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Abstract

In recent years there has been a widespread adoption of smartphone
technology. According to research by Google [Phal2] the U.S., New
Zealand, Denmark, Ireland, Netherlands, Spain and Switzerland have
a smartphone penetration greater than 40 percent. These phones are
frequently equipped with with reasonable processing capabilities, internet
access, high resolution cameras, and positioning sensors. This widespread
adoption coupled with the hardware capability’s of current generation
smartphones present a great opportunity to develop mobile augmented
reality (AR) applications for visualising geospatial information.

While smartphones are able to provide geolocalisation through GPS, the
lack of accuracy does not allow for precise and robust alignment of the
augmented data with the camera image. Computer vision techniques
can be used to gain accurate alignment. However, these methods often
require the creation a comprehensive 3D model of a scene. This can be
intensive to compute and the storage of this data can become a problem
when the system is required to work over the scale of a citywide area.
This thesis presents a mobile AR navigation system that uses a planar
based representation in order to augment 3D data into an urban scene.
By performing planar extraction the system can use the fagades of build-
ing as reference for accurately augmenting content. This is turn removes
the need for building a comprehensive 3D model for the scene. The sys-
tem uses a client server architecture where a user takes an image within
an urban setting with their smartphone which is forwarded to the server
for processing. This processing includes extraction of the planar fagades
in the scene, camera pose estimation and, matching of the facades to a
topological map of the environment. Once matched each of the the asso-
ciated camera pose parameters in conjunction with relevant AR content
can then be sent back to the mobile device. These parameters allow the
system to integrate the augmented content into the view which can high-
light and visualize geographically or contextually meaningful information
about the scene.

Results presented demonstrate that the system provides an accurate and
robust approach to AR in urban environments without associated com-
plexity of creating metric 3D reconstructions of the environment.
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1 Introduction

1.1 Augmented reality

Augmented Reality(AR) provides the ability to integrate computer-generated
virtual data into real world images or video streams. Virtual Reality(VR)
presents the user with a completely virtual world. AR in contrast seeks
to enhance the user’s view of the physical world with extra information
relative to the real world objects within the scene. A familiar example
of AR can be seen during sport broadcasts on TV. Here a white circle
is place under a player as he moves about the pitch in real-time. This
circle is used to indicate who the commentators are talking about. The
goal of AR techniques is to allow for the integration of 3D data in a per-
ceptually transparent manner that is contextually relevant to the user
(i.e. as if it were a part of the scene). This is achieved by reprojecting
3D virtual objects to appear as if they were part of the scene and then
superimposing them over the original image. An example of this process
is illustrated in Fig. 1.1.

AR has been shown to have many possible applications in a wide va-
riety of fields with its initial roots in military, industrial, and medical
applications. The ability to intuitively highlight or integrate computer
generated information into real world surroundings has a wide variety
of applications with examples now being seen in many other commer-
cial areas. Some examples include Tourism[FSLO05], Marketing[Legl1],
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Figure 1.1: Augmented Reality Example — The figure shows the AR game
Invizimals on the PSP Vita [Son12]. In this a player can fight 3D mon-
sters in real world settings

Navigation[Lay11], Medical[FNFB04], Entertainment and Gaming applications[Son12].

1.1.1 Camera pose estimation

In order to create effective AR systems it is important to have consistent
alignment of the 3D virtual objects with the real world image. This is
achieved by estimating the position and orientation of the camera which
has taken the image with respect to the scene or object that we wish to
augment. This is known as the camera pose estimation problem|[HZ04] or
registration problem. The camera pose information is then used to match
the real camera with the virtual camera that displays the 3D objects.
Once this is done the virtual data can be reprojected and overlaid on the
real image. Camera pose estimation can be computationally expensive
to solve with the most accurate methods requiring iterative non-linear
optimisation techniques. In recent years, as AR applications have begun
to appear on mobile devices this computational requirement has been
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seen as a significant challenge. In particular, given the limited compu-
tational power of these devices, approaches that reduce this complexity
are required.

1.1.2 Pose estimation approaches

Within AR there are various different strategies employed to estimate
the camera pose. We can categorise these approaches along the following
lines:

1. Proprioceptive sensors — Making use of sensors (e.g. accelerom-
eters, GPS, and digital compasses) for obtaining the camera posi-
tion and orientation.

2. Computer vision — Taking advantage of features within the im-
age itself in order to estimate and extract the camera pose from
the images taken by the camera.

3. Hybrid approach — Combining both computer vision and propri-
oceptive sensors in order to gain camera registration.

Full details of each of these approaches is provided in Chapter 2, however
in order to motivate the problem addressed in this thesis it is necessary
to understand the advantages and disadvantages of each of these ap-
proaches. The advantage of using proprioceptive sensors is that they
provide a direct measurement of the camera pose thereby avoiding the
high computational complexity associated with other techniques. How-
ever due to the inherent inaccuracy of these sensors, their use in mobile
AR applications has been restricted to situations where pixel level posi-
tioning accuracy is not possible (e.g. roughly displaying the location of
a bus stop at a distance).

The use of computer vision techniques on the other hand allow for highly
accurate camera registration and robust alignment of the data with the
camera image. In general, computer vision approaches for acquiring cam-
era registration can be split into two categories: marker based tracking
and markerless tracking.

In marker based tracking the calculations for the camera pose are simpli-
fied by inserting artificial markers(fiducial markers) into the scene. These




B 1 Introduction

fiducial markers are purposely designed to be distinctive and easy to de-
tect, segment and track within the image. An example of marker based
AR can be see in Fig 1.2. While this method works well over small to
medium scale controlled environments (e.g. a building or even a campus)
it is not suitable for use within a large uncontrolled environment such as
a city since it is simply impractical to place makers everywhere within
the environment that the system may need. This impracticality demon-

strates the need for markerless or natural feature tracking methods for
AR.

Figure 1.2: Marker based tracking for AR [KB99]

Markerless methods calculate the pose information of the camera from
naturally occurring features within the scene such as planes, edges, or
corner points. Hence, the markerless approach does not require artificial
elements to be placed within the scene or for the scene to be prepared
in any way. Markerless tracking usually relies on the processing of mul-
tiple images in order to acquire accurate camera pose information. This
method is the more computationally costly of the two computer vision
based approaches since it means that an estimation of the 3D structure
of the scene is normally required. This 3D model of the scene can then
be used as a reference for both pose estimation and to artificially add
elements into the scene. An example of a markerless based AR system
can be seen in Fig. 1.3
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Figure 1.3: The figure shows Markerless tracking [RD06a]

Finally hybrid approaches combine both the proprioceptive sensor and
computer vision approaches. This technique can take advantage of the ac-
curacy of computer vision but is able to offset some of the computational
costs associated by using hardware sensors. For example, proprioceptive
sensors can be used to give a seed value to the vision based techniques.
This allows us to cut down on the search space and apply vision to a sub
region. This can give a gain in effeciency or reduction in computational
complexity. The main difficulty with the hybrid approach can be in find-
ing the balance between the computer vision and the hardware based
method. This is dependant on the level of alignment accuracy required
and the hardware capabilities available to the application.

1.2 Problem statement

The aim of this thesis is the development of a mobile AR system for
positioning and navigation which works over a large urban setting. This
thesis builds on previous work of the Computer Vision and Imaging Lab
at NUI Maynooth on planar extraction algorithms described in [CM12]
and focusses on the problem of applying this algorithm to create a mobile
augmented reality navigation system. The contributions of this thesis
are:

e A method for augmenting 3D content using a planar building
facade model of the environment.
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o A intuitive method for authoring 3D AR targeted at non-expert
USErs.

e Development of a mobile AR system for user based navigation
within an urban environment, demonstrating the effectiveness of
the two contributions above.

This system must be able to author, augment and share relevant naviga-
tion and point-of-interest (POI) information using single arbitrary images
of urban scenes. The principal requirements for the resulting system are:

1. The system must first be able to augment 3D POI data at a pizel
level accuracy within an urban scene. As mentioned above a com-
puter vision approach is the only option for gaining alignment of the
3D augmented data at pixel level accuracy relative to a real-world
scene. Furthermore, in order to facilitate operation over a large
scale and in an uncontrolled environment the approach must also
be markerless. Typically this leads to computationally expensive
approaches which can be beyond the capabilities of current mobile
devices. However, since the aim is to create a navigation system
for an urban setting we can exploit a number of assumptions about
such environments which allows for a more simplified approach to
markerless AR. In particular, the application of standard marker-
less computer vision approaches involve the process of computing
a comprehensive 3D model. Within an urban scene however this
can be seen as unnecessary since the facades in such environments
are frequently the main reference point for the user. To exploit
the building facades we use the fact that they are often planar and
will contain a large number of rectilinear structures (i.e. containing
parallel lines in orthogonal directions). The system can therefore
make use of the projection of parallel lines thereby permitting the
recovery of the original 3D geometry of the building facades from
single input 2D images. These extracted planes can then be used to
represent the 3D spatial layout of a scene. Although the underlying
representation is not a complete 3D representation of the environ-
ment, as will be demonstrated in later chapters it does allow for
the creation of a comprehensive 3D AR system with significantly
reduced complexity in the approach.

2. The system should support non-expert authoring of AR content and
the sharing of that content between users. This objective is achieved
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by using the simplicity of the underlying facade based model to pro-
vide an intuitive approach to AR content authoring and sharing.
In order for the user to add new content, an authoring client has
been developed where a user can insert new 3D items relative to
the extracted facades. This permits a straightforward method for
integrating augmented content into the view which can highlight
and visualize geographically or contextually meaningful informa-
tion about the scene. This is in contrast to other systems whereby
the authoring involves complex 3D modelling tools typically requir-
ing specialised knowledge on the part of the author. Furthermore
the use of a centralised global model facilitates sharing of content
between users thereby allowing the AR system to be built around
user generated content (UGC).

. The system should be scalable to a level that it can operate over a
large(citywide) urban area and should support mobile clients. This
requirement is principally satisfied through the use of a client server
based approach. Here, the data needed for augmentation is stored
on the server side so the client only accesses local regions of the
model and hence does not require the entire model to be stored on
the device. In terms of the processing requirements on the server
side, the computational complexity is reduced through the use of
the fagade based model, which essentially models the environment
as a set of local maps which are combined globally through a set
of topological constraints. The implication of this representation is
that the complexity of adding new images to the system is bounded
by the complexity of the local map, since we avoid the complex
issue of global consistency associated with metric 3D reconstruc-
tion techniques. Furthermore the computational complexity of the
image matching procedure required for the localisation step (i.e.
which uses the input image to index into the global map) is re-
duced by limiting the scope of the search by including location
data from the GPS sensor of the mobile device.
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1.3 Mathematical notation

Given the importance of the camera pose estimation problem in this
work, this section provides an explanation of the mathematical notation
used throughout the remainder of the thesis.

1.3.1 Representing cameras

The perspective camera model is used to denote a projective mapping
of a three dimensional point in the real world to the corresponding two
dimensional point in the image plane. The 3D homogeneous world co-
ordinate point X € R* is mapped by the camera to the point x € R3 by
the transformation:

x = K[R[t]X (1.1)

Equation 1.1 shows the factorisation of the perspective camera model into
the intrinsic camera matrix K and eztrinsic camera matrix, [R|t]. Here
R and t represent the rotation and translation, respectively, between
the world and camera coordinate systems. The elements of the intrinsic
matrix are shown in Equation 1.2.

a, 0 wug
K=| 0 o v (1.2)
0 0 1

where, the parameters o, and a,, represent focal length in terms of pixels.
o, = f.m, and o = f.m, where f is the focal length in millimetres, m,
and m, are conversion factors relating millimetres to pixels and, vy and
vp represent the x- and y-coordinate of the principal point. Standard
camera calibration techniques[Zha00] can be used for estimation of these
parameters. Throughout this thesis unless otherwise stated the camera is
assumed to be a calibrated i.e. K are known. While real cameras exhibit
radial and tangential distortion, throughout this thesis it is assumed that
standard methods have been applied to remove these effects.

The extrinsic or external camera parameters determine the mapping from
3D points in the world coordinate system to their representation in the
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camera coordinate system. Hence, given a calibrated cameras, it is by
estimating the extrinsics of the camera that we can fully estimate the
model described in Eq. 1.1 and as a consequence perform the reprojection
required by the AR system.

1.4 Structure of thesis

The remainder of this thesis is structured as follows: In Chapter 2 a
review of the current state of AR is presented. Chapter 3 gives details
of the planar extraction method referred to in Section 1.2. Using this
planar extraction technique as a starting point, Chapter 4 will describe
the fagade based approach for augmented reality developed during this
thesis. This method creates augmented content using only a single image.
Chapter 5 describes a client server based AR system that provides the
user with positioning and navigation information. This system satisfies
the requirements listed in Section 1.1 and demonstrates the applicability
of the techniques from Chapters 4 and 5 in a real-world environment.
Chapter 6 will summarise the contribution of the thesis and identify
potential avenues of future research.







2 Related work

2.1 Overview

Computer Mediated Reality centres around the altering of one’s percep-
tion of reality by inserting/removing elements or manipulating it in some
way using a computer [MK94, Str96, Str97]. As can be seen from the
taxonomy of mediated reality in Fig. 2.1 both Augmented Reality (AR)
and Virtual Reality (VR) fall into a sub category of this topic.

VR coined by Jaron Lanier [KHS89] in 1989, applies to creating computer-
simulated environments which aim to emulate the physical presence of
a place in the real world. An example of a VR system is shown in
Fig. 2.2 (a). In this system images are projected onto the floor, walls
and ceiling to give the user an immersive experience of the virtual world.

In contrast to this AR seeks to alter the user’s perception of their physical
environment rather than completely emulate another (see in Fig. 2.2 (b)).
AR allows for the blending or augmentation of real world environments
with synthetic computer generated information in order to generate a
composite view of both. AR also extends into the audio domain with
work on audio/aural augmenting techniques having been presented in
[Bed95, CAK93, MBWF97, HJT*04]. For the purpose of this thesis
however, the focus will be solely on visual based AR methods.

Visual based AR techniques first began with Sutherland’s [Sut68] head-
mounted display in the 1960’s. Although it began in the 1960’s the

11
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Mediated Reality

Virtual Reality

Audio AR

Proprioceptive Computer Vision
based AR Tracking based AR

Visual AR

|

|

|

I Marker based
I Tracking
I

Hybrid AR |

U |

Figure 2.1: Augmented Reality Categories - Categories of Mediated Re-

ality

0.0 23095 6
6‘,!,“] 29m T

(a) [P01] | (b)[Wik09]

Figure 2.2: AR and VR Reality Examples - A side by side view of AR
and VR

term AR is not believed to have been coined until the 1990s by Thomas
Caudell [CM92]. A commonly accepted definition by Azuma [Azu97]
states that an AR system contains the following properties:

e [t combines real and virtual objects with each other

12
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o [t registers (aligns) these virtual objects with the real world in three
dimensions

o [t runs interactively

This is typically achieved by tracking the 6 Degrees of Freedom (DoF)
pose of the camera or the user’s view of the scene and using it to seam-
lessly overlay computer generated content in such a way that it is con-
sistently registered within the real world image or camera feed. In fact,
the accurate estimation of camera pose is one of the main challenges for
the AR system. Registration between these two environments in prac-
tice presents a difficult challenge to overcome due to the complexity and
processing power required. As mentioned in Chapter 1, approaches to
this problem divide into 3 main categories:

1. Registration using proprioceptive sensors.
2. Registration using computer vision.

3. Hybrid approaches combining both the proprioceptive sensors and
computer vision techniques.

2.2 Proprioceptive sensor based AR

Proprioceptive sensor based registration methods were the earliest method
developed for creating AR. In this thesis proprioceptive techniques are de-
fined as those that use sensors that directly measure the orientation of the
camera(e.g. accelerometer and digital compass) [CM92, KO97, FHP9S|.
In Sutherlands [Sut68] work in the 1960s he tracked the head position
of the user and presented the aligned graphics through a see-through
head mounted displays (HMD). Much of the work that followed [CM92,
K097, FHP98, HFT"99] up until the late 90s required measuring the po-
sition and orientation of some part of the user’s body in order to achieve
registration. This evolved under the name of wearable computing and
had some promising applications from assisting with complex machin-
ery [SB97] to helping doctors with patient biopsies [FSPT96]. These

13
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systems however required having to wear specialist headset that often
needed precise calibration to work correctly.

aaomnscmesin

QO vodafone

Eerste Romeinse
nederzetting: “Oppidum
Batavorum™

Jaartal: 12 voor Chr.
Afstand: 300 meter

QO s O

= i)

Figure 2.3: Layar Example [Lay11] — Augmenting a city scene with his-
torical data using Layar.

Magnetic, acoustic, ultrasonic, and mechanical sensors have all been used
to varying degrees of success. A detailed review of these technologies can
be found in [BDRO1]. These systems can work well over a smaller area
however the limited accuracy of the techniques result in a noticeable drift
of the camera registration when generated over a larger area.

In the late 90s hardware became sufficiently small and powerful to allow
mobile devices to be used for AR systems. One of the early prototypes
for this includes Hollerer’s mobile AR system (MARS) [HFT99]. This
system used GPS for positioning and a gyrometer and accelerometers in
order to compute the 6 DoF camera orientation for the user. GPS and
accelerometers have become common, even standard on most modern
mobile phones, removing the need for proprietary hardware to create AR
systems. Commercial systems such as Layar [Layl1], Wikitude [Wik09]
and ARNav [ARN12] have all made use of such hardware on smart phones
in order to create AR based navigation systems. An example of this can
be seen in Fig. 2.3. Although these systems can operate at a global

14
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scale they do suffer from the limited accuracy of the sensors and as such
do not allow for accurate and robust registration of the data with the
camera image. This results in a user experience where the positioning
of graphical elements within the image is inaccurate. For example using
the proprioceptive sensors, Fig. 2.3 shows that a dot can be augmented
in a general area however in order to accurately augment onto a specific
feature the use of the image data is required.

2.3 Computer vision based AR

Computer vision based tracking approaches, unlike proprioceptive based
tracking, do not suffer from the limiting registration accuracy. These
approaches utilise geometric and photometric information from images
of the scene in order to estimate the pose of the camera. This permits
significantly increased accuracy of registration. This accuracy comes at
a computational cost which has given rise to two types of vision based
approaches in order to cater to it:

o Marker based tracking

o Markerless based tracking

2.3.1 Marker based AR

The use of visual markers for registration is common and popular in AR.
Fiducial markers are easily identifiable predefined markers that are placed
into the field of view. These can then be used as a point of reference in
the image allowing for easier recovery of the 3D camera position. In 1998
Rekimotos Matrix Code [Rek98] was released and has been credited as
being the first marker based tracker developed for AR. It made use of 2D
barcode patterns inside square planar shapes for pose estimation. Since
then there has been many improvements in marker based tracking with
Zhang et al. [ZFN02] comparing several of the leading approaches.

15
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The square marker method became particularly popular with the release
of the open source library ARToolkit [KB99] in 1999. This was a pose
tracking library that was able to track the camera’s 6 DoF pose using
square fiducial markers. It found the square marker in the image by
thresholding the image, performing contour extraction and then line fit-
ting to acquire the four straight line of the square marker. The pose
estimation used the extracted corner points of the square to guess an ini-
tial coarse pose estimation. It created variations on this by rotating the
pose around all 3 axis and reprojecting it to select the correct hypotheses
pose. This was a relatively simplistic method but it was very fast and
allowed for real time augmented video (See Fig. 2.4). This gave a wide

audience the ability to perform image based tracking using commercial
off-the-shelf (COTS) cameras.

positions and
video stream : orientations of
from camera Search for markers Find marker 3D marks
ﬂ markers pOSl-thn and
orientation T, ={P; R}

Positions and orientations of
markers relatively to the
camera are calculated

The symbol inside of the 5
marker is matched with gepktlfy
templates in memory arkers
S —

\ = Using T; transform 3D
Virtual objects are > virtual objects to align
rendered in video frame them with markers. *

q '” Render 3D objects Ppsitior:] and :
video stream to I video freme virtual objects OHENLOJeCts IDs of
the user HMD marks

Figure 2.4: ARtoolkit Overview [ART] — Overview of the steps for AR-
Toolkit

The image is converted to
binary image and black
marker frame is identified

The ARTags [Fia04, FiaOba] library was inspired by ARToolkit and aimed
to reduce the rate of false positives and poor detection rates that AR-
Toolkit could be susceptible to. The original ARToolkit method for cre-
ating tags relied on user created binary images. However it became clear
that visual appearance of the tags had a dramatic impact on the de-
tectability, recognition and the pose estimation. ARTags replaced the
morphology operations on a binary image that ARToolkit used with an
edge detection based system. They also employed a digital encoding

16
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method for the fiducial markers. This is a predefined digital pattern
inside the tag which is not as susceptible to false positives as the user
created binary images of ARToolkit. This can be seen in Fig. 2.5. This
allowed for a greater robustness to lighting, occlusion and lower detection
of false positives.

Figure 2.5: ARTag Example [Fia0j] — ARTag registering against a digi-
tally encoded tags

The improvements created by ARTags encouraged further enhancements
to ARToolkit with ARToolkitPlus [WRM™08] being released in 2004.
This added multiple improvements including making use of a digital en-
coding system for its markers. A comparison of these two systems can be
found in [Fia05b]. ARToolkitPlus has since evolved into a full AR frame-
work, the Studierstube Tracker [WS09a, WS09b]. This further added
improvements by using multiple different marker types, pose estimators
and thresholding algorithms. The strengths and weaknesses of these are
outlined in [WLS08]. Studierstube was designed to be used on a mobile
platform and as such had far better memory management as opposed to
other systems which were just ports of the PC version.
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One of the latest approaches to fiducial marker tracking is that of April-
Tags [Ols11]. Unlike ARTags and Studierstube this is a fully open source
AR library. This system demonstrated a graph based image segmen-
tation for line estimation and a quad extraction method (see Fig. 2.6).
They also added a new coding system that added greater robustness to
rotation and false positives arising from natural imagery. These changes
added a significant robustness to rotation, occlusion and further reduced
false positive rates.

Figure 2.6: AprilTags Example [Ols11] - AprilTags pose estimation

Marker based technologies have a high degree of accuracy for estimation
of the camera pose however the marker based approach only works under
the confining circumstances that it is feasible to put artificial markers
within the scene that you are trying to augment. In an uncontrolled
environment (e.g. outdoors) this method does not scale and it simply
becomes impractical to use marker based technologies.

2.3.2 Markerless AR

Given the restrictions of marker based systems, over the past decade
considerable research effort has focused on calculation of the camera pose
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information from naturally occurring features in the scene such as planes,
edges, or corner points. Park [PYN98] demonstrated how to extend
beyond fiducial tracking using point and region tracking. This system
dynamically acquired new natural feature points so that it could still
update the pose calculation after the initial fiducial had left the view.
In [SLO4] they described a natural feature method that matched feature
points against that of a database of feature descriptors.

Many of the other natural feature techniques[KDO03] rely on an a-priori
model or map of the scene to track against. One of the advantages of
this is that it increases the robustness of the pose estimation and reduces
the effect of outliers. This however requires a comprehensive off-line
3D model to be created and over a large area this becomes infeasible.
One of the most popular classes of methods for solving this problem is
based on Structure-from-Motion (SfM) or the related online approach
of Visual Simultaneous Localization and Mapping (SLAM) [DWBO06].
Such methods simultaneously estimate camera position as well as the
3D structure of the imaged scene. These systems can deal with uncal-
ibrated image sequences acquired with a hand held camera. Broadly
speaking the processing involved in these techniques can be divided into
two components:

e Feature detection and matching (cf. [MTST05] for a detailed review
of recent approaches).

e Structure and motion estimation. These SfM-based techniques per-
mit accurate 3D registration and pose estimation in unstructured
environments.

In 2007 Klein et. al [KMO07] demonstrated Parallel Tracking and Mapping
(PTAM) shown in Fig. 2.7. PTAM separated the tracking and mapping
onto different threads. In this map is initialised from a stereo pair of im-
ages using the 5-Point Algorithm. Mapping is then based on key frames
which are batch processed using Bundle Adjustment. An epipolar search
is used to initialise and track new points. This gives PTAM the ability
to augment a scene in real time while concurrently generating a map for
that scene to track against. This allows PTAM to operate without having
any prior knowledge of the users environment. This had the issue of only
working over small AR workspaces but this issue was dealt with by the
release of Parallel Tracking and Multiple Mapping (PTAMM) [CKMO8].
PTAMM had the same approach as the original PTAM system however
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Figure 2.7: PTAM Ezample [KMO07] — PTAM registering against the
natural features. The map generated by the scene is on the right.

it worked over a larger area as it was able to swap between multiple
generated maps of an area.

One of the main shortcomings of such methods is that they need a set of
related images of a scene taken at similar viewpoints to establish frame-
to-frame correspondences. Furthermore these methods require processing
a set of keyframes in a bundle adjustment operation [HZ04] to achieve
global optimum. This procedure is computationally expensive for inter-
active applications. The solution proposed in this thesis is that of a single
image planar based representation in order to augment 3D data into an
urban scene. By using planar extraction the system can use the fagades
of buildings as reference for accurately augmenting content. This is turn
removes the need for building a comprehensive 3D model for the scene.
This is discussed in Chapter 3.

2.4 AR authoring

One of the main factors in the usability and utility of AR systems is
the ease with which users can create new AR content. Many solu-
tions and applications [WW11, Led04, PTB*01] have been suggested
for performing this task with the majority of current approaches involv-
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ing the creation of a full three-dimensional representation of the envi-
ronment, image-based representations of the scene or panoramic based

solutions [LWMS12, KCSC10]. 3D data can then be positioned relative
to these representations.

E N R )

Figure 2.8: UART Example [GAT10] — Authoring pluggin for ARToolkit

Authoring content therefore involves working in these representations,
which requires complicated user interfaces for the non-expert user. This
approach has been shown to be more difficult to manipulate for content
developers and as a result authoring systems have often been created as
plugin’s for existing well known 3D rendering systems [Aut13, GAT10,
Uni09] (see Fig. 2.8). This has also encouraged authoring tools to move
away from the traditional methods of input [LNBKO04].

These solutions entail the user to author content relative to a 3D model
which requires complicated user interfaces for the non-expert user. The
authoring solution proposed in this thesis aims to overcome many of these
issues by using a method of authoring AR content based on planar facade
extraction. With this method the extracted plane can be used to create
a front parallel view which in turn can be used as a frame of reference
for authoring 3D AR content. Authoring then consists of positioning
3D content relative only to the front parallel view of the facade. This
approach permits a simplified method for integrating augmented content
into a view. Full details of approach are discussed in detail in Chapter 4
and 5
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3.1 Overview

The overall goal of this thesis is to create a mobile AR system for use in
urban environments. Over the two previous chapters the various different
methods used to augment a view with 3D data have been introduced.
Most of these methods do this by computing a full 3D reconstruction of
the scene. This however can be computationally expensive and as such
is unsuitable for AR on a mobile platform. In addition, these approaches
generally require multiple images and precise calibration procedures.

The solution proposed in this thesis is a facade based AR system. This
allows for a single image from an urban scene to be augmented without
the need for a full 3D reconstruction of the scene. The novelty of the
approach lies in extracting the planar building facades to compute a sim-
plified representation of the scene. This simplified representation avoids
the computational complexity of computing the full 3D structure of the
scene whilst providing adequate information to augment those facades.
Another advantage of using this approach is that the underlying planar
facade extraction is both robust to perspective distortions, viewpoint
changes and allows augmenting using a only a single image as reference.

The work presented in this chapter builds on a previously developed pla-
nar extraction algorithm detailed in [CM12]. A major part of this thesis
involved understanding this technique, applying it and then extending it

23



B 3 Facade extraction

to develop the AR system described in Chapters 4 and 5. Given that
this technique is at the core of our system this chapter provides a review
of the algorithm. Throughout this chapter, results are shown on data
sets that have been collected during the implementation of this thesis.
These are shown in order to assist the reader’s understanding of the core
principles of the technique.

Image of
an urban
scene

| Image of
lurban scene

Line segment
extraction

Vertical Horizontal

Tilt rectification | —— Line grouping
Tilt

Vanishing point
clusters

rectification
homography
matrix

Layout extraction

Extracted
layout
Homography

estimation

Planar rectification
matrices

Extracted
facade
output

Figure 3.1: Facgade extraction flow diagram — The figure shows the flow
of each of the steps in the facade extraction process.
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The fagade extraction algorithm consists of finding the homography be-
tween each of the buildings facades and the input image. This technique
is based on detecting vanishing points in order to estimate the direction
of each plane. The facade extraction contains five major steps:

1.

Line segment extraction — This step extracts line segments that
are identified within the input image.

Tilt rectification — Tilt rectification rectifies the original image
such that vertical boundaries of a building in 3D world become
vertical in the rectified image. This compensates for the pitch and
roll of the camera and thus removes two degrees of freedom from
the subsequent processing.

. Parallel line grouping — The line grouping is used to identify

horizontal vanishing directions and assign each line within the tilt
rectified image to one of the directions.

Layout Extraction — This step assigns a direction to a subset
of the image which can then be used to estimate the layout of the
scene (i.e. the number of and position of the facades in the image)

Homography estimation — For each extracted facade this step
estimates the homography between the buildings facade and the
original image.

The details of each step are presented in following subsections. An
overview of this complete algorithm, including each of these steps and
their interaction with the other steps can be seen in Fig. 3.1. Once com-
plete, the extracted planes (i.e. the associated homographies) can be
then used to graphically augment the original image of an urban scene.
This AR step will be discussed in Chapter 4

3.2 Line segment extraction

The line segment extraction is the first step in the fagade extraction
process. A line segment is a section of a line that is bounded by two
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definite end points. This step is described in [KZ02] and extracts both a
set of vertical line segments and horizontal line segments from the input
image.

As can be seen in Fig. 3.2 the input for this algorithm is an image of a
street-scape taken in an urban setting. The principal assumption made is
that the image includes building facades, where the facades includes some
dominant rectilinear structure (e.g. due to window and door structures,
building boundaries, etc.). We also assume that the image is taken from
an approximately upright orientation. We note that mobile devices com-
monly incorporate sensors to allow them to measure the vertical orien-
tation of the image and therefore this later assumption is not considered
restrictive.

Line segment extraction
Input: Image of

building in urban
setting

- — — %Canny Edge Detection‘
\
Y

’Gradient direction quantization‘
\

]

Output 1: Vertical
line segments

»—>
Output 2: Horizontal
line segments

Figure 3.2: Line segment extraction — The figure shows the flow of each
of the steps in the line segment extraction

The first part of the line segment extraction is performing edge detection
using the Canny edge detector. For each resulting edge point the image
derivatives are then computed. The orientations 6 are given by:

oI
0 = tan™! (%) (3.1)
Jy

The gradient direction is quantized into k ranges where k = 8 for our
purposes. These are grouped into bins where their label corresponds to
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the orientation of the edge pixels stored within it. This is given by:

7
n = — 2
bin — mod k (3.2)

where bin is the corresponding bin label for the orientation.

The line fitting stage then follows in order to generate the straight lines
within the image. When considering line fitting, the pixels that fall into
bins whose gradient orientation is % are also considered. This aggre-
gates the pixels belonging to the same line segment that end up falling
into different bins. When line fitting, larger segments are considered as
stronger candidates for actual facade edges in the image therefore lines
that are longer than a certain threshold are kept. Empirically we have
found that lines with length 30 pixels and above provide a satisfactory
threshold. Finally, the lines that are extracted are separated into verti-
cal and horizontal lines. Lines that are within % radians of the vertical
image column are assumed to be approximately vertical lines and lines
that are within % radians of the horizontal image column are assumed

to be approximately horizontal lines.

Figure 3.3: Segment FExtraction Result — The figure shows a segment
extraction from multiple building facades.

Examples of the line segment extraction are shown in Fig. 3.3. As can
be seen, these lines are classified into horizontal lines (pink) and verti-
cal lines (green). The line segments extracted which are approximately
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vertical are input for the tilt rectification step. Those lines which are
corresponding to horizontal parallel lines are used as input for the line
grouping stage.

Although it is assumed throughout that the lines being extracted cor-
respond to lines on the building facade this is of course not always the
case within natural scenes. Natural objects such as cars, trees and people
can occlude the view of the building facade. These objects however lead
to short intermittent lines. The line length threshold helps to prevent
many of these lines from getting through. The lines being filtered into
those within a threshold of the vertical and horizontal image columns
also helps decrease the effects of occlusions of lines that are extracted

3.3 Camera tilt rectification

When a user takes the original input image this will generally be done
from ground level with the principal axis directed up towards the building
fagade. This adds a tilt effect to the building facade in the image. The
purpose of the tilt rectification step is to remove this effect and output
an image that shows the building facade as if the camera was parallel
to the ground plane. This is achieved by identifying the two angles that
compensate the pitch and roll of the camera. The result of this process
will be to remove two degrees of freedom from the camera orientation
and therefore simplify subsequent processing steps (see Fig. 3.4).

The input for the tilt rectification process is the approximately verti-
cal lines that are the output from the line segment extraction. A flow
diagram of this step can be seen in Fig. 3.5.

The output of the tilt rectification step is a 3 x 3 homography Hy;;; which
removes the effects of of the pitch (0) and roll (¢) and is given by:

. i

7' = Hua |J
k 1
(3.3)
= KR, 'R;'K™'
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—

Original image configuration
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777777777 Building
plane

Camera

Tilt rectified image configuration

Figure 3.4: Tilt rectification camera positions — The figure shows the
difference in camera viewing angle when an image is rectified for tilt.

Tilt rectification

Input1: Vertical

line segments
R

Levenberg—Marquardt for computing
tilt rectification homography
I

Y

Apply tilt rectification homography

Output: Tilt
rectify matrix
77777777 D

Figure 3.5: Tilt rectification flow diagram — The figure shows the flow of
each of the steps in the camera tilt rectification step.

where K is the known calibrated intrinsics of the camera, Ry is the
inverse rotation of the camera pitch and R;l is the inverse rotation of
the camera roll. Expanding eq. 3.3 the transformation matrix that gives
the tilt rectification can be rewritten as follows:
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-/

i
jl — KRG_IR;I j
k 1
[cosf 0 —sind] [1 0 0 i
=K | 0 1 0 0 cos¢ sing| |j
|sinf 0 cos0 0 —sing cos¢| |1
[cosf sinfsing —sinfcoso]| [i
=K| 0 cos ¢ sin ¢ Jj (3.4)
|sinf  —cosfsing cosfsing 1
[f 0 0] [cosf® sinfsing —sinfcoso]| [i
=10 f O 0 cos ¢ sin ¢ J
0 O 1| |sinf —cosfsing cosfsing 1

[ ficosf + (fjsing — fcos@)sind
= fjcosd+ fsing
| — (jsing — cos ¢) cos O 4 isin 6

where (7, 7) are the pre-normalized coordinates. To calculate 6 and ¢ we
apply Levenberg-Marquardt (LM) optimisation to minimizes the differ-
ence of the end points’ column coordinates of the vertical input lines.

LM is an optimization algorithm that is used to locate the minimum of

a function,
m

S(B) = flw:,B) (3.5)
i=1

where, 3 is the vector of parameters(unknown), f is the model function
and x; € x vector of input data. It does this by iteratively adjusts the
vector of parameters of the model function g by B+ 8. This is done until
the found values converge on a solution that minimises the function. The
0 values are computed using the first order Taylor approximation.
To minimise ¢ and 6 the algorithm endeavours to minimizes the difference
between the end points of the vertical line segments. The input to the LM
procedure is both the set of vertical lines defined by their two endpoints
A, of coordinates (i4,j4), and B, of coordinates (ig, jg) given by:

X =[ia ja ip JjB] (3.6)

The model function f represents the column differences of the 2 endpoints
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for each of the vertical lines. This is given by:

fai, B) = ((Ga); — (U)})°
f(ja)icosd + fsing
((ja)ising — cos @) cosf — (i4);sinf (3.7)
f(jp)icos¢ + fsing
((7B)ising — cos @) cos — (ip); siné

where (74)}, (jB); are the column coordinates of the line x; after transfor-
mation and f is the focal length. The first order Taylor approximation
can be solved analytically.

The solutions for § and ¢ can then be used to compute the 3 x 3 tilt
rectified homography matrix Hy;; to transform vertical lines to become
vertical in the image. This transformation is applied where each pixel in
the rectified image is given by eq. 3.3 where the colour is given by the
colour of the pixel from the original image. This creates a rectified view
where camera tilt effect is removed.

An example of the tilt rectification process can be seen in Fig 3.6. Here
the images have been taken at two separate angles of tilt. The input
image can be seen on the left. Once tilt rectified the vertical line seg-
ments become parallel in the rectified image (right). The tilt effects are
clearly apparent in the original image. Rectangular structure will appear
trapezoidal which is wider at the bottom in the case of camera pitching
up. After rectification, the images of vertical world lines become parallel
to the image columns.
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Figure 3.6: Multiple angle tilt rectification — The figure shows the same
building tilt rectified from 2 different angles of tilt. The extracted horizon-
tal lines (pink) and vertical lines (green) line segments are highlighted.
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3.4 Line grouping

The purpose of the line grouping step is to identify the dominant planar
directions within the scene. The line grouping technique exploits the
fact that man-made structures, particularly in urban environments, often
contain a large number of horizontal parallel building lines. A group of
lines which are parallel will converge to a point in image space, known as
a vanishing point. This is illustrated in Fig 3.7. The line grouping step

vanishing point
— =

Buildin

Figure 3.7: Vanishing point example — The figure shows how lines on a
building intersect at a vanishing point.

groups the parallel lines within the original scene by identifying clusters
of lines in the image that have the same or close vanishing point.

The input to the line grouping is the horizontal lines from section 3.2
which have been tilt rectified using the Hy;;; homography from section
3.3. The steps involved in line grouping are displayed in Fig. 3.8.

The rectified image is first equally divided into a number of vertical
strips. If the strips are too big we might have facades with different
directions and if they are too small we might not find any segmenting
strips to be able to identify direction. As a result there is a trade off
between the number of strips and the precision of the correspondence
to a single wall. Empirically 13 strips have been found to be the most
effective. For each strip, the RANSAC [FB81] algorithm is used to find
the coordinates of the dominant vanishing point for the lines contained
within it. RANSAC stands for “RANdom SAmple Consensus” and is an
iterative method for estimating the underlying dominant model in a set
of data which can contain outliers. In order to estimate a vanishing point
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, the technique first selects two lines at random. The intersection of the
chosen lines creates a putative horizontal vanishing point. To evaluate
the likelihood of this vanishing point, the other lines that agree with
(i.e. are coincident with) this hypothesized vanishing point are counted.
This set of lines is know as the consensus set. This process is repeated
over multiple iterations. Once the largest consensus set is found the
concurrent point is estimated using least squares fitting and chosen as
the vanishing point for that strip.

Once a vanishing point for each strip had been determined a process of
mean shift clustering is used on each of the vanishing directions com-
puted. Expectation maximization iteratively estimates the coordinates
of vanishing points as well as the probability of an individual line seg-
ment belonging to a particular vanishing direction. The application of
the line grouping process being applied to a shop front is shown in Fig.
3.9. This is a single plane image where the lines can be seen converging
to a vanishing point on the left(highlighted by the red dot). Fig. 3.10
shows the process being applied to an image where multiple planes are
visible. As can be seen, the line grouping correctly identifies the two
vanishing points for each of the visible facades.

Line groupin
Input: Tilt rectified 9 ping
horizontal line

segments . _ Construct strips

I
A\
Find vanishing point for each
strip using RANSAC
1

Cluster candidates

Y
’Expectation—maximization ‘

Output: Vanishing
point clusters
>

Figure 3.8: Line grouping flow diagram — The figure shows the flow of
each of the steps in the camera line grouping step.
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Figure 3.9: Line Grouping — The figure shows the line grouping where
parallel lines are converging at a vanishing point

Figure 3.10: Line Grouping Result 2 — The figure shows the line grouping
where two planes are visible

3.5 Layout Extraction

The main aim of the layout extraction step is to estimate the layout for
the 3D structure of the building in the input image. This is achieved
by generating a set of possible layouts. These layouts can have up to
three facades. These possible layouts are then evaluated to find the most
fitting for the scene. When this is computed we have extracted the planar
structure from the image.

To do this it is assumed that the buildings have vivid enough vertical
boundaries. Layout models that correspond to rectilinear structures in
the scene are generated in a cascade manner by using the vertical lines
extracted in Section 3.2. To generate these models the image is first
partitioned into vertical strips. The leftmost and rightmost vertical lines
are selected. This is to generate the model containing one single dominant
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Layout extraction

Input: Clustered
strips

+— — — »3D layout candidate generation
[

Layout candidate evaluation

Output: Planar

layout
- - - — - = >—

Figure 3.11: Layout extraction - The figure shows the flow of each of the
steps in the layout extraction

3D plane. In turn this can be used to generate a piecewise planar model
for a scene containing multiple 3D planes.

This is done by enumerating through the possible layouts to fit the scene
for up to three possible planes. These layouts can then be evaluated in
an attempt to a acquire the most accurate match for the scene. The line
segment from a horizontal vanishing direction provides a strong indica-
tion of the existence of a 3D plane in its direction. After generating a
number of layout models based on the extracted vertical lines, we evalu-
ate how well each one fits the collection of horizontal line segments. The
best fitting model is chosen to describe the underlying 3D geometry of
the imaged scene.

Consider L, is the candidate model which contains planes. Accordingly
the image will be divided into z vertical image strips S = {s1, 2, ..5. }.
For a strip Sk, the supporting score for it belonging to a vanishing direc-
tion is computed as:

ZZ'GC(V'S ) | lj ’
fVise) = =—= (3.8)
lee(}(sk) | l.7 |

where C'(Sg) is the set of line segments contained within the strip s,
C (V;, si) is the set of lines belonging to the vanishing direction within
the strip , and [; denotes the length of the line. The direction V;; with

the maximum supporting score will be assigned to this strip. Then the
fitting score for this layout candidate is computed as:

F(L) = Y f (Vi)  AREA () (39)

SLES
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where, AREA (sg) is the area percentage of vertical strip s in the im-
age. The model which produces the highest fitting score will be chosen
to describe the layout of the scene. In practice, if the fitting score does
not increase significantly (0.1 in our implementation) after adding more
planes, we use the model of fewer planes for better efficiency. Fig. 3.12
shows the final result of image segmentation, in which the plane is cor-
rectly identified and the extracted planes can be seen on the right.

Figure 3.12: The figure shows the planar layout of the being clearly iden-
tified

In the Fig. 3.13 the both planes of the building are identified correctly.
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Figure 3.13: Layout extraction result — The figure shows the layouts for
multiple planes being identified

3.6 Homography estimation

Once the planes have been extracted they can be used to generate a 3 x 3
homography which will translate from the image to each of the planar
fagades of the buildings within the original image (see Fig. 3.14). This

Homography estimation

Input: Planar
layouts

L ,,‘

Construct Quadrilateral ‘

|
A

‘ DLT to find homography ‘
T

Output: Extracted

plane homographies
>

Figure 3.14: Homography estimation overview — The figure shows an
overview of the process of creating a homography from the extracted planes

homography is utilised when creating AR content and is explained in
greater detail in Chapter 4. This is also used for the creation of a front
parallel view which is part of the AR authoring in Chapter 5.
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3.7 Limitations of the technique

The system is effective when used on planer structures however an issue
arises on buildings that have partially non planar facades or completely
non planar fagades. Any curved area of the building will be treated by
the technique as if it had a planar profile. The system will not be able
to augment correctly onto non planar areas of the building however it
will work for any planar parts of the facade. An example of this can be
seen in Fig. 3.15. In this the rounded centre of the building is treated as
planar. This scene also shows that the planar extraction is still effective
in the presence of occlusions. In the left figure it can be seen the effects
of the trees and statues are removed by the line extraction and not used
then in the subsequent processing on the right.

Figure 3.15: Example of a scene with occlusions and a non planar facade.

While the system can still work in the presence of occlusions the facade
must be the most prominent aspect of the image. One of the cases
where the system fails is when this is not the case. This is illustrated in
Fig. 3.16. In this image the fagade of the building is not the main focus
of the image and the planar extraction algorithm completely fails to pick
up the fagade.

Another case where the planar extraction has been unable to pick up the
facades can be seen in Fig. 3.17. This image is of two opposite corners
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Figure 3.16: Scene where planar extraction fails due to not enough focus
being on the facade

of two buildings. The algorithm unable to distinguish the middle area
of the image because there no building fagade. It is then left with two
conflicting facades of each side of the image which there is no building
layout. It may be possible to detect this building configuration and
account for it in the future.

Figure 3.17: Scene where planar extraction fails due to multiple conflict-
ing facades. The image on the left show the tilt rectified image with the
extracted lines. In the right image the red lines show the plane that has
been extracted which consists of only the two camera facing faccades while
the other facades are ignored.
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4.1 Overview

The previous chapter provided details of the method used for the extrac-
tion of the planar structures from buildings within urban settings. This
in turn gives a simplified 3D model of a building structure. One of the
major contributions of this thesis, which is described in this chapter, is to
build upon the the planar extraction step in order to create augmented
content. The recovered planar structures provides a robust 3D frame of
reference, which can be used to integrate 3D virtual content with the
original scene. There are two steps to this process:

1. Camera pose estimation takes the homographies from the pla-
nar extraction and computes the camera pose which is needed to
overlay augmented content on the building planes.

2. Virtual camera rendering uses the computed camera pose to
augment virtual 3D content into the original image.

The camera pose estimation makes use of the extracted planes to esti-
mate the extrinsic matrix of the camera. The estimated extrinsic matrix
is used to set up a virtual camera to render the augmented content.
3D virtual content can then be combined with the original image to cre-
ate a composite view. The overlaid content will give the effect of inserting
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Figure 4.1: Facade AR example — The figure shows the extracted plane
(which is highlighted using a wire grid) being augmented with a virtual
arrow and teacup.

3D objects into the scene as if they were originally part of the real world
scene, see Fig. 4.1.
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4.2 Camera Pose Estimation

The planar extraction outputs directly feeds into the camera pose esti-
mation. This provides a simplified model of the structure of the scene
and can then be used to extract the camera orientation and translation.
In particular, from the planar extraction there is a homography Hy, for
each of the facades extracted from the scene. This homograhy Hy, maps
the image of the facade to a front-parallel view which we call a planelet.
Using the inverse of the homography associated with the facade, HJTGI, it
is possible to recover the exterior orientation of the camera relative to
the plane.

Each of the recovered planes from the planar extraction step are set
as the z = 0 plane. Four line segments are chosen within each of the
extracted image strips that correspond to a plane. Two lines are chosen
from the vertical direction AB,C'D and another two are chosen from the
horizontal direction AD , BC. The intersection points of these lines are
then computed. Since it is assumed they are coplanar A, B, C, D are four
points belonging on a fagade which form a rectangle with the following
homogeneous world coordinates:

0 0 s.h s.h
0 h h 0
X=10 0 0 0 (4.1)
1 1 1 1
N ~ =~ =~
A B C D

where h is the height of the 3D rectangle, s is the ratio between the width
and the height and s.h is the (unknown) width of the rectangle. As can
be seen, each point corresponds to an individual column of the matrix.
This rectangular structure and the relationship with the homography Hy,
given by the planar extraction can be seen in Fig. 4.2.

Let x be the matrix of the known 2D homogeneous coordinates of the
projections of X into the image. Their projections into the image are
then defined as follows:
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Figure 4.2: Facade quadrilateral — The figure shows the relationship be-
tween the facade and the image.
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= K[R;R;R;t] 00 0 0
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0 0 h h
=H,|0 h h O
1 1 1 1

where P is the 3 X 4 camera projection matrix and Hj is the 3 x 3 planar
homography which transforms a square to a quadrilateral patch in the 2D
image. The image coordinates of the four corners of the quadrilateral H,
can be solved in a closed form as follows. Since R; and Rs are columns
of a rotation matrix and should have unit normal, the aspect ratio s can
be recovered as follows:

-
H

(4.3)
H2

S

where }i; and Iii are the first and second columns of matrix K 'H,.
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Using the value of s from eq. 4.3, the six-degree of freedom camera pose
including three degrees of freedom for translation and three for orienta-
tion can be estimated as follows:

~ 1
H
R, — = (4.4)
S
~ 2
R2 == Hs (45)
R3 = R1 X R2 (46)
~ 3
t—H, (4.7)

Note the camera pose with respect to a 3D scene plane is automatically
computed given a single-view image. Furthermore we can compute the
camera position for other image frames, using only the frame-to-frame
homographies between multiple-views.

Figure 4.3: Facade AR example — The original image is on the left and
an teapot and arrow are augmentated into the scene on the right.
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4.3 OpenGL Rendering

In order to generate an augmented view we make use of the OpenGL
framework to create a virtual camera with the same parameters as the
real world camera (i.e. calculated as detailed in Section 4.2). In this way
3D objects that are placed into the virtual scene will be relative to the
extracted planes in the original image. When this virtual scene is then
overlaid on the original image, the virtual objects will have a consistent
alignment with the extracted planes in the original image.

The difficulty here is that the mapping between the real camera parame-
ters and the OpenGL virtual camera parameters is not a direct one. Both
OpenGL cameras and real world cameras use a different pipeline in order
to represent a projection to an image. In order to set up a virtual cam-
era to use the parameters for rendering the virtual scene we must first do
some conversions on both the intrinsic and extrinsic matrices of the real
camera. To do this we must work through each section of the OpenGL
pipeline (shown in Fig. 4.4) and compute its corresponding parameters
in the real world camera model.

Vertex Moda.aIV|ew PrOchtlon Divide Viewport
Data Object Matrix Eye Matrix Clip by w Normalised | Transform [ ...
Coordinates| Coordinates Coordinates Device Coordinates

Coordinates

Figure 4.4: OpenGL Pipeline — The figure shows the pipeline for OpenGL.

The pipeline has three major elements which we must consider
1. The Model View Matrix.
2. The Projection Matrix.

3. The ViewPort Transform.
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B 4 Facade based AR

4.3.1 OpenGL Model View Matrix

In OpenGL the Model view matrix corresponds to the extrinsic param-
eters of a real camera. This transforms a 3D vertex within the eye
coordinates to the cameras local coordinate system. The view matrix
defines the position of the camera in the OpenGL 3D world and is built
from the extrinsic matrix [R;RsR3t]. The model matrix is defined for
each AR widget. It defines their position in the 3D world and it is given
by the coordinates in planelet space. The model view is a 4 x 4 matrix
where the 4th row is set to (0,0,0,1).

(0,0)

(0,0)

Figure 4.5: Coordinate Comparison FExample — The figure shows a side
by side example of the coordinate system used by a real camera(Left) and
the virtual 3D camera of OpenGL (Right)

One point that is important to consider is that OpenGL has a different
pixel coordinate system than a real image. This is due to the origin of
an OpenGL scene being the bottom left as opposed to top left in real
image. This difference of coordinate systems can be seen in Fig. 4.5. In
order to correct for this the point p on a real image can be converted to
OpenGL coordinates by

P = height —p (4.8)

where P is the same point in an OpenGL scene. Within OpenGL the
viewing direction is the opposite of the real camera model describes in
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O 4.8 OpenGL Rendering

Chapter 1. This means the OpenGL camera model has the -Z direction
as the viewing direction. OpenGL also has the positive Y direction as the
up vector for the virtual camera. This can be seen in Fig. 4.6 In order
to make these directions line up we first multiply by a scaling matrix
(1,-1,-1,1)

)

Figure 4.6: Camera Comparison Example — The figure shows a side by
side example of the real(left) and virtual camera(right) viewing directions

4.3.2 OpenGL Projection Matrix

The OpenGL projection matrix will transform a vertex from the eye
coordinate system to the clip coordinates. This matrix is shown in Eq.

cot (—fo;y )

x 0 0 X
aspect
Y 0 fovy 0 0 Y
= 2
z 0 —clip part+clipnear —2kclipgar*clippear 0 7
w Clipnear_dipfar Clipnear_dipfar 1
0 0 -1 0

(4.9)
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where fouv, is the field of view in the y direction and aspect is the aspect
ratio of the scene. Both clipys,, and clipyeq, are values to determine what
is inside or outside the clipping region. For our purpose we do not need
to worry about the perspective division because OpenGL handles this
internally in the graphics hardware. We need to provide the field of view
given by )
—1/
fov = 2tan (2f) (4.10)
where h, is the height of the planelet in pixels and where f is the focal
length in pixels (known from the metadata and the specifications of the
camera/device).

4.3.3 OpenGL Viewport Transformation

Finally, The Viewport Transform is used to define the rectangle of the
rendering area where the final image is mapped. This transforms the
vertex in clip coordinate system to window coordinates.

T width 0 width 4 20 T

w 2 ) 2
Y — 0 henght he7,29ht + 20 y (411>
Zw 0 0 1 z

4.4 Results

In order to demonstrate this method 3D graphical elements were aug-
mented into various scenes of different complexity. Some examples of
applying this method to the images from ZuBUD are shown in Fig 4.7.
The top left image illustrates the quadrilateral being augmented onto
both facades of the building. The image on the top left and bottom right
show a directional arrow being placed within each scene. The image on
the bottom right shows the algorithm working in spite of vertical tilt.

To show the robustness of this method we also applied the technique to
images captured in the town of Maynooth, Ireland. Fig. 4.8 shows a set
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Figure 4.7: Example results of image augmentation.

of images of a game shop captured by a hand-held camera from different
viewpoints. The images on the right show the input image with an arrow
added above the store to provide the user with directional information.
As can be seen from the figure, the technique provides an accurate and
stable rendering over considerable change in viewpoint.

In Fig. 4.9 we can see on the left is the original images and on the right
directional information has been augmented into the scene. In these a
wire grid is augmented into the scene to highlight the extracted plane.
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4.5 Limitations of technique

The method of augmenting urban scenes works well on scenes that con-
tain planar structures. Furthermore, although the technique is not de-
signed for non-planar fagades, as demonstrated in [CM12], the technique
will approximate facades of low curvature as piecewise planar. That is,
it will subdivide such facades in separate but contiguous planar compo-
nents. In such instances the facade based AR approach described in this
chapter is equally applicable.

With this said, we have found that in situations where the facade ge-
ometry is irregular or contains regions of high curvature this model does
fail. Another failure mode of the system can also arise due to extraneous
linear features in the scene e.g. lines on the grounds plane, or large num-
bers of parallel over head power lines. It is noted that the failure states
for the facade based AR is highly dependant on the planar extraction
discussed in Section 3.7.

4.6 Conclusions

This chapter detailed the steps involved in creating augmented content
using the homographies from the planar fagade extraction technique ex-
plained in Chapter 3. Once the camera pose has been estimated this is
used to set up the virtual camera and augment 3D content into the orig-
inal image. The simplified planar facade model is used as a 3D frame of
reference for augmenting the scene. The planar method of creating AR
content forms the basis for the full AR system described in Chapter 5
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e
AGAMERE"U; i

Figure 4.8:  Multi-angle planar AR Example — Example results of image
augmentation from multiple angles
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Il I":'\l.\.-\'

Figure 4.9: AR showing plane — FExample of AR showing the wired grid
for the extracted plane.
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5 AR system for urban navigation

5.1 Overview

This chapter presents a mobile augmented reality system for positioning
and navigation within urban environments. With this system a user
can take an arbitrary image of an urban scene with their mobile device.
This image along with some meta-data is then sent off to a server which
matches it against a geo-referenced image database.

This database stores linked images of planar facades along with their
associated navigation and point of interest (POI) data. The system uses
the facade based AR technique discussed in Chapter 4 in order to esti-
mate the camera pose. Camera pose data and the relevant navigation
data is then sent back to the client on the mobile phone. With this in-
formation the client can then augment the query image of the user with
the stored 3D landmark information and navigation data.

The traditional computer vision approach for this type of system would
be to create a full 3D representation for the area that is to be aug-
mented. Our system proposed on the other hand in this thesis is based
on the assumption that images are taken within urban environments and
that many of the buildings facades within urban settings can be ap-
proximated using planes. As a result the system only needs to store a
simplified piecewise planar representation for each facade instead of a
full 3D representation. This allows for a much more scalable augmented
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reality system.

Planes dataset

Sends images and " LA |
- = Sl
| meta data over WI-FI ey %ﬂm ‘
<> == U M
Maps and location info
Receives annotation e

and camera pose
information

Image taken in urban setting

Client side front-end l o

— — — — — — — |

_Server side back-end

Adds new authored content
| to geo-referenced image database

Figure 5.1: AR System Qverview - The figure shows the AR System

Architecture

The goal of this is to provide a planar facade based augmented real-
ity system for images taken in urban environments. This system uses
a client-server architecture which is based around the following three
components:

e System front-end — The client side component can take a picture
of a building in an urban setting. This is sent to the server back-end
for processing and will return the estimate camera pose information
along with the 3D AR widgets. The client can then augment the
view using this information.

e System back-end — The server side component of the AR system
takes an image sent by the client and performs the facade extrac-
tion step on it. The server then generates a homography mapping
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O 5.2 System front-end

the image to what we refer to as a planelet for each of the extracted
facades. A planelet is defined as a viewpoint normalised image of
the extracted fagade where parallel lines of the facade appear par-
allel in the normalised image. The system will then match each of
the extracted planelets against a database of planes as explained
in Chapter 4. A plane represents the union of contiguously over-
lapping planelets. Once matched against a plane this can be used
to localise the image and get the previously stored 3D data asso-
ciated with that location. The parameters defining the planelets
and navigation information associated with the scene are then sent
back to the AR client on the mobile device for display.

e AR authoring — In order to add new content to the geo-referenced
image database the system also requires an authoring interface.
This tool uses the plane representation to act as a frame of reference
for authoring: the (z,y) 2D coordinate system of the normalised
image is extended to a 3D coordinate system by using the normal
of the plane as the third dimension z. This 3D space is then used
to localise objects within the scene. The authoring is performed by
dragging and dropping 3D content relative to these set of planelets.
These can be then be saved to a database with their associated
planelets.

5.2 System front-end

The front-end to the AR system is the mobile AR application running on
an iPhone. This application displays a see through camera view and uses
a point and shoot method for acquiring images of urban scenes. Theses
images can then be augmented with relevant 3D data.

Images taken are tagged by the client with meta-data which includes the
focal length of the camera, timestamp and GPS coordinates. This image
along with the associated meta-data is sent to the server back-end for
processing. On the server the image is matched against a database to
retrieve widgets which have been previously attached to a given facade.
The server side matching process is described fully in section 5.3. Once
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the processing is completed the camera pose and 3D widget informa-
tion is sent back to the client. This visualisation application creates an
augmented view using OpenGL to overlay the virtual AR widgets onto
the urban environment scene with a consistent alignment. This is done
using the planar AR technique detailed in Chapter 4. The front-end
application augmenting a building can be seen in Fig. 5.2.

Figure 5.2: Front End Application - The figure shows the AR mobile
interface where the facade has been augmented with an arrow pointing at
the direction of the closest pub.
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0 5.8 System back-end

5.3 System back-end

The back-end infrastructure performs the image recognition and pose
estimation for an input image. This is run on the server side so as to
offset tasks that are too computationally expensive to run on the mobile
client and to facilitate sharing of information between users. This back-
end service has two main functions:

1. Populating the image database — This step takes a new image
to be added and matches it against the current dataset. If this is
successful the new image is used to extend the database plane to
which it is matched to. If it is unable to find a match. This image
will become the basis for a new plane in the database.

2. Image data lookup in the database — This service accepts
incoming images from the front-end client, matches them against
a database in order to localise and find the appropriate navigation
data and calculates the camera pose.

Both populating the image database and the image data lookup require
that the image be matched against the database first. A sequence dia-
gram for the system back-end is shown in Fig. 5.3. There are three main
stages in order to identify if the image has a match in the database:

1. Facade Extraction — This extracts the fagades of the building
within the image. The extracted facade is then used to create a
front-parallel view we call a planelet.

2. Bag-of-words filtering — The bag-of-words [GLT11] filtering re-
duces the number of image candidates to be checked in the planelet
matching.

3. Planelet matching — The planelet matching identifies if there is
a plane within the database that the extracted fagade matches to.

5.3.1 Facade extraction

The facade extraction is the first step performed when an image is to be
processed. The server extracts each fagade within the image. The facade
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Figure 5.3: Back-end sequence diagram — This shows the interactions
between components for the back-end system.

extraction algorithm detects vanishing points to find dominant planes.
For each detected facade fa, a homograhy Hy, maps the image of the
facade to a front-parallel view we call a planelet:

X = HfaX (51)

where x is the vector of the homogeneous coordinates of a point in the
original image within the facade fa and, where x is the vector of the ho-
mogeneous coordinates of its corresponding point in the planelet. Given
the homography associated with the facade, HJ?;, it is possible to recover
the exterior orientation of the camera relative to the plane. This step is
fully detailed in Chapter 3.
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0 5.8 System back-end

During the fagade extraction step, a planelet model is used to represent
the building fagades within the query image. The planelet representation
is important when it comes to matching for two main reasons:

e Firstly since the planelets are viewpoint normalized, there is an
affine transformation between the two planelets that are to be
matched. This is used to geometrically constrain the matching pro-
cess and as a result leads to a more robust and accurate matching
process [CM12].

e Secondly if we know this affine transformation between two planelets,
then we know their relative positions and we can easily build a rep-
resentation of an entire street. This is what allows the system to
build a plane representation for a street. The origin of the first
planelet added to a plane is used as the origin of the plane. For
adding to the database it is these planes that the database is pop-
ulated with. After the database has been populated this represen-
tation provides a coordinate system in which we can place data
associated to the scene e.g. the sales prices of a shop at some co-
ordinates within the plane. The calculations involved in this are
further detailed in Section 5.3.2.

5.3.2 Bag-of-words filtering

Once the planelets have been extracted from the image the system begins
matching by performing a prefiltering step using the GPS coordinates of
the images to select only nearby planes. This provides a mechanism to
avoid having to compute the matching against all planes stored in the
database. In order to match the image the with the database we make
use of the bag-of-words [GLT11] technique.

To compute the bag-of-words descriptor for a planelet the system first
computes a set of feature points and descriptors using the FAST feature
detector [RD06b] and ORB feature descriptor  RRKB11]. The ORB algo-
rithm uses FAST in pyramids to detect stable keypoints. The strongest
features are selected using FAST. Their orientation is then found us-
ing first-order moments and then the descriptors are computed using
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Feature point detection

B

Calculate bag-of-words i
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Database

Feature point matching with affine
constraint and strip update

Figure 5.4: System Matching — Matching process for computing planar
facade mosaics.

BRIEF [MCF10]. This ORB algorithm was chosen due to the low com-
putational requirements and because it gives similar or better results
than the more conventionally used SIFT [Low04] or SURF [BTGO06] ap-
proaches. Since the system uses viewpoint rectified planelets it is also
not necessary to compute for rotation normalization since there should
be no rotational changes between two planelets from the same facade. To
compute the bag-of-words from the feature point descriptor, we assume
we have built a vocabulary of words from the feature point descriptors of
a training set. This is done by using a large training set and computing
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the features for each image in the training set. These features are then
clustered into a codeword which is a representation of several similar fea-
ture patches throughout the training data. Now the bag-of-words is a
histogram measuring the occurrence in the planelet of each word from
the vocabulary. This occurrence value is weighted by the rarity of each
word. The more infrequent a word is, the more suitable this word is for
describing the planelet.

The bag-of-words technique is used to quickly select subsets of planes (we
call strips) as candidates. The bag-of-words is a single numerical vector
which provides a global description of that strip. The bag-of-words are
computed and stored for each strip in the database. When a planelet
is submitted for matching its bag-of-words descriptor is computed and
compared against the one in the database. This can be seen in Fig. 5.4
where X and Y are the horizontal and vertical axis for the database plane
respectively. The origin is set to the top left of the first planelet added
to the database for that plane.

5.3.3 Planelet matching

The planelet matching step consists of matching the query planelet to one
of the planes from the bag-of-words filtering. During the bag-of-words
filtering the feature points’ for the query planelet have already been com-
puted. Let X, aneier be the matrix of these feature points homogeneous
coordinates in the coordinate system of the planelet. For each strip from
the bag-of-words filtering, the system finds the matrix of the homoge-
neous coordinates of the feature points in the coordinate system of the
plane. Let this be X,;,n.. The matching between X,one and Xy aneiet 18
expressed purely by a translation and a scale change since these are both
viewpoint normalized, shown by:

S

8

(2%
Xplane = t Xplanelet (52)

o O

y
1

A o ©

where we need to estimate the parameters of T.
To estimate T, for each feature point from the planelet the system mea-
sures the Hamming distance between the ORB descriptor and the feature
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points from the strip. When this distance is below a certain threshold
this match is added to the set of putative matches.

These matches are then used to initiate the RANSAC algorithm which is
applied in order to get the largest consensus set of feature point matches
that satisfies the geometric constraint 5.2. The planelet matches the
current plane when the best consensus set is greater than a threshold that

was obtained through empirical testing. This will have a transformation
T.

5.3.4 Populating the image database

By populating the database we can build up a plane based representation
for an entire street. This plane is then used to augment that street with

3D AR widgets.

The matching process described above determines first if a new image
has a matching plane already within the database. If there is no match
found for the current image then the extracted planelet is used to create
a new plane. If there is a match with the database then the extracted
planelet is used to update the matched plane and is concatenated with
it (see Fig. 5.5).

If there are multiple planes that the planelet matches then the resulting
constraint merges these planes into one. The planelet with the first best
result is merged with the whole second plane. The planelets associated
with this plane are then updated to belong to the first. This relationship
is calculated as follows:

Tplanel = TnglTplanez (53)

where Tpiane, is the geometric relationship of a given planelet to the
second best plane. This can be seen in Fig. 5.6.

It is by running this process over a dataset of input images from urban
scenes that a plane database can be built. The process of building a full
plane for one side of a street can be seen in Fig. 5.7. Furthermore, the
GPS coordinates of each street can be stored to build a geo-referenced
database.
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New combined plane

Figure 5.5: Adding to Plane — The figure shows the combining of a new
mput planelet with an existing database plane. It is noted that the com-
bined colors on the overlap zone do not match because this image is used
only illustrate adding a plane and is not presented to a user.

% Plane 2

Figure 5.6: Merging Planes — This figure shows the plane merging when
a planelet matches two planes.

5.3.5 Augmenting from the image database

Once the database has been populated with planes and authored with 3D
widgets, a user can then augment a query image with those 3D widgets.
When an input image has been matched against the database using the
method described above the widgets associated with the matched plane
are sent back to the visualisation client application. The full matching
and AR widget retrieval process is illustrated in Fig. 5.8.
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Origional Image
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@

Extracted Planelet

Extracted Planelet

Origional Image

Figure 5.7: Building a Plane — The figure shows multiple images be-
ing processed by the facade extraction. The extracted planelets are then
merged to build a full plane for the street.

5.4 Authoring System Content

The authoring tool provides a desktop application which allows a non-
expert user to add new AR content to the system. Authoring consists
of dragging and dropping 3D widgets into the front parallel view of the
fagade. The user can then set the position, orientation and scale of these
widgets relative to the planelets. This permits a more simplified approach
to authoring content without requiring a detailed global model of the
scene. When the user is finished the system then uploads the 3D widgets
with their associated position, scale and rotation stored relative to the
matched plane in the database. These widgets can then be accessed later
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Mobile client side

Server side

Database

Facade
Matching

Figure 5.8: Augmenting from Plane — The figure shows the process of
retrieving 3D widgets from the database back-end and augmenting a query
mage.

by the client when augmenting a query image.

The system uses predefined 3D models (3D widgets) for authoring. The
set of models used currently in the system is set for navigation purposes
but these can be changed or extended depending on the intended appli-
cation for the system. For example:

o Advertising — If a shop owner wishes to advertise an in-store pro-
motion. They can take an image of their shop front and load it
into the authoring tool. The shop owner can then position an AR
widget relative to their shop using the authoring tool. The promo-
tion will now appear when a user of the client application is at the
shop.

e Social Media — The authoring tool can be used socially by friends
who wish to leave a comment about a particular location. Their
comments can be added as widgets and their friends can then see
it when they are at that location.
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While these are just some examples of the uses of this type of system,
it is also possible to allow a user to create and import their own set of
widgets for their own application.

e ARAuthoringGUI

AR Widgets

AR Widget Number 0

ARWidget Type  Arrow

Figure 5.9: The figure shows the AR desktop authoring interface

The Authoring tool user interface can be seen in Fig. 5.9. The tool is
divided into three screens:

e The top left is the authoring screen. This screen allows a user to
add 3D content relative to the front parallel views of the facade
extracted from the query image. First a user can select a widget
from the panel on the right. They can then use their mouse to
move and position the content in their desired location.

e The top right is the reviewing screen. This allows the user to view
the 3D authored content re-projected back into their query image.

e The bottom screen gives the user a view of the overall plane that
the extracted planelet from the query image has been matched to.
When the 3D widgets are placed in a scene by a user any widgets
can then be saved and stored relative to their plane. These can
then be viewed using the AR client front-end.
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There are 3 main functions of the authoring tool:

1. View AR widgets — Viewing previously added widgets is achieved
by selecting an image of an area they wish to view. If there are
multiple fagades within the image, the user is asked to choose which
facade they wish to view. The authoring tool then loads the AR
widgets associated with that facade for viewing by the user.

2. Creating an AR widget — This is done by first selecting an
image of an urban scene the user wishes to augment. The user can
then add a new widget with their desired widget type which can be
chosen from the selection tool on the right. Their new widget can
then be translated, orientated and scaled using their mouse in the
top left authoring screen. Once the user is happy with the result,
their new widgets can be uploaded to the back-end database.

3. Add new planelets to the database — In order to add new
planelets to the database the user again selects the image to be
added. The tool will display the planelets extracted from the image
which are available for addition to the database. The user can then
pick which planelets they wish to add and upload their choice.

5.5 Conclusion

This chapter describes a mobile AR application where a user can take a
picture and send it to the server where it is matched against a database
to retrieve widgets previously attached to a given facade. The system
has three main components:

1. The front-end application creates an augmented view using OpenGL
to overlay the virtual AR widgets onto the urban environment scene
with a consistent alignment.

2. The back-end system retrieves images from the front-end appli-
cation, calculates the camera pose for the input image, matches
against the database and finally retrieves the associated 3D wid-
gets from the database.
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3. The authoring tool provides a user friendly interface for the cre-
ation of new AR content by using the extracted fagades to create
a front parallel which in turn can be used as a frame of reference
for authoring.

These three components provide a complete system for single image based
urban AR. This system provides a platform for AR mobile application
in urban environments. In this thesis, we demonstrated a navigational
AR application. However, this platform is versatile and can be used for
other applications such as advertising, tourism and social media.
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6 Conclusion

In this thesis we have developed a state the art of augmented reality
system focussed on mobile and markerless AR tracking applications in
urban environments. Here we assume that the fagades of a street can be
approximated by planes which allows us to use a simplified map repre-
sentation whereby the world is modelled as a set of local planar maps
(i.e. for each contiguous fagade) with only topological constraints be-
tween these local maps. The main contribution of this thesis is a method
for augmenting images with 3D content using this planar building fagade
model of the environment.

A consequence of the facade based model is the fact that the 3D structure
of the scene can be extracted from a single image. This technique exploits
the often rectilinear structures found in urban settings permitting the
recovery of the 3D geometry of the building facades. The advantages of
this system include the fact that we do not at any stage create a complete
3D representation of the environment and therefore avoid the inherent
complexities associated with this task.

The fagade based representation also allows us to provide an authoring
solution with an intuitive and easy to use interface for non-expert users.
Here the local planar maps provide the XY-plane in a virtual 3D coor-
dinate system, thereby allowing users to place 3D objects relative to a
front parallel view of the extracted facades. To demonstrate this prin-
cipal we have developed an authoring application which allows the user
to load an arbitrary image of a street scene, and then apply the planar
extraction algorithm to produce a linked visualisation of the input image,
extracted facade, and the matched local planar map. Within this inter-
face the user can select, position, and orientate AR graphical elements
in full 3D relative to the scene. The resulting elements, including the
positioning information, can then be stored centrally for later rendering
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by other users.

The overall system detailed in the thesis employs a client-server based
architecture. It allows a user to take an image using a mobile device which
can then be sent to the back-end server for processing. This processing
identifies and extracts the planar facades of buildings within the query
image. These facades are then matched against a geo-referenced image
database. Once matched the facades are then automatically related to
associated 3D widgets of that plane. The matched facades are then
used as a reference frame for augmenting the view using the 3D widgets
associate with the query image’s facade. Results of the application of
this technique to real-world images of general urban environments have
been shown.

6.1 Future Work

Currently the authoring solution is implemented as a desktop application
with the AR viewer implemented on a mobile platform. We are currently
moving our implementation of the authoring method to take advantage
of HTML5. This will give the advantage of greater portability for the
authoring system and most importantly allow the implementation to run
on a wide variety of currently available mobile devices. This in turn will
allow us to reach a wider group of non-expert users and facilitate open
user testing.

We also wish to work on improving the system’s image matching and
localisation capability, and in particular incorporate more robust ap-
proaches to failure detection. While the focus has been on a system
based on building fagades, the approach will work for other planar sur-
faces e.g. indoor environments.

A separate issue addressed in [CM12] is the robustness of the planar
extraction algorithm to non-planar fagades. As shown in [CM12] in such
situations the algorithm outputs a piecewise planar approximation of the
facade’s 3D geometry. Although this permits our system to augment AR
content on such scene’s, further work is required to evaluate the effect of
this approximation on the user experience.

In the current system the paradigm employed is a point-and-shoot ap-
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proach where the captured image is sent to the server for processing. The
principal drawback of this approach is the latency due to the network
transmission time. We are currently investigating a number of aspects of
this issue including the possibility of moving the fagade extraction algo-
rithm to the mobile device through the use of the embedded GPU. We
are also investigating the possibility of extending the planar extraction
algorithm to allow tracking of the detected planes in an online fashion,
thereby permitting live AR in the camera’s video stream.

In the future we aim to fully deploy this approach as a vision based
AR navigation system that will operate over a 1km? area of an urban
environment. Here the user should be able to capture an arbitrary image
within the environment and have the system graphically augment it with
relevant navigation and point-of-interest (POI) information.
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