 the CCA source separation technique is only capable of op-

erating when a multichannel signal is available at its input. When these signals are

available the technique has been shown to be highly efficient at removing the artifacts

from contaminated signals [46]. Therefore, if this technique is to be used in conjunc-

tion with a contaminated single channel measurement, this measurement must first be

converted into a multichannel signal. The two decomposition methods described in this
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chapter (EEMD and wavelet transform) are two of a number of techniques currently

available which can generate these desired signals. In this section we combine the signal

decomposition methods with the CCA source separation techniques, providing two novel

techniques, with the aim of further increasing the artifact removal capability achievable

when using the signal decomposition methods alone.

The novel use of EEMD in combination with CCA for source separation of single

channel measurements was described by the authors in [182]. The EEMD technique can

be used to create a multi-channel signal X, comprised of IMFs, from a single channel

recording x (see Section 6.2.1). This matrix X can then be employed as the input to

the CCA algorithm with the aim of estimating the underlying true sources Ŝ (Equation

6.37). The individual sources determined to be artifacts are selected (Section 4.7) and

the corresponding columns of the matrix Ŝ are set to zero. The source matrix is then

passed through the inverse of the un-mixing matrix A to return the multi-channel signals

XCLEAN which are now, ideally, free of artifacts (Equation 6.38). The original single

channel signal x̂, now free of artifacts, can be determined by simply adding the columns

of the matrix XCLEAN .

As there are two levels to these techniques, i.e. EEMD followed by CCA, the removal

of the artifact components can take place either solely after the CCA stage as described

above, or alternatively can be performed both after the EEMD decomposition stage and

the CCA stage. By performing the artifact removal using this second method, much of

the dominating artifact will have been removed prior to the employment of the CCA

technique and so the source separation technique can have a better chance of removing

the lower amplitude artifact components. The results presented in Section 6.7 of this

chapter will present the efficacy metrics calculated for each of the employed techniques

on both the fNIRS and EEG test datasets. For this purpose, the results obtained when

removing the artifact components only after the CCA technique will be known as the

one level artifact removal method and when removed after both the wavelet transform

and the CCA techniques will be known as the two level method.

The use of the wavelet transform in combination with CCA for source separation

of single channel measurements operates in a similar manner to that described for the

EEMD based technique above. When using the W-CCA technique, the input to the CCA

algorithm comprises of the details and approximation of the original single channel signal

determined using the wavelet transform (Equation 6.12). Again, the CCA technique

separates these input signals into components which are uncorrelated with one another

while also being maximally autocorrelated. The signals are then regenerated following

the removal of the artifact components and the original input signal to the W-CCA

technique can be determined by again adding all of the CCA outputs. Similar to the
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EEMD-CCA technique, the artifact removal can also take place in two separate manners

and are again described as one level/two level artifact removal methods.

The next section describes two previously available two stage techniques which will

allow for a rigourous comparison with the novel techniques described above.

6.6 Combination of EEMD/Wavelets with ICA

In order to provide a fair comparison to the novel artifact removal techniques described

in Section 6.5, the operation of two previously described two stage techniques (namely

EEMD-ICA and W-ICA) are described below.

Wavelet-ICA, or W-ICA, was first documented by Azzerboni et al. [9] in 2004 as a

means for removing artifacts from surface EMG signals and has since also been employed

by a number of authors for the removal of artifacts from EEG signals [85]. The combined

use of the EEMD decomposition method with ICA was first documented by Mijović in

2010 for the removal of ECG artifact from EMG signals and the removal of seizure events

from EEG signals [129] [130].

These two techniques operate in a similar manner to the EEMD-CCA and W-CCA

technique described previously. However, the output of the signal decomposition meth-

ods is now passed into the input of the ICA technique (Section 6.3). This technique

separates the input components into the underlying source signals which are generated

due to their independent nature. With the source signals generated, the sources deemed

to be artifacts can again be removed (Section 4.7). The remaining sources can then be

used to re-generate the input components (minus the removed artifacts).

The novel introduction of the CCA algorithm to the wavelet transform or the EEMD

algorithm has many advantages over the EEMD-ICA and W-ICA techniques described

above. The use of the CCA algorithm greatly reduces the computational complexity

of the algorithm as can be seen from Figure 6.17. This figure shows the average time

taken to run each algorithm over 100 runs of 540 seconds of fNIRS data. Therefore the

CCA algorithm can also lend itself towards use in systems based outside of the hospital

environment where the computational complexity of an algorithm can often reduce the

run time of monitoring devices. Secondly the CCA algorithm has been shown to be

more capable of removing artifacts from some signals than the ICA algorithm [46] and

thus may provide superior results when employed on the fNIRS or EEG data.
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Figure 6.17: Mean computational time, over 100 runs, of the EEMD, CCA, ICA and
wavelet algorithms on fNIRS data, with variation also shown. ICA can be seen to have

a high variation compared to the other analysed techniques.

Section 6.7 provides results for each of the four composite artifact removal techniques

(W-ICA, EEMD-ICA, W-CCA, EEMD-CCA) on both the fNIRS and EEG datasets.

Results are provided for both the one level and two level implementation in each case.

6.7 Results

The results in this chapter are organised in a similar manner to those presented in

Chapter 5. The efficacy of the multiple artifact removal techniques are compared using

two metrics; first, the improvement in signal-to-noise ratio (∆ SNR from Equation 4.7)

and second the percentage improvement in correlation (λ from Equation 4.8).

Unlike the algorithms detailed in Chapter 5, the two stage algorithms require a tech-

nique to classify the separated components into either desired signal or artifact. When

employing the artifact removal techniques on the fNIRS test dataset, two different arti-

fact identification methods are used. The first, known as the GTC selection technique,

uses the available “ground truth” signal to aid in the selection of the artifact components

as described in Section 4.7.1. Using this technique provides the best case results for the
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analysed techniques. However, as this “ground truth” signal will not normally be avail-

able, a second artifact component selection technique is also analysed which uses the

autocorrelation function to determine the appropriate artifact components as described

in Section 4.7.2. When employing the artifact techniques on the contaminated EEG

data a third artifact selection technique is also analysed which uses the Hurst exponent

of the individual components to determine if they are artifacts (Section 4.7.3).

The results obtained using the various two stage artifact removal techniques are

presented below and are summarised in Table 6.1. Table 6.2 provides a summary of

the results when the algorithms are solely employed on the epochs contaminated with

artifacts, as determined using the data tagging technique outlined in Section 5.1. Results

are presented for all the artifact selection techniques described, however a figure of an

example output from the technique when employed on both the fNIRS and EEG data

is presented only when employing the GTC selection technique. In addition, any input

parameters required are highlighted as well as any deviation from the normal operation

of the technique. Section 6.8 concludes the chapter by providing a comparison and

discussion of the performance of each of the two stage techniques followed by an overall

comparison of all the techniques analysed in the thesis.

6.7.1 Wavelet Transform

As stated in Section 6.1 the output of the wavelet transform is separated into a number

of components known as details and approximations. The choice of the optimum com-

ponents to remove to produce the best results were determined using the GTC selection

technique. For the fNIRS test data this selection technique in conjunction with the

wavelet transform provided a ∆ SNR of 3.05 dB (2.15) and a λ value of 43.63 % (48.32).

When employing the autocorrelation function to determine the artifact components the

results became 2.57 dB (2.13) for ∆ SNR and the percentage of correlation improvement

dropped to 32.68 % (51.91). An example output of the wavelet transform with artifacts

identified using the GTC selection technique is shown in Figure 6.18.

When employed on the EEG test data three different artifact selection techniques

were analysed. Again the GTC selection technique provided the best case results and

produced a ∆ SNR of 8.8 dB (4.01) and a λ value of 55.25 % (35.43). Artifact selection

using the autocorrelation function produced a ∆ SNR of 8.89 dB (3.74) and a λ value of

50.98 % (40.34). The third artifact selection technique used with the EEG data is the

Hurst exponent which generated a ∆ SNR of 8.7 dB (3.98) and a percentage correlation
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Figure 6.18: Example fNIRS trial showing cleaned signal following artifact removal
using wavelet analysis.

Figure 6.19: Example EEG trial showing cleaned signal following artifact removal
using wavelet analysis.

increase of 51.26 % (39.15). Figure 6.19 presents an example output of the wavelet

transform when employed on the EEG data using the GTC selection technique.
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6.7.2 (Ensemble) Empirical Mode Decomposition

Similarly to the wavelet transform described above, the EEMD technique was tested

with a number of different artifact selection techniques employed for the second stage.

Figure 6.20 displays the output of the EEMD technique when using the GTC selection

technique for the removal of the artifact components from the fNIRS test data. This

technique provided a ∆ SNR of 3.31 dB (2.21) and a λ value of 46.95 % (48.68). This

corresponds to an average correlation rise from 0.584 prior to the artifact removal to 0.671

after. Using the autocorrelation function the percentage improvement in correlation was

32.49 % (45.41) and the ∆ SNR was 2.38 dB (1.63).

The output of the two stage algorithm when employed on an example contaminated

EEG signal is shown in Figure 6.21. The best case results, produced using the GTC

selection technique, showed a 8.35 dB (4.0) increase in ∆ SNR and a 52.24 % (36.34)

increase in λ. As with the wavelet transform, the EEMD technique was also tested when

using the autocorrelation function and the Hurst exponents to determine the artifact

components. The autocorrelation function presented a 46.7 % (46.32) increase in λ and

the SNR rose by 8.72 dB (3.7) whereas the Hurst exponent selection technique produced

a 5.84 dB (3.98) value for ∆ SNR and a λ value of 18.65 % (44.1).

In order to verify that the EEMD technique is required rather than the simpler

EMD algorithm, the EMD algorithm was also run with the GTC selection technique.

When employed on the fNIRS data the technique produced results of 2.05 dB (1.46) for

∆ SNR and 18.97 % (27.38) for λ. Also for the EEG data the ∆ SNR was calculated

as 7.89 dB (3.89) and the percentage improvement in correlation was determined to be

43.29 % (31.19).

6.7.3 Wavelet-ICA

When employing the wavelet-ICA algorithm there are two separate ways to generate the

artifact free signal (see Section 6.7), the first is to perform artifact component selection

and removal only after the ICA technique, and so the wavelet transform is solely used

to create the multichannel signal. This shall be called the one level method. The second

method performs artifact component selection and removal at each step and therefore

the multidimensional input to the ICA algorithm has already had some of the artifact

signal removed and will be known as the two level method.

These two different artifact removal procedures were performed on both the available

fNIRS and EEG test datasets. When employed on the fNIRS data, the one level method
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Figure 6.20: Example fNIRS trial showing cleaned signal following artifact removal
using ensemble empirical mode decomposition (EEMD).

Figure 6.21: Example EEG trial showing cleaned signal following artifact removal
using ensemble empirical mode decomposition (EEMD).

generated an average ∆ SNR of 2.54 dB (2.12) and a λ value of 30.54 % (41.03). The

artifact components were selected using the GTC selection technique. Using the same

selection technique when employing the two level method the technique resulted in a
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∆ SNR value of 3.03 dB (2.17) and a value for λ of 43.6 % (48.1). Using the autocor-

relation function to select the artifact components, the λ value became 33.55 % (51.32)

and the ∆ SNR value became 2.51 dB (2.17). An example output of the wavelet-ICA

algorithm using the two level technique with the GTC selection technique is shown in

Figure 6.22.

The EEG data was analysed in the same manner as the fNIRS above with the

addition of the Hurst exponent artifact selection criterion. When using the one level

method, again using the GTC selection technique, the algorithm produced an average

∆ SNR of 8.34 dB (3.4) and a λ of 55.5 % (35). When tested using the two level

method, the algorithm produced similar results with a λ of 55.4 % (35.2) and ∆ SNR

of 8.82 dB (3.99). An example output of the algorithm using these parameters is shown

in Figure 6.23. When using the autocorrelation function the acquired λ value dropped

to 52.8 % (36.7) and the average value for ∆ SNR became 8.73 dB (4.03). Finally,

employing the Hurst exponent to select the artifact components over the two levels

produced a ∆ SNR of 8.21 dB (4.55) and a λ of 52.69 % (36.73).

6.7.4 Wavelet-CCA

The novel combination of the wavelet transform and the CCA technique was tested in the

same manner as the W-ICA technique in that both the one level and two level methods

were analysed. Using just the one level artifact selection method produced a ∆ SNR

of 3.06 dB (2.16) and a λ of 43.64 % (48.29). When employing the two level artifact

selection technique the results were seen to diminish slightly. For the GTC selection

technique, a λ of 37.30 % (52.17) and a ∆ SNR of 2.77 dB (2.17) were obtained. The

results obtained when using the autocorrelation technique to determine the artifacts

components were 33.26 % (51.54) for λ and 2.54 dB (2.15) for ∆ SNR. An example

output of the algorithm is shown in Figure 6.24 for an input fNIRS signal where two

level artifact removal was performed using the GTC selection technique.

When employed on the EEG data the results were comparable to the W-ICA tech-

nique. For the one level method, the average value for λ was 55.26 % (35.29) and the

value obtained for ∆ SNR was 8.74 dB (3.94). When analysing the two level methods,

the three different artifact selection techniques were again analysed. The GTC selection

technique provided an average ∆ SNR of 8.80 dB (4.01) and a λ value of 55.25 % (35.43).

When using the autocorrelation function to aid in the selection of the components re-

lating to artifacts the λ value achieved was 52.80 % (36.71) and the improvement in

SNR was determined to be 8.73 dB (4.03). Finally the Hurst exponent provided a λ of
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Figure 6.22: Example fNIRS trial showing cleaned signal following artifact removal
using wavelet-ICA.

Figure 6.23: Example EEG trial showing cleaned signal following artifact removal
using wavelet-ICA.

52.59 % (36.78) and a ∆ SNR of 8.17 dB (4.56). Figure 6.25 presents an example output

when analysing the EEG data.
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Figure 6.24: Example fNIRS trial showing cleaned signal following artifact removal
using wavelet-CCA.

Figure 6.25: Example EEG trial showing cleaned signal following artifact removal
using wavelet-CCA.

6.7.5 EEMD-ICA

As the EEMD-ICA technique converts a single channel signal into a multichannel signal

before separating them into the underlying sources (similar to the steps of the W-ICA
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and W-CCA techniques) the one level and two level artifact removal methods can again

be employed. When operating on contaminated fNIRS data the one level artifact removal

method generated a value of 37.21 % (50.45) for λ and a value of 2.91 dB (2.33) for

∆ SNR. However when the artifact components were removed after each step using the

GTC selection technique, the determined values for λ and ∆ SNR improved. The new λ

was 43.43 % (49.89) and the ∆ SNR was 3.32 dB (2.26). When using the autocorrelation

of the components to aid in the selection of the artifact components the calculated λ was

28.43 % (44.17) and the ∆ SNR became 2.25 dB (1.83). Figure 6.26 shows an example

output of the algorithm when using the GTC selection technique.

For the EEG data the one level technique generated a λ of 50.17 % (36.15) and a

∆ SNR of 7.76 dB (3.86). These values again increased when using the two level artifact

removal method. The calculated λ was 52.37 % (26.23) and ∆ SNR was 8.25 dB (3.87)

when using the GTC selection technique. The values dropped slightly when using the

components autocorrelation to select the artifact components with the ∆ SNR value be-

coming 7.62 dB (4.43) and the λ value becoming 51.06 % (37.58). Finally removal of the

artifact components based on the Hurst exponent produced a λ value of 23.53 % (40.31)

and a ∆ SNR value of 4.71 dB 4.93). Figure 6.27 shows the output of the algorithm

when employed on contaminated EEG data.

6.7.6 EEMD-CCA

Finally, the novel EEMD-CCA algorithm was also run on the fNIRS and EEG test

datasets. When using just the single level artifact selection method on the fNIRS data,

the algorithm produced a ∆ SNR of 2.75 db (2.03) and a 40.06 % (49.06) increase in

correlation. These values increased to 49.38 % (48.71) for λ and 3.60 dB (2.14) for

∆ SNR when removing the artifacts both after the EEMD and the CCA stage using the

GTC selection technique, and an example output can be seen in Figure 6.28. When using

the autocorrelation of the components to select the artifact components the average λ

value was calculated as 34.05 % (48.81) and the ∆ SNR was 2.44 dB (1.77).

A plot of the output of the EEMD-CCA algorithm when applied to the contaminated

EEG data can be seen in Figure 6.29. When only removing the artifact components

after the CCA algorithm the average λ value was calculated to be 50.01 % (37.06) and

the average ∆ SNR over all trials was calculated as 8.16 db (4.37). The algorithm

performed better when the artifact components were removed after each stage using the

GTC selection technique (λ = 51.84 % (36.42) and ∆ SNR = 8.19 dB (3.82)). Removing
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Figure 6.26: Example fNIRS trial showing cleaned signal following artifact removal
using EEMD-ICA.

Figure 6.27: Example EEG trial showing cleaned signal following artifact removal
using EEMD-ICA.

the components based on their autocorrelation was seen to perform well for the EEMD-

CCA algorithm with the technique producing a λ score of 51.22 % and 7.61 dB (4.43) for

the increase in ∆ SNR. Finally, choosing the components to remove depending on their

corresponding Hurst exponent produced a λ value of 23.16 % (42.21) and an increase in
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∆ SNR of 4.62 dB (5.02).

Figure 6.28: Example fNIRS trial showing cleaned signal following artifact removal
using EEMD-CCA.

Figure 6.29: Example EEG trial showing cleaned signal following artifact removal
using EEMD-CCA.

The results presented in this section are summarised in Table 6.1 and will be analysed

and discussed in the following section. The results of the techniques when employed

solely on the epochs contaminated with artifacts are presented in Table 6.2. A final
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comparison between these two stage artifact removal techniques and the single stage

techniques presented in Chapter 5 will also be presented which details the best techniques

to employ for given situations.

6.8 Discussion and Conclusion

The previous discussion in Chapter 5 presented a comparison and evaluation of the single

stage artifact removal techniques detailed in that chapter. This discussion section will

expand on that by initially providing an evaluation and comparison of the two stage

techniques, using the real and simulated data, followed by an overall comparison and

discussion of all of the techniques detailed in the thesis. All of the techniques analysed

in this chapter are known as two stage techniques as they each require a method of

identifying the artifact components from the separated or decomposed signals. This

requirement necessitates the use of an additional algorithm or function and a discussion

of the findings of which technique is best for the tested algorithms is also provided.

The wavelet transform requires that the mother wavelet to be used must be chosen

prior to the employment of the technique. This requirement restricts the transform

slightly compared to some of the other analysed techniques in that the technique is not

adaptive to the data. However with the correct mother wavelet chosen, the wavelet

transform performs very well for both the fNIRS and EEG data with a lambda value of

43.63 % and 55.25 % respectively. This value obtained when employed with the EEG

data approximately equals the best result obtained by any of the two stage techniques.

This trend continues when analysing the results obtained when the techniques are em-

ployed only on the epochs of contaminated data. Here the λ value for the EEG data

rises to 87.76 % and the ∆ SNR value is calculated as 10.02 dB. This result, in addition

to the low computational time of 0.39 seconds (1.48) as can be seen from Figure 6.17

makes it a very useful method in the artifact removal domain. When selecting the arti-

fact components to remove, the GTC selection technique will always perform the best as

specified in Section 4.7. However the autocorrelation function and hurst exponents both

provided comparable results to this GTC selection technique with the autocorrelation

function providing approximately equal values in terms of λ.

The EMD technique was analysed so as to verify the requirement for the ensemble

version of the algorithm. The EMD is an adaptive algorithm in that its IMF are de-

termined straight from the data. Therefore no a priori information is required prior to

employing the algorithm. As expected, the EMD algorithm did not provide good results
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for either the fNIRS or EEG data with the results obtained through use of the algorithm

only during epochs of movement again lower then those obtained using either the EEMD

algorithm or the wavelet transform. The average time taken for the EMD algorithm to

run was calculated as 0.76 seconds (0.25) for the fNIRS data and 3.37 seconds (0.4)

when employed on the EEG data.

The EEMD algorithm performs well compared to the rest of the techniques analysed

in this chapter. The λ value obtained for the fNIRS data is second only to that obtained

when using EEMD-CCA with the value for the EEG data only 3 % less than for the

wavelet transform. The value obtained for the EEG data when employing the EEMD

algorithm only during movement epochs improves considerably and becomes the top

score for λ at 87.99 %. Further the use of the autocorrelation of the components to

aid in the selection of the artifact components provides very similar results and also

provides the largest ∆ SNR for EEG for all techniques at 10.39 dB. The use of the

Hurst exponent performs poorly for the EEMD data. As an ensemble of 5 is used

for the algorithm, the computational time is longer than the EMD technique and was

calculated as 2.56 seconds (0.15) on average for the fNIRS data and 16.86 seconds (0.72)

for the EEG data.

The wavelet-ICA combination was first presented by Azzerboni et al. [9] and was

tested to determine if the addition of the ICA algorithm to the wavelet decomposition

technique presented any improvement to the efficacy of the technique. Results for the

technique show that the combination of the techniques does not generate any major

advantage. The results for both λ and ∆ SNR are either approximately the same or

slightly worse then those that can be obtained using the wavelet transform alone. This

is true whether analysing the results generated when the algorithm was employed over

the full signal or solely over the epochs of contaminated data. Further, the additional

computational time of the ICA algorithm as can be seen from Figure 6.17 would sug-

gest that the addition if the ICA algorithm to the wavelet technique does not provide

significant enough value to be employed.

Similar conclusions as those specified above for the wavelet-ICA algorithm are rel-

evant when evaluating the wavelet-CCA algorithm. Again, the addition of the CCA

algorithm to the wavelet decomposition method does not provide any significant im-

provement in efficacy when removing artifacts of this type. However, one point to note

is that (similar to the W-ICA technique) the selection of the artifact components de-

pending on their autocorrelation function provides results comparable to those obtained

using the GTC selection technique.
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The combination of the EEMD with the ICA algorithm fails to greatly improve the

results obtained using the EEMD algorithm alone. However, the results again show that

the use of the Hurst exponent to select the artifact components does not work for the

EEMD based algorithms as the determined λ value is almost half that detected using

the GTC selection technique.

The novel EEMD-CCA algorithm does however provide results which are signifi-

cantly improved on those obtained using the other analysed two stage algorithms when

employed on the fNIRS data. When analysing the full signal the EEMD-CCA tech-

nique produces a λ value 6 % greater than anything achieved using the wavelet based

techniques and 3 % better than the EEMD technique. This improvement can also be

seen when viewing the ∆ SNR values. When reducing the span of the algorithm and

focusing on the epochs of movement data, the EEMD-CCA algorithm again has the best

results for the fNIRS data with a λ value of 51.00 %. Unlike the ICA algorithm, the

addition of the CCA algorithm to the EEMD algorithm provides very little increase in

computational cost as the average computational time of the CCA algorithm for fNIRS

and EEG is 0.03 seconds (0.01) and 0.19 seconds (0.28) respectively and thus can be

implemented without major concern for the additional computational load.
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Figure 6.31: Improvement in signal-to-noise ratio (∆ SNR, Equation 4.7) due to
the use of the multiple artifact removal techniques. (a) Results obtained when the
algorithms were employed over the full fNIRS/EEG signals. (b) Results when the
algorithms are employed only during epoch containing contaminating artifacts. ∆ SNR

still is calculated over the full signal.

Figure 6.30: Percentage improvement in correlation (λ, Equation 4.8) due to the use
of the multiple artifact removal techniques. (a) Results obtained when the algorithms
were employed over the full fNIRS/EEG signals. (b) Results when the algorithms are
employed only during epoch containing contaminating artifacts. λ still is calculated

over the full signal.
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The bar charts presented in Figure 6.30 and Figure 6.31 provide an overview of the

results shown in Table 5.1, 5.2, 6.1 and 6.2. Figure 6.32 provides a bar chart of the λ

and ∆ SNR values obtained when employing the simulated data. The results obtained

when using the two stage techniques on the simulated fNIRS and EEG data are similar

to those shown above. Although the determined values for λ and ∆ SNR may have

differed between the use of real or simulated data (as expected), the improved results

of the EEMD-CCA algorithm compared to the other tested techniques when employed

on the fNIRS data still hold true. Further, the wavelet transform and its associated

combinations (W-ICA, W-CCA) have a higher λ value then their corresponding EEMD

based methods as was shown with the real data. The high correlation between the results

obtained between the real and simulated data further proves that the methodology used

to record the novel dataset succeeds in providing an accurate representation of the true

contamination of the signals.

Figure 6.32: Calculated λ and ∆ SNR values for the simulated fNIRS and EEG data.

When employing all of the tested techniques (both single stage and two stage) on

the contaminated fNIRS data, when no reference signal is available, the MCA technique

delivers the best results in terms of λ while also outperforming all other techniques for

∆ SNR. As was shown in Figure 4.7 when artifacts are present in the recorded fNIRS

signal the Hb and HbO components become more correlated causing the trajectory plot

to become distorted. Figure 6.33 provides an example output of the affect that utilising
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the MCA algorithm has on the corresponding HbO and Hb values of the fNIRS. It can

be observed that the use of the MCA algorithm has succeeded in removing the vast

majority of the contaminating artifact. It should also be remembered that the Kalman

filter results shown above are for the adaptive Kalman filter where a reference signal

is required. When the reference signal is available the other single stage techniques

increase their performance and all outperform each of the two stage techniques. In this

situation the Kalman filter has the best λ value but is very closely followed by the MCA

algorithm.

Figure 6.33: Improvement in signal quality can also be observed using a trajectory
plot. (a) “Ground truth” signal (b) Noisy fNIRS signal contaminated with motion

artifact (c) Cleaned signal using the MCA technique.

It has been stated previously that the MCA algorithm requires that the signal dic-

tionaries be chosen prior to the employment of the technique and therefore if additional,

un-characterised artifacts contaminate the signal they may not be separated from the

desired signal. If the artifact type is unknown and a reference signal is not available,

the two stage techniques may perform best with the EEMD-CCA technique currently

the highest performing algorithm when dealing with fNIRS data.
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When analysing the EEG data when no reference signal is available the MCA al-

gorithm again performs to the highest standard in terms of λ value with the Wiener

filter also performing well. The MCA algorithm generates a new correlation value of

0.71 following the removal of the artifact (up from 0.396). These two techniques also

perform well in terms of the ∆ SNR values with the Wiener filter generating a 9.66 dB

improvement. When a reference signal does become available the two stage techniques

efficacy improves greatly with both the wavelet transform and the EEMD technique

obtaining over 87 % improvement in correlation following the use of the techniques.

Although these techniques do require the reference signal to become comparable to the

single stage techniques, they do not require any a priori information. The choice of the

artifact selection technique to use is important however.

When analysing the signals using the EEMD, EEMD-ICA or EEMD-CCA tech-

niques the Hurst exponent performs very poorly and should not be used to determine

the artifact components in the signal. The choice of components based on their autocor-

relation however does provide adequate results when compared to the results obtained

when using the GTC selection technique with only an average reduction in λ of 14.56 %

for the fNIRS data and 2.02 % for the EEG data. When using the wavelet based tech-

niques both the Hurst exponent and the autocorrelation function performed well. The λ

value obtained using the Hurst exponent was 5.24 % and for the autocorrelation based

function the reduction was 1.83 %, thus proving that for both the EEG and the fNIRS

datasets analysed in this thesis the autocorrelation based function should be used to

determine the artifact components in the situations where the “ground truth” signal is

not available.
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Chapter 7

Case Study

Over the past number of chapters this thesis first described a novel methodology which

allows for the simultaneous recording of both a “ground truth” and artifact corrupted

signal. Two unique benchmark datasets were recorded with this methodology, one for

fNIRS and one for EEG. The main advantage of these datasets is that they permit the

accurate measurement of the efficacy of any analysed artifact removal technique. Using

these unique datasets, a number of single stage and two stage techniques were then

evaluated in Chapters 5 and 6 and the best artifact removal techniques to employ to

remove the contaminating motion artifact were determined. However, the determined

techniques can only be deemed the best when the form of the artifact is similar to that

created during the data acquisition (artifacts due to the intermittent movement of the

recording optodes or electrodes), as specified in Section 4.2.

In this chapter a case study is presented in which ambulatory EEG data, intermit-

tently corrupted with artifact, is recorded. Over a number of recordings a number of

distinct motion artifact signals are produced, ranging from head movement while seated

to full body movement while running. For each of the presented artifact types the most

proficient algorithms tested in Chapters 5 and 6 are used to try to remove the varying

levels of contamination. In doing so, the techniques can be tested with real ambulatory

data for a number of the most common artifacts present in recordings performed outside

of the hospital environment.

The remainder of the chapter is organised as follows: Firstly, the ambulatory EEG

measuring device used to record the data will be detailed, including the positions of the

recording electrodes. Following this, a description is given of the various subject head

and body movements which were undertaken to generate the varied artifact types. For

each of the tested artifacts, sample plots are presented to illustrate the corresponding
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contamination of the EEG data. The reasons for testing each particular type of move-

ment will also be detailed. Next, a description of the metrics and figures that will be

used to test the efficacy of the techniques will be described. The efficacy metrics used in

the previous chapters cannot be employed in this chapter as the “ground truth” signal

is no longer available. Finally, a number of the most proficient algorithms already tested

will be employed and their outputs and results will be described.

7.1 EEG Measurement System

The EEG data was recorded using the Starstim R© (Neuroelectrics, Barcelona, Spain)

measurement system. This is a wireless recording system capable of monitoring 8 chan-

nels of EEG concurrently. The system uses Silver-Silver-Chloride (Ag-AgCl) electrodes

similar to those employed when recording using the BioSemi ActiveTwo system described

in Chapter 4. In addition to these 8 measurement electrodes, there are also 2 additional

electrodes used, namely the driven right leg (DRL) and common mode sense (CMS)

electrodes. The purpose of these additional electrodes has been previously described in

Section 4.1.2. The measurements are recorded with 24 bit resolution (0.05 µV) and are

sampled at 500 Hz.

All the recorded data is stored on an on-board SD memory card which is housed in

a control box. This control box contains the battery pack of the system (allowing for

up to 8 hours of EEG recording), the connectors to the EEG electrodes, the SD card,

a Bluetooth communication module and a tri-axial accelerometer. The control box is

connected to the cap at the rear of the head using velcro as can be seen in Figure 7.1. The

overall weight of the control box is only 65 grams which ensures that the system can be

easily carried by the user without any restriction to movement. The included Bluetooth

device allows for consistent communication between the monitoring device and the host

computer, however as previously mentioned, the data can also be stored on the SD card

for later analysis. The accelerometer device contained in the control box is orientated to

allow for accurate measurement of the movement of the device in the median sagittal, the

transverse and the frontal planes. This availability of the accelerometer signal allows

for the tagging of the data as well as allowing for the additional use of a number of

the techniques described in the thesis which require a reference signal. This StarStim

system is also capable of transcranial current stimulation, however this property was not

employed during the described recording.

The cap used to secure the control box and the electrodes to the scalp can be seen

in Figure 7.1. This cap is made from Neoprene and thus is highly flexible allowing it
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Figure 7.1: StarStim R© ambulatory EEG recording system.

to be easily applied and secured to the head. As stated previously, the EEG control

box is then secured to the rear of the head using velcro. The 8 recording electrodes

were positioned at locations AF7, F7, T7, P7, O2, PO8, C2 and C4. These locations

can be seen from Figure 7.2 which shows the 10-20 electrode placement including the

intermediate 10 % electrode positions. The electrode locations were chosen in order to

represent the various cortical areas of the brain. The CMS electrode was place at the

Cz position and the DRL was secured to the mastoid.

In addition to the recording of the EEG data a number of supplementary data files

were also chronicled. Firstly, each recording was videoed to allow for a validation of

the tagging of the data post recording and secondly an external trigger was employed

to mark the start and end of each different epoch of movement. This trigger value was

sent using TCP/IP over Bluetooth to the control box allowing for simple data tagging

during analysis.

7.2 Artifact Generation Protocol

In order to test the artifact removal techniques described in this thesis with ambulatory

recorded EEG data, a number of different types of contaminating motion artifacts were

required to be generated. The varying forms of the induced artifacts were chosen so as

to reflect those which are most commonly recorded in the ambulatory recording domain.

These differing forms of artifacts can be grouped into two separate categories.
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Figure 7.2: Location and nomenclature of the intermediate 10 % electrodes of the
10-20 system, as standardised by the American Electroencephalographic Society [120].

The first category comprised of movements of the subjects head or facial muscles.

O’Regan et al. [147] detailed the recording of EEG data during 5 different artifact gen-

erating movements. These movements included shaking of the head (right and left),

nodding of the head (forward and backward), rolling the head (around the axis of the

neck), clenching the jaw muscles and the raising and lowering of the eyebrows. As these

movements accurately simulated some of the major motion artifacts detected in ambu-

latory EEG data, they were each analysed for the case study. These movements were

recorded while in a seated position and were approximately 30 seconds in duration each.

Each movement was performed twice and there was a 30 second epoch of no movement

between each ensuing movement. A lengthy recording of 40 mins was also performed

in which the subject performed routine activities at a computer. No restrictions were

imposed on the movement of the subject during recording aside from that they should

remain in a seated position.

The second group of generated contaminating artifacts were due to the combined

movement of both the subjects body and head. During each of these trials the subject

was asked to perform a task which required full body movement. This, again, was

to reflect the normal movements of a subject whose EEG was being monitored in an
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ambulatory setting. The first trial consisted of the subject performing the standard

sit-to-stand task [50]. This task is commonly used to determine the mobility and muscle

power of a subject. During this task the subject is asked to go from a seated position

to a fully standing position before returning to the seat. The time taken to perform

the task can then be used to determine the patients mobility. In order to lengthen the

duration of the induced artifact, the subject was asked to perform three sit-to-stand

movements consecutively. Four trials were recorded. The second movement based trial

consisted of the also commonly employed timed-up and go (TUG) test. During this test

the subject is asked to rise from a chair, walk three meters, turn around, walk back to

the chair and then sit down. This study is often used to test a subjects mobility as well

as their static and dynamic balance [66]. In addition to the two common tests described,

data was also recorded for: 1) a 4 minute tour of a building which included activities

such as passing through doors and climbing stairs, and 2) 17 minutes of walking and

running on a treadmill. These additional datasets were recorded to represent real long

term monitoring of ambulatory EEG.

Table 7.1 summarises the multiple movements used to generate the artifact contam-

inated data analysed in this chapter.

7.3 Efficacy Metrics

As the “ground truth” signal used to test the efficacy in the previous chapters of the

thesis is no longer available, the efficacy metrics employed in this chapter differ slightly.

The percentage improvement in correlation (λ) cannot be employed as there is not a

true signal with which to compare. However a version of the ∆ SNR metric can be

employed and is defined as

∆SNR = 10 log10

(
σ2true
σ2after

)
− 10 log10

(
σ2true
σ2before

)
(7.1)

where σ2true is the variance of an epoch of data free from movement artifact, σ2before is

the variance of the artifact contaminated data prior to employing the particular artifact

removal technique and σ2after is the variance of the same epoch following the use of the

removal technique.

In addition to providing results for the increase in SNR, due to the use of the

various artifact removal techniques, example outputs from the techniques, both in the

time and frequency domain will be presented showing the effect of the techniques on
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Table 7.1: The different movements undertaken during ambulatory EEG monitoring
case study.

Movement Type Description Duration

Shake Head Move the head from side to side

with varying speed ≈ 30 sec

Nod Head Move the head up and down with

varying speed ≈ 30 sec

Roll Head Roll the head around the axis

of the neck. Varying direction ≈ 30 sec

Jaw Clenching Engage the jaw muscles. Mimic

the chewing action ≈ 30 sec

Eyebrow Movement Raise and lower the eyebrows

with varying amplitude and duration ≈ 30 sec

Sit-to-Stand From a seated position, stand up

out of the chair fully before

reseating. Perform three times ≈ 15 sec

Timed-Up and Go (TUG) From a seated position, stand up,

walk to a line on the floor, turn

around and walk back to the chair

and sit down. Walk at regular pace. ≈ 10 sec

Walking Walk around the department

including passing through 6 sets

of push/pull doors and 4 flights

of stairs ≈ 4 mins

Walking/Running Treadmill running. Intervals of

1 min rest, 3 mins walking, 3 mins

running, 3 mins walking, 3 mins

running, 3 mins walking and 1 min

of rest. ≈ 17 mins

Working on Computer General light movement while

working at a PC ≈ 40 mins

the morphology of the signals. As increasing the SNR does not guarantee improvement

in the quality of the true signal (since lim
σ2
after→0

10 log10

(
σ2true
σ2after

)
=∞), the concurrent

evaluation of the techniques using both the time and frequency domain plots is essential.
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7.4 Artifact Removal

For the purpose of the case study, 4 of the techniques described previously in the thesis

were employed. Namely these techniques were the Wiener filter, morphological com-

ponent analysis (MCA), wavelet analysis and ensemble empirical mode decomposition

(EEMD), all of which were previously shown to perform well when removing motion

artifacts from the EEG signal. These 4 techniques were chosen as, between them, they

covered the full range of analysed techniques (i.e. filtering, separation; single stage, two

stage). The EEG data, recorded as specified in Section 7.2, was separated into epochs of

clean artifact free data and epochs of known artifact contamination using the available

accelerometer signals. This separation was confirmed using the available video and data

tagging information.

Each technique was individually employed on all epochs of contaminated data and

the resulting improvement in SNR calculated. Figure 7.3 shows an example of 5 of

the artifact contaminated epochs due to the different head movements. Each of the 5

protocols used to generate head movement artifacts were performed twice and as there

was 8 channels of EEG recorded this resulted in a total of 16 epochs of contaminated

data per movement type.

Figure 7.4 shows the artifacts generated due to the protocols involving full body

movement. Again, each protocol was undertaken twice and therefore 16 trials of con-

taminated data were available for each. In the sections below, an example output of

each artifact removal technique is presented for each artifact type and the resulting im-

provement in SNR is provided. Table 7.2 provides a summary of the determined ∆ SNR

for each of the techniques.

By analysing Figure 7.3 and 7.4 it can be seen that the generated artifacts seriously

degrade the quality of the recorded EEG signals. The artifact signals can also be ob-

served to be very different in nature, with some having a very periodic morphology (i.e.

running/walking artifact) while others are more random in nature. This can also be de-

duced from the frequency domain representation of the signal where the lower frequency

components of the artifact signals are observed to have a very high power with respect

to the power of the clean epoch.
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Figure 7.3: Example recordings of EEG during the 5 Head movements (Nodding, Jaw
movement, Shaking, Rolling and Eyebrow movement) shown in the time and frequency

domain.

Figure 7.4: Example recordings of EEG during the 4 full body movements (Sit-to-
Stand, Timed-Up and Go (TUG), Treadmill Walking, Treadmill Running) shown in

the time and frequency domain.
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7.4.1 Wiener Filter

The Wiener filter was applied as was described in Chapter 5. The PSD of an epoch of

known clean data was first calculated. The PSD of the artifact contaminated signal could

then be used for each individual trial examined. Using these PSD’s the Wiener filter

could then be generated, where separate filter coefficients were calculated for each arti-

fact type. Figure 7.5 and 7.6 present example outputs of the filter for the contaminated

data shown in Figure 7.3 and 7.4.

As can be seen in Table 7.2, the Wiener filter was highly efficient in removing the

power from the noise signal with an average ∆ SNR over all artifact types of 18.94 dB.

Further, through comparison of the time and frequency domain figures, the artifact

removal technique can be deemed proficient at removing the contaminating artifacts.

There are, however, some residual artifact components in the “walking” and “running”

signals, which can be observed as periodic waves in the time domain and spikes in the

frequency domain. Also, the signal power for these two signals is quite low over the

known EEG frequencies which could signify a loss in true signal power.

7.4.2 MCA

Prior to the running of the MCA algorithm, the appropriate dictionaries were again

required to be chosen as specified in Section 5.5. As the “ground truth” signal was

not available, the choice of dictionaries was performed manually for each artifact type.

The combinations of dictionaries described in Section 5.5.2 were again analysed and the

pair which best separated the artifact from the signal were chosen. When analysing the

signals contaminated with the 5 different head movements the optimal dictionaries were

determined to be the DCT and ATrou dictionaries. These can be seen to be equivalent

to the dictionaries chosen to remove the motion artifact described in Chapter 5. How-

ever, when analysing the data contaminated with artifacts due to the movement of the

subject, a different pair of dictionaries were optimal. These were the LDCT and LWP

dictionaries. The mother wavelet chosen to represent the artifact (as required by the

LWP dictionary) was the Daubechies 6 wavelet.

Figure 7.7 presents example outputs from the MCA algorithm for inputs contam-

inated with artifacts due to the movement of the subjects head. Again the artifact

removal algorithm can be observed to perform well as the representation of the signals

in both the time and frequency domain closer resemble the clean signal then the original

noisy signal. The same conclusion can be taken from the epochs of contaminated data
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Figure 7.5: Artifact removal performed using the Wiener filter on EEG epochs con-
taminated due to movements of the head.

Figure 7.6: Artifact removal performed using the Wiener filter on EEG epochs con-
taminated due to movements of the body.
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due to full body movement (Figure 7.8). Unlike when employing the Wiener filter, the

“walking” and “running” artifact contaminated signals are not corrupted with periodic

artifacts, although they do contain a number of spike artifacts. These could possibly be

removed through the use of additional dictionaries. Finally, over all the contaminated

epochs the average calculated ∆ SNR was 13.67 dB.

7.4.3 Wavelet Transform

The wavelet transform was also chosen to clean the artifact contaminated data as it pro-

vided a high efficacy for both λ and ∆ SNR when employed on the known contaminated

data from Chapter 6. The technique was employed as described in Section 6.1 however,

as the “ground truth” signal was not available the autocorrelation of the decomposed

components was used to determine the artifact components. This technique was chosen

above the use of the Hurst exponent as it was shown, on average, to provide the best

results for the experiments undertaken in Chapter 6. The choice of the threshold value

was determined empirically and was set to 0.999 for all artifact types. All components

whose autocorrelation at lag one was above this threshold were then determined to be

artifacts and were thus removed from the reconstructed signal.

Figure 7.9 and Figure 7.10 present example outputs of the technique for all the de-

scribed artifact types. The time domain outputs can be seen to contain more residual

artifacts than those for the other techniques investigated. One possible reason for this

may be the choice of the artifact threshold value. As this value is static, artifact com-

ponents of different morphologies may not all be separated. Future analysis could look

into the use of a variable threshold value, possibly employing the accelerometer signals

as a reference. These artifacts are also apparent in the “walking” and “running” trials

similar to the Wiener filter outputs. Over all epochs the wavelet transform technique

yielded a ∆ SNR value of 4.92 dB.

7.4.4 EEMD

Similar to the wavelet transform the EEMD technique was employed as was described

in Section 6.2.2 with the sole difference being the value of the threshold used to separate

the artifact components from the desired signal. Again the autocorrelation function

was used to determine these components and the threshold was set to 0.999. This

threshold resulted in the removal of the artifact components which can be seen from

both Figure 7.11 and 7.12. As was observed with the wavelet transform and the Wiener
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Figure 7.7: Artifact removal performed using morphological component analysis
(MCA) on EEG epochs contaminated due to movements of the head.

Figure 7.8: Artifact removal performed using morphological component analysis
(MCA) on EEG epochs contaminated due to movements of the body.
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Figure 7.9: Artifact removal performed using the wavelet transform on EEG epochs
contaminated due to movements of the head.

Figure 7.10: Artifact removal performed using the wavelet transform on EEG epochs
contaminated due to movements of the body.
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filter, the epochs of data contaminated with artifacts due to the subject “running” and

“walking” retain some periodic artifacts. However, when compared to the contaminated

artifacts shown in Figure 7.3 and Figure 7.4, the majority of the artifact components

can be seen to be removed. This can also be shown by the increase in SNR. Over all

epochs the average ∆ SNR value was calculated as 6.14 dB.

7.5 Discussion

Table 7.2 summaries the improvements in SNR obtained through the use of the various

artifact removal techniques. These results are consistent with the previous analysis of

the techniques presented in Chapters 5 and 6. The Wiener filter produces the largest

average improvement in SNR in 7 of the 9 trials tested while having results only slightly

lower than MCA in the other two. This result affirms the results shown in Figure 6.31

which also shows the Wiener filter to be best in terms of SNR improvement.

In the analysis performed in this case study, the MCA algorithm provided the 2nd

best results. Unlike the Wiener filter, which only requires the PSD of the true and

noisy signal to operate, the MCA algorithm requires that the correct dictionaries be

chosen to represent the underlying signals prior to implementation. When employing

the algorithm on the signals contaminated with artifacts due to movement of the body

a new selection of dictionaries was required as the previous choice did not satisfactorily

separate the signals. This requirement for the selection of the dictionaries could restrict

the use of the technique in situations where the exact form of the contaminating artifact

is not known.

The EEMD and wavelet transform techniques perform significantly worse, in terms

of ∆ SNR, than the previously mentioned algorithms particularly in the walking and

running scenarios. The overall reduction in performance could be due to the use of the

autocorrelation function to determine the artifact components to remove. As was shown

in Section 6.8, although the technique does perform well, it may not always provide the

best results (previously shown using the “ground truth” signal).

As can be seen from both the figures and the SNR results, the epochs contaminated

due to the subject walking or running are the most difficult to remove. The Wiener filter,

wavelet transform and EEMD have removed some of the artifacts but the frequency plots

continue to show large signal power at the particular step frequencies and their aliases.

The MCA algorithm is capable of removing these periodic artifacts but the outputs still

contain some residual artifacts as can be seen from Figure 7.8. However, the power and

200



Case Study

Figure 7.11: Artifact removal performed using ensemble empirical mode decomposi-
tion (EEMD) on EEG epochs contaminated due to movements of the head.

Figure 7.12: Artifact removal performed using ensemble empirical mode decomposi-
tion (EEMD) on EEG epochs contaminated due to movements of the body.
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amplitude of the frequency and time plots of the cleaned signal using MCA have the

closest resemblance to that of the true clean signal. It should be noted that the Wavelet

transform and the EEMD technique can perform to a higher accuracy if the threshold

value is adjusted. Therefore an adaptive threshold value is required if these techniques

are to be employed for automatic artifact removal.

It should be stated again that the SNR is not a precise metric for analysing the

artifact removal capability as it does not take account of how much of the actual desired

signal has also been removed. It is not possible to quantify this degradation to the true

signal as the form of the original true signal is not known. It was for this reason that

the visual inspections were also included in the analysis. Future work on ambulatory

artifact removal should look into the use of the accelerometer signals to determine the

frequency of the artifact signals when walking and running and to use this information

to help remove the contaminating artifacts.

Table 7.2: Improvement in SNR following the use of the various artifact removal
techniques.

∆ SNR Wiener MCA Wavelet EEMD

Nodding Head
12.20 dB 13.89 dB 5.68 dB 5.89 dB

(1.83) (3.39) (1.43) (1.53)

Moving Jaw
8.79 dB 5.61 dB 2.42 dB 2.42 dB

(4.00) (3.86) (2.43) (2.44)

Shaking Head
21.40 dB 12.81 dB 8.04 dB 9.00 dB

(4.36) (3.33) (1.25) (3.64)

Rolling Head
21.99 dB 17.29 dB 6.08 dB 8.07 dB

(3.30) (4.17) (2.30) (3.54)

Moving Eyebrows
17.33 dB 16.63 dB 4.15 dB 7.62 dB

(15.83) (14.28) (1.61) (7.43)

Sit-to-Stand
16.32 dB 17.46 dB 11.47 dB 11.03 dB

(3.61) (1.88) (1.99) (2.79)

Timed-Up and Go
19.17 dB 18.10 dB 12.68 dB 12.37 dB

(3.90) (2.44) (2.70) (3.57)

Walking
17.70 dB 5.53 dB -3.95 dB -4.53 dB

(3.77) (5.85) (4.79) (5.44)

Running
35.57 dB 15.67 dB -2.30 dB 3.37 dB

(2.23) (4.27) (2.73) (2.68)
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Chapter 8

Conclusion

This thesis presents the comprehensive evaluation and comparison of novel and exist-

ing artifact removal techniques that can be employed for motion artifact removal from

physiological signals. Artifacts are present in all recordings independent of the recording

environment. However, as health monitoring moves from the hospital-centric to the p-

health environment, the possibility for contamination of signals with undesired artifacts

increases. This contamination can be due to a number of factors including: a lack of

trained clinicians to apply the recording system correctly, increased environmental noise,

and unconstrained movement of the subject. Therefore, the requirement for techniques

capable of accurately removing the artifact components is of utmost importance. The

best performing artifact removal techniques should facilitate their use both within the

hospital environment and in the p-health domain by performing adequately, and having

a low computational and hardware cost.

Progress on the artifact removal problem had previously been limited by 3 main

factors: 1) No comprehensive review of the literature existed, 2) few combinations of

techniques had been compared and 3) no dataset was available from which an accurate

evaluation of all of the techniques could be made. In this thesis each of these factors have

been addressed in this thesis and a complete evaluation of a range of leading artifact

removal techniques provided. The thesis concludes by proposing the best artifact removal

techniques to use for physiological signals under different circumstances.

The following sections detail the overall conclusions and contributions of the research

as well as highlighting possible avenues for future investigation.
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8.1 Summary of Contributions

Literature Review

As no previous review had been conducted in the area prior to the initiation of the

thesis, a comprehensive literature review of the state-of-the-art in artifact removal tech-

niques pertaining to physiological signal analysis was presented (Chapter 3). This work

reviewed the techniques which are currently among the most commonly employed. The

review also provided a taxonomy under which the artifact removal techniques could

be grouped. “Single stage artifact removal techniques” were defined as artifact removal

techniques which suppress unwanted signals without the requirement for an intermediate

artifact identification stage and, furthermore, are capable of operating on the available

single channel measurements. These techniques do, however, require some a priori

knowledge of the true and/or noisy signal to function correctly. “Two stage artifact

removal techniques” may or may not require a priori information but do require the use

of additional algorithms to aid in the identification of the artifact components from the

decomposed signals.

The review concluded that the majority of artifact removal techniques were evaluated

using simulated data and a method of analysing the techniques on real data was required.

Also, very few of the different algorithms had been compared with each other and

therefore a detailed comparison was needed.

Novel Recording Methodology

To facilitate the evaluation of the multiple artifact removal techniques investigated, a

novel method of testing the efficacy was developed. Existing efficacy metrics rely on

the use of simulated data, where the true signal is known but the mixing of the artifact

is overly simplistic, or on contaminated real data where the form of the true signal is

unknown. Using either data type can generate unrealistic results (as shown for the adap-

tive filter employed on the simulated data in Section 5.8). Chapter 4 details the novel

recording methodology which was developed to allow for accurate testing of the efficacy

of the individual algorithms. The novel methodology, designed for the recording of both

electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) data,

permits the recording of two separate but highly correlated channels, allowing for the

recording of a noise-contaminated and a noise-free signal concurrently. This correlated

noise-free signal, labeled the “ground truth” signal can then be used as a reference for
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the true signal underlying the artifact contaminated signal. The artifact removal tech-

niques can be tested on their ability to remove the contaminating noise by determining

how well the cleaned signal matches the “ground truth” signal. This matching was de-

termined using two efficacy metrics, the percentage improvement in correlation (λ from

Equation 4.8) and the improvement in signal-to-noise ratio (∆ SNR from Equation 4.7).

This new dataset allowed for a more accurate evaluation of the efficacy of the removal

techniques. This was particularly shown when employing the adaptive filter. When using

simulated data, the adaptive filter provided very good results due to the availability of

an accurate reference signal. However when employing real data, this accurate reference

is not available and thus the efficacy results of the technique drops significantly.

Novel Tagging Algorithm

A novel tagging algorithm, used to generate an original quality-of-signal (QOS) metric,

was proposed in Chapter 5. This QOS metric contrasted with any quality metric which

had been previously described due to its use of dual accelerometers. This allowed for

the recording of overall subject motion, along with any differential movement of the

electrodes/optodes with respect to the skin. Using these two references, the QOS metric

is able of perform three separate functions.

• Similar to previously available QOS metrics, the technique allows for an accurate

indication of the epochs of a signal where an artifact component is likely to be

present. This information can aid a trained technician in evaluating the differences

between signal irregularities of interest and contaminating artifacts. However,

unlike previous metrics the novel QOS technique is able to distinguish between

different artifact types. The presence of motion does not always generate artifacts

on a given signal, as shown in Figure 5.5.

• The novel QOS metric provides an accurate representation as to the position and

type of artifact contaminating the signal, allowing the appropriate artifact removal

technique to be chosen for each artifact type.

• The QOS metric permits the switching of the artifact removal techniques. Switch-

ing allows for the artifact removal techniques to only be employed as required and

also allows for different artifact removal techniques to be employed for different

artifact types. Results, shown in Tables 5.1, 5.2, 6.1 and 6.2, have demonstrated

that this switching greatly increases the efficacy of the employed techniques.
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Therefore the novel QOS metric provides the information necessary to determine

when to employ the artifact removal techniques while also aiding in the decision as to

which techniques to employ.

EEMD-CCA Artifact Removal Technique

A novel artifact removal technique is proposed in Chapter 6. When reviewing the multi-

ple artifact removal techniques in Chapter 3, it was shown that the canonical correlation

analysis (CCA) algorithm often returns quantitatively the same results as the inde-

pendent component analysis (ICA) algorithm and it was also shown to be capable of

outperforming the ICA algorithm for particular data types. This finding prompted the

development of a novel algorithm combining the ensemble empirical mode decomposi-

tion algorithm (EEMD) with the CCA algorithm, allowing the CCA algorithm to be

employed on recordings with low channel numbers. This algorithm was shown to have

significantly lower computational cost than the similar EEMD-ICA technique, while

demonstrating similar efficacy.

Results showed that the novel EEMD-CCA algorithm was the best artifact removal

algorithm to employ when analysing fNIRS data when a reference signal is not available

and the form of the artifact is unknown.

Evaluation and Comparison of Techniques

Given the difficulty in acquiring high quality signals, in the uncontrolled environment

present in modern connected health, understanding, from a comparative perspective,

the performance of the various techniques developed for this purpose is valuable and

has been hitherto unavailable. Through providing a comparison in a controlled and

rigourous fashion, this thesis should help connected health engineers better understand

the options open to them. It was found that the choice of the best removal technique to

use is dependent on a number of different factors: 1) the availability of a reference signal

2) the signal modality and 3) whether or not the form of the artifact is known. If no

reference signal is available, but the form of the artifact is known, then the morphological

component analysis (MCA) algorithm provides the best results for both the fNIRS and

EEG data. The Wiener filter also performs well in these situations when applied to

the EEG data. However, if the morphology of the artifact is not known then the MCA

algorithm will not be capable of separating the signal from the noise. The EEMD-CCA

technique becomes the best performing algorithm in that situation for the fNIRS data,

while the Wiener filter performs similarly to before with the EEG data. In situations
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where a reference signal is available, the tagging algorithm, can be used to determine

when to apply the techniques (in real time), so they are only employed when necessary

and for the right artifacts. In this context, all of the single stage techniques perform

well. As before, the MCA algorithm is only effective when the form of the artifact

is known. For the EEG data, the Wiener filter along with the Wavelet and EEMD

techniques provide the best results. The requirement of the two stage techniques for

algorithms capable of determining the artifact components is a disadvantage, suggesting

the Wiener filter as the best option for implementation. A summary of these results is

given in Table 8.1 which provides a direct comparison between the techniques presented.

Table 8.1: Best artifact removal techniques to employ for the EEG and fNIRS data
under different situations.

EEG fNIRS

Not Tagged

Known Artifact Type
MCA MCA

Wiener

Unknown Artifact Type Wiener EEMD-CCA

Tagged

Known Artifact Type

Wiener Kalman

Wavelet MCA

EEMD Wiener

Adaptive

Unknown Artifact Type

Wiener Kalman

Wavelet Wiener

EEMD Adaptive

In conclusion, the Wiener filter can be seen as the best performing algorithm for the

EEG data as it performs best over all situations while also having a very low computa-

tional load and is relatively easy to setup prior to implementation. For the fNIRS data,

the best technique depends on each particular situation. When a reference is available

the Wiener filter should be used as it has the lowest computational cost which can be

important when operating in the p-health domain to improve operating time.

Comparison of Two Stage Artifact Selection Techniques

As previously stated, each of the analysed two stage artifact removal techniques require

an additional algorithm to aid in the selection of the appropriate components relating to

artifacts from the separated signals. A comparison of two of these selection techniques

was provided in Chapter 6.
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1. The first technique used the components autocorrelation coefficient at lag one to

classify whether a component was artifact or desired signal

2. The second technique used the Hurst exponent, which is a measure of the rate of

change of autocorrelation over time

The Hurst exponent technique was found to be in-capable of selecting the correct

components when employed on the fNIRS data and so, for this signal modality, only

the autocorrelation function was used. However, when employed on EEG data, both

techniques were capable of separating the signal and artifact components and thus were

compared. The results provided using the two techniques were compared against those

obtained using the information provided by the “ground truth” signal, in order to de-

termine the optimum components. It was found that the Hurst exponent function per-

formed poorly when employed with any of the techniques that used the EEMD function,

but provided adequate results for the Wavelet based techniques. However, the autocor-

relation based technique provided better results for both the EEMD and Wavelet based

techniques with correlation values only about 1-2 % lower then the determined best case

results.

It is therefore concluded that the individual components autocorrelation information

should be used to determine the artifact components from the decomposed signals. The

requirement to determine the optimum threshold levels to separate the artifact and true

signal components could restrict the use of these techniques in the future.

Case Study

Chapter 7 presented a case study which employed four of the best algorithms derived in

Chapter 6 on ambulatory recorded EEG data. This novel dataset comprised of EEG data

corrupted with artifacts arising due to movements, ranging from simple head movements

to full body movement while running. This case study provided an opportunity to test

the algorithms on artifacts which commonly affect recordings made in the p-health

domain. Using both a SNR efficacy metric and the visual assessment of improvement

in signal quality, both in the time and frequency domain, the Wiener filter, and the

MCA, Wavelet and EEMD techniques were evaluated. In agreement with the results

from Chapter 6, the Wiener filter provided the largest average improvement in 7 of the

9 tested trials. Its should be noted however that the MCA technique provided the best

results visually for both trials contaminated due to the subject walking and running.

This proves that if the artifact signal has a known morphology, the MCA algorithm may

be the best technique to employ.
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Due to the consistency of the results, it is concluded that the Wiener filter is the best

tested removal technique to employ for motion artifact removal from ambulatory EEG

data, however the MCA technique could possibly provide better results for artifacts due

to walking or running.

Benchmark Datasets

The final contributions of the thesis are the benchmark datasets collected to test the

efficacy of the artifact removal techniques, namely the fNIRS and EEG data recorded

using the methodology described in Chapter 4 and the EEG data recorded for the case

study in Chapter 7. These datasets will be made available online to the research com-

munity, providing a valuable resource for future artifact removal research. In particular,

the fNIRS and EEG datasets provide a benchmark from which to test future artifact re-

moval techniques, allowing for a quick and easy comparison with each of the techniques

described in this thesis. In addition, these datasets provide researchers who do not have

access to the required recording systems to record their own data, with the opportunity

to test new artifact removal techniques on real motion artifact contaminated data rather

than having to exclusively rely on simulated data.

8.2 Future Work

During the research performed for this thesis a number of future avenues for further

research have been identified. Below, three of these different avenues are elaborated

upon.

Extension of the Recording Methodology

The methodology proposed in Chapter 4 allows for an accurate measure of the efficacy

of artifact removal techniques due to the availability of a “ground truth” signal. In order

to further test the artifact removal capabilities of the techniques, further trials could be

recorded with an extension to the recording protocol described in Section 4.2.3 and 4.2.4.

In the protocol described in the thesis, the subjects were not asked to perform any

mental tasks during the recording of the fNIRS or EEG data. For these trials, an

interpretation of the physical meaning of the underlying signals was not of importance.

If this protocol was altered, therefore requiring the subjects to perform a mental task

intermittently during recording, an additional test of the removal techniques could be
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performed. The form of this mental task would depend on the electrode/optode position

during the recording. Using the “ground truth” signal, a classifier could first be trained

to detect the activation and rest epochs of the signal, as performed by Leamy and

Ward [106]. By implementing this new revised protocol, the individual artifact removal

techniques could be also compared on their ability to return the contaminated signal to

a form where the trained classifier is capable of determining the associated active and

rest epochs.

In addition, to generate a more controlled artifact signal a mechanical process could

be used to disturb the recording optode/electrode instead of the pulling of the leads

manually. By use of a device such as a stepper motor to pull on the lead, the exact

movements can be determined allowing for an exact knowledge of the waveform repre-

senting the disturbance.

Adaptive Artifact Selection Threshold

When employing any of the described two stage techniques for automatic artifact removal

there is a requirement for additional algorithms capable of determining the components

relating to artifacts from the separated signals. One difficulty with using these automatic

component selection techniques is the choice of the threshold value to use to separate

the artifact from the true signal components. An incorrect threshold value can result

in either the failure to remove some of the artifact components or in the removal of a

number of components relating to the desired true signal.

A further avenue for research is the development of algorithms capable of automati-

cally determining the optimum threshold values for combinations of random signal and

artifact modalities. In doing so, an adaptive nature is introduced to the artifact selection

techniques where only the artifact signal is removed, thus improving the overall efficacy

of the techniques.

Data Tagging Algorithm without Reference

A further avenue which would benefit from further analysis is the tagging of artifact

epochs of a data signal. In this thesis, as described in Section 5.1, the tagging of data

is performed using the available reference accelerometer signals.

The current tagging method requires that a reference signal for the artifact in the

form of an accelerometer is available. In order to reduce the power consumption and the

hardware requirements of the developed p-health monitoring system, there is a desire
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to eliminate the requirement for this reference signal. Changes in the statistical or

morphological properties of the analysed signals may be able to be used to self tag the

data, providing a basic QOS metric which could be used to control the artifact removal

techniques.

8.3 Concluding Remarks

The focus of this thesis was to determine the best techniques to employ for motion ar-

tifact removal from physiological signals. This is an important topic of research, since

until the artifacts that commonly contaminate physiological signals can be accurately

removed, the measurements will not be capable providing the required level of accu-

rate information often required by clinicians. Further, such artifacts are hindering the

pervasion of p-health technology in a rapidly ageing society.

The thesis focused primarily on the fNIRS and EEG signal types as these are two

of the more challenging signal modalities to measure both within and outside the lab-

oratory. A novel methodology was devised to provide datasets from which the artifact

removal techniques could be evaluated accurately and fairly. The numerous techniques

were evaluated and compared with the best proposed technique for EEG deemed to be

the Wiener filter. For the fNIRS data, the best technique depended on the particular

situation examined (i.e. was a reference signal available etc).

With the ever increasing capabilities of technology and the use of ever more efficient

artifact removal techniques, the next number of decades will hopefully see a dramatic

increase in both the number and the accuracy of physiological measurements performed

in the p-health domain. These measurements will help to reduce the ever increasing cost

of healthcare, while eradicating the requirement of hospital-visits to perform routine

monitoring and checkups, resulting in a better quality of life for the patient.

211



Appendix A

Publications Arising from this

Work

Sweeney, K.T. Ward, T.E. and McLoone, S.F., A simple bio-signals quality measure for

in-home monitoring, In proceedings of the 7th IASTED International Conference, 2010.

Electrocardiography (ECG) is a test that measures the electrical activity

of the heart. The use of ECG for recording in ambulatory settings is becom-

ing more prominent due to an increase in in-home monitoring. By virtue

of the ambulatory nature of the recordings, artifacts have a large effect on

the signals, with the most significant artifact a result of motion. This pa-

per describes an accelerometer system used to detect differential movement

between the recording electrodes on the body. This system is then used to

determine a Quality of Signal (QOS) metric for the ECG signal. The results

show that the use of differential movement of the recording electrodes with

respect to one another is a better representative of the motion artifact, then

overall body movement. This simple Signal Quality metric is used to more

accurately flag the appropriate noisy ECG data which can be rejected from

the signal. The simplicity of this system also allows it to be easily embedded

into any in-home monitoring system.
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Sweeney, K.T. Leamy, D.J. and Ward, T.E. and McLoone, S.F., Intelligent artifact clas-

sification for ambulatory physiological signals, In proceedings of the IEEE Engineering

in Medicine and Biology Society (EMBC), 2010.

Connected health represents an increasingly important model for health-

care delivery. The concept is heavily reliant on technology and in particular

remote physiological monitoring. One of the principal challenges is the main-

tenance of high quality data streams which must be collected with minimally

intrusive, inexpensive sensor systems operating in difficult conditions. Am-

bulatory monitoring represents one of the most challenging signal acquisition

challenges of all in that data is collected as the patient engages in normal

activities of everyday living. Data thus collected suffers from considerable

corruption as a result of artifact, much of it induced by motion and this

has a bearing on its utility for diagnostic purposes. We propose a model for

ambulatory signal recording in which the data collected is accompanied by

labeling indicating the quality of the collected signal. As motion is such an

important source of artifact we demonstrate the concept in this case with a

quality of signal measure derived from motion sensing technology viz. ac-

celerometers. We further demonstrate how different types of artifact might

be tagged to inform artifact reduction signal processing elements during sub-

sequent signal analysis. This is demonstrated through the use of multiple

accelerometers which allow the algorithm to distinguish between disturbance

of the sensor relative to the underlying tissue and movement of this tissue.

A brain monitoring experiment utilising EEG and fNIRS is used to illustrate

the concept.
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Sweeney, K.T. Kelly, D. Ward, T.E. and McLoone, S.F., A Review of the State of the Art

in Artifact Removal Technologies as used in an Assisted Living Domain, IET Conference

on Assisted Living, 2011.

There has been significant growth in the area of ubiquitous, pervasive,

distributed healthcare technologies due to the increasing burden on the

healthcare system and the impending demographic shift towards an aging

population. The move from a hospital-centric healthcare system towards

in-home health assessment is aimed to alleviate the burden on healthcare

professionals, the health care system and caregivers. Advances in signal

acquisition, data storage and communication channels provide for the col-

lection of reliable and useful in-home physiological data. Artifacts, arising

from environmental, experimental and physiological factors, degrade signal

quality and reduce the utility of the affected part of the signal. The degrad-

ing effect of the artifacts significantly increases when data collection is moved

from the clinic into the home. Advances in signal processing have brought

about significant improvement in artifact removal over the last number of

years. This paper reviews the most common physiological and location-

indicative signals recorded in the home and documents the artifacts which

occur most often. A discussion of some of the most common artifact removal

techniques is then provided. An evaluation of the advantages and disadvan-

tages of each is given with reference to the assisted living environment.
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Sweeney, K.T. Ayaz, H. Ward, T.E. Izzetoglu, M. McLoone, S.F. and Onoral, B., A

Methodology for Validating Artifact Removal Techniques for fNIRS In proceedings of

the IEEE Engineering in Medicine and Biology Society (EMBC), 2011.

fNIRS recordings are increasingly utilised to monitor brain activity in

both clinical and connected health settings. These optical recordings provide

a convenient measurement of cerebral hemodynamic changes which can be

linked to motor and cognitive performance. Such measurements are of clini-

cal utility in a broad range of conditions ranging from dementia to movement

rehabilitation therapy. For such applications fNIRS is increasingly deployed

outside the clinic for patient monitoring in the home. However, such a mea-

surement environment is poorly controlled and motion, in particular, is a

major source of artifacts in the signal, leading to poor signal quality for

subsequent clinical interpretation. Artifact removal techniques are increas-

ingly being employed with an aim of reducing the effect of the noise in the

desired signal. Currently no methodology is available to accurately deter-

mine the efficacy of a given artifact removal technique due to the lack of

a true reference for the uncontaminated signal. In this paper we propose a

novel methodology for fNIRS data collection allowing for effective validation

of artifact removal techniques. This methodology describes the use of two

fNIRS channels in close proximity allowing them to sample the same mea-

surement location; allowing for the introducing of motion artifact to only

one channel while having the other free of contamination. Through use of

this methodology, for each motion artifact epoch, a true reference for the

uncontaminated signal becomes available for use in the development and

performance evaluation of signal processing strategies. The advantage of

the described methodology is demonstrated using a simple artifact removal

technique with an accelerometer based reference.
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Sweeney, K.T. Ward, T.E. and McLoone, S.F., Artifact Removal in Physiological Signals

-Practices and Possibilities, IEEE Transactions on Information Technology in Biomedicine,

vol. 16, no. 3, pp 488-500, May, 2012.

The combination of reducing birth rate and increasing life expectancy

continues to drive the demographic shift toward an aging population. This,

in turn, places an ever-increasing burden on healthcare due to the increas-

ing prevalence of patients with chronic illnesses and the reducing income-

generating population base needed to sustain them. The need to urgently

address this healthcare ”time bomb ”; has accelerated the growth in ubiqui-

tous, pervasive, distributed healthcare technologies. The current move from

hospital-centric healthcare toward in-home health assessment is aimed at al-

leviating the burden on healthcare professionals, the health care system and

caregivers. This shift will also further increase the comfort for the patient.

Advances in signal acquisition, data storage and communication provide for

the collection of reliable and useful in-home physiological data. Artifacts,

arising from environmental, experimental and physiological factors, degrade

signal quality and render the affected part of the signal useless. The mag-

nitude and frequency of these artifacts significantly increases when data

collection is moved from the clinic into the home. Signal processing ad-

vances have brought about significant improvement in artifact removal over

the past few years. This paper reviews the physiological signals most likely

to be recorded in the home, documenting the artifacts which occur most

frequently and which have the largest degrading effect. A detailed analysis

of current artifact removal techniques will then be presented. An evaluation

of the advantages and disadvantages of each of the proposed artifact de-

tection and removal techniques, with particular application to the personal

healthcare domain, is provided.
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Sweeney, K.T. Ayaz, H. Ward, T.E. Izzetoglu, M. McLoone, S.F. and Onaral, B., A

methodology for validating artifact removal techniques for physiological brain signals,

IEEE Transactions on Information Technology in Biomedicine, vol. 16, no. 5, pp 918-

926, Sept., 2012.

Artifact removal from physiological signals is an essential component of

the biosignal processing pipeline. The need for powerful and robust meth-

ods for this process has become particularly acute as healthcare technology

deployment undergoes transition from the current hospital-centric setting

towards a wearable and ubiquitous monitoring environment. Currently, de-

termining the relative efficacy and performance of the multiple artifact re-

moval techniques available on real world data can be problematic, due to

incomplete information on the uncorrupted desired signal. The majority of

techniques are presently evaluated using simulated data and therefore the

quality of the conclusions is contingent on the fidelity of the model used.

Consequently, in the biomedical signal processing community, there is con-

siderable focus on the generation and validation of appropriate signal mod-

els for use in artifact suppression. Most approaches rely on mathematical

models which capture suitable approximations to the signal dynamics or un-

derlying physiology and therefore introduce some uncertainty to subsequent

predictions of algorithm performance. This paper describes a more empir-

ical approach to the modeling of the desired signal that we demonstrate

for functional brain monitoring tasks which allows for the procurement of

a “ground truth” signal which is highly correlated to a true desired signal

that has been contaminated with artifacts. The availability of this “ground

truth”, together with the corrupted signal, can then aid in determining the

efficacy of selected artifact removal techniques. A number of commonly im-

plemented artifact removal techniques were evaluated using the described

methodology to validate the proposed novel test platform.

217



Appendix A

Sweeney, K.T. Ward, T.E. and McLoone, S.F., The use of empirical mode decompo-

sition with canonical correlation analysis as a novel artifact removal technique, IEEE

Transactions on Biomedical Engineering, (Accepted), 2012.

Biosignal measurement and processing is increasingly being deployed in

ambulatory situations particularly in connected health applications. Such

an environment dramatically increases the likelihood of artifacts which can

occlude features of interest and reduce the quality of information available in

the signal. If multichannel recordings are available for a given signal source

then there are currently a considerable range of methods which can sup-

press or in some cases remove the distorting effect of such artifacts. There

are however considerably fewer techniques available if only a single channel

measurement is available and yet single channel measurements are important

where minimal instrumentation complexity is required. This paper describes

a novel artifact removal technique for use in such a context. The technique

known as ensemble empirical mode decomposition with canonical correlation

analysis (EEMD-CCA) is capable of operating on single channel measure-

ments. The EEMD technique is first used to decompose the single channel

signal into a multi-dimensional signal. The CCA technique is then employed

to isolate the artifact components from the underlying signal using second

order statistics. The new technique is tested against the currently available

wavelet denoising and EEMD-ICA techniques using both electroencephalog-

raphy (EEG) and functional near-infrared spectroscopy (fNIRS) data and is

shown to produce significantly improved results.
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Data Sheet and Schematic for

Accelerometer System
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Small, Low Power, 3-Axis ±2 g
Accelerometer

   ADXL327
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FEATURES 
3-axis sensing 
Small, low profile package 

4 mm × 4 mm × 1.45 mm LFCSP 
Low power: 350 μA typical 
Single-supply operation: 1.8 V to 3.6 V 
10,000 g shock survival 
Excellent temperature stability 
Bandwidth adjustment with a single capacitor per axis 
RoHS/WEEE lead-free compliant 
 

APPLICATIONS 
Cost-sensitive, low power, motion- and tilt-sensing applications 

Mobile devices 
Gaming systems 
Disk drive protection 
Image stabilization 
Sports and health devices 

GENERAL DESCRIPTION 
The ADXL327 is a small, low power, complete 3-axis accelerometer 
with signal conditioned voltage outputs. The product measures 
acceleration with a minimum full-scale range of ±2 g. It can 
measure the static acceleration of gravity in tilt-sensing 
applications, as well as dynamic acceleration, resulting from 
motion, shock, or vibration.  

The user selects the bandwidth of the accelerometer using  
the CX, CY, and CZ capacitors at the XOUT, YOUT, and ZOUT pins. 
Bandwidths can be selected to suit the application with a 
range of 0.5 Hz to 1600 Hz for X and Y axes and a range of 
0.5 Hz to 550 Hz for the Z axis. 

The ADXL327 is available in a small, low profile, 4 mm ×  
4 mm × 1.45 mm, 16-lead, plastic lead frame chip scale package 
(LFCSP_LQ). 
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Figure 1.  
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SPECIFICATIONS 
TA = 25°C, VS = 3 V, CX = CY = CZ = 0.1 μF, acceleration = 0 g, unless otherwise noted. All minimum and maximum specifications are 
guaranteed. Typical specifications are not guaranteed. 

Table 1.  
Parameter Conditions Min Typ Max Unit 
SENSOR INPUT Each axis     

Measurement Range  ±2 ±2.5  g 

Nonlinearity Percent of full scale  ±0.2  % 
Package Alignment Error   ±1  Degrees 
Interaxis Alignment Error   ±0.1  Degrees 
Cross Axis Sensitivity1   ±1  % 

SENSITIVITY (RATIOMETRIC)2 Each axis     
Sensitivity at XOUT, YOUT, ZOUT VS = 3 V 378 420 462 mV/g 
Sensitivity Change Due to Temperature3 VS = 3 V   ±0.01  %/°C 

ZERO g BIAS LEVEL (RATIOMETRIC)      
0 g Voltage at XOUT, YOUT VS = 3 V 1.3 1.5 1.7 V 
0 g Voltage at ZOUT VS = 3 V 1.2 1.5 1.8 V 

0 g Offset vs. Temperature   ±1  mg/°C 

NOISE PERFORMANCE      
Noise Density XOUT, YOUT, ZOUT    250  μg/√Hz rms 

FREQUENCY RESPONSE4      
Bandwidth XOUT, YOUT

5 No external filter  1600  Hz 

Bandwidth ZOUT
5 No external filter  550  Hz 

RFILT Tolerance   32 ± 15%  kΩ 
Sensor Resonant Frequency   5.5  kHz 

SELF TEST6      
Logic Input Low   +0.6  V 
Logic Input High   +2.4  V 

ST Actuation Current   +60  μA 
Output Change at XOUT Self test 0 to 1 −210 −450 −850 mV 
Output Change at YOUT Self test 0 to 1 +210 +450 +850 mV 
Output Change at ZOUT Self test 0 to 1 +210 +770 +1400 mV 

OUTPUT AMPLIFIER      
Output Swing Low No load  0.1  V 
Output Swing High No load  2.8  V 

POWER SUPPLY      
Operating Voltage Range  1.8  3.6 V 
Supply Current VS = 3 V  350  μA 

Turn-On Time7 No external filter  1  ms 

TEMPERATURE      
Operating Temperature Range  −40  +85 °C 

 
1 Defined as coupling between any two axes. 
2 Sensitivity is essentially ratiometric to VS.  
3 Defined as the output change from ambient-to-maximum temperature or ambient-to-minimum temperature. 
4 Actual frequency response controlled by user-supplied external filter capacitors (CX, CY, CZ). 
5 Bandwidth with external capacitors = 1/(2 × π × 32 kΩ × C). For CX, CY = 0.003 μF, bandwidth = 1.6 kHz. For CZ = 0.01 μF, bandwidth = 500 Hz. For CX, CY, CZ = 10 μF, 

bandwidth = 0.5 Hz.  
6 Self test response changes cubically with VS. 
7 Turn-on time is dependent on CX, CY, CZ and is approximately 160 × CX or CY or CZ + 1 ms, where CX, CY, CZ are in μF.  
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ABSOLUTE MAXIMUM RATINGS 
Table 2.  
Parameter Rating 
Acceleration (Any Axis, Unpowered) 10,000 g 
Acceleration (Any Axis, Powered) 10,000 g 
VS −0.3 V to +3.6 V 
All Other Pins (COM − 0.3 V) to (VS + 0.3 V) 
Output Short-Circuit Duration  

(Any Pin to Common) 
Indefinite 

Temperature Range (Powered) −55°C to +125°C 
Temperature Range (Storage) −65°C to +150°C 

Stresses above those listed under Absolute Maximum Ratings 
may cause permanent damage to the device. This is a stress 
rating only; functional operation of the device at these or any 
other conditions above those indicated in the operational 
section of this specification is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect 
device reliability. 

 

ESD CAUTION 
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Appendix B

Figure B.1: Accelerometer Circuitry
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