

AN ENERGY BENCHMARK FOR SOFTWARE UPDATES
ON WIRELESS SENSOR NODES

S. Brown*, C.J. Sreenan

*Dept. of Computer Science/Callan Institute, NUI Maynooth, Ireland

email: stephen.brown@nuim.ie

Keywords: WSN, Update, Modelling, Energy, Benchmark.

Abstract

Energy consumption is arguably the key factor in the design
and operation of Wireless Sensor Networks (WSNs). This
holds both for normal operation and maintenance operations –
such as software updates. Whereas software updates will
probably be infrequent, they must still not consume a
significant fraction of a WSN’s energy reserve; also, the
required consumption must be known before triggering an
update, in order to ensure that it can complete. Software
updates are an expensive operation: there can be a significant
volume of data, guaranteed delivery is required, and normal
data fusion algorithms cannot be used to reduce the
communication load. In this paper we present a node-level
energy consumption model for the evaluating the efficiency of
software updates on wireless sensor nodes. This model is then
used to derive a novel minimum energy benchmark equation.
This paper also presents some new power measurements, and
uses these, along with published data, to interpret the
benchmark in quantitative terms for some specific hardware
platforms. This benchmark provides a standardized and
quantitative figure to use in comparing software update
algorithms. The methodology is also applicable to establishing
energy benchmarks for other tasks in the WSN domain.

1 Introduction

Energy consumption is arguably the key factor in comparing
different algorithms for use in Wireless Sensor Networks
(WSNs) [17,18]. Ultimately, energy is consumed by the node
hardware – and this sets a lower limit on the energy
consumption of any algorithm. Design of progressively more
efficient hardware has been a characteristic feature of research
into WSNs [8]. But the energy consumed also depends on the
system software that runs on a node: the operating system,
device drivers, and networking stack. For example, disabling
the receiver [20] during overheard/unwanted radio messages,
or using different modes of operation [22] allows the hardware
to be used more efficiently.

At a higher level than the individual nodes, is the entire
network, and the distributed algorithms that run on this. Again,
the energy efficiency of the network as a whole depends on
how effectively these distributed algorithms use the underlying
node hardware and software.

In this work we examine the energy consumed by the various
components of a software update operation and build a general
model to describe the total energy used. This model is then
used to derive a minimum energy equation which can be used
as an energy benchmark in evaluating and comparing software
update algorithms. Sensor node energy measurements are then
presented, and used in the calculation of the minimum
benchmark for two similar sensor nodes.

In Section 2 we describe some representative work in WSN
software updating, and discuss their energy reduction
mechanisms. In Section 3 we show the derivation of our model.
In Section 4 we show how this model is used to derive a
minimal energy benchmark. Section 5 shows how
measurements were made to derive the figures required in
Section 6 to calculate actual benchmark figures.

2 Background and related work

Software updating has always been identified as an important
topic for wireless sensor network research [15]. As with all
WSN mechanisms, reducing and optimizing energy use is a
critical concern. Identified requirements include low overheads,
and resource awareness – especially to minimize flash
rewriting [10]; minimizing the impact on sensor network
lifetime, and limiting the use of memory resources [21];
minimizing processing, limiting communication to save energy
and only interrupting the application for a short period while
updating the code [3,16]; operating within the hardware
constraints of different platforms [12].

Power measurements for WSNs have been used to extend the
capabilities of simulators (for example [19]), and work on

energy evaluation[4] uses a mixture of theoretical, simulation,
and real-world results to evaluate energy efficiency. But these
results do not provide an absolute benchmark against which to
evaluate protocols. Many of the protocols and algorithms
developed for WSNs include specific provision for optimizing
energy performance, and we consider the energy related
aspects of a few representative examples here. A fuller
treatment of software updating in wireless sensor networks is
available in [1].

Deluge [6] is a data dissemination protocol and algorithm for
propagating large amounts of data throughout a WSN using
incremental upgrades for enhanced performance. It is
particularly aimed at disseminating software image updates,
identified by incremental version numbers. The same image is
disseminated to all nodes in the network. The program image is
split into fixed size pages, and each page is split into fixed size
packets to suit the packet size of the TinyOS[7] network stack.
A bit vector of pages received can also fit in a single packet.
Nodes broadcast advertisements containing a version number
and a bit vector for any new pages received, using a variable
period based on updating activity. To upgrade part of its image
to match a newer version, a node listens to further
advertisements for a time, and then requests the page
number/packets required from a selected neighbour. A sender
collects several requests before selecting a page and
broadcasting the requested packets. When a node receives the
last packet required to complete a page, it broadcasts an
advertisement before requesting further pages - this enhances
pipelining of the update within the network. State data takes a
fixed amount of space, independent of the number of
neighbours. There are no ACKs or NACKs - requesters either
request new pages, or missing packets from a previous page.
Radio network contention is reduced through heuristics used to
select more remote senders. Rateless Deluge and ACKless
Delugs [5] improve on this work by using rateless codes to
reduce the need for rebroadcasts, and FEC to reduce the
number of control packets.

Imapla[11] is the event-based middleware layer of the
ZebraNet wireless sensor network. It is designed to allow
applications to be updated and adapted dynamically by
dispatching events through a application adapters. ZebraNet
nodes are expected to be inaccessible, and deployed in large
numbers, so ZebraNet supports high node mobility, constrained
network bandwidth, and a wide range of updates (from bug
fixes, through updates, to adding and deleting entire
applications). Applications consist of multiple, shareable
modules, organized in 2KB blocks. The Application Updater
allows applications to continue running during updates, and
can process multiple contemporaneous updates; version

numbering is used to ensure compatibility of updates with
existing modules. It also handles incomplete updates, and
provides a set of simple sanity checks before linking in a new
module. Software updates are performed in a three-step
process: firstly the nodes exchange an index of modules, then
they make unicast requests for updated modules, and finally
they respond to requests from other nodes. An exponentially
increasing backoff timer reduces management traffic, but can
delay updates when separated groups of nodes reconnect.
When software reception is complete, then after performing
simple sanity checks, the old version application is terminated,
the modules in the new version are linked in, and the new
application is initialised prior to use.

MNP [23] is targeted at nodes running TinyOS and the XNP
boot loader [9]. The protocol operates in four phases. During
Advertisement/Request sources advertise the new version of
the code, and interested nodes make requests. Sources listen
overhead all other advertisements and requests - a suppression
scheme to avoid network overload. During Forward/Download
a source broadcasts a StartDownload message to prepare the
receivers, and then sends the program code a packet at a time -
there is no ack. During Query/Update the source broadcasts a
Query to all its receivers, which respond by unicast asking for
the missing packets. Receivers, having received the full image,
now become source nodes and start advertising. During
Reboot, entered when a source receives no requests in response
to an advertisement, the new program image is transferred to
program memory, and the node reboots with the new code.
Download requests are sent to all sources to reduce the hidden
terminal effect, and select only one active sender in a
neighborhood. Flow control is rate based, determined by the
EEPROM write speed.

The selected algorithms described above use various
techniques to reduce energy use, but there is no standardized
method to compare them from an energy viewpoint. In the next
sections we present a new model and benchmark approach that
does provide a standardized baseline for these energy
comparisons.

3 The model

WSN software upgrades require energy for:

1. receiving the upgrade (including retransmissions),
2. transmitting necessary packets to initiate the upgrade

and cause retransmissions,
3. processing the upgrade (e.g. security, decompression,

dynamic linking), and
4. writing the upgrade to permanent program memory.

The energy used during a software upgrade is the sum of these
four factors:

storeprocesstransmitreceivetotal EEEEE +++= (1)

Note that, in this work, we are not considering the cost of
distributing the upgrade throughout the network (this is
addressed in the section on future work). We also are not
considering the cost of writing the upgrade to temporary
storage: we argue that it is not in general necessary to do this,
though it may be on some specific hardware platforms, or used
with particular algorithms. Finally we are not considering the
energy required to restart or reboot the software: in general this
is insignificant, but further work is needed to investigate this.

In the rest of the paper we are using the term energy in the
general sense. All equations are based on electrical charge
(measured in micro-Amp-seconds) to represent the energy
used. To compare different algorithms on the same platform,
this provides an accurate relative measure. To calculate the
electrical energy (in Joules) requires a voltage factor.

 The formulae for modeling the energy consumed by a software
upgrade operation are shown in Equations (1) through (6) –
note: all charge is expressed in micro-Amp-seconds. See Table
1 for a description of the equation parameters.

Name Description Units

Ereceive Energy consumed for the wireless
reception of the upgrade J

Eprocess Energy consumed for the processing of a
software upgrade J

Estore Energy consumed for the storage of a
software upgrade into permanent program
memory

J

Erestart Energy consumed for the restarting of the
software following an upgrade (e.g. a
reboot)

J

S Size of the upgrade (in Bytes) Bytes
N Number of processing operations required

for a software upgrade Instructions

fi Fixed overhead for processing operation i Instructions
vi Variable overhead for processing

operation i
Instructions

/Byte
Einst Energy consumed by executing a single

instruction (a single, average energy figure
is used as a simplification here)

uAS
(micro-
Amp-

Seconds)
k Wireless packet payload Bits
H Wireless packet overhead (preamble,

header, checksum, etc.) Bits

Ρ The average bit-error-rate Errors/Bit
Table 1: Energy Equation Parameters

The receive energy Ereceive is the product of the energy used per

bit (Ebit), the bits per packet (k+h), and the number of packets
received ()

k
S*8 including a factor to account for

retransmissions:
()()hk+− ρ1

1 [23].

() ()
()()hkbitreceive k

ShkEE +−
+=

ρ1
1**8** (2)

The transmit energy Etransmit is the product of the energy used
per bit (Ebit), the bits per packet transmitted (Stx), and the
number of packets transmitted (Ntx).

txtxtxbittransmit NSEE **= (3)
The processing energy Eprocess is the sum of the energy of each
processing operation; for each operation, the energy is the
product of the average per-instruction cost (Einst) and the sum
of the fixed cost (fi) and the variable per-byte cost (S*Vi).

()()∑
=

+=
N

i
instiiprocess EvSfE

1
** (4)

The storage energy Estore is the product of the number of bytes
(S) and the per-byte permanent storage cost (Eperm).

permstore ESE *= (5)

The following characteristic parameters must be measured for a
specific hardware platform: N, fi, vi, Einst, Eperm.

Based on this energy equations (1)-(5), we can now derive an
expression for the minimum energy required on a node to
perform a software upgrade. Note that the form of the equation
presented in this paper relates to energy required locally on the
node to receive and process the upgrade, and not to the energy
required network-wide to distribute the upgrade throughout the
network.

4 The minimum energy benchmark

The minimum energy benchmark for a particular platform
(reflecting the minimum energy required) is derived by
calculating the minimum value for the energy consumption
each of the energy consumption Equations (1)-(5), as shown in
Equation (6).

minminminmin
storeprocesstransmitreceivebenchmark EEEEE +++= (6)

This minimum energy level may not be achievable by any
particular algorithm, but it sets a quantified minimum baseline
below which no algorithm can go: thus it acts as an objective
and standardized benchmark both for evaluating a particular
software update mechanism for the potential to reduce energy
consumption, and for comparing software update mechanisms
for to determine their energy efficiency on an absolute scale.

The treatment of retransmissions is a good example of the
philosophy behind the minimum energy benchmark approach:
for reliable data reception, any missing packets must be
retransmitted – but there is no particular algorithm that
optimally minimizes the energy for control traffic (e.g. ACKs,
NACKs, or other feedback mechanisms), as there is always a
time/energy tradeoff to be made. Therefore, the minimum (and
unachievable) power benchmark energy figure for the
retransmission control traffic is zero – the energy figures for
the retransmitted data are of course included.

The (locally) optimum values for the parameters k and h are
determined by the hardware platform (wireless hardware
parameters) and the bit-error-rate ρ. The optimal value for k in
the presence of bit errors, kopt, can be calculated as shown for
example in [2], but in this paper we use typical packet sizes.

In the rest of this paper we will use a simplified version of the
benchmark – see Equation (7) – assuming no significant
processing. The same way as retransmissions overheads are
handled by using an ideal zero cost, we also assign an ideal
zero cost to the base processing for a software update (i.e.
iniating the data transfer from RAM to Flash). Energy costs
associated with compression and/or dynamic linking need to be
considered separately; the following assumes a simple upgrade.

minminmin
storetransmitreceivebenchmark EEEE ++= (7)

This represents the simplest case where there is no processing
required for a software update: e.g. where 0min =processE .

For this benchmark, the minimum number of feedback packets
required (either to request the upgrade, or to request
retransmissions) is taken to be 1 packet.

4 Energy measurement results

To demonstrate the use of the minimum energy benchmark we
have picked two wireless sensor nodes based on the same
processor (ATMEL ATMega128L) and used energy
measurement data to determine value for the required
parameters in the energy equation.

Energy measurements for the MICA2 node [2] have been
presented in a number of publications, we use the figures from
[19] to estimate the values in Table 2. Note that the energy
parameters include the CPU executing during receive and
transmit operations. The Flash access energy is estimated from
the DSystem25 results (see Table 4) and the MICA2 figures.

Parameter Value [mA]
Eperm 0.581 uAs/byte
Erxbit 0.539 uAs/bit
Etxbit 0.420 uAs/bit

Table 2: MICA2 energy parameters

Current measurements were made on the DSystem25 Module
[14], and from these the energy consumption parameters for
this platform were calculated. This node contains the following
components that use energy during operation:

• Atmel ATMega128L processor;
• a Nordic nRF2401 radio transceiver;
• an LP2966 3.3V regulator;
• a 4 Mhz external oscillator (part IQX0-71).

The measurements were made using a specially developed
program running directly on the hardware, using the AVR C
library, but no operating system. This allows the hardware-
specific energy costs to be measured without the effects of any
operating system algorithms. Radio transmission was using 32-
byte packets in Shockburst mode at 250Kbps.

The current consumption of the module was measured by
placing a 1-ohm resistor (±5% of its nominal value) in series
with the power supply for the module: a power-measurement
methodology for wireless sensor nodes described in other
research publications [10]. The power measurements were
performed using a Thandor TS1541S power supply providing
6.00V (±0.005V). Some sample results were compared against
two new 3v batteries (CR2430) to ensure that the power supply
was not introducing anomalies. No significant differences were
seen, and so all measurement presented in this paper were
made using the lab power supply to guard against voltage drops
as the batteries are drained during multiple measurements.

The measurements were made at a sample rate of 1 Mega-
samples/second with 16-bit precision using an PCI-6251 NI-
DAQ card from National Instruments, with the input voltage
configured in the range of +100mV to -100mV. A higher
frequency oscilloscope (20MHz) was used to ensure that the 1
MHz sampling rate was sufficient.

The raw measurements show current oscillations (see Fig. 2 for
an example). A smoothing capacitor was not used in order to
avoid any distortion to sharp transitions in the graphs.
Unsmoothed graphs are presented here: the average current
consumption and time for each operation was calculated in
order to derive the figures shown in Table 3.

A dedicated ‘power-signature’ program was used that
performed the various operations to allow the current
consumption (and thus the energy parameters) of each
operation to be determined. A companion node was used to
provide suitable wireless traffic for reception.

Screenshots of the current measurements are provided in Figs.
1-8 to give the reader an overview of the large data-sets:

• Flash memory erase & write (Fig. 1) – this shows the

operation for 1 Flash memory page, 256 bytes
• EEPROM read & write (Fig. 2) – two erase & write

operations: of 1 byte followed by 2 bytes
• Wireless transmission (Figs. 3-6) – these show

transmission at -20, -10, -5, and 0 dBm. The data
transfer, and transmission phases use 28-byte payloads
(for a total of 33 bytes on the air including preamble)

• Wireless reception (Fig. 7) - with the receiver enabled,
and a single packet received

• CPU executing (Fig. 8) – all peripherals, including the
wireless transceiver, are disabled or configured in the
lowest available power mode

• CPU sleep mode with all peripherals disabled (Fig. 8)

Figure 1: Flash Memory Access current vs Time

 Vertical scale: 5mA – 15mA
Horizontal scale: 132mS – 149mS

Figure 2: EEPROM Access current vs Time

Vertical scale: 5mA – 15mA
Horizontal scale: 181mS – 264mS

Figure 3: Transmit at 0dBm current vs Time

Vertical scale: 0mA – 100mA
Horizontal scale: 307mS – 319mS

Figure 4: Transmit at -5dBm current vs Time

Vertical scale: 0mA – 50mA
Horizontal scale: 381mS – 392mS

Figure 5: Transmit at -10dBm current vs Time

Vertical scale: 0mA – 50mA
Horizontal scale: 427mS – 439mS

Figure 6: Transmit at -20dBm current vs Time

Vertical scale: 0mA – 50mA
Horizontal scale: 473mS – 85mS

Figure 7: Receive current vs Time

Vertical scale: -50mA – 50mA
Horizontal scale: 510mS – 598mS

Figure 8: Wireless Standby & CPU Sleep current vs Time

Vertical scale: 0mA – 10mA
Horizontal scale: 613mS – 649mS.

The results of these measurements are summarized in Table 3,
and the Dsystem25 parameters derived from these results are
presented in Table 4.

Measurement Current Duration
Transmitting at 0 dBm 19.46mA 11,727us
Transmitting at -5 dBm 19.28mA 11,790us
Transmitting at -10 dBm 19.16mA 11,721us
Transmitting at -20 dBm 19.10mA 11,688us
Receiver in power-down mode 8.32mA
Receiver in idle mode 26.5mA
Receiving 10.2mA 10,622us
Read EEPROM (1 Byte) 8.32mA
Write EEPROM (1 Byte) 9.85mA 4.2ms
CPU in sleep/power-down 1.82mA
CPU in active mode 8.32mA
Write Flash (256 Bytes) 10.19mA 4022us
Erase Flash (256 Bytes) 10.16mA 4021us

Table 3: Dsystem25 current measurement results

The measurements were repeated three times for one node, and
then repeated on two additional nodes, resulting in 5 different
data sets. Analysis of these results provides a 95% confidence
limit of ± 10.5% of the measured current figures.

Parameter Value [mA]
Eperm 0.058 uAs/byte
Erxbit 0.484 uAs/bit
Etxbit 0.100 uAs/bit

Table 4: Dsystem25 energy parameters

Based on the current measurements for each operation shown,
the time and average current for the operation was calculated.

The parameter values are derived by calculating the energy
consumed by the node for each operation (power * time), and
dividing this by the number of bytes to derive the per-byte
figures used in the benchmark equation.

5 Results

Using the power benchmark Equation (6), the parameters from
Tables 3 and 4, and representative values for parameters S, h, k,
and ρ we derive the following minimum power benchmarks for
software updates.

A. MICA2 node benchmark result
h = 40 bits
k = 232 bits (29 bytes)

=benchmarkE 37960 uA-seconds

B. DSystem25 node benchmark result
h = 40 bits
k = 224 bits (28 bytes)

=benchmarkE 41622 uA-seconds

The following parameter values were used to represent a
typical software update:

S = 8192 (a significant, 8KByte software update)
ρ = 0.000010 (1 bit per 100,000)

These results can be interpreted as follows: on the MICA2
node, the minimum charge required to receive and store an
8KByte software upgrade is 0.037 Coulombs. On the
DSystem25 node, the minimum charge required is 0.042
Coulombs.

Note that the intention is not to provide a comparison of
hardware platforms, but to provide a benchmark against which
software providing software upgrade functionality can be
objectively assessed (including both system and ‘software-
upgrade-application’ software). To compare hardware
platforms the voltage would need to be taken into account to
measure electrical energy in Joules.

6 Future Work

This work presented in this paper represents the completion of
this stage of the research. In the next stage, a new model will
be built that accounts for the energy consumption associated
with distributing the software throughout the network. This will
include factors to account for the energy used during
advertisement, data transfer, and lost-packet re-requests. The

same methodology will be applied to derive a minimal energy
equation. It is planned to complete this future stage by taking
power measurements for a number of different software update
algorithms to compare them with the ‘ideal’ minimum charge
consumption.

The energy models and minimum-energy benchmark
methodology presented here could also be used as the basis for
developing a minimum energy benchmark for other tasks that
run on wireless sensor networks: for example routing and data
collection. Future research will involve using the methodology
shown here to develop these benchmarks.

7 Conclusions

A model is presented for estimating the minimum charge
required to perform a software update on a wireless sensor
node. This model is used to produce a minimum energy
benchmark equation.

Measurement results from real nodes are presented, and are
used with this equation to produce a quantitative and objective
benchmark against which the energy effectiveness of software
updates mechanisms can be compared on any node (and figures
shown for two hardware platforms: the MICA2 and
DSystem25 nodes).

The novel methodology described here allows the calculation
of an absolute energy utilization reference point against which
real protocols can be measured. This provides an absolute
measure, or benchmark, as a goal for energy reduction. It is
likely that no real node can meet the ideal minimum energy
consumption derived by the model, but it provides a target
against which node hardware and software can be designed and
evaluated. It also provides an objective target against which
real implementations can be compared.

The methodology presented in the work is also applicable in
developing minimum-energy benchmarks for other tasks that
run on a wireless sensor network. For example, a calculation of
the minimum energy required to distribute connectivity
information would provide the basis for a minim-energy
benchmark for connectivity-based routing schemes.

Acknowledgments

We would like to acknowledge the assistance of Philip Angove
and Ivan Ferrante in the Tyndall National Institute in matters
relating to the DSystem25 hardware, and funding from Science
Foundation Ireland under grant NAP18.

References

[1] S. Brown, C. Sreenan. "A New Model for Updating

Software in Wireless Sensor Networks", IEEE Networks,
Nov/Dec 2006, pp.42-47,(2006).

[2] CrossBow Products. "MICA2 Wireless Measurement
System Datasheet", Document Part Number: 6020-0042-
08 Rev A, Crossbow Technology Inc,(2007).

[3] M. Galos, D. Navarro, F. Mieyeville, I. O'Connor.
"Energy-aware software updates in heterogeneous
Wireless Sensor Networks," in Proc. IEEE 9th
International New Circuits and Systems Conference
(NEWCAS), pp.333-336,(2011).

[4] C. Haas and J. Wilke. "Evaluating the energy-efficiency
of key exchange protocols in wireless sensor networks".
In Proc. of the 7th ACM workshop on Performance
monitoring and measurement of heterogeneous wireless
and wired networks(PM2HW2N'12),pp.133-140, (2012).

[5] A. Hagedorn, D. Starobinski, A. Trachtenberg. "Rateless
Deluge: Over-the-Air Programming of Wireless Sensor
Networks Using Random Linear Codes," in Proc.
International Conference on Information Processing in
Sensor Networks (IPSN '08), pp.457-466,(IEEE,2008).

[6] J. Hui, D. Culler. "The Dynamic Behaviour of a Data
Dissemination Protocol for Network Programming at
Scale", in Proc. 2nd Intl. Conference on Embedded
Networked Sensor Systems, pp. 81-94,(ACM,2004).

[7] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler,
K.S.J. Pister. "System architecture directions for
networked sensors", in Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pp. 93-104,(ACM,2000).

[8] S. Jayapal, R. Huang, S. Ramachandran, R. Bhutada, Y.
Manoli. "Optimization of electronic power consumption
in wireless sensor nodes", in Proc. of the 8th Euromicro
Conference on Digital System Design, pp. 165-169,
(IEEE,2005).

[9] J. Jeong, S. Kim, A. Broad. "Network Reprogramming",
TinyOS 1.x Documentation, Aug 12, (2003). (available at
http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf)

[10] J. Koshy and R. Pandy. "Remote Incremental Linking for
Energy-Efficient Reprogramming of Sensor Networks",
in Proc. of the Second European Workshop on Wireless
Sensor Networks, pp.354-365,(IEEE,2005).

[11] T. Liu, and M. Martonosi. "Impala: A Middleware System
for Managing Autonomic, Parallel Sensor Systems", in
Proc. of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Progamming (PPoPP’03), pp.107-
118,(2003).

[12] T. Liu, C.S. Sadler, P. Zhang, M. Martonosi.
"Implementing Software on Resource-Constrained Mobile

Sensors: Experiences with Impala and ZebraNet". in Proc.
of the 2nd Intl. Conference on Mobile Systems,
Applications and Services (MobiSys’04), pp.256-
269,(ACM,2004).

[13] E. Modiano. "An adaptive algorithm for optimizing the
packet size used in wireless ARQ protocols", Wireless
Networks 5, pp.279-286, (Kluwer,1999).

[14] B. O'Flynn, S. Bellis, K. Delaney, J. Barton, S.C.
O'Mathuna, A.M. Barroso, J. Benson, U. Roedig, C.
Sreenan. "The development of a novel minaturized
modular platform for wireless sensor networks", Fourth
International Symposium on Information Processing in
Sensor Networks (IPSN 2005), pp.370-375, (2005).

[15] Pittsburgh. Proc. of the Distributed Sensor Nets
Workshop, Pittsburgh, PA, Dept. of Compsci. CMU,
(1978).

[16] N. Reijers, K. Langendoen. "Efficient Code Distribution
in Wireless Sensor Networks", in Proc. of 2nd ACM Intl.
Workshop on Wireless Sensor Networks and
Applications(WSNA’03), pp.60-67,(2003).

[17] K. Romer, F. Mattern. "The design space of wireless
sensor networks", IEEE Wireless Communications, vol
11, iss. 6, pp.54-61,(2004).

[18] C. Schurgers, V. Tsiatsis, S. Ganeriwal, M. Srivastava.
"Optimizing Sensor Networks in the Energy-Latency-
Density Design Space", IEEE Trans. Mobile Computing,
vol. 1, no. 1, pp.70-80,(2002).

[19] V. Shnayder, M. Hempstead, B. Chen, G.W. Allen, M.
Welsh. "Simulating the power consumption of large-scale
sensor network applications", in Proc. of the 2nd
international Conference on Embedded Networked Sensor
Systems (SenSys '04), pp.188-200,(ACM,2004).

[20] S. Singh, C.S. Raghavendra. "PAMAS: Power aware
multi-access protocol with signalling for ad hoc
networks," ACM Computer Communication Review, vol.
28, no. 3, pp.5-26,(1998).

[21] J.A Stankovic, T.E. Abdelzaher, Chenyang Lu, L. Sha,
J.C. Hou. "Real-time communication and coordination in
embedded sensor networks", in Proc. of the IEEE,
Volume: 91, Issue: 7, pp.1002-1022,(2003).

[22] M. Steine, Cuong V. Ngo, R. S. Oliver, M. Geilen, T.
Basten, G. Fohler, J-D. Decotignie. "Proactive re-
configuration of wireless sensor networks", in Proc. of the
14th ACM international conference on Modeling, analysis
and simulation of wireless and mobile systems (MSWiM
'11),(ACM,2011).

[23] L. Wang. "MNP: Multihop Network Reprogramming
Service for Sensor Networks", Proc. 2nd Intl. Conference
on Embedded Networked Sensor Systems, pp.285-
286,(ACM,2004).

