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Abstract

Given the great potential resource, the utilization of wave energy for

electricity production can make a significant contribution to the renewable

energy portfolio of coastal nations such as Ireland and the UK. There are,

however, many challenges that must be overcome in order for wave energy

to be commercially viable. One of the key objectives of the wave energy

industry today is to produce commercially viable wave farms by placing

multiple wave energy converters (WECs) together in an array. In this thesis,

the WEC array problem is investigated from two different points of view:

control and layout of individual WECs in an array.

WEC arrays are modelled using hydrodynamic coefficients from the

Boundary Element Method code WAMIT R© in the frequency domain, and

a discretized time-domain controller is then applied to calculate motion and

energy of the system. A new application of an energy equivalent lineariza-

tion procedure is developed to model viscous forces for a heaving cylinder.

Three control methods are subsequently applied to arrays of two and three

WECs in various sea states and the resulting power output of the array is

investigated. Results are presented which show the benefit of using adaptive

control for arrays of WECs over a simple fixed damping schemes.

Additionally, the layout of a controlled array of multiple WECs is in-

vestigated given the objective of power maximization. It is shown that as

the number of devices in closely-spaced arrays increases, a control scheme

that is able to utilize radiation properties of devices can offset the net loss

of power effected by shadowing. Furthermore, the relationship between the



inter-device spacing and wave angle of incidence is derived for a two-body

array and shown to hold for multi-body arrays. A recommendation on the

optimal spacing and number of devices given a specific WEC geometry is

made for a controlled array.

2



Acknowledgements

First, I would like to thank my supervisor, Professor John Ringwood,
whose help made this work possible and whose guidance helped me become
a better student and engineer. I would like to thank Mr. Giorgio Bacelli for
this contributions to the work presented in this thesis, and for his advice on
matters theoretical and personal.

Thanks to all the members of the Centre for Ocean Energy at NUI
Maynooth, who have in two short years fostered a great platform for ocean
energy research through their hard work and dedication, in particular Dr.
Francesco Fusco, Dr. Ronan Costello, Dr. Josh Davidson, and Mr. Boris
Teillant. Many thanks to Dr. Jan Westphalen, who, despite his short time
here, has been generous in his help and knowledge. It has been my plea-
sure to have been part of the group. Many thanks to all the staff at the
Department of Electronic Engineering at NUIM, who have created a great
environment for work and study.

I would like thank my family, my parents Dr. Ian Balitsky and Ms. Elena
Balitsky, and my brother Andrew, for their love and support from across the
pond. Finally, I offer my sincere gratitude and thanks to my grandmother,
Dr. Evgenia Balitskaia, whose path I have followed, and whose dedication
to my thesis at times surpassed my own!

1



Contents

1 Introduction 7
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Contribution of Thesis . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Layout of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 A Review of Modelling and Control of WEC Arrays 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Brief Historical Overview . . . . . . . . . . . . . . . . . . . . 13
2.3 Semi-analytical methods for approximation of hydrodynamic

forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 The Point Absorber Method . . . . . . . . . . . . . . 15
2.3.2 The Plane Wave Method . . . . . . . . . . . . . . . . 16
2.3.3 The Multiple Scattering Method . . . . . . . . . . . . 17
2.3.4 The Direct Matrix Method . . . . . . . . . . . . . . . 18

2.4 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Boundary Element Methods . . . . . . . . . . . . . . . 19
2.4.2 Time Domain Methods . . . . . . . . . . . . . . . . . 20
2.4.3 Spectral Models . . . . . . . . . . . . . . . . . . . . . 21
2.4.4 CFD Methods . . . . . . . . . . . . . . . . . . . . . . 22
2.4.5 Experimental Methods . . . . . . . . . . . . . . . . . . 22
2.4.6 Non-hydrodynamic issues . . . . . . . . . . . . . . . . 23

2.5 Array configuration and optimization . . . . . . . . . . . . . . 24
2.5.1 Array layout configuration studies . . . . . . . . . . . 25
2.5.2 Array layout optimization studies . . . . . . . . . . . . 28

2.6 Control of arrays of WECs . . . . . . . . . . . . . . . . . . . 32
2.6.1 Array control . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.2 A Brief overview of WEC control . . . . . . . . . . . . 33
2.6.3 Overview of control methods for a single WEC . . . . 34
2.6.4 Control methods applied to arrays of WECs . . . . . . 37

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2



3 Modelling WEC Arrays with Potential Flow Methods 41
3.1 Boundary Value Problem . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Pressure and force . . . . . . . . . . . . . . . . . . . . 46
3.2 Irregular Waves . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Commonly used spectral shapes . . . . . . . . . . . . . 50
3.3 Equations of motions in the frequency domain . . . . . . . . . 51
3.4 Equations of motions in the time domain . . . . . . . . . . . 53
3.5 Energy and power absorption . . . . . . . . . . . . . . . . . . 54
3.6 Energy-maximizing control . . . . . . . . . . . . . . . . . . . 56

3.6.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.2 Global control . . . . . . . . . . . . . . . . . . . . . . 58
3.6.3 Independent control . . . . . . . . . . . . . . . . . . . 59
3.6.4 Passive tuning . . . . . . . . . . . . . . . . . . . . . . 60

4 Linearized Viscous Damping Correction 62
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Dimensionless parameters defining fluid flow regimes . . . . . 63
4.3 Morison’s equation . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Determining the value of the drag coefficient . . . . . . . . . 67
4.5 Lorentz’s linearisation of Morison’s equation . . . . . . . . . . 71
4.6 Examples of motion including linearized viscous term . . . . . 74
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Comparison of Control Strategies 78
5.1 Modelling and control Setup . . . . . . . . . . . . . . . . . . . 79

5.1.1 Control problem solution . . . . . . . . . . . . . . . . 82
5.2 Control results . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Difference between GC and IC . . . . . . . . . . . . . 94
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Clustered Array Optimization 99
6.1 Modelling setup . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Layout study in regular seas . . . . . . . . . . . . . . . . . . . 104

6.2.1 2-body array . . . . . . . . . . . . . . . . . . . . . . . 104
6.2.2 Multi-body array . . . . . . . . . . . . . . . . . . . . . 106

6.3 Layout study in irregular seas . . . . . . . . . . . . . . . . . . 108
6.3.1 2-body array . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2 Multi-body array . . . . . . . . . . . . . . . . . . . . . 111

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Conclusions 117
7.1 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . 117
7.2 Future research perspectives . . . . . . . . . . . . . . . . . . . 119

3



List of Symbols

α fluid displacement amplitude

β wave incidence angle

βs frequency parameter (Stoke’s parameter)
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Chapter 1

Introduction

With the looming threat of global climate change brought on by our ever-

increasing burning of fossil fuels, the search for alternative clean energy

sources is fast becoming one of the primary policy objectives of the century.

Despite the ever-increasing proportion of renewable energies in the world

electricity generating mix, it is still low, accounting for only around 20 % of

the world generating capacity as of 2011 [1]. Wave and Tidal, often termed

ocean energy, though currently providing only .01% of the renewable energy

generating capacity, has the potential to provide a significant share in the

future [1]. The total world extractable wave energy resource is estimated

at 2.11 TW [2], which is approximately equal to the 2.28 TW of average

electrical power produced in the world today [3]. Although extracting all

of the energy reserves is not practical or realistic, wave energy can still

play a significant role in the future energy mix, with the UK Carbon Trust

predicting up to 180 GW of wave energy installed capacity in the world by

2050. If we look at a map of the world wave energy resource in fig 1.1,

we see that areas like the west coast of North America, Europe, and South

America as well as the south and west coasts of Australia are in particularly
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favourable locations for wave energy extraction. According to the UN, 44

% of the world’s population currently resides within 150 km of the coastline

and this number is only projected to increase in the future [4]. Therefore it

is natural that wave energy should play a significant role in the world energy

mix.

Figure 1.1: Annual mean wave power density (colour) and annual mean best
direction (→) [2]

In spite of the huge potential, current world wave installed capacity is

less than 5 MW [5], the majority of which is produced on a pre-commercial

basis, meaning that it still costs more to produce a megawatt of wave energy

than the market can offer for it. While the reasons for this are many and

most are outside the scope of this thesis, the primary ones should be ac-

knowledged. Firstly, all wave energy technology is immature. Unlike more

established renewable sources like wind and solar, for which the extraction

and generation technologies are well established, the wave energy industry

presents a large number of vastly different technologies from which a clear

leader has yet to emerge. Secondly, the harsh salt water environment and

susceptibility to extreme weather conditions greatly increases the operating

and maintenance costs of wave energy compared to other sources. Thirdly,
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wave energy as a resource is intermittent, meaning that it greatly varies

on both a short-term (second-by second) and long-term (daily and monthly

variability) basis. This often necessitates having extra generating capacity

for a majority of the WEC’s (Wave Energy Converter) operation, which is

often prohibitively costly. One solution that reduces output energy is to in-

troduce automatic control to optimize the energy capture. As identified by

numerous think tanks, including the UK Carbon Trust [6], CSIRO in Aus-

tralia [7], and Ireland [8], the only way for wave energy to advance and reach

its potential is by aggressive cost reduction. It is generally acknowledged

that the only way to make deployment of WECs economically feasible is to

place devices together in wave farms or arrays, which not only will enable

cost saving via shared infrastructure but also enable wave energy projects to

produce enough power to compare to other renewable energy plants. How-

ever, the placement of WECs in arrays itself presents a set of challenges,

especially with regard to modelling the interaction. Both the layout of the

devices in the array and an automatic control scheme will affect the power

production in a WEC array and, by extension, its cost-effectiveness, and

will be dual foci of this thesis.

1.1 Motivation

Even though several array demonstration projects are currently in the de-

velopment stage, (for some notable projects see 1 2

3 4 ), there are still few studies which model realistic operating WEC sce-

narios, moreover, these studies have yet to reach a definitive conclusion

1http://www.aegirwave.com/
2http://www.aquamarinepower.com/projects/north-west-lewis/
3http://www.westwave.ie/
4http://www.el.angstrom.uu.se/forskningsprojekt/WavePower/Lysekilsprojektet E.html
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regarding the optimal placement of the devices in an array from the point

of view of power capture. Moreover, none of these studies modelled active

control strategies which were found to significantly increase power capture

in single devices (see for example [9, 10, 11]). This is due, in a large part, to

the difficulty of accurately modelling hydrodynamic interactions within the

array. The number of modelling parameters increases geometrically with in-

creasing device number. Therefore, to make the equations simple enough for

a realistic computational time, the majority of studies on WEC arrays the

hydrodynamics are modelled in the frequency domain assuming linear wave

theory. While active control can be modelled within the framework of linear

theory, a time-domain approach is required to accurately model it. Hence,

until recently, it was computationally prohibitive to model realistic control

for an array of WECs. It is the aim of this thesis to look at array layout of

devices that are actively controlled to determine the layout maximizing the

power capture given a set of devices and input sea states. Additionally, the

difference between different array control schemes is examined.

1.2 Contribution of Thesis

The main contribution made by this thesis are:

1. A comprehensive review of the state of the art on the topic of layout

and control of WEC arrays.

2. A comparison of two active control strategies for a WEC array to a

passively tuned one .

3. The layout of an actively controlled array of WECs is examined and

conclusions are made regarding the optimal spacing between devices

as well as the positioning of the array to the prevailing wave direction.

10



The following publications have resulted from contributions of this thesis:

• Westphalen, J., Bacelli, G, Balitsky, P, and Ringwood, J. V. “Control

strategies for arrays of wave energy devices.,” in Proceedings of the

9th European Wave and Tidal Energy Conference, Southampton, UK,

2011.

• Bacelli, G., Balitsky, P., and Ringwood, J. V. “Coordinated control

of arrays of wave energy devices - benefits over independent control,”

IEEE Transactions on Sustainable Energy, 2013, in press.

1.3 Layout of Thesis

The remainder of the thesis is structured as follows:

Chapter 2 is a comprehensive state-of-the-art review on modelling and

control of WEC arrays. The theory behind wave energy conversion is pre-

sented in Chapter 3 covering the assumptions made in this thesis regarding

the hydrodynamics of the system. The general results regarding array power

capture are presented as well as a brief look at control theory as it applies to

arrays. Chapter 4 looks at the viscous damping term in the WEC equation

of motion as well as looking at the derivation of the linear damping term.

In addition, results are presented presenting the effectiveness of the viscous

damping term in accurately modelling the motion of a reactively controlled

WEC array. Chapter 5 compares the control strategies for an array of de-

vices. Two reactive array control strategies are compared to each other as

well as to a passively tuned array.
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Chapter 2

A Review of Modelling and

Control of WEC Arrays

2.1 Introduction

As the first pre-commercial arrays are getting ready to be deployed and sev-

eral commercial array projects are in the development stages, the topic of

WEC arrays is getting due attention from numerous research groups in the

UK and Europe. However, even though many aspects of the complicated

problem of quantifying the power capture in an array of WECs have re-

cently been looked at there are still many urgent questions that need to be

answered. One of the most pressing, and least studied because of modelling

difficulties, is automatic control of an array, because it has been shown for

single devices that control greatly improves power production for a mini-

mal additional capital cost [9, 10, 12, 11, 13]. In this chapter, an extensive

review of the state of the art on array modelling and array control is pre-

sented, with a focus on the evolution of modelling as computer technologies

have improved. Section 2.2 presents a brief historical overview, section 2.3
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focuses on analytic approximations of WEC array hydrodynamics, section

2.4 looks at numerical methods, section 2.5 looks at studies exploring the

effect of array layout on power production, and, finally, section 2.6 reviews

dynamic control in the context of arrays.

2.2 Brief Historical Overview

The need to place WECs in arrays arises because of the inherent size of

most wave energy conversion technologies. The majority of current and

historically proposed devices are rated at less than 1 MW, with most in

the 200-750 kW range. This is mainly due to the exponentially increasing

capital costs of materials and deployment in the sea, as well as the costs of

deployment and maintenance. Compared with other renewable technologies

like wind, where some offshore models are rated up to 7 MW, individual

WECs are small. Therefore, in order to be competitive with other renewable

energy resources such as offshore wind, as well as with conventional power,

commercial wave energy projects will need a power output of at least 10

MW, with a potential goal of hundreds of MW per project.

This need to deploy WECs in arrays was acknowledged within the first

few years of extensive research into wave energy that coincided with the oil

crisis in the early 1970s. In 1977 Budal [14] published the first investigation

into the theory of power absorbtion of arrays of WECs. Budal was also the

first to introduce the array interaction factor q as a benchmark measurement

for array power capture. In simple terms, q is the ratio between the power

produced by an array to the power produced by the same number of devices

in isolation or:

q =
Power converted by array

Power converted by same number isolated devices
(2.1)
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Budal, however, made the restrictive assumption that all devices must os-

cillate with equal amplitudes. This assumption was proven inadequate by

Falnes in 1980 [15]. Evans [16] independently arrived at the same results in

1979. A few years later both Falnes and Budal [17] and [18] showed that

an array configuration can significantly increase power capture over that of

isolated devices. A few commercial array projects were proposed by Budal

and Falnes in Norway [17] and Salter in 1983 [19]. However, because of

the oil glut of the 1980s and a strong push for nuclear power in the UK

at the same time, these projects were cancelled and funding for research

into arrays and into wave energy in general was severely curtailed. The

majority of research carried out in the next decade and a half on arrays of

floating bodies was carried out on structures other than WECs, still, some

of the research was applied to the problem of WEC arrays, for example

[20, 21, 22]. By the early 2000s, with increasing oil prices and the threat of

climate change renewing an interest in all forms of alternative energy, wave

energy conversion, and by extension WEC array research was back on the

funding agenda of government agencies around the world. Coupled with a

rapid increase in computing power that enabled complicated hydrodynamics

to be accurately resolved, a large amount of research began to be published

in the topic, especially toward the start of the new decade. For example,

the number of papers submitted to the bi-annual European Wave and Tidal

Energy conference, the pre-eminent forum in the field has almost doubled

from 2005 to 2009 [23]. Currently, with the identification of WEC array

research as a key topic in marine energy, several international efforts have

been created to spearhead the consolidation and sharing of research such
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as WECAN, SOWFIA 1, MARINET 2 and PerAWaT 3. However there is

an urgent need for experimental array data, especially that from sea trials,

because many of the issues that commercial WEC arrays will have to face

cannot be precisely replicated in the laboratory.

2.3 Semi-analytical methods for approximation of

hydrodynamic forces

The full problem of calculating the power absorbtion of an array of WECs

requires not only the complete knowledge of the hydrodynamics of each

individual body, but also the scattering and radiation effects between all

bodies in the array. Therefore, except for a few special cases, the equations

cannot be fully solved analytically without making assumptions about the

hydrodynamics of the problem. Even with the ready availability of powerful

computers, the problem is only tractable for arrays with few bodies. As

the number of bodies increases the equations become fundamentally more

difficult to solve, thus necessitating analytical simplifications even when uti-

lizing numerical methods for their solution[24]. Described below are the four

main analytical approximations that have been historically used to solve the

WEC array problem.

2.3.1 The Point Absorber Method

The first analytical method to be introduced, in the first published paper

on array interaction by Budal in 1977 [14], is the point-absorber approxima-

tion. Its main assumption is that the scattered waves are negligible, which

1www.sowfia.eu
2http://www.fp7-marinet.eu/
3www.eti.co.uk/technologyprogrammes/marine
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occurs when the wavelength is much greater than the device dimensions.

This assumption was used to test the basic framework of the theory in the

first wave of papers on the subject in the late 1970s and early 1980s, mainly

for simplified examples of linear arrays of cylindrical WECs. The approxi-

mation is capable of calculating the optimal power absorbtion of an array

regardless of individual WEC geometry, but is not capable of resolving the

device motions, leading to solutions with unrealistic device displacements,

as shown in [18]. To tackle this problem, an analytical method of placing

restrictions on body motion was developed by Evans in 1981 [25] and ex-

tended by Pizer in 1993 [26]. However, this formulation requires knowledge

of the hydrodynamic properties of the bodies, which cannot be calculated

analytically except for a few special cases. Still, as a number of devices under

development today fit the criteria for the validity of the point-absorber ap-

proxiamtion, it is a useful tool for WEC array analysis. The approximation

has been recently used to optimize array geometry in the work of Fitzgerald

and Thomas [27], and to optimize the positions of devices in an array with

irregular waves by Folley and Whittaker [28]. In a study on array layout

configuration, Ricci et al. [29] compared the point-absorber approximation

with a numerical method, getting favourable agreement for a range of sea

states.

2.3.2 The Plane Wave Method

Introduced by Simon in 1982 [30] and expanded by McIver and Evans in

1984 [31], the plane-wave method assumes that the diverging wave scattered

from a cylinder is replaced by a plane wave of appropriate amplitude in the

vicinity of another cylinder. In contrast to the point absorber approximation

the plane-wave method assumes wide spacing between the array elements,
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that is of the order of several wavelengths. Also, unlike the point-absorber

method, the plane-wave approximation takes scattering into effect.

2.3.3 The Multiple Scattering Method

The multiple-scattering method is another semi-analytical procedure first

used to calculate the scattering and radiation of surface waves on floating

structures by Okhsu [32]. The method considers interaction as a series of

scattering events for which the amplitude of the scattered wave decreases

with each iteration, enabling a truncation to be made at a desired accuracy.

Using this method, Mavrakos and Koumoustakos [21] solved the scattering

problem, and Mavrakos [33] solved the radiation problem. The multiple-

scattering method were applied in the context of WEC arrays by McIver et

al. [34] and Mavrakos and McIver [35]; both groups compared the multiple-

scattering method to the plane-wave and point-absorber approximations. A

big benefit of the multiple-scattering method is that it enables a considerable

reduction of both computing time and storage requirements, due to the

fact that the formulation enables the successive satisfaction of the imposed

boundary conditions on each body of the arrangement [33]. This method

is, in principle, accurate to an arbitrary degree of precision, depending on

where the series representation of the scattering is truncated. Nonetheless,

the multiple-scattering method has an important drawback in the need for

single-body hydrodynamic characteristics that can only be calculated for

a simplified system without resorting to a numerical method, because the

hydrodynamic response coefficients of each individual body must be known.

The point-absorber, plane-wave and multiple scattering methods were

compared in a seminal paper by Mavrakos and McIver in 1997 for a lin-

ear array of 5 vertical cylinders [35]. As expected, they found that the
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point absorber approximation brakes down for large values of κa where κ is

the wavenumber and a is the cylinder spacing. By contrast, they observed

that the plane-wave approximation, in addition to the wide-spacing regime,

also works for closely spaced configurations that, in fact, violate the origi-

nal assumptions behind the theory, calculating the hydrodynamic forces for

κa = 0.4 to within 5% of the more accurate multiple scattering method.

Mavrakos and McIver [35] conclude that for most circumstances of practi-

cal interest the hydrodynamic forces can be calculated using the plane-wave

approximation cautioning, however, that the errors might be amplified for

a greater number of cylinders than the five considered in their study.

2.3.4 The Direct Matrix Method

A procedure similar to the multiple-scattering method, sometimes called

the direct matrix method, was presented by Kagemoto and Yue in 1986 [20].

This is an exact algebraic method within the framework of linear theory,

subject to truncation of an infinite series. The interaction of the bodies is

accounted for by taking the scattered wave of each body to be the incident

wave upon all other bodies, in addition to the ambient incident waves [20].

Doing this substitution for all members in an array, Kagemoto and Yue were

able to solve for the coefficients of the scattered wave fields of all bodies

simultaneously. They extended the approach to radiation in 1990 [36]. A

solution for a truncated cylinder, one of the most common WEC shapes,

was provided by Yilmaz and Incecik in 1998 [37] and this result, along with

a model for the power take off (PTO), was used in a series of recent papers

by Child and Venugopal [38, 39, 40, 41] where they analyse the influence

of PTO damping, separation distance, angle of wave incidence, array device

number and layout on power output. Although the direct matrix method
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is versatile, only requiring that the vertical projections of the bodies do

not overlap, it has a drawback in the need for solutions to the diffraction

transfer matrix of the particular body considered, necessitating resorting to

a numerical method for all but the simplest body shapes.

2.4 Numerical Methods

2.4.1 Boundary Element Methods

While numerical methods have been used in marine hydrodynamics since the

earliest days of computers, only recently have advances in computer tech-

nology made possible the direct numerical simulations of arrays of WECs.

Currently the Boundary Element Method ,or BEM, is the most widely used

numerical approach. This computational procedure solves linear partial dif-

ferential equations which have been formulated in boundary integral form.

The application of the boundary element method to the problem essentially

requires a mesh of the boundary of the domain only, and the determination

of the boundary condition on the surface. For a comprehensive overview

of the BEM method and its applications see [42]. A number of commercial

software packages exist for applying BEMs to wave-structure interactions

like WAMIT R©4, developed at the Massachusetts Institute of Technology,

ANSYS Aqwa R©5 and 3DynaFS-BEM R©6. A number of software packages

have also been developed by research institutions, particularly AQUADYN

and AQUAPLUS at École Centrale de Nantes in France.

BEM methods have recently been utilized in a large number of studies

pertaining to arrays of WECs, especially in studies investigating array lay-

4www.wamit.com
5http://ansys.com/Products/Other%2BProducts/ANSYS%2BAQWA
6www.dynaflow–inc.com/Products/Software/2 y3DynaFS/3DynaFS–BEM.htm
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outs, including those by Justino and Clément [43], Babarit [13], Borgarino

et al [44, 45] and Cruz et al.[46]. De Backer et al. [47] used the BEM code

WAMIT to investigate different control schemes for a fixed structure array,

and Taghipour et al. [48] used WAMIT to test the response of a floating

array of 21 elements in irregular waves. Although BEM methods are com-

putationally intensive for large arrays (of more than 10 elements), several

research groups are investigating this issue. Borgarino et al. [49] recently

presented a Fast Multipole Algorithm that shows improvement in computing

time for large arrays.

2.4.2 Time Domain Methods

The studies mentioned in section 2.4.1 all calculate the motions of the de-

vices in the frequency domain (see equation (3.3)). While these results are

useful in modelling steady state motion, they are unable to resolve tran-

sient phenomena, as well as the implementation of real-time control [50].

Therefore, a time-domain formulation is employed in which equation (3.38)

is employed to calculate the motion. In addition to resolving transient phe-

nomena, the time-domain formulation enables the modelling of non-linear

forces such as viscous damping, PTO forces, as well as mooring. The hy-

drodynamics coefficients are usually calculated in the frequency domain us-

ing frequency-domain BEM codes and then transformed into time domain

responses via the inverse Fourier Transform. The main drawback of this

approach is the increased computing time, especially in calculating the ra-

diation kernel K(t) in (3.38). Several investigations tackled the problem by

using system identification to replace the convolution by a linear system of

equations. System identification is the approach taken by Taghiopour et al.

[48] to approximate K(t) for a platform of closely spaced devices. A non-

20



linear extension to the time-domain formulation was presented by Mérigaud

et al. [51] who used a non-linear term to represent the Froude-Krylov and

diffraction force in (3.22) (for explanation see 3.1.1). They note that the in-

crease in computational time is well justified by the improved calculation of

motion for large sea states which, in turn, enables a more accurate estimate

of power production [51].

2.4.3 Spectral Models

Spectral wave models are a group of phase-averaged wave propagation mod-

els which have been recently used to study WEC arrays. The basis of spec-

tral models is the conservation of energy; thus all wave interaction effects in

an array must be formulated so that a net loss or gain of energy is repre-

sented. The most popular model from this class is the SWAN model, used

extensively to model near shore waves. Spectral models are able to rep-

resent energy dissipation and generation processes such as bottom effects

and radiation, they are not able to model phase-dependent processes like

scattering. Their biggest advantage is the computational efficiency when

compared with potential flow methods, their usefulness in modelling very

large WEC arrays (hundreds of elements), and the coupling of array effects

into models that represent coastal processes [52]. Spectral models have re-

cently been used to model the effects of interactions in arrays of WECs for

a linear array of devices [53], as well as staggered configurations [54]. Folley

and Whittaker [52] discuss the limitations of spectral models with regard

to modelling array interaction, but also make the conclusion that beyond a

certain distance from an array of devices, a spectral model can accurately

model the change in energy predicted by theory.
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2.4.4 CFD Methods

Computational Fluid Dynamics (CFD) is used to describe software that

solves the Navier-Stokes equations over a complete fluid domain. The Navier-

Stokes equations are the most fundamental equations of fluid dynamics,

having non-linear as well as rotational terms. Therefore codes solving these

equations are the most computationally intensive to run. The trade-off for

this complexity is the ability to resolve non-linear effects such as viscos-

ity, drag, non-linear PTO forces and mooring forces. Although computing

hardware and software has only recently become powerful enough to tackle

a complicated problem such as arrays, several studies have recently emerged

which used CFD to simulate multiple devices in a wave tank. For example,

Agamloh et al. [55] presented results from a two-device WEC array in a

numerical test tank. Bhinder et al. [56] recently used CFD to determine the

viscous drag coefficients for heaving and surging devices, results which can

be directly applicable to the array problem. Even though there have been

few investigations into WEC arrays using CFD, this is a very active area

of research at the moment, spearheaded by a number of international task

forces [52].

2.4.5 Experimental Methods

One of the biggest issues facing the wave energy industry today is the lack of

widely-available experimental data. This dearth of data is especially acute

in the case of WEC array experimental data, largely because most array

configurations are too large to adequately test in a laboratory settings at

full scale. As of late 2012, the only WEC array project in the water with

multiple devices is the Lysekill project run by the University of Uppsala in

Sweden (see [57] for recent progress). The situation should change in the
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near future as several array projects are in the development stages. There is,

however, a small set of experimental studies available using fixed-structure

arrays, that is where the individual WECs are rigidly fixed to a frame.

For example, the research group at Manchester University in the UK has

conducted a number of experiments with a 1/7 scale prototype, comparing

numerical results to experimental ones [58, 59].

2.4.6 Non-hydrodynamic issues

Even though the focus of this thesis and review is the hydrodynamic inter-

actions in an array of WEC, in an eventual commercial array project, there

will be other considerations which may be of equal if not higher importance

to the project’s eventual success. Therefore, we shall briefly describe them

here, without going into extended discussion. Since the aim of WEC array

projects is to provide electrical power to the grid, the issue of electrical con-

nections and grid compatibility is of chief importance. To this end, several

studies have looked into integration of WEC arrays into the electrical grid.

Tedeschi et al. [60] investigated different scenarios of a hypothetical 20MW

power plant from the point of view of the electrical supply variability. Moli-

nas et al. [61] looked at the effect of WECs in an array on smoothing the

power output to the grid. O’Sullivan et al. [62] and Sharkey et al. [63] both

looked at a hypothetical WEC array off the west coast of Ireland (possible

site of the WestWave project see 1.1 for detail). The two studies looked at

the costs of the grid connections, with the latter study comparing differ-

ent array layouts for associated electrical infrastructure costs. Moorings is

another issue that will have to be dealt with in an array project. For exam-

ple, Vicente et al. [64] studied the dynamics of a floating circular array of

heaving WECs with slack-moored connections using a time-domain formula-
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tion. Likewise, Ricci et al. [65] proposes a mooring system for a small (2-10

body) array of heaving point absorbers that is an economic improvement

over individual moorings. Finally, one of the first studies to look at WEC

arrays from a purely economic perspective was recently completed by Beels

et al. [66], in which the authors evaluated the costs of three hypothetical

WEC arrays consisting of overtopping devices. In addition to technical is-

sues, there are social and environmental concerns of wave energy utilization

that apply specifically to the case of arrays, for example the issue of ocean

territory management, fishing right-of-ways, visual impacts, and the effect

of WEC arrays on the nearshore sediment transport. None of these aspects

can be completely ignored and any WEC array project will have to conduct

analysis or collect applicable data before the project is finalized.

2.5 Array configuration and optimization

For a given WEC array project, the most important variable to determine is

the eventual power output. Because of hydrodynamic interactions between

array members, one of the key factors influencing the output is the array

layout or configuration. The positioning of individual elements in an array

has been acknowledged by many authors to have a significant effect on power

production. In the 1980s and early 1990s, Falnes [15], Falnes and Budal [17],

and Thomas and Evans [18] all showed the geometric layout to have a signif-

icant impact on the q-factor, acknowledging that the layout created phase

differences in the radiated waves that lead to this phenomena. However,

their studies were limited to equally spaced linear arrays of heaving point

absorbers in regular waves, which limited their applicability to only a few

select cases.
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2.5.1 Array layout configuration studies

With improvements in modelling techniques, more recent investigations have

considered different WEC shapes, modes of motions, irregular array geome-

tries and finally true optimizations with an algorithm selecting from a range

of possibilities. In the first category, that is selective optimization, McIver

[22] compared a linear array of five heaving cylinders, with equal and unequal

spacing, noting that the latter offers performance benefits by smoothing out

big differences in power output. Ricci et al. [67] investigated three different

configurations of heaving cylinders for regular and irregular seas, acknowl-

edging the role of layout, but concluding that without a directional spectra

for the exciting waves, their results have a limited application. Ricci et al.

[29] followed up the previous investigation with a study of the performance

of two 5-WEC arrays of heaving cylinders in a spectral wave climate from

the Portuguese west coast. Ricci et al. establish the sensitivity of the con-

figurations to wave spreading as well as concluding that the effects on array

performance with inter-device spacing d larger than 4 device diameters can

be neglected. A more recent study by Wolgamot et al. [68] also considers a

three-member array, but with four different configurations. As well as look-

ing at axis-symmetric heaving devices, they also looked at surge and sway

motion as well as arbitrarily shaped bodies. Wolgamot et al. determine that

matching the width of a peak in the q curve vs. the incident wave direction

β to the range of expected incident wave directions would be a valuable con-

sideration for a new array, at the same time acknowledging that the results

need to be shown for cases other than the regular sea that they considered.

Babarit [13] studied the influence of the array inter-device spacing on the

power output of a two body array of heaving cylinders and surging barges.

Investigating a range of distances from 110 m up to 20 km, for a number
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wave incidence angles β, he concluded that, at close distances, interaction is

significant for both types of devices and for all angles of incidence. However,

at long distances, up to 2 km, only the array of surging devices aligned par-

allel to the incident waves exhibit significant modification of power output,

with the other cases all converging within 1% of q = 1 at a 500 m distance.

Babarit also derives an important general results that shows that, in a reg-

ular monochromatic wave, for a two-body array, the influence of interaction

on the power output decays as a function of the square root of the distance

d between the devices [13]. Borgarino et al. [45], extended the approach of

[13] to two dimensions and multiple bodies, first by jointly varying the dis-

tance d between devices in an array, in what they term square-based arrays,

and then letting both the x and y separating distance vary independently.

For arrays of 9, 16, and 25 WECs, Borgarino et al. find a general area of

constructive interference that is a function of both the x and y separating

distance, with a similar shape for the heaving cylinder and surging barge

array. Because the dependence of q is not the same as x and y change, as

shown in figure 2.1 for the case of the 10-cylinder array, they note a benefit

to letting both x and y separation distances vary independently.

26



Figure 2.1: Ratio of yearly power output of an array PyrA to the yearly
power produced by the same number of isolated device Pyr0 for an array of
10 heaving cylinders. For details see [45]

Borgarino et al. further investigated the masking effects in an array

by first looking at a 20 body densely-packed cluster of devices, then by

splitting the cluster into 2 clusters of ten devices in the same locations as

the 20 body cluster, separated by increasing distances. They investigated

the power output of one 10-body cluster placed in various locations behind

a fixed cluster, looking at a range of sea states. Borgarino et al. conclude

that there is a net benefit in splitting each cluster into 2 parts because, as

the number of rows (devices one behind anther) increases in densely placed

arrays, the overall performance of the array suffers. In addition, the authors

noted a significant reduction in the wave energy immediately behind a dense

cluster, indicating that separated clusters should preferably not be placed

in row aligned with the wave direction, but preferably off axis. They note,

however, that the masking effect diminishes when directional spreading is

included in the incident wave forcing.
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2.5.2 Array layout optimization studies

One of the first studies to conduct an optimization of array layout, based

on the objective of maximizing power production was in 2007 by Fitzgerald

and Thomas [27]. The authors applied a sequential quadratic programming

algorithm to arrays of three and five point absorbers in regular incident

waves, with a fixed wave number. They found a substantial increase in the

q-factor for some array geometries. Indeed, by varying the angle of wave

incidence, for optimal symmetric and non-symmetric layouts, they obtained

a qmax of 2.777 and 2.746, respectively. From figure 2.2, where the q-factor is

plotted for a range of incident wave directions for three array configurations

(marked S for symmetrical and N for non-symmetrical) one can observe a

very large peak for a specific incidence angle β around 1.5π and values of q

close to unity away from that peak.

Figure 2.2: The variation in q-factor with incidence angle β for 3 array
configurations (two symmetric and one non-symmetric) [27]

The increases are impressive, showing an almost three-fold improvement

in device power output compared to an identical number of independent de-
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vices, though the authors qualify that these increases, based on unrestricted

device motions and regular seas, would be much less dramatic if more realis-

tic operating assumptions were made. Nonetheless, the study offers valuable

insight into the possibilities of using optimization and a grid-free layout for

arrays of WECs. The authors also present an important consistency condi-

tion, stating that in varying the angle of incidence of the incoming waves β

to the array axis, a net benefit at one angle will be offset by a decrease in

performance in another:

1

2π

∫ 2π

0
q(β)dβ = 1. (2.2)

In effect, this states an intuitive results that an array cannot be simulta-

neously maximized to all incident wave directions. Since all wave climates

have a predominant direction from which the majority of the incident energy

arrives, this results points to the benefits of aligning an array to the wave

direction to maximize constructive interference.

The recent work by Child and Venugopal [40] tackles the same opti-

mization problem by using two different algorithms. Using a semi-analytic

procedure to calculate the array hydrodynamics, first presented in their ear-

lier work [38], the authors optimize the array geometry for an array of five

truncated cylinders oscillating in heave for regular waves, using two different

methods: the first they term the Parabolic Intersection (PI) method, the

second is a Genetic Algorithm (GA), a well-known heuristic algorithm. The

PI method, devised by the authors for the study, utilizes the parabolic inter-

ference pattern surrounding each device in the array to place the subsequent

array members. The GA is an established method that has been previously

used in array applications such the design of acoustic lenses, electromagnetic
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antennae and communication transmitter networks [40]. The investigation

[40], however, is the first to apply GA to geometrical optimization of arrays

of WECs. Here, the authors set q as the fitness function, maximizing it for

two cases, the first using reactive tuning (see section 2.6), the second with

real damping, then minimizing q for a reactively tuned device array. The

q-factors from resulting layouts for the three experiments are shown in fig-

ure 2.3, plotted vs. non-dimensionalized wave number κa in the left column

and wave incidence angle β on the right. Note that the q-factor used by the

authors is the same as that defined in equation 2.1.
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Figure 2.3: Variation of interaction factor q with non-dimensional wavenum-
ber 2ak0 for fixed angle of attack β = 0 (left) and with angle of attack β
for non-dimensional wavenumber 2ak = 0.8 (right). Vertical grey lines show
tuning wavenumbers 2ak0 = 0.8 (left) and incident wave angle β = 0 (right)
[40].

The plots in figure 2.3 are illustrative in that they show the general pat-

tern seen in most array configuration studies, with q oscillating about unity,

with areas of both destructive and constructive interference for a given con-
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figuration that depends on both the wavenumber and wave incidence angle.

On the left hand side in figure 2.3, we remark that an array optimized at

a certain κa, shown by the vertical line, can provide the opposite effect for

a different wave environment. On the right in the same figure, we can see

a visual verification of condition (2.5.2), with a strong benefit at a given

β offset by a detriment at others. In the study [40], Child and Venugopal

also verified the consistency condition equation (2.5.2), under less restric-

tive assumptions than those in [27], and found it to hold true for a range

of array configurations. Child [69], extended the work in [40], which con-

sidered optimization in regular seas only, to the case of irregular seas. He

implemented a GA optimization for a 5-member heaving cylinder array for

the same tasks as mentioned in subsection 2.5.2 , maximizing the q value

for real (passive) and reactively-tuned devices, and minimizing the q for

reactively-tuned devices, Child utilized a JONSWAP spectrum with direc-

tional spreading as the input sea state. The results, as expected, show much

less increase in power production compared with the regular wave case, with

a q-max of only 1.044 for passive-tuned devices and 1.176 for reactive-tuned

ones. Although optimization in the JONSWAP input case offers a net ben-

efit, the benefit is not very significant. The result does, however, point to

the need to explore this line of investigation further, particularly by looking

at optimization with real sea climates.

2.6 Control of arrays of WECs

2.6.1 Array control

Control of arrays of WECs has only recently become an active area of re-

search. The chief reason is that simulating control requires extensive com-
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puting resources that only recently became available. To achieve optimal

control, that is to extract the greatest possible power from the array, both

the mass and damping of all devices need to be modified so that the WEC

impedance is the complex conjugate of the impedance of the incoming wave

force [10]. No devices currently in development offer this possibility, so the

maximum power absorbed using optimal control serves more as a benchmark

against which real device performance can be measured. We can consider

two main classes of arrays of devices, those generally known as closely-spaced

arrays attached to a fixed structure and those that are sparsely spaced and

individually moored. For the closely-spaced devices, both the mass and the

damping can be modified in operation while for the individually-moored de-

vices, the modification of the floater mass is much more difficult to effectuate

and therefore any form of control currently under development only opti-

mizes the Power Take-Off (PTO) damping. Before we look in detail at array

control, we take a brief step back and examine individual device control to

appreciate the difficulty in investigating and implementing array control as

well as classifying existing control schemes.

2.6.2 A Brief overview of WEC control

The need for dynamic control of individual WECs was established in the

mid-1970s, only a few years after the initial investigations into the possibility

of converting wave energy into electricity for the electric grid [70]. The

need for control arises because most devices’ resonant frequency and the

predominant frequency of incident waves in the ocean. For a vast majority

of WECs, maximization of power output necessitates a match between the

motion of the wave and the motion of the device. To achieve this, the phases

of the WEC oscillation and the wave oscillation must match (see section 3.5
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for details). For wave energy devices, and in particular for heaving buoys,

to achieve phase matching in average ocean frequencies without dynamic

control to modify their oscillations, their physical dimensions exceed those

that are currently economically feasible [71].

We note that, in the context of wave energy, the term control has a

meaning different from that used in control engineering. It is an energy op-

timization problem, as opposed to closed loop control where the difference

between the desired state and measurements of an actual state are used

to determine the controlled inputs. More specifically, control in published

wave energy literature is used to mean optimization of the power take off

(PTO) force which in the majority of cases has a goal of maximization of the

power captured [72], although other objectives like power smoothing can be

pursued [61]. The latter objective may be desirable from the standpoint of

the power grid, which needs to minimize disturbances in the power supply

[61]. Within the scope of these definitions, a review of some of the con-

trol strategies for a single wave energy converter with a view toward their

implementation in an array is carried out.

2.6.3 Overview of control methods for a single WEC

With the abundance of control strategies available for control of a single

device of the point absorber type, it is important to classify them in a

systematic way, as shown in figure 2.6.3. At the highest classification level,

we shall make a distinction between the ideal unconstrained control, which

is useful only as a theoretical benchmark, as this limit is impossible to reach

in a real life operating scenario, as we shall see below.

For these operational scenarios we have the constrained optimal case

and the suboptimal case, where the latter usually does not seek a maximum
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Figure 2.4: Different categories of control strategies for WECs

power capture but is often easier to implement in practice. Following the

work of Falnes [10], and Price [72] we shall make a distinction between causal

and non-causal control at the next level down. The theoretical optimal case

is only causal in the case of regular waves. As a consequence, one of the

reasons that the ideal scenario of complex conjugate control at all frequencies

is impossible to realize in practice is that, for a real sea state (irregular

waves), it requires infinite knowledge of the future values of the incident

waves [73]. Still, it is possible to approach this theoretical power capture

limit within the limits of operating constraints; such is the aim of constrained

control. For example, for control methods that require prediction, it is

35



possible to forecast the incident wave elevation into the future for a half

to two periods for a majority of sea states using a simple auto regressive

model [74]. In the case of small devices, this forecast might enable the

power capture to be maximized to within 10% of the theoretical maximum

[74, 75]. Some examples of this constrained optimal strategy are model-

predictive control, peak matching latching and declutching, all of which

require a future prediction for the implementation of the optimal control

force. These methods are described in detail and compared for both regular

and irregular waves in a recent paper by Hals et al. [76]. The influence of

array device interactions on prediction requirements is an important topic

for future investigation and will have implications for whether constrained

optimal control strategies are appropriate for arrays of WECs.

Except for the purely theoretical case of regular seas, all of the methods

that are causal, that is those not requiring future knowledge, are classified

as sub-optimal since they, by necessity of simplification, always capture less

power in theory than optimal methods. These include the majority of cur-

rently implemented control approaches, including simple resistive damping,

the only control method hitherto simulated in published studies to date for

arrays of WECs [28, 46, 47]. An important point to note here is that some

control methods require a reactive force from the PTO, that is for some part

of the cycle power will have to be extracted from the system, a capability

which many devices do not have. Therefore, in practice, sub-optimal meth-

ods may be preferred over optimal methods for some cases even though the

total power output may be lower [76]. Moreover, control can be applied

continuously or only at certain points in time, therefore the distinction be-

tween discrete and continuous control is sometimes made, for example by

Falnes [10]. Two important methods of discrete control are latching and
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declutching control. In heave where the two are applied as follows: for some

time interval the device is held fixed for an in latching, and heaving motion

is greatly slowed in declutching, then released [76]. However, not all control

schemes can be easily classified. For example, a recent hybrid control sys-

tem proposed by Tedeschi and Molinas [77] combines reactive and passive

control that changes regimes depending on the energy of incident waves,

and the difference between discrete and continuous control is somewhat ar-

bitrary as most control algorithms require calculations and are applied at

discrete intervals, albeit very short ones. Owing to the difficulty of calcu-

lating hydrodynamic responses of individual devices in an array, it remains

to be seen which of the control schemes presented in this paragraph, if any,

will be most appropriate when applied to arrays of WECs.

2.6.4 Control methods applied to arrays of WECs

For a regular wave input, Bellew et al. [58] varied the supplementary mass

and damping for a linear array of 5 devices with inter-device spacing 4r

where r is the device radius. The investigators found that, over most of

the operating frequency range, a diagonalised optimal damping matrix pro-

vides the best power output, noting however that close to the resonance

frequency of an isolated device an iterative approach to finding the damping

matrices for the devices is better. They note however, that this increase is

mitigated when a restriction is placed on the possible values of the damping

[58]. De Backer et al. [47] investigated two rectangular arrays of 12 and

21 buoys with roughly one diameter inter-device spacing varying both the

supplementary mass msub and damping Bext. The authors considered three

control strategies: the first strategy applies the optimal control parameters

for a single body to all devices in an array, the second optimizes the power
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for an array and applies the resulting msub and Bext to each device, the

final method determines separate values of msub and Bext for each device

(individual optimization). Running the simulation for a range of simulated

real sea states, the investigators noted a significant increase in performance

for the individually optimized devices versus the other two methods, while

noting, that in the unconstrained case the individual optimisation converged

to an unrealistic solution. In practical operating conditions, with multiple

constraints on the motions and forces on the devices, individual control pro-

vides the best solution, with a q-value of 0.79 compared to 0.70 for the

diagonal and single-device optimal cases.

Child and Venugopal [41] looked at the difference in performance between

reactively tuned devices and real tuned ones, for a two-body array with a

separation distance of 8r. They observed a large peak in the q-value for

a reactively-tuned device noting, however, that despite the higher power

produced in the reactive-control case, the motion required to achieve it may

not be achievable in deployment [41]. Folley and Whittaker [28] studied

two floating hemispheres of 10 m radius for heave and surge motion for two

scenarios of suboptimal control. In the first case, the reactive control force

applied to the system differs from the optimum control tuned to a particular

frequency and in the second case only passive tuning is considered. There

is a significant reduction in power compared to the optimally tuned case

because in both cases the resulting array is not able to take advantage of

the beneficial phase relationships between the indecent and radiated waves

that leads to positive q-factors [28]. In addition, the authors studied the q

for a real spectral wave climate, finding that for reactively controlled devices

the optimal average q for arrays of 2, 3 and 5 bodies was 1.16, 1.15, and 1.19

when they allowed the distance between the devices to vary up to 300 meters
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[28]. Cruz et al. [46] studied the effect of tuning a rectangular array of 4

cylinders with device separation 4r in irregular sea states. They tuned each

device independently by iterating on a linear damping coefficient, achieving

q-factors between 0.88 and 0.97 for a range of sea states and heading angles.

Antonutti and Hearn [78] studied a configuration of semi-submerged heaving

hemispheres of radius 1.2m and separation distance 4r. They compared the

annual power yield from an array of 2,3 and 4 devices for a site-specific wave

climate, finding a significant decrease in array performance for both sea-

state specific tuning and scatter diagram based tuning of Bext [78]. Finally

Annuar et al.[79] investigated and array of six devices in regular seas with

real and reactive control, in addition modelling the PTO and generator

system, finding a more than two-fold increase in power output with reactive

control.

2.7 Conclusion

With the recent surge of investigation into many aspects of the WEC ar-

ray problem, we finally can start to make tentative conclusions about the

placement of devices in an array. However, because of the multi-faceted na-

ture of the task, there is still considerable uncertainty in these conclusions.

Furthermore, there are areas of investigation which have to date not been

studied in any great detail, for example the influence of uneven bathymetry,

non-linear waves, and interactions of arrays with currents and/or tides. All

of these issues may become important for array projects located near-shore

in water depth of less than 30 meters, which, because of the costs of electri-

cal infrastructure, is currently the most attractive location to palace these

arrays.

One fact has, however, become clear; even though, in theory, arrays
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can be used to increase power output through constructive interference, for

realistic operating conditions, that is multi-directional real seas, PTO force

motion restrictions, plus friction in the mechanical systems, it will be hard

to achieve an output much greater than that of unity. In fact, a more

approachable goal, stated as far back as 1994 by McIver [22], will be to use

knowledge of hydrodynamics to minimize destructive interference. This is

still a worthwhile goal, as a difference in the q-value of 0.5 can mean the

difference between economic success and failure of a project.

One particular area which still needs to be further explored is the pos-

sibility of using real-time control, such as that presented in [80] to optimize

array power output. It may be possible to use control to offset some of the

negative effects of hydrodynamic interactions and utilizes constructive in-

terference via coordinated radiation to improve array performance. Results

along this trajectory will be presented in 5.
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Chapter 3

Modelling WEC Arrays with

Potential Flow Methods

In this chapter the theoretical modelling background for the results pre-

sented in the thesis is presented. This work is presented within the frame-

work of linear wave theory. This chapter is brief overview of the subject,

a much more thorough analysis can be found in the following references

[81, 10, 82]. Linear potential theory rests on two key assumptions, namely

that the fluid is assumed to be irrotational and that the free surface and

body motions are relatively small compared to the wavelength and the wa-

ter depth. Moreover, we assume the wetted area of the body is constant and

that the fluid is everywhere incompressible. Section 3.1 describes the hy-

drodynamics of the linear boundary value problem, whilst subsection 3.1.1

describes the pressure and force relations. Section 3.2 characterizes irregular

seas, sections 3.3 and 3.4 develop the equations of motion in the frequency

and time domains, respectively. Section 3.5 outlines the power absorption

by an array. Finally, section 3.6 outlines the control strategies investigated

in this thesis.
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3.1 Boundary Value Problem

In this section, a right-handed Cartesian coordinated system with three

orthogonal axes: x y and z is adopted. The z axis is pointing upward.

Assuming irrotational flow, we can write the velocity of a fluid particle as

v = ∇φ (3.1)

where φ is the velocity potential of the fluid. Combining equation (3.1) with

the equation of continuity for an incompressible fluid results in the Laplace

equation [82]

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (3.2)

The solution of Laplace’s equation gives the velocity potential φ ev-

erywhere in the fluid. The hydrodynamic pressure is then obtained from

Bernoulli’s equation. In linear wave theory this equation is equal to

p = −ρ∂φ
∂t
− ρgz + p0(t). (3.3)

The first and the second term are known as the hydrodynamic and hydro-

static part, while the third part is nominally the atmospheric pressure but

is often taken to be zero since it is simply an additive constant.

The boundary conditions required to solve Laplace’s equation consist

of the kinematic and dynamic part. The kinematic boundary condition

requires that fluid particle cannot cross a solid boundary. This means that

the normal velocity component on any body in the fluid and on the sea floor

is equal to zero:

∂φ

∂n
= 0 (3.4)
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where n is the unit vector normal to the body surface or the sea bed. On

the free surface, the linearized kinematic boundary condition states that any

particle lying on the free surface will remain there. Assuming the particle

velocity components are small compared to the wave velocity and that the

wave elevation is small compared to the wavelength, the linearized kinematic

boundary condition can be stated as:

∂η

∂t
=
∂φ

∂z
at z = η. (3.5)

where η is the wave elevation. The dynamic boundary condition on the

free surface rests on the assumption that the pressure outside the fluid is

constant. Substituting the pressure from equation

D

Dt

(
−ρ∂φ

∂t
− ρgz + p0(t)

)
= 0 (3.6)

and combining with the free surface kinematic condition (equation 3.5) re-

sults in the following condition on the free surface.

∂2φ

∂t2
+ g

∂η

∂t
= 0 at z = 0. (3.7)

Here D
Dt is the total derivative operator equal to ∂x

∂t + ∂
∂x(∂x∂t )+

∂
∂y (∂y∂t )+

∂
∂z (∂z∂t )

for x(t), y(t), and z(t). Again, in linear wave theory, we assume that the

wave amplitude is small and therefore we simplify the equation 3.7 by setting

the free surface at z = 0 instead of z = η. Because linear theory allows for

the principle of superposition, the total velocity potential φ can be written

as a sum of three different potentials which can be calculated separately.

φ = φI + φD + φR. (3.8)
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φI is the incident wave potential, φD is the diffracted wave potential (some-

times known as the scattered wave potential) and φR is the radiated wave

potential. The incident potential of a regular plane progressive wave of

amplitude A and zero phase is given by:

φI = A
g

ω

cosh(k(z + h))

cosh(κh)
sin(βκx+ βκy − ωt) (3.9)

where β is the direction of wave propagation relative to the x-axis and h

is the water depth, and ω is the angular frequency. κ, the wavenumber is

defined by

κ =
2π

λ
(3.10)

for wavelength λ. κ is related to ω by the well-known dispersion relation

ω2 = gκ tanh(κh). (3.11)

The diffraction potential is found by solving Laplace’s equation on the body

whilst it is kept still in a regular wave field. In addition to satisfying the

dynamic boundary conditions on the free surface and sea bed, the sum of

the incident and diffracted potentials must satisfy the kinematic boundary

condition on the submerged body surface Sb

∂φD
∂n

= −∂φI
∂n

on Sb (3.12)

The diffraction potential must also satisfy the far-field condition that satis-

fies the conservation of energy [82]:

φD =
sin(κr − ωt)√

κr
as r →∞ (3.13)
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The radiation potential is the wave field generated by body forced into

motion in still water. For the most general case of a body moving in six

degrees of freedom, this is expressed as:

φR =
6∑
j=1

ξjφj(t) (3.14)

where φj is the potential per unit displacement amplitude, and ξj is the

amplitude of the motion in mode j. The radiation potential must satisfy all

aforementioned boundary conditions: equations (3.7) (3.12) (3.13) plus the

kinematic boundary condition (equation (3.4)) on each body for each mode

of motion:

∂φj
∂n

=
dxj
dt
nj on Sb. (3.15)

where xj is the body displacement in each mode of motion and is equal to:

xj = ξje
iωt (3.16)

and nj is the normal force component in that mode. Assuming that all

time varying quantities oscillate with the same frequency ω we can write the

time-dependent potential as the real part of the complex time-independent

potential φ̂. For the rest of the chapter we will use complex notation unless

explicitly stated otherwise.

φ(x, y, z, t) = <
[
φ̂(x, y, z)e−iωt

]
(3.17)
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3.1.1 Pressure and force

After the total velocity potential of all bodies is found, the pressure below

the free surface is calculated from Bernoulli’s equation, (3.3) , assuming

p0(t) = 0. Using the complex amplitudes of the velocity potential allows us

to write the pressure explicitly:

p = −ρ∂φ
∂t

(x, y, z, t)− ρgz = −ρ<
[
iωφ̂(x, y, z)e−iωt

]
− ρgz. (3.18)

The wave elevation can derived from equation and (3.7) and is equal to

η =
1

ρg
p|z=0. (3.19)

The hydrostatic and hydrodynamic forces and moments are then determined

by the integration of pressure on the submerged body surface Sb. Here

we focus on the hydrodynamic forces, leaving the hydrostatic part ρgz for

section 3.3

Fhyd =

∫∫
Sb

pndS. (3.20)

Mhyd =

∫∫
Sb

p(r× n)dS. (3.21)

where n is the generalised normal vector on Sb and r is the position vector.

Often times, the forces and moments are expressed in one generalized force

vector F with six degrees of freedom. Just as with the potential, we can

divide the calculation of the hydrodynamic forces into two parts, one where

the bodies are held fixed and the second one where they are moving in still

water in all modes of motion. The first part, combining the integrals of

the excitation and diffraction potentials, is termed the excitation force (or

46



moment) and is equal to:

F jex = <
[
F̂ jexe

iωt
]

F̂ jex = iωρ

∫∫
Sb

(φ̂I + φ̂D)njdS.
(3.22)

The first part of equation (3.22), namely the integral of φ̂I , is known as the

Froude-Krylov force and represents the force experiences from the oncoming

wave, ignoring perturbations on it by the body. The second part of equation

(3.22) is oftentimes termed the diffraction force.

The radiation force in mode j, F jrad, the integral of the radiation potential

in equation (3.14) results in two terms in equation (3.23), the first of which

is in phase with the acceleration and the second in phase with the velocity

(see [82] p. 359):

F jrad = <
[
F̂ jrade

iωt
]

F̂ jrad =
6∑

k=1

−Ajk d
2xj
dt2
−Bjk dxj

dt
.

(3.23)

Differentiating the x with time we get:

F̂ jrad =

6∑
k=1

(
−ω2Ajk + iωBjk

)
ξk. (3.24)

A and B are coefficients known as the added mass and radiation damping,

respectively. The index jk indicates the force component in the direction of

j that is induced by an oscillation in mode k.
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3.2 Irregular Waves

The analysis of regular harmonic waves, as presented in section 3.1, provides

clarification into the fundamental properties of ocean waves. Real ocean

waves where we expect to deploy wave energy conversion systems, however,

are not regular nor harmonic. As a consequence, one needs to introduce

tools to simulate real ocean sea states, whether in the laboratory or as in

the case of this thesis, in numerical modelling tools. Ideally, this simulated

wave train is assumed to be statistically stationary and homogeneous in time

and space [83].

Given the assumptions in the previous paragraph, irregular sea states

are most often described by the short term variance spectrum, or the power

spectral density S(f) or S(ω), where f and ω are the frequency in Hz and

angular frequency in rad/sec, respectively The power spectral density S(ω)

can be defined as:

S(ω) = lim
T→∞

1

2πT
|Ξ(ω)|2 (3.25)

where Ξ(ω) is the Fourier transform of the wave elevation η(t). It represents

the distribution of the average power or variance of the wave elevation in

the frequency domain. If a random wave is defined as a stochastic process,

we can define the nth moment mn as:

mn =

∫ ∞
0

ωnS(ω)dω. (3.26)

Using the moment definition we can express quantities that define the av-

erage characteristics of a random sea. The two most frequently used pa-

rameters are the significant wave height Hs and the wave energy period Te.
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Using the spectral moments, these are equal to:

Hs = 4
√
m0 (3.27)

Te = 4
m−1
m0

. (3.28)

The significant wave height, approximately equal to the highest one third of

the measured wave heights, corresponds to the observational definition of a

wave height of a real sea state. The wave energy period is the mean wave

period with respect to the spectral distribution of energy. Another useful

quantity that defines an irregular sea is the peak period Tp, defined as the

value at which S(ω) is at a maximum. The power, in W/m, of an irregular

wave in deep water is given by the following convenient expression:

P =
ρg2

64π
H2
sTe (3.29)

It is important to mention that irregular waves also vary according to

their direction of propagation. To describe this, the directional spectrum

S(ω, θ), where θ represents the direction of the spectrum, is defined. Usu-

ally, the directional spreading is assumed independent of the frequency dis-

tribution and the directional spectrum S(ω, θ) is defined as the product of

the non-directional spectrum S(ω) and the spreading function G(θ). In the

results in this thesis in chapters 5 and 6, we focus on isolating the directional

effects, therefore, we assume no directional spreading, meaning that all the

energy is assumed coming from a given direction.
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3.2.1 Commonly used spectral shapes

Based on sea data collected over the last fifty years, there are a number of

different spectral formulations S(ω) that parametrize a given sea state (for

a table of the most commonly used ones see [83]. They are most commonly

parametrized in terms of sea state parameters such as Hs and Tp or the wind

speed at 10 m of elevation such as in the case of the Pierson-Moskowitz spec-

trum [83]. Two of the most commonly used spectra in wave energy studies

are the JONSWAP spectrum and the Bretschneider spectrum or the gener-

alized Pierson-Moskowitz spectrum. The former, introduced by Hasselman

et al. in 1973 based on data collected in the North Sea, is generally used to

model fetch-limited wind seas in closed basins [83]. The latter, introduced

by Bretschneider in 1959 with later modifications by Mitsuyasu, is the most

commonly used spectral formulations for modelling open-ocean conditions

[84]. The Bretschneider spectrum for a fully-developed sea is given by the

following equation:

S(ω) = 0.257Hs
2T−4p ω−5e−1.03(Tpω)

−4
. (3.30)

Here Hs is the significant wave height and Tp is the peak period of the sea

state. Because of its ubiquity and because it most accurately represents the

sea conditions encountered at sites proposed for future full-scale commercial

WEC farms, the Bretschneider spectrum will be used henceforth in this

thesis to represent a real sea state. The surface wave elevation η, for an

irregular sea state can be produced from the power spectrum by performing

an inverse Fourier transform on each of the frequency bins. This is possible

because in linear wave theory all frequencies are assumed to be independent

of each other. This is the procedure followed in this thesis, using the sea-
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keeping package WAFO R©. The phase effects do not affect the results:

therefore a random phase is chosen to seed each of the sea state components.

3.3 Equations of motions in the frequency domain

In order to determine the power absorbed by an array of bodies, we need

to know the motion of each body in the system. Before looking at the

time-domain equation it is instructive to look at the simpler frequency do-

main case where we assume that all motions are steady-state. Once all the

forces on all the bodies are known, their motions can be derived by applying

Newton’s second law of motion to the system:

M
d2x

dt2
= Fh + Fhs + Fv + Ff (3.31)

For the most general case of an array of N bodies with 6 degrees of freedom,

M is a 6N × 6N matrix of masses or moments of inertia and dx2/dt2 is a

6N × 1 vector of accelerations. All forces are 6N × 1 vectors: Fhyd are the

hydrodynamic forces, Fhs is the hydrostatic buoyancy force, Fv is the viscous

damping force, and Ff is a frictional force term that includes mechanical

losses as well as constraints like mooring. Since the last term depends on the

internal structure of the PTO system and not on the body hydrodynamics,

and in most cases is strongly non-linear, we shall disregard it further in the

thesis.

The hydrodynamic force is the sum of the excitation and radiation forces

and can be written, following eqns. (3.22) (3.24) as:

Fh = Fex −A
d2x

dt2
−B

dx

dt
. (3.32)
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Here Fex is the 6N×1 vector of exciting forces, A is the 6N×6N generalized

added mass matrix and B is the generalized damping matrix. ξ is the 6N×1

vector of displacements whose 6 × Nth component is the displacement of

the Nth body in the kth mode of motion. In linear theory, the hydrostatic

buoyancy force can be modelled as the product of the stiffness matrix C and

the displacement x of the body from the equilibrium position:

Fhs = −Cx. (3.33)

Here C is a 6N ×6N matrix and x is a 6N ×1 vector. The viscous damping

force is most accurately modelled as a quadratic term in velocity but in this

thesis we shall linearise it to the following:

Fv = −Bv
dx

dt
. (3.34)

Bv is the linearized damping coefficient and
dx

dt
is the vector of the velocities

of each device. For details on the derivation of Bv see ch. 4. Rearranging

Newton’s law equation (3.31) so that all the terms including the body motion

are on the left side, we get a familiar 2nd order non-homogenous differential

equation with constant coefficients:

(M + A)
d2x

dt2
+ (B + Bv)

dx

dt
+ Cx = Fex. (3.35)

Making the same assumption, as in equation (3.17) that the forces and

motions are harmonic with a frequency ω, one can write a time-invariant

version of equation (3.35) in terms of complex amplitudes:

[−ω2(M + A) + iω(Bv + B) + C]ξ = F̂ex. (3.36)
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Here Fex = <
[
F̂exe

iωt
]

and x = <
[
ξeiωt

]
. Then the complex amplitude

vector ξ for each mode of motion is found to be:

ξ = [−ω2(M + A) + iω(Bv + B) + C]−1F̂ex. (3.37)

3.4 Equations of motions in the time domain

As we saw in chapter 2, there are some applications which require us to

model non-stationary and non-linear phenomena of the system. Within the

framework of linear potential theory, we can model use a time-domain formu-

lation equivalent of equation (3.36) by taking the inverse Fourier transform.

Including the linearised viscosity and the PTO force,the resulting equation

for an array of N floating bodies, introduced by Cummins in 1962 [85], is

the following:

[M + A(∞)] ẍ(t)+Bvẋ(t)+

∫ T

0
K(t−τ)ẋ(τ)dτ+Cx(t) = Fex(t)+Fpto(t).

(3.38)

Here M is the generalized mass matrix, A∞ is the added mass at infi-

nite frequency, Bv is the matrix of viscous damping coefficients for each

body,K(t) is the radiation damping response function, C is the stiffness

matrix, and Fpto is the PTO force. All the matrices are assumed to be

time-invariant and are the same as those in equation (3.35). The excitation

force is the convolution of the time-domain impulse response function fex(t)

with the wave elevation η [86]:

Fex(t) =

∫ ∞
−∞

fex(τ)η(t− τ)dτ. (3.39)
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fex(t), the excitation force impulse response function is, in turn, the inverse

Fourier transform of the frequency domain excitation force F̂ex (3.22),

fex(t) =
1

2π

∫ ∞
−∞

F̂ex(ω)eiωtdω. (3.40)

The radiation impulse response function K(t) represents the effects of an

radiation impulse by the body on the free surface [86]. K(t) is the inverse

Fourier transform of the complex radiation impedance matrix, which can

be represented as the sum of the real radiation damping and the complex

added mass terms.

K(t) =
2

π

∫ ∞
0

[B(ω) + iω (A(ω)−A(∞))] eiωtdω (3.41)

As a consequence of causality, that is since K(t) = 0 for t < 0, K(t) can

also be obtained from the frequency domain radiation damping matrix B:

K(t) =
2

π

∫ ∞
0

B(ω) cos(ωt)dω. (3.42)

When working with potential flow methods, all hydrodynamic coefficients

in equation (3.38), namely, M, A, B, and C are obtained from frequency

domain software such as WAMIT R©, which we shall do in the following

chapters, except for the special case of Bv which will be derived in chapter

4.

3.5 Energy and power absorption

We next look at some general results for power absorption, again returning to

the frequency domain for simplicity, assuming that all motions are harmonic.

We further suppose that there is a PTO mechanism, the details of which
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are beyond the scope of this thesis, capable of absorbing power in one or

more modes of motion. Following [16] and [15], we can define the total time-

averaged power given by the waves to the array of devices as the product of

the hydrodynamic forces and velocities of each body:

Pav =
1

2
FT
hyd

dx

dt
. (3.43)

Here T indicates the matrix transpose. Equation (3.43) can be written in

complex amplitude form as:

Pav =
1

2
<
[
F̂∗hydiωξ

]
, (3.44)

where ∗ indicates the complex conjugate. As in section 3.3, the average

power can be separated into two consistent parts; it is equal to the power

absorbed by the devices from the incident waves minus the power radiated

out by the devices, and can be written as:

Pav = P ex − P rad (3.45)

where P ex is the average absorbed power and P rad is the average radiated

power. Equation (3.45) can be written as:

Pav =
1

2
<
[
F̂∗exiωξ

]
− 1

2
ξ∗Bω2ξ. (3.46)

Here B is the complex radiation damping matrix with the dimensions 6N ×

6N . Equation (3.46) can be re-written as (for details see [16]) as:

Pav =
1

8
F̂∗exB

−1F̂ex −
1

2

(
ωξ − 1

2
B−1F̂ex

)∗
B

(
ωξ − 1

2
B−1F̂ex

)
(3.47)
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Then, the maximum power is reached when the second term in equation

(3.47) is equal to zero and the total average power is equal to the first term

only:

Pmax =
1

8
F̂∗exB

−1F̂ex. (3.48)

The condition is satisfied when the body motions are equal to the following:

dx

dt
=

1

2
B−1F̂ex. (3.49)

This equation (3.48) however, entails that all motions x are optimal, meaning

that the value of the complex conjugate of the radiation damping matrix B

is required for all frequencies for all bodies. As we saw in Chapter 2 this is

impossible in practice in real seas. Equations. (3.48) and (3.49), however,

are useful as a theoretical upper limit to the power absorbed by an array

and its motions. As we will see in next section, a power-maximizing control

algorithm will seek this maximum.

3.6 Energy-maximizing control

The array control methods as presented in this thesis, are an extension a

control method first proposed in [87] for a wave-powered desalination plant.

This was extended in [80] to a two-body self-reacting point absorber, and

to arrays of two point absorbers in [88]. The results for controlled arrays

in this thesis are an extension of the work presented in [89]. The control

problem as defined in this thesis seeks to find the PTO force profile which

maximises the total energy absorbed by the array whose equation of motion

is given by equation 3.38 over a time interval T . The total energy absorbed
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by the arrau is given by the following equation:

W = −
n∑
k=1

∫ T

0
żk(t) F kpto(t) dt, (3.50)

where żk(t) and F kpto(t) are, respectively, the heave velocity and the PTO

force of the k-th device. Although in practise, the wave excitation force

estimation will introduce an additional source of error into the results, for

the purposes of this thesis it is assumed that the wave excitation is known

completely into the future. The following three subsections describe the two

control schemes, as presented in [89].

3.6.1 Discretization

The control problem is descritized by approximation the velocity and PTO

forces with a linear combination of basis functions, resulting in a finite-

dimension optimization problem. As in [89], the PTO force and velocity are

approximated with truncated zero-mean Fourier series:

ẋk(t) ≈
N/2∑
n=1

xkn,c cos(nω0t) + xkn,s sin(nω0t) (3.51)

fkpto(t) ≈
N/2∑
n=1

pkn,c cos(nω0t) + pkn,s sin(nω0t) (3.52)

where ω0 is the fundamental frequency of discretizaion. The best approxi-

mation of the solution of the equation of motion (3.38) is sought by applying

the Galerkin method, the details of which are presented in [80], and the re-

sult is the linear system

GX = P + E (3.53)
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where X, P, E and G are defined as

X =

X1

X2

 P =

P 1

P 2

 E =

E1

E2

 G =

G11 G12

G21 G22

 .
The vectors Xk and P k, for k = 1, 2, are the vectors of the Fourier coeffi-

cients of the velocity and PTO force of the k-th device, and are arranged

as

Xk =
[
xk1,c, x

k
1,s, x

k
2,c, x

k
2,s, . . . , x

k
N
2
,c
, xkN

2
,s

]T
P k =

[
pk1,c, p

k
1,s, p

k
2,c, p

k
2,s, . . . , p

k
N
2
,c
, pkN

2
,s

]T for k = 1, 2.

The elements of the vectors Ek are the Fourier coefficients of the excitation

force on the k-th device and are arranged in the same manner as the vectors

Xk and P k. The matrices Gij ∈ RN×N composing the matrix G are block

diagonal, where each of the N/2 blocks is of size two and the l-th block is

defined as

Gl
ij =

 Dl
ij Ml

ij

−Ml
ij Dl

ij

 for l = 1, . . . , N/2

Dl
ij = Bij(lω0) + Bij

Ml
ij = lω0 (Mij + Aij(lω0))− Cij/(lω0).

(3.54)

Bij , Mij and Cij are, respectively, the elements of the matrices B, M and

C, while mij(ω) and Aij(ω) and Bij(ω) are elements the added mass and

damping matrices. As first mentioned in 3.4, these matrices are calculated

by the hydrodynamic software package WAMIT R©.

3.6.2 Global control

The control system of the GC strategy is aware of the whole configuration of

the array; the resulting optimisation problem is defined by the cost function
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W = −P TX, which is obtained by substituting (3.51) and (3.52) into the

definition of the total absorbed energy in (3.50). If G is non-singular, the

cost function can be expressed as a function of P by solving (3.53) for X, and

the coefficients P ? of the optimal PTO forces that maximise the absorbed

energy for the array are obtained by solving the optimisation problem

P ? = arg max
P
−P TX = −P TG−1P − P TG−1E. (3.55)

3.6.3 Independent control

For the IC case, it is assumed that each device is equipped with its own

controller and excitation force estimator. It is also assumed that no com-

munication occurs between the devices, and each controller uses the model

of a single isolated device; that is, the controller of the k-th device uses the

model (3.38) where x(t) , f(t) , M, A, B, K(t), and C are scalars and param-

eters of a single isolated device of the same geometry as the corresponding

array. For the example of a two-device array the two cost functions are:

GsX1 = P1 + Ē1

GsX2 = P2 + Ē2

(3.56)

The matrix Gs is the equivalent of the matrix G in the approximated equa-

tion of motion of the array in (3.53); however, in this case, Gs is calculated

using the hydrodynamic coefficients of a single isolated device and Ēk is

the excitation force measured by the estimator on device k. Each of the

independent controllers calculates the optimal PTO force that maximizes

the energy absorbed by the corresponding WEC using the models in (3.56).
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The resulting optimisation problems are:

P ?1 = arg max
P1

= −P T1 Gs
−1P1 − P T1 Gs

−1Ē1

P ?2 = arg max
P2

= −P T2 Gs
−1P2 − P T2 Gs

−1Ē2,

(3.57)

the cost functions of which are the energy absorbed by each device. Because

the two equations are coupled, they are solved by an iteration procedure

detailed in [89].

3.6.4 Passive tuning

In this section, a passive tuning scheme for device control is examined. While

not a energy-maximizing control scheme per se, PT will serve as a use-

ful benchmark against which we can measure performance of the control

schemes presented in the following sections as well as enable us to compare

our results to previously published data [41, 46]. Following the work of Child

and Venugopal [41, 39] the damping is set constant Bpto to maximize the

power extracted at a given frequency ω. However, instead of choosing ω0,

the peak frequency of the wave spectrum, as in [69], we set the damping

constant Bpto to maximize power at the wave energy frequency ωe, which

is equal to 2π/Te, as defined in equation (3.28). This is because the wave

energy frequency represents the area in the spectral distribution of the wave

field where the greatest energy is present. It therefore is sensible that the

devices be tuned to this frequency. To accomplish this task in the array,

each device is tuned individually, with the PTO force in the right-hand site

of equation (3.38) set to the product of the device heave velocity ż and Bpto

where

Bpto =

√
[B(ωe)]2 + ω2

e

[
M + A(ωe)−

C

(ωe)2

]2
. (3.58)
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Here M is the generalized mass matrix, C is the hydrodynamic stiffness,

B(ωe) and A(ωe) are the values of the radiation damping and added mass

at ωe. All matrices are 6×1 matrices where only the heave mode is non-zero.

The energy for each device is then calculated from equation (3.43) where

Fhyd in this case is equal to the force exerted by the PTO:

Fpto = Bptoż(t) (3.59)

where ż is the heave velocity of each body. The total energy absorbed by

the array is then equal to the sum of the energy extracted by each device k

in the array:

W =
N∑
k=1

Bptok |ż(t)k|2 (3.60)
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Chapter 4

Linearized Viscous Damping

Correction

4.1 Introduction

While the majority of currently published studies in the realm of wave en-

ergy conversion use the approximation of an inviscid fluid to calculate de-

vice motions (for a comprehensive overview see [86]), sea water does have

viscosity. At 20◦ celsius its value is equal to 1.002 × 10−3NS/m2, and it

decreases slightly with increasing water temperature. Although the effects

of viscous losses are of the same order of magnitude as other simplifications

used in wave energy conversion studies, for example the assumption of a

static hydrodynamic stiffness, with increased wave amplitude larger device

displacements incur larger velocities that tend to increase the drag due to

viscous damping [90]. Therefore, viscosity should be included in any non-

linear WEC model. Furthermore, the addition of a viscosity term will also

improve a linear model where the device motion is expected to be signif-

icant, for example in the case of reactive control. Indeed, several recent
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wave energy studies have included a viscous damping term in the equation

of motion of a WEC, including [91, 92, 58, 78].

For many applications however, the equation of motion 3.35 needs to be

linear, which presents a problem in that viscosity is modelled as a quadratic

term in velocity (see eq. 4.2) [93]. One solution is to linearize the quadratic

term in velocity so that we get the linear equivalent of the quadratic damping

term. This will be the line of thought followed in this chapter. In 4.2

we begin by defining the appropriate flow regimes, then in 4.3 Morison’s

equation of viscous damping is presented. In sec 4.4 the drag coefficient

in Morison’s equation is examined, in 4.5 the linearisation procedure of

Morison equation is outlined, and finally in 4.6 some numerical examples

are presented that show the how including the linearized viscosity term

improves the WEC motion modelling. In this chapter the focus will be

focusing on heave motions only, therefore all motions and velocities are in

the z direction.

4.2 Dimensionless parameters defining fluid flow

regimes

We begin this discussion by looking at the relative importance of viscosity

to other fluid properties. For a body of diameter D oscillating about mean

water level, the three important dimensionless parameters which determine
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the fluid flow regimes are:

Keulegan-Carpenter number: KC =
ẊmT

D
=

(ωα)(2πT/ω)

D
=

2παT

D

(4.1a)

Frequency parameter: βs =
ρD2

µT

(4.1b)

Reynolds number: Re = KC ∗ βs =
ρẊmD

µ
.

(4.1c)

For an oscillating flow past a stationary cylinder, Ẋm is the fluid velocity

amplitude, T is the oscillation period and ω the frequency, D is the cylinder

diameter, α is the water displacement amplitude, ρ is the water density and

µ is the dynamic of absolute viscosity of water. The Keulegan-Carpenter

number is a measure of the relative importance of drag forces over inertia

forces in an oscillatory flow. The Reynolds number measures whether the

flow is laminar or turbulent. The frequency parameter, also known as the

Stokes parameter βs, represents the ratio of the diffusion normal to the flow

to diffusion parallel to it. βs measures the applicability of boundary layer

theory, which describes the interaction of a moving fluid and a boundary

and is fundamental to all calculations of viscous forces [94]. Of note is that

only two of the three numbers are independent, that is in knowing two of

the dimensionless numbers, one can derive the third one.

4.3 Morison’s equation

The most common form of parameterizing the loss of kinetic energy due

to viscosity is a force proportional to the square of the velocity [95]. A
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semi-empirical equation to account for the drag force due to the viscosity

of water was developed by J.E. Morison et al. in 1950 [96]. For the case of

3-D oscillatory motion it is equal to:

F (t) =
1

2
ρCDAx(t)|ẋ(t)| (4.2)

where ẋ(t) is the velocity of the oscillating fluid and CD is a dimension-

less drag coefficient that is dependent on both KC and βs, and A is the

cross-sectional area of the body perpendicular to the fluid motion. The

Morison equation has been extensively used in engineering practice and has

been experimentally verified in a number of studies involving structures in

oscillating fluids [95, 97, 98]. However, due to the difficulty of recreating in

laboratory settings the high Reynolds, high βs conditions that are inherent

in the open ocean, there is still a high degree of uncertainty in the value of

CD [99]. Unfortunately, these are precisely the conditions encountered in

the study of wave energy conversion systems; because of this lack of experi-

mental data any values of CD need to be scrutinized to see if they apply to

this flow regime. For example, if we look at figure 4.1 we can see that the

flow regime at high Reynolds numbers and low KC numbers is not clearly

delimited based on existing laboratory data.
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Figure 4.1: Flow regimes: The principal features of the regions are: (A *)
No flow separation, secondary streaming, two dimensional; (A) two vortices
shed symmetrically per half cycle, two dimensional; (B) three-dimensional
instability, longitudinal vortices; (C) rearrangement of large vortices, three
dimensional; (D) flow convected obliquely to one side of the axis of oscilla-
tion, three dimensional; (E) irregular switching of flow convection direction,
three dimensional; (F) flow convected diagonally, three dimensional; (G)
transverse vortex street, three dimensional. [98]

For the case of a heaving wave energy converter (WEC), there is an ad-

ditional source of uncertainty in defining the reference frame for the velocity

terms in the equation 4.2. Since the drag force depends upon the relative

motion between the moving cylinder and the moving water, the drag com-

ponent in Morison’s equation should be, in the case of an oscillating cylinder

in waves, proportional to the relative velocity:

F (t) =
1

2
ρCDA(ẋ(t)− ż(t))|ẋ(t)− ż(t)| (4.3)

where ẋ(t) is water velocity and ż(t) the velocity of the heaving cylinder [93].

However, in the case of a WEC, the viscous effects will be most significant
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around the resonance frequency, or the peak frequency of the incident waves

in the case the device is controlled to resonate at the peak wave frequency.

Therefore ż(t), the velocity of the device, will generally be higher than ẋ(t),

the velocity of the flow. Because ẋ(t) and ż(t) will have the same sign for

the greater part of the time, the cross-terms and the ẋ(t)2 term in equation

(4.3) will largely be of the opposite sign. In addition, around the forcing

frequency of the cylinder, both cross-terms will be much smaller than the

ż(t)2 term. Hence the cross-terms and the ẋ(t)2 term are comparable to

second-order effects and can hence be ignored. The equation (4.3) can then

be simplified to:

F (t) =
1

2
ρCDAż(t)|ż(t)| (4.4)

4.4 Determining the value of the drag coefficient

The biggest potential source of error in this formulation is the value of CD,

the viscous drag coefficient. Several different studies have looked at its value

over a range of KC and β, but there is no definitive set of values because

they are highly dependent on laboratory testing conditions. For an example

heaving cylinder WEC with diameter of 10 m operating in seas of 2 m at

an average peak period of 10 s the approximate values of the three numbers

are: KC ' 1-2, Re ' 0.5 − 1 × 107, and β ' 1 − 2 × 107. For KC < 10

and a Reynolds number greater than 105 a value of 0.6 is suggested in [93].

This corroborates well with numerical data from [100] where the authors

looked at values of Re up to 1 × 108. Their results for β = 5.787 × 106

and β = 1 × 1010 for a range of KC between .001 and 10 are presented in

figures 4.2 and 4.3. One can see that for KC of around one, Cd is close

to 0.6 and that an assumption of laminar flow shown by the straight line

underestimates the drag coefficient for higher values of KC.
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Figure 4.2: The coefficient of drag as a function of the Keulegan-Carpenter
number for P = 5.787 × 106, Wang’s laminar formulation [101] (line) and
the numerical results (*) from [100].

C

Figure 4.3: The coefficient of drag as a function of the Keulegan-Carpenter
number for P = I × 1010. Wang’s laminar formulation [101] (line) and the
numerical results (*) from [100].

Regrettably experimental data for high β and low KC numbers are not

available due to the difficulty in obtaining these conditions in laboratory
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settings. However, one can see in figures 4.4 and 4.5 from experiments by

Sarpkaya in 1976 that a value for Cd between 0.5 and 1 is hinted at by the

data as one focuses on the low KC numbers on the left hand side [95].

C

Figure 4.4: Cd versus KC for various values of the frequency parameter [95]

Figure 4.5: Cd versus KC for various values of the Reynolds number and
the frequency parameter [95]

In conclusion, assuming a smooth cylinder, in the operational regime of a

WEC, a value of Cd between .5 and .8 seems the best reasonable approxima-

tion based on the current understanding of viscous flow. Nevertheless, this
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value will need to be increased if we are to consider a non-smooth cylinder

[95], a case that will need to be looked at in future studies.

An alternative to using previously published CD values was recently

proposed by Bhinder et al. [56], where the authors used a CFD model to

empirically determine the viscous drag coefficient of an oscillating body in a

fluid at rest. Their results for a heaving cylinder of diameter of 15 m and a

20 m height for a range of simulated sea states converged to CD equal to 1.7,

which is in line with several published values, such as those in figure 4.9 in

[102], however, this estimate is higher than the values used elsewhere such

as in [95]. In the present work we will use a compromise value of CD = 0.8,

which is also in line with the results presented in [94] as shown below in

figure 4.6 for a cylinder with flow perpendicular to its axis of motion.
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Figure 4.6: CD for various body shapes at Re h 105, based on frontal area.
[94]

4.5 Lorentz’s linearisation of Morison’s equation

Although Morison’s equation is the best available parametrization for mea-

suring viscous effects, it contains a pitfall in the form of a non-linear term in

the velocity (see eq. 4.2). In many applications of wave energy conversion

where we need to assume system linearity for computational simplification

such a term in the force equation will not be acceptable. While there is no

method to accurately capture the non-linear behaviour of a fully non-linear

system with a linear coefficient, for relatively small drag forces experienced
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by WECs it is possible to satisfactorily linearize the quadratic term using

several different methods, as has been done in [92, 90, 52, 78]. These in-

vestigations employed an additive damping term that is assumed to include

viscous effects. In the case of periodic motion, such as that of a WEC, a

good approach to use is termed Lorentz linearisation after H. Lorentz who

first applied it in the 1920s to the case of an oscillating frictional flow in a

tidal channel [103, 104]. This procedure uses an energy equivalence principle

where the energy over a cycle dissipated in the quadratic relation is set equal

to that dissipated in the linear relation. The coefficient of the linear velocity

term is then derived. Because Morison’s equation has the same quadratic

form in velocity as the equation of tidal friction, Lorentz linearization can

be applied in the case of modelling viscous effects, provided that the motion

is periodic. This strategy has been experimentally verified in [105, 103] and

was first used in the study of WECs in 2007 [92] for the case of a flap-type

hinged converter. Although the assumption of periodicity is not strictly true

in the case of irregular wave excitation, for a majority of operating condi-

tions the motion can be approximated as periodic. To begin the procedure,

we make assumption first advanced by Lorentz [106, 107], that the energy

dissipated in one period of oscillation by the quadratic term is equal to that

dissipated by the yet to be linear one. This is equivalent to the work done

by the oscillating system, that is W =
∫ 2pi/ω
0 F żdt where the force is given

in 4.4. We then equate the work done below:

Bv

∫ 2π/ω

0
ż2dt =

1

2
CdAρ

∫ 2π/ω

0
ż2|ż|dt, (4.5)

where Bv is linear damping constant to be determined. We then insert

the expression for the velocity, ż(t) = ża cos(ωt), into (4.5). The cylinder
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has vertical displacement z(t) = αsin(ωt), and therefore ża, the maximum

heave velocity amplitude, is equal to ωα for a maximum heave displacement

α. The cross-sectional area of a heaving cylinder is equal to A = πr2. After

some algebra we get:

Bv =
4

3
CDρr

2ωża (4.6)

Here r is the cylinder radius, ρ is the water density, ża is the maximum heave

velocity amplitude, and CD is the same drag coefficient as in the quadratic

form of Morison’s equation. The linearized viscous force term then becomes:

F (t) =
4

3
ρCDr

2żaż(t) (4.7)

In certain cases, for example when displacement amplitudes constraints are

invoked, it is easier to handle equation (4.7) in terms of the maximum dis-

placement amplitude α:

F (t) =
4

3
ρCDr

2ωαż(t) (4.8)

Hence, the linear damping coefficient can be determined knowing either the

maximum heave oscillation amplitude or the maximum heave displacement

and period of oscillation. For device motion in a regular wave these quan-

tities are easily determined. For motion in irregular waves the situation

is more complicated but using time series techniques it is possible to de-

rive both the frequency and amplitude information from a record of the

device motion [108]. For a time-invariant or slowly varying system these

parameters can be estimated in advance, while for a system whose response

changes rapidly they can be estimated and updated online by including an

active tuner in the system [108].
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4.6 Examples of motion including linearized vis-

cous term

In deriving the results to follow (chapters 5 and 6), this thesis will make use

of the Lorentz linearisation method presented in 4.5 as an additional damp-

ing term in the equation of motion 3.38. In this section the procedure deriv-

ing a value for Bv as well as some example results are demonstrated. Here,

the device motion in the array is calculated using the energy-maximizing

control schemes presented in 3.6. The value of Bv is passed to the controller

as a parameter which then adds it as a damping term in calculating the

motion of each device. In this thesis an iterative procedure is used to de-

rive a viscous damping coefficient, Bv, for each device in the array, based

on the viscous damping value for an isolated device for a given input sea

state. Then, in an array of N equivalent devices, all devices have the same

coefficients B. The procedure beings by using (4.8) with the value of the

sea state’s wave energy period Te and significant wave height Hs. This first

guess is an approximate estimation, whose validity is discussed at the end

of section 4.5. Next this value is inserted into the controller whence we

calculate the displacement and velocity of the device. Then, knowing the

velocity we can use the more accurate formula eq. (4.7) in deriving the next

value of Bv in the procedure. We repeat the process until the upper and

lower bounds of the damping value converge within 1 % of each other or the

100th iteration in the case that they oscillate about a common point. An

example iteration is shown for the case of a 2.5 m radius 6 m draft cylinder

in a 2 m 10 s Bretschneider sea state is shown in fig. 4.7.
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Figure 4.7: Viscous Damping term in kNs/m shown for each iteration in
the procedure outline in section 4.6. 5 m radius 6 m draft cylinder operating
in heave in a 2 m 10 s Bretschneider sea state

One can see that in this case the value of Bv rapidly converges to 116

kNs/m. The resulting motion of the device is shown in figure 4.8 where

the vertical displacement is shown for the value of Bv determined using the

iterative procedure, along with the motion without an additional damping

term (in practice a negligibly small value of Bv < 10Ns/m). One can

clearly see the effect of viscous damping in that the motion is decreased

by an order of magnitude. In fact, without the damping term, the motion

is unrealistically large in this case, with the 6 m draft device clearing the

water, undoubtedly an unrealistic scenario.
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Figure 4.8: Comparison of heave displacement of a 5 m radius 6 m draft
cylinder operating in heave in a 2 m 10 s Bretschneider sea with and without
an added viscous damping of 116 kNs/m

4.7 Conclusion

The effect of viscous damping, while small enough to be ignored in many

linear models of the WEC motion, can present a source of error comparable

to the change in the added damping term due to small variations in device

spacing [58]. In certain applications like modelling of arrays of WEC, linear

theory greatly overpredicts the amplification of the free surface compared

with experimental results [58]. This is particularly so in the case of a reactive

controller which seeks to approximate the resonance condition by pushing

the device to maximize displacement [10]. This overestimation in turn leads

to unrealistic predictions for both device heave amplitudes and the power

production. In the case of arrays this is especially important because without

restriction on motion there can be significant displacements incurred by
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devices caused by radiation of surrounding WECs in an array [18]. Including

a non-linear friction term in the model will result in a more realistic motion

for each individual unit and a better estimate of the total power produced

by the array. While viscous damping is not the only source of error in linear

WEC models, for example the issue of a fixed wetted surface presumed

under linear theory can present a similar magnitude of error, the addition

of a linearized viscosity term to the equation of motion is a simple way to

improve model accuracy. Moreover, including this term in the model will

serve to provide a more accurate estimate of device motion for a real-time

controller, where it may noticeably improve the controller’s performance.

In the specific case of an array, the viscous damping term will prevent an

overestimate of the power production of an array in cases where constructive

interference from radiation causes large displacements that might be over-

predicted by strict linear equations of motion.

77



Chapter 5

Comparison of Control

Strategies

As was demonstrated in chapter 2, given the cost of current technology and

the challenges inherent in wave energy conversion, to make wave energy

economically feasible, some form of a control scheme will have to be imple-

mented that modifies the motion of the device. Although a variety of control

schemes have been implemented to date for single devices [109], for arrays

of wave energy devices only the simplest technique, namely variation of the

linear damping BPTO in the frequency-domain equation (3.35), has been

simulated in studies modelling arrays of WECs in real seas [110, 78, 111, 46].

While theoretical studies of arrays with complex-conjugate control have been

performed since the framework of array control was established by Falnes in

1980 [15], these papers [15, 18, 9] have dealt exclusively with regular seas,

which while simplifying the problem, cannot be applied directly to real-

world control schemes for devices deployed in the ocean. In this chapter we

will therefore apply three different control schemes to an array of two and

three devices in irregular sea states, comparing their performance and appli-
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cability to an array of WEC. While the modelling set-up is also simplified,

with device motion restricted to heave only, and with only the Bretschnei-

der spectral representation of an input sea state, it will enable one to test

the relative performance of the control schemes and make conclusions about

their applicability to arrays of WECs.

5.1 Modelling and control Setup

In this chapter the focus is on the application of different control strategies

to an array of heaving, cylindrical WECs. We will assume that the energy

can be extracted in heave only and that the mechanical system is frictionless.

An example of such a system can be seen in figure 5.1, with the restriction

that the rope is assumed to move only in heave. Viscous damping is taken

into account, however, as outlined in chapter 4. Our attention is focused

on example arrays of two and three devices, whose layout is shown in the

diagram 5.2. The schematic diagram of the two-device array is shown in fig.

5.3. The three different control schemes analysed in this chapter, detailed

in 3.6, are summarized below:

1. Passive Tuning (PT) to the wave energy frequency of the incoming

irregular sea state for each device in the array

2. Independent Control (IC) where array energy is maximized using the

hydrodynamic model of a single isolated device

3. Global Control (GC) which maximizes the energy given a complete

hydrodynamic model of the array

The 8 input simulated sea states are shown in table 5.1, where for regular

seas H is the height and T is the period. For Bretschneider seas, described
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Figure 5.1: An example WEC as modelled in this thesis

in 3.2, Hs is the significant wave height, and Tp is the spectral peak pe-

riod. The regular sea states simple sinusoidal waves simulated at the period

shown, while the Bretschneider seas (equation (3.30)) are simulated by the

sea-keeping package WAFO R© over the range of frequencies .0151 to 2.461

rad/sec in steps of .0151 rad/sec. The masses of the devices M and the hy-

drodynamic coefficients, namely A, B, and C are calculated by WAMIT R©

for the same range of frequencies .0151 to 2.461 rad/sec in steps of .0151

rad/sec as the input sea state. All devices modelled are heaving circular

cylinders. The modelled device parameters are shown in table 5.2. The

cylinders modelled range from a long thin solid tube to a flat disk, with

the shape changing the device’s radiative properties while the volume stays

approximately the same. A total of 7 cylinder geometries were simulated,
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Figure 5.3: Layout for a 2-body array. Motion and PTO force is restricted
to heave only

these are shown in table 5.2 sorted by increasing radius and decreasing draft.

The unforced heaving resonance period is given by the formula 5.1:

T0 =
2π√
C33

M+A33

. (5.1)

where M is the mass of the cylinder, A33 is the added mass in heave, and C33

is the hydrodynamic stiffness in heave. We can see that as the cylinder gets

flatter in shape, the natural resonance period decreases. Each configuration

is modelled for a set of distances d from a minimum of 4r where r is the

radius in meters, to d = 500m, with logarithmically increasing spacing. The
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Table 5.1: Simulated sea states

type H [m] T [s] type Hs [m] Tp [s]
Regular wave 1.0 6.0 Bretschneider 1.0 6.0
Regular wave 1.0 8.0 Bretschneider 1.0 8.0
Regular wave 1.0 10.0 Bretschneider 1.0 10.0
Regular wave 1.0 12.0 Bretschneider 1.0 12.0

angle of wave incidence β is only varied from 0◦ to 90◦ in increments of 5◦.

On the account of the symmetry of the layouts, this provides a complete

description for all directional effects.

Table 5.2: Modelled cylinder parameters

name Radius [m] Draft [m] Natural Period [s]

I 2.5 25 10.34

II 3.5 13 7.80

III 4 10 7.05

IV 5 6 5.92

V 6.25 4 5.36

VI 7.25 3 5.08

VII 8 2.5 4.99

5.1.1 Control problem solution

The total energy converted is shown in section 5.2 for an array of 2 and

3 devices for each of the three control methods introduced in 3.6. The

discretization procedure outlined in 3.6.1 is utilized, with the fundamental

discretization frequency ω0 set to .0151, resulting in the same frequency

resolution as the input sea state and the hydrodynamic coefficients. The

simulation time T in equation (3.50) is set to 208s, a period sufficient to ap-

proximate optimal control, as outlined in [89]. For PT, the energy is simply

calculated using equation (3.60). For GC and IC, the quadratic program-

ming problems equations (3.55) and (3.57) are solved in MATLAB R© by the

function quadprog. Further detail on the problem setup us given in [80] and
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[89]

5.2 Control results

The total energy output (in MJ) for the arrays of 2 and 3 devices with dif-

ferent control strategies are presented in this section. In each table, the rows

are the simulated sea states while the columns are selected geometries (for

key see table 5.2). Two regular and four irregular sea states are represented.

For each sea state illustrative results are shown for 3 incoming wave angles

β = 0◦, 45◦, and 90◦, where Emin and Emax is the lowest and highest value,

respectively, of the converted energy out of all the simulated distances, for a

given β. The data shown in the tables is for two regular and four irregular

sea states. The data for PT is shown in tables 5.3 and 5.4, data for GC is

shown in tables 5.5 and 5.6, and data for IC is shown in 5.7 and 5.8. Three

of the seven geometries as defined in table 5.2 in section 5.1 are considered

here, in order of increasing radius and decreasing draft. The tabular data

demonstrates the significant increase in the converted energy for GC and

IC controlled array, compared with a passively tuned one. The variation

between Eminand Emax shows the effects of inter-body separation distance

d. Note the large variation in these values for regular seas. This is expected

because the large variations ue to constructive and destructive interference

are not smoothed out by spectral width as witnessed in the case of irregular

seas.

In addition to tabular data, some illustrative graphs are presented which

demonstrate the influence of distance on the total power output in a 2-body

array as well as the difference between the three control schemes. First, the

difference in power output between PT, GC and IC as well as three of the

7 geometries is shown in figure 5.4. Here a sample case is taken where for
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Table 5.3: Energy Converted for Passive Tuning for a 2 body array (MJ)

sea H T β Body Geometry

(m) (s) (◦) II IV VI
Emin Emax Emin Emax Emin Emax

0◦ 1.430 1.835 33.454 44.560 46.040 57.464
R 1.0 6 45◦ 1.397 1.834 30.417 46.067 46.452 70.057

90◦ 1430 1857 34 472 52 706 46 452 70 057

0◦ 17.503 18.074 33.715 35.320 64.260 69.054
R 1.0 10 45◦ 17.460 18.784 33.762 35.169 65.061 70.133

90◦ 17.503 18.074 33.083 35.711 64.835 72.642

0◦ 0.7494 0.8259 8.5741 9.1448 15.21 15.93
B 1.0 6 45◦ 0.7362 0.8032 8.1208 9.3107 14.035 16.463

90◦ 0.7555 0.81432 8.8868 10.394 15.697 17.651

0◦ 5.4241 5.7577 12.79 13.263 23.212 24.225
B 1.0 8 45◦ 5.3775 5.6144 12.302 13.22 23.197 24.839

90◦ 5.2979 5.6864 13.015 13.906 24.403 26.441

0◦ 6.422 6.704 14.024 14.424 26.842 27.556
B 1.0 10 45◦ 6.365 6.565 13.911 14.235 27.183 28.141

90◦ 6.266 6.620 14.108 14.509 27.824 29.042

0◦ 6.265 6.372 14.088 14.279 28.109 28.582
B 1.0 12 45◦ 6.237 6.304 14.063 14.242 28.184 29.028

90◦ 6.144 6.322 13.932 14.279 28.719 29.550

R = Regular Wave B= Bretschneider. Geometry (rad,draft): II (2.5,13),
IV (5,6), VI (7.25,3)

one sea state, namely an irregular sea of Hs = 1m and Tp = 10s and for a

head sea at β = 90◦, the total converted power is shown for a 2-body array

of three different cylinder Geometries: II, IV, and VI. The figure shows that

relative value of the effect of different control schemes and different array

body geometries on the total energy output. It is clear from the figure that

the effect of array control is proportionally greater than the influence of

body shape. However, these effects are superimposed and thus for the most

radiative shape (Geometry VII), the difference in absolute magnitude of the

total energy converted is much greater between PT and GC than for the

low radiation shape (Geometry II). We also note that the array effect on
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Table 5.4: Energy Converted for Passive Tuning for a 3 body array (MJ)

sea H T β Body Geometry

(m) (s) (◦) II IV VI
Emin Emax Emin Emax Emin Emax

0◦ 2.041 2.957 45.74 71.423 64.833 94.099
R 1.0 6 45◦ 2.115 2.985 50.068 65.715 69.484 89.474

90◦ 2.064 2.922 42.804 71.592 58.450 87.392

0◦ 25.974 26.956 49.799 52.772 97.156 105.600
R 1.0 10 45◦ 25.972 26.954 49.792 52.728 97.763 104.24

90◦ 25.976 26.955 49.808 52.727 95.554 106.85

0◦ 1.108 1.267 12.222 14.218 21.696 25.038
B 1.0 6 45◦ 1.120 1.274 12.612 13.855 21.798 23.648

90◦ 1.126 1.261 12.637 13.951 21.284 24.704

0◦ 8.058 8.524 18.505 19.962 35.128 36.876
B 1.0 8 45◦ 8.106 8.530 18 791 20 011 35 184 36 364

90◦ 8.129 8.518 18.763 19.824 34.594 37.193

0◦ 9.538 9.927 20.962 21.333 40.628 41.719
B 1.0 10 45◦ 9.586 9.935 20.982 21.382 40.813 41.521

90◦ 9.618 9.922 20.862 21.334 40.470 42.159

0◦ 9.321 9.495 20.924 21.314 91.280 99.859
B 1.0 12 45◦ 9.321 9.499 20.971 21.260 91.279 99.146

90◦ 9.322 9.492 20.907 21.346 91.286 99.897

R = Regular Wave B= Bretschneider. Geometry (rad,draft): II (2.5,13),
IV (5,6), VI (7.25,3)

energy output, that is the additional energy converted because of positive

interference between array members, is much greater for the control schemes

GC and IC than it is for PT. For the controlled arrays, this effect is also

noticeable for larger separation distances, as even at a distance of 150m

there is a positive gain in energy for Geometries IV and VII. Note however,

that there is also a region of destructive interference at close separation

distances, especially in the case of Geometry VII. In this case the control

schemes are not able to counteract the phase relationships between radiated

waves from either bodies that lead to cancellation of some of the incoming

energy.
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Table 5.5: Energy Converted for Global Control for a 2 body array (MJ)

sea H T β Body Geometry

(m) (s) (◦) II IV VI
Emax Emin Emax Emin Emax Emin

0◦ 8.7929 11.099 33.609 44.877 52.497 71.115
R 1.0 6 45◦ 8.4669 10.779 30.556 46.348 47.842 81.215

90◦ 9.2909 11.357 34.507 53.872 52.089 102.5

0◦ 50.98 56.335 116.05 134.53 181.93 234.31
R 1.0 10 45◦ 49.648 56.942 109.53 136.11 181.32 250.61

90◦ 48.261 58.868 100.57 151.11 159.52 283.41

0◦ 4.5177 4.7312 15.36 16.088 24.459 25.818
B 1.0 6 45◦ 4.3428 4.6593 14.347 16.549 23.753 27.776

90◦ 4.3016 4.8015 15.789 17.921 26.221 31.661

0◦ 12.25 12.637 32.351 33.947 51.319 56.386
B 1.0 8 45◦ 11.699 12.826 30.511 34.926 51.042 57.954

90◦ 11.117 13.156 28.359 37.112 50.418 64.413

0◦ 21.066 22.551 49.904 53.548 84.276 90.006
B 1.0 10 45◦ 20.47 22.916 46.422 55.434 78.809 93.731

90◦ 19.838 23.384 43.106 58.025 70.825 101.69

0◦ 29.311 31.663 63.39 70.477 112.25 122.25
B 1.0 12 45◦ 28.821 32.115 60.524 72.752 102.94 127.77

90◦ 28.307 32.577 57.663 75.096 93.792 135.76

R = Regular Wave B= Bretschneider. Geometry (rad,draft): II (2.5,13),
IV (5,6), VI (7.25,3)

Next the case of the three body array for the same cylinder shapes is

examined in fig 5.5. In this example, for the same irregular sea state of

Hs = 1mTp = 10s, and for a incident wave angle of β = 60◦, the difference in

energy output between the two control schemes and PT is just as large, as is

the difference between the different body shapes. And yet, in contrast to the

two-body case, we see a pronounced effect of the distance on power output

for GC and IC, where for Geometry VII the positive interaction is significant

even at an inter-body separation distance of 500m. In the PT case no such

effect is observed, meaning this effect is due to the control schemes’ ability to

utilize the constructive radiation effect in the array. To further analyse the

86



Table 5.6: Energy Converted for Global Control for a 3 body array (MJ)

sea H T β Body Geometry

(m) (s) (◦) II IV VI
Emax Emin Emax Emin Emax Emin

0◦ 12.614 16.898 46.256 72.09 71.34 129.43
R 1.0 6 45◦ 13.145 16.967 51.006 66.15 86.259 116.03

90◦ 12.757 16.814 43.193 72.17 62.389 112.53

0◦ 67.878 85.933 144.77 211.66 265.1 384.16
R 1.0 10 45◦ 67.868 84.443 144.68 202.56 264.67 362.86

90◦ 67.892 83.252 144.9 200.77 246.98 360.31

0◦ 6.5181 7.0476 21.788 25.133 34.798 37.98
B 1.0 6 45◦ 6.6168 6.8677 22.411 23.634 33.877 42.387

90◦ 6.5468 6.989 21.586 24.811 39.462 51.518

0◦ 16.495 19.236 42.902 52.214 74.921 86.458
B 1.0 8 45◦ 16.502 18.932 43.126 50.417 75.724 82.106

90◦ 16.499 19.207 43.203 52.396 76.071 86.827

0◦ 28.143 34.278 62.285 82.418 108.72 139.27
B 1.0 10 45◦ 28.141 33.919 62.348 80.682 109.02 134.16

90◦ 28.15 34.194 62.456 82.62 109.33 139.38

0◦ 39.558 48.001 79.671 108.17 135.85 189.48
B 1.0 12 45◦ 39.556 47.662 79.693 106.63 135.96 184.51

90◦ 39.563 47.722 79.761 107.52 136.17 186.84

R = Regular Wave B= Bretschneider. Geometry (rad,draft): II (2.5,13),
IV (5,6), VI (7.25,3)

difference between PT, GC and IC , it is instructive to compare regular wave

examples to irregular wave ones. We start by focusing on PT, where in figure

5.6, the converted energy is plotted over distance for 5 regular sea states for

a two body array of cylinders of Geometry V. Power output for irregular

sea states with Hs and Tp set at the same values as H and T in the regular

wave cases are shown in figure 5.7. A clear difference in behaviour between

the regular and irregular seas is noted: whereas in the regular sea case the

largest absolute peak in power is found at T = 6s, for the irregular wave

case, it is at the highest Tp of 12s. This is because at a period of T = 6s the

resonance frequency of the device, 5.94s, is very close to the tuning period,
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Table 5.7: Energy Converted for Independent Control for a 2 body array
(MJ)

sea H T β Body Geometry

(m) (s) (◦) II IV VI
Emax Emin Emax Emin Emax Emin

0◦ 8.792 11.093 33.438 44.508 51.589 69.629
R 1.0 6 45◦ 8.465 10.777 30.219 46.172 47.218 80.363

90◦ 9.2868 11.354 34.367 53.024 51.705 96.913

0◦ 50.716 56.24 115.54 133.17 180.02 227.54
R 1.0 10 45◦ 49.394 56.922 107.64 135.91 179.47 249.49

90◦ 48.019 58.816 98.983 150.3 154.57 278.87

0◦ 39.558 48.001 79.671 108.17 135.85 189.48
B 1.0 6 45◦ 39.556 47.662 79.693 106.63 135.96 184.51

90◦ 39.563 47.722 79.761 107.52 136.17 186.84

0◦ 4.509 4.695 15.215 15.762 23.862 25.761
B 1.0 8 45◦ 4.335 4.6572 14.166 16.491 23.124 27.55

90◦ 4.267 4.7921 15.702 17.664 25.907 30.545

0◦ 20.935 22.545 48.879 53.28 83.246 87.431
B 1.0 10 45◦ 20.343 22.91 45.503 55.345 75.743 93.329

90◦ 19.716 23.36 42.296 57.708 68.445 100.13

0◦ 29.15 31.658 62.316 70.401 108.17 120.36
B 1.0 10 45◦ 28.663 32.109 59.534 72.683 99.546 127.41

90◦ 28.154 32.557 56.76 74.861 91.093 134.44

R = Regular Wave B= Bretschneider. Geometry (rad,draft): II (2.5,13),
IV (5,6), VI (7.25,3)

T = 6s. This is also evidenced by the large peaks and troughs in the curve

of the power output at T = 6s that are the result of the device oscillations

producing relatively large constructive and destructive interference. The

resonance effect is also visible in the T = 5s curve, which is also not far

removed from the natural period of the device. The higher period sea states,

by contrast, show comparatively less power modification, meaning that the

the device is primarily forced by the incoming waves. For the irregular wave

case in figure 5.7, we still see the influence of resonance at Tp = 6s, especially

in the β = 90◦ case (circle markers), where there is a marked increase in the

power output at close distances. Still, the overall effect is muted, with the
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Table 5.8: Energy Converted for Independent Control for a 3 body array
(MJ)

sea H T β Body Geometry

(m) (s) (◦) II IV VI
Emax Emin Emax Emin Emax Emin

0◦ 12.612 16.76 45.535 71.384 70.65 125.85
R 1.0 6 45◦ 13.14 16.69 49.991 65.827 81.276 114.59

90◦ 12.741 16.561 42.646 71.811 60.949 111.69

0◦ 66.727 85.88 138.35 211.11 246.34 380.87
R 1.0 10 45◦ 66.717 84.421 138.26 202.18 245.92 360.96

90◦ 66.741 83.195 138.48 199.53 241.95 355.61

0◦ 6.4872 7.0409 20.593 24.936 34.383 41.172
B 1.0 6 45◦ 6.5796 6.8635 21.082 23.528 34.932 38.717

90◦ 6.5195 6.9851 21.194 24.708 34.595 41.319

0◦ 16.162 19.219 40.616 51.92 68.984 85.15
B 1.0 8 45◦ 16.168 18.922 40.776 50.257 69.398 81.384

90◦ 16.169 19.197 40.964 52.223 69.727 86.093

0◦ 27.569 34.255 59.111 82.111 100.16 137.82
B 1.0 10 45◦ 27.566 33.906 59.147 80.504 100.29 133.38

90◦ 27.577 34.177 59.306 82.405 100.63 138.36

0◦ 38.817 47.98 75.998 107.9 125.77 188.18
B 1.0 10 45◦ 38.815 47.649 76.007 106.49 125.8 183.79

90◦ 38.822 47.702 76.099 107.3 126.03 185.68

R = Regular Wave B= Bretschneider. Geometry (rad,draft): II (2.5,13),
IV (5,6), VI (7.25,3)

influence of distance very slight and the total power converted on average

a third of that converted for the regular wave case. Next, the instance

of GC and IC is examined for the same configuration of a 2-body array of

Geometry V for regular waves 5.8 and irregular waves 5.9, where both IC

and GC are plotted for β = 0◦, β = 45◦, and β = 90◦ for periods of 6,8, and

10s. As in the PT case, there are notable differences between the regular and

irregular wave cases, with the regular wave case understandably exhibiting

more interaction. Nonetheless, there is still considerable interference in the

irregular wave state for IC and GC, where there is almost none for PT, with

most of it constructive beyond the first 50 meters of separation distance.
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Figure 5.4: Total Energy Converted for 2-body arrays of 3 different geome-
tries and 3 control schemes. Sea State: Bretschneider Hs = 1m Tp = 10s,
β = 90◦

If we now look at a similar graphs for the less radiative Geometry II, in

figures 5.11 and 5.10, with a longer draft and shorter radius, we can see that

the essential features of the graph remain the same, but that the absolute

magnitudes of the interference effects are diminished. This is, again, due

to the fact that interference is due to scattering and radiation, and with a

thinner, longer shape, scattering decreases while at the same time the body

does not have as favourable radiation properties as a thinner cylinder and

therefore is not radiate out to the other body in the array.

5.3 Discussion

From the tabular data we see increase in the power converted by the con-

trolled array versus a passively tuned one for every sea state and configu-
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Figure 5.5: Total Energy Converted for 3-body arrays of 3 different geome-
tries and 3 control schemes. Sea State: Bretschneider Hs = 1m Tp = 10s,
β = 90◦

ration, approaching an order of magnitude difference in some cases. This

increase, however, is not uniform between different body geometries and sea

states. Because PT tunes the device to a single frequency, in regular seas

where the wave energy frequency is close to the natural frequency of the

cylinder, PT will tune the device to oscillate close to its optimal profile for

maximum power extraction. As an example, in table 5.3 for Geometry VI

which has a natural period of 5.94s, (see 5.2), in the case of a 2 body array

oriented at β = 45◦ PT converts 86% of the energy that GC converts and

88% of what IC converts. This however is close to an ideal situation for

PT, and in a real life operating scenario with real seas which may be far

away from the device’s natural period the performance of PT is, as one can

presume, poor. To illustrate, we take the same cylinder (Geometry VI) but

91



0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8 x 104 Energy (KJ)

distance (m)

E
ne

rg
y 

(k
J)

 

 

Hs 1 m Tp 4 s
Hs 1 m Tp 6 s
Hs 1 m Tp 8 s
Hs 1 m Tp 10 s
Hs 1 m Tp 12 s

Figure 5.6: Total Energy Converted by a 2 body array for PT for regular
wave case. Geometry V

place is in an irregular sea state with the peak period far removed from the

natural period, Tp = 12s. In this case, for β = 45◦ the maximum energy

converted by PT is only 22% of the energy converted by GC and IC. The

result should not be surprising as it shows the effectiveness of array control

where control can not only modify the oscillation period of each of the de-

vices but also take advantage of the radiative properties of the devices to

increase the power captured. Because a flatter body with a smaller draft

and bigger radius is able to radiate more energy, and by extension capture

more energy from the incoming wave, an increase in captured energy can be

observed in all the data tables from left to right, with decreasing radius and

increasing draft. This difference can also be seen between figures 5.10 and

5.11 and figures 5.8 and 5.9 where the former are for the thinner, longer Ge-
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Figure 5.7: Total Energy Converted by a 2 body array for PT for irregular
wave case. Geometry V

ometry II and the latter for the flatter Geometry V. This is true of both PT

and active control. However, active control is not only effective for highly

radiative bodies and large sea states. For example, for Geometry II, for

the irregular sea state of Tp = 6s at all angles β, the maximum converted

energy for PT is less than .08 MJ while for GC and IC this figure is between

4.7 and 4.8 MJ, a five-fold increase. For Geometry VI there is less than a

two-fold difference between the maximum converted energy by PT and GC.

For arrays of devices operating in small sea states, the difference between

the energy converted by GC and PT might make the difference between the

device sitting idle and operating, which would ultimately affect the economic

performance of a WEC array project.
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Figure 5.8: Total Energy Converted by a 2 body array for GC (o) and IC
(+) for regular wave case. β = 0◦ (solid line), β = 45◦ (dotted line), β = 90◦

(dashed line). Geometry V

5.3.1 Difference between GC and IC

As is witnessed in figures 5.11, 5.10 , 5.9, and 5.8, showing both GC and

IC for a range of sea states for two different-shaped cylinders, the difference

between GC and IC is not very large, especially compared to the difference

in converted energy between PT and both control schemes. It is however,

worthy to examine this dissimilarity further. As can be seen in these graphs,

the difference, while small, grows with increasing radiative interference, both

negative and positive, and is especially apparent in the large peak in the

curves at β = 90◦ at the region of maximum power capture. To further

look into this matter, plots of the percentage difference in converted power

between GI and IC over inter-body distance are presented in figures 5.12

and 5.13 for a 2-body and 3-body array, respectively, for an irregular sea
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Figure 5.9: Total Energy Converted by a 2 body array for GC (o) and IC
(+) for Bretschneider wave case. β = 0◦ (solid line), β = 45◦ (dotted line),
β = 90◦ (dashed line). Geometry V

state of Hs = 1m and Tp = 10s for all 7 geometries. The results clearly

show that the difference is small, at most one percent for the two-body case

and three percent for the three-body case. As anticipated, the effect is most

pronounced for the most radiative geometries and is almost negligible for

the thin long geometries. The magnitude of the effect for regular seas is the

same, with 1% and 3% difference between GC and IC for the 2-body and

3-body array, respectively. Based on these results it can be asserted that

the discrepancy between GC and IC is not significant enough in terms of its

effect on power output to chose one scheme over the other, especially in light

of the other significant effects such as body geometry, incoming sea state,

separation distance, and wave incidence angle. The latter two effects will be

examined for additional array configurations in more detail in chapter 6.
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Figure 5.10: Total Energy Converted by a 2 body array for PT for regular
wave case. Geometry II
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Figure 5.12: % difference between GC and IC for a 2-body array for
Bretschneider sea Hs= 1 m Tp = 10s , β = 90◦, for 7 Geometries listed
in table 5.2
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Figure 5.11: Total Energy Converted by a 2 body array for PT for irregular
wave case. Geometry II
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Figure 5.13: % difference between GC and IC for a 3-body array for
Bretschneider sea Hs= 1 m Tp = 10s , β = 90◦, for 7 Geometries listed
in table 5.2
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5.4 Conclusions

The effect of different control schemes on the power output of devices was

investigated in this chapter. It was shown that adaptive control schemes

such as GC and IC show superior performance over a simple tuning scheme

such as PT, with a at least a three-fold increase in the energy converted for

every sea state and configuration examined. In examining PT, it is worth

remarking that alternative tuning regimes exist, such as diagonilization of

the optimal damping matrix as is done in [47, 78], or choosing the value

of Bpto based on an optimization procedure [47, 44]. While these schemes

might produce better power output under certain conditions, they are more

difficult to implement than simple tuning. At the same time, is is not

possible to adapt them on a continuous basis, as is possible with control

schemes. One additional point worth noting is that GC and IC both involve

the use of reactive power, that in certain cases would not be possible to

implement because of the nature of the specific PTO system. Furthermore,

in some cases the cost of designing a PTO system that allows for high flows

of reactive power would be prohibitive to a WEC project. There exist some

possible solutions to this problem, one can implement constraints on the

reactive power and or the PTO force to fit the specifications of the particular

device. Alternatively, one can make the control system passive, that is force

the PTO force in (3.38) to always have a positive sign. Finally, as we have

seen in chapter 2, alternative objective functions for the control system can

be implemented, such as those which seek to smooth the power output of

a WEC array over a certain time interval as opposed to maximizing it at

every time step.
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Chapter 6

Clustered Array

Optimization

As was shown in chapter 5, array layout is one of the primary determinants

of a WEC array’s energy output. There are many factors which deter-

mine the placement of devices in WEC array project, such as the electrical

cabling, site bathymetry, navigation corridors, and project area size restric-

tions, some of these were elaborated on in 2.4.6. In this chapter, the focus

will be solely on hydrodynamic factors that influence the array power out-

put, that is the modification of the power output of devices in an array

by other devices through scattering and radiation as well as modification

of incoming waves. As was demonstrated in chapter5, a controlled array

exhibits quite a different response to incoming waves than a passively tuned

one, specifically in that significant energy output modification may occur

at separation distances of up to 200m. In this chapter the effect of the

array layout on the power output on a controlled array of devices will be

examined, with a focus on closely-spaced circular arrays of devices, because

radiation, the means through which active control can create constructive
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interference, is proportional to the inverse square root of the inter-device

separation distance d.

6.1 Modelling setup

Analogous to chapter 5, the focus is on arrays heaving cylinders whose mo-

tion is described by 3.38. Linear wave theory applies to all the motions, and

a linearised viscous damping term is added, as detailed in chapter 4. The

cylinders modelled are shown in table 6.1, in order of increasing radius and

decreasing draft.

Table 6.1: Modelled cylinder parameters

name Radius [m] Draft [m] Natural Period [s]

I 2.5 25 10.34

II 3.5 13 7.80

III 4 10 7.05

IV 5 6 5.92

V 6.25 4 5.36

VI 7.25 3 5.08

VII 8 2.5 4.99

The sea states examined are shown in table 6.2, where the sea-keeping

package WAFO R© over the range of frequencies .0151 to 2.461 in steps of

.0151, is used to calculate the irregular Bretschneider spectra. Symmetric

array configurations of 2,3,4,5, and 6 bodies are examined. The array con-

figurations are shown in figure 6.1 and for a schematic diagram of the setup

the reader is referred back to figure 5.3 in chapter 5. A total of 20 separation

distances d between the elements is varied from 4r to 500 m on a logarithmic

scale.
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Table 6.2: Modelled sea states

type H [m] T [s] type Hs [m] Tp [s]

Regular wave 1.0 6.0 Bretschneider 1.0 6.0
Regular wave 1.0 8.0 Bretschneider 1.0 8.0
Regular wave 1.0 10.0 Bretschneider 1.0 10.0
Regular wave 1.0 12.0 Bretschneider 1.0 12.0
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Figure 6.1: Top view of 2, 3 , 4 ,5 , and 6-body circular array. All separation
distances d are regular polygon sides.

Because the array configurations are symmetric, the incident wave head-
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ing angle β is only varied from 0◦ to 90◦ in increments of 5◦. The excitation

force fex is calculated from the sea profile and the hydrodynamic coefficients

A, B, and C are calculated by WAMIT R© for the range of frequencies .0151

to 2.461 in steps of .0151 . As was demonstrated in the previous chapter

5, the difference in the power output of the devices between the control

schemes GC and IC is not meaningful enough to chose one control over the

other to optimize power production. Therefore in this chapter GC is chosen

on the basis of its more generalized objective function, which includes all

the hydrodynamic interactions in the system, and its more straightforward

implementation. Consequently, all controlled simulation in this chapter will

be performed using global control.

As was observed in chapter 5, automatic control such as GC modifies

the behaviour of devices by forcing them to radiate more with the aim of

absorbing more power. In an array the radiation emitted by one body can

subsequently enhance the energy uptake of another body. The strength of

this radiation depends on the strength of the radiated wave field and the

distance from the radiating object. Radiation strength depends on the body

shape, and as was shown for cylinders in 5.2 in chapter 5, given a constant

volume, the greater the radius and smaller the draft, the more a cylinder

will be able to radiate waves. The dependence of radiation on distance is

given by the following formula [82].

φR ∼
−igA(θ)

ω

(
2

πκr

) 1
2

eiκr−iπ/4
coshκ(z + h)

cosh(κh)
, κr →∞, (6.1)

where A(θ) is the angular variation of the radially spreading wave. From

this formula it is apparent that the radiation potential decreases as the

square root of the distance r from the radiating object. In our case this is
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the inter-device spacing r: as it increases one expects the interaction effects

to decrease. Consequently, we would expect the greatest modification of

array behaviour for highly radiative bodies for the closest spacing. However,

this interaction is also dependent on the wavenumber κ. As we see in (6.1),

the behaviour of the radiation potential also depends on κ. Because of the

dispersion relation (3.11), the greater the period of the wave, the smaller

the wave number. Therefore, because κ serves as a multiplying factor on r,

as is readily apparent from 6.1, for greater period waves, one would expect

stronger interaction effects to occur at greater inter-device spacing d. The

hydrodynamics of array interaction is a complicated problem, and often

times it is very difficult to distinguish the influence of different variables

that affect the power output. In this chapter, the influence of the number

of bodies, sea state, device geometry, input sea state, wave incidence angle

β, and inter-body spacing d will be considered. Therefore an attempt shall

be made to present the results as cross-sections of the different variables,

with an emphasis on 3-D and contour graphs to present the results. As was

shown in section 2.2 in chapter 2, the array interaction value q is the most

commonly used benchmark of WEC array performance. As we are utilizing

only one control scheme, GC, for all simulations, the energy converted by

a single, isolated device will be the same for each geometry and sea state.

Therefore q will be an appropriate measure of the effects of multi-body

interactions on the power output of a WEC array.
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6.2 Layout study in regular seas

6.2.1 2-body array

To begin the investigation, it is helpful to look at the simplest case, namely

a 2-body array in regular seas. Although this is not a realistic operating

scenario, with this simplified system it is possible to understand the nature

of interactions in the array that will not be readily apparent from a study of

more complicated, realistic WEC arrays. We start by simulating a regular

wave with H = 1m and T = 10s, plotting the contour plot of the q-value

versus wave incidence angle β and separation distance d for Geometry VII in

figure 6.2. Following [69], the interaction distance L for two devices placed

on the x-axis is (L = 2πd)/λ(1 ± cosβ) where the negative cosine is from

the first body to the second and the positive in the opposite direction for

incident wave length λ. From this one can plot a set of hyperbolas which

are a solution to

λ

2π
=
d(1± cosβ)

c
(6.2)

where c is a constant for which the phase of the interaction is the same.

A set of curves for the peak interaction for the first three areas of positive

interaction are plotted in figure 6.2. The first peak is primarily due to the

radiation while the second and following are due to scattering. We note good

agreement with the contours of maximum q, especially for larger separation

distances where the assumptions in deriving (6.2) hold (see [69] for more

details). A maximum q of 1.15 is found near the intersection of the first two

interaction curves at 90◦ where the radiated waves from both bodies are in

phase and no shadowing occurs. A similar plot is next shown for Geometry

III in figure 6.3 for the same sea state. The first thing we notice is a decrease

in the range of the q values and the broadening out of the interaction peaks.
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Figure 6.2: q-factor for 2-body array regular wave of 1 m height 10 s period,
with eq. (6.2) plotted for the first three interaction maxima. Geometry VII

This is due to the less radiative shape of the cylinders, despite this, the

relation 6.2 holds as evidenced from the interaction curves. To examine the

influence of sea state, a 2-body array of the same geometries is chosen but

in smaller and larger period sea states. First, a 2-body array of Geometry

III is simulated in a H = 1m, T = 6s regular sea state in figure 6.4. The

plot for Geometry IV now resembles that for Geometry VII in a 1m 10s

irregular sea because of the stronger interaction between the body geometry

and the period of the sea. In addition, as T increases, λ decreases, so that

the interaction curves are closer together than for the longer sea state. The

opposite can be observed in figure 6.5 where a 2-body array of Geometry VII

is placed in a H = 1m, T = 12s regular sea. As expected, in this example,

the interaction spread over a larger distance, both in r and in terms of the

spread over the angles β. Because Geometry VII is a highly radiative body,

there is clear interaction at this sea state, which is not true in the case of
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Figure 6.3: q-factor for 2-body array regular wave of 1 m height 10 s period,
with eq. (6.2) plotted for the first three interaction maxima. Geometry III

Geometry IV, where in a H = 1m, T = 12s sea the modification of q is an

order of magnitude smaller (not shown).

6.2.2 Multi-body array

Next, the focus in shifted to multi-body arrays. Here the interaction is more

complicated and cannot be described by a simple formula such as (6.2), the

essential features of the contour plot of q show the same interplay of d,β,

and λ as for the two body case. Again, contour plots of q versus d and

β will be shown for various regular sea states and body geometries. The

essential features of array interaction for multiple bodies are demonstrated

in contour plots of the interaction factor, shown here for a regular sea state

of H = 1m, T = 12s for Geometry V, which is a flat cylinder with a ratio

of radius to draft approximately 3 to 2. In figures 6.6, 6.7, 6.8, and 6.9, q is

shown for arrays of 3, 4, 5, and 6 cylinders, respectively. Overall, we note
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Figure 6.4: q-factor for 2-body array regular wave of 1 m height 6 s period,
with eq. (6.2) plotted for the first three interaction maxima. Geometry III

that the graphs are not too dissimilar to figures 6.4 and 6.2 in subsection

6.2.1, especially in the 3 and 4 body array cases. In fact one can note the

lines of contours of positive interaction where the two of the three devices

are aligned, that is at β = 30◦ and 60◦ . For four bodies, one can clearly

see the symmetry of the configuration in the areas of positive and negative

interference. The superposition of the two sets of interaction lines from

figure 6.2 are clearly visible, however in contrast to the 2-body case note the

low values of q at close to the minimal distance 4r. For 5 and 6 body arrays,

the pattern is not easily discernible, with small areas of positive and negative

interaction generally following the sloped hyperbolas of the relation in (6.2).

As expected, the areas of strongest interaction are at closest r, and areas

of similar q become larger in area and smaller in magnitude as d increases.

An important point to keep in mind in observing these curves is that for

this regular wave cases, each individual scattered and radiated component
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Figure 6.5: q-factor for 2-body array regular wave of 1 m height 12 s period,
with eq.(6.2) plotted for the first three interaction maxima. Geometry VII

is easily distinguishable, hence the patchwork appearance of the graph. As

will be shown in section 6.3, in irregular seas because of spectral spreading,

the incident, scattered, and radiated waves often blend together, leading to

a smoother larger areas of similar power output.

6.3 Layout study in irregular seas

6.3.1 2-body array

Although the regular wave case is instructive in examining the nature of

the interactions in a WEC array, all commercial WEC array projects will

operate in real seas. Therefore any study to determine the best configuration

of a WEC array will need to be performed in irregular sea states. In this

thesis, the first step to that end is taken, with an examination of 2, 3, 4, 5,
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Figure 6.6: q-factor for 3-body array regular wave of 1 m height 8 s period,
Geometry V

and 6 body circular arrays in four Bretschneider sea states shown in table

6.2. While not as accurate as using real site wave data, the Bretschneider

spectrum was chosen as the most representative spectrum of the exposed

ocean coast climate, where the majority of current WEC array projects

are currently under development. As will be elaborated in chapter 7, any

future WEC array project will need to have detailed site wave data available,

because wave climates are very site-dependant. To begin the analysis, a q

contour plot of a 2-body array of Geometry II in a typical Bretschneider

Hs = 1m Tp = 10s is shown in 6.10. Clearly, the behaviour of q is very

different from the regular wave 2-body cases shown in figures 6.2, 6.3, 6.4,

and 6.5. Because the energy in the incident wave is spread out over a range

of frequencies, the areas of similar q are likewise spread out over larger

areas of d and β, because the dispersion relation (3.11) links λ in (6.2) to

the frequency. However, the main crest of the interaction curve remains
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Figure 6.7: q-factor for 4-body array regular wave of 1 m height 8 s period,
Geometry V

the same as in the regular wave case, with the hyperbolic curve clearly

expressed in the curve. Furthermore, the highest interaction occurs at 90◦

at a septation distance slightly less than the λ, where no shadowing and only

constructive interference from radiated waves from each of the bodies occurs.

Note, however, that unlike the regular wave case, value of the peak in q is

much lower, around 1.085. If we next look at the flatter shape Geometry VI

for same Hs = 1m Tp = 10s irregular sea state in figure 6.11, we see that

while the shape of the curve is the same, the constructive interference is

stronger, with a q-max of around 1.23. Even so, the value of q-min remains

about the same for Geometry II and VII for this case, indicating a net benefit

of control in this case.
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Figure 6.8: q-factor for 5-body array regular wave of 1 m height 8 s period,
Geometry V

6.3.2 Multi-body array

Looking at a surface plot the 3-body array for the Geometry VI in fig 6.12,

the symmetry of the configuration is apparent: the maximum q s are at

β = 30◦ and 60◦, which where 2 of the 3 bodies are aligned to minimize

shadowing. Note that a significant portion of the graph is above the grey

surface at q = 1, which indicates that the configuration is beneficial from a

power maximization viewpoint. The graphs for 4 and 5 bodies show simi-

lar features, the four body graph showing the superposition of the positive

interaction area in the 2-body case shown in figure 6.11. To look at the

difference between different body geometries, we contrast two 6-body arrays

shown in figures 6.13 and 6.14 for a Hs= 1 m Tp = 10s Bretschneider sea

state. The first shows the q values of a 6-body array of the long, thin Ge-

ometry I. In this surface plot, it is apparent that most of the interaction is
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Figure 6.9: q-factor for 6-body array regular wave of 1 m height 8 s period,
Geometry V

negative, with all but a few small areas below the q = 1 surface. The graph

also shown that regardless of the incident angle, at a spacing closer than

200m all interaction is highly negative, indicating that such configurations

should be avoided if power maximization is the project goal. By contrast,

in figure 6.14, the majority of the q values are positive, with the angular

variation much more strongly expressed. Even at close distances there are

some areas of positive interaction at β around 10◦ and 50◦. Hence one can

conclude that for multi-body arrays, it is essential for a body to be able to

radiate in order enable the controller to create a net positive effect of array

interaction.
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Figure 6.10: q-factor for 2-body array, Bretschneider wave of Hs= 1 m
Tp = 10s, Geometry II

6.4 Conclusions

In this chapter we have seen demonstrated the effect of array layout on a

WEC array whose devices are controlled by a global control scheme. Because

the control scheme seeks to maximize the power output, which for the heav-

ing WEC is proportional to the device velocity, the power output is greatly

influenced by the effect of other devices. While these effects can be both

positive and negative, the advantage of GC is that it can minimise the nega-

tive effects that are brought about by shadowing and destructive scattering,

whilst at the same time maximizing the power produced on each device by

producing constructive interference through phase matching. This is the

case where the radiation from one or more devices is in phase with the in-

coming wave such that the motion of a give device is increased. As expected

from theory, elaborated in [82], we have seen this effect to be especially sig-

nificant at short distances. However, this constructive interference is greatly
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Figure 6.11: q-factor for 2-body array, Bretschneider wave of Hs= 1 m
Tp = 10s, Geometry VI

dependent on the device shape, and the influence of shape is magnified as

the number of devices increases. Evidence of this is clearly demonstrated in

the qualitative difference between figures 6.13 and 6.14. Unlike the guide-

lines presented in [112], even for small controlled arrays, there are significant

interactions, both positive and negative, to a distance of well beyond 20 r

or 10 diameters, that should not be disregarded. Moreover, given a suffi-

ciently suitable device shape, that is one that is an efficient radiator, one

can not only mitigate negative effects of wave shadowing from dense arrays,

but can produce a net benefit even in irregular seas. This can be seen for

example in fir 6.11 for close distances for angles of incidence β = 0◦ to 45◦.

Therefore, if the objective of a WEC array project is power maximization,

it is imperative that not only is an array control scheme implemented, but

that the control is considered before a decision on the array layout is made.

While it may be possible to use control a posteriori to improve an existing
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Figure 6.12: q-factor for 3-body array, Bretschneider wave of Hs= 1 m
Tp = 10s, Geometry VI

layout’s performance, it will be of much value to design the most advanta-

geous layout at the initial design stages, especially given the enormous costs

of a commercial WEC array project.
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Figure 6.13: q-factor for 6-body array, Bretschneider wave of Hs= 1 m
Tp = 10s, Geometry I

Figure 6.14: q-factor for 6-body array, Bretschneider wave of Hs= 1 m
Tp = 10s, Geometry VI
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Chapter 7

Conclusions

The hydrodynamic interactions of controlled arrays of WEC have been the

focus of research of this thesis. In this chapter the important findings are

summarized in 7.1. Remarks on future research directions are given in 7.2.

7.1 Discussion and conclusions

The global theoretical potential of wave energy, currently estimated at 2.11

TW, is great enough to pursue this source of renewable energy, despite the

difficulties associated with wave energy conversion. As was shown in chapter

1, there are several countries in the world currently pursuing wave energy

conversion projects, particularly in Europe. Because of the small scale of

most single WECs, most proposed projects are to consist of multiple units or

arrays WECs placed in a specific area in the ocean. In the review in chapter

2 it was shown that despite the long history of research into the problem of

hydrodynamics of WEC arrays, there are still many questions that remain

to be answered in terms of the layout of the devices, their type, and the

controller of the PTO of the devices. Control of arrays, in particular, is an

area of research that only recently has become active, with investigations
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into control of arrays of devices in realistic operating scenarios. This is due,

in particular, to the necessity for modelling adaptive control in the time

domain, as was shown in 2.6.4. The computing power required for modelling

and simulating the hydrodynamic equations of multiple bodies has only

recently become available. As computer hardware and software continues to

improve, more accurate modelling of control of arrays will become possible,

specifically with CFD software packages, as was discussed in section 2.4.4.

With a view toward implementation of the controllers in chapter 5, in

chapter 4 it was shown that adding a viscous damping term to the equation

of motion (3.38) improves the accuracy of the hydrodynamic model. In

particular, the addition of the viscous damping term decreased the heaving

motion for devices at large velocities, where without the viscous damping

term, the motion would have violated linear wave theory. Moreover, in

section 4.5, the validity of linearizing the quadratic damping term in the case

of heaving surface-piercing devices was shown. This linearization method is

particularly useful in cases where the equation of motion must be linear, as

in the case of a low level velocity-tracking controller of a device.

The performance of three control schemes, Passive Tuning (PT), Global

Control (GC), and Independent Controller (IC), was analysed for arrays of

two and three heaving cylinders of different radius to draft ratios in chapter

5. The overall benefit of adaptive control, such as GC and IC, in terms of

maximizing the power capture was shown for all instances. In particular,

it was shown that the relative performance of an adaptive controller such

as GC and IC improves in an irregular sea state, compared with a fixed

tuning such as PT. This is significant in that most studies on WEC array

control to date [46, 47, 78], which have shown an overall negative effect on

power capture by an array in real seas, have utilized a fixed tuning regime.
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Therefore we can conclude that an appropriate control scheme for an array

will be able, at least in part, to offset the destructive interference, by forcing

the devices to maximize beneficial phase relationships.

In chapter 6, the effect of array layout on controlled multiple-body arrays

of various cylinder shapes was investigated. The difference between array

performance in regular and irregular seas was highlighted, specifically in

terms of the spatial variation of the interaction factor q, which measures

the relative power capture of an array. It was shown that for controlled

array, for devices shapes which are able to radiate, for a majority of inter-

device spacing and heading angles of the incoming waves, the value of q is

greater than one. Conversely, for devices that radiate poorly, the overall

array performance was shown to be negative, that is a net decrease in power

compared to isolated devices, notably at close spacings less than 100m. It

can therefore be concluded that array control offsets the shadowing and

destructive interference that results from dense packing of multiple WECs

in an array, provided that the particular WEC shape can radiate strongly at

the given sea state. Moreover, as was shown in section 6.3, in irregular sea

states, array control gives freedom of device placing, with relatively broad

areas of constructive interference. Given the expected movement of devices

that are moored to the sea bottom, this will enable an accurate estimate of

a WEC array project’s power output, in spite of the position uncertainty.

7.2 Future research perspectives

In this thesis, in particularly in chapters 5 and 6, there became apparent

a need for further investigation into several areas. Firstly, throughout this

thesis no restriction was placed on the device motion. While the addition

of the viscous damping term derived in 4 makes the device motions in this
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thesis realistic, they still could be large enough to violate linear wave the-

ory, in particularly near the resonance period of the device. In addition,

both GC and IC are reactive control schemes, that is they can use reac-

tive power to drive the device to match the phase of the incoming wave.

Consequently, without restrictions and with the stated aim of maximizing

power, such control schemes can push a device beyond its operating range.

In summary, future investigations into array control need to take constraints

into consideration, whether they be on stroke length, device motion or the

total PTO force. Naturally, these restrictions will depend on a particular

device, yet a more realistic model will need to include them as a restriction

on device motion will modify the power absorption and radiative behaviours

of the device and thus the power output of an array. Furthermore, as was

mentioned in 5.4, it would be particularly useful to implement an adaptive

control scheme which is passive, in other words that excludes the possibility

of using reactive power. Although such a control scheme will necessarily

have a lower power output, having device which can employ reactive power

might be prohibitive from a materials and maintenance perspective, thus

making it an economically attractive option.

The investigations carried out in this thesis modelled one particular type

of device, a heaving cylinder. Further work will need to consider other types

of devices, in particularly surging flap-type devices, as several of these are

currently candidates for commercial WEC array projects. Because such

devices typically operate in shallow water, the effect of water depth h will

also need to be included in future work.

The passive tuning scheme considered in this thesis maximized the power

for by tuning each individual device to the wave energy frequency ωe. An

alternative PT scheme, where the devices are tuned to other sea state pa-
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rameters, such as ωp, will need to be considered to see if an improvement

in performance can be obtained. Such an improvement has been shown for

the case of single devices in [108].

In chapter 6, we have considered symmetrical array configurations of

2, 3, 4, 5, and 6 devices. These configurations were chosen because in an

eventual WEC array project, such configurations will enable possible sharing

of mooring and electrical infrastructure, as well as enable navigation access

to each device for maintenance. Whilst having more device placed together

will decrease the overall performance, as was shown in [45], there are other

configurations of closely-packed arrays of WEC that can be considered which

are linear or non symmetrical. One possible direction of future research is

to run an optimization with multiple parameters to find the optimal placing

of device in an array, as was performed in [40] for an array of 5 devices in

regular seas.

The irregular sea states investigated in this thesis have all been non-

directional random spectral distributions, in particular Bretschneider spec-

tra. While Bretschneider spectra give a good first approximation of the wave

conditions that can be expected at an eventual WEC array project site, for

a more accurate analysis, specific spectral wave data for a particular project

site will be needed. Further work on array layout will need to use a specific

set of wave data to investigate a given array’s performance over a long-term

period, for example a year. Because wave climates across the world vary

greatly, the eventual best configuration for economic perforate of an array

will vary for different areas of the ocean.
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