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Abstract 

Anticipatory adaptation to climate change in the water resources sector is essential to 

reduce or avoid expected impacts on water resources availability and management. 

Anticipating how water systems are likely to respond to a changing climate is a 

challenging task, due to the difficulties in detecting clear signals of anthropogenic 

climate change from hydrological observations, along with uncertainties in future 

climate change impacts. To date in Ireland, studies with regard to climate change 

have focused on the traditional top-down, climate-scenario-driven impact 

assessments. Little research has gone beyond this traditional approach and examined 

how uncertain information on the future resource availability and on the vulnerability 

of water supply systems to climate change, can be incorporated into decision-

making. 

In addressing these challenges this thesis first examines observations of river flows 

from a network of near-natural catchments for evidence of climate-driven trends. 

Selected flow indicators relevant to water resource management are extracted and 

analysed for climate-driven trends, using different approaches including fixed 

periods of record and moving windows tests, to explore the nature of change in 

observations. Results indicate that the derived time series of median and low flow 

indicators in Ireland are dominated by natural variability, which makes the detection 

of a climate change signals in river flows rather difficult. The trends obtained for 

observed summer flows indicate a disagreement with established Irish climate 

change projections of drier summers and more extreme drought conditions. Given 

the shortage of coherent trends, the magnitude and amount of time required for 

change to be detected suggest that change signals will not be detected, using 

conservative significance levels, in the time frame required for adaptation. Therefore, 

anticipatory adaptation in the water resources sector cannot only rely on observed 

flow information but also needs to be based on the assessment of vulnerabilities to 

projected future changes. 
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In developing a tool to support water resources decision-making in Ireland, a 

physically based hydrological model (HYSIM) is coupled with a water resources 

model (WEAP) and applied to 12 different case study surface water abstraction 

points in Ireland to explore the effectiveness of selected adaptation options. The tool 

incorporates uncertainties in Irish future climate scenarios and hydrological model 

application. To facilitate application to un-gauged river reaches, from which water is 

abstracted, the tool incorporates a proxy-basin method, incorporating hydrological 

model uncertainty to obtain feasible ranges of future hydrological conditions. Non-

climatic pressures such as population growth projections are also included in the 

modelling framework. Threshold-based indicators are employed to assess the water 

resources system performance for selected robust adaptation options of demand and 

leakage reductions. 

Results indicate that the sensitivity of individual water resource systems to future 

changes and adaptation decisions is context specific. This is due to the particular 

hydrological and water supply system characteristics and requires case-by-case 

analysis. For a number of abstraction points examined in the east of the country, the 

tested scenarios are not sufficient to reduce vulnerability for a considerable 

proportion of the uncertainty space considered. Additional or different adaptation 

options will be required in these situations to increase system performance. The 

development and application of this tool marks a first attempt at using climate 

scenarios and their associated uncertainties for decision appraisal and marks a first 

step in this direction in Ireland, thereby providing a bridge in transitioning to a fuller 

methodology for decision appraisal. In developing a future research agenda priorities 

are distilled. 
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1 Introduction 

“Water is essential to human life - for basic health and survival, as 

well as food production and economic activities.” UN (2003); pp.1. 

1.1 Introduction 

A changing climate has the potential to have a significant impact on water resources 

availability and management. To be able to better cope with the expected changes 

anticipatory adaptation is necessary to prepare water supply systems and to minimise 

potential impacts. Parts of the work presented in this thesis are a result of an Irish 

Environmental Protection Agency (EPA) funded project through the Climate Change 

Research Programme (CCRR) 2007–2013, and are published as Report Series No. 16 

by Hall et al. (2012). The work presented in this thesis is centred on the difficulties 

and potential of extracting and generating information to inform climate change 

adaptation decisions in the Irish water sector.  

The first chapter introduces the topic of water resources in Ireland and the challenges 

of obtaining information for adapting water resources and their management to a 

changing climate. In Section 1.2 the rationale of this thesis is set out. The research 

aims and objectives are explained in Section 1.3. The description of the thesis 

structure in Section 1.4 concludes this chapter. 

1.2 Rationale 

Climate is the main driver influencing the long-term availability of raw water 

resources. Changes in the climatic regime of an area are apparent through changes in 

mean and extreme precipitation and its timing, frequency, intensity and location, 

which can have a significant impact on the hydrological system and therefore on the 

availability of water resources. Any changes in the hydrological system will have 

large implications for water resources management. For example, as a consequence 

of increasing temperature, climate models suggest an approximate global average 

precipitation increase of 3.4% per degree Kelvin of temperature (Allen & Ingram, 
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2002), leading to more intense but less frequent precipitation periods. These 

projected changes are global averages; however, at a regional scale such changes can 

manifest themselves at different magnitudes. Nevertheless, anticipating how 

projected changes will affect future water availability is an important for any water 

management decision. 

Historically, pressure was put on the management of water supply systems mainly 

from increasing water demand or extended drought conditions; however, with a 

warmer climate, water demand could further increase while water supply may be 

reduced. Therefore, a changing climate will be a key driver of the future availability 

of raw water resources, resulting in the necessity of including climate change 

considerations in the planning approach. 

A changing climate and the associated changes in the hydrological cycle challenge 

the traditional approach in water resource planning which is based on the assumption 

of stationarity of the climate system and thus on a stationary hydrological system 

(Milly et al., 2008). This traditional view implies that raw water availability for 

water abstraction is more or less constant over time, with some inter-annual or 

inter-decadal variability. However, with a changing climate, the assumption that the 

past climate and hydrological system will be the key to the future conditions is no 

longer valid. Changes in the hydro-climatic system might already be take place and 

could result in changes in the observed flow regimes. This uncertain hydrological 

future is problematic when planning decisions and anticipatory adaptation measures 

have to be agreed upon to avoid expensive mal-adaptation. This is of particular 

importance in planning and managing water supply policies and infrastructure, with a 

long time required for planning and operationalisation, as well for the long design 

life of such infrastructure projects, where mal-adaptation can be expensive (Hall & 

Murphy, 2011).  

The effect of a changing climate on raw water resources and water supply systems 

will not only depend on the degree of changes in the hydrological system but also on 

the water supply system itself. Depending on the main characteristics of water supply 

systems, the same type of change in a climatic variable can have very different 
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effects on diverse water supply systems. For example, systems with plenty of excess 

headroom are robust and likely to cope with larger changes, compared to water 

supply systems that are already under pressure and operating at, or close to, their 

design capacity, where a small change can have large effects (Hall & Murphy, 2012). 

Therefore, an assessment of the balance of future water supply and demand of 

individual water supply systems or even single water abstraction points is crucial by 

taking future climate and future development of non-climatic pressures into account. 

In Ireland, the national water supply system is structured as follows: the majority of 

the population (80%) receives its water from public water supplies, which are 

operated by 939 Water Services Authorities spread across the country. Private wells 

serve 12.3% of the people, whereas private group water schemes and public group 

water schemes account for 4.7% and 2.3% or the population respectively. The 

majority (81.9%) of Irish drinking water originates from surface water sources such 

as lakes and direct in-stream abstractions. Water abstractions from groundwater 

account for 10.5% and springs 7.6% of the potable water (EPA, 2012). However, 

regional differences on the main sources and key characteristics of the water supply 

systems exist. 

As shown above, an important characteristic of the Irish water supply systems is that 

surface water is the main raw water source for public water supplies, which supply 

the majority of the population (EPA, 2012). Often, particularly for water supply 

systems serving smaller communities, the water is directly abstracted from the river, 

without any storage facilities such as reservoirs. This characteristic makes these 

water supply systems particularly vulnerable to any changes affecting in-stream river 

flow, such as possible flow reductions induced by a changing climate.  

Therefore, an understanding of possible impacts of climate change on surface water 

resources is of high importance. In the Irish context, little work has been conducted 

on climate-driven changes in river flows, with exception of high- and mean- flows 

(Murphy et al., 2013). Though, a systematic study on observed changes in low-flows 

is still needed to inform water management. With regard to future changes, a number 

of case studies have analysed the effects of climate change on stream flow at a 
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catchment scale (e.g. Charlton et al. (2006), Steele-Dunne et al. (2008), Bastola et al. 

(2011a) and Bastola et al. (2012)). However, none of these studies have analysed 

such impacts for individual water abstraction points and such information would be 

needed to inform adaptation decisions, 

1.3 Research Aims and Objectives  

The motivation for this thesis is driven by the challenges faced by water managers in 

adapting to climate change and their need for information and tools to support 

decision-making. Water and therefore a reliable and sustainable water supply are 

important to sustain and to develop our society. In the light of challenges posed by 

climate change in the form of possible changing rainfall patterns and altered water 

demands, it is critical that water management in Ireland can adapt to a changing 

climate in a timely fashion. However, the task of formulating adaptation measures is 

not straightforward. Challenges originate amongst others, from the lack of clear 

anthropogenic climate change signals in observational data on hydro-climatic 

variables and wide ranges of uncertainty in projections of future impacts stemming 

from various sources. This thesis takes an Irish context and specifically uses data and 

information readily available to water managers in Ireland. The aim of this thesis is 

to address the issues presented above and offers a practical approach and a tool for 

more robust adaptation option appraisal in the water sector in Ireland. 

The key aims of this thesis are two-fold, built around the analysis of observational 

data and the development of a modelling and decision-support tool, to inform robust 

climate change adaptation decision-making in the Irish water supply sector.  

Each research aim and supporting objectives can be summarised as follows: 

1) Examine the utility of traditional trend analysis in river flow observations for 

informing decision-making for anticipatory adaptation to climate change in the 

water sector. 

a. Analyse the observational river flow records in Ireland for evidence of trends 

in flow indicators relevant to water resource management.  
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b. Investigate the challenges involved in extracting a robust anthropogenic 

climate change signal from hydrological records. 

c. Identify whether a linear climate change signal will be statistically detectable 

in the time-frame required for adaptation with regard to both magnitude and 

timing. 

2) Develop a decision-support tool for the water sector in Ireland through coupling 

available and widely used models, in order to appraise the utility of selected 

adaptation options in the context of robustness to uncertainty. This tool will: 

a. Incorporate national climate change scenarios that are currently used in 

impacts and adaptation assessment in Ireland. In addition, provide the 

flexibility in the model setup to allow future incorporation of larger 

ensembles of climate change scenarios.  

b. Integrate uncertainties derived from the application of hydrological models. 

In particular, in a real world application where many points of interest for 

water management are without observed flow records, the tool shall 

incorporate uncertainties associated with deriving stream flow in un-gauged 

settings - particularly model parameter uncertainty. 

c. Include non-climatic drivers that affect water resources, such as population 

growth and supply network characteristics. 

d. Provide a framework for model output analysis and result presentation of 

equally possible multiple future outcomes of the water resource model, in a 

practical context. 

The tool developed here will be the first adaptation assessment that goes beyond 

traditional climate change impact assessment in Ireland. In achieving these research 

aims, this thesis offers a bridge to support the transition from top-down climate 

change impact assessments to an approach centred on anticipatory adaptation. 

Insights gained from this research can inform directions for the future development 
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of information and decision-support tools for tackling the important challenge of 

adapting water supply systems to a changing future. 

1.4 Thesis Structure  

In addressing the research aims and objectives outlined above this thesis is split into 

seven chapters and structured as outlined in the Schematic in Figure 1.1. 

In Chapter 2, a review of the scientific literature on climate change impacts on the 

water sector is presented examining the role of observations and future projections in 

providing information for anticipatory adaptation under climate change uncertainty. 

In addition, findings from previous studies are outlined and recent advances in 

approaches to informing adaptation are reviewed. 

The first research aim of the thesis is addressed in Chapter 3. Observational flow 

records are examined for evidence of a changing climate in a network of Irish 

hydrometric stations. To investigate the challenges associated with the extraction of 

climatic change signal in hydrological records, a number of low-flow and low-flow 

spell indicators are analysed for changes using different trend analysis approaches. 

Detection times for climate change signals to emerge as statistically significant are 

established and the utility of observations to inform anticipatory adaptation is 

discussed. 

The second key research aim is addressed in Chapters 4-6.  

In light of findings from Chapter 3, in Chapter 4 the need for a tool for informing 

adaptation decisions in the water resources sector is established. Using data and 

information currently available to decision makers in Ireland, Chapter 4 describes in 

detail the framework, methods and data used in the following chapters to form a 

decision-support tool.  

In Chapter 5, the hydrological modelling approaches which underpin the water 

resources decision-support tool are detailed for illustrative case study areas and 

gauged and un-gauged water abstraction points.  
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Chapter 6 provides an assessment of different low-regret adaptation options within a 

water resource model, by using a threshold-based approach to evaluate the water 

system and selected adaptation option performance under the range of projected 

future uncertainties considered.  

The thesis concludes in Chapter 7 with an overall summary and discussion of the 

main research findings, acknowledges the current limitations and suggest future 

research in the Irish water resources sector. 

 

 
Figure 1.1 Schematic of thesis structure and chapters.
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2 Review of Scientific Literature 

2.1 Introduction 

This chapter presents and summarises the literature on water resource management 

and climate change with the aims of summarising recent approaches, identifying 

gaps in research so far and distilling research objectives to be investigated in this 

thesis.  

The chapter starts out by providing an overview on water resources and climate 

change (Section 2.2). In Section 2.3, the role and challenges associated with the use 

of observations in providing information for future water management are presented. 

In section 2.4, future climate projections and hydrological scenarios and their 

associated uncertainties are examined together with a critical appraisal of traditional, 

top-down approaches in Section 2.5. Alternative approaches to climate change 

adaptation are presented in Section 2.6 followed by sample applications in Section 

2.6.1. This chapter finishes with a summary (Section 2.7) which identifies gaps in 

knowledge and how this thesis is addressing these.  

2.2 Water Resources and Climate Change - An Overview 

Management of future water resources faces many challenges. Water management 

needs to take into account various dynamic processes affecting water demand and 

water supply such as changes in population, land-use changes, inter-annual weather 

variability and climatic change.  

The energy of the sun drives the climate system, which is the key driver of the 

hydrological cycle. Both systems are intrinsically linked with each other so that a 

change in one can induce a change in the other due to their in-depth inter-connection 

(Kundzewicz, 2004). However, the energy balance of the Earth has been modified 

due to human action , mainly through greenhouse gas emission and land use change. 

Forster et al. (2007) highlight the strong likelihood of humans having extensively 

influenced the warming of the global climate, since 1750.  
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The Intergovernmental Panel on Climate Change (IPCC) considers anthropogenic 

greenhouse gases emission as a very likely cause of the increase in global 

temperatures over the course of the 21st century (IPCC, 2007a). They also estimate 

that global mean surface temperatures have increased by 0.74°C ± 0.18° C (linear 

trend) over the last ~100 years (1906-2005) (Trenberth et al., 2007). It is expected in 

theory that a warmer climate leads to increases in evaporation and a higher specific 

humidity resulting in an intensification (or acceleration) of the hydrological cycle 

(Huntington, 2006). A changing climate also has the potential to affect the intensity, 

timing and frequency of precipitation events and their translation into runoff (Bates 

et al., 2008).  

Such projected changes can have both positive and negative effects, as outlined 

below. Expected changes in precipitation will be more variable then the expected 

future changes in temperature, as precipitation is very site specific and highly 

influenced not only by the topography but also by local and regional atmospheric 

patterns (IPCC, 2007a). Thus, precipitation changes will not be translated linearly 

into hydrological changes (e.g. in infiltration or surface runoff), as these again 

depend on the catchment characteristics. Therefore, due to this nonlinearity, possible 

changes can have both positive and negative effects on the hydrological system (or 

no effects at all) depending on the sign, magnitude of the change and the 

geographical location. For example, temperature increases can result in increased 

evapotranspiration through increased atmospheric water holding capacity and larger 

water loss from the soil surface (Dai et al., 2004) or water surface or an increasing 

demand for potable water for domestic or agricultural use. Whereas an increase in 

the magnitude of a rainfall event has the potential to cause damaging floods or 

increased erosion and might adversely affect water supply systems and water 

abstraction due to decreased water quality, high turbidity and disrupted systems.  

Localised information on possible future impacts is needed, to anticipate changes and 

to devise appropriate adaptation measures, to reduce exposure or develop coping 

strategies. However, the local scale is also the one at which the greatest uncertainties 

and challenges exist in detecting regional climate change signals (Stott et al., 2010) 

and in modelling future impacts (Milly et al., 2005; Nohara et al., 2006).  
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Hydro-climatic information and historical records from monitoring networks have 

always played an important part in informing decision-making in water management, 

especially for planning and operating water resource systems. However, with 

anthropogenic induced climate change and the possibility of experiencing new or 

changing hydro-climatic conditions, alternatives in addition to the traditional 

approaches in water resources planning and management are needed to adapt 

successfully to these anticipated changes. Long-term hydrological observations will 

always play an important role in providing data for detecting and quantifying 

changes along with possible trends in the hydrological system, informing 

hydrological modelling (calibration and validation), evaluating projected future 

hydrological conditions and appraising possible adaptation strategies for informing 

planning and decision-making in the context of climate change. 

2.3 The Role of Hydrological Observations 

Data from river flow observations is the basis of effective water resources 

management and provide basic information for resource assessments, regulation and 

policy development. In the context of changing climatic conditions such 

measurements can provide key information for understanding variability within 

observations, the detection and attribution of emerging climate change signals (Burn 

et al., 2012). Nevertheless, observations are also important for the validation of 

climate change scenarios and the provision of reliable information for training 

models that can be used to generate future predictions. For such purposes, high 

quality low data from time series that span the time period of interest are required. 

Observational hydro-climatological data has always played an important role in 

informing decisions in water resource sector to assess different planning options. For 

example, past hydrological records have been used to provide information about 

future water availability and to design water infrastructure together with other 

factors, such as current and expected water demand increases due to population 

growth. Traditionally, water resource systems have been designed based on historical 

hydro-climatological information, assuming that stream flow will remain unchanged 

in future, with some inter-annual or inter-decadal variability, according to the 
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principle of stationarity. In hydrology, stationarity refers to the perception that stream 

flow varies within un-changing lower and upper bounds, defining the maximum 

variability extent (Milly et al., 2008). However, if climate - the main driver of the 

hydrological cycle - is changing, this assumption of stationarity may no longer be 

valid and additional information on whether and how the hydrological system is 

changing is needed.  

In hydro-climatic data, changes in time series can affect all parts of the flow regime, 

for example high, mean and low flows and/or the timing and frequency of river flows 

of a certain magnitude. In the hydrological community, such changes are generally 

thought to manifest themselves as a trend (gradual change over time), which can 

occur as a linear change, as several smaller step changes or in a curved manner 

(Hirsch et al., 1991; Kundzewicz & Robson, 2004). Changes can also happen as step 

changes/regime shift (rapid change of the magnitude of trend at one (change point) or 

multiple points in the time series). Additionally, oscillations with or without period 

clusters can be present in the time series as shown in Figure 2.1. 

 
Figure 2.1 Time series with possible characteristics of a) trend, b) oscillation, c) regime shift or d) noise 

(Omstedt, 2005). 

(a) (b) 

(c) (d) 
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Internationally several studies have aimed to assess climate-driven changes in 

hydrological data records from existing monitoring networks. However, only few 

studies have actually established and used data from a hydrometric network of 

specific stations selected for the purpose of monitoring the effects of climate 

variability and change on hydro-climatic variables (e.g. Birsan et al. (2005), 

Hannaford & Marsh (2006, 2008), Hodgkins & Dudley (2006), Khaliq et al. (2008, 

2009), Hannaford & Harvey (2010) and Burn et al. (2010)). Even without assigning 

these stations a special network status, the results from a review of 128 international 

studies on climate-driven changes by Burn et al. (2012) showed that only ~30% of 

the studies used data from pristine catchments or near-natural catchments with 

limited disturbances such as land-use change or water abstractions.  

The main advantage of using stations from an active network is that already existing 

data can be analysed for long-term changes without the need to setup new stations to 

collect data and to wait until the time-series has reached an appropriate length for 

any analysis to be meaningful. A shortcoming of such an approach is that these 

networks were often established for monitoring purposes other than hydro-climatic 

changes such as recording high or low flows (Burn et al., 2012). Depending on the 

monitoring purpose, some parts of the flow regime will have better accuracy than 

others. Therefore, only few hydrological monitoring stations perform well across the 

entire range of flows (Hannaford & Marsh, 2008). Consequently, the quality of data 

might not be ideal for the purpose of monitoring an anthropogenic induced climate 

change signal. Consequently, a rigorous quality control process, including meta-data 

information for the time series used should be employed (Kundzewicz & Robson, 

2004) and only appropriate data should be included for further analysis. Such a 

thorough selection process of measuring stations and their associated time series can 

limit the number of usable sites and might affect the coverage, if regional analysis is 

performed and spatial representativeness of study sites over large areas is needed.  

Reference hydrometric networks can provide quality controlled data sets for the 

detection of climate-driven changes in stream flow. Therefore some countries have 

specifically assigned stations to such networks, to allow the assessment and 

identification of such changes. The networks consist of either existing and/or new 
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hydrological monitoring sites or have capitalised on existing sites for monitoring and 

detection of climate-driven trends in hydro-climatic records. Examples of reference 

networks include the Hydro-Climatic Data Network (HCDN) in the USA (Slack & 

Landwehr, 1992), Canada’s reference hydrometric basin network (RHBN) (Harvey 

et al., 1999), the UK Benchmark Network (Marsh, 2010) or the Irish Reference 

Network (IRN) (Murphy et al., 2013).  

However, not only hydrometric sites can be analysed to better understand changes in 

the hydro-climatic cycle. Several studies have analysed various types of indicators of 

hydro-climatic variables of interest. For example, Alexander et al. (2006) 

investigated global changes in temperature and precipitation extremes and reported 

statistically significant changes (at the 5% level) for minimum temperatures and 

precipitation, although with less spatial coherence for the latter. Precipitation 

changes differ in magnitude and sign from region to region, reducing the average 

global signal of change (Zhang et al., 2007). Therefore, regional analyses are more 

appropriate. For example, Osborn & Hulme (2002) analysed precipitation patterns in 

the United Kingdom (UK) from 1961 to 2001 and found daily precipitation tends to 

become more intense in winter and less intense in summer. These findings are also 

supported in an updated analysis of the data up to 2006 (Maraun et al., 2008).  

In Ireland, changes in climatic driven variables such as precipitation have been 

analysed by previous studies. For example, Sheridan (2001) analysed Irish rainfall 

records for trends in rain-days and wet-days (precipitation ≥ 1.0 mm) and found two 

significant trends, namely increases at many stations in March and decreases in July, 

August and September. An analysis of annual rainfall from 1960 onwards by 

McElwain & Sweeney (2007) indicated increases for the north and west of the 

island, while decreases or slight increases were detected for the south and east. 

According to a study by Kiely (1999), extreme rainfall events have become more 

common in Ireland since 1975 and a correlation with an increase in the positive 

phase of the North Atlantic Oscillation (NAO) Index was found. Additionally, Leahy 

& Kiely (2011) highlighted that annual and seasonal precipitation totals changed for 

synoptic stations in the west and northwest of Ireland. This change is marked by a 

transition to increased rainfall levels around mid-1975. While change points related 
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to natural variability have been detected along with consistent trends in recent 

decades, no long-term monotonic trends have been identified and attributed to 

climate change. This has also been the case for studies in other countries such as 

North America (Ziegler et al., 2005), Canada (Burn & Hag Elnur, 2002) and the 

United Kingdom (Wilby, 2006).  

However, the way changes in precipitation and temperature are translated into 

changes in stream flow cannot be considered as being linear and are rather highly 

dependent on catchment characteristics. Therefore, regional assessments utilising 

long-term stream flow records have been conducted for several studies around the 

globe. Although currently there is little evidence of a climate change signal at 

regional scales in hydrologic variables, a trend analysis of up to date data can provide 

a first insight (Bordi et al., 2009). On a European scale, several studies have 

identified changes at regional scales for different parts of the flow regime (low, mean 

and high flows) (Dixon et al., 2006; Hannaford & Marsh, 2008; Klavins & Rodinov, 

2008; Bordi et al., 2009; Petrow & Merz, 2009; Burn et al., 2010; Fiala et al., 2010; 

Korhonen & Kuusisto, 2010; Wilson et al., 2010; Montanari, 2012). However, due to 

the caveats encountered when performing a trend analysis (see Section 2.3.1) the 

results of the example studies presented here will need to be treated with caution.  

In this thesis, only examples of studies analysing the lower part of the river flow 

regimes are presented as these have the highest importance for long-term water 

management decisions. For example, Hisdal et al. (2001) investigated stream flow 

droughts in Europe using data from the Europe Water Archive (including catchments 

with high human influences) and found for the period 1962-1990 an increasing 

deficit volume during droughts for large parts of the UK, Eastern Europe and Spain, 

and decreasing volumes in Central Europe, although most of changes were reported 

to be not statistically significant. Hisdal et al. (2001) highlight the fact that these 

trends could be explained by changes in precipitation patterns and/or human 

influences in the investigated catchments.  

For the HCDN in the US, large-scale increasing trends in low flows (statistically 

significant) were reported for the Midwest (Douglas et al., 2000), while McCabe & 
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Wolock (2002) were able to detect increasing stream flow for annual minimum flows 

and annual median flows in the US, particularly in the east. In the Canadian Prairies, 

an influence of the temperature change on low streamflow (in catchments with 

natural flow regimes) was found, resulting in a decreasing tendency for records with 

varying streamflow data range from 1912-1993 to 1969-1993. (Yulianti & Burn, 

1998). Additionally, a later study on the timing of low flows in the RHBN in Canada 

up to the year 2003, showed that the majority of observed trends indicated a shift 

towards earlier occurrences of winter low flow, whereas no prevailing signal of 

earlier or later summer low flows could be detected (Ehsanzadeh & Adamowski, 

2010). A pan-European study by Stahl et al. (2010) on low flows in near natural 

catchments over the period 1962-2004 confirmed more recent national and regional 

trend studies, with increasing trends in winter and decreasing low flows for the 

regional low flow periods for the majority of catchments investigated, especially in 

southern parts of Europe.  

In the UK benchmark network, few significant positive trends (5% level) have been 

found for low flows (1973-2002) and these trends lost statistical significance when 

records were extended beyond a length of 40 years (Hannaford & Marsh, 2006). In 

Wales, significant increases in low flows for three time periods of different length 

(minimum of 25 years) up to 2001 were identified by Dixon et al. (2006). Regarding 

Ireland, for the period 1976-2009 Murphy et al. (2013) found that high-flows show 

significant positive trends (5% level), however, for the majority of investigated 

hydro-climatic indicators, strong temporal variability of trends is apparent, which can 

mask any climate change signal.  

The above studies show that so far there are no common, robust signals of climate 

change in the investigated flow records to date. This can be caused by regional 

differences between the investigated areas, but also due to the different methods, 

periods and statistical significance levels used. Additionally, the studies often use 

short records (e.g. 30 years), which are strongly influenced by inter-annual and inter-

decadal variability. In such short records, extremes (particularly at the start or end of 

the analysed time series) can cause apparent short-term trends, where no long-term 

trend exists. Chen & Grasby (2009) provide a summary diagram illustrating the 
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effect of oscillations and selected monitoring window on trends obtained (Figure 

2.2). They highlight the need to consider the presence of quasi-periodic climate 

cycles of 45–60 years, and argue for caution when conducting trend analysis of 

observed records, on time series with less than 60 years.  

 

Figure 2.2 Summary diagram showing the effects of oscillations on trend analyses. Main diagram shows a 

conceptual long-term climate record with a prominent multi-year cyclical component along with a linear 

increase trends with time. Box (a) shows that if climate monitoring captures ½ wavelength starting at the 

trough and ending at the peak of a cycle, then the estimated trend will be significantly greater than the true 

trend. In contrast, (b) shows that a ½ cycle record starting at a peak and ending in the trough of a cycle 

will give a negative trend, even though the true trend is positive. In (c), even one and half cycle length 

record will give too great an increase due to the record starting at the low point of a cycle. Graphic taken 

and caption quoted from Chen & Grasby (2009). 

Kundzewicz (2004) noted that from a review of previous research evidence is 

lacking of any significant large-scale evidence for changes in hydrological data (i.e. 

floods and droughts) induced by anthropogenic climate change. However, as the 

effects of human-induced climate change become more pronounced with time, early 

detection of changes in hydrological regimes is increasingly important, for informing 

adaptation strategies to minimize negative effects on the environment and society. 

Therefore, a ‘wait and see’ attitude until these anticipated changes become detectable 

in hydrological records to devise policies and responses is not an option (Murphy et 

al., 2011). This is problematic given the long planning times required in developing 

adaptation and the long design-life of water infrastructure (Hallegatte, 2009).  
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2.3.1 The Challenges of Climate-Driven Trend Detection 

The following sections will outline the challenges associated with climate-driven 

trend detection in observational hydrological records. Human induced artificial 

influences on hydrological records, so called confounding factors, can introduce 

artificial changes into the record, which are not driven by anthropogenic climate 

change (Fowler & Wilby, 2010) and can be easily misinterpreted as anthropogenic 

induced climate-driven trends. Examples for such human induced changes are, but 

are not limited to land use change (e.g. deforestation, urbanisation, arterial drainage 

or changes in water infrastructure), shift of the location (upstream or downstream) of 

the measuring site, change in measuring technique/device or the inability of the 

device to capture the flow at extreme magnitudes (low flows or high flow). In 

overcoming some of these challenges when studying river records for a climate 

change signal, Kundzewicz & Robson (2004) recommend that if possible, only 

records from near-natural river catchments with long good quality records should be 

used.  

As shown in the previous section, observational data from reference hydrological 

networks with limited non-climate related disturbances have the potential to provide 

such records, which can be the base for the analysis of climate-driven changes in 

hydrological time series. To date, there is no international accepted standard for a 

common protocol of data collection and analysis in such networks. Different 

countries use different criteria, variables and analysis methods, which makes 

comparison of international or global outcomes difficult (Burn et al., 2012). This 

high diversity of approaches makes it difficult to internationally compare the 

outcomes of the analyses and assemble the results into conclusive broader scale 

picture.  

However, from a national/regional point of view, this diversity is rooted in the 

history and therefore in the purpose of the existing network, which defines the spatial 

distribution, length and quality of data available. The attributes of the existing 

network then define the station selection criteria that can be applied to form a sub-

network for specific purposes. For example, to obtain a geographically representative 
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reference hydrological network in the UK, compromises on the station selection 

criteria were necessary because of the limited number of stations with a natural flow 

regime (Bradford & Marsh, 2003).  

Additionally, the variables and the time series that could be potentially analysed also 

depend on network history and the reason for establishment of stations in the first 

place. Ideally, the entire range and selected parts of the flow regime (e.g. mean, high 

and low flows), for annual, seasonal and monthly indicators, should be analysed to 

allow for the fact that catchments within the same region, but with differently 

properties (e.g. size, soils or aquifers) respond different to climate-driven changes. 

However, this is not always possible, as for example, in Ireland the hydrometric 

stations installed by the Office of Public Works (OPW) were mainly for monitoring 

flood risk, with a focus on high flows (OPW, 2012). Therefore, for some of these 

stations, the low flows are of poor or unacceptable quality, which limits the potential 

for good quality assessments of low flow related hydrometric variable.  

Apart from the influences of the network history and location on the potential of 

doing a trend analysis, other factors such record length, missing data, the period of 

record selected and non-stationarity make the detection of trends challenging. For 

example, when a trend study with observed time series is being conducted on 

multiple measuring sites, a common problem encountered are large differences in 

particularly start but also end dates, depending on when the gauges were installed or 

ceased to operate. For meaningful interpretation of the outcomes of such a study, the 

records examined must be coexisting. However, to obtain a representative spatial 

coverage across a region, often a compromise between concurrent record and 

inclusion/exclusion of measuring stations might become necessary. This can 

additionally complicate the analysis as this evokes a trade-off between spatial and 

temporal coverage driven by the need for long record series and not excluding too 

many stations with shorter records. Long record lengths are important to detect 

trends driven by anthropogenic climate change, as shorter records are often 

dominated by strong natural climate variability (e.g. high inter-annual, inter-decadal 

and multi-decadal variability). At least 50 years of data are recommended by 

Kundzewicz & Robson (2000) and Yue et al. (2012), whereas Chen & Grasby (2009) 
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even go further and caution the use of time series records with less than 60 years. 

However, not only the record length, but also the periods of record selected influence 

the detectability of trend in the data as start and end year of the record can influence 

the trend magnitude and direction. This is particularly the case when outliers are 

present at the start and end of the time series (Fowler & Wilby, 2010).  

Further complexity in detecting trends is added by missing data, especially if gaps 

persist over multiple time steps and/or occur over different time periods for different 

stations. For such situations, Hirsch et al. (1991) recommend the use of monotonic 

trend test procedures, because they allow an easy testing of all records over the 

common period. However, an objective procedure needs to be established to account 

for the maximum amount of data missing in total and for consecutive time series 

points. Additionally, Kundzewicz & Robson (2000) highlight the need to establish 

whether missing data values occur randomly or happen at certain points of the flow 

spectrum (e.g. when the measuring device is not able to capture extreme low flows). 

Such random errors or additionally systematic errors, such as measurement errors 

leading to a constant under or over estimation of low flow values, can compromise 

the trend detection.  

A common approach for the analysis of trends in hydrological time involves the use 

of the Mann-Kendall nonparametric test or linear regression based on the assumption 

of monotonic changes (Burn et al., 2012) and then the significance of the derived 

trends is assessed. However, there is an on-going controversy over whether 

hydrological data can be assumed independent or if the presence of long-term 

persistence (clustering of positive or negative deviations from the mean) violates this 

assumption (e.g. Khaliq et al. (2008, 2009) or Chen & Grasby (2009) ). An 

additional challenge for trend detection is the non-stationarity found in hydro-

climatic data. Cohn & Lins (2005) highlight that it is possible to detect the magnitude 

of trends in non-stationar time series. However, natural variability and long-term 

persistence within the series make an attribution of statistical significance 

ambiguous. Therefore, some authors of have opted to present only the magnitudes of 

change to report regional patterns and not to test for significance of trends (e.g. Stahl 

et al. (2010) or Hannaford & Buys (2012)).  
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Despite these challenges in detecting trends, the analysis of trend in observational 

records can provide helpful information to proactive decision makers and water 

managers. As the results of such analysis allow putting current hydrological 

phenomena (e.g., droughts or flooding events) in long-term context, i.e. to see the 

tendency for emerging shorter term linear trends driven by anthropogenic climate 

change and long-term natural hydro-climatic cycles (Bordi et al., 2009). 

Overall, it is important to attribute the physical causes of any trends detected (Merz 

et al., 2012) in hydro-climatic data to be able to understand how these trends might 

evolve into to the future, (i.e. whether the trend persists, levels off or reverses). Only 

when the cause or the multiple causes of the trend single are fully understood, can 

these signals be extended into the future and used for future planning and water 

resource management. However, the trend detection and analysis approaches 

presented above are only able to give planners retrospective indication of what has 

happened to the hydro-climatic system. For anticipatory adaptation, this partial 

understanding/interpretation about past and current conditions needs to be amended 

by information about possible future conditions. For example, this can be achieved 

by using climate change projections in conjunction with hydrological models to 

provide projections about the future state of the hydrological system (Burn et al., 

2010). The outputs from these models can then be used as a source of additional 

information to future water resources management and planning. Information on 

possible future climate becomes especially important when anticipated future trends 

in hydro-climatic indicators are not statistically detectable within current 

observations and future planning decisions in the water resources sector have to be 

made. 
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2.4 The Role of Future Hydrological Projections 

2.4.1 Low Flow & Drought Projections and Future Water Resources 

Traditionally, water resources management and planning has been predominately 

been based on estimated or measured stream flow to assess raw water availability at 

certain locations. However, anthropogenic induced change in hydro-climatic 

variables cannot yet be detected in hydrological records with confidence, as 

discussed in the previous section. Therefore, there is an increasing need for 

supplementary information to allow better future management and long-term 

planning of water resource systems.  

Several studies aimed to assess possible future impacts of a changing climate on low 

flow, droughts and water resources at various scales. Stream flow decreases, 

extended low flow periods and hydrological droughts are caused by precipitation 

deficit (Stahl et al., 2002). As changes in precipitation characteristics occur at a 

regional scale, the hydrological characteristics should be studied at a similar scale. 

The examples of European regional studies of future low flow conditions include, but 

are not limited to, the following example studies. Blenkinsop & Fowler (2007) 

examined projected future changes in drought duration, magnitude (severity) and 

frequency for the British Isles using regional climate models. The results suggested 

decreases in mean precipitation during the summer months leading to an 

intensification of shorter duration droughts in most of the investigated regions. Stahl 

et al. (2012) performed a gridded simulation of runoff changes for the European 

continent to overcome the limited spatial distribution for trend analysis for the period 

1963-2000. On a very coarse scale, they found dominating increasing trends in 

winter flow and decreasing trends in summer flow, in conjunction with a north-south 

gradient. This divide is in line with future climate projections, which split Europe in 

a wetter northern part and a drier southern part.  

In terms of various climate change impacts on water resources at a global scale 

published by Bates et al. (2008), Hall & Murphy (2012) provide a summary table of 

the projected effects of climate change and other non-climatic pressures (Table 2.1).  
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Table 2.1 Future changes, their likelihood and effects on water resources (c.f. Bates et al., 2008). 

Change Projection 
Likelihood  

(21st century) 
Effects on water resources 

Precipitation increases in high latitudes 

and parts of the tropics 
very likely and likely 

Increase in water resources. 

More frequent and more serious 

floods 
Annual river runoff increase at high 

latitudes and in some wet tropical areas  

high confidence 

(by the middle of 

the century) 

Precipitation decreases in some subtropical 

and lower mid-latitude regions  
likely 

Decrease in water resources 

More frequent and more serious 

droughts 

Annual river runoff decrease over some 

dry regions at mid-latitudes  

and in the dry tropics 

high confidence 

(by the middle of 

the century) 

The frequency of heavy precipitation 

events increase over most areas  
very likely Risk of rain-generated floods. 

Increase in continental drying in summer 

(especially in the subtropics, low and mid-

latitude) 

likely 
More frequent and more serious 

droughts 

Decline in glaciers and snow cover 

(important in regions supplied by melt 

water) 

high confidence 

Reduced water availability 

(seasonal shift in stream flow, 

reductions in low flows)  

Higher water temperatures and changes in 

extremes, including floods and droughts,  
high confidence 

water quality and exacerbate 

many forms of water pollution 

Sea-level rise extends areas of salinisation 

of groundwater and estuaries,  
high confidence 

Decrease of freshwater 

availability in coastal areas. 

Globally, increase in population and 

affluence and urbanisation;  
high confidence Growing water demand 

Regionally, changes in irrigation needs due 

to climate change and land use change 
high confidence Growing irrigation water demand  

The quantitative uncertainty is expressed using statements about their confidence levels expressed as the 

assessed chance of a finding being correct: “very high confidence at least 9 out of 10; high confidence 

about 8 out of 10; medium confidence about 5 out of 10; low confidence about 2 out of 10; and very low 

confidence less than 1 out of 10” (Bates et al., 2008). 

Uncertainty is expressed using the following likelihood ranges to express the assessed probability of 

occurrence: “virtually certain >99%; extremely likely >95%; very likely >90%; likely >66%; more likely 

than not >50%; about as likely as not 33% to 66%; unlikely <33%; very unlikely <10%; extremely unlikely 

<5%; exceptionally unlikely <1%” (Bates et al., 2008). 

 

Table 2.1 provides a generalised summary of future projected changes and their 

impacts on water resources on a global scale. However, global change projections 

have only limited usability for providing information on local impacts. Projections at 

a more local scale are also affected by a higher degree of uncertainties as discussed 

later. Therefore, it is a complex assessment to extract catchment specific projections 

on the impacts of climate change on the hydrological regimes. Hence, Prudhomme & 
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Davies (2009) concluded that the complexity and uniqueness in individual catchment 

responses require individual climate change impact assessments on a 

catchment-by-catchment basis.  

Until the last couple of years, most studies concerned themselves with assessing the 

impacts of climate change on hydrological regimes with only a small number of 

studies going a step further and examining what these changes could potentially 

mean for water resources management and planning (Arnell, 2006). Therefore, the 

example studies presented in the previous paragraph on projected hydrological trends 

all excluded direct human influences on stream flow and simulate streamflow 

changes in isolation. Only few studies so far have taken the human influence of the 

system explicitly into account. For example, Fowler & Kilsby (2007) and Fowler et 

al. (2007) modelled the impacts of climate change on water resources in north-west 

England and estimated the reduction of the overall yield by 18%, and also projected a 

large impact on low flows (Q95 - the flow equalled or exceeded 95% of the time) in 

summer months, with reductions between 40-80%. On a larger scale, Lehner et al. 

(2006) estimate the impact of climate change for Europe using different climate 

models in conjunction with water use scenarios, which adds another component to 

the already complex modelling approach. Their model results suggest amongst 

others, a possible increase in the recurrence of 100-year drought in southern Europe, 

the UK and Ireland for the 2070s. Although these findings are not too different from 

the other studies that do not specifically include water resource systems, it is 

important to bring these two components (streamflow projections and water supply 

systems) together to obtain a more thorough understanding of possible future 

changes that have the potential to affect future water resources. 

On a global scale, Alcamo et al. (2007) investigated long-term changes for three 

different water stress indicators taking into account both climate change and socio-

economic changes such as population growth using a scenario lead approach. In their 

study, water stress changed (increased or decreased) for all investigated river basins; 

however, the magnitude and direction depended on the location on the globe.  
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However, these broad scales (global, pan-European or national) can only provide a 

rough identification of possible future changes, and merely help to raise awareness of 

future pressures on water resources. The scale at which water management and 

planning is operating is the catchment scale (which includes national or 

trans-boundary river basins), and at this scale information on possible change would 

be desirable. However, as mentioned before due to the individual characteristics of 

catchments, each catchment will respond in a unique way to change (Prudhomme & 

Davies, 2009).This unique response and the uniqueness of the water resource system 

characteristics increase the complexity of future water resources planning in a 

changing climate (Hall & Murphy, 2012).  

Therefore, future assessment of impacts of climate change on water resources on a 

catchment-by-catchment basis or even at the scale of individual water abstraction 

will become necessary, to incorporate climate change into water management plans 

to allow anticipatory adaptation to expected changes. Because of this complexity, 

adaptation of the water resources sector to climate change is challenging. Different 

modelling approaches have been developed to aid anticipatory decision-making. 

These approaches will be reviewed in the following sections. 

2.4.2 Modelling Chain and Propagation of Uncertainties 

Traditionally, for climate change impact assessments on the hydrological system, 

output from a selection of Global Climate Models (GCMs), forced with specific 

greenhouse gas emissions scenarios are downscaled to regional levels using 

empirical or dynamical techniques. The downscaled scenarios are then used as input 

to impacts models, such as hydrological models, to generate future time series of 

variables of interest that can be further analysed depending on the variables of 

interest. This traditional, top-down or GCM-led approach shown in Figure 2.3 is 

subject to a cascade of uncertainty (Viner, 2003; Wilby & Dessai, 2010). 
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Figure 2.3 Cascade of uncertainty (modified after Wilby & Dessai (2010), c.f. Hall & Murphy (2012)). 

Projections of future climate are derived from the state of future society 

(socioeconomic scenarios) and their transformation into different scenarios of 

greenhouse gas emissions. The greenhouse gas concentrations in the atmosphere are 

then used within GCM to model the future climate system. However, the output (e.g. 

temperature and precipitation changes) of these models is too coarse for impact 

studies at a regional or catchment scale. Therefore, regionalisation techniques are 

used to downscale these large-scale simulations to the desired smaller scale.  

Hydrological models are then used to translate the Regional Climate Model (RCM) 

output into a hydrological signal (runoff). The results from the rainfall runoff model 

can then be used to assess management and adaptation options in the water resource 

sector. However, each modelling step contains different sources of uncertainty, 

which are propagated throughout the chain of modelling steps, and with each step, 

the model output diverges in a non-linear way, resulting in increasing uncertainty 

ranges. Due to the uncertainties introduced at and propagated through each stage of 

this methodology, multi-model approaches can result in diverging outputs regarding 

the timing, location, sign and/or magnitude of change. Such accumulation and spread 

of model output uncertainties has been described as a ‘cascade of uncertainties’ 

(Viner, 2003; Wilby & Dessai, 2010).  
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The uncertainties in model output stem from different sources which can broadly be 

divided into two uncertainty categories, namely aleatory uncertainties (also called 

unknowable knowledge, natural variability or irreducible uncertainties), and 

epistemic uncertainties (also called incomplete knowledge, statistical uncertainty or 

reducible uncertainties) (New & Hulme, 2000; Hall & Solomatine, 2008). However, 

it is not always possible to separate these two different sources of uncertainty, 

therefore uncertainties are often presented and analysed based on their occurrence in 

the individual modelling steps. The uncertainties stemming from the modelling steps 

involved in an assessment of future water resources are presented in the following 

sections. 

2.4.2.1 Climate Modelling Uncertainties 

When analysing the uncertainty sources in a top down modelling approach the 

‘cascade of uncertainty’ starts off with the forcing uncertainty (Stainforth et al., 

2007), introduced by the choice of anthropogenic greenhouse gas emission scenarios 

depending on the development of future socio-economic pathways, all of which need 

to be considered as equally possible future emission scenarios. Different emission 

scenarios used will result in different magnitudes and ranges of warming, which can 

be seen in the examples shown in Figure 2.4.  

 

Figure 2.4 Figure from the IPPC report showing the ranges of surface warming obtained from the 

emission scenarios used in the IPPC Fourth Assessment Report (IPCC, 2007b). 
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In addition, to the different forcing obtained from greenhouse gas concentrations 

scenarios, the output of climate models is dependent on their initial state variable 

(initial condition uncertainty) (Viner, 2003; Stainforth et al., 2007) and the 

uncertainties stemming from model imperfections (encompassing both model 

inadequacy and model uncertainty) (Stainforth et al., 2007). These uncertainties 

attached to the output of each of the individual GCM’s results in a unique future 

climate projection, resulting in an increasing spread of the uncertainties in the model 

output variables with the number of GCM’s employed. Particular uncertainties exist 

for the spatial distribution and amount of precipitation obtained from climate models, 

compared to temperature projections. For example, in many areas of the globe, less 

than 66% of the models used in the 4
th

  IPCC report agree on the sign of precipitation 

change, see Figure 2.5 (IPCC, 2007b).  

 

Figure 2.5 Relative changes in precipitation for the period 2090–2099, relative to 1980–1999. Values are 

multi-model averages based on the SRES A1B scenario for December to February (left) and June to 

August (right). White areas are where less than 66% of the models agree in the sign of the change and 

stippled areas are where more than 90% of the models agree in the sign of the change. (Figure caption 

quoted from IPCC (2007b)). 

Another source of uncertainties is brought about by the fact that the output of GCMs 

is typically very coarse (100-300 km
2
 grid), which is too coarse to be used for many 

types of impact assessments particularly for hydrological assessments at a regional or 

catchment scale. For future climate projections to be used for future water resources 

planning and to obtain a finer resolution, post-processing of the output in form of 

downscaling techniques is performed (Chen et al., 2011). Advantages and 

disadvantages of the different downscale techniques have been extensively 
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researched (Chen et al., 2011). Depending on the technique employed the results 

obtained for future climate projections will differ (Chen et al., 2011) increasing the 

layer of uncertainties. Especially with regard to the later use of the generated climate 

scenarios to drive rainfall runoff models, Wilby et al. (2000) and Wood et al. (2004) 

highlight the sensitivity of the hydrological model response to the downscaling 

methods employed.  

2.4.2.2 Hydrological Modelling Uncertainties 

In addition to the uncertainties from the climate modelling steps, hydrological 

models add another layer of complexity and uncertainty to the assessment. Different 

rainfall-runoff models can generate ranges of possible future outcomes, although 

they were able to model historical conditions equally well (Butts et al., 2004; Jiang et 

al., 2007). The different outcomes of the hydrological modelling process are a result 

of the combination and interaction of various sources of uncertainties in the 

hydrological modelling approach. 

For example, input data errors introduce uncertainties in the model output data. 

‘Input data uncertainty’ results from the inability to precisely measure observed 

phenomena such as precipitation and soil data (Post et al., 2008). For example, 

precipitation data is used as the primary input to drive hydrological models. 

However, precipitation is highly variable across time and space and is measured only 

at specific locations. Approximation, interpolation or correction factors are used to 

derive precipitation input that can be representative for the catchment area 

considered in the hydrological model.  

Additionally, errors in records of river discharge can be caused by errors in the rating 

curves, which are used to establish a stage-discharge relationship, by imprecise 

measurements of extreme (high or low) flows (Hudson et al., 1999) or by missing 

data records. Such imperfect flow data can increase the uncertainties associated with 

hydrological model calibration, which is described in the following paragraphs.  

Even with perfect (error free) raw data input into hydrological models, the fact that 

the system under consideration is a dynamic one and the related processed need to be 
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simplified and approximated, introduces another layer of uncertainty. The different 

formulations in different hydrological models of how hydrological processes are 

simulated and reproduced result in ‘model structure uncertainty’ (Liu & Gupta, 

2007; Bastola et al., 2011b). Some of this model structure uncertainty is epistemic 

and reducible through improvement of the hydrological modelling tools through 

continuous research and improvement of models. However, some aleatory 

uncertainty will remain due to the fact that the complex hydrological system needs to 

be represented by mathematical equations, which requires simplification and 

approximation of the physical processes involved. 

As processes within a hydrological model need to be simplified, models use 

estimates of parameters to represent certain variables in the mathematical equations. 

The need for parameterisation is another source of uncertainty, which is called 

‘model parameter uncertainty’ (Vrugt et al., 2003; Bastola et al., 2008). Parameter 

estimates are derived through the process of model calibration where the model 

output is adjusted to optimise the goodness of fit with the observed data, which 

normally involves the use of objective functions or performance matrices.  

However, different combinations of parameters within the same hydrological model 

can have the same predictive value and simulate the output equally well as defined 

by performance matrices (parameter equifinality) (Beven & Binley, 1992; Beven & 

Freer, 2001). The existence of multiple optima caused by multiple behavioural 

parameter sets makes the process of parameter calibration uncertain. Additionally, as 

highlighted by Beven (2006), over-parameterisation (too many model parameters) 

and over-conditioning (trained for a specific period) of hydrological models in the 

model calibration process can also lead to uncertainties in the choice of the optimum 

parameter set. Therefore, the selection of a single model parameter set by the 

modeller results in additional uncertainty. To incorporate this kind of uncertainty in 

the hydrological modelling approach, the scientific community increasingly uses 

multiple parameters sets. 

Model parameter uncertainty can also occur in the absence of the need for parameter 

estimation. For example, uncertainty arises when parameters are derived from field 
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measurements in physically based hydrological models or when expert judgement is 

used to obtain parameters due to the absence of measured values. This parameter 

uncertainty is particularly important when modelling stream flows in un-gauged 

locations. In such settings, it becomes necessary to use regionalisation methods and 

similarity measures based on common catchment characteristics, climatic regimes 

and locations, to estimate and transfer hydrological model parameters from 

parameterised gauged settings to the un-gauged catchment. This introduces model 

parameter uncertainty on regionalization result (Bastola et al., 2008). Flow 

predication in ungauged basins is still an area of on-going international research (e.g. 

see International Association of Hydrological Sciences (IAHS) Decade on Prediction 

in Ungauged Basins (PUB)). 

In a hydrological modelling approach, it is necessary to take these sources of 

uncertainty into account. For example, Bastola et al. (2011b) highlight the 

importance of accounting for a wide range of plausible uncertainties in a 

hydrological climate change impact assessment, when the outcomes of such an 

analysis are used to base decisions on. In the application of hydrological models to 

support decisions, the uncertainties are normally not separated into their individual 

sources but are aggregated and the model output represents the entire uncertainty 

ranges.  

2.4.2.3 Uncertainties in Additional Modelling Steps  

Once the future hydrological data is generated, these data can be used in other 

simulations produced by impact models such as water resources models. It is of 

importance that the wide ranges obtained from the previous modelling steps are 

incorporated into the additional modelling steps. In addition to the already existing 

uncertainty envelope, the water resource model itself introduces another layer of 

uncertain processes. To be able to simulate the water supply system, existing water 

infrastructure needs to be simplified and water abstractions, consumptions and return 

flows are taken from survey data or need to be approximated. To model future states 

of a water supply system, these variables need to be projected into the future with the 

help of socio-economic scenarios. This produces a wide range of possible future 
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states of the water supply system, based on certain (often implicit) assumptions about 

the future.  

However, it has to be noted that it is impossible to obtain a representation of the full 

range of possible uncertainties from all modelling steps involved. The range of 

possible future outcomes and their associated uncertainties are always highly 

conditional on the assumptions made, the models and parameters used throughout the 

modelling approach and computational constraints, which prevent full exploration of 

the uncertainty space. Therefore, the uncertainty envelope derived from each study 

will be unique and can only represent a fraction of the possible outcomes. 

Additionally, the uncertainties within these model projections increase with time, 

resulting in a wider spread of possible future outcomes when for example the 

projections for the 2020s (2010-2039) are compared with the outcomes for the 2080s 

(2070-2099). This is divergence is brought about by the propagation of modelling 

errors and the differences in the climate forcing due to different emission scenarios. 

2.5 Traditional Approach to Adaptation Planning 

To be able reduce vulnerabilities, water resources management and management 

needs to account for various potential future changes. However, to derive the best 

and cost effective adaptational response to future changes, high level of precise 

information on future supply and demands is traditionally required. However, the 

wider range uncertainties and the associated broad ranges of possible future 

outcomes, discussed above, represent a challenge for researchers and decision-

makers alike, if it is aimed to provide this kind of information. For researchers there 

is an unrealistic pressure to reduce the uncertainties and provide ‘better’ future 

scenarios, so adaptation measures can be implemented. Moreover, it is difficult to 

cascade all the associated uncertainties through the entire modelling approach, as this 

is very computationally intensive. If this is attempted, even to a small degree, the 

presentation of future scenarios, including a wide range of possible future outcomes 

to decision makers becomes challenging.  
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Langsdale (2008) recommends explicitly displaying all equally possible outcomes 

(scenarios) and not the mean of all simulations, as this places too much confidence 

on the average condition. However, the decision-makers traditionally aim to optimise 

the performance of the water supply system. This requires a single or at least a small 

manageable number of future scenarios. Typically, for these scenarios adaptation 

options are considered and ranked according to predefined criteria to maximise the 

utility and therefore to information optimal (adaptation) decisions. This traditional 

workflow has been termed predict-then-act (Lempert et al., 2004), top-down (Dessai 

& Hulme, 2004), predict-and-provide or scenario-led approach as the information is 

cascaded into the next modelling steps (Wilby & Dessai, 2010). However, in the face 

of adaptation to climate change, the wide range of uncertainties presented above 

challenge this traditional approach to decision-making, as no precise predictions are 

available using such a scenario led-approach. Although the top-down approach is 

widely applied, this methodology has only resulted in a few practical examples of 

anticipatory adaptation options being implemented (Wilby & Dessai, 2010).  

The traditional predict-and-provide approach or top-down approach is rooted in the 

assumption that the future is predictable (Lempert et al., 2004) and that it is possible 

to optimise a system accordingly. In the water resources sector, this means that 

probability distributions are used to characterise uncertainties against which different 

adaptation options are evaluated using a water resources model. Adaptation options 

are ranked based on their anticipated effectiveness and the vulnerability of the water 

resources systems is assessed using evaluation criteria to find the optimum solution 

or adaptation option to the identified problems under the given uncertainties. A 

schematic of the predict-then act approach is shown in Figure 2.6, with arrows 

indicating the possibilities of reverting to earlier assessment steps to update the 

process, resulting ultimately in a single or a set of optimum solutions. 

However, in such a climate change vulnerability assessment, where uncertainties 

cannot be constraint, no subjective likelihood judgments should be assigned. In such 

situations, risk is not quantifiable and therefore, the predict-and-provide approach 

cannot longer be applied.  
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Figure 2.6 Schematic of the predict-and-provide approach. 

Due to the lack of precise and clearly framed information about the state of future 

water resources, some researchers estimate the likelihood of future changes using 

probabilities associated with future impact projections (New et al., 2007). However, 

probabilities associated with climate change are subjective (or Bayesian based on 

personal perception) (Dessai & Hulme, 2003) and different from classical 

probabilities (based on return frequencies) used by water managers. Dessai & Hulme 

(2004) highlight in their review article that any assessment of probabilities with the 

aim of providing information to climate adaptation can only be a provisional 

assessment that is highly subjective and conditional. Such an approach adds another 

layer of uncertainty, as based on the assumptions and statistical methods used to 

produce the probabilities the likelihood of outputs will differ, therefore facing the 

same difficulties as the traditional scenario approach, not being able to represent the 

full uncertainty space. For water managers and decision makers the use of probability 

functions in the context of climate change might present a misleading ‘true’ 

representation of possible future changes (Lempert et al., 2004) and might be 

confused with the classical probabilities used in hydrology. 

Brugnach et al. (2007) discuss different methods to assess uncertainties induced by 

the use of computer models. Such methods include model sensitivity analysis in 

which the variations of model output are assessed relative to the model input or 

scenario analysis to reflect different possible conditions or multi-model simulations. 

It is concluded that no single method can deal with all forms of uncertainties and that 

the goals of the analysis determine which method to use. However, independent of 

the method used, uncertainties need to be integrated into the modelling approach and 

clearly communicated if the output is to be used for decision making. 
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However, communication climate change uncertainties and the implications for 

planning to stakeholders and decision makers are difficult due to the complex 

modelling framework employed in climate change impact studies. Langsdale (2008) 

advocates that uncertainties must be included in any analysis and that the outcomes 

have to be communicated clearly to decision-makers. In pursuing this, the use of 

scenario-led approaches is recommended as this allows the exploration and analysis 

of possible futures and allows testing policy options within the range of simulated 

scenarios.  

Additionally, Hallegatte (2009) states that uncertainties associated with future 

climate change impacts are so large, that traditional planning approaches, for 

designing or adapting infrastructure and other long-lived investments, are insufficient 

as they often seek an optimum solution. This insufficiency of providing information, 

which can be used to implement strategies using the traditional scenario-lead 

approaches, has also been identified by Wilby & Dessai (2010), who state that there 

is an abundance of top-down approach based assessments, however, the number of 

such studies that have resulted in the implementation of adaptation strategies has 

been rather limited. In the water resources sector this also becomes apparent in the 

fact that many climate change impact assessments end with the assessment of 

impacts of projected changes in river flow to inform water resources planning (e.g 

Christierson et al. (2012) or Sanderson et al. (2012) ).  

Overall, in a climate change vulnerability assessment, where uncertainties cannot be 

constraint, no subjective likelihood judgments should be assigned. In such situations, 

risk is not quantifiable and therefore, the predict-and-provide approach should longer 

be applied when deriving information to support decision making. 
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2.6 Alternative Approaches to Adaptation Planning 

Recognising the limitations associated with the traditional scenario-led, predict-and-

provide approach, alternative approaches for decision-making under uncertainty have 

been developed.  

An alternative to the traditional prediction driven top-down approach, which starts 

the analysis with possible future emission scenarios derived from possible future 

states of the society, is the bottom-up approach (Dessai & Hulme, 2003). Bottom-up 

approaches begin with an assessment of the socio-economic system and identify 

climate change related vulnerabilities (Figure 2.7). If vulnerabilities can be 

identified, then future climate information can be used in a further assessment. 

 

Figure 2.7 Bottom-up versus top-down approach to climate adaptation. Figure adapted from Dessai & 

Hulme (2003). 
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Within such an approach, exploratory modelling can be used to create ensembles of 

equally plausible but uncertain futures. Possible adaptation strategies targeting the 

identified vulnerabilities can be tested on their performance for each of the ensemble 

members. Such an assess-risk-of-policy framework aims to identify important 

uncertainties associated with selected decisions (scenarios) (Lempert et al., 2004), to 

characterise and identify robust adaptation strategies (Figure 2.8). 

 

Figure 2.8 Schematic of the assess-risk-of-policy approach. 

Rather than optimising future strategies within a top-down framework, future 

anticipatory adaptation should be robust under a wide range of possible future 

scenarios (Langsdale, 2008). Robust decision-making can be applied in the context 

of uncertainty and decisions with the aim of identify the interaction between 

uncertainty and adaptation alternatives. Robustness can be used as a selection 

criterion for possible future strategies, aiming to identify adaptation options whose 

satisfactory performance is maximally insensitive to most significant uncertainties 

(Lempert et al., 2004, 2006). 

Robust decision-making, is an alternative to the traditional predict-then-act approach, 

which aims to identify the optimum strategy (maximum benefit) with an assessment 

that has the main objective to identify a single or multiple strategies that are least 

likely to fail and therefore robust to future climate change uncertainties. 
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2.6.1 Application of Alternative Approaches to Adaptation Planning 

The overarching paradigm of the application of alternative adaptation and planning 

approaches to water resources systems is the acceptance of future uncertainties. In 

these approaches, uncertainty does not need to be exactly defined as a specific range. 

By accepting the presence of deep uncertainty and large uncertainty ranges, such 

approaches do not attempt to derive an optimal solution (such as the traditional top-

down approaches). The new paradigm is rather based on the incorporation of climate 

change and system specific uncertainties to appraise the system performance and/or 

possible adaptation decision based on the uncertain but potentially useful information 

provided by future climate scenarios. Often the alternative approaches aim to derive 

robust future strategies, which help to reduce current and future vulnerabilities, by 

being the least likely one to fail, i.e. maximally insensitive to uncertainties (Lempert 

et al., 2004), compared to the other strategies considered. Selected but non-

exhaustive examples from the water resources sector applying alternative 

approaches, different to the traditional scenario-led approach, are provided below.  

For example, Dessai & Hulme (2007) used a case study of future water resources 

management to apply a framework that allows the identification of adaptation 

options that indicate robustness to climate change uncertainties. The results indicated 

that the future water resources plans are robust to the sampled climate change 

uncertainties. However, the study also highlights that formulating a final adaptation 

strategy is complicated because of the number of possible measures available and 

stakeholders involved. Based on the setting, the definition of the criteria for success 

of an adaptation strategy is always context specific and final decisions can always be 

argued (Dessai & Hulme 2007). 

Lopez et al. (2009) examined a water resources zone in southwest England to 

appraise the performance of different adaptation options under a large ensemble of 

climate change scenarios using a large perturbed physics GCM ensemble. Their 

analysis showed the benefits of using large numbers of future climate scenarios and 

different climate models, by increasing the range of climate model uncertainties, as 

obtained system failure rates differ depending on the climate scenarios analysed. The 
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study indicated that within the investigated water resource zone, an increasing 

reservoir size might not be enough to ensure water supply during successive dry 

years and that additional adaptation measures might be needed. 

Research conducted by Wilby & Dessai (2010) describes a conceptual framework for 

a scenario-neutral approach to adaptation planning. In applying the bottom-up 

framework, current and projected future climate variability is used to test the 

sensitivity of adaptation options across plausible ranges. Gober et al. (2010) also 

have advocated a departure from traditional water planning based on climate model 

output by arguing for the need of a new paradigm, which particularly accounts for 

uncertainty and the possibility of multiple future realisations. Based on the example 

of the Phoenix area in Arizona (Western United States), different future climate and 

policy decision scenarios are simulated. To facilitate the identification of robust 

policy decisions, WaterSim, a tool that allows the simulation of future water 

shortages based on climate scenarios, was developed. The results show an important 

outcome, in relation to the timing of specific decisions. They concluded that decision 

would not be successful if the aim is to produce a single optimum solution.  

Brown et al. (2011) also presented a practical methodology that allows water 

resources planning and risk management under climate change. The alternative 

approach presented in their study of the water resources planning in the Upper Great 

Lakes of North America, is different to the bottom-up analysis described below 

which use climate information at an early stage of the decision appraisal process. 

Brown et al. (2011) identified future climate information considered to be relevant to 

determining the most favourable planning decision, to feedback into the process of 

climate information generation. The risk-managing tool developed focuses on the 

identification of vulnerabilities and climate risk managing through robust adaptation.  

From the studies presented above it can be seen that within the water resources 

community new, alternative approaches are being developed and applied to various 

case studies. The methodologies and tools developed are important in dealing with 

the inherent uncertainties that future anticipatory planning is confronted with. To 

date, no widely accepted standard approach has emerged, on how to best deal with 
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uncertain but potentially useful future climate information in the water resources 

sector.  

2.7 Chapter Summary  

The review of the scientific literature provided in this chapter commences with an 

overview of the potential effects of a changing climate on water resources. The 

potentials of and challenges associated with the analysis of hydrological observations 

to identify climate-driven trends are extracted from the literature.  

The traditional chain of modelling steps within a top-down approach result in wide 

ranges of equally plausible futures for the water resource sector. For example, for 

some areas on the globe different signs of precipitation changes in the future can be 

obtained from different climate models (e.g. Figure 2.5), highlighting the 

uncertainties encountered.  

These wide uncertainty ranges are problematic for anticipatory adaptation, 

particularly in the water resource sector, where infrastructure developments have 

long planning and implementation times. Using the traditional top-down approach is 

problematic in such situations and decision-making is at risk of delaying any 

adaptation response until a clear climate signal becomes apparent.  

From the literature review various research objectives have been identified that can 

help to inform anticipatory decision-making and adaptation in the context of climate 

change and the water resource sector in a practical context as presented in 

Section 1.3. Hydrological observations and projected future scenarios have been 

identified as the key information sources for anticipatory planning in the water 

resources sector. However, in the context of a practical application of these 

information sources the review of the scientific literature identified the following 

research gaps in Ireland: 



Chapter 2 Review of Scientific Literature 

 

40 

 Trend analysis of observational records is widely conducted to analyse changes 

in stream flow. In an Irish context, it is not known how low flows and other 

stream flow related indicators important to water resources management have 

changed due to climatic influences. 

 The practical utility of the current state of trend analyses methods for informing 

adaptation decisions in the water resources sector has not been assessed. 

 Future climate projections for Ireland have been shown to impact on stream 

flow; however, it has not been demonstrated how these changes might affect 

Irish water resources at the level of abstraction points. 

 In Ireland, no methodology exists to incorporate uncertain future information in 

a decision appraisal framework for adapting water resources to future changes, 

particularly for un-gauged water abstraction points. 

 Due to the wide ranges of uncertainties associated with multiple future 

realisations, the wide ranges of future scenarios need to be summarised and 

presented in a meaningful way to help inform anticipatory decision-making.  

 

The next chapter addresses the first two research gaps and examines the utility of 

observed river flow records for informing anticipatory decision-making in the 

surface water resources sector. In chapter 4 to chapter 6, the remaining research gaps 

associated with future streamflow projections and uncertain scenarios will be 

addressed in relation to providing information to support future water resources 

planning and management.  
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3 Analysis of Observational Hydrological Records 

3.1 Introduction 

Observational hydrological records are used by water managers for long-term 

planning and management of water resources and water infrastructure design. 

Traditionally, historical flow records provide guidance for mean and extreme 

conditions that could be expected to occur, with some inter-annual and inter-decadal 

variability. This traditional planning approach is based on the assumption that the 

past observed records provide a reasonable planning guide for the future and that the 

expected future hydrological conditions will not be different to the ones experienced 

in the past observational data. However, under the assumption of a changing hydro-

climatic system this paradigm might need to change.  

By analysing historical flow data, it can be investigated if the records used to plan 

and manage water resources are still the same or whether hydrological conditions are 

changing. Any change in the envelope of hydrological conditions requires a 

reassessment of long-term planning and water infrastructure design and, if needed, an 

adaptive response. This is of particular importance with regard to climate change, 

where detection of possible hydrological changes might need to result in adaptation 

decisions, which can be both anticipatory and reactive. 

This chapter addresses the first research aim of this thesis and examines whether 

observational records in Ireland can provide the information needed by decision 

makers to adapt to climate-induced changes that are important for water resources 

management. In this chapter, the research goals are to: 

 Analyse observational river flow records for evidence of change in flow 

indicators relevant to water resource management.  

 Investigate the challenges involved in extracting robust climate change signals 

from hydrological records. 

 Identify whether a linear climate change signal will be statistically detectable in 

the timeframe required for adaptation with regard to both magnitude and timing. 
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In this chapter, the Irish Reference Network (IRN) for climate change monitoring 

and detection is presented in Section 3.2, followed by an introduction to the Irish 

hydrometric network (Section 3.2.1) and a review of commonly used trend analysis 

methods (Section 3.2.2). In Section 3.3, an overview on different types of low flow 

series are presented and succeeded by Section 3.4 to Section 3.5, in which different 

forms of trend analysis are performed on selected low flow indicators. Trend 

detection times and magnitudes for selected low flow indicators are analysed in 

Section 3.6. The chapter finishes with a discussion and conclusion (Section 3.7) and 

a chapter summary (Section 3.8). 

3.2 The Irish Reference Network for Climate Change 

Monitoring and Detection 

To increase confidence in the identification of climate-driven changes in 

hydrological records, the hydrometric data series analysed ideally need to be free 

from any other artificial influences. For the purpose of detecting and monitoring 

climate-driven change in Irish river flow records, Murphy et al. (2013) identified a 

selection of hydrometric stations that are representative of the Irish hydrological 

conditions and flow regimes.  

The following key criteria, based on international best practice examples from other 

Hydrometric Reference Networks, were applied to identify stations for inclusion in 

the Irish Reference Network (IRN) (taken from Murphy et al. (2013)): 

 Good and consistent hydrometric data quality (particularly at extreme flow 

ranges), as determined by hydraulic conditions at each site (stable control and 

accurate rating curves); 

 Near-natural flow regime - zero or stable water abstractions and discharges 

(impact less than 10% of flow at or in excess of Q95); 

 Long record length (minimum 25 years); 
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 Limited land-use influence (≤ 2.5% of catchment area developed). Stations 

subject to arterial drainage were excluded where possible, otherwise post-

drainage records were used to improve spatial coverage; 

 Stations must be representative of Irish hydrological conditions and climatic 

regions with good geographical coverage, ensuring that stations from each of the 

eight Water Framework Directive (WFD) River Basin Districts (RBDs) are 

included. 

Based on the selection criteria described above, 35 hydrometric stations from the 

existing Irish river flow monitoring network, together with eight stations from 

Northern Ireland that are part of the UK Benchmark Network (Hannaford & Marsh, 

2006, 2008) are included in the IRN. Through the selection process, these stations 

can be used to monitor and detect climate-driven trends in all ranges of the river flow 

regime.  

For certain stations, some of these criteria (e.g. flow records affected by drainage) 

had to be applied less stringently in order to obtain an improved spatial coverage 

across Ireland. Particularly, the criterion for data quality ratings was relaxed for 

stations that had low quality ratings for either high or low river flows. These stations 

were included in the original Irish Reference Network, as defined Murphy et al. 

(2013); however, such stations with low quality need to be excluded from the 

analysis of the respective extreme indicator. Therefore, only subset of 34 stations of 

the IRN gauges are used here, selected as those that show the highest rating quality at 

low flows. Five stations with records commencing after 1979 were also excluded 

from the analysis due to their short record length. The sub-network of hydrometric 

stations shown in Figure 3.1, with sufficient good low flow quality provides the basis 

for further analysis of flow records in this chapter.  
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Figure 3.1 Sub-network of 34 stations of the Irish Reference Network and the UK Benchmark Network 

with good low flow quality rating. Stations shown in red are not analysed due to records commencing after 

1979.  

3.2.1 Hydrometric Stations and Hydrological Time Series 

In Ireland, the Environmental Protection Agency (EPA) and the Office of Public 

Works (OPW) collect and provide the river flow data. The flow data available from 

the EPA is a collection of hydrometric data from Local Authorities, with the focus on 

water quality and low flows. This reflects the responsibilities of Local Authorities in 

the planning and provision of water supply. The key hydrometric objective of the 

OPW is the collection of flow data for the purpose of drainage monitoring and flood 

management.  
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Together with the different historical remit for data collection between the two 

hydrometric data providers, there are also two different quality ratings in use. The 

EPA uses four different data quality classes (Table 3.1 and Figure 3.2 (top)). The 

OPW uses eleven main data codes, which were aggregated here to five quality codes 

for plotting purposes (left column) (Table 3.2 and Figure 3.2 (middle and bottom)).  

 
Table 3.1 EPA data quality codes (Source: http://hydronet.epa.ie). 

Code Description 

Good Highest quality of data 

Estimated/Beyond Limit Estimated data point edited data based on spot checks 

Unchecked Value has not been checked at this stage  

Suspect Suspected quality of data point 

 

Table 3.2 OPW data quality codes (Source: http://www.opw.ie/hydro). 

Aggregated 

Code 
Code Description 

Good 31 
Flow data estimated using a rating curve that it is considered to be 

of good quality and inspected water level data 

Good 32 As per Code 31, but using water level data of Code 32 

Fair 36 
Flow data estimated using a rating curve that it is considered to be 

of fair quality and inspected or corrected water level data 

Poor 46 
Flow data estimated using a rating curve that it is considered to be 

of poor quality and inspected or corrected water level data 

Caution 56 

Flow data estimated using an extrapolated rating curve and 

inspected or corrected water level data – Reliability of data is 

unknown and it should therefore be treated with caution 

Caution 99 
Flow data that has been estimated using unchecked water level data 

– Data is provisional only and must be used with caution 

Caution 101 
Flow data that has been estimated using unreliable water level data 

– Suspected of being erroneous and must only be used with caution 

Caution 145 Data is below data range and must only be used with caution 

Caution 146 Data is above data range and must only be used with caution 

Caution 150 
Partial statistic – Data has been derived from records that are 

incomplete and do not necessarily represent the true value 

Unacceptable >150 Data is missing, erroneous or of unacceptable quality 
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Figure 3.2 Example of hydrometric records and quality codes. From top to bottom EPA station, OPW 

station, (both stations used in analysis), OPW station (excluded due to poor and unacceptable low flow 

rating). Short dark brown vertical lines above the time axis indicate missing data points. 
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Table 3.3 34 Low flow stations from the Irish Reference Network and the UK Benchmark Network.  

The five stations shown in red are not analysed due to short record length (< 30 years). 

Station Station Name River Name RBD Org. 
Area 

[km2] 

Precip 

(61-90) 
Start End 

Length 

[yrs] 

6013 Charleville Weir Dee NB OPW 309.1 873 1976 2009 34 

6014 Tallanstown Weir Glyde NB OPW 270.4 928 1976 2009 34 

7009 Navan Weir Boyne E OPW 1683.8 868 1977 2009 33 

7012 Slane Castle Boyne E OPW 2460.3 890 1982 2009 28 

14007 Derrybrock Stradbally SE OPW 94.9 814 1981 2009 29 

15001 Annamult Kings SE OPW 444.3 935 1973 2009 37 

15006 Brownsbarn Nore SE OPW 2418.3 942 1973 2009 37 

16008 New Bridge Suir SE OPW 1090.3 1030 1955 2009 55 

16009 Caher Park Suir SE OPW 1582.7 1079 1954 2009 56 

18002 Ballyduff Blackwater SW OPW 2333.7 1201 1956 2009 54 

18003 Killavullen Blackwater SW OPW 1256.7 1301 1973 2009 37 

18005 Downing Bridge Funshion SW OPW 378.5 1187 1973 2009 37 

18006 Cset Mallow Blackwater SW EPA 1054.8 1334 1978 2009 32 

18050 Duarrigle Blackwater SW EPA 248.8 1471 1982 2009 28 

19001 Ballea Owenboy SW OPW 103.3 1176 1973 2009 37 

21002 Coomhola Coomhola SW EPA 64.8 2580 1976 2009 34 

23002 Listowel Feale SH OPW 646.8 1346 1961 2009 49 

25001 Annacotty Mulkear SH OPW 647.6 1165 1974 2009 36 

25002 Barrington's Br. Newport SH OPW 221.6 1298 1954 2009 56 

25030 Scarriff Graney SH OPW 280 1185 1973 2009 37 

26021 Ballymahon Inny SH OPW 1098.8 945 1976 2009 34 

27002 Ballycorey Fergus SH OPW 511.4 1337 1955 2009 55 

32012 Newport Weir Newport W EPA 146.2 1784 1982 2009 28 

35002 Billa Bridge Ballysadare W OPW 81.1 1379 1973 2009 37 

38001 Clonconwal Ford Owenea NW OPW 111.2 1752 1973 2009 37 

39006 Claragh Leannan NW EPA 245.1 1527 1978 2009 32 

201005 Camowen Terrace Camowen NW NI 276.6 NA 1973 2009 37 

201008 Derg Castlederg NW NI 335.4 NA 1977 2009 33 

202002 Faughan Drumahoe NW NI 273.1 NA 1977 2009 33 

203028 Agivey Whitehill NB NI 100.5 NA 1973 2009 37 

203042 Crumlin 
Cidercourt 

Bridge 
NB NI 55.3 NA 1982 2009 28 

204001 Bush Seneirl Br. NE NI 299.2 NA 1973 2009 37 

205008 Lagan Drumiller NE NI 84.6 NA 1975 2009 35 

206001 Clanrye 
Mountmill 

Bridge 
NB NI 120.3 NA 1975 2009 35 
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The observational data analysed in this chapter is taken from the collection of 

stations forming the original IRN. As the analysis focuses on indicators relevant for 

water resources management, 26 Irish stations with good hydrometric performance at 

low flows are selected (E.g. Figure 3.2 (top and middle)). As the eight Northern 

Ireland stations have already been checked for their quality by Hannaford & Marsh 

(2006), no additional quality checks are performed on the data from these UK 

Benchmark network sites. Table 3.3 provides a summary of the 34 stations of the 

IRN with good low flow quality rating. Figure 3.1 shows the spatial distribution of 

the sub-network of stations with good low flow quality, stations shown in read were 

not included in the analysis due to short flow records of less than 30 years. The 

omission of stations in this study from the original IRN due to poor low flow rating 

(E.g. Figure 3.2 (bottom)) and short record length, gives rise to a spatial 

underrepresentation of some areas of the country (particularly in the East and the 

West of the country). 

For the assessment of changes in the remaining 29 flow records, complete datasets 

are desirable, particularly if change detection methods are used that are based on the 

ranking of the data. However, for some stations, time periods with gaps (missing 

flow measurements) are present, indicated by brown vertical lines in Figure 3.2. To 

prepare the flow series of the IRN, Murphy et al. (2013) used HSYIM, a lumped 

conceptual rainfall runoff model, to generate stream flow time series to infill these 

gaps (for details see Murphy et al. (2013)). The influence of the infilled data on the 

flow records was investigated for each individual station in the IRN (for example see 

Figure 3.3). In addition to the overall visual coherence of flow pattern, linear 

regression and LOESS ((Local Polynomial Regression Fitting) line were obtained 

from the observed time series (with gaps) and the infilled data series resulting in 

similar trend directions and magnitudes. Murphy et al. (2013) concluded that the 

infilled observed flow data was suitable for trend analysis. As the overall regression 

and LOESS lines were coherent for the investigated indices used in this study, the 

infilled flow series from the IRN and the complete time series from the UK 

Benchmark are used. 
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Figure 3.3 Comparison of infilled and observed series for monthly mean flows for station15003. Months 

are ordered for water year beginning October (10th month) from the top left to the bottom right. Solid and 

dashed lines represent the linear regression and LOESS line respectively (Murphy et al., 2013). 

3.2.2 Trend Analysis of River Flow Series - Methods 

The hydrological records from the selected stations of the Irish Reference Network 

(IRN) are examined for long-term changes in low flow indicators. This section 

examines the methods commonly used to detect trends in hydrological records.  

For any data analysis or change detection study, the methods and hypothesis tested 

should be chosen based on the data availability (time series) and objectives of the 

study, i.e. detection of step change vs. linear trend. Hypothesis testing is a statistical 

validation procedure meant to check whether the statistical hypothesis is true or not. 

For the statistical test used here, the null hypothesis Ho is ‘no trend’, which is tested 

against the alternative hypothesis H1, ‘trend’ detected by employing parametric or 

non-parametric tests (Önӧz & Bayazit, 2003). Statistical tests are used to enable the 

comparison between the hypotheses Ho and H1, with the help of significance levels 

which measure the probability of the Ho being mistakenly rejected (Kundzewicz & 

Robson, 2004). 
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If statistical tests are used to determine the significance of trends, two different types 

of statistical errors need to be considered, which are distinguished as Type I and 

Type II errors. A Type I error occurs when the null hypothesis (Ho=no trend) is 

falsely rejected, i.e. a trend is detected when no trend exists. To deal with Type I 

errors, the significance level (α) of the statistical test, which is the probability of a 

Type I error, is set to a predetermined level. For example, if the significance level is 

set at 5% (α=0.05), a 5% chance of mistaken trend detection is accepted. A Type II 

error occurs when the null hypothesis (Ho=no trend) is false, i.e. a trend is occurring, 

but is not detected by the statistical test. A Type II error can cause a trend not to be 

detected although a trend is happening. The probability of making a Type II error is 

called β, when the alternate hypothesis (H1=trend) is true, at a specific significance 

level determined by α. The power of a statistical test is related to the Type II error 

and is expressed with the quantity 1-β. 

When selecting a specific statistical test procedure or a set of tests for trend detection 

one needs to consider carefully the robustness of the tests to outliers, measurements 

below or above instrumental possibilities, missing data values, serial dependence and 

the distribution of the underlying data. Additionally, the power (probability of 

rejecting Ho) and the efficiency (estimation error) of the tests need to be considered 

(Hirsch et al., 1991). 

Non-parametric tests are widely employed for detection of trends in hydro-climatic 

indices. The advantage of distribution-free tests is that no assumption of normality or 

homogenous variance of the data is required compared to other linear trend detection 

tests like the Student’s t-test  to test for a linear relationship between two variables  

(which require data to be normally distributed). Generally, the decision on whether to 

use linear regression or a non-parametric test should be based on the distribution of 

the observed data. That is, whether the data is normally distributed or not. Non-

normal distributions are for example skewed, spikier or flatter than normal. 
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For detecting linear trends a commonly used statistical test for hydrological data is 

the Mann-Kendall non-parametric test (Mann, 1945; Kendall, 1975), which is used 

to determine if a trend is monotonic over time and also allows the assessment of 

statistical significance at a predetermined level (e.g. 5% significance). The Mann-

Kendal test is a rank based test were the data values are assigned ranks 

corresponding to the size of the data value (from rank 1 for the smallest value to 

highest possible rank for the largest value). This allows the comparison of the 

relative magnitudes using the ranks of the data without relying on the data values 

themselves. 

The Mann-Kendall (MK) test statistic (S) for a time series of data (x1, x2, ..., xn)  

with n being the number of observations is defined as: 

 

               

 

     

   

   

 Equation 3.1 

 

             

                 
                 
                 

  Equation 3.2 

For time series with n ≥ 8, the test statistic S is approximately normally distributed 

with a null mean and the variance (σ
2
) of S is thus computed as follows: 

    
            

  
 Equation 3.3 

If a set of data points have the same data value the following correction needs to be 

subtracted from the calculated variance to account for tied groups:  

 
    
 
               

  
 Equation 3.4 

Where g is the number of tied groups and tp is the number of data points in the 

p
th

 group. 
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The normalised MK S test statistic (ZS) is then computed as below, resulting in a ZS 

statistic that follows the normal distribution with a mean of zero and a variance of 

one. 

     
 

 
 Equation 3.5 

The significance of a trend is tested by comparing the ZS with the computed 

probability. If ZS is negative, a trend is classified as decreasing and if the calculated 

probability is greater than the significance level α, the trend is classified as 

decreasing significantly. A trend is said to be statistically significant increasing if the 

ZS is positive and the computed probability is greater than the level of significance. 

In both cases if the determined probability is less than the level of significance, then 

Ho is accepted and the trend is said to be not statistically significant. 

For linear trend detection, the non-parametric Spearman’s rho test (ρ) can also be 

used. This test is based on ranks given to the data and used to test the correlation 

between time and the ranks of the data series (Kundzewicz & Robson, 2004). 

     
    

  
   

       
 Equation 3.6 

Where di is the distance between the ranks of the original and sorted series and i
th

 is 

the observation of the time series with length n.  

It is recommended that several statistical tests are employed to detect changes 

(Radziejewski, 2009). Therefore, some studies still use both tests in conjunction to 

establish the presence of a monotonic trend (Villarini et al., 2011). However, Yue et 

al. (2002) compared the results from the Mann-Kendall and Spearman’s rho test and 

concluded that the outcomes are very similar; this finding is also supported recently 

by Shadmani et al. (2012). Therefore, in this research only the results obtained from 

the Mann-Kendall test are presented. 
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Another commonly used estimator for detecting trends is the Theil-Sen slope 

estimator (β) (Theil, 1950; Sen, 1968) which is calculated as the median (red line in 

Figure 3.4) of all possible pair wise slopes between all data points (X,Y) in a time 

series (blue lines in Figure 3.4), where Y is the stream flow variable and X is the 

time. The median slope estimator β is the summary statistic used to describe the 

magnitude and direction of trends over time. Compared to linear regression, the slope 

estimator β is more robust to outliers or single erroneous data points as their 

influence on β is minimised. Additionally, the data does not need to follow a 

particular distribution and missing values are allowed. The slope estimator β is 

expressed in the units of the time series and calculated as follows; 

 

β        
       

       
  

                      

Equation 3.7 

 

where i is the data value and j the time. (Helsel & Hirsch, 2002) 

 

Figure 3.4 Graphical derivation of the median slope following the Theil-Sen-Approach. After Helsel & 

Hirsch (2002). Left: All possible pair wise slopes between six data points. Right: All possible slopes starting 

from a common origin to identify the median (red line) of the 15 slopes, which is the Theil-Sen slope 

estimator (β).  

However, when using these statistical tests, one needs to consider the specific 

assumptions for each test, i.e. normality versus non-normal data distribution as 

discussed above, but also independence versus non-independence (positive or 

negative auto-correlation) of data. The analysed data can still be dependant even with 
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zero auto-correlation, if the data is not-normally distributed. In the case of 

hydrological data, this means that statistical tests selected need to be designed for 

skewed distributed data that is often positively serially correlated over time and 

space; otherwise, the results of the tests can be misleading especially for significance 

testing (Type I error) (Kundzewicz & Robson, 2004). Ehsanzadeh & Adamowski 

(2010) note that even though negative autocorrelation can be present in a dataset, it 

may not have real physical importance and could be a result of sampling issues, 

measurement errors or other statistical artefacts. 

Apart from selecting the appropriate trend analysis methods and tests, it is also 

important to consider the data structure itself. If the data exhibit a high degree of 

natural variability or oscillations, spurious trends for certain start or end years can be 

caused. Particularly, if the time scale of an oscillation in the series is longer than the 

observation period selected, oscillations can look like a trend (Chen & Grasby, 

2009). Such trends can persist, disappear or change in sign depending on record 

length or observational window selected. Therefore, for trend analysis long time 

series in excess of 50 years are recommended (Kundzewicz & Robson, 2004; Yue et 

al., 2012) to remove the influence of inter-decadal variability or outliers at the start 

or end of the analysed records.  

If a statistical test cannot detect a trend, this does not necessarily mean that there is 

no trend. Radziejewski (2009) conclude from their study that this is due to two 

reasons; first due to a weak trend (low change signal to noise (natural 

variability) ratio) which cannot be detected by the test at a high significance level or 

second due to the reason that the trend only started recently. However, in the case of 

climate-induced trends in hydrological data, these trends can become detectable in 

future with an increasing trend magnitude and longer records. Therefore, even if 

trends cannot be found at this point in time, in future analysis with longer time series 

available, a trend might become detectable. 
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3.3 Analysis of Low Flow Series – An Overview 

For water management the analysis of historical stream flow records can be a 

valuable source of information. For example, trends in the timing and magnitude of 

low flows are an important factor that needs to be taken into account when managing 

and planning for water resources (Ehsanzadeh & Adamowski, 2010). Therefore, this 

section analyses trends in various parts of the flow spectrum with specific focus on 

low flows.  

Generally, there is no common definition for low flow indicators, and the term has 

been used in different contexts to describe the low-flow regime of rivers. Often low 

flows are analysed in terms of their magnitude and timing, and also with the help of a 

flow threshold, allowing for example to analyse the length of time, the accumulated 

volume or the number of events below such a threshold. Such thresholds can be a 

fixed discharge value or can be defined with the help of the flow duration curve 

(exceedance probability). The indicators analysed can look at instant events (e.g. a 

single data point) or examine low flows averaged over longer time periods (Gustard 

et al., 1992). 

In this study the analysis of the annual minimum flow (flow with the lowest volume) 

is considered to identify changes in the magnitude and timing of extreme low flows. 

However, this absolute indicator needs to be treated with care as a single point in the 

time series can be highly influenced by measurement errors, especially when the 

flow is at or below the measurement limit. To overcome this limitation, low flows 

can be averaged over different extended durations, to obtain a more representative 

description of low flows. For example, seven or thirty day periods can be used to 

calculate either the moving average flows or the sustained low , to indicate the 

magnitude and/or timing of low flow events. Additionally, time series of annual or 

seasonal low flow duration such as Q95 (the river flow that is equalled or exceeded 

95% of that time) or Q90 can be analysed. For example, Q95 is one of the commonly 

used low flow indices in Ireland (Mandal & Cunnane, 2009).  

In addition to the flow value analysis, which uses the magnitude and timing of low 

flows, threshold-based methods can be used to examine the frequency and duration 
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of low flow spells. This methodology has particularly been used to investigate 

drought characteristics with regard to drought duration, severity and intensity 

(Mishra & Singh, 2010). According to the threshold principle, the start of a drought 

is identified when the river flow falls below the threshold level and the end is marked 

by the exceedance of the threshold.  

The threshold level has to be selected carefully, as it is assumed to be constant over 

time for a given reference period. Depending on the threshold level, a certain stream 

flow magnitude will be classified as being a drought condition or not. Additionally, 

when selecting an excessively low threshold, small variations in stream flow can 

cause the flow to be above the threshold during an actual continuous drought period 

and the event is dissected into two independent periods (Tallaksen et al., 1997). 

When deciding upon a threshold, often a certain stream flow level derived as a 

percentile from a flow duration curve is selected. For example, Hisdal et al. (2001; 

2010) used the Q70 as a threshold level when examining trends in European stream 

flow droughts.  

Richter et al. (1997), Smakhtin (2001) and Pyrce (2004) provide reviews on low flow 

and hydrological drought indices. Based on their recommendations the indicators 

discussed in the subsequent sections were selected for this study based on daily mean 

flow series, with the aim of covering a broad spectrum of hydrological low flow 

characteristics, including measures for magnitude, timing, duration and frequency of 

low flows and low flow spells in daily stream flow. Flow percentiles are analysed on 

a seasonal basis, as seasons are also often used as the basis for future flow studies 

under climate change. For all stations, each indicator is calculated for each year 

separately to derive annual time series.  
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3.4 Thresholds-Based Indicators 

The analysis of low flow spell duration (maximum and cumulative duration) and 

frequency of daily time series is based on the method of hydrological drought 

analysis proposed by Tallaksen et al. (1997) and identified as the most suitable to 

examine trends in stream flow records (Hisdal et al., 2001). The method employed 

uses a constant threshold below which the daily stream flow is considered to indicate 

low flow spells or drought conditions. If the flow is below the threshold, a low flow 

spell begins and is considered to continue until the specific threshold is again 

exceeded.  

However, when employing such a method using daily stream flow series Tallaksen et 

al. (1997) highlight the need to eliminate mutually dependent minor drought periods, 

caused by short time periods above the threshold level, by employing a pooling 

procedure of the original time series. Based on results from Tallaksen et al. (1997) 

and the recommendations by Hisdal et al. (2001) an 11-day moving average of the 

original stream flow series was obtained before analysing the low flow spell indices. 

The threshold based indices derived are used to analyse the characteristics of low 

flow spells and are not to be confused with extremes of absolute low flow values. 

Three threshold-based low flow spell indicators were calculated on an annual basis, 

based on the smoothed daily series of 11-day moving average flows (see Figure 3.5). 

 Annual Maximum Low Flow Spell Duration (AMD) – No. Days  

 Annual Cumulative Duration of all Low Flow Spells (ACD) – No. Days  

 Number of Low Flow Spells (NLFS)  

The selection of the constant threshold level ultimately determines what is 

considered as being a low flow spell. Depending on the flow regime of a region, 

Hisdal et al. (2001) recommend thresholds of Q70, Q80 and Q90 (flow exceeded 

70%, 80% or 90% of the time respectively) as appropriate for European perennial 

rivers. To determine the appropriate threshold level for Irish rivers, the smoothed 

time series was analysed for each selected station, for the threshold levels Q70, Q80 

and Q90 determined from the time period 1976-2009.  
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Figure 3.5 Example calculations of the three low flow spell indices (AMD, ACD & NLFS) below the 

Q70 long-term flow threshold derived from the period 1976-2009, using a 11-day moving average flow. 

The long-term thresholds of Qn (with n= 70, 80 and 90) are calculated as the average 

value of the flow percentile (flow exceeded n% of the time): 

     
 

 
    

 

   

 Equation 3.8 

In Figure 3.6 four illustrative examples of the analysis of threshold levels are shown. 

In the figure, colour coding is used to indicate the lowest threshold below which the 

daily mean flow is falling. Flows falling below Q90, Q80 or Q70 are shown in red, 

orange and yellow respectively; flows > Q70 (above the highest threshold) are shown 

in white. Each day of each year is shown, except the 29
th

 of February during leap 

years.  



Chapter 3  Analysis of Observational Hydrological Records 

 

59 

 

Figure 3.6 Illustrative example stations. Flow below long-term percentiles over the period (1976-2009). 

Flows below Q90, Q80 or Q70 are shown in red, orange and yellow respectively. Daily flows above these 

thresholds are shown in white. 
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After analysing the effects of different long-term flow thresholds for all stations (not 

shown), Q70 is chosen as appropriate threshold for Irish rivers. A threshold level 

using Q70 allows obtaining separate low flow spells, to perform the analysis on and 

across different Irish stream flow regimes, but also allows having a least one low 

flow spell occurrence per year. If a lower level threshold (i.e. Q80 or Q90) had been 

selected, many dependent minor low flow spells per year or no low flow events at all 

(for certain years would) have been obtained. The analysis of three low flow spells 

indicators (AMD, ACD and NLFS) is based on the Q70 threshold for each individual 

flow station as shown in Figure 3.5.  

Figure 3.7 shows the annual time series of the threshold-based indicators for each 

station analysed. Flows of the individual stations are shown in grey, the 50th 

percentile in black and the 5
th

 and 95
th

 percentile of all stations in red. The time 

series of AMD and the ACD show a high inter-annual variability. The selected 

period 1976 to 2009 aims to incorporate as many stations as possible and represents 

the best spatial coverage. For the selected analysis period from, higher AMD and 

AMC values are present at the start and lower values towards the end of the record. 

These high values are caused by the commencement of most of the monitoring sites 

due to a drought period in the early 1970s. Low AMD and AMC values at the end of 

the record are due to the unusually wet summers experienced recently. For NLFS a 

high degree of inter-site variability is evident with many of the stations show no 

change. To quantify these changes, a trend analysis is performed in the next section. 
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Figure 3.7 Annual time series of threshold-based indicators. Grey lines show each analysed station. Red 

lines indicate the 5th and 95th percentiles and the black line is the median of all stations. 

3.4.1 Trend Analysis of Threshold-Based Indicators 

The threshold-based indicators are calculated to derive an annual time series as 

described in the previous section and are then assessed for trend in this section. The 

magnitude of change over the fixed period (1976-2009) is assessed using the 

Theil-Sen Approach (TSA) to derive the median slope estimator β, which represents 

the magnitude of change per year (in the units of the index) (see section 3.2.2). To 

facilitate comparison between stations, the trend slope β is expressed as a percentage 

over the record length in relation to the indicator mean (μ) over that time period 

(long-term average) (Stahl et al., 2012). The relative magnitude of the TSA Slope is 

shown on the maps as a percentage.  

                       
   

 
      Equation 3.9 



Chapter 3  Analysis of Observational Hydrological Records 

 

62 

This relative slope allows comparison between stations in the network, which have 

high differences in their indicator mean. The approach used in this study is found to 

be preferable to the standardised flow anomaly (SFA) used by Murphy et al. (2013) 

for comparing the TSA slope over time periods with different length. Using the 

relative TSA slope avoids uncharacteristic inflation of the magnitude of slopes for 

shorter periods, particularly if extreme values (high or low compared to the mean) 

are present at the start or end of the record. To determine the spatial characteristics of 

the obtained slopes, a map for Ireland depicting these trends for each indicator is 

produced. The significance of trends (5% level) was obtained using the Mann-

Kendall (MK) Z Statistic. On the maps, significant changes in the threshold-based 

indices are indicated by a white triangle.  

As significance of trends is tested, the serial correlation structure of each indicator is 

assessed using autocorrelation function (ACF) correlograms of the residuals of a 

linear regression model fitted to the time series. Figure 3.8 shows an example of the 

correlograms derived to access autocorrelation. If at any time lag (> 0) the estimates 

of the autocorrelation function are above the dashed line representing the 

significance level (5%), then there is a significant autocorrelation for that time lag. 

The three threshold-based indicators did not show any statistically significant serial 

correlation for any of the stations.  

 

Figure 3.8 Example of ACF correlogram of the residuals of a linear regression model for Annual 

Maximum Duration (left) and Annual Cumulative Duration (right) of Low flow spells for Station 6013 

(left) and 18002 (right). The statistical significance level (5%) in shown in blue dashed lines. 
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As most of the hydrometric monitoring stations in the IRN commence during/after a 

drought period in the early 1970s and end with unusually wet years, it is necessary to 

set the obtained trends for the fixed period (1976-2009) in context. A second period 

with three years removed from the start and the end of the record (1979-2006) is 

therefore analysed for all three threshold-based low flow spell indicators (Figure 3.9 

to Figure 3.11). The second period from 1979-2006 has been selected to investigate 

the influence of the first three years of the selected fixed period record (1976-2009) 

which show high AMD and ACD values (dryer conditions) and the last three years of 

that fixed period show very low AMD and ACD values caused by flow conditions 

highly above the Q70 long-term threshold.  

Although the selected periods vary only by a few years, the trends obtained are very 

different when the extreme high start and the low end are removed. This is 

particularly evident for the two indicators AMD and ACD, where negative trends 

cease to be significant and the majority of trends even change the sign between the 

two periods. For NLFS, the results are mixed for both time periods, showing either 

no trend (black data point) or mostly significant positive trend. This indicates that the 

number of independent low flow spells below the Q70 threshold increases over time 

for at specific locations. For the five stations this increase in the number of low flow 

spells seems to be independent of the selected period. Whereas for the other four 

stations the time period selected is of importance, as the trends cease to be significant 

or no trend is indicated for the period 1979-2006 (Figure 3.11). 

The differences in trends obtained for AMD and ACD highlights the influence of the 

start and end of record analysed on the trends obtained from fixed periods. However, 

the shortcoming of the threshold-based analysis is that the thresholds are defined by 

the entire data from the fixed period of analysis, which results in different thresholds 

when different time frames are analysed. This makes the results from two different 

periods of analysis not directly comparable, which inhibits a detailed analysis of the 

influence of the analysed period.  
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Figure 3.9 Trends in Annual Maximum Duration of low flow spells below Q70 for 1976-2009 (left) and 

1979-2006 (right). Increasing (decreasing) trends are shown in blue (red). Significant trends for the Mann-

Kendall ZS (5% significance level) are marked by white triangles. No trends are marked by black points. 

 
Figure 3.10 Trends in Annual Cumulative Duration of low flow spells below Q70 for 1976-2009 (left) and 

1979-2006 (right). Increasing (decreasing) trends are shown in blue (red). Significant trends for the Mann-

Kendall ZS (5% significance level) are marked by white triangles. No trends are marked by black points. 

 
Figure 3.11 Trends in Annual Number of low flow spells below Q70 for 1976-2009 (left) and 1979-2006 

(right). Increasing (decreasing) trends are shown in blue (red). Significant trends for the Mann-Kendall ZS 

(5% significance level) are marked by white triangles. No trends are marked by black points. 
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This non uniqueness of thresholds, is in general a major drawback of data analysis 

based on long-term thresholds defined by the data characteristics/values themselves. 

When employing threshold-based analysis, the data requirements are high as all sites 

analysed need to have complete data series of not only of the same length but also 

over the same time periods. Such requirements limit the possible forms of application 

and analysis that can be performed with such indicators. 

Therefore, the analysis of the long-term threshold based low flow spell indicators in 

this thesis is limited compared to the extended possibilities of analysis of low stream 

flow based indicators in the following sections. 

3.5 Low Flow Indicators 

Apart from the information provided by analysing low flow spells, possible changes 

in seasonal low flows are also of importance to water managers. Seasonal changes 

are of particular importance as future changes in hydro-climatological variables are 

also projected to change seasonally. While the main interest of analysis focuses on 

summer and autumn, for completeness possible changes in different flow indicators 

are investigated on a seasonal basis for the four seasons spring defined as; (March to 

May), summer (June to August), autumn (September to November), and winter 

(December to February). For each of the seasons, annual time series of indices were 

computed. These seasonal indices include seasonal mean flow and series obtained 

from flow duration curves (FDCs) which include ranges from median flows to low 

flow conditions (e.g. Q95, the flow exceeded 95% of the time), resulting in six time 

series of indicators for each season. Where the Qn flows are daily mean flows in a 

specific season exceeded n% of the time. Changes in some seasonal low flow 

indicators (e.g winter Qn flows) might not directly effect in stream water 

abstractions, but can have implications for aquifer and reservoir recharge. 

In addition to seasonal low flow ranges, the magnitude and timing of low flows are 

analysed. In Ireland there are commonly two types of statistically defined low flow 

categories, the annual m-day moving average flow (MAF) and the annual m-day 

sustained low flow (SLF) (for both categories, m= 1,7,10,15 or 30 days) (Brogan & 
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Cunnane, 2005). The sustained low flow represents the lowest daily mean flow that 

is not exceeded for the next m-consecutive days per year. For example for m=7, the 

timing (Julian Day of the year) of such a flow represents the start of the driest week 

in each year and the maximum flow during this week is the 7-day sustained low flow 

for that year (MacCarthaigh, 1989). The 7-day moving average flow (MAF) is the 

average of the daily mean flows of the seven lowest consecutive flows, where the 

Julian Day indicates the start of that period.  

Absolute low flows (e.g. annual daily minimum flows) were excluded from the 

analysis in this study as time series of extreme low flows are often affected over time 

by factors such as modified cross sections, weed growth and changes in datum 

causing erroneous measurement and also generally difficult to measure. 

The following indicators are derived from daily mean flow time series:  

 Seasonal Mean 

 Seasonal Q50 (Median) 

 Seasonal Q70  

 Seasonal Q75  

 Seasonal Q90  

 Seasonal Q95 

 Annual minimum 7-day sustained low flows (SLF) (Magnitude and Timing) 

 Annual minimum 7-day moving average flow (MAF) (Magnitude and Timing) 

 Annual minimum 30-day sustained low flows (SLF) (Magnitude and Timing) 

 Annual minimum 30-day moving average flow (MAF)(Magnitude and Timing) 

 

All of the above indicators are analysed, but only the results for the analysis of the 

Q50, Q75, Q95, 7-day SLF (Flow Magnitude & Timing), and 30-day SLF (Flow 

Magnitude & Timing) are shown in detail as the results turned out to be similar to the 

other indicators with similar exceedance values. Although the mean flow is a widely 

used indicator in water resources management, it was found to be influenced by the 

contribution of high flows and is therefore less representative than the median of the 

flow regime. 
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3.5.1 Temporal Variability of Low Flow Indicators  

This section examines the long-term variability of the annual time series of low flow 

indicators over the available record length up to 2009 before analysing trends for the 

fixed period in the next section. The annual indicator scores shown in Figure 3.12 to 

Figure 3.15 are the indicator values standardised to the indicator mean (μ) and its 

standard deviation (σ), to allow changes in Qn and low flows of different magnitude 

to be plotted and analysed together.  

 

                               
           

 
 Equation 3.10 

 

Figure 3.12 to Figure 3.15 show the flows of the individual stations in grey, the 50th 

percentile in black and the 5
th

 and 95
th

 percentile of all stations in red. At the start of 

the time series analysed (1957) only 5 stations (or 15% of all stations) have observed 

records, by 1979 all stations have records. This increase in stations number over time 

results in an increasing spread of the standardised scores obtained. However, the 

graphs can be used to set the recent records for which numerous stations are 

available into a longer-term context. 
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Figure 3.12 Annual time series of seasonal Q50 flows. Grey lines show each analysed station.  

Red lines indicate the 5th and 95th percentiles and the black line is the median of all stations. 

 

Figure 3.13 Annual time series of seasonal Q75 flows. Grey lines show each analysed station.  

Red lines indicate the 5th and 95th percentiles and the black line is the median of all stations. 
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Figure 3.14 Annual time series of seasonal Q95 flows. Grey lines show each analysed station.  

Red lines indicate the 5th and 95th percentiles and the black line is the median of all stations. 

 
Figure 3.15 Annual time series of 7-day and 30-day standardised sustained low flows (magnitude and 

timing). Grey lines show each analysed station. Red lines indicate the 5th and 95th percentiles and the black 

line is the median of all stations. 
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In Figure 3.12 to Figure 3.14, all the Seasonal Qn flows (flow exceeded n% of the 

time) show a high degree of inter-site and inter-annual variability with similar overall 

patterns for each season. The seasons themselves show different distinct patterns. 

However, the magnitudes of standardised scores for individual years are different. 

For example for summer flows, Q50 shows the last three years of the record have the 

highest standardised flows, whereas Q75 only shows two out of the three years as 

high. When examining Q95, only the last year of record is very high relative to the 

median of all stations. This indicates that different parts of the flow regime respond 

differently to the wetter summers at the record end.  

The standardised n-day sustained low flows scores have a higher maximum 

variability compared to the seasonal Qn flows (larger y axis values in Figure 3.15). 

Magnitude and timing of SLF flows follow a different pattern over time and appear 

to be independent on an annual basis. Over the entire record, the median of all 

stations indicates the highest flow values of the SLF for 2009.  

3.5.2 Analysis of Low Flow Indicators - Fixed Periods  

Having examined the temporal variability, the extracted indices for each station are 

analysed for trends over the fixed study period 1976-2009, which allows for 

comparison between hydrometric stations. Similar to the fixed period analysis for the 

threshold-based low flow indicators the seasonal Qn flows and the n-day SLF 

indicators are analysed for trends. In Figure 3.16 to Figure 3.19, the trend magnitude 

is shown as the Relative TSA Slope (%) of the Theil-Sen-Approach derived using 

Equation 3.9. The Mann-Kendal test is used to determine the significance of trends at 

a 5% significance level, following the same approach as the analysis of the low flow 

spell indicators  

The time series of low flow indicators are also assessed with regard to 

autocorrelation. Some individual stations showed positive serial correlation, which 

can increase the probability of detecting a statistically significant trend when no 

trend exists (Type I error). Serial correlation can cause the estimated errors to be 

smaller than the ‘true’ errors, which can lead to the false conclusion that parameter 
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estimates are more precise than they are. This increases the tendency to reject the 

null hypothesis (H0=no trend) and spurious trends can be detected in the data. 

Therefore, where significant serial autocorrelation (5% level) is evident in the data 

block-bootstrapping is employed to preserve the internal temporal correlation 

structure within a time series. This bootstrap re-sampling procedure is employed to 

estimate the distribution of the test statistic. When performing block-bootstrapping, 

the selected block length should reflect the temporal dependency (autocorrelation) of 

the time series (Kundzewicz & Robson, 2004). A block length of four is used to 

allow for serial correlation as suggested by Önӧz & Bayazit (2012) for small samples 

(25≤n≥50), to obtain a rejection rate close to 5% level (α=0.05). With an H0=no 

trend any ordering of the data is equally likely (Khaliq et al., 2008). The distribution 

of the test statistic is estimated using 10,000 re-sample blocks. If the MK Z statistic o 

f the original series is found to be in the tail of the distribution (10,000*(α/2)), then 

the original ZS can be considered as being significant and it is likely that a temporal 

trend exists (Khaliq et al., 2008).  

Consequently, to account for serial correlation when indicating the significance of 

the results on the figures, the procedure described above is applied. For stations 

showing serial correlation for a specific index, the significance level plotted on the 

map for that indicator, are determined from a distribution of 10,000 block-

bootstrapped samples of the Mann-Kendall Z statistic. The null hypothesis (no trend) 

is rejected and the trend is marked as being significant on the map, when the MK ZS 

of the original series is located in the tails of the distribution. This means, when the 

data is ranked from the lowest to the highest value of the MK statistic, H0 is rejected 

if the original MK Zs is higher than the 9,750
th

 highest or lower than the 250
th

 MK 

statistic of the 10,000 block bootstrapped samples at a significance level of α=0.05.  
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Figure 3.16 Trends seasonal Q50 flow for 1976-2009. Increasing (decreasing) trends in blue (red). 

Significant trends for the Mann-Kendall ZS (5% significance level) are marked by white triangles. 

 
Figure 3.17 Trends in seasonal Q75 flow for 1976-2009. Increasing (decreasing) trends in blue (red). 

Significant trends for the Mann-Kendall ZS (5% significance level) are marked by white triangles. 
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Figure 3.18 Trends in seasonal Q95 flow for 1976-2009. Increasing (decreasing) trends in blue (red). 

Significant trends for the Mann-Kendall ZS (5% significance level) are marked by white triangles. 

 
Figure 3.19 Trends in 7-day (top) and 30-day (bottom) sustained low flows for 1976-2009.  

Magnitude (left) and Julian Day/Timing (right). Increasing (decreasing) trends in blue (red). Significant 

trends for the Mann-Kendall ZS (5% significance level) are marked by white triangles. 
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The seasonal Qns for the fixed period 1976-2009 are shown in Figure 3.16 to Figure 

3.18. The results are described together below by season (n=50, 75 or 95). Later the 

SLF results shown in Figure 3.19 are discussed separately. In spring, Q50 shows a 

high number of negative trends using the Theil-Sen Approach, six of the trends are 

significant at the 5% significance level for the Mann-Kendall statistic. For spring 

Q75 the magnitude of negative trends decreases while small positive trends are found 

for spring Q95.  

Summer and autumn Qn flows are mainly positive. Trends in summer Qn have a 

higher magnitude compared with autumn and also have a much higher number of 

significant trends, particularly for Q75 which has the highest number of significant 

positive trends for that period.  

Winter Qn flows for the fixed period are dominated by negative trends, some of 

which are significant. Again, Q75 has the highest number of significant trends at the 

5 % level for the MK statistic. 

The 7-day and 30-day sustained low flows both show mainly positive trends in 

magnitude, whereas the timing indicates negative trend magnitudes (few significant). 

Negative trends in the TSA slope for the Julian day of the start of the sustained low 

flow periods indicate that these low flow periods happen earlier in the year.  

Overall, for all low flow indicators there is no clear spatial pattern observable for 

Ireland for Qn and n-day sustained low flows for the period 1976-2009. An 

interesting outcome is the fact that the positive trends derived here for summer tend 

to oppose the commonly held expectation of drier summers and/or more extensive 

drought conditions under projected future climates. To better understand the spatial 

and seasonal variability of trends for a specific region an analysis of a single time 

period can only provide limited information (i.e. a snapshot in time). Particularly if 

the indicators analysed are highly variable on a year-to-year basis, a change of a 

couple of years in the analysed time period can result in different trends magnitudes 

and directions (as evident in the threshold-based low flow analysis). To provide a 

better understanding of possible effects of climate variability and change in hydro-

climatic indicators, multiple time periods need to be analysed.  
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3.5.3 Analysis of Low Flow Indicators - Varying Start Year 

Trend studies are often used to place the most recent records (end of record) in the 

context of long-term trends. However, the choice of the start year of the analysis can 

possibly influence the outcome of the overall trend obtained. Therefore, a trend 

analysis is performed by changing the start year of the analysis. For each start year 

between 1973 and 1987, trends up to 2009 (relative TSA Slope (%) and MK Z 

statistic) are calculated and plotted on the map. The same approach is used for the 

end year of 2006 so that recent wet extremes can be isolated. For the ease of visual 

interpretation, special animations of the changing trends over time with varying start 

years were produced (see supplementary files). Here, for ease of presentation the 

individual sequences from 1973 to 1987 are shown as maps for Q50 in Figure 3.20 

(ending 2009) and Figure 3.21 (ending 2006) and in Figure 3.22 and Figure 3.23 for 

the timing of 7-day sustained low flow as illustrative cases. 

In all four figures, the number of stations on the map increases with time, as stations 

with varying record length (earlier start years) are included. Figure 3.20 shows the 

trends in summer Q50 ending in 2009 for 15 different start years in sequence, with 

the majority of trends being positive. With regard to the trend magnitudes, there is no 

clear, spatial pattern. Some negative trends appear to emerge predominantly in the 

north. The number of significant trends (MK) changes considerably over the 15 start 

years examined with a maximum of 10 positive trends for the first couple of start 

years examined (although not for all stations continuous) to no significant tends for 

analysis starting in 1985. From one year to the next, some stations with trends can 

become significant or stations can lose their significant trend result. These findings 

highlight the dependency of statistical significance on the time period analysed.  

For summer Q50, trends ending in 2006 show a different pattern (Figure 3.21). 

Positive trends are only found for tests starting in 1973, 1974 and 1975. Trends 

starting from 1976 and ending in 2006 show mixed signs for relative TSA slope, 

although positive trends still have a higher magnitude compared to the negative 

trends, which tend to be weak. Trends starting from 1977 onwards are dominated by 
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stations showing negative trends. Most of these negative trends are non-significant at 

a 5% level, with the exception of trend analysis starting in 1985.  

For both end years investigated, the drought conditions in the early 1970s are 

evident, resulting in positive trends for analysis starting in that period, independent 

of the end years. The extreme wet summers at the end of the record cause Q50 flows 

to be higher, causing significant trend when starting in the early 1970s. For trend 

analysis ending in 2006, few are significant at a 5% level. These overall differences 

in sign, magnitude and significance shown for the two periods, highlights the 

influence of the start year and end year of analysis when analysing trends particularly 

when extremes are present. 

The timing of the 7-day Sustained Low Flow (Julian Day of the start of the driest 

week in a year), shows mixed trends when varying the start year of analysis for 

trends ending in 2009 (Figure 3.22). For all start years, the majority of trends are 

negative, which indicates that the week of the lowest flows is happening earlier in a 

year. Station 16009 in the southeast is an exception showing a significant increasing 

trend for the first couple of start years. For some start years, the number of stations 

showing an increasing trend in the TS Slope increases (e.g. 1978 or 1987) compared 

to the other start years, but with lower magnitudes. Overall, there is a lack of 

significant trends and no apparent spatial pattern.  

When analysing trend ending in 2006, the sign of the majority of trends in the timing 

of the 7-day Sustained Low Flow change direction (Figure 3.23). The majority of 

trends are positive which does suggest that the driest week of the year is happening 

later. Trends in the southwest show a distinct pattern of predominately weak 

decreasing trends for the majority of start years. Overall, there are no significant 

trends for the period ending in 2006, apart from station 16009.  

For the illustrative case studies (summer Q50 and the timing of 7-Day SLF) and the 

other indicators analysed (not shown) the start and end year have a strong influence 

on the trend obtained. Depending of the start and end year, particularly when 

extremes are present, the sign, magnitude and significance of trends found for 

individual stations vary considerably and can change from one year to the next. This 
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analysis of the spatial evolution of trends observed with varying start years can 

provide water managers with a better understanding of climate variability and 

change.  

Trends obtained from fixed period studies are often used to provide insights into 

changes in future hydrological characteristics (here focus on low flows), or even to 

extrapolate the observed trends into the future for entire regions. However, the 

results presented here from the analysis of trends in Irish low flow indices have 

shown extreme care is needed in doing so. For example, the two illustrative case 

studies have shown that the regional trends obtained from two different end years can 

become contradictory when shifting the period by as little as three years. Any future 

planning based on trends ending in 2006 will result in different plans compared to 

trends obtained three years later.   
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Figure 3.20 Summer Q50; Trends over varying start years ending in 2009. Increasing (decreasing) trends 

in blue (red). Significant trends for the Mann-Kendall ZS (5% significance level) are marked by white 

triangles. 
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Figure 3.21 Summer Q50; Trends over varying start years ending in 2006. Increasing (decreasing) trends 

in blue (red). Significant trends for the Mann-Kendall ZS (5% significance level) are marked by white 

triangles. 
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Figure 3.22 Timing of 7-Day Sustained Low Flow; Trends over varying start years ending in 2009. 

Increasing (decreasing) trends in blue (red). Significant trends for the Mann-Kendall ZS (5% significance 

level) are marked by white triangles. 
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Figure 3.23 Timing of 7-Day Sustained Low Flow; Trends over varying start years ending in 2006. 

Increasing (decreasing) trends in blue (red). Significant trends for the Mann-Kendall ZS (5% significance 

level) are marked by white triangles.  
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3.5.4 Analysis of Low Flow Indicators - Varying Start Year & End Year 

To further understand the variability of trend direction and significance an analysis 

of varying both start and end year of analysis is performed. This allows a low flow 

indicator analysis to establish the effects of extremes in a long-term context.  

For the long-term analysis the five stations with the longest records (1957-2009) 

available are used (16008, 16009, 18002, 25002, and 27002). Although this approach 

limits the spatial coverage, it allows the identification of combinations of start and 

end years that are influential in producing negative/positive trends. In Figure 3.25 to 

Figure 3.28 all possible combinations of start and end years resulting in a minimum 

record length of 10 years are analysed for trends using the Mann-Kendall (MK) Z 

statistic.  

Figure 3.24 is provided to illustrate how Figure 3.25 to Figure 3.28 can be 

interpreted. The x-axis represents all possible start years and the y-axis shows all end 

years used to calculate MK ZS with a minimum record length of 10 years. In the 

three panels, each grid cell shows the number of trends derived from the respective 

combination of start and end years of the period analysed. In the left panel the 

number of positive trends is shown, out of the n number of stations (here n=25) and 

the middle panel shows the number of negative trends. The right panel shows the 

number of positive/negative trends significant at the 5% level. The grid cells in the 

left panel show either positive or negative significant trends, depending which sign is 

dominant. If for example one positive and one negative significant trend occur for 

the same cell, no trend is shown. The darker the blue or red colour, the more stations 

show positive or negative trends respectively. If extreme low or high periods for a 

specific indicator are present, which are influential to the overall trend derived from 

the MK statistic, this period results in darker coloured clusters/bands in the panels. 

Vertical dark coloured bands show an influential start period (e.g. 1985 for negative 

trends in Figure 3.24), whereas horizontal bands indicate a strongly influential end 

date (e.g. 2009 for positive trends).  
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Figure 3.24 Illustrative interpretation of Figure 3.25 to Figure 3.28 using summer Q50 (orange: 1976-2009, 

purple: 1979-2006) as an example. Positive (negative) trends are shown in blue (red). Trends are significant 

at a 5% slevel. Each grid cell summarises the spatial trends obtained from the maps. 

All indicators are analysed for trends using the Mann-Kendall statistic with varying 

start and end years. Only seasonal Q50, Q75 and Q95 and for the m-day low flows 

only magnitude and timing of the 7-day and 30-day Sustained Low Flow are shown. 

Seasonal mean flows, Q70 and Q90 as well as 7-day and 30-day moving average 

flow for the five stations with long records are provided in Appendix I. Qn flows for 

all seasons are analysed to present the changes in the seasonal low flow regime. 

Changes in some seasonal low flow indicators (e.g. winter Qn flows) might not 

directly effect in-stream water abstractions, but have implications for aquifer and 

reservoir recharge can have substantial implications for water resources 

management. Additionally, drought events have been shown to be associated with 

clusters of dry winters or low winter flows (Marsh et al., 2007).  

In the next section, the results for the Qn flows are presented, and then the results 

from the sustained low flow analysis are examined. 
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Figure 3.25 Trends in seasonal Q50 Flows for five stations with long records, for all possible start and end 

dates. Number of positive trends (left), negative trends (middle) and significant trends at 5% level (right). 
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Figure 3.25 shows the trends in seasonal median flows (Q50). For spring Q50 flows, 

there is a clear change in direction of trend with start years around the mid-1970s. 

The significant positive trends (5% level) that were apparent for analysis starting 

around 1980 then disappear for end years around 2000.  

Summer Q50 flows for trend tests ending from 1980 onwards are predominately 

positive. High numbers of significant positive trends are found for most of the start 

years for trend analysis ending in 2008 and 2009. Additionally the influence of the 

drought conditions in the late 1960s/early 1970s are apparent in producing significant 

positive trends for trend tests starting around that period, for most of the long-term 

records.  

This long-term information allows setting the results from the previous analysis in 

the long-term context. With this analysis, it can be shown that these trends are caused 

by the end year(s) of analysis. As these trends are only a recent phenomenon time 

will show if the trends continue, i.e. if this is an emerging signal, or if this is only 

caused by the extremes.  

From the autumn Q50 flow in Figure 3.25, there is a change from increasing to 

decreasing trends starting around the mid-1970s. For trends starting after the 

mid-1980s, there is no clear persisting positive or negative trend signal. Winter Q50 

shows positive trends for all tests starting before the early 1970s, thereafter trends are 

predominantly negative. This characteristic is evident for all end years.  

Mean Flows show similar patterns of clusters of increasing and decreasing trends as 

Q50 flows in spring and autumn (Figure shown in Appendix I). However, trends 

beginning around the mid-1960s to mid-1970s show a tendency of becoming 

significant, particularly for trends ending around and after 2000. This tendency is not 

apparent in Q50 autumn flows and might be caused by a strong contribution of high 

flows on the mean flows. 
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Figure 3.26 Trends in seasonal Q75 Flows for five stations with long records, for all possible start and end 

dates. Number of positive trends (left), negative trends (middle) and significant trends at 5% level (right). 
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From Figure 3.26, spring Q75 shows a mixed pattern of increasing and decreasing 

trends depending on the combination of start and end years. The change in trend 

direction for analysis starting around the mid-1970s seen in Q50 flows is less 

pronounced for trend tests staring from the 1980s onwards. Overall, few significant 

trends are evident in spring Q75, particularly for longer records analysed.  

Summer Q75 and Q50 flows have a similar temporal pattern of trends, with 

predominately positive sign for trend tests starting from the mid-1960s onwards. 

Tends derived from records ending after mid-1980s become positive for tests starting 

in the 1970s. For analysis ending from 2000, the prevailing trends are positive, with 

higher numbers of significant trends compared to Q50. 

The change from positive to negative trends around the 1970s that is apparent in 

autumn Q50 flows in Figure 3.25 is not apparent in Figure 3.26 for Q75 flows. 

Generally, the trends show mixed clusters, and trend sign changes within years.  

The signal of change in trend results for analysis starting pre and post 1970s is more 

pronounced for winter Q75 flows compared to Q50 flows. The same divide is also 

apparent for the high number of the trends in Q75 that are significant at a 5% level. 

The trends derived for Q70 (shown in Appendix I) show a very similar pattern 

to Q75. 
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Figure 3.27 Trends in seasonal Q95; Flows for five stations with long records, for all possible start and end 

dates. Number of positive trends (left), negative trends (middle) and significant trends at 5% level (right). 
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In Figure 3.27, the trends in seasonal Q95 are shown. The trends obtained for all 

seasons are similar to Q90 flows, shown in the appendix. Spring Q95 flows show a 

mixed pattern of increasing and decreasing trends similar to Q75. From 2000 

onwards, long records show a single dominant significant negative or a positive 

trend. 

Summer Q95 flows show a change from negative to positive trends for tests starting 

from mid 1960s onwards. This also becomes apparent in the high number of 

significant positive trends after that period. This is also evident in summer Q90 flows 

(shown in Appendix I). 

Autumn Q95 flows with early start years show the opposite trends that were apparent 

in Q50. For Q95 and Q90 flows, trends starting pre 1970s are predominantly 

negative, compared to predominantly positive Q50 (Figure 3.25) flows for the same 

start years.  

From Figure 3.27, winter Q95 flows show distinct phases of positive MK Z statistics 

for trends starting around pre 1970s and post the 1980s. A discrete phase of negative 

trends is found between these positive phases. These phases can also be found in 

winter Q90 flows. Trends starting from the mid-1950s up to the 1970s and ending 

between the mid-1970s and 1990 show a cluster with a high number of positive 

trends. A cluster of high number of negative trends for tests starting between 1970 

and 1980 and ending in the early 1990s is also evident.  

These patterns of distinct phases for winter Q95 and summer Q95 are on line with 

the finding by Marsh et al. (2007), indicating that clusters of low winter flow can 

cause clusters of low flows in the subsequent summer.  

 

  



Chapter 3  Analysis of Observational Hydrological Records 

 

90 

 
Figure 3.28 Trends in Magnitude and Timing for 7-day and 30-day Sustained Lows, for all possible start 

and end dates. Number of positive trends (left), negative trends (middle) and significant trends at 5% level 

(right). 
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In Figure 3.28, the trends obtained for the magnitude and timing (Julian Day) of the 

7-day and 30-day sustained low flow are shown. The patterns obtained for the trends 

in magnitude are similar for both sustained low flow periods. Trend tests starting 

before mid-1960s show a negative tendency, which becomes increasingly positive 

the longer the investigated record becomes. Trends analysed with start years before 

mid-1960s result in predominately positive trends, with a strong cluster of significant 

trends starting through the 1970s. The long term drought condition is apparent for 

both the 7-day and the 30-day sustained low flow, indicated by the dominance of 

significant positive trend  

The trends obtained for the timing of the 7 and 30-day sustained low flows shows 

that there is no clear pattern of these prolonged low flow periods occurring earlier or 

later in a year. For the 7-day sustained low flow there is one dominant station that 

shows significant positive trend results, whereas in the timing of the sustained 30-day 

flows, there is also one dominant station with both significant positive and negative 

trends. 

It can be seen from the results derived from the analysis of low flow indicators with 

varying start and end years of analysis that the trends obtained are highly dependent 

on the time window analysed, even when analysing longer time periods. Although 

some indicators show similar seasonal and temporal patterns, there is no clear, 

persistent positive or negative trend signal emerging across seasons. However, across 

certain indicators similar patterns can be found. 

All of the low flow indicators investigated here show high degree of natural 

variability, with clusters of high and low indicator values compared to the long-term 

mean value (inter-decadal variability). In addition, periods of extremes in the 

indicators appear to be present for the end of the analysis period, even for the longest 

records in excess of 50 years (found in the upper left corner of the graphs). This 

indicates that the suggestion by Kundzewicz & Robson (2004) and Yue et al. (2012) 

of a minimum length of 50 years to confidently detect temporal trends might not be 

enough to lessen the influence of extremes, particularly at the start and end of record.  
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For the low flow indicators analysed, the signal of change obtained from the trend 

analysis is low compared to the noise (variability and outliers) in the time series 

analysed. A lack of dominant significant persisting trends does not mean that there is 

not a long-term signal in the hydrological time series analysed. No significant trends 

can also be cause by a positive and a negative trend obtained from different stations 

cancelling each other out. However, it is difficult to estimate from these time series 

when a change in signal (of long-term climate change with or without human causes) 

might become detectable.  

Because of such a low change signal to noise ratio, apparent trends derived from 

fixed-period analysis cannot be used as confident guides to inform future water 

resources planning and decision-making, as change in study design can change the 

outcomes to a high degree. Therefore it is important not only to evaluate the 

magnitude of trends (i.e. Theil-Sen Slope) in observed records or their significance, 

but also when a trend of a certain magnitude in a given indicator will be detectable to 

inform decision-making or what changes might be required to produce and detect 

trends for a certain significance level.  

3.6 Detection Times & Magnitudes of Trends in Low Flow Indicators 

The time required to statistically detect any trend is dependent on the variability in 

the records, the trend magnitude and the setup of the statistical test. As described in 

Section 3.2.2, the null hypothesis H0 for the statistical test here is ‘no trend’ with the 

alternate hypothesis H1 being ‘trend’. Whether a trend is detected depends on the two 

types of statistical errors (Type I and Type II). Before conducting a statistical trend 

analysis the setup of the statistical test, i.e. the levels of α (confidence level of a test) 

and β (power of a test) need to be predetermined. Based on the assumption that the 

population trend magnitude (τ) and the standard deviation (σ) are known (for 

samples > 20) (Lettenmaier, 1976), Ziegler et al. (2005) provided an equation that 

relates the time needed (in years) to detect an observed linear trend of a certain 

magnitude (τ) to a specific α and β and the variance (σ
2
) of the time series. Wilby 

(2006) solved the equation to obtain the detection time ydetect (in years) (Equation 
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3.11), where  
   

 

 
 
 and    are the standardised normal deviates at cumulative 

probabilities    
 

 
  and β respectively (Ziegler et al., 2005).  

           
    

  
  

   
 
 
 
    

 

  

 
 

 Equation 3.11 

Additionally, this equation can be rearranged to obtain the minimum trend magnitude 

(τmin) (per year) needed to be statistically detectable by a given time period (Wilby, 

2006) with a specific α and β and the variance (σ
2
) of the time series (Equation 3.12).  

         
      

        
  

   
 
 
 
    

  

 

 
 

 Equation 3.12 

Here estimates of detection times and minimum trend magnitude are derived using 

the statistical criteria of α = 0.05 and β = 0.10, which give a low probability of 

detecting a trend when it is not occurring (Type I error) and not detecting a trend 

when it is occurring (Type II error) (Ziegler et al., 2005; Wilby, 2006; Harrigan, 

2010). In line with these authors, the minimum number of years (ydetect) or the 

minimum trend magnitude (τmin) needed to detect a trend from the year 1990 is 

calculated. The year 1990 has been chosen as reference year as this is the end of the 

reference climate period (1961-1990). For brevity, only the results of two illustrative 

indicators, Q50 and Q95 are presented. 

3.6.1 Estimates of Detection Times for specific Trend Magnitudes 

As the sample variance (σ
2
) is a key variable of both equations, the influence of the 

sample variance derived from a specific fixed period of observations on detection 

times is explored. ydetect is calculated with variance calculated from alternating start 

years of analysis for each station. This means for each station n estimates of the 

sample variance are derived firstly using the period 1976-2009, and then sequentially 

dropping the start year (e.g. 1977-2009) to a minimum of 20 years (1990-2009). This 

variance is then used to calculate ydetect for three hypothetical trend magnitudes (5%, 

20% and 40% change) that represent uncertainties in the ranges of potential future 

changes. These trend magnitudes are selected to represent a linear anthropogenic 



Chapter 3  Analysis of Observational Hydrological Records 

 

94 

climate change signal in river flow as simulated for mean monthly flows by impacts 

assessments from catchment based studies in Ireland (e.g. Steele-Dunne et al. 

(2008)). By plotting the ydetect for each start year iteration the influence of the selected 

period can be evaluated.  

Figure 3.29 shows the detection times derived for summer Q50 (left) and summer 

Q95 (right) for different magnitudes of assumed change. Following the method 

employed by Wilby (2006) the percent changes in the indicator are assumed to be 

linearly distributed over the period from 1990 to the mid-2020s (2025).  

For both, Q50 and Q95, depending on the sampled variance, large differences in 

detection times are obtained. ydetect obtained for summer Q50 is less influenced by the 

change in the start year, with the exception of station 205008 and station 206001 

(North Eastern and Neagh Bann RBD respectively), which show a particularly strong 

reduction of detection times when variance is calculated after 1986, which represents 

a lower variance relative to the full record. For summer Q95, the influence of 

individual years on the detection times is more pronounced. For example for a 5% 

change by the 2020s, station 27002 (Shannon RBD) shows a detection time of 344 

years when the variance of the period 1958-2009 is used, whereas ydetect drops by 40 

years when the variance of the period 1959-2009 is used.  
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Figure 3.29 Dependence of detection times on sample variance determined from start year of period for 

each station (from 1990). Left summer Q50, right summer Q95. From top to bottom; 5%, 20% and 40% 

change by 2020s. The vertical grey line marks the start year (1976) of the fixed period. 

For summer Q95 there are several such drops for several stations, highlighting the 

influence that extremes in individual years can have on the increase in detection 

time. A particularly strong increase in detection time is apparent for station Scarriff 

located at the River Graney (25030, Shannon RBD). If the variance is calculated post 

1987, the detection times are around 240 years, whereas if the period used to 

calculate the variances include 1986 and earlier start years, the detection times are 
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around 320 to 330 years. This strong increase in detection times (80 to 90 years 

longer) is caused by two extreme years (see Figure 3.30), where Q95 flows were 

over three times larger than the long-term average for station 25030. These years 

with unusually high Q95 flows, result in a strong increase in the variability of the 

time series, thereby lowering the signal to noise ratio, which decreases the 

detectability of any change signal present in the data.  

 

Figure 3.30 Summer Q95 Flow for Scarriff (Station 25030) at the Graney River (blue) and long-term 

average Summer Q95 (1973-2009) in red. 

For both indicators, independent of the hypothetical magnitude of change employed, 

the relative differences in the detection times between the individual stations depend 

on the level of variance in the period of observations sampled. This finding is also 

true for individual indicators where those that show a higher variance reveal longer 

detection times for climate change signals to emerge. From Figure 3.29 it can be seen 

that changes of the same magnitude in summer Q50 might take longer to be 

detectable compared to changes in Q95. For example for a 5% change in the 

indicator with the variance derived from 1976 to 2009 (indicated by dashed vertical 

grey line), the detection times (from 1990) range from 210-400 years for summer 

Q50, whereas the ranges for summer Q95 are around 170-340 years. Therefore, the 

climate change signals in key indicators for water resource management will not be 

statistically detectable in the timeframe necessary for anticipatory adaptation. 
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Additionally, the results in Figure 3.29 show that the higher the magnitude of change 

or the greater the climate change signal (displayed here as the percent change) the 

lower the detection times. For a 20% change in summer Q95 the detection times 

range between 65 and 135 years and for a 40% change between 43 and 86 years. 

Therefore, even with the magnitude of change at the limits of the extremes from 

climate change impact assessments, climate change signals will not be detected in the 

time frame required for planning and implementing anticipatory adaptation, if action 

is taken only after the signal emerges from the noise. 

Even when the indicator and station is selected to enhance the magnitude of the 

climate change signal or minimise the variance respectively, it is unlikely that trends 

will be statistically detectable using traditional tests at commonly used significance 

levels (i.e. 5% or 10% significance levels). For the two indicators analysed the 

lowest detection time of ~45 years is obtained by station 18002 (at Ballyduff, River 

Blackwater, South Western RBD), for a 40% change in Q95 by mid 2020s. This 

means that in such a setting even in the best case of such a strong trend, trends might 

not be detectable until ~2035. This result is obtained with a relatively low sample 

variance estimated from observation over the period 1976-2009. With longer records, 

it is likely that the variance of the sample would increase and therefore increase 

detection times. Additionally, if there is a future increase in the variance of the 

indicators analysed, the trends will take longer to be detectable under the statistical 

framework employed. 

Overall, there are no spatial patterns for specific River Basin Districts or for specific 

time periods to produce shorter or longer detection time across all different start 

years used to calculate variance estimates. Therefore, it is concluded that the period 

1976-2009 is representative of the average variations in ydetect for most of the stations 

investigated and also allows benefiting from the highest sample variance. This period 

will be used to estimate the sample variance from observations for the next steps of 

analysis. It is acknowledged that the longer periods used to estimate the variance will 

result in longer detection times. However, the period 1976-2009 is selected to 

include as many stations as possible in the analysis. 
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An illustrative example of estimated detection times for the IRN is provided. The 

focus of the analysis is not on individual stations but on the ydetect derived from all 

low flow stations used in this chapter. Estimates of how long it might take for a 

certain percentage of stations (e.g. 50%) to show a statistically significant trend are 

derived. Such an approach can have practical implications for water resources 

planning, as for example decision-making could be delayed until a certain number or 

percentage of stations show significant trends.  

 

Employing the sample variance from the period 1976-2009, possible detection times 

(ydetect) for both seasonal Q50 and Q95 are calculated for all stations. From Figure 

3.29 it can be assumed that the sample variance of the selected period is 

representative of the variance derived from periods starting within the next three 

years. Therefore, stations commencing their record within the next three years of the 

selected period are also included in the analysis (with the sample variance derived 

from the longest possible record). Stations with shorter records are omitted from the 

following analysis resulting in 29 stations being analysed for detection times and 

trend magnitudes. 

The calculations of ydetect are based on two hypothetical change magnitudes (20% and 

40%) linearly interpolated from 1990 up to the mid-2020s (2025) and mid-2050s 

(2055). Hypothetical estimates of percent changes per indicator have to be applied as 

future stream flow simulations have only been conducted for a small number of flow 

series, most of which are not part of the IRN network.  

Figure 3.31 and Figure 3.32 show estimated detection times from 1990 for all 

seasons for Q50 and Q95 respectively. A 20% change in the indicator is shown as 

solid lines, whereas bold lines indicate a 40% change. Detection times based on these 

changes happening by mid-2020s and mid-2050s are plotted in red and blue 

respectively. The horizontal dashed lines show 25% (8 stations), 50% (14 stations) 

and 75% (21stations) of the stations.  
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Overall, for each station, the stronger trend (40% change) has a lower ydetect to be 

detectable at the 5% significance level, compared to a 20% change. The detectability 

increases and therefore the detection times decrease due to an increased signal to 

noise ratio. If the same change magnitudes are used over different timeframes (i.e. 

2020s and 2050s), lower detection times are estimated for the 2020s, as the same 

trend magnitude is experienced over a shorter time period.  

For both indicators, the lowest values for ydetect are shown in winter. For example, for 

winter Q50 the shortest detection times indicated by a station for a 40% change by 

the mid 2020s is 31 years ranging up to longest detection times of 125 years for a 

20% change by mid 2050s. For summer Q50 the detection times for the same 

scenarios range from 50 up to 258 years. These differences in detection times of each 

indicator are due the difference in variances in each specific indicator. Lower 

variances in winter Q50 result in lower detection times.  

Additionally, for both winter indicators the differences in ydetect between 25%, 50% 

and 75% of the stations are smaller compared to other seasons. For example in winter 

Q95 (20% change by 2050s) the mid-range of stations shows a range between 

approximately 115 to 130 years, whereas for summer Q95 the mid 50% of the data 

indicate detection times between 130 and 180 years. This means for winter Qn that 

there is a closer agreement in the mid-range of stations on the detection times 

required, compared to the other seasons. However, this close agreement only applied 

to the mid-range of detection times. Individual stations can cause the maximum 

detection times for specific indicators to increase considerably (e.g winter Q95). 

For water managers summer Q50 and summer Q95 are important indicators of water 

availability. However, these indicators show the highest detection times of the 

investigated indicators. For example a 40% change by 2020s is estimated to be 

detectable for at least 50% of the stations for summer Q50 by 2055 (65years from 

1990) or for Q95 around 2050 (ydetect=62 years). Therefore, it is not only important to 

determine when such changes might become detected but also what magnitude of 

change might be required to detect a change by the 2020s or 2050s at a certain 

significance level.  
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Figure 3.31 Detection Times of Seasonal Q 50. 20% (40%) changes are shown solid (bold) lines. Changes 

occurring by mid 2020s (2050s) are plotted in red (blue). Dashed horizontal lines show from bottom to top 

25%, 50% and 75% of the investigated stations. 

 
Figure 3.32 Detection Times of Seasonal Q 95. 20% (40%) changes are shown solid (bold) lines. Changes 

occurring by mid 2020s (2050s) are plotted in red (blue). Dashed horizontal lines show from bottom to top 

25%, 50% and 75% of the investigated stations. 
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3.6.2 Estimates of Magnitude of Change required for Detection 

With a conservative significance level of α=0.05, the detection times obtained in the 

previous section show that future changes might not be detectable in the majority of 

stations in the timeframe required for preparing for and adapting to these assumed 

linear changes. However, the detectability of changes not only controlled by the 

strength of the change signal and the natural background variability, but also by the 

significance level employed. By selecting a less stringent significance level, the 

detectability of trends increases, however, at the same time the risk of falsely 

statistically detecting a change, when no change is occurring, also increases. 

This section therefore investigates the minimum magnitudes of change required for 

linear trends to be statistically detectable at specific significance levels for two time 

periods. Two different significance levels, α=0.05 as previously employed and a less 

strict criteria for a Type I error of α=0.1 are analysed. For both indicators the 

magnitudes of change required for detection by 2025 (mid-2020s) and 2055 

(mid-2050s) are estimated, again assuming monotonic trend. 

Figure 3.33 shows the minimum magnitude of change required for summer Q50 

(left) and Q95 (right). Changes occurring by the mid-2020s and mid-2050s are 

plotted in red and blue respectively. Light colours represent a significance level of 

α=0.05 whereas darker colours represent a lower significance criteria of α=0.1. 

Dashed horizontal lines show from bottom to top 25%, 50% and 75% of the 

investigated stations.  

Both investigated indicators show shorter detection times when the significance 

criteria are less strict reducing the required magnitudes of change on average by 

about 10%. However, the magnitudes for change required to be detectable by 2020s 

in Q50 are very high ranging from 63% (α=0.1) to 213% (α=0.05). The lowest 

change required is indicated by the station Agivey located on the Whitehill (203028) 

(NB RBD) with a magnitude of 63% (α=0.1) or 70% (α=0.05) with a maximum of 

change required 212% (α=0.05) for station 205008 (Lagan) located on the Drumiller 

(NE RBD).  
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For 50% of stations to have a detectable trend in summer Q50 by the 2020s a 95% 

change (α=0.1) or 105% change (α=0.05) in the indicator is required. Similarly for 

summer Q95 if a change is sought to be detected in at least 50% of the stations, a 

change of 85% (α=0.1) or ~95% (α=0.05) is required. Although a less strict statistical 

criterion is used, the changes in magnitude required for linear changes to become 

statistically significant are very high and very unlikely to be experienced. 

 
Figure 3.33. Minimum change magnitude required for summer Q50 (left), Q95 (right). Changes occurring 

by mid 2020s (2050s) are plotted in red (blue). Light (dark) colours represent a significance level of α=0.05 

(α=0.1).Dashed horizontal lines show from bottom to top 25%, 50% and 75% of the investigated stations. 

Depending on the indicator and site selected, the sample variance of the indicator, 

and the magnitude of trend, different detection time estimates are obtained. Overall, 

changes are unlikely to be statistically detectable for many years and in most cases 

not within the time required for informing anticipatory adaptation in the water 

resources sector.  

Additionally, the minimum changes required to be detectable are large, and well 

beyond any simulated impacts to date. This means that water management and 

planning for anticipated future changes will be required to take place without these 

changes being formally statistically detectable. This presents a challenge for local 

scale adaptation where expensive investment may be required where evidence, based 

on traditional statistical frameworks and standards may not be available. When this is 

coupled with the uncertainties associated with future projections of climate change 

impacts at local scales it shows that new tools and approaches are required for 

effective adaptation.  
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3.7 Discussion and Conclusion 

In this chapter, the first research aim and supporting objectives have been addressed 

by deriving selected flow indicators from Irish river flow records and by analysing 

these for evidence of climate-driven changes.  

The time series of 34 flow records analysed, have been taken from an Irish Reference 

Network (IRN) consisting of near-natural reference stations. By analysing flow 

indicators derived from the IRN, the prime confounding factors such as poor data 

quality and artificial influences are substantially reduced. However, any analysis will 

always be dependent on the historical legacy of such a network. Within the Irish 

Reference Network, only five hydrometric stations with long good quality records 

(particularly in the lower flow regime) are present. Most of the flow records in the 

network begin around the mid-70s, a time period heavily influenced by the prevailing 

drought conditions. Additionally, exceptionally wet years, which are also reflected in 

river flows, occurred at the end of the available flow records. The presence of these 

extremes at the start and the end of record makes the extraction of robust trends and 

the detection of a climate change signal difficult.  

A wide range of stream flow indicators covering the lower part of the flow regime 

and of direct relevance to water management have been analysed for trends. The 

results obtained from the analysis showed that different parts of the flow regime 

respond differently to changes in the precipitation inputs. For the set period of 

analysis (1976-2009), the seasonal trends obtained (increases in summer low flow 

indicators), are contradicting the projected changes in Ireland of drier summers for 

both precipitation and mean river flows. However, when the extremes at the start and 

particularly end of the record are removed by using shorter time periods this 

contradiction remains but is not as strong. Nonetheless, there is little evidence of 

persistent significant trends that can be associated with an anthropogenic climate 

change signal. Time will tell if the recent wet summers are part of the natural 

variability found in the hydrological system or are an indication of a long-term 

climate driven trend. 
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Natural variability of river flow can occur in relation to changes in regional 

large-scale atmospheric circulation, which are influenced by large-scale climatic 

processes (Sen, 2009). The most important driver of natural climate variability in 

Ireland and the UK is the North Atlantic Oscillation (NAO) (Murphy & Washington, 

2001; Hurrell & Deser, 2009). Fluctuations in the pressure gradients between 

northern and southern parts of the Northern Atlantic are used to define the NAO 

indices, depending on the location of pressure measurements at the earth surface (i.e. 

the pressure difference between the Icelandic low and Azores high). Changes in the 

mean circulation patterns related to the NAO are associated with changes in the 

number and intensity of storms and in storm tracks (Hurrell & Deser, 2009).  

A positive NAO index indicates stronger than-average and northward shifted mid 

latitude storm tracks (Westerlies) and enhanced rainfall activities, particularly in 

winter, over the British Isles. With regard to low flows and drought, Wedgbrow et al. 

(2002) found that positive winter anomalies of NAO index are correlated with 

drought across eastern parts of the British Isles in summer. They also showed that 

below-average summer flows in northwest and southwest of England and Wales 

were preceded by positive seas surface temperature anomalies in the North Atlantic. 

Therefore, it is likely that the high variability apparent in low flows in Irish rivers 

can be attributed to changes in the NAO index. However, to which extend the recent 

wet years are influenced by physical drivers such as the North Atlantic Oscillation or 

sea surface temperatures still needs to be further researched.  

A pattern similar to Ireland, of increasing summer flows has also been identified in 

the UK (Hannaford & Buys, 2012). The evidence from the UK together with similar 

observation from Irish rivers indicates that large-scale drivers are influencing the 

observed pattern. However, Hannaford & Buys (2012) also conclude that this 

contrast between observed summer flow increases and projected summer flow 

decreases needs further research.  Recent work by Sutton & Dong (2012) indicates 

that warmer sea surface temperatures in the North Atlantic are associated with wetter 

recent summers, which could explain the contradictions of projected changes due to 

anthropogenic climate change. Another study on changes in stream flow in Nordic 

countries, also reported discrepancies between observed seasonal trends and future 
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projections (Wilson et al., 2010). Further research on the causes of the differences 

between recent observations and future projections is needed; as such conflicting 

information presents a significant obstacle to anticipatory adaptation, particularly for 

evidence-based decision-making processes.  

The analysis of varying start and end years in trend analysis in Section 3.5.3 and 

Section 3.5.4 has shown that due to large inter-annual variability it is difficult to 

decipher a robust climate change signal. This high natural variability results in a low 

ratio between any anthropogenic climate change signal and natural indicator 

variability. The difficulties posed by a low signal-to-noise ratio on statistical trend 

detection have also been pointed out by previous studies (Wilby, 2006; Fowler & 

Wilby, 2010; Hannaford & Buys, 2012). 

A key finding from this chapter is that long-term anticipatory adaptation and 

planning in water resources management cannot be based on trends derived from 

relatively short fixed periods. As such trends are mainly dominated by inter-annual 

and inter-decadal variability, resulting in an ambiguous trend signal. Even though the 

analysis of five long-term stations (with over 50 years of data) with varying start and 

end year of analysis provides a better understanding of the evolution of trends, 

compared to the shorter periods, these long records are not enough. Although the 

analysis can provide some insights into trend persistence and variability, the trends 

derived from long stations are still strongly influenced by the extremes at the record 

end. Additionally, even with trends derived from records with a length of over 50 

years, the observational data cannot provide the information as to whether the 

derived trends are ‘real’ trends, oscillations, regime shifts or caused by natural 

variability due to their short observational record compared to the timescale of 

natural changes. Longer records can play an important role in resolving this 

shortcoming.  

The findings from this chapter show that depending on the study design 

(e.g. different start, end years or significance level and power of the statistical test 

selected) different trend magnitudes or even conflicting trend signs can be obtained. 

Trend studies need to clearly communicate these implications as otherwise 
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misleading information can be derived from such results. Additionally, based on 

these findings caution is required when comparing trends from multiple studies that 

do not use identical methods or time series particularly when the selected period 

contains extremes at or near start or end dates. Overall the analysis of fixed periods 

can be problematic for flow indicators where the direction, magnitude and statistical 

significance varies considerably with the chosen period, as for low flow indicators 

analysed in this study. 

Given these difficulties in deciphering a clear trend signal from observable records, 

an estimation of possible detection times and magnitudes of change needed for a 

trend to become formally statistically detectable has been conducted. The main 

factors influencing the detectability of trends, at a predefined significance level, are 

the magnitude of the change signal and the natural variability (noise). Depending on 

the time periods selected the variability and/or the trend magnitude vary, which in 

turn influence the detectability. 

Using observational records, the detection times derived for specific magnitudes of 

change are large. The same applies to the change signal needed for trends to become 

detectable, at a specific significance level, due to a high natural variability of the 

investigated indicators. The estimates derived assume that change occurs linearly 

over time. Additionally such calculations are based on a constant sample variance. 

However, if the variance in the indictors increases with time, the time that will be 

required to detect changes will also increase.  

The magnitudes of linear changes required for detection are larger than those 

projected. This means that water management and planning for anticipated future 

changes will be required to take place without these changes being formally 

statistically detectable. Waiting for these trends to become formally detectable might 

not be an option for water resources management. Trend analysis can be used as a 

tool for exploring the data; however, adaptation cannot wait until such changes can 

formally be detected with low significance levels. Additionally it is uncertain if the 

detected trends will continue into the future, or if the nature of expected future 

changes will change. 
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The lack of statistically significant trends and the difficulties with the future 

extrapolation of trends derived from observed data poses a problem for the 

traditional approach of evidence based policy making. This is particularly the case if 

a low risk approach is taken, and decisions on adaptation are based on specific 

statistical significance levels (small α) before action is taken. Additional methods to 

provide information for future water resources management are required if this 

traditional approach is to be continued. 

In Ireland, the water supply mainly comes from local surface water sources. 

Therefore, local information on trends at the water abstraction sites would be 

important for water resources planning and adaptation. However, in Ireland most of 

the water abstractions sites are un-gauged. The only sources of information for 

decision-making based on trend analysis are therefore based on close by gauging 

stations or regional studies, which can be utilised to inform planning decisions. By 

relying on trend analysis results obtained from nearby stations there is the risk that 

these stations do not show trends and therefore it could be concluded that there is no 

trend at the water abstraction site considered. The same risk is also applied by 

inferring regionally derived trends to an un-gauged location, as adaptation always 

needs to be considered at a local scale.  

The analysis of the long-term flow records available in Ireland, has shown that 

depending on the period of record analysed, the statistical significance of trends is 

short-lived. This is coupled with a strong influence of extremes at the start and end of 

the record when using traditional statistical techniques. However, just because a 

trend loses its statistical significance from one year to another, does not mean it will 

lose its practical significance, which means the effects of the changes (although not 

statistically significant) may still be important to inform practical decisions.  

Overall, the analysis of trends in this chapter has shown that the detection of 

statistically significant and consistent trends at the local scale (site specific) is 

difficult. By analysing multiple sites for similar trend test results coherent regional 

patterns of trends and their statistical significance can be identified. However, it is 

difficult to conclude whether, the stations with significant trends or without 
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significant trends represent the true trends. Therefore, local adaptation decisions in 

the water resources sector should not be based solely on whether a trend is 

significant or not.  

Nevertheless, observational data is and will be the single most important source of 

information to understand how anthropogenic climate change translates into 

hydrological changes. Good quality observational records from networks such as the 

IRN can also be used in future to analyse changes, and over time or with the 

development of new techniques in time series analysis human induced change in 

flow might become identifiable. Additionally, observational records are also 

important to calibrate and validate hydrological model outputs, which in turn then 

also become important in informing water resources decision-making. However, if 

such observational data can be used always depends on the purpose and the data 

requirements for such a study, i.e. time series, record length, data quality, location 

among others.  

3.8 Chapter Summary 

This chapter has examined the utility of trend analysis on indices derived from river 

flow records in informing anticipatory climate change adaptation in the water sector. 

The chapter can be summarised as follows: 

 The observed trends for the relatively short fixed periods can only provide a 

snapshot in time and are therefore highly dependent on the selected period. 

 Long flow records are important to provide context for trends derived from 

shorter flow records, but appear still too short to represent long-term changes in 

an Irish context 

 To date, due to high inter-annual variability and low signal-to-noise ratios, no 

robust anthropogenic induced climate change signals can be deciphered in low 

flow indicators derived from the river flows taken from the Irish Reference 

Network. 
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 The trends that are found in the data do not agree with future climate scenarios 

and expectations of reductions in summer flows and more severe droughts. 

Further research is needed to understand the differences between recent wet 

summers and projected summer flow reductions. Flow observations can play an 

important role in improving reconciliation. 

 Adaptation to anticipated changes cannot wait until trends in low river flow 

regimes become formally statistically detectable, with traditional statistical 

techniques and low levels of acceptable risk, due to the high indicator variance, 

resulting in estimated detection times longer than required for anticipatory water 

resources adaptation.  

The examination of the utility of hydrological time series to inform adaptation 

planning in the Irish water sector has highlighted, that observational records alone 

cannot provide sufficient information for anticipatory adaptation. Therefore, 

anticipatory adaptation will also need to be based on assessment of future projected 

changes. The following chapter describes the framework, tools and methods 

employed to use uncertain future climate projections in informing anticipatory 

adaptation decisions. 
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4 Framework and Tool Development for Anticipatory Adaptation 

4.1 Introduction 

While climate change is expected to change water resources, observational evidence 

from stream flow records in Ireland cannot, to date, provide the information needed 

for the development of planned anticipatory adaptation strategies. In this chapter, the 

second research aim is addressed by developing a modelling framework and tool to 

provide information to adaptation planning and decision-making when faced with 

large ranges of future outcomes and future climate uncertainties. The tool developed 

here is specifically designed within an Irish context to use the information on climate 

change scenarios, water resource systems and catchment/socio-economic data 

available and currently in use by national agencies in Ireland. The decision-making/ 

support tool developed in this chapter aims to fulfil the following research 

objectives: 

 Incorporate national climate change scenarios that are currently used in impacts 

and adaptation assessment in Ireland. In addition, provide the flexibility in the 

model setup to allow future incorporation of larger ensembles of climate change 

scenarios.  

 Integrate uncertainties derived from the application of hydrological models. In 

particular, in a real world application where many points of interest for water 

management are without observed flow records, the tool shall incorporate 

uncertainties associated with deriving stream flow in un-gauged settings - 

particularly model parameter uncertainty. 

 Include non-climatic drivers that affect water resources, such as population 

growth and supply network characteristics. 

 Provide a framework for model output analysis and result presentation of equally 

possible multiple future outcomes of the water resource model, in a practical 

context. 
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In this chapter, a framework and methods are presented which will be used in the 

following two chapters, to assess the vulnerability of surface water abstractions to 

projected future changes and to appraise the effectiveness of adaptation options to 

assist planning and decision-making when faced with large ranges of future climate 

uncertainties, in an Irish context (Section 4.2.). In Section 4.3, the hydrological 

model and the data required for the hydrological modelling approach are presented. 

Given that many surface water abstraction points have no river flow data in close 

proximity, a modelling approach for un-gauged catchments is described in Section 

4.4. The water resource modelling tool (WEAP) is introduced in Section 4.5. For the 

future simulations, the different regional climate projections currently used in the 

Irish the water sector for impacts and adaptation planning are presented in Section 

4.6., together with the future water resource system scenarios in Section 4.7. Section 

4.8 and Section 4.9 deal with the thresholds and performance metrics used to 

investigate the water resource system performances under the ranges of future water 

availability and water resource scenarios. The chapter concludes with a discussion 

(Section 4.10) and a summary in Section 4.11. 

4.2 Framework for Planned Anticipatory Adaptation  

As observational data in Ireland cannot solely provide the information required for 

planned anticipatory adaptation, additional information is needed to allow planning 

and prioritising adaptation action. Scenario planning provides a range of possible 

future outcomes on to inform decision-making. Additionally, results of vulnerability 

assessments help to further refine the possible impacts and help to provide a base for 

adaptation measures. However, it is important that the planned adaptation measures, 

which are anticipating a certain change, are still kept flexible to allow for further 

adaptation and to avoid being locked into a specific adaptation path. Stakhiv (1998) 

advocates a ‘learning by doing’ approach because adaptation to climate change is 

still a relatively new concept and no past experience is available to draw upon and 

guide such decisions. Learning by doing is the basic idea for adaptive responses, 

where policies and regulations are adjusted in response to new information and 

gained experiences. 
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Recognising that adaptation to climate change cannot be a linear one-directional step 

or measure, but rather a process that needs to account for flexibility and have 

procedures in place that allow for adjustments, an appropriate framework is required. 

The core of the framework developed here consists of three iterative processes, with 

linkages between the individual process pathways (as shown Figure 4.1). A key 

feature of the framework is that the processes are circular, allowing for decisions and 

modelling steps taken to be reviewed over time, in the light of new challenges or new 

information. 

The first iterative process for anticipatory adaptation or planning for an uncertain 

future (blue cycle) requires a sequence of actions that define the problem, a tool for 

anticipatory decision-support, decision-making and the implementation of these 

decisions. Then the effects/effectiveness of these measures need to be monitored and 

evaluated. Within this key step observational evidence from monitoring networks 

(e.g. hydrometric reference networks) plays an important role: providing a source for 

feedback, which can then be used for an iteration of the process or to change the 

problem definition if necessary. Iterative frameworks also allow for adjustments and 

refinements, through additional iterations, before a decision is implemented (Connell 

et al., 2005). Similar iterative frameworks have been proposed for the UK by 

Willows & Connell (2003) and Ranger et al. (2010). 

The key component that provides the information to the anticipatory adaptation cycle 

is the decision-support cycle (green cycle). It is within this loop that climate 

information/scenarios can be used with a new focus. The two main components of 

the decision-support loop are the vulnerability assessment and the iterative process of 

robust adaptation option appraisal (light green cycle) (Figure 4.1). All three iterative 

processes presented here are framed and influenced by climatic influences (observed 

climate and uncertain climate projections) and non-climatic pressures such as 

ecological and socio-economic pressures. 
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However, it needs to be highlighted that there will be no single framework and no 

single tool for planned anticipatory adaptation in general. Due to the differences in 

framing conditions, such as state of the system, legislative frameworks or funding, 

frameworks and tools will always be context specific. In this work, the decision-

support tool for the Irish water resource sector is represented by the green loop of 

vulnerability assessment and robust adaptation option identification to support 

decisions for planned anticipatory robust adaptation. The main focus of this work is 

the loop on decision-support for adaptation and the development of a tool that can be 

used for more effectively informing robust adaptation. Section 4.2.2 to Section 4.2.4 

will expand on the decision support loop in more detail.  

 

 
Figure 4.1 Adaptation framework for planned anticipatory adaptation showing the influence of 

climatic and non-climatic pressures (purple boxes) on the iterative processes of anticipatory adaptation 

(blue loop) and decision-support (green loop) in conjunction with robust adaptation option appraisal 

(light green loop).  
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4.2.1 Application of the framework for anticipatory adaptation in 

the water resources sector 

The sample application of the framework shown in Figure 4.1 to water resources 

management under climatic change will be presented below. The application starts 

with the identification of the problem (at the top of blue circle), which in this 

illustrative application is the desire to implement anticipatory adaptation measures to 

the anticipated changes in future water availability if needed. In the second step 

information is required to support anticipatory adaptation. This is the step where the 

decision support loop (green) intersects with the decision anticipatory decision 

making loop (blue) and where the application of the decision support tool is situated 

(for details of the tool see Section 4.2.2 to Section 4.2.4).  

To support decision making, the vulnerability of the water resources system needs to 

be assessed through establishing key characteristics and pressures of the system such 

as water abstractions and population growth (see Section 4.2.3). Additionally in this 

step, decision making criteria need to be established that allow identifying critical 

thresholds that should be avoided or determining criteria of adaptation success. 

Examples of such thresholds are minimum flow requirements that would not allow 

further water abstraction or maximum number of days in which water demand cannot 

be met. The next step in the green loop involves the robust adaptation option 

assessment, indicated by the small light-green coloured loop in Figure 4.1 and 

explained further in Section 4.2.4.  

After conducting the adaptation option assessment, with regard to their robustness to 

the uncertainties considered, either robust adaptation options emerge that are 

considered to be satisfactory according to the criteria defined in the previous step, or 

another iteration of the green loop might be required until satisfactory options are 

identified. The robust adaptation options identified can then feed back into the 

adaptation decision-making process (blue loop). If several equally desirable 

adaptation options were identified the decision maker has to decide according to 

additional decision criteria such as costs or other priorities. After making the decision 

of a specific or a set of measures, they need to be implemented.  
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Once the anticipatory adaptation measures are implemented it is important that the 

effects of these measures are monitored and the performance of the measures is 

assessed in regular intervals. For example, if the implemented measure is the 

introduction of water charges to reduce water demand, monitoring would involve 

metering domestic water demand together with an evaluation if water charges are 

resulting in the expected reductions in water demand.  

The last step in the anticipatory decision making loop, involves taking into account 

the results obtained from the performance appraisal und using the information to 

feedback into the next iteration if the selected options are not performing as 

anticipated or if new information such as new climate projections, new population 

growth rates or water demand figures become available.  

As the decision support loop is central to support robust adaptation decision making, 

the next sections will focus on the details associated with that process.  

4.2.2 Decision-Support Tool 

Facing the uncertainties associated with future water resources planning and 

management under climate change, a tool supporting decision-making under such 

uncertainties is needed. In the context of Ireland with a lack of a coherent national 

water resources planning approach incorporating future climate uncertainties, the 

following tool to support decision-making is developed in this study.  

The core of the tool is the coupling of a water-accounting model (Water Evaluation 

and Planning System (WEAP)) with a hydrological model (HYSIM; HYdrological 

SImulation Model) which has been widely used for Irish catchments. The schematic 

of the tool is provided in Figure 4.2.  
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 Figure 4.2 Schematic of inputs and possible feedback mechanisms of the adaptation decision-support tool. 

Within WEAP, the current water supply infrastructure with its surface water 

abstraction points is simulated. The tool allows flexible input of data, i.e. future 

climate scenarios and emerging pressures and the uncertainties attached to them can 

be incorporated into the modelling framework. Additionally, the framework also 

allows adaptability of the modelling to new and updated input data information. The 

output of the modelling tool can be used to identify areas that might be vulnerable to 

future changes in climate and also allows the assessment of potential adaptation 

options.  

4.2.3 Vulnerability Assessment 

Before making any assessment of the state of future water resources, it is important 

to establish a good knowledge of the current water supply system, the operation rules 

and current pressures. This can give a first indication of where more information 

about the future system might be needed. This also allows the identification of 

possible sensitivities and vulnerabilities within the system, where a detailed 

modelling study will have priority; for example, water supply systems which are 

currently close to or approaching maximum capacity.  
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The second step of the vulnerability assessment involves the classification of 

possible future non-climatic pressures on the water resource system, such as 

population growth, changes in the water demand, change in the water infrastructure 

characteristics, or no change in the system with current trends being extrapolated into 

the future. This step still comprises the initial step of vulnerability assessment, where 

the aim is also to identify when and where possible vulnerabilities might emerge. 

Based on the knowledge of the system, critical thresholds and criteria of adaptation 

success are identified.  

Once the future problems and aims are defined, an inventory of possible adaptation 

options can be compiled. This catalogue of different management possibilities can 

then be evaluated in the framework for robust adaptation assessment (light green 

loop in Figure 4.1). In this work the focus is on the assessment of what can be 

defined as robust adaptation options, as outlined in the next section.  

4.2.4 Robust Adaptation Option Assessment 

The uncertainties involved in modelling future climate and climate impacts pose 

questions on to the utility of a top–down ‘predict-then-act’ approach for policy 

analysis to adapt to climate change where predictions are used to derive a few 

optimum solutions. Hallegatte (2009) even states that uncertainties in future climate 

change are so large that it makes many traditional approaches to designing 

infrastructure and other long-lived investments inadequate. Therefore, new 

approaches to anticipatory adaptation are being sought aiming for successful 

adaptation to climate change. In responding to the challenges described above, a 

number of authors have highlighted the potential for strategies that are robust to 

uncertainty (Lempert & Schlesinger, 2000; Hallegatte, 2009; Wilby & Dessai, 2010).  
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Robust strategies have been described by Hallegatte (2009) and Wilby & Dessai 

(2010) as those that: 

 Are low-regret, in that they are functional and provide societal benefit under a 

wide range of climate futures;  

 Are reversible, by keeping at a minimum the cost of being wrong;  

 Provide safety margins that allow for climate change in the design of current 

infrastructure or are easy to retrofit;  

 Use soft strategies that avoid the need for expensive engineering and 

institutionalise a long-term perspective in planning;  

 Reduce the decision time horizons of investments; and 

 Are flexible and mindful of actions being taken by others to either mitigate or 

adapt to climate change. 

Such robust approaches to anticipatory adaptation require a paradigm shift in how 

climate change data is used. It becomes necessary to move away from a ‘predict-

then-act’ top–down approach towards a bottom–up approach that allows climate 

scenarios to be used in exploratory modelling exercises to test the performance of 

adaptation options to the uncertainties involved in such a modelling approach. Work 

in this respect is progressing and frameworks for robust adaptation and example 

applications in the water sector are beginning to emerge in the international literature 

(for example in the UK: Dessai & Hulme (2007) and Lopez et al. (2009) or in 

Ireland: Hall & Murphy (2011)). Key to these examples is the utility of moving away 

from considering climate change impacts explicitly, but rather identifying where and 

when vulnerability to climate change may emerge together with the application of 

such frameworks and tools for the identification and selection of robust adaptation 

options. 

The schematic of the modelling framework of the decision support process (green 

loop in Figure 4.1) employed here is shown in Figure 4.3. The schematic combines 

the steps of vulnerability assessment and robust adaptation assessment into a single 

looping sequence consisting of several individual steps. In applying this modelling 

framework it might be necessary to revert back to any of the previous steps if 
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information is updated or newly available (indicated by light green arrows), or if 

additional strategies need to be assessed for their robustness, resulting in a quasi-

circular assessment of the water supply system and different adaptation options. 

 
Figure 4.3 Modelling approach used in the tool with possibilities for feedbacks and information update. 

The modelling approach starts with specifying the current water resource system 

characteristics and an analysis of the system vulnerability as an initial step before the 

robustness of adaptation option assessment under future climate scenarios is 

appraised. This is different from the traditional ‘top-down-approach’ where climate 

scenarios are used as the initial step of an assessment to drive impact models, and 

then identify adaptation options. Therefore, following the recognition of vulnerability 

and the identification of an inventory of adaptation options, climate change scenarios 

and time series of future hydrological conditions are used to ‘stress test’ the 

effectiveness of adaptation options to explore their robustness and functionality 

under assumed future conditions (i.e. scenarios). However, what strategies are 

considered to be appropriate and robust across a wide range of uncertainties 

primarily depends on the criteria used to define success of an adaptation measure, 

which is always context specific and final decisions can always be argued (Dessai & 

Hulme, 2007). The application of the modelling tool is fundamental to this modelling 

process and therefore the following sections outline in more detail the formulation 

and structure of the tool for Irish water resources systems.  
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4.3 Hydrological Modelling 

Hydrological models are used for a variety of purposes in water management, such 

as hydrological research and flow estimation in un-gauged catchments to generate 

stream flow time series. Generally, hydrological models simplify the rainfall runoff 

processes that are occurring in a catchment with the help of mathematical equations. 

Properties and physical characteristics of catchments are represented by model 

parameters. Various types of hydrological models have been developed; commonly 

these models are classified as lumped and distributed models and deterministic and 

stochastic models (Beven, 2001). Within a lumped hydrological model, the processes 

occurring within a single catchment are simplified to represent average conditions, 

whereas within a distributed model, hydrological processes within a catchment are 

represented as local average conditions of multiple sub-catchments. The in  a lumped 

model, catchment is treated as a single uniform entity, where parameters present 

average conditions, whereas distributed models divide the catchment into smaller 

elements, and local averages are used to represent the characteristics for each 

element (Beven, 2001).The difference between deterministic and stochastic models is 

that the former result in a single possible outcome under fixed conditions, whereas 

the latter introduce some random effects.  

The majority of hydrological models are conceptual, where the processes are 

aggregated in time and space by the modeller to form the model structure and 

parameters (Wheater et al., 2002). Generally, conceptual models take climatic data as 

input and produce stream flow as a model output. In conceptual models, parameters 

represent the hydrological properties of the catchments often do not have direct 

physical meaning or cannot be measured directly from the field and have to be 

estimated through a calibration process (Wagener et al., 2004). The ‘goodness-of-fit’ 

between observed and simulated output values (stream flow) within a catchment is 

evaluated using one or more objective functions (Madsen, 2000). Traditionally, the 

aim of a calibration procedure is to identify a single optimum set of parameters. 

However, by relying on a single optimum parameter set uncertainty increases as the 

parameter set as a whole rather than individual parameter values result in a good 

simulation. The specific conditions under which the parameter set performs well 
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compared to the observed data may change. Additionally, different combinations of 

different parameter values (parameter sets) within a hydrological model can simulate 

the observed flow equally well and therefore no single optimum parameter set exists 

(Beven & Freer, 2001). This is highlighted by the concept of equifinality, where the 

concept of an optimum parameter set is rejected, and where it is accepted that there 

are many parameter sets and models that can reproduce observed flow equally well 

(Beven & Binley, 1992; Beven & Freer, 2001; Beven, 2006). In hydrological models, 

the number of model parameters depends on the selected modelling approach and the 

spatial detail (lumped or distributed) used for describing the catchment’s 

characteristics.  

Calibration of model parameters can either be manual by the modeller, automatic or 

a combination of both. Generally, manual calibration is a time consuming procedure 

and can be considered of being subjective. Different modellers will obtain different 

optimum parameter sets, when calibrating the same model under the same 

conditions. To evaluate the ‘success’ of the model calibration different objective 

functions are used (Madsen, 2000). To get a complete assessment of the performance 

of the parameter sets, a suite of different model performance criteria including 

absolute and relative error measures should be used (Legates & McCabe, 1999), but 

until recently very often only a single objective function is used to evaluate model 

performance. Common agreement on whether a parameter set is fit for purpose is 

lacking, lack of agreement also relates to the selection of assessment criteria (Krause 

et al., 2005). Moriasi et al. (2007) reviewed previously published ranges for the most 

commonly used objective functions, and recommends the use of the Nash Sutcliffe 

Efficiency (NS), the percent bias (PBIAS) and the Observations Standard Deviation 

Ratio (RSR), together with additional graphical techniques for model evaluation, and 

suggests guidelines as to whether stream flow simulations can be deemed acceptable. 

However, until now there is no common standard used within the hydrological 

modelling community. 
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4.3.1 Hydrological Simulation Model - HYSIM 

The hydrological model used in this study is the HYdrological SImulation Model 

(HYSIM), which is characterised as a physically based lumped conceptual rainfall 

runoff model (Manley, 1975). HYSIM is selected in this study as the majority of the 

model parameters are based on measurable basin characteristics. This physical 

realism in model input parameters is of advantage as it makes it particularly 

applicable to simulating stream flow for un-gauged catchments, as this allows for 

transferring parameter values from similar gauged stations or from field 

measurements to the un-gauged site (Manley, 1975). In addition, HYSIM is a 

hydrological model that is being operationally used in water resources assessment 

and management, such as the Scottish Water supplies (Rodgers et al., 2012). 

The flow processes in a lumped conceptual model, like HYSIM, are mathematically 

described and the catchment is regarded as a single spatial unit. The catchment and 

its associated parameters are not spatially discrete but rather represent averages over 

the entire catchment area without considering topographical heterogeneity and the 

occurrence of different soils and land cover.  

The input data requirements of HYSIM are the parameter values, daily precipitation 

and daily evapotranspiration time series to drive the model. The hydrological 

calculations and the hydraulic routing within HYSIM consist of seven internal stores 

(Figure 4.4). The 36 parameter values, which control the storages and the transfer 

processes within the lumped model, are classified as physically based and process 

based parameters (Table 4.1 and Table 4.2). The majority of parameters within 

HYSIM are physically based values and can be measured from field observations or 

extracted from spatial datasets. The minority of parameter values belong to the group 

of process parameters, which are not directly measurable and can rather be identified 

as ranges of parameters. These process parameters require additional handling during 

model conditioning (model calibration and model evaluation) as described further 

down, to reduce uncertainties associated with the estimation process (Sorooshian & 

Gupta, 1995). 
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Figure 4.4 Conceptual model structure of HYSIM (adapted from (Manley, 2006)). 

 

Table 4.1 HYISM; Hydraulic Parameters, Units, Data Sources and Default Values 

Hydraulics Parameters Unit Source Default 

Channel Top Width m Manual 10 

Channel Base Width m Manual 6 

Channel Depth m Manual 1 

Channel Roughness -- Manual 0.3 

Flood Plain Width m Manual 100 

Flood Plain Roughness -- Manual 0.05 

Reach Gradient -- GIS 0.001 

Reach Length m GIS 1000 
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Table 4.2 HYISM; Hydrological Parameters, Units, Data Sources and Default Values 

Hydrological Parameters Unit Source Default 

Basic    

Interception Storage mm Default 2 

Impermeable Proportion -- GIS 0.02 

Time-to peak hours calc 2 

Rooting Depth  mm (*) 1000 

Pore Size Distribution Index -- Manual 0.15 

Permeability – Horizon Boundary  mm/h (*) 10 

Permeability – Base Lower Horizon  mm/h (*) 10 

Interflow – Upper  mm/h (*) 10 

Interflow – Lower  mm/h (*) 10 

Groundwater Recession 1/month calc 0.6 

Precipitation Factor -- Manual 1.04 

PET Factor -- Manual 1 

Catchment Area km
2 

GIS 1 

    
Advanced    

Permeability – Top Upper Horizon mm/h Default 1000 

Proportion Upper Horizon -- Default 0.3 

Ratio Groundwater to Surface Catchment -- GIS 1 

Proportion of Catchment with No Groundwater -- GIS 0 

Riparian Proportion -- Default 0 

Porosity -- Manual 0.48 

Bubbling Pressure -- Manual 100 

Transitional Recession 1/month
 

calc 0.5 

Proportion Transitional -- calc 0 

Interception Factor -- Default 1 

Snow Factor -- Default 1.5 

Groundwater Pumping Coefficient A -- Default 0 

Groundwater Pumping Constant B -- Default 0 

Snow Threshold -- Default 0 

Melt Rate -- Default 0 

(*) ‘Process Parameters’ 
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4.3.2 Physical Catchment Descriptors 

Given the physically based nature of many of the HYSIM parameters, data from 

several sources need to be incorporated to determine the catchment descriptors which 

are used to obtain the physically based parameters in HYSIM. The data that needs to 

be processed to acquire values for the physically based parameter include spatial 

datasets, analysed using Geographical Information Software (GIS), measured 

hydrological data and climate data and can be classified as topographical, 

hydrometric and meteorological data. The following sections provide a summary of 

data assembly, data manipulation and catchment characteristics extraction. The 

schematic of the steps undertaken is shown in Figure 4.5 

The Geographical Information Software (GIS) ArcGIS was the main tool used to 

obtain the hydraulics and hydrology parameters for the HYSIM parameter file. The 

basis for the determination of the physical catchment characteristics is a 

hydrologically corrected (‘filled’) Digital Terrain Model (DTM) obtained from the 

Irish Environmental Protection Agency (EPA) (Preston &Mills, 2002). The DTM is a 

bare earth surface model, with buildings and vegetation removed, at a 20-metre grid 

cell resolution. The hydrologically corrected DTM and its derivatives (flow direction 

and flow accumulation grids) were primarily used for stream line generation, and 

sub-catchment delineation to the flow measurement gauge or the water abstraction 

sites to generate the parameter input for the hydrological models (Figure 4.5).  
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Figure 4.5 Schematic of derivation of catchment descriptors using ArcGIS,  

showing inputs, processing in ArcGIS and outputs. 

The catchment characteristics that are relevant in determining hydrological 

properties, were derived from the CORINE (Co-ORdination of INformation on the 

Environment) land cover dataset GIS layer, issued by the Irish Environmental 

Protection Agency (EPA, 2006) and the digital version of the General Soil Map of 

Ireland (Gardiner & Radford, 1980). The Irish CORINE data is mapped at a 

1:1,000,000 scale and provide 33 land-cover classes interpreted from satellite images 

recorded in 2006. The sub-catchments are delineated to the gauge or water 

abstraction site and the resulting catchment shape is used to determine the main soil 

texture and the dominant land cover type defined by the vegetation characteristics 

and land use parameters for each sub-catchment individually. The same applies to the 

aquifer characteristics, which are derived from the Geological Survey of Ireland’s 

(GSI) National Bedrock Aquifer Map (1:100,000) (GSI, 2007) (Figure 4.6 D). 

Most of the physically based parameters could be obtained through the use of a GIS, 

as the source columns in Table 4.1 and Table 4.2 indicate. For the remaining less 

sensitive parameters, the default HYSIM parameter values were used. 
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Figure 4.6 Example of the use of GIS to derive the following catchment characteristics.  

A) Flow accumulation grids; B) Streamlines and delineated sub-catchments; C) DTM and longitudinal 

stream profile; D) Aquifer characteristics; E) Land cover characteristics; F) Soil cover characteristics. 

B 

D 

A 

C 

E F 
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4.3.3 Hydrological and Climatic Time Series Input  

The hydrometric data used for the hydrological model calibration and evaluation 

were obtained from the Environmental Protection Agency (EPA, 2010) and the 

Office of Public Works (OPW, 2010). The gauges are selected according to their 

upstream location of major settlements and surface water abstractions, their length of 

record and the representativeness of their catchment characteristics. Additional 

selection criteria are length of record, missing values and data quality.  

The observed meteorological records at the synoptic stations located across the 

country (Figure 4.7), for daily precipitation and potential evapotranspiration used to 

force the hydrological models and were provided by MetÉireann (2010). 

 

Figure 4.7 Location of synoptic weather stations in Ireland. 
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4.4 Hydrological Model Conditioning in Un-Gauged Catchments 

After the determination of the physically based parameters in HSYIM, the process 

parameter values need to be obtained through a model conditioning procedure. 

Before comparing modelled and observed data an initial model ‘warm-up’ period is 

accounted for to equilibrate the internal stores of the hydrological model. In gauged 

catchments, the process model conditioning normally comprises of model calibration 

(fitting of the parameter values and therefore the model output to a historical stream 

flow series) and the model evaluation (also called validation, verification or 

confirmation) to an independent stream flow time series at the same location 

(Refsgaard, 1997). In this research, however the stream flow at un-gauged locations 

(surface water abstraction points) needs to be modelled, so that direct model 

calibration and evaluation with recorded stream flow is not possible.  

Flows in un-gauged catchments are generally estimated based on the concept of 

hydrological similarity (Blӧschl, 2005). The similarity of hydrological responses to 

precipitation input in terms of flow generation is thought to originate from an 

evolution under comparable geological, climatic and anthropogenic influences in 

spatial proximity (Wagener et al., 2007). These influences determine the 

geomorphology, soils aquifer characteristics and land cover, which in turn influence 

the key hydrological processes and runoff generation in catchments. Although 

catchments in close spatial proximity with the same climatic regime might share the 

same co-evolution of catchment features, they will not exactly resemble each other. 

Due to slightly different catchment characteristics, the interaction between climate 

and key catchment processes results in modified stream flow generation processes 

and results in non-identical runoff. Therefore, the need to model runoff in un-gauged 

catchments introduces an additional source of uncertainty to the hydrological 

modelling approach. 

In hydrology, modelling flows in un-gauged catchments is an area of on-going 

research and no international standard protocol of methods exists. The general 

approach to obtaining runoff in an un-gauged catchment is to transfer hydrologically 

relevant information from gauged to un-gauged catchments that are located in close 
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proximity (Bárdossy, 2007). In doing this, it is important that these catchments are 

similar in terms of the climate and key catchment characteristics to ensure similarity 

in the hydrological catchment responses. In hydrological modelling, such key 

catchment characteristics determine for example, runoff and infiltration processes 

and soil and groundwater storages.  

As described in the previous sections, the majority of parameters for physically based 

models can be obtained from measurable data without the need for calibrating to 

observed flows. However, some of the model parameters need to be obtained through 

a model calibration process. In un-gauged catchments, these model parameters also 

need to be estimated. The parameters can either be determined based on expert 

knowledge or calibrated model parameters from gauged catchments can be 

transferred to the un-gauged site which share similar catchment characteristics 

(Blӧschl, 2005). This process of transferring hydrological information (e.g. model 

parameters) from one catchment to a neighbouring site is called regionalisation 

(Blӧschl & Sivapalan, 1995). 

Here the specific regionalisation process used to transpose calibrated parameters 

from gauged catchments, also referred to as donor or proxy-basins, to hydrologically 

similar un-gauged sites is used. The method employed takes the following steps; 

first, suitable gauged catchments are identified; second, the parameters for a 

hydrological model at the gauged site are calibrated; third, the non-measurable 

parameters are transferred to a hydrological model of the un-gauged catchment and 

fourth, another model of a gauged site is used for cross-evaluation of the modelled 

flow with the observed flow.  

Such transfer methods can for example be based on regression between calibrated 

model parameters and catchment characteristics to establish an empirical relationship 

in gauged catchments. The model parameters at the un-gauged site are then estimated 

based on the relationship determined for the gauged catchments (Blӧschl, 2005). 

However, to obtain a significant relationship between calibrated model parameters 

and catchment characteristics multiple calibrated hydrological models of gauging 
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sites with homogenous catchment characteristics and natural flow regimes covering 

common periods are required.  

While there is a dense network of river flow gauges in Ireland, it is difficult to find 

sites with a good quality natural flow regime in close proximity, that are not affected 

by human influence. Therefore to use the regression method to transfer model 

parameters from one site to another is complicated. This is particularly true for 

continuous discharge measurements at or close to un-gauged surface water 

abstraction points, which is the focus of this study. Therefore, a different approach is 

developed in the Irish context in which the process parameters for the water-

abstraction sub-catchments in HYSIM are determined using a proxy-basin approach 

based on two proxy-basins (sub-catchments) and in which parameter set equifinality 

is also accounted for. The proxy-basin approach used is described in detail in the 

following section. 

4.4.1  Proxy-Basin Split-Sample Method 

To ensure transferability of the HSYIM model’s process parameters between gauged 

and un-gauged catchments of the same geographical region, a combination of two 

testing methods: the split-sample test and a proxy-basin test is deployed.  

In a split-sample test, the measured stream flow record is split into two segments of 

either 50/50 for long flow records, or 70/30, to obtain a longer record segment for 

calibration and the shorter one for model evaluation. If uneven splitting is applied 

two tests are required; one with the first 70% of the record used for calibration of the 

gauged catchment and the remainder for model evaluation and the last 70% for 

calibration and the first 30% for evaluation (Klemeš, 1986). The model is only 

acceptable when both evaluation results are acceptable. 

When testing the geographical transferability of the model parameters within 

catchments, a proxy-basin test is applied. Two representative gauged sub-catchments 

with similar catchment characteristics are cross-checked during calibration and 

evaluation. The model is calibrated for one sub-catchment and the derived parameter 

values are then confirmed in the other sub-catchment and vice versa (Klemeš, 1986).  
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In this research, both tests are combined in the proxy-basin split-sample method, 

where the hydrological model process parameters are calibrated against observed 

historical stream flow in two sub-catchments close by the un-gauged sub-catchments 

(Figure 4.8 for model calibration and evaluation). The two sub-catchments have to be 

comparable in their characteristics to the un-gauged abstraction catchments and have 

to be located upstream to ensure low influence of major settlements and their water 

abstractions (Hall & Murphy, 2011).  

 

Figure 4.8 Schematic of the combination of a split-sample test (calibration and evaluation) with the 

proxy-basin test, expanded by an equifinality approach to parameter uncertainty. 

4.4.2 Parameter Uncertainly and Equifinality 

The proxy-basin split-sample approach is based on the assumption of the existence of 

a single model (Beven, 2000) and a single optimum parameter set. However, by 

relying on a single optimum parameter set uncertainty increases as the parameter set 

as a whole rather than individual parameter values result in a good simulation. The 

specific conditions under which the parameter set performs well compared to the 

observed data may change. Under the concept of equifinality different combinations 

of parameter values (parameter sets) within a hydrological model can simulate the 
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observed flow equally well and therefore the existence of a single optimal parameter 

set is questionable (Beven & Freer, 2001). In this study, special attention is given to 

hydrological model equifinality, as the effect of parameter uncertainty is highest 

during low flow periods (summer and early autumn) (Arnell, 2011). For Ireland, this 

increase in the spread of flow produced by equifinal parameters can also be observed 

in an assessment of climate change impacts of hydrology (Figure 11 in Steele-Dunne 

et al. (2008)). This finding is of particular importance when assessing the 

performance of adaptation options as such a wide spread has a high influence on 

water availability for water supply purposes, during the low flow periods. 

4.4.3 Process Parameters Values and Model Performance Measures 

The concept of equifinality of parameter sets was incorporated into the model 

conditioning procedure and therefore present an extension of the traditional proxy-

basin split-sample approach. During the model conditioning of the two proxy-basins, 

the parameter values for the precipitation factor and/or the potential 

evapotranspiration factor are adjusted to obtain an initial fit. The remaining five 

process parameters are first manually calibrated to obtain a good agreement between 

modelled and observed stream flow for each proxy-catchment individually, as a 

starting point of the model conditioning process. Then, the combined feasible 

parameter ranges for the process parameters are defined by the lowest possible 

parameter value and twice the maximum value of both catchments of the manually 

calibrated optimum parameter following Wilby (2005).  

The parameter space of each parameter is individually approximated a-priori by 

assuming a continuous uniform distribution for each parameter, where all parameter 

values are equally probable. Monte Carlo random sampling from a prior probability 

distribution of parameter values is used to produce random parameter values. From 

each of the five process parameters and their individual uniform distribution 20,000 

random parameters were sampled and randomly combined into 20,000 parameter 

sets. This Monte Carlo approach to calibration allows accounting for the interaction 

between parameters and evaluating them as a parameter set as a whole, compared to 

varying a single individual parameter and keeping the other parameters constant.  
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For the two proxy-basins, the sample ranges of the process parameters are the same, 

based on plausible ranges derived from catchment characteristics. To obtain the 

parameter sets that are geographically transferable out of the 20,000 parameter sets, 

the sets are run for the calibration period in each proxy-basin (70% of stream flow 

record) and the behavioural parameter sets are then used in the other catchment for 

evaluation (30% of record) and vice versa (Figure 4.8). The behavioural parameter 

sets obtained in both catchments for the evaluation period are combined and then 

used to simulate the future catchment hydrology at the un-gauged abstraction points 

(with have similar catchment characteristics).  

To get an complete assessment of the performance of the parameter sets, a suite of 

absolute and relative error measures are used, as recommended by Legates & 

McCabe, (1999). Additionally, the criterion of water balance is introduced to account 

for the changes in water balance with changing process parameter sets.  

The following selection criteria (underlined in the text below) are used to determine 

the behavioural parameter sets, where: O is the observed flow, P is the predicted 

flow, and Ô is the average of all observed flows. 

Water balance equals zero within the HYSIM model.  

Absolute error measure: 

Mean absolute error (MAE) (Equation 4.1,) is the difference between the observed 

and predicted flow. MAE is mean of the absolute value of the residuals and has a low 

sensitivity to outliers. The criteria for classification as a behavioural simulation is a 

difference of less than half the standard deviation of the observed flow (STDEVobs) 

(Singh et al., 2004; Moriasi et al., 2007).  
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Relative error measures (Goodness of Fit):  

Nash-Sutcliffe Efficiency Coefficient (EC) (Nash & Sutcliffe, 1970) (Equation 4.2), 

is a commonly used measure to describe the predictive accuracy of hydrological 

models based on error variance and is a good indicator for the overall fit of the 

hydrograph (Moriasi et al., 2007). Generally, EC is a measure of the goodness of fit 

to the 1:1 line when the observed flow is plotted against predicted flow (Moriasi et 

al., 2007). EC shows sensitivity to differences in observed and predicted means and 

variances but is also biased towards higher flows due to the use of the sum of 

squared errors. EC can range from -∞ to +1. A coefficient of EC = +1 corresponds to 

a perfect fit of modelled to observed flow. Generally, the closer the Efficiency 

Coefficient is to 1, the more accurate is the hydrological model. A coefficient ≤ 0 

indicates that the average of observed flows predicts the flow better than the 

modelled flow. Throughout hydrological studies, various acceptable levels of model 

performance are used as found by an extensive literature review by Moriasi et al., 

(2007).  
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Percent Bias (PBIAS) (Yapo et al., 1996) is used to express the hydrological model 

bias. PBIAS measures the average tendency of the simulated flows to be larger or 

smaller than the observed flows (expressed as a percentage). An optimum model 

with no bias has a PBIAS value of 0, increasing values indicate less accurate model 

simulations. However, a zero PBIAS value can conceal large absolute differences 

between observed and modelled flows, in cases where the model is equally over- and 

underestimating. An overestimation of the simulated flow is expressed with a 

negative sign and a systematic underestimation of the observed flow is indicated by 

positive PBIAS values (Equation 4.3). 

 






























n

i

i

n

i

ii

O

PO

PBIAS

1

1

100)(

 

Equation 4.3 



Chapter 4   Framework and Tool for Anticipatory Adaptation 

 

136 

Root Mean Square Error-Observations Standard Deviation Ratio (RSR), 

RSR is the error measure Root Mean Square Error (RMSE) standardised by the 

observed flows standard deviation (Equation 4.4) (Singh et al., 2005; Moriasi et al., 

2007). The optimal RSR value is 0, which indicates zero RMSE (average error 

between observed and modelled). Generally the lower RSR, the lower the RMSE, 

and the better the model simulation performance. 
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For the proxy-basins parameter sets were considered as behavioural, when they at 

least fulfilled criterion (i) (zero water balance) and criterion (ii) (MAE less than half 

the observed standard deviation), and (iii) had a ‘Very Good’ performance rating in 

criteria for EC, PBIAS and RSR (Table 4.3). In the case where no ‘Very Good’ 

performance rating had been achieved, the selection criterion had to be relaxed to 

‘Good’ performing parameter sets. Parameter sets obtaining an ‘Unsatisfactory’ 

rating were excluded from further modelling. The behavioural sets where then used 

as parameter sets for the model evaluation (30% of available time series) in the 

proxy-catchments. Again, the same criteria were employed to obtain the combined 

parameter sets, which can be used in future models. If after model evaluation, more 

than 500 behavioural parameters were obtained for future simulations, random 

sampling of 500 sets from a uniform distribution of these parameter sets, assuming 

equally good performance, was applied to limit the computational time required to 

produce future simulations. 

Table 4.3 Performance ratings for the relative error measures as suggested by Moriasi et al. (2007) based 

on monthly time steps as recommend. Nash-Sutcliffe Efficiency Coefficient (EC), Percent Bias (PBIAS), 

Root Mean Square Error-Observations Standard Deviation Ratio (RSR). 

Performance Rating EC PBIAS RSR 

Very Good 0.75 < EC ≤ 1.00 PBIAS < ±10 0.00 ≤ RSR ≤ 0.50 

Good 0.65 < EC ≤ 0.75 ±10 ≤ PBIAS < ±15 0.50 < RSR ≤ 0.60 

Satisfactory 0.50 < EC ≤ 0.65 ±15 ≤ PBIAS < ±25 0.60 < RSR ≤ 0.70 

Unsatisfactory EC ≤ 0.50 PBIAS ≥ ±25 RSR > 0.70 



Chapter 4   Framework and Tool for Anticipatory Adaptation 

 

137 

The aim of this Monte Carlo approach to model calibration and evaluation is to 

incorporate parameter uncertainty into the hydrological modelling approach in 

addition to future climate uncertainty. The stream flows simulated in the proxy-basin 

catchments, i.e. their hydrological response to the climate input is not represented a 

single optimum flow according to a selected objective function but rather as a stream 

flow range under all the behavioural parameter sets (see Figure 5.6 in Chapter 5). 

As mentioned above, for most of the water abstraction points in Ireland no observed 

stream flow time series exist. Therefore, the water abstraction sites analysed in this 

study are treated as un-gauged catchments and the regional behavioural parameter 

sets derived through the proxy-basin approach are used to simulate future ranges of 

stream flow at these sites. Following the same approach described in section 4.3.2, 

the sub-catchments were delineated up to the surface water abstraction site to obtain 

the catchment characteristics from which the physically based model parameters are 

derived. Time invariant physical and process based parameters for future stream flow 

simulations are used, assuming no changes in these parameters in future. These 

future stream flow simulations are then coupled with the water resources system 

model (described below), with a user interface written in Visual Basic code to access 

the application programming interface (API) of the water resources tool. 

4.5 Water Evaluation and Planning System - WEAP 

The Water Evaluation and Planning (WEAP) system is a tool used to model and 

analyse water resource systems. It can be used for the assessment of the current water 

resource system as well as modelling tool for integrated assessment of hydrological 

and water supply modelling and assessment based on the water accounting principle 

(Yates, Purkey, et al., 2005; Yates, Sieber, et al., 2005). Within WEAP, the water 

mass balances are calculated on node structures, which are linked to water supply 

and water demand sites. In this setting, different sets of management strategies for 

the water resource system can be modelled and analysed. The WEAP system has 

been applied in many international settings with regard to water resources and 

climate change (Loucks, 2006; Gӧtzinger, 2007; Purkey et al., 2007, 2008; Groves et 

al., 2008; Yates et al., 2009; Barthel et al., 2010; Hӧllermann et al., 2010; Hall & 
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Murphy, 2011). Here the difference too many of these studies is that WEAP is not 

used as an optimisation tool to identify the best possible adaptation option under 

given climate scenarios. The novelty is that WEAP is used to explore different future 

states of the system by incorporating uncertainties associated to climate and 

hydrological modelling, to test the robustness of adaptation options. 

The main criteria for selecting WEAP to model the Irish water resource systems is 

that it allows the use of an application programming interface (API), which permits 

the use of self-written programming scripts written in visual basic to automate 

modelling and analysis procedures. Consequently, this allows handling a high 

number of possible future states of the system brought about by the wide range of 

future uncertainties. 

4.5.1 Water Resources System Components within WEAP 

To be able to use the API, the water resources system components need to be 

established manually within WEAP using the graphical user interface. In the 

modelling approach employed here, the key components of each investigated water 

resources system are the water abstraction points connected to and linked by the river 

network. For each abstraction point information such as population, per capita water 

consumption and leakage levels needs to be supplied to the model for the start year 

of simulation. Then different growth or reduction rates can be provided to the WEAP 

and used to simulate various scenarios of population growth rates or water usage 

reduction scenarios based on the original values provided.  

To be able to use the streamflow derived from a physically based hydrological 

model, which is important for ungauged water abstraction points, the hydrological 

component was generated outside WEAP using HYSIM (see Section 4.3 and 

Section 4.4). For each water abstraction point the streamflow is generated using 

HYSIM based on the characteristics of sub-catchments draining to that site. Within 

WEAP, abstraction point A (shown in the schematic in Figure 4.9) does only receive 

the discharge simulated for sub-catchment A. Based on the water accounting 
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principle; water abstractions at point B have the total discharge simulated for sub-

catchment A and sub-catchment B available for potential abstraction.  

After establishing the water resources system components within WEAP and having 

derived the streamflow in HYSIM, the API is used to automate the input of multiple 

future streamflow scenarios in combination with the different water resources system 

scenarios defined within WEAP. Due to the assumption of water conservation in the 

system and the analytical, algebraic use of WEAP to account for the water balance, 

no additional sources of uncertainty are introduced by the use of the API and WEAP. 

Under these conditions, the uncertainties associated to the WEAP model output will 

only stem from the input data (hydrological time series) and the water resources 

system scenarios considered. 

  
Figure 4.9 Schematic of water resources system components within WEAP. Showing river  

network and surface water abstraction points with associated sub-catchment boundaries. 

4.6 Regional Climate Projections for Ireland 

To derive future stream flow projections, which can be evaluated in WEAP, future 

climate projections are needed as input to the hydrological model. The aim of the 

second part of the thesis is to develop and apply a tool to inform decision appraisal in 

the Irish water resources sector. Therefore, existing national climate scenarios are 

used, as decision makers are already accustomed to these scenarios and have an 

understanding of the limitations associated with the use of these. It is beyond the 
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scope of this thesis to develop future climate scenarios to be specifically employed in 

this first-pass modelling framework. However, it is recognised that future application 

of the tool, to assess the robustness of adaptation options, should include a wider 

range of possible future climate realisations, than those currently available in the 

national scenario database.  

Currently, there are two main sets of future climate scenarios available in Ireland, 

statistically downscaled and probabilistic scenarios. In the following sections, an 

overview of the different scenarios is given together with the reasoning regarding the 

selection of the climate scenarios used in the modelling approach.  

4.6.1 Statistically Downscaled Scenarios 

Statistically downscaled climate scenarios are derived from Global Climate Models 

(GCMs) by establishing relationships through mathematical transfer functions. 

Though regression, surface environmental variables such as temperature and 

precipitation are derived from large-scale atmospheric variables.  

In Ireland the statistically downscaled climate scenarios were derived from three 

different GCMs (the Hadley Centre (HadCM3), the Canadian Centre for Climate 

Modelling and Analysis (CCCma) (CGCM2) and the Commonwealth Scientific and 

Industrial Research Organisation (CSIRO) (Mark 2)) forced with two emissions 

scenarios (Fealy & Sweeney, 2007, 2008; Sweeney et al., 2008). The future 

greenhouse gas emissions used by Fealy and Sweeney were taken from the IPCC 

Special Report on Emission Scenarios (SRES). The emission scenarios predict a 

more regionally imbalanced future development trajectory with either a more market 

economic (A2, medium-high) or environmental focus (B2, medium-low) (IPCC, 

2000). The coarse grid resolution data from the six GCMs projections was 

empirically statistically downscaled to 14 synoptic weather stations located across 

Ireland (for the station location see Figure 4.7) (Fealy & Sweeney, 2007, 2008). To 

improve the correspondence between the statistically downscaled temperature and 

precipitation data bias correction was applied to both the baseline period (1961-1990) 

and future time periods, thereby removing a systematic bias (Fealy, 2010).  
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In this work, the six individual GCMs scenarios for Ireland are considered as being 

equally likely and employed with equal weights, without a subjective attribution of 

likelihood. The six scenarios provide daily series of precipitation and temperature 

from 1961 to 2099. Across Ireland the ranges of projected changes vary for both 

temperature and precipitation across the three GCMs with the spread increasing 

when comparing the 2020s (2010-2039) with the 2050s (2040-2069) and the 2080s 

(2070-2099) (see Figure 4.10 as an example).  

 

Figure 4.10 Seasonal temperature and precipitation ranges for all stations analysed, showing the smallest 

and largest changes for the A2 emissions scenario. (Data taken from Sweeney et al. (2008).) 

Future time series of potential evapotranspiration (PE) were obtained using a 

different technique that temperature and precipitation, due to a less dense 

observational network of synoptic stations for which PE is calculated based on the 

Penman–Monteith equation. Instead of using the large-scale forcing provided from 

the reanalysis data (as in the case of temperature and precipitation), Fealy & 

Sweeney (2008) adapted a technique that is employed in conventional weather 

generators to derive PE. The modified technique involves the calibration of a 

multiple regression model using local climate variable from the relevant synoptic 

station as predictors in conjunction with the large-scale predictors. For the baseline 

climatology (1971-1990), the local-scale predictors radiation, precipitation 

occurrence and precipitation amounts were used as input into the regression model to 

predict PE for each of the synoptic stations (Fealy & Sweeney, 2008; Sweeney et al., 

2008).  
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Although the authors of that study acknowledge the omission of the important 

variable wind in calculating potential evapotranspiration, they justify their approach 

with regard to the Irish climatology in which the influence of wind on seasonal PE is 

variable. The influence of wind during the winter months is high and diminishing 

during the spring, summer and autumn months. However, the calculated potential 

evapotranspiration values at the synoptic stations are at a minimum during the winter 

months. Due to this reasoning and based on previous research undertaken by the 

authors (Sweeney et al., 2003), they concluded that the exclusion of the wind 

variable is unlikely to significantly impacted the predicted values of potential 

evapotranspiration (Fealy & Sweeney, 2008; Sweeney et al., 2008). 

The ranges and ensemble means of projected future potential evapotranspiration 

obtained across Ireland, from the six individual GCMs scenarios, are shown in 

Figure 4.11. 

 

Figure 4.11 Potential evaporation ranges for all stations analysed, showing the ensemble of all GCMs and 

emission scenarios as bars. The error bars show the smallest and largest changes for all emission emissions 

scenario. The circles and triangles show the A2 and B2 ensemble mean respectively (Data taken from Fealy 

& Sweeney (2008).) 

4.6.2 Probabilistic Scenarios 

The second set of future climate scenarios available are probabilistic based regional 

climate scenarios for Ireland for the period 2070-2099, which are based on the 

statistically downscaled scenarios described above. Fealy (2010) used seasonal mean 

changes for both the A2 and B2 scenarios for the 2080s for each of the 14 synoptic 

weather stations modelled by Fealy & Sweeney (2007, 2008) to derive estimates of 

the range of seasonal future mean climate change in percent. By employing a pattern 

scaling approach, the seasonal changes for the A1F1 (rapid growth & fossil fuel 

intensive) and the B1 (rapid growth, peaking in mid-century) emission scenario for 

each of the three GCMs were derived.  
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For each station, response rates of temperature and precipitation per °C of global 

warming were calculated for each GCM and emission scenario. The uncertainty 

ranges of climate model output at a station level were assumed to be bounded by the 

maximum and minimum response rates to create a uniform distribution of local 

change. Then for each synoptic station, a Monte Carlo random sampling was used to 

generate probability distributions for changes in temperature and precipitation for 

four emission scenarios (A1FI, A2, B1 and B2). For a detailed description of the 

methods employed, see Fealy (2010).  

Due to the inclusion of the A1F1 and B1 emission scenarios, the projected changes in 

temperature based on the probabilistic approach, indicate a greater warming range 

for the 2080s compared to the statistically downscaled ensemble. The projected 

changes in precipitation show lower projected decreases compared to the statistically 

downscaled data. While the probabilistic-based mean seasonal projected changes in 

precipitation was found to be more conservative than that of the statistically 

downscaled ensemble mean, the range in projected changes was found to vary. 

Particular seasons exhibited an equal likelihood of both positive and negative 

changes associated with precipitation. Overall, the projected mean changes in 

temperature and precipitation using the probabilistic approach, were found to be 

comparable to the statistically downscaled ensemble. 

4.6.3 Hydrological Comparison of Climate Scenarios 

Bastola et al. (2012) generated estimates of hydrological responses to both sets of 

future climate scenarios for selected catchments in Ireland. To generate time series 

from the probabilistic scenarios derived by Fealy (2010), Bastola et al. (2012) 

employed a weather generator (WGEN) to derive daily time series of precipitation as 

input to a suite of conceptual rainfall runoff models. In applying WGEN, samples of 

changes in precipitation were randomly drawn from its probability distribution for 

each season to generate 100 future climate time series for the period 2070-2099 

(2080s) for each of the catchments analysed in their study.  
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Both the WGEN simulated probabilistic scenarios and the statistically downscaled 

scenarios were used to drive hydrological models. For the control period used in that 

study (1971-1990), the prediction uncertainty quantified with WGEN was found to 

be high in comparison to that from the statistically downscaled scenarios due to the 

climate variability incorporated in the WGEN scenarios. For the future period 

(2080s) however, the differences in prediction intervals of stream flow were found to 

be of a similar order of magnitude.  

Figure 4.12 shows the probability density functions for the seasonal mean stream 

flow estimated from both statistically downscaled and WGEN generated 

(probabilistic) scenarios for control period (1971-1990) and the future (2070-2099), 

for the two catchments of interest in this thesis. The density is calculated based on 

the proportion of future daily mean flow lying within the specified interval. 

Generally, the distribution derived from statistical downscaling is flatter compared to 

the probabilistic one. The sharp distribution of seasonal stream flow for WGEN 

scenarios is likely to be attributed to a larger number of scenarios, which results in an 

improved sampling procedure. In this particular application, the uncertainty ranges 

associated with the statistical downscaled scenarios were considered to be 

comparable to the ones derived from the probabilistic scenarios using WGEN, 

particularly with regard to low flows, which are of particular interest to this study. 

 

 

Figure 4.12 Probability distribution of estimated seasonal mean flows derived from conceptual 

hydrological models using statistically (SD) and probabilistically downscaled scenarios (WGEN) in 

catchments analysed by Bastola et al. (2012). Here only the Boyne (b) and Moy Catchment (c) are shown. 
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For the illustrative studies presented in this thesis, future climate time series for two 

synoptic weather stations are used. Station 1034 (Belmullet) in the West and 

Station 2922 (Mullingar) in the East of Ireland. As the water resource model uses 

monthly time steps, the analysis of the characteristics of future climate data, is also 

based on monthly data. With precipitation being the key driver of hydrological 

models an analysis of precipitation only is performed. Figure 4.13 shows the monthly 

total precipitation cumulative distribution (CDF) of the observed control period 

(1971-1999) against the two suites of GCM series (transient statistically downscaled 

and probabilistic scenarios (WGEN)). Higher monthly precipitation is 

underestimated particularly for the statistically downscaled climate scenarios, 

whereas for Mullingar (St 2922) the probabilistic climate scenarios bound the higher 

precipitation totals for the control period. For drier months, which are of most 

interest here, both sets of scenarios capture the observed data well. The ranges from 

the probabilistic scenarios tend to be wider for Mullingar, representing the climate 

variability incorporated in the application of weather generator. However, the 

additional ranges derived tend to be towards higher rainfall amounts. The statistically 

downscaled scenarios tend towards the lower ranges in Mullingar or are within the 

bound of the WGEN scenarios. There is evidence of systematic underestimation for 

wetter months for both stations, particularly for the wetter West (St 1034-Belmullet).  

 

Figure 4.13 Monthly precipitation totals cumulative distribution for observed (black line), statistically 

downscaled (SD, blue) and probabilistic scenarios generated with WGEN (light blue) over the control 

period (1971-1999). 
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In addition to comparing the seasonal mean flow derived from hydrological models 

driven by statistically downscaled and probabilistic scenarios, Bastola et al. (2012) 

also compared the probability distribution of seasonal mean flows generated with the 

probabilistic scenarios with those derived from a sample of 17 GCMs that were part 

of the Coupled Model Intercomparison Project Phase 3 (CMIP3). Regional climate 

scenarios from the CMIP3 models were derived using a simple change factor 

approach for monthly precipitation estimates. The difference to the approach above 

is that the change factor method was only calculated for a single grid box 

representing Ireland, and not specific to a synoptic station. WGEN was used to 

derive regional time series for the change factor approach by adjusting the 

parameters of the model proportional to the precipitation change using a relationship 

derived between the parameters of the weather generator and the mean precipitation.  

Figure 4.14 compares the probability distribution for percent change in seasonal 

mean flows for both the CMIP3 samples (CF) and the probabilistic scenarios 

described above (SDprob), which represent the four SRES scenarios. In general, the 

shapes of the probability distributions of the seasonal mean flows are quite similar 

for both sets of scenarios, with the SDprob scenarios being slightly shifted to lower 

percent changes for spring and summer.  

 

Figure 4.14 Probability distribution of mean seasonal stream flow for catchments analysed by 

Bastola et al. (2012). From left to right: winter, spring, summer and autumn for the Boyne 

(upper) and Moy catchment (lower). Showing flows modelled with probabilistic scenarios 

derived using 17 GCMs with the change factor method (CF), the probabilistic scenarios 

(SDprob) and the multiple realisation of climate scenarios over the control period (Climvar). 
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4.6.4 Selection of Future Climate Scenarios 

The choice of scenarios to be used in the decision information tool is important, as 

any of the results derived are dependent on the scenarios selected. There is no 

optimum solution as each of the scenario sets contains both positives and negatives. 

For example, while the statistically downscaled scenarios provide a transient 

representation of climate for the period 1961-2099 they do represent a relatively 

small sample of the uncertainties associated with GCMs, which are known to be a 

major contributor to possible future uncertainty ranges. At the same time however, 

the comparison above suggests that the statistically downscaled scenarios do 

represent a sample from the more extreme, dry end of the uncertainty range as 

evidenced from the probabilistic and CMIP3 scenarios considered by Bastola et al. 

(2012).  

On the other hand, the probabilistic scenarios are derived using a weather generator 

which is trained to represent historical records and it cannot be assumed that the 

future weather will directly correspond to the regimes found in the historical records. 

Additionally, the construction of probabilistic scenarios is very much dependent on 

the methods and assumptions used during their construction. Furthermore, the 

WGEN employed in the production of probabilistic scenarios for Ireland cannot 

represent accurately longer duration dry spells due to the Markov chain model used 

(Bastola et al., 2012), which can be a disadvantage for future water resources 

analysis. As shown above, the ranges of the GCM space from the probabilistic 

scenarios is not much greater than the sampling ranges obtained from the statistically 

downscaled scenarios. Under drier conditions and for drier months, even lower 

extremes can be found in the statistically downscaled scenarios. Moreover, the 

probabilistic scenarios are pattern scaled and do not represent a transient time series 

with no information available for the early part of the century which would be 

needed in the application of the tool here. 

Therefore, there is a trade-off to be made in selecting and incorporating the future 

scenarios currently used in Ireland. The main aim of this work is to develop a tool for 

informing decision-making on adaptation options and applying the tool to Irish 



Chapter 4   Framework and Tool for Anticipatory Adaptation 

 

148 

hydrological conditions, incorporating hydrological modelling uncertainties. For the 

reasons discussed above it is decided to use the statistically downscaled scenarios in 

this setting, as the transient scenarios also allow evaluating system changes over 

time. However, future use of the tool should as a matter of priority explore a much 

greater selection of climate scenarios. The selection of the statistically downscaled 

scenarios is done with caution due to the following limitations: 

1. While the scenarios selected are found to fall within the lower end of the ranges 

of changes explored, they do represent only a partial sample of the uncertainty 

space associated with GCMs. As with all such work, the results that are derived 

should be seen as highly dependent on the scenarios used.  

2. While the scenarios selected are transient and provide information for analysing 

future impacts and adaptation scenarios in short- and longer-term there is no 

guarantee that they do capture future extremes and variability. There is a 

widespread discussion as to whether GCMs and climate scenarios are capable of 

capturing extremes and whether they contain the detail of information required 

for water resources planning and management.  

3. While the scenarios selected are bias corrected to observational records, there is 

no guarantee that this correction holds true for future conditions. 
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4.7 Future Water Resource System and Adaptation Scenarios 

The WEAP model is coupled with HYSIM and used to identify abstraction points 

that might be vulnerable under ‘Business as Usual’ conditions and to assess sample 

scenarios of what are deemed robust water adaptation options against the full range 

of uncertainties obtained from the modelling approach presented in the previous 

paragraphs. It needs to be noted that the uncertainty ranges obtained are highly 

conditional on all the assumptions made and decisions taken throughout modelling 

approach. However, in an Irish context the ranges obtained are the currently best 

available uncertainty ranges against which to evaluate future water management 

plans. The future water resource management scenarios are examples of possible 

strategies that could be conducted. However, these example scenarios are based on 

actual plans stated by Irish planning authorities.  

The water demands for each investigated scenario are based on the population 

number obtaining their water from each individual water abstraction point and the 

corresponding per capita water abstractions based on ‘The Provision and Quality of 

Drinking Water in Ireland, A Report for the Years 2007 – 2008’ (EPA, 2009). The 

populations growth scenario, used to project the increases in water demand into the 

future, was derived from the report ‘Population and Labour Force Projections: 

2011-2041’ (CSO, 2008) using the most likely scenario M1F2 (moderating migration 

levels and total fertility rate of 1.9) as shown in Figure 4.15. Beyond 2041 there are 

no official population growth rate projections available, therefore the rate is kept 

constant on the level of the last estimate from 2041 onwards. 
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Figure 4.15 Population growth rate projections based on CSO (2008). 

National average estimates of leakage levels (unaccounted for water) of 43% are 

based on a report compiled by Forfás (2008). The leakage is accounted for in the 

WEAP modelling approach by increasing the water abstraction requirements 

according to the leakage level. The future percentage decline of unaccounted for 

water is based on the report projections by CMD (2004). 

In this work, four adaptation options are analysed as shown in the scenario matrix in 

Figure 4.16. These four options are assessed in terms of their performance against the 

future uncertainty ranges derived. The options include no-measures or business as 

usual (Scenario A), demand side measures (Scenario B), supply side measures 

(Scenario C) and an integration of supply and demand side measures (Scenario D).  
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Figure 4.16 Scenario matrix showing the four investigated scenarios (A-D). 

The four investigated scenarios can be summarised as follows: 

For all scenarios the population of 2008 is extrapolated into the future using the 

annual average change rate of the CSO projections (as shown in Figure 4.15). 

Scenario A – ‘Business as Usual’:  

Per capita water abstractions and supply infrastructure remain constant on the 2008 

values. The level of unaccounted for water is the national average of 43%. 

Scenario B – ‘Reduced Water Demand’: 

Increasing awareness in water conservation results in a stepwise annual per capita 

water demand reduction of up to 5% by 2020. The level of unaccounted for water 

remains unchanged at 43%. 

Scenario C – ‘Reduced Leakages’: 

Improved water supply infrastructure results in an annual stepwise-reduced leakage 

level from 43% to 25% by 2015. Daily per capita water demand remains unchanged 

at its 2008 level. 

Scenario D – ‘Reduced Demand and Reduced Leakages’: 

Integration of Scenario B and Scenario C. Rates of reduction of the per capita water 

demand and leakage reduction, as described above. 
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Scenarios B, C and D presented can be characterised as “low- or no-regrets” and 

“win-win-strategies”, which can potentially cope with climate uncertainty and 

provide benefits, even in absence of climate change (Hallegatte, 2009). Therefore, in 

uncertain conditions their application is to be favoured over high cost, potentially 

high regret strategies, which are not included in the examples given here. 

Consequently, no attempt is made to assess trade-offs or perform a monetary 

evaluation of these future strategies 

Each of these four scenarios is modelled for each individual investigated surface 

water abstraction point and assessed against the ensemble of possible future stream 

flow ranges incorporating the range of uncertainties associated with the assumptions 

and decisions resulting from the previous modelling steps.  

4.8 Threshold-Based Scenario Analysis 

To assess the performance of the different adaptation scenarios for each individual 

water abstraction point, a threshold-based approach is employed. Management 

thresholds are commonly based on either expert judgement on important variables of 

the water resource system or according to a predefined performance matrix, which 

makes results more comparable across different systems. Threshold-based analysis 

can also been seen as a first pass assessment of the system, to indicate emerging 

issues in the system or responses of the system to climate change, which can then be 

followed by a more in depth analysis. To be able to compare the results of the 

individual water abstraction points, the modelling outcomes are analysed using 

predefined system independent performance measures.  

There are several methodologies and water scarcity indexes or water stress indices 

used to evaluate water resources vulnerability in terms of water scarcity or water 

stress (Brown & Matlock, 2011). Depending on the aim of the study and data 

availability, the criterion on which to base the water resource assessment has to be 

selected. Such indicators are based on human water requirements, water resources or 

a combination of both. The aim of the use of indicators is to obtain a quantification 

of the pressure put onto the water system by external factors (for example volume of 
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water withdrawal or amount of water consumed). Commonly used indicators are for 

instance, the water ‘use-to-resource ratio’, the ‘consumption-to-Q90 ratio’, per capita 

water availability (Falkenman indicator) or the ‘Water Stress Indicator’ (Smakhtin et 

al., 2004; Alcamo et al., 2007; Brown & Matlock, 2011). Generally, thresholds 

applied to water management systems are not considered to be permanent, but rather 

flexible (Arnell, 2000), depending on water management and planning priorities. 

Predefined threshold-based indicators should only be used as guides to highlight 

certain system characteristics that require a more in depth analysis. 

In this study a widely used threshold-based indicator is employed that reflects the 

physical pressure on the water resource system, the water ‘Use-to-Resource Ratio’ 

(URR) (Raskin et al., 1997), also referred to as ‘water resource vulnerability index’ 

(Brown & Matlock, 2011), ‘withdrawals-to-availability ratio’ (Alcamo et al., 2007), 

or ‘relative water demand’ (Vӧrӧsmarty et al., 2000). Here the original name 

‘Use-to-Resource Ratio’ (URR) is used as introduced by Raskin et al. (1997), where 

the term ‘Use’ includes all water abstractions not only the amount of water that is 

finally used. The URR indicator has been selected, as this indicator has low data 

requirements and the relative simplicity of the indicator is also beneficial in assessing 

the water resource systems in future simulations. Here the URR index relates 

(divides) the water demand (withdrawals) to renewable water supply (runoff), which 

provides a representation of the state of the water resource. By splitting the index 

into four categories (Table 4.4), an indication of local water stress can be obtained 

(Vӧrӧsmarty et al., 2000), which allows the identification of water abstractions that 

put the water resource system under water pressure.  

Table 4.4: Water Use-to-Resource Ratio (URR) (Raskin et al., 1997). 

Withdrawal / Runoff <10% 10%–20% 20%–40% >40% 

Classification No Stress Low Stress Stress High Stress 

 

A Use-to-Resource-Ratio higher than 20% ‘can begin to be a limiting factor on 

economic development’ (Raskin et al., 1997) and a ratio lager than 40% is termed 

the critical ratio (Alcamo et al., 2000), commonly used in studies analysing water 
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resources (Alcamo et al., 2007; Brown & Matlock, 2011). As with other threshold-

based indicators, the physical processes are simplified and sometimes the 

interpretation of such classifications schemes can be difficult. However, such 

indicators allow an assessment of water resources with low computational demand 

and also allow identification the current/future state of water resources systems and 

their comparison.  

The original URR index developed by Raskin (1997) is based on values derived from 

annual calculations. However, in regions with pronounced seasonality of surface 

water availability (here; high winter and lower summer flows) and no/little water 

storage facilities, like Ireland, an assessment of the water resources can result in 

underestimation and misleading outcomes if computed on an annual level. In Ireland, 

the seasonal variation in water availability results in large seasonal differences in the 

URR (particularly for summer months). To be able to represent temporal variability 

of water stress, a refined URR index is employed, which takes seasonality and/or 

lack of storage into account by employing monthly calculations (Hall & Murphy, 

2010, 2011; Wada et al., 2011). 

4.9 Water Resource System Performance Metrics 

To assess and quantify the water resource system performance under the investigated 

water resource scenario, ‘stress tests’ should be employed (Stakhiv, 2011). Again, to 

facilitate comparison of results across the investigated water abstraction points, 

common performance metrics are used. Ideally, these metrics include qualitative 

measures of reliability, resilience and vulnerability and brittleness (Stakhiv, 2011).  

In this study, the Reliability, Resilience, and Vulnerability (RRV) metrics first 

introduced by Hashimoto et al. (1982) are used to evaluate the performance of the 

water abstraction points in relation to the URR threshold. These statistical RRV 

measures have been used in various studies on water resources, also in relation to 

climate change. For example, Lettenmaier et al. (1999) for a US regional assessment, 

Fowler et al. (2003) for a water resource system in the UK or Kim & Kaluarachchi 

(2009) for the Blue Nile in Ethiopia. All of these studies using the RRV metrics have 
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used different threshold criteria to evaluate the performance of different 

characteristics of the water resources system. The flexibility of the RRV framework 

with different threshold criteria to define satisfactory and unsatisfactory system 

performance is important when performing assessments within a decision-support 

framework as described above. 

The RRV metrics allows summarising the system performance over time according 

to a pre-defined threshold value or the so-called criterion C. With the help of the 

threshold criterion, the time series of interest is divided into satisfactory (S) and 

unsatisfactory (U) system performance values (Hashimoto et al., 1982). Depending 

on the threshold analysed, the threshold criterion can be an upper limit (UC) or a 

lower limit (LC) (Figure 4.17).  

 

Figure 4.17 Derivation of system performance indicators from a time series, using a threshold criterion. 

To use the RRV metrics to analyse and compare simulated time series, static 

conditions over the evaluation periods are required (Kjeldsen & Rosbjerg, 2001). 

Therefore, a stepwise dynamic change (increase or decrease) of the modelled 

variables (e.g. population growth or leakage level) used in the water resource 

scenarios is employed, instead of linear changes. For example in Figure 4.18 the blue 

time series represents the stepwise dynamic modelling of leakage reduction 

compared to a linear approach (black line), where the leakage levels are calculated as 
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annual averages and modelled over a year, with the change applied at the end of each 

step (year). 

 

Figure 4.18 Example of stepwise dynamic modelling approach employed within WEAP. 

To be able to evaluate RRV mathematically, several annotations need to be 

established, for example, the time series value is denoted tX  and the future 

evaluation time period is T (Hashimoto et al., 1982; Fowler et al., 2003). In this 

work, the system performance indicator used is the Water Use-to-Resource Ratio 

(URR) which requires an upper limit threshold criterion (UC) to be analysed. The 

individual time steps in the time period T are evaluated as follows: 

If  Xt ≤ UC then  Xt ϵ S and  Zt = 1 

  else Xt ϵ U and  Zt = 0 

Additionally, tW  indicates the transition from an unsatisfactory to a satisfactory 

event (Hashimoto et al., 1982; Fowler et al., 2003) 
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The Reliability, Resilience, and Vulnerability (RRV)-indices are defined as follows: 

Reliability measures the probability of a system being in a satisfactory state. 

Temporal Reliability is the ratio of the number of satisfactory time steps divided by 

the total number of values per time period considered (Hashimoto et al., 1982; 

Kjeldsen & Rosbjerg, 2004). 
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Equation 4.5 

Resilience is a measure of the ability of the system to recover after being in an 

unsatisfactory state, which gives an indication of the speed of system recovery. 

Resilience is computed as the number of times an unsatisfactory outcome (U) is 

followed by a satisfactory outcome (S), divided by the number of unsatisfactory 

values within a specified time interval. Resilience measures the ability of a system to 

recover from an unsatisfactory event (Hashimoto et al., 1982). 
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 Equation 4.6 

Vulnerability can be calculated either by the extent or by the duration of 

unsatisfactory conditions. In this study, the Expected Duration-Vulnerability is used, 

which is a measure of the average duration of the water resource system being in an 

unsatisfactory state. It is calculated by the total number of unsatisfactory time steps 

divided by the number of occurrences of continuous unsatisfactory events (including 

single unsatisfactory time steps) (Loucks, 1997).  
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The RRV metrics are a means of combing the output of the multiple future 

simulations and can allow for a cross-comparison of different water abstraction 



Chapter 4   Framework and Tool for Anticipatory Adaptation 

 

158 

points and scenarios modelled. The system performs best with high Reliability and 

high Resilience values (near the maximum value of 1) and low Duration 

Vulnerability values. As the RRV indices primarily depend on the criterion used to 

define satisfactory or unsatisfactory performance, this approach is highly flexible and 

can be used to evaluate different performance criteria for each water scheme. 

However, the outcomes of an analysis will always be dependent on the criterion used 

to evaluate the water scheme. Therefore, to be able to compare the performance of 

several water resources systems, the threshold criteria used should be the same. This 

might involve a compromise between the comparability and the selection of the most 

appropriate performance measure. Here, the ‘Use-to-Resource Ratio’ (URR) metrics 

is applied to individual surface water abstraction points.  

4.10 Discussion and Conclusion 

The iterative framework proposed here is based on the main features of a decision-

making framework proposed by Willows & Connell (2003). Connell et al. (2005) 

highlight the importance of viewing adaptation as iterative tiered processes, which 

are reviewed over time within a decision-support framework. The framework 

presented here has all these elements; however, the tools and methods presented in 

the decision-support loop are specific to the context of Irish surface water resources.  

The tool presented aims to incorporate a wide range of uncertainties. However, it 

needs to be noted that the uncertainty ranges obtained are highly conditional on all 

the assumptions made and decisions taken throughout modelling approach.  

Additionally, the climate scenarios employed and the uncertainty ranges associated 

with them are specific to an Irish context. Although the number of future projected 

climate scenarios is small compared to other studies, for example Lopez et al. (2009) 

used an ensemble of 246 perturbed physics climate model members to investigate 

changes in water availability in southwest England. The main aim of this work is to 

provide a tool that can be used for adaptation option assessment. It was considered 

important that such a tool should function with the information currently available to 

water managers and decision makers in Ireland, but also be flexible enough to 
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incorporate new or additional climate information. Due to the flexible setup of the 

tool in terms of coupling the hydrological model with a water resource model the 

tool allows future work to include a state of the art analysis of a fuller sample of the 

uncertainty space associated with Global Climate Models in terms of model structure 

and also parameterisation uncertainties from experiments such as 

climateprediction.net. This point is returned to in the final chapter on Discussion and 

Conclusions.  

A detailed reasoning and notes of caution for choosing the statistically downscaled 

climate scenarios produced by Fealy & Sweeney (2007, 2008) are provided above. 

To summarise, for a first-pass development and application of the tool presented 

here, the scenarios are fit for purpose, as they fall within the lower end of the ranges 

of changes explored, and provide a transient time series that can be used to evaluate 

the water resource system performance over time. However, the scenarios represent a 

relatively small sample of the climate model uncertainties. As with all such work, the 

results that are derived within such a modelling tool should be seen as highly 

dependent on the scenarios used. Future work will need to include a larger sample of 

uncertainty stemming from climate scenarios to ensure robustness of such 

assessments. 

The proposed framework uses a single conceptual rainfall runoff model. Possible 

wider ranges of hydrological simulations could have been obtained by using more 

than one hydrological model to account for model structure uncertainty (Bastola et 

al., 2011b). However, within this framework, the priority has been placed on 

accounting for hydrological parameter uncertainties in an un-gauged setting. 

The “low- or no-regrets” and “win-win” adaptation strategies assessed in this 

framework are based on real plans for the Irish water resources sector. These 

scenarios are applied to all water abstraction points to examine the effect of such 

strategies that are favourable compared to large and long-term infrastructural 

investments investigated. However, adaptation strategies need to be context specific, 

therefore a detailed assessment of adaptation options, which are specific to each 

water abstraction point, are recommended before implementing such measures. 
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The Water Use-to-Resource Ratio (URR) employed in this decision-support tool 

within the adaptation framework is an example of the threshold-based approaches 

that allow the evaluation of future water resource system performances or adaptation 

measure. However, depending on the threshold indices selected, the performance 

results will be different. Such threshold indicators can provide information in an 

iterative framework, and depending on the water managers’ needs, the indices 

employed can be analysed and evaluated accordingly. In a further application of the 

too, such thresholds should be determined though stakeholder engagement. 

Additionally the thresholds employed do not have to be static, but can rather change 

over time in their magnitude and importance for the water resource system. 

4.11 Chapter Summary  

In this chapter, a framework and methods are presented which will be used in the 

following two chapters to assess the vulnerability of future Irish water abstractions to 

changes and to support decision-making when faced with ranges of future climate 

uncertainties through adaptation option appraisal.  

 The modelling and analysis methodology described in this chapter allows the 

incorporation of ranges of change as derived from Irish climate scenarios and 

hydrological models into the decision-making framework. The tool developed is 

also flexible in that given computation time and resources the next generation of 

scenarios or results from international experiments can be incorporated.  

 Non-climatic pressure in the form of population changes are added into to the 

water resources analysis to allow an understanding of the potential success of 

adaptation options combined with non-climatic pressures. 

 The threshold-based framework allows the evaluation and comparison of 

multiple future outcomes in a water resource model across different water supply 

systems.  

 The individual components of the decision-support tools (i.e. climate scenarios, 

hydrological models, adaptation measures, threshold indices) are context 

specific.  
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 The framework and the decision-support tool allow for update, amendment and 

incorporation of information over time, as adaptation is an iterative process and 

not a once off assessment. 

 The selected climate scenarios are fit for a first pass assessment. However, 

future work will need to include a larger sample of scenarios to increase the 

uncertainty ranges. 

 The modelling tool is flexible in that it can be applied to existing or new gauged 

or un-gauged water abstraction points, can be readily updated when revised 

climate change information become available and allows the integration of 

different pressures. 

 The hydrological modelling approach presented extends the application of the 

proxy-basin approach by incorporating parameter uncertainty. Additionally, the 

WEAP model is coupled for the first time with a catchment based hydrological 

model that has been used extensively for simulating water resources in Ireland.  

 Here; WEAP is applied for the first time in an uncertainty framework to explore 

the robustness of anticipatory adaptation options. 

 The water resource system performance metrics allow assessing the reliability, 

resilience and vulnerability of the water abstraction points and are a means of 

summarising the change in system characteristics over time with regard to 

multiple uncertain futures. 
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5 Tool Application: Future Water Resources Availability 

5.1 Introduction 

In this and the following chapter, the tool described in the previous chapter is applied 

to twelve Irish illustrative case study water abstraction points. Within this chapter, 

the ranges in future stream flows and future water resource availability is derived and 

analysed. Chapter 6 uses the results from this chapter to appraise the performance of 

adaptation options for each of the twelve water abstraction points.  

The chapter is structured as follows; Section 5.2 explains the reasoning for selecting 

the study catchments. In Section 5.3, presents the selected case studies together with 

the results of model calibration and evaluation. Section 5.4 illustrates the 

hydrological modelling process and derived stream flow series (Section 5.4.1), 

together with projected changes in future water resources for each of the abstraction 

points analysed (Section 5.4.2). Results are discussed and conclusions are drawn 

(Section 5.5) and finally the chapter is summarised in Section 5.6.  

5.2 Case Study Catchment Selection 

In hydrometrical terms, Ireland is divided into eight River Basin Districts (RBDs) as 

shown in Figure 5.1. These basins provide the basis for planning and implementation 

of measures in water resources management, particularly with regard to the 

implementation of the European Water Framework Directive (WFD). Of the eight 

RBDs, four are entirely within the Republic of Ireland: the Eastern, South Eastern, 

South Western and the Western RBDs. Additionally, there are three International 

RBDs (IRBDs) shared between the Republic of Ireland and Northern Ireland, namely 

the Shannon, South Western, Neagh-Bann and the North Western RBDs. The North 

Eastern RBD is entirely situated in Northern Ireland.  

Each River Basin District is made up of a minimum of two and up to eight 

Hydrometric Areas (HAs), which amount to a total of 40 HAs (Figure 5.1), which in 

turn consist of several catchments. The numbering system for the hydrological 
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gauging stations in Ireland are also related to the HAs, with the first two digits 

indicating the HA within which the station is located and the last three digits are used 

to identify a unique station.  

 

Figure 5.1 River Basin Districts (RBD) and hydrometric areas (HAs) in Ireland. 

The modelling framework developed in the previous chapter is applied to two Irish 

case study areas to provide an illustrative application of the framework. The HAs 

lying in these areas were chosen to be representative of different hydrological and 

water infrastructural characteristics and climatological regimes representative for 

Ireland. Figure 5.2 shows the selected case study areas of the Boyne River catchment 

(HA 07) in the East of Ireland and the Moy River catchment (HA 34) and the Erriff-

Clew Bay (HA 32) in the West of the country. Within the selected HAs, the public 

water systems for the surface water abstractions, which supply water to a population, 

greater than 100 are investigated. This amounts to six in the West and six in the East, 

or 12 abstraction points in total. The following paragraphs will describe the 

characteristics of these illustrative case study areas and water abstraction points. 
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Figure 5.2 Case study areas, streams and synoptic stations used. 

 

5.3 Characteristics of Case Study Areas 

For the case study areas employed, a detailed investigation of the hydrological, 

infrastructural and climatological characteristics is necessary. These characteristics 

become important for the hydrological simulations outlined later, particularly for 

calibrating and evaluating the hydrological model using the proxy-basin split-sample 

approach. The following paragraphs describe the characteristics of the illustrative 

sample catchments and water resource systems in detail. 
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5.3.1 HA 07 – The Boyne Catchment 

 
Figure 5.3 The Boyne catchment. Including catchment elevation, water abstraction points, hydrometric 

gauges, synoptic weather stations and towns. 

The Boyne River catchment is located in the Eastern RBD (Figure 5.3) and extends 

over an area of ~2692 km
2
. The catchment has an average elevation of 89 meters and 

ranges from zero to about 338 meters in the northern part of the catchment. The 

slopes in the catchment range from 0% to 38%, on average the slopes are gentle with 

a mean slope of 1.6%. Flat and undulating lowlands are the prevailing physiographic 

feature with Grey Brown Podzolics being the principal soil class (30.6%), followed 

by Gleys (24.5%.) and Minimal Grey Brown Podzolics (20.5%). The parent material 

of the dominating soils is Limestone Glacial Till (24%), Limestone Shale Glacial Till 

(21.6%) and Alluvium (12%) resulting in low productive aquifers underling about 

68.6% of the catchment. The main land use types within the catchment are pasture 

(79.4%) and arable land (8%), as well as peat bogs (4.2%) mainly located in the 

southern parts of the catchment. 

The climate data of the catchment is best described by the synoptic station at 

Mullingar (Station No. 2922), located just outside the catchments western border (see 
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Figure 5.3). The mean annual temperature at Mullingar (thirty-year average 

(1961-1990)) is 8.8°C and a thirty year mean-annual precipitation of 931.6 mm. 

Daily precipitation and evapotranspiration time series from Mullingar are used to 

drive the hydrological model. 

While there is a dense network of river flow gauges in Ireland, it is very rare to find 

continuous discharge measurements at or close to surface water abstraction points. 

This provides challenges for hydrological modelling; where in the case of the Boyne 

catchment all of the six investigated water abstraction points have no stream flow 

gauging station close by. This characteristic also applies to the water abstraction 

points in other catchments; for example, five out of the six analysed water 

abstraction points in the West are not in the vicinity of a hydrometric station. As a 

result, abstraction points are treated as un-gauged catchments in the modelling 

process using the commonly applied proxy-basin-split-sample approach to derive a 

quantification of stream flow for the water abstraction points. Given the widespread 

nature of this problem, which is likely to exist outside of Ireland also, additional 

uncertainties are added to the cascade of uncertainty in assessing the range of future 

impacts in a practical setting 

For model calibration and evaluation, stations in upstream sub-catchments were 

selected due to their low human disturbances. Additional criteria for selection were a 

common time period of flow measurements with good data quality and little missing 

flow values. Within the Hydrometric Area 07 two stations (07002 - Killyon at the 

River Deel and 07011 - O'Daly's Bridge at the River Blackwater) were identified due 

to their upstream location, data quality and representativeness of catchment 

characteristic (Table 5.1). Although both stations have longer flow records available, 

they are both affected by drainage during which no flow measurements were 

recorded resulting in missing data, therefore only a short overlapping period for 

model calibration and evaluation period is available. For the proxy-basin-split-

sample approach, a period of 15 years (1984-1999) with nearly complete overlapping 

flow records is identified. The flow regime and the corresponding quality rating for 

the overlapping record of both stations are shown in Figure 5.4 (a detailed 
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description of quality codes is given in Chapter 3). The percentage of missing data 

points per month over the overlapping period is shown Figure 5.5. 

Table 5.1 Selected Hydrometric Stations from the HA 07 – Boyne River Catchment 

Station Available Record Arterial Drainage 
Full Missing 

Years 
Overlapping 

Period 

07002 1970-2004 1974-1979 1974-1980 
1984-1999 

07011 1957-1999 1980-1983 1980-1984 

 

 
Figure 5.4 Flow regimes and data quality rating for Station 07002 and 07011. 



Chapter 5 Tool Application: Future Water Resources Availability 

 

168 

 

Figure 5.5 Percentage of missing days per month for station 07002 (left) and 07001 (right). 

In the proxy-basin-split-sample procedure used for model training and evaluation, 15 

years of overlapping flow record (1984-1999) are split into 10 years of data used for 

model calibration and the remaining period (5 years) for parameter evaluation in the 

proxy-basin. The threshold criteria used to determine behavioural parameter sets out 

of the 20,000 randomly sampled parameter sets are shown in Table 5.2. For details 

on the performance ratings and colour coding, see Table 4.3. (For ease of 

interpretation the table is shown again and the following paragraph summarises the 

criteria discussed.) The following rules were employed in identifying 

acceptable/behavioural parameter sets for use in model simulations. Only the 

parameter sets that satisfied the continuity equation by achieving a catchment water 

balance of zero were further evaluated with regard to the other objective functions 

used. The MAE value given in Table 5.2 is half of the standard deviation of the 

observed flow; all parameter sets above this absolute error threshold were also 

excluded from the assessment of model performance. In Figure 5.6 an example of the 

parameter values, the parameter space and model performance is given.  
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Table 4.3 Performance ratings for the relative error measures as suggested by Moriasi et al. (2007) based 

on monthly time steps Nash-Sutcliffe Efficiency Coefficient (EC), Percent Bias (PBIAS), Root Mean 

Square Error-Observations Standard Deviation Ratio (RSR). 

Performance Rating EC PBIAS RSR 

Very Good 0.75 < EC ≤ 1.00 PBIAS < ±10 0.00 ≤ RSR ≤ 0.50 

Good 0.65 < EC ≤ 0.75 ±10 ≤ PBIAS < ±15 0.50 < RSR ≤ 0.60 

Satisfactory 0.50 < EC ≤ 0.65 ±15 ≤ PBIAS < ±25 0.60 < RSR ≤ 0.70 

Unsatisfactory EC ≤ 0.50 PBIAS ≥ ±25 RSR > 0.70 

 

 

 
Figure 5.6 Station 7002; Parameter values and objective functions obtained from 20,000 random samples 

from five process parameters (RD (Rooting Depth), Perm HB (Permeability Horizon Boundary), Perm 

BLH (Permeability Lower Horizon), Inter Up (Interflow Upper) and Inter Low (Interflow Lower)). 

Figure 5.6 shows three of the objective functions employed (Nash-Sutcliffe 

Efficiency Coefficient (EC), Percent Bias (PBIAS) and Root Mean Square Error-

Observations Standard Deviation Ratio (RSR)). Areas with low point density (EC<0, 

-45<PBIASE>45, and RSR>1.5) are not plotted. The behavioural parameter sets (red 

points for calibration and orange points for the evaluation period) were selected 

based on the criteria described in Section 4.4.3 (Water balance = 0, Mean Absolute 

Error (MAE) less than half the standard deviation of observed flow) and all three 

objective functions.  
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For example for station 7002 (Figure 5.6), it can be seen that for both calibration and 

evaluation periods at least ‘good’ model performance is obtained, with most of the 

performance criteria obtaining ‘very good’. For PBIAS a slightly higher model 

performance criteria is used to determine behavioural parameter sets for calibration 

(red points), compared to the model evaluation period (orange points) as shown in 

Table 5.2 for the respective period. This adjustment during the evaluation period 

became necessary due to more variable river flow, which is also indicated by a 

higher standard deviation and therefore a higher threshold for MAE. Only the 

parameter sets that were behavioural in both catchments during the evaluation period 

were retained.  

Table 5.2 HA07 Boyne River catchment: Station and performance criteria used in model calibration and evaluation 

Station 
Calibration (1984-1993) No. 

Behav. 

Sets 

Evaluation (1994-1999) No. 

Behav. 

Sets MAE EC PBIAS RSR MAE EC PBIAS RSR 

07002 < 1.360 > 0.75 < ±10 ≤ 0.50 3,418 <1.654 > 0.75 < ±15 ≤ 0.50 637 

07011 < 2.578 > 0.75 < ±10 ≤ 0.50 4,314 <3.196 > 0.75 < ±15 ≤ 0.50 981 

MAE, mean absolute error; EC, Efficiency Coefficient; PBIAS, Percent Bias;  

RSR, Root Mean Square Error-Observations Standard Deviation Ratio. 

 

 

To determine the final number of behavioural parameter sets to use in future 

simulations, the effect of the number of sets on simulated river flows is assessed. 

Figure 5.7 compares the spread of summer mean monthly modelled stream flow 

(June, July and August) depending on the number of behavioural parameter sets 

selected, for the two flow stations over the period 1984-1999. In Figure 5.7 each 

point (blue box) represents an equally likely monthly stream flow value derived 

when the model is run with a parameter set. With an increasing number of parameter 

sets (from 100 to 700 behavioural parameter sets for each month), the envelope of 

modelled stream flow increases. For station 07002, the inclusion of 500 parameter 

sets upwards results in a good spread of stream flow values. Increasing the number to 

600 or 700 parameter sets does not yield an increasing envelope of possible stream 

flow values. For Station 07011, a similar pattern emerges; however, for this station 

400 behavioural parameter sets are sufficient to obtain the possible spread of flows. 

To ensure a best possible representation of the potential spread of simulations, 500 
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parameter sets are selected in this study, due to their good presentation of streamflow 

spread also in the other catchments (not shown). Therefore, from the total number of 

behavioural parameter sets obtained in the proxy-basin-split-sample approach, 500 

parameter sets were randomly sampled for use in future hydrological simulations to 

derive the stream flow at the individual water abstraction points.  

 

Figure 5.7 Mean monthly stream flow for three summer months depending on number of behavioural 

parameter sets, for station 7002 and 7011. 

To assess the outcome of the proxy-basin-split-sample method used with 

500 behavioural parameter sets, the simulated stream flows are shown in Figure 5.8 

for the entire time period (calibration and evaluation). Generally, the months with 

lower stream flow are captured well in both catchments, which are of particular 

importance when water is abstracted directly from surface water.  
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Figure 5.8. Comparison of monthly mean flow; observed (light blue) and ensemble of 500 model parameter 

set (light grey) over the period 1984-1999. Maximum box plot whisker length is 1.5 times the interquartile 

range, comprising ~ 95% of the data. 

The public water supply schemes analysed in this study are the schemes for which 

both population data and surface water abstraction volume data are available. This 

data was obtained from the database accumulated by the report ‘The Provision and 

Quality of Drinking Water in Ireland, A Report for the Years 2007 – 2008’ (EPA, 

2009). For some water schemes, especially smaller ones, it was not possible to obtain 

information. The same applied to agricultural and industrial water abstractions. 

Therefore, analysis focuses solely on the surface water abstractions of public water 

supply schemes. Table 5.3 shows the investigated water abstraction points, the 

population served and the average daily water abstraction at the 2008 level.  

Table 5.3 Boyne surface water abstractions studied, scheme code and water supply system information. 

Scheme Name Scheme Code Population Served Volume (m
3
/day) 

Athboy  2300PUB1001 3,000 2,200 

Drogheda  2100PUB1019 23,077 27,692 

Kilcarn: Navan/Midmeath 2300PUB1016 5,600 2,800 

Liscarthan: Navan/Midmeath 2300PUB1016 22,400 11,200 

Oldcastle / Kells 2300PUB1011 2,024 1,447 

Trim  2300PUB1009 8,000 3,200 
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5.3.2 HA 34 – The Moy Catchment 

 
Figure 5.9 The Moy catchment. Including catchment elevation, water abstraction points, hydrometric 

gauges, synoptic weather stations and towns. 

Hydrometric Area 34, located in Western RBD is made up by the Moy River 

catchment show in Figure 5.9 and encompasses an area of ~2381 km
2
, with an 

average elevation of 77.8 meters ranging from zero to about 800 meters. The slopes 

in the catchment range from 0% to 40%, on average the slopes are gentle with a 

mean slope of 2.7% degree. Flat and undulating lowlands (41%) and rolling lowland 

(29%) are the prevailing physiographic features with Grey Brown Podzolics (16%), 

Rendzinas (14%) and Acid Brown Earth (12%) dominating the soil classes, followed 

by 3% of the catchment being covered by water. The Moy catchment is mainly 

underlain by ‘Poor Aquifer - Bedrock which is Generally Unproductive except for 

Local Zones’ and ‘Regionally Important Aquifer - Karstified (conduit)’ (both 27%) 

and ‘Locally Important Aquifer – Karstified’ aquifers (22%).  

The climate data used to drive the hydrological simulations are taken from 

Bellmullet (Station No. 1034) located outside the HA at the Irish Western seaboard. 

At Belmullet the annual average 30-year annual temperature (1961-1990) is 9.6°C 
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and the 30-year mean-annual precipitation is 1142.5 mm. Compared to the HA 07 

located in the East of Ireland, this case study area is located in the wetter part of the 

country.  

For HA 34, stations 34009 (Curraghbonaun at the River Owengarve) and 34024 

(Kiltimagh at the River Pollagh) are selected to serve as proxy-basin catchments for 

model calibration due to their similar land cover, soil and groundwater characteristics 

to the water abstraction catchments modelled in the later part of the analysis (Table 

5.4). For the proxy-basin-split-sample procedure the available overlapping time 

period of 23 years (1977-1999) between station 34009 and 34024 was split into two 

parts, with the first 16 years used for calibration and the remaining 7 years for 

hydrological model evaluation. The flow records used are of ‘good’ (34009) and 

‘fair’ (34024) flow rating quality, with no complete year missing (Figure 5.10 and 

Figure 5.11) 

Table 5.4 Selected hydrometric stations from HA 34 – Moy River Catchment. 

Station Available Record Arterial Drainage 
Full Missing 

Years 
Overlapping 

Period 

34009 1960-1999 1960-1971 Non 
1977-1999 

34024 1977-2007 Not available Non 

 

The same proxy-basin-split-sample methodology as described for the Boyne is 

applied to both selected hydrometric stations. ‘Satisfactory’ model performance is 

achieved for the PBIAS performance measure over the calibration period, for all 

other performance measures ‘good’ and ‘very good’ ratings are obtained (Table 5.5). 

From the parameter sets identified as being behavioural for both calibration and 

evaluation 500 parameter sets were randomly sampled. 
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Figure 5.10 Flow regimes and quality rating for station 34009 (upper) and 34024 (lower). 

 
Figure 5.11 Percentage of missing days per month for station 34009 (left) and 34024 (right). 
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The simulated flows compared to the observed flows over the entire overlapping 

period are shown in Figure 5.12, there is generally a good agreement of the simulated 

and observed flows derived over the summer low flow periods.  

Table 5.5 HA34 Moy River Catchment: Station and performance criteria used in model calibration and evaluation. 

Station 
Calibration (1977-1992) No. 

Behav. 

Sets 

Evaluation (1993-1999) No. 

Behav. 

Sets MAE EC PBIAS RSR MAE EC PBIAS RSR 

34009 < 1.041 > 0.75 < ±25 ≤ 0.50 9,597 <1.219 > 0.75 < ±15 ≤ 0.50 11,313 

34024 < 1.110 > 0.75 < ±25 ≤ 0.50 13,984 <1.312 > 0.75 < ±15 ≤ 0.50 612 

MAE, mean absolute error; EC, Efficiency Coefficient; PBIAS, Percent Bias;  

RSR, Root Mean Square Error-Observations Standard Deviation Ratio. 

 

 
Figure 5.12 Comparison of monthly mean flow; observed (light blue) and ensemble of 500 model 

parameter set (light grey) over the period 1977-1999. Maximum box plot whisker length is 1.5 times the 

interquartile range, comprising ~ 95% of the data.  

Within HA 34 there are two surface water abstraction points abstracting water from 

the river where data on population and water abstractions is available for the year 

2009, as shown in Table 5.6. These water abstraction points together with the surface 

water abstractions from Hydrometric Area 32 are used as case studies for the West of 

Ireland. 

Table 5.6 Moy Surface Abstractions studied, Code and Water Supply Information 

Scheme Name Scheme Code Population Served Volume (m
3
/day) 

Kiltimagh WSS 2200PUB1017 1,555 616 

Rathnacreeva GWS 2200PRI2099 164 128 
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5.3.3 HA 32 – The Erriff-Clew Bay Catchment 

 
Figure 5.13 HA 32. Including catchment elevation, water abstraction points, hydrometric gauges, synoptic 

weather stations and towns. 

The Erriff-Clew Bay Hydrometric Area is located in the Western RBD on the Irish 

Western Seaboard (Figure 5.13) and covers ~ 1410 km
2
. The boundaries of HA 32 

are made up of upland and mountainous areas with a maximum height of about 

810m. The dominant land cover is peat bogs (59%), 24% of the catchment is covered 

by agricultural land, pastures and grassland, and about 13% with woodland and 

coniferous forests and 2% with water bodies (lakes). Blanket Peats and Peaty 

Podzols account for 77% of the soils in HA 32, with an additional 11% of Gleys and 

9% of Lithosols. The HA has poor aquifer potential. Within the HA 32 no suitable 

proxy-basin catchments with low confounding factors and similar dominant land 

cover (peat) to the catchments used for water abstraction simulations is available. 

Therefore, two stations located within the HA 34 (Figure 5.13) are used as proxies in 

the calibration and evaluation procedure. The catchments draining to the hydrometric 

stations are both affected by arterial drainage. For station 34007 (Ballycarroon at the 

River Deel) only records after the drained period are available and the records for 

station 34014 (Mill Bridge at the River Clydagh) end in 2000. This results in an 
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overlapping period of 28 years, of which the first 20 years (1973-1992) were used for 

calibration and the remaining 8 years (1993-2000) for model evaluation (Table 5.7). 

Almost one entire year of flow records is missing during the evaluation period for 

station 34007 (Figure 5.15). 

Table 5.7 Selected hydrometric stations from the HA 34 to be used in HA32. 

Station Available Record Arterial Drainage Full Missing 

Years 
Overlapping 

Period 

34007 1973-2008 1960-1972 1994 
1973-2000 

34014 1960-2000 1960-1971 Non 

 

 

Figure 5.14 Flow regimes and data quality rating for station 34007 (upper) and 34014 (lower). 
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Figure 5.15 Percentage of missing days per month for station 34007 (left) and 34014 (right). 

Table 5.8 shows the performance ratings obtained for both the hydrological model 

calibration and evaluation. ‘Satisfactory’ and ‘good’ performance ratings are 

obtained for the calibration period. These ratings increased by one class during the 

model evaluation period to ‘good’ and ‘very good’ respectively. This increase in 

performance during model evaluation might be caused by a change in the quality 

ratings, with more accurate flow measurements in the latter half of the flow record 

for 34007 Figure 5.14). Over the entire overlapping period, low flows are simulated 

well and span similar ranges for both stations, with a slight overestimation of the 

median flows for station 34014 (Figure 5.16).  

Table 5.8 HA34 Moy River Catchment: Station and performance criteria used in model calibration and evaluation 

Station 
Calibration (1973-1992) No. 

Behav. 

Sets 

Evaluation (1993-2000) No. 

Behav. 

Sets MAE EC PBIAS RSR MAE EC PBIAS RSR 

34007 < 2.454 > 0.65 < ±25 ≤ 0.60 7,762 <2.177 > 0.75 < ±15 ≤ 0.50 11,070 

34014 < 0.745 > 0.65 < ±25 ≤ 0.60 11,196 <0.800 > 0.75 < ±15 ≤ 0.50 7,078 

MAE, mean absolute error; EC, Efficiency Coefficient; PBIAS, Percent Bias;  

RSR, Root Mean Square Error-Observations Standard Deviation Ratio. 
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Figure 5.16 Comparison of monthly mean flow; observed (light blue) and ensemble of 500 model 

parameter set (light grey) over the period 1973-2000. Maximum box plot whisker length is 1.5 times the 

interquartile range, comprising ~ 95% of the data. 

Four surface water abstraction points are located within the Hydrometric Area 34 

(Table 5.9). Together with the two water abstractions located in the HA 34, six 

illustrative sample case studies are located in the West of Ireland. 

Table 5.9 HA 32; Surface abstractions studied, scheme code and water supply system information. 

Scheme Name Scheme Code Population Served Volume (m
3
/day) 

Culimore GWS 2200PRI2039 420 400 

Laghta GWS 2200PRI2079 203 145 

Louisburgh WSS 2200PUB1020 1480 400 

Newport WSS 2200PUB1022 803 273 

 

In the Erriff-Clew Bay HA the Louisburgh WSS is the only water abstraction point 

in this case study with a flow metering station (St 32011 at Louisburgh Weir) in 

proximity. This setting is used to investigate the functionality of the proxy-basin-split 

sample approach. The ability to compare the observed flow (1981-1996) at station 

32011 with the modelled flow for Louisburgh WSS is of particular importance, as 

the behavioural parameters sets were derived in HA34 and then transferred to HA32. 

Figure 5.17 shows the comparison between the observed flow at station 32011 (light 

blue) and the modelled stream flow for the surface water abstraction point for the 

Louisburgh WSS (light grey) using the 500 behavioural parameter sets obtained in 

HA34. Summer low flows are generally captured well and therefore it can be 
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assumed that the parameter sets obtained through the proxy-basin-split-sample 

approach in HA34 can be used to model stream flow for the water abstraction points 

in HA32. 

 

Figure 5.17 Comparison of monthly mean flow; observed at station 32011 (light blue) and ensemble of 500 

model parameter set modelled for Louisburgh WSS (light grey) over the period 1981-1996. Maximum box 

plot whisker length is 1.5 times the interquartile range, comprising ~ 95% of the data. 

 

5.4 Future Stream Flow Modelling 

Once the physical parameters for each catchment draining into a water abstraction 

point are determined using the GIS approach described in the previous chapter, they 

are used together with behavioural values for the process parameters. For each water 

abstraction point the flow is modelled individually using future climatological time 

series of precipitation and evapotranspiration to drive the hydrological model 

(HYSIM) to produce future daily stream flow series, which are then converted into 

monthly mean flows to be used as input into the water resource model - WEAP. 
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5.4.1 Comparison of Stream Flow Simulations under Climate Scenarios 

In the previous chapter the available future climate scenarios for Ireland have been 

presented in detail. The influence of the choice of the future projections (i.e. transient 

statistically downscaled versus probabilistic scenarios) on stream flow is investigated 

more fully, as there is no linear response between changes in the climate variables 

and the catchment responses. First, the modelled stream flow is compared under 

historical conditions, then the different flows obtained for future flow simulations are 

analysed. 

5.4.1.1 Stream Flow Simulations under Climate Scenarios - Control Period 

To allow comparison, stream flow time series for each of the proxy-basin-catchments 

described in the previous sections are generated using the 500 behaviour parameter 

sets. To evaluate the influences of the choice of the different types of ensembles on 

the monthly histograms of simulated stream flow the hydrological model is driven 

with the control time series (1971-1999) and compared to the spread of stream flow 

modelled with the 500 behavioural parameter sets and driven by observed 

precipitation and evaporation data.  

Figure 5.18 to Figure 5.20 show the histograms of monthly mean flows obtained over 

the control period (1971-1999) over which all stations had observed data available. 

For proxy-basin stations, the modelled monthly mean flow (m
3
/s) is shown for each 

month separately. The flows obtained when forcing the hydrological model with the 

climatological data from the transient statistically downscaled (SD) scenarios are 

shown in red, the flow series that are obtained from the probabilistic scenarios are 

shown in black. The grey shaded areas in the background show the maximum and 

minimum ranges of river flow obtained from the model when forced with the 

observed climate data for that period. 

  



Chapter 5 Tool Application: Future Water Resources Availability 

 

183 

Over the control period, the ranges of stream flow between the two possible sets of 

ensembles are similar, especially during the times of lower flow (spring and summer 

months) when flows are of particular interest to water managers. During these 

months, the SD scenarios provide slightly larger flow ranges (particularly for the 

lower flow ranges) compared to flows obtained from the probabilistic scenarios. 

These larger ranges of possible flows are apparent in the extremes (minimum and 

maximum) and flows that represent 90% of modelled flow ( indicated by the vertical 

dashed lines) during all spring and summer months for all investigated stations (with 

the exception of August for stations 7002, 7011, 34007 and 34014).  

During the autumn and winter months, the stream flow derived from probabilistic 

scenarios shows higher maximum and minimum flows compared to the monthly 

flows obtained from the SD scenarios. One notable difference between the SD and 

probabilistic climate scenarios exists in October, particularly in Hydrometric Area 

07, where the distribution of the two ensembles differs considerably in shape. The 

majority of flows derived from the SD scenarios are in the lower flow spectrum, 

whereas with the probabilistic scenarios the stream flow has a long tail towards the 

higher flows. The high flows derived from the probabilistic scenarios spread beyond 

the maximum flow range obtained from observed climate data.  

Overall, the transient SD scenarios provide a good representation of the spread of 

possible stream flow when evaluating the control period. Of particular importance 

for water management is the wider ranges obtained for the lower component of all 

monthly flows ensuring that the lowest possible conditions are represented in the 

stream flow simulation.  
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Figure 5.18 HA 07; Histogram of modelled monthly mean flow derived from the statistically downscaled 

(red) and the probabilistic (black) time series (Top: Station 7002; bottom: Station 7011). Grey area in the 

background indicates the range of modelled stream flow derived from observed climate (1971-1999). 

Dashed lines in red and black enclose 90% of the monthly simulations. Grey dotted line is the median of 

the observed. 
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Figure 5.19 HA 32; Histogram of monthly mean flow derived from the statistically downscaled (red) and 

the probabilistic (black) time series (Top: Station 34007; bottom: Station 34014). Grey area in the 

background indicates the range of modelled stream flow derived from observed climate (1971-1999). 

Dashed lines in red and black enclose 90% of the monthly simulations. Grey dotted line is the median of 

the observed. 
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Figure 5.20 HA 34; Histogram of monthly mean flow derived from the statistically downscaled (red) and 

the probabilistic (black) time series (Top: Station 34009; bottom: Station 34024). Grey area in the 

background indicates the range of modelled stream flow derived from observed climate (1971-1999). 

Dashed lines in red and black enclose 90% of the monthly simulations. Grey dotted line is the median of 

the observed. 
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5.4.1.2 Future Stream Flow Simulations under Climate Scenarios – 2050s 

To further investigate if the transient statistically downscaled (SD) scenarios also 

generate comparative future ranges of stream flow as the probabilistic scenarios the 

same procedure as in the previous section was used to produce future stream flow 

series for the 2050s (Figure 5.21 to Figure 5.23).  

Again, the ranges obtained from the hydrological simulations obtained with 500 

behavioural parameter sets forced with the SD and probabilistic scenarios are 

comparable for spring and summer. The high flow components in autumn are larger 

for the probabilistic scenarios, whereas in winter the SD scenarios produce larger 

ranges for all stations. Similar to the control period, the lower monthly ranges of 

flow are obtained for the SD scenarios, which is of importance for future stream flow 

modelling and the analysis of future water resources. 

The transient SD scenarios for Ireland have been developed for impacts and 

adaptation assessments for various sectors in Ireland and they are widely available to 

and used by decision makers. Given that the key aim of these two chapters in this 

thesis is to produce a tool that can be used for adaptation appraisal in the Irish water 

resources sector the six SD scenarios will be used to appraise future adaptation 

options in the following modelling approach, as they have a comparable performance 

in producing stream flow ranges as the probabilistic scenarios particularly during 

spring and summer months which are important for water resources. Additionally, 

from a computational perspective the selection of the SD scenarios reduces the 

number of input time series for the water resources model to 3,000 hydrological time 

series (2 emission scenarios x 3 GCMs x 500 behavioural parameter sets) compared 

to 50,000 hydrological scenarios (100 probabilistic scenarios x 500 behavioural 

parameter sets). The SD scenarios are employed here with the recognition that future 

work on the tool should incorporate a wider range of the uncertainty space, by 

employing large multi-model ensembles.  
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Figure 5.21 HA 07; Histogram of monthly mean flow derived from the statistically downscaled (red) and 

the probabilistic (black) time series (2040-2069). Top: Station 7002; bottom: Station 7011. Grey area in the 

background indicates the range of modelled stream flow derived from observed climate (1971-1999). 

Dashed lines in red and black enclose 90% of the monthly simulations. Grey dotted line is the median of 

the observed. 
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Figure 5.22 HA 32; Histogram of monthly mean flow derived from the statistically downscaled (red) and 

the probabilistic (black) time series (2040-2069). Top: Station 34007; bottom: Station 34014. Grey area in 

the background indicates the range of modelled stream flow derived from observed climate (1971-1999). 

Dashed lines in red and black enclose 90% of the monthly simulations. Grey dotted line is the median of 

the observed. 
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Figure 5.23 HA 34; Histogram of monthly mean flow derived from the statistically downscaled (red) and 

the probabilistic (black) time series (2040-2069). Top: Station 34009; bottom: Station 34024. Grey area in 

the background indicates the range of modelled stream flow derived from observed climate (1971-1999). 

Dashed lines in red and black enclose 90% of the monthly simulations. Grey dotted line is the median of 

the observed. 
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5.4.1.3 Stream flow Simulations over Control Period - 

Statistically Downscaled Scenarios  

The six transient statistically downscaled climate scenarios have been selected in the 

previous section to be suitable to produce a wide range of flow conditions. In his 

section these scenarios are used to force the hydrological model for a final check on 

the ability of the hydrological model to produce stream flow in the historical 

hydrological records. 

The monthly mean flow hydrographs for each of the proxy-basin catchments are 

analysed for a thirty-year control period. The control period 1971-1999 is defined by 

the available observed climatological record and different to the ‘baseline’ period 

(1961-1990) which is used later when only modelled climatological data is used. 

Figure 5.24 shows the comparison over all 500 behavioural parameter sets for the 

simulations driven by the observed climate data (‘Control Observed’) and the flow 

simulations derived with the input of the six future climate scenarios (‘Control 

Modelled’). In Figure 5.24 the flow derived from modelled climate series generally 

falls within the limits of the flow derived from the observed climate series. For the 

catchments in the West the upper bound of simulations (Q5) in June is slightly higher 

within the modelled climate time series, whereas in the East it tends to be lower. 

Generally, mean and low flows are captured well, with exception of autumn flows 

where the mean is underestimated, particularly in the East. This underestimation 

could be due to difficulties of the model in reproducing the seasonal switch in the 

direction of soil water movement in humid catchments. Such seasonal changes 

between vertical water movement in summer and horizontal water movement in 

winter have been first reported by Grayson et al. (1997). 

Overall, the representation of the hydrological conditions is acceptable; therefore, the 

selected modelled future climate projections were then used to drive a hydrological 

model for each sub-catchment feeding a water abstraction point. Apart from these 

characteristics the transient SD scenarios were also selected due to their 

characteristic of producing a continuous time series of change, which is important for 
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evaluation the future performance of a water resource system, which is the ultimate 

goal of this modelling framework.  

 

Figure 5.24 Modelled monthly mean flows between 1971-1999 (control period) for proxy-basin stations in 

HA 07, and HA34. Grey shaded areas show the 90 percent confidence interval. Solid lines Q5 and Q95 

respectively. Dashed lines represent mean flow. 



Chapter 5 Tool Application: Future Water Resources Availability 

 

193 

5.4.2 Future Stream Flow Simulations at Water Abstraction Points 

The differences in overall changes in precipitation and stream flow between the 

simulated baseline period (1961-1990) and the two future simulated time periods, the 

2020s (2010-2039) and the 2050s (2040-2069) is analysed to obtain an overall 

picture of the projected changes in the future water resources availability. Future 

stream flow series are derived by forcing the hydrological model with 500 

behavioural parameter sets with the climate time series from the six different future 

climate projections resulting in 3000 hydrological time series for each of the twelve 

investigated stream flow water abstraction points.  

5.4.2.1 Projected Changes in Future Precipitation 

To be able to put the projected changes in stream flow into context, first an analysis 

of the monthly precipitation totals is performed. The percentage changes in average 

monthly precipitation totals between the baseline period 1961-1990 and the two 

future periods of interest the 2020s (2010-2039) and the 2050s (2040-2069) are 

shown in Figure 5.25. The relative percentage changes in monthly precipitation totals 

are calculated as follows:  

Percent Change = 100 x (future precip– baseline precip)/baseline precip 

In Figure 5.25 there is an overall tendency for uncertainty ranges to grow with time 

of simulation (relative to the baseline). In the east (St 2922) the positive and negative 

magnitudes of projected changes are larger compared to those in the west (St 1034), 

for both future periods. For station 1034 in the 2020s, there is no clear seasonal 

signal, although winter tends to be wetter relative to the baseline, whereas summer 

tends to be drier. The same tendency is apparent for station 2922, however with a 

higher magnitude, particularly for the reductions in summer precipitation totals. In 

the 2050s precipitation totals at station 1034 show strong decreases during spring and 

summer months (up to 35% relative to 1961-1990), with the exception of June where 

only minor decreases are projected. Summer precipitation totals at station 2922 are 
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more pronounced and for July and August, projected relative changes of almost 40 

percent are shown. Again as in all other projections June is at odds with the general 

seasonal pattern showing less relative changes. 

 

 

Figure 5.25 Projected changes in average monthly precipitation for the synoptic stations 1034 (top) and 

2922 (bottom). Projected changes are relative to the baseline period (1961-1990) for the 2020s (left) and 

2050s (right). 
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5.4.2.2 Projected Future Surface Water Resource Availability  

Before employing the scenarios for decision appraisal at each abstraction point, this 

section provides a brief overview of projected changes in future flows for the case 

study catchments.  

The parameter sets to model the flows at the water abstraction points were obtained 

through the proxy-basin-split sample approach described previously. The downscaled 

climate simulations were used to drive HYSIM with the 500 randomly sampled 

behavioural parameter sets at each water abstraction point.  

Simulations were performed for the baseline period (1961-1990) and for two future 

time periods the 2020s (2010-2039) and the 2050s (2040-2069). Figure 5.26 to 

Figure 5.31 show ranges of monthly mean flows (95
th

, 50
th

 and 5
th

 percentile) on the 

upper panel while the lower panels shows the percent change for monthly stream 

flow compared to the baseline period for two low flow indicators Q95 (flow equalled 

or exceeded 95% of the time) and Q75 (flow equalled or exceeded 75% of the time) 

grouped by month. Q95 is an important indicator for environmental flows to 

maintain ecosystem functions, below which it is recommended to not abstract any 

stream flow (Acreman et al., 2008). 

The percent change per month between the baseline monthly Qn flow and the 

corresponding future parameter set’s monthly Qn flow is calculated as: 

Percent Change = 100 x (Future indicator– Baseline indicator)/Baseline indicator 
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Figure 5.26 Boyne Catchment - HA 07; Stream flow at the water abstraction points Athboy and Drogheda. 

Upper panels: Modelled monthly mean flow for baseline period (1961-1990) and in blue the 2020s (2010-

2039) and in orange the 2050s (2040-2069). Solid lines in their respective colour show the95th and 5th 

percentiles, dashed lines are the 50th percentile of monthly mean flows. Lower panels: Projected changes in 

monthly Q75 and Q95 relative to the baseline, for the months April to October. Maximum box plot 

whisker length is 1.5 times the interquartile range, comprising ~ 95% of the data 
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Figure 5.27 Boyne Catchment - HA 07 Stream flow at the water abstraction points Kells and Kilcarn. 

Upper panels: Modelled monthly mean flow for baseline period (1961-1990) and in blue the 2020s (2010-

2039) and in orange the 2050s (2040-2069). Solid lines in their respective colour show the95th and 5th 

percentiles, dashed lines are the 50th percentile of monthly mean flows. Lower panels: Projected changes in 

monthly Q75 and Q95 relative to the baseline, for the months April to October. Maximum box plot 

whisker length is 1.5 times the interquartile range, comprising ~ 95% of the data. 
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Figure 5.28 Boyne Catchment - HA 07 Stream flow at the water abstraction points Liscarthan and Trim. 

Upper panels: Modelled monthly mean flow for baseline period (1961-1990) and in blue the 2020s (2010-

2039) and in orange the 2050s (2040-2069). Solid lines in their respective colour show the95th and 5th 

percentiles, dashed lines are the 50th percentile of monthly mean flows. Lower panels: Projected changes in 

monthly Q75 and Q95 relative to the baseline, for the months April to October. Maximum box plot 

whisker length is 1.5 times the interquartile range, comprising ~ 95% of the data. 
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Figure 5.29 Erriff-Clew Bay - HA 32 Stream flow at the water abstraction points Culimore and Laghta. 

Upper panels: Modelled monthly mean flow for baseline period (1961-1990) and in blue the 2020s (2010-

2039) and in orange the 2050s (2040-2069). Solid lines in their respective colour show the95th and 5th 

percentiles, dashed lines are the 50th percentile of monthly mean flows. Lower panels: Projected changes in 

monthly Q75 and Q95 relative to the baseline, for the months April to October. Maximum box plot 

whisker length is 1.5 times the interquartile range, comprising ~ 95% of the data. 
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Figure 5.30 Erriff-Clew Bay - HA 32 Stream flow at the water abstraction points Louisburgh and Newport. 

Upper panels: Modelled monthly mean flow for baseline period (1961-1990) and in blue the 2020s (2010-

2039) and in orange the 2050s (2040-2069). Solid lines in their respective colour show the95th and 5th 

percentiles, dashed lines are the 50th percentile of monthly mean flows. Lower panels: Projected changes in 

monthly Q75 and Q95 relative to the baseline, for the months April to October. Maximum box plot 

whisker length is 1.5 times the interquartile range, comprising ~ 95% of the data. 
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Figure 5.31 Moy Catchment - HA 34 Stream flow at the water abstraction points Kiltimagh and 

Rathnacreeva. Upper panels: Modelled monthly mean flow for baseline period (1961-1990) and in blue the 

2020s (2010-2039) and in orange the 2050s (2040-2069). Solid lines in their respective colour show the95th 

and 5th percentiles, dashed lines are the 50th percentile of monthly mean flows. Lower panels: Projected 

changes in monthly Q75 and Q95 relative to the baseline, for the months April to October. Maximum box 

plot whisker length is 1.5 times the interquartile range, comprising ~ 95% of the data. 
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The future monthly stream flow simulations for the water abstraction points are 

presented based on the hydrometric area they are located in. Differences in the 

pattern of the percentiles result from different catchment areas and differences in 

hydrological responses resulting from variations in the groundwater, and land surface 

characteristics expressed in through the physical parameter values. In the figures, 

these differences are visually mainly apparent in the higher flow percentiles; 

however, for water management the lower flow percentiles are more important, 

especially during the months when flows are at their lower levels. Therefore, a 

detailed analysis of the percentage change for the months April to October for the 

Q95 and the Q75 of monthly mean flows is shown as box plots in Figure 5.26 to 

Figure 5.28.  

The common characteristics for the two modelled stream flow percentiles (Q75 and 

Q95) investigated at abstraction points in the Boyne is that the projected percent 

changes relative to the baseline period (1961-1990) show wide ranges. The 

percentage changes show high increases in the low flow indicator Q95 for both the 

2020s and the 2050s with maximum changes between 200 and 400 % depending on 

the water abstraction point. But also decreases of 100% are projected for the 2020s. 

The ranges of percent change get smaller for the 2050s tending towards a negative 

sign. In particular, catchments with lower discharge, and hence smaller catchment 

area, show a higher variation in the spread of monthly mean Q95 between the 

simulations for individual months. During the 2020s the median of the percent 

change of the monthly mean flows is increasing, whereas for the 2050s no clear 

pattern of increases or decreases in Q95 emerges.  

The other low flow indicator Q75 shows ranges and percentage changes are much 

smaller and less variable compared to Q95. In July for example at Kells monthly Q95 

in the 2020s, the percent changes encompassing 95% of the simulations range from 

plus 400% to approximately minus 75%, whereas for the Q75 in the same month and 

time period smaller ranges of plus 75% and minus 50% are projected. Decreases in 

the median of Q75 are observable for June to October for the 2020s and for all 

analysed months in the 2050s.  
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When comparing the results spatially with the Boyne catchment is the East and the 

Erriff-Clew Bay and the Moy catchment in the West different patterns in 

hydrological responses emerged from the above analysis. These differences are also 

apparent in the hydrographs and the ranges of all simulations in the upper panels of 

Figure 5.26 & Figure 5.31. For example, for Q95, in the East there is a marked 

reduction in the ranges of percent changes between 2020s and 2050s, the ranges 

show minor reductions or remain the same in the West. Also for the majority of 

months the medians of simulations remain positive when moving from the 2020s to 

the 2050s. When examining the percentage change in the Q75 of monthly mean 

flows, the spread of the percent changes is lower compared to Q95 for the stream 

flow in HA 32 but retains a similar spread to Q95 in HA 34. The only strong 

decrease of the spread of the changes for the abstraction points in HA 34 (i.e. the 

catchments with grass land cover and little peat), occurs in April, September and 

October. 

5.5 Discussion and Conclusion 

This chapter deals with the first two points of the second key research objective by 

modelling future stream flows at 12 un-gauged illustrative Irish water abstraction 

points. In doing so the uncertainty ranges derived from national climate scenarios 

and hydrological modelling are incorporated into future stream flow projections.  

Six catchments from the East and from the West of Ireland respectively, were 

selected to account for different characteristics in the Irish water resources systems. 

For example, the population served by the individual water abstraction points, in the 

East is much higher, with large towns, compared to the smaller water schemes in the 

West with a few hundred people. Additionally, the catchments supplying the water 

abstraction points in the East have a drier rainfall regime compared to the wetter 

Western catchments, which also relates into surface water resources availability. The 

catchments studied also exhibit different hydrological characteristics in terms of 

grassland and peat land hydrological processes. This diversity in the case study 

selection ensures a good representation of the typical surface water schemes present 

in Ireland. 
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In the typical Irish situation of the water resources system investigated here, most of 

the water abstraction points are un-gauged. The challenge of assessing future 

changes in water resources availability in a data scarce context has been addressed 

using a proxy-basin-split-sample approach. Through the use of proxy-basins with 

similar physical catchment characteristics it has been shown that this approach can 

provide flow estimates for such un-gauged catchments. However, this approach 

requires detailed information on the physical catchment characteristics which might 

not be available for all un-gauged sites. Additionally, the prerequisite of two proxy-

basins with similar characteristics and identical observational flow record, long 

enough to allow for hydrological model calibration and evaluation is demanding. 

The traditional application of the proxy-basin-split-sample approach to estimate 

hydrological model parameters in un-gauged catchments is extended to account for 

equifinality in the parameter estimation. Instead of identifying a single behavioural 

parameter set, this augmentation results in multiple behavioural parameter sets and 

therefore in multiple future stream flow realisations. This allows incorporating 

additional uncertainty stemming from the estimation of behavioural parameter sets. 

The approach presented here makes the commonly used assumption of time invariant 

parameter sets, by incorporating an equifinality approach this assumption has lower 

implications on future outcomes, due to the wide ranges obtained compared to a 

single future stream flow realisation obtained from an optimum parameter set. 

Additionally, hydrological model parameters have been shown to be more stable 

throughout time for low and mean flows compared to high flows (Merz et al., 2011).  

The hydrological model output derived from the statistically downscaled (SD) 

scenarios is consistent and comparable with the output derived from the probabilistic 

scenarios, for both, the control and the future time period. The six future SD climate 

scenarios were selected for the case studies in this thesis as they perform comparably 

with to the probabilistic scenarios and were produced specifically for climate change 

impact assessment and to support adaptation. The functional objective here is to 

develop a flexible tool that allows for the incorporation of uncertainty into the 

adaptation option appraisal. Future application of the tool can be used with updated 



Chapter 5 Tool Application: Future Water Resources Availability 

 

205 

and/or additional climate scenarios and therefore also allow the inclusion of a wider 

range of future uncertainty ranges. 

In the last section, future stream flow for the water abstraction points is modelled and 

analysed. The ranges of modelled percent changes compared to the baseline 1961-

1990 are large. Large ranges are particularly apparent for Q95 together with high 

percent-changes for Q75 where the future change signal is much clearer. The large 

ranges obtained also highlight the importance of hydrological modelling uncertainty, 

here particularly in regard with the low flow that is sustained by groundwater. These 

findings highlight the importance of incorporating hydrological modelling 

uncertainties in such a modelling approach.  

The uncertainty ranges obtained for future stream flow at each water abstraction 

point are large. However, it needs to be highlighted that these uncertainty ranges are 

highly conditional on assumptions and decision taken throughout the modelling 

approach. Different input climate scenarios and different hydrological modelling 

approaches will lead to different outcomes. With the approach taken here it is not 

expected that the full uncertainty ranges of future stream flow realisations have been 

sampled. By using other climate projections or an additional hydrological model it is 

expected that these ranges would further increase. 

5.6 Chapter Summary 

In this chapter, the 12 illustrative Irish case study water abstraction points are 

presented together with an approach that allows for the assessment of future stream 

flow at un-gauged sites. The stream flow scenarios and their associated uncertainty 

ranges derived in this section, will be used in the following chapter to appraise the 

effectiveness of selected adaptation options to assist robust assessment, planning and 

decision-making. This chapter can be summarised as follows: 

 The proxy-basin-split sample approach allows deriving future flow projections at 

un-gauged locations. The approach is complemented by the use of the 

equifinality concept to allow for uncertainties in parameter set estimation.  
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 The output of the hydrological model driven by the transient, statistically 

downscaled scenarios is consistent and comparable with the output derived from 

the probabilistic scenarios for both the control period and the future time 

periods. 

 The ranges of changes in future stream flow series obtained are large due to the 

uncertainties related to climatic and non-climatic factors. This highlights the 

importance of incorporating various sources of uncertainties into the modelling 

approach particularly when the results are to be used to inform anticipatory 

adaptation planning. 

 The uncertainty ranges obtained for each water abstraction point are highly 

conditional on assumptions and decision taken throughout the modelling 

approach. Here only a sample of possible future uncertainty ranges is captured. 

In the next chapter, the monthly stream flow series are used as an input into a water 

resource model to analyse the future performance of the water resource system for 

each of the illustrative case study water abstraction points under the future 

uncertainty ranges. 
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6 Tool Application: 

Anticipatory Adaptation Option Appraisal 

6.1 Introduction 

In this chapter, the stream flow for un-gauged water abstraction points generated in 

the previous chapter is linked to a water resource model, in order to examine the 

water resources system under the range of future water scenarios generated from the 

available climate scenarios for adaptation. The main research objective here is to test 

the effectiveness and robustness to uncertainty of commonly defined robust 

adaptation options that are represented through four future water resource scenarios 

specific to Ireland. Based on the adaptation framework presented in Chapter 4, the 

alternative approach of assessing the potential success of the proposed national low-

regret adaptation options is investigated, instead of the traditional top-down 

approach. In addition, population change is included as an additional non-climatic 

driver into the adaptation option appraisal.  

The chapter is structured as follows; first, the time series of the water resource 

scenarios are briefly recapitulated (Section 6.2) and then the time series of these 

scenarios are assessed for each water abstraction point using the water Use-to-

Resource Ratio (Section 6.3). In Section 6.4, the threshold-based metrics Reliability, 

Resilience and Vulnerability indicators are used to appraise the performance of the 

water resources systems under future water system scenarios at an annual 

(Section 6.4.1) and decadal (Section 6.4.2) timescale. The chapter closes with a 

discussion and conclusion (Section 6.5) followed by a chapter summary in 

Section 6.6. 

6.2 Adaptation Scenarios 

In a traditional ‘top down’ approach the next step in the modelling chain for impact 

and adaptation assessment would be to use a water resource model to find the 

optimum adaptation option to the projected changes on impacts on the water supply 
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system. However, as shown below, the uncertainty ranges derived from the various 

modelling steps are large and therefore present significant challenges to the 

traditional approach.  

In the framework applied in this study, the water resource model is used not to 

determine the best or a range of best adaptation option. The aim is to incorporate the 

uncertainty ranges obtained into the decision-making to investigate if the selected 

low regret adaptation options are sufficiently robust to the uncertainties, i.e. are 

functional across the range of simulations considered. Although the future 

continuous hydrological time series are routed through WEAP; the water resource 

model is used in this study similar to the traditional approach however, the handling 

of uncertainties differs. Each of the twelve water abstraction points, from the three 

case study Hydrometric Areas presented in the previous chapter, is analysed for each 

of the four water resource scenarios shown and colour coded in Figure 6.1 (Figure 

4.16 is provided again to explain the colour coding of the scenarios used in the 

following sections). For details of the scenarios, see also Section 4.7.  

  

Figure 6.1 Scenario matrix and colour coding of the four investigated adaptation scenarios (A-D). 
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These future water resource management scenarios are based on plans stated by Irish 

planning authorities. The four adaptation options shown in the scenario matrix in 

Figure 6.1, which are assessed against future uncertainty, include no-measures or 

business as usual (Scenario A), demand side measures (Scenario B), supply side 

measures (Scenario C) and an integration of supply and demand side measures 

(Scenario D).  

The three examples of alternative management strategies/scenarios presented can be 

characterised as “low- or no-regrets” and “win-win-strategies”, which potentially 

cope with climate uncertainty and provide benefits, even in absence of climate 

change (Hallegatte, 2009). 

6.3 Time Series Analysis of Future Water Resources 

To examine the influence of integrated pressures (climate change and population 

growth) the time series of stream flow (2010-2069) derived for each water 

abstraction point in the previous chapter are analysed using the threshold-based 

approach. The four categories of the water ‘Use-to-Resource Ratio’ (URR) index are 

shown in Figure 6.2 (detailed description see Section 4.8 and Table 4.4). The water 

stress classes are used to assess the water resource system performance and to 

appraise the successfulness of robust adaptation measures. 

 

 

Figure 6.2 Water stress categories based on the Water Use-to-Resource Ratio (URR). 
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Each water abstraction point with its corresponding stream flow and water demands 

is modelled on a monthly basis. For an initial analysis the time series of URR are 

examined for each water resource scenario on a seasonal basis to examine the 

magnitude of water stress experienced and its frequency of occurrence based on 

monthly values. The analysis is performed for all water abstractions, seasons and 

scenarios. For brevity only the water abstraction points and seasons showing a degree 

of water stress in the ‘Business as Usual’ Scenario (A) for more than 7 years over the 

analysis period 2010-2069 are plotted. The water abstraction points showing water 

stress levels of less than 10% of the simulated years are listed in Table 6.1.  

From the 12 investigated water abstraction points, there are four abstraction sites that 

do not experience any water stress level during any season under the BAU scenario 

(Athboy, Kilcarn, Trim and Rathnacreeva). Under the investigated index (URR), 

these water abstractions can be considered as not adversely affected by climate 

change and population growth. All other abstraction points show a varying number 

of years with levels of water stress. Liscarthan and Culimore are the only two points, 

where all seasons show at least 2 years of at least ‘Low Water Stress’ in the BAU 

scenario.  

For brevity, a full account of all four water resource scenarios is provided for Kells 

only by examining summer and autumn flows (Figure 6.3 and Figure 6.4). For the 

other water abstraction points shown, only the BAU scenario is given (Figure 6.5 and 

Figure 6.6). The seasonal Figures are composed of 9000 data points per year (3 

months x 500 parameter sets x 3 GCMs and 2 emission scenarios). Generally, the 

darker the colour in the plots, the higher the density of data points for a certain Water 

Use-to-Resource-Ratio.  
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The analysis of the twelve water abstraction points (Table 6.1) in the East and West 

of Ireland shows three locations with ‘No Water Stress’ (Athboy, Kilcarn (both 

HA07) and Rathnacreeva (HA34)) in the ‘Business as Usual’ scenario (Scenario A: 

BAU). The lowest occurrences of water stress are indicated for the winter season, 

with Liscarthan (HA07) being the only water abstraction indicating for some 

simulations in the ‘Water Stress’ categories for two years. Additionally, there are six 

years with low water stress at Liscarthan and two years for Culimore (HA32) during 

wintertime.  

Table 6.1 Water Abstraction Point and Number of Years per Season and Water Stress Category for 

Scenario A (BAU) not shown in Figure 6.3 to Figure 6.6. 

Water Abstraction  Spring Summer Autumn Winter 

Athboy (HA07) 0 yrs  0 yrs 0 yrs 0 yrs 

Drogheda (HA07) 0 yrs shown Shown 0 yrs 

Kells (HA07) Low WS: 1 yr shown Shown 0 yrs 

Kilcarn (HA07) 0 yrs 0 yrs 0 yrs 0 yrs 

Liscarthan (HA07) Low WS: 4 yrs shown Shown 
Low WS: 6 yrs 

WS: 2 yrs 

Trim (HA07) 0 yrs 0 yrs 0 yrs 0 yrs 

Culimore (HA32) shown shown Shown Low WS: 2 yrs 

Laghta (HA32) shown shown Low WS: 4yrs 0 yrs 

Louisburgh (HA32) 
Low WS: 4 yrs 

WS: 3 yrs 
shown 0 yrs 0 yrs 

Newport (HA32) Low WS: 1 yr shown 0 yrs 0 yrs 

Kiltimagh (HA34) 0 yrs Low WS: 4 yrs Low WS: 1yr 0 yrs 

Rathnacreeva (HA34) 0 yrs 0 yrs 0 yrs 0 yrs 
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Figure 6.3 Kells – Summer: Water Use-to-Resource-Ratio. Scenario A (grey), B (green), C (blue) and D (red). 

 

 

 

 

 

 

 

Figure 6.4 Kells - Autumn: Water Use-to-Resource-Ratio. Scenario A (grey), B (green), C (blue) and D (red). 
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Figure 6.5 HA 07: Water Use-to-Resource Ratio of Scenario A for selected abstraction points and seasons 

 

 

 

 

 

 

 

 

 

Figure 6.6 HA 32: Water Use-to-Resource-Ratio of Scenario A for selected abstraction points and seasons 
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In spring eight out of 12 water abstractions experience no or less than 5 years of 

‘Low Water Stress’. Only in the West (HA32) three catchments (Culimore, Laghta 

and Louisburgh (not shown)), indicate ‘Water Stress’ or ‘High Water Stress’. For 

summer and autumn the number of water abstraction points indicating ‘No Water 

Stress’ decreases to three and five respectively. Overall, summer and autumn are the 

months where all ranges of the URR Ratio can be found, for all the water resource 

scenarios modelled.  

The overall picture presented by Figure 6.3 to Figure 6.6 is that with increasing 

simulation length (more distant future), the spread of the Use-to-Resource-Ratio 

increases, reflecting the increasing uncertainties in modelling outputs from all 

previous modelling steps. The BAU scenario has the highest URR, the water use 

reductions in Scenario B, C and D result in decreasing URR for some individual 

simulations. However, not all simulations exhibit this decrease, instead remaining at 

a similar magnitude of URR as in the BAU scenario. In the example of Kells (Figure 

6.3 and Figure 6.4) it can be seen that the various water demand reductions (use and 

leakage) modelled result in decreases of URR in several, though not all, simulations. 

However, the decreases are not uniform and often result in a downward shift of 

clusters of certain Use-to-Resource ratios. Overall the spread and the magnitude of 

some clusters of URR occurrences decrease from Scenario A to D.  

To obtain a quantification of the influences of the different adaptation scenarios on 

the occurrence of different water stress categories, an analysis of the percentage of 

simulations per water stress category is performed. As a first step, the analysis of 

changes in ‘High Water Stress’ is carried out across all scenarios as shown in the bar 

charts in Figure 6.7 for selected water abstraction points and seasons.  
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Figure 6.7 Influence of the Scenario on the High Water Stress Category. Bars indicate individual years, the 

horizontal lines in the background represent the decadal mean for each of the investigated scenarios. 
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Over time the number and frequency of simulations in the ‘High Water Stress’ 

Category per year and the 10 year averages increase for all water resource scenarios 

(Figure 6.7). The adaptation measures reduce the number of simulations in the high 

water stress categories, but only for a few years are the measures able to completely 

eliminate the occurrences of ‘High Water Stress’ for all simulations. If the aim of 

adaptation is to move the system from ‘High Water Stress’ to lower water stress 

categories, the measures are not enough. 

 

This direct comparison between the individual water resource scenarios is only 

possible for the highest category of interest, as a reduction in one category by an 

adaptation option (e.g. from ‘High’ to ‘Water Stress’ category) will result in an 

increase in the lower category and an over plotting of the BAU scenario in the graph. 

Therefore, the differences between the individual water resource scenarios in lower 

categories have to be analysed in separate graphs. Selected plots are shown in Figure 

6.8 to Figure 6.14. For Kells all four water resource scenarios are shown for summer 

(Figure 6.8) for the other water abstraction points and seasons only Scenario A and D 

are plotted. 

 

Generally, with the adaptation measures in place (Scenario B, C and D), the overall 

number of simulations falling into a specific water stress category is reduced. This 

reduction comes about by a shift in the percentage of simulations from higher to 

lower water stress categories or to ‘No Water Stress’. However, all water abstraction 

points differ in their responses to the scenarios. For example when a high number of 

simulations indicate ‘High Water Stress’ only small changes in the overall number of 

simulations indicating any degree of water stress is achieved in the adaptation 

scenarios as only the water stress category changes. Whereas if only a low number of 

simulations indicate ‘Low Water Stress’ then the adaptation measures can be enough 

to eliminate the occurrence of water stress (e.g. Kiltimagh in summer in Figure 6.14). 

However, for most of the catchments, the demand and leakage reduction measures 

are not enough to eliminate the occurrences of any form of water stress 
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When examining a single water abstraction point the reductions in the water stress 

categories are not the same from year to year. For example for the water abstractions 

at Kells, the percentage of simulations showing water stress in the year 2021 only 

changes by 2 percent (from 24% (Scenario A) to 22% (Scenario. D)), however when 

examining the year 2047 the percent of simulations with WS in Scenario A account 

for 58% and are reduced by 7 percent to 51 % in Scenario D.  

 

Similarly, the change in the number of simulations per water stress category is 

different from year to year. Again Figure 6.9 (Kells) is used as an example where for 

2046 in scenario A there are 2 percent of simulations in the ‘Low Water Stress’ 

Category, 20% in the ‘Water Stress’ Category and 19% in the ‘ High Water Stress’ 

Category resulting in an overall number of water stressed simulations of 41%. In 

Scenario D this overall number is slightly reduced to 39%, but the ‘High Water 

Stress’ is reduced to 14%, ‘Water Stress’ is reduced to 12% and the percentage in the 

‘Low Water Stress’ Category increased to 13%. For this selected year a general shift 

to lower water stress category occurred without a marked overall reduction in the 

number of simulations showing any water stress.  

 

A different situation is presented in the year 2059, where there is no change in the 

total number of simulations showing water stress, only a shift in 1 percent of 

simulations is caused by a shift from ‘High Water Stress’ to ‘Water Stress’ and from 

‘Water Stress’ to ‘Low Water Stress’. 

 

With regard to water management, not only the magnitude and frequency of 

incidents above a threshold (i.e. water stress category), but also the overall 

performance of the water abstraction point is of interest. Therefore, in the next 

section the water resource system performance is analysed using the statistical 

performance measures of reliability, resilience and vulnerability (RRV) indices 

described in Chapter 4. 
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 Figure 6.8 Kells – Summer - Percentage of simulations per water stress category. Scenario A, B, C and D. 

 

 

 

 Figure 6.9 Kells – Autumn - Percentage of simulations per water stress category. Scenario A and D. 

 

 

 
Figure 6.10 Liscarthan – Summer - Percentage of simulations per water stress category. Scenario A and D. 
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 Figure 6.11 Liscarthan – Autumn - Percentage of simulations per water stress category. Scenario A and D. 

 

 

 Figure 6.12 Cuilmore –Summer - Percentage of simulations per water stress category. Scenario A and D. 

 

 

 Figure 6.13 Lagtha –Summer - Percentage of simulations per water stress category. Scenario A and D. 

 

 

 Figure 6.14 Kiltimagh – Summer - Percentage of simulations per water stress category. Scenario A and D. 
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6.4 Reliability, Resilience and Vulnerability Analysis 

In the previous section changes in the levels of water stress over time and for 

different scenarios has been investigated. However, not only the level of water stress 

is important but also additional characteristics of change in the water resource system 

are of importance. System performance indicators can help to identify changes in 

system characteristics, which are important to the water managers.  

Here the water resource system performance is analysed using the reliability, 

resilience and vulnerability (RRV) indicators. These system performance indicators 

have been widely used in studies on water resource systems (Hashimoto et al., 1982; 

Moy et al., 1986; Kundzewicz & Kindler, 1995; Stakhiv, 1998; Fowler et al., 2003; 

Kjeldsen & Rosbjerg, 2004; Ajami et al., 2008; Sandoval-Solis et al., 2011). The 

RRV analysis of the water abstraction points is performed based on the upper 

threshold criterions (UC) (see Section 4.9 and Figure 4.17) provided from the 

classification system of the water use-to-resource ratio (URR) described in the 

previous section.  

The RRV indices are determined on an annual basis with regard to a 10% Use-to-

Resource Ratio indicating at least ‘Low Water Stress’ and a 20% URR representing 

at least ‘Water Stress’ for the water abstraction points. This approach means that the 

threshold criteria applied includes all higher water stress classes in the analysis. For 

example if the threshold criterion is URR >10% (‘Low Water Stress), the analysis 

includes also ‘Water Stress’ and ‘High Water Stress’, whereas if the UC is 

URR >20% is applied results will show ‘Water Stress’ and ‘High Water Stress’. 

Overall, the lower the upper threshold criterion selected, the lower the reliability, 

resilience, and the greater the vulnerability of the water supply. This highlights the 

importance of the threshold criteria and levels selected when assessing a water 

resource system.  
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The Reliability, Resilience and Vulnerability indices are described in detail in 

Section 4.9. The time period of analysis is the year with the analysed time steps 

being months resulting in an annual performance index, for the three RRV indices. 

A brief definition of the RRV is given below. Generally the higher the Reliability 

and the Resilience and the lower the Duration Vulnerability the better the system 

performance. 

Temporal Reliability: Probability of the system being in a satisfactory state.  

Here, measured as the percentage of months below a threshold, (i.e. no water stress 

or below selected threshold UC). For example if one month in a year shows 

unsatisfactory system performance, and consequently the remaining 11 months are 

satisfactory the reliability for that simulation and that year would be ~0.92. If two 

months would be unsatisfactory this would result in a reliability of ~0.83.  

Resilience: Ability of the system to recover from an unsatisfactory event on average. 

The resilience values are only calculated for simulations experiencing at least one 

month in an unsatisfactory state. A resilience of 1 can be achieved if the system 

recovers from being unsatisfactory to being in a satisfactory state in the next time 

step, otherwise resilience values of lower than 1 are obtained. For example, if there is 

a monthly sequence of “... ,S,S,U,S,U,S,S, ...” in this case this means an 

unsatisfactory month is followed by a satisfactory month twice, therefore the value of 

2 is divided by the total number of unsatisfactory months (here 2), resulting in a 

Resilience of 1. Whereas for the sequence “... ,S,S,U,U,S,S, ...”, there is one 

unsatisfactory month followed by a satisfactory month, divided by two unsatisfactory 

months. This results in a system resilience value of 0.5. The same resilience value of 

0.5 would also be obtained for “... ,S,U,S,U,U,U,S, ...”. The resilience values can’t 

directly be attributed to the number of months or individual sequences of U and S as 

the same resilience value can be obtained from multiple combinations. Possible 

combinations for resilience values are shown in Table 6.2. 
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Table 6.2 Resilience value based on monthly simulations and annual analysis with examples of possible 

combinations of satisfactory (S) and unsatisfactory (U) months. 

Resilience Value  Examples of possible combination of S and U 

1 ...,S,U,S, ... ; ...,S,U,S,U,... ; ...,S,U,S,U,S,U,S,... 

~0.67 ...,S,U,S,U,U,S,...  

0.5 ...,S,U,U,S, ... ; ...,S,U,S,U,U,U,S,... ; ...,S,U,U,S,U,U,S,... 

0.4 ...,S,U,U,S,U,U,U,S,... 

~0.33 ...,S,U,U,U,S,... ; ...,S,U,U,U,S,U,U,U,S,... 

0.25 ...,S,U,U,U,U,S,... 

0.2 ...,S,U,U,U,U,U,S,... 

~0.17 ...,S,U,U,U,U,U,U,S,... 

 

Average Duration Vulnerability: Average duration (here months) of the water 

resource system being in an unsatisfactory state per analysis period (here year). This 

measure can only obtain a value if at least one month indicates unsatisfactory system 

performance.  

6.4.1 Annual Reliability, Resilience and Vulnerability Analysis  

When calculating the Reliability, Resilience and Vulnerability measures on an annual 

basis only certain values for these measures can be obtained, as there is a limited 

number of monthly combinations of satisfactory and unsatisfactory system 

performance within a year. This results in distinct categories of values (levels) for the 

performance measures for Reliability, Resilience or Vulnerability which can be seen 

when plotting the annual time series.  

To illustrate the results of the RRV analysis an annual time series for Kells is shown 

in Figure 6.15 to Figure 6.17. Each year contains the RRV from 3000 simulations. 

The blue points in the Figures show the annual reliability, resilience or vulnerability 

level respectively. The darker and wider the blue points for a particular year, the 

more simulations fall on that particular RRV level. In addition to showing the spread 

of the RRV data, the figures also indicate, with colour-coded bars, the percent of 

simulations falling into each interval. The darker the bars, the higher are the 

percentage of simulations showing that reliability, resilience or vulnerability level. 

Five intervals (2.5%, 25%, 50% (dashed outline), 75% and 97.5%) are used to 

describe the range of simulations. Figure 6.15 to Figure 6.17 show from the top to 
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the bottom the different scenarios with the corresponding colour coding; Scenario A 

(grey), Scenario B (green), Scenario C (blue) and Scenario D (red) The left hand side 

of the Figures show the UC Threshold criterion of the Water Use-to-Resource Ratio 

of 10%; on the right a UUR of 20% is investigated.  

 

Reliability 

First, the annual time series of reliability (Figure 6.15) is analysed. For Scenario A 

(‘Business as Usual’) it can be seen that the reliability of the system decreases with 

time with the lowest reliability values of ~0.67 (4 months of unsatisfactory system 

performance per year) in the first half of the simulated period, down to a minimum 

reliability of 0.5 (6 unsatisfactory months). In addition to the shift in extreme 

reliability values, the percent of simulations obtaining lower levels of Reliability also 

increases -indicated in the plots by the downward shift of darker coloured bars 

representing a higher percentage of data at this point. When comparing the Business-

as-Usual Scenario A (BAU) with the possible adaptation scenarios (B to D), it 

becomes apparent that measures are able to increase the system reliability through 

both rising minima and overall increasing reliability values apparent in the BAU 

scenario. 

If the higher threshold value is applied (URR of 20% or at least ‘Water Stress’) the 

overall system reliability increases compared to the threshold criterion URR 10%. 

This is due to the higher threshold for the system performance to be considered as 

unsatisfactory. Due to the application of a higher threshold, the system is considered 

to perform better for the same time series, resulting in a apparent more reliable water 

supply system. The same patterns of decreasing system reliability in both extremes 

and percent of simulations with increasing time are evident, particularly in 

Scenario D where 50% of the simulations have a reliability of 1 (no month with 

unsatisfactory system performance) with the exception of 9 years from 2045 onwards 

where one month indicates unsatisfactory system performance for 50% of the data. 
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Figure 6.15 Kells Reliability. Blue points show the reliability level per year out of 3000 simulations. From 

top to bottom Scenario A (grey), Scenario B (green), Scenario C (blue) and Scenario D (red). The darker 

the bars the higher the percent of simulations showing that reliability level. Threshold: Left URR 10%; 

Right UUR 20%. 
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Resilience 

Figure 6.16 shows the same features as Figure 6.15 but with regard to the system 

resilience. When examining the ‘Business-as-Usual’ Scenario A for URR > 10% and 

also for URR >20%, there is a tendency towards a decrease in system resilience. This 

means that the probability of the system recovery decreases overtime for a particular 

month indicating an unsatisfactory state. For URR > 10% the lowest resilience 

values decrease from 0.25 (four consecutive unsatisfactory months) in the first third 

of the investigated time series, down to 0.17 (maximum of six consecutive 

unsatisfactory months). As with the reliability indicator, not only the low extremes of 

resilience get worse, but also the percentage of simulations reaching these low values 

increases (indicated by the darker coloured bars).  

When comparing Scenario A (BAU) with the possible adaptation scenarios, of 

reduced water remand and leakages, it can be seen from the previous section (Figure 

6.3 to Figure 6.6) that these measures results in lower URR. A lower URR can result 

in separation and/or shortening or elimination of unsatisfactory system performance. 

For example in Scenario C and D (for URR >10%) the occurrences of years with a 

resilience value of ~0.67 and 0.4 increases (e.g. 2051, 2058 and 2066). Both of these 

resilience values are derived from sequences of months with unsatisfactory water 

resource system performance that are broken by at least one month of satisfactory 

performance. This shows that for some simulations the adaptation measures are able 

to increase system performance by interruption of continuous series of unsatisfactory 

system performance. An increase in the overall system performance through the 

adaptation measures is also evident by an upward shift in resilience values and a 

higher percentage of simulations in higher resilience categories. 

If resilience is analysed using the threshold of URR >20%, the overall resilience 

values are higher, indicating better system performance for both extremes and the 

percentages of simulations reaching a certain resilience level. Additionally, the 

maximum number of continuous unsatisfactory months is lowered to four 

concurrences per year (resilience value of 0.25). The overall tendency to lower 

resilience values over time is also evident, with a 50 % chance of recovery at the start 

of the simulations, down to 25% at the end of 2060) (BAU). With the combined 
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adaptation measures in place (Scenario D) 97.5% of the simulations achieve a 

resilience value of 1 (recovery in the next month after an unsatisfactory state) for the 

first nine years. Later in the time series the percentages of simulations obtaining low 

resilience values also decrease. This indicates that at the start of simulation the 

adaptation measure are able to balance out the increasing water demand or less water 

availability that is putting additional pressure on the abstraction point. With 

increasing time the effectiveness of the measure is reduced resulting in a decreasing 

resilience. The results suggest that additional adaptation measures would be required 

in order to maintain the initially high resilience values of the water supply system. 

 

Duration Vulnerability 

The average duration vulnerability for Kells is also analysed in Figure 6.17 for URR 

>10% and >20% for all four water use scenarios. Higher average duration 

vulnerability corresponds to a higher number of months being in an unsatisfactory 

state. For Scenario A and the URR >10%, an increase in the average duration of 

sequences of unsatisfactory events increases with time. For the first 25 years the 

maximum of the average duration is 4 months, whereas after 2035 the highest 

duration increases to six months.  

Over time, the percentage of simulations reaching a higher duration also increases. 

For instance at the start of the period for some years a maximum of 2.5% percent of 

the simulations showed a duration of 4 months whereas at the end of the simulation 

period 25% percent of the data reaches this level or higher for most of the years. 

Leakage reductions (Scenario C) and the combined measures to reduce water 

abstractions (Scenario D) are able to reduce the maximum duration vulnerability 

from six to five months. Additionally, in these scenarios the number of years 

increases in which the average duration vulnerability increases by half a month. For 

example Figure 6.17 for Scenario C and D shows simulations with average duration 

vulnerability of 1.5 months or 2.5 months from 2050 onwards. This is the result of 

shortening or splitting of the continuous unsatisfactory month within a year as a 

result of the adaptation scenarios.  
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This has implications for water resources management as the adaptation measures 

result in a reduction of the longer events in which the system is in an unsatisfactory 

state . With a URR threshold of 20% the overall duration vulnerability is lower, 

revealing lower extreme values and a lower percentage of simulations in the higher 

duration levels. 

Overall, it can be seen in the detailed examination of the annual RRV indices for the 

water abstraction point for Kells, that independent of the threshold used the system 

performance decreases resulting in lower reliability and resilience values and longer 

average duration vulnerability. The lower the threshold for URR chosen for the 

analysis, the less satisfactory is the system performance resulting in a less reliable 

resilient and more vulnerable water resource system on an annual basis. The 

adaptation measures analysed increase the system performance in all three indicators. 

This is particularly evident in the Figures for resilience and duration vulnerability, 

where the adaptation measures are able to split and/or shorten continuous 

unsatisfactory events.  
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Figure 6.16 Kells Resilience. Blue points show the reliability level per year out of 3000 simulations. From 

top to bottom Scenario A (grey), Scenario B (green), Scenario C (blue) and Scenario D (red). The darker 

the bars the higher the percent of simulations showing that resilience level. Threshold: Left URR 10%; 

Right UUR 20%. 
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Figure 6.17 Kells Vulnerability. Blue points show the reliability level per year out of 3000 simulations. Top 

to bottom Scenario A (grey), Scenario B (green), Scenario C (blue) and Scenario D (red). The darker the 

bars the higher the percent of simulations showing that reliability level. Threshold: Left URR 10%; Right 

UUR 20%. 
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6.4.2 Decadal Reliability, Resilience and Vulnerability Analysis  

From the water managers point of view a condensed summary of the results of RRV 

analysis is desirable to be able to more readily compare the evolution of the 

individual RRV values over time and across different scenarios. In addition to the 

changes in the percentage of simulations per RRV indicator and indicator level it is 

also important to know whether the relative changes in the indicator levels happen in 

the extremes of the indicators (minimum performance) and how lower values shift, to 

be able to meaningfully interpret the ensemble of future performance indicators.  

Figure 6.18 to Figure 6.20 summarises individual time series over the four 

investigated scenarios for selected water abstraction points. The 60 years of data are 

combined to six decadal sub periods and the RRV indicators are analysed separately 

per decade and for each water use scenario. By analysing decadal time series the 

influences and possible changes caused by inter-annual variability are reduced and 

provide a more conclusive overall picture of chnage.  

In the original definition, the resilience indicator is calculated if there is at least one 

unsatisfactory month in the analysis period. Similarly, the average duration 

vulnerability is based on the time of the system being in an unsatisfactory state. For 

both indicators the years that do not have any unsatisfactory system performance are 

neglected in the original indicator definition. In this analysis, to be able to relate 

Resilience and Vulnerability to the total amount of simulations, the simulations 

without unsatisfactory months need to be incorporated to allow the percentages of 

simulations to be calculated based on the same number of future simulations (here 

3000 per scenario). In the case of Resilience, this means that all years that do not 

experience any unsatisfactory state are classified as having a resilience of 1, together 

with the simulations that immediately recover from a failure (which also classifies a 

system for being resilient). For Vulnerability, an additional duration class with the 

value of zero is added to the analysis to allow for the incorporation of simulations 

with no unsatisfactory month. In the Figures, all the RRV levels shown in the legend 

for the particular RRV indicator are present in the data, even as small percentages, 

which are too small to be visible as bars. 
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The decadal analysis of four selected water abstraction points (Kells, Liscarthan 

(both HA07), Culimore and Laghta both (HA32)) is shown in Figure 6.18 to Figure 

6.20 (other stations are shown in Appendix II).  

 

 

 

 

 

 

 

 

 

Figure 6.18 Kells: RRV analysis for 10 year windows for Scenario A, B, C and D showing the percent of 

simulations in each Reliability, Resilience and Duration Vulnerability category. UUR >%10 (left,) >20% 

(right). 
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Figure 6.19 Liscarthan: RRV analysis for 10 year windows for Scenario A, B, C and D showing the percent 

of simulations in each Reliability, Resilience and Duration Vulnerability category. UUR >%10 (left,) >20% 

(right). 
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Figure 6.20 Culimore (right) and Laghta (left) with a UUR threshold >10%. RRV analysis is based on 10 

year windows for Scenario A, B, C and D showing the percent of simulations in each Reliability, Resilience 

and Duration Vulnerability category.  
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For the decadal analysis of RRV for Kells (Figure 6.18), for both URR thresholds of 

10% and 20%, the same pattern of poorer RRV values with time emerges that has 

been documented in the annual analysis before. Over time, the percentage of 

simulations in each RRV level also increase. An exception to this pattern is the last 

decade analysed (2060-2069), in which the total number of simulations in the best 

RRV level (Reliability=1, Resilience=1 and Vulnerability=0) decreases. For 

instance, in Scenario A for 2050-2059 63% of simulations do not obtain a Reliability 

of 1, this percentage decreases for 2060-2069 to 52%. This apparent decrease could 

be interpreted as an increase in system performance; however although the overall 

percentage of simulations decreases, the reductions are caused by shifts in the less 

severe levels. The more severe levels, (e.g. reliability values of 0.75 and lower or 

vulnerability values of 3 and higher) remain proportionately similar between 2050 

and 2069 for the URR of 10% and the more extreme levels increase their percentages 

(e.g. duration vulnerability of 5) or new levels are added (e.g. vulnerability of 6 

months). However, for URR of 20%, the percentage of simulations with a lower 

resilience levels of 0.33 increases over the period 2050-2059 to 2060-2069 

(particularly for Scenario A and B). These different response signatures apparent in 

the URR (10% versus 20%) and the analysed RRV indicators highlight the 

importance of the use of multiple threshold criteria and levels of criteria in the 

evaluation of water supply systems. If only a single threshold and a single 

performance indicator would have been analysed the change signature of a lower 

system resilience could have been missed and lead to erroneous water management 

decisions. 

Eastern Ireland 

When assessing the effectiveness of different robust adaptation options it can be seen 

that all options are able to increase the overall percentage of simulations with the 

highest system performance (RRV). The increase in performance occurs particularly 

in the reduction of occurrences of extreme low values for reliability and resilience 

and high duration vulnerability. For example, at Kells with a URR threshold of 10% 

for the period 2060-2069, for Scenario A there are 2 % of simulations with a duration 

vulnerability of 6 months and 5% of 5 months. The combined water demand and 
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leakage reduction measures in Scenario D are able to eliminate the occurrence of 

6 month long vulnerabilities and reduce the vulnerability of 5 months down to 1%. If 

lower duration vulnerabilities are aspired, additional adaptation strategies need to be 

sought. 

The patterns described above for the water abstractions at Kells are also apparent in 

the overall pattern revealed at Liscarthan (Figure 6.19). However, the Liscarthan 

results have a higher percentage of simulations falling into lower RRV classification 

level (indicate lower system performance) compared to Kells, although Liscarthan 

water supply indicated visually better performance in the URR assessment. For 

instance when comparing Scenario A with an URR threshold of 10% for the period 

of 2050-2059 only 21% of the simulations were fully reliable at Liscarthan, whereas 

at Kells the lowest percentage of full reliability is 37%. Additionally, the maximum 

duration vulnerability in Liscarthan is 7 months compared to Kells with a maximum 

of 6 months. At Liscarthan the Reliability and Vulnerability indicators are similar. 

This is caused by the low presence of interrupted sequences of unsatisfactory 

months; therefore the average duration vulnerability is directly linked to the overall 

reliability.  

The adaptation measures, particularly leakage reduction, (Scenario C and D) have a 

higher effect in Liscarthan compared to Kells. For example, for URR of 10% for the 

period 2030-2039 Scenario A indicates 54% of simulations with a resilience of lower 

than 1 which is reduced to 41% (Scenario C) and 38% (Scenario D), a reduction in 

13% and 16% of the simulations respectively. At Kells, the reductions over the same 

time period are only 6% and 7% respectively. At Liscarthan, the strong reductions 

(>10%) in the percentages of simulations between Scenario A and Scenario C and D 

are apparent for all decades, RRV indicators and both URR thresholds from 2020 

onwards. With a URR threshold of 20%, reductions in the RRV values between 

Scenario A and D can even account for 20% of all simulations for the two decades 

2050-2059 and 2060-2069. Overall, the system performance increases when the 

higher URR threshold is applied. 
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Western Ireland 

Figure 6.20 shows the RRV analysis at a threshold of URR 10% for two water 

abstraction points in the West of Ireland (URR 20% is in Appendix II). For both 

water abstraction points, the first three decades do not show much change in the 

system performance. The effect of water demand and leakages reductions in reducing 

the percentages of simulations per category are visible for Reliability and duration 

Vulnerability. For these three decades at Laghta, the Resilience is 1 for all 

simulations indicating that the simulations that are experiencing an unsatisfactory 

month revert back to satisfactory system performance in the next month. The water 

resource system at Culimore experiences a rapid decrease of system performance 

between the decades 2030-2039 and 2040-2049. For instance for Scenario A the 

Reliability of 1 decreases form 81% to 63% and Resilience of 1 also decreases form 

95% to 81% of all simulations. From 2030 onwards, the system performance 

decreases over time. This indicates that if a system improvement or a system 

performance at the pre 2030 level is aspired with the help of additional adaptation 

options, the measures need to be timed to counteract the indicated decrease in system 

performance. 

The adaptation measures are effective in Culimore and Laghta in reducing the overall 

percentage of simulations which do not achieve the best RRV levels. However, care 

is needed when analysing the graphs. For example for the Reliability indicator in 

Culimore for the decade of 2040-2049 and at Laghta for the decade 2060-2069, the 

adaptation measures reduce the overall percentage of simulations with lower 

reliability. Comparing Scenario A with Scenario C and D, the occurrences of a 

reliability of 0.83 are eliminated and a lower reliability of 0.75 is detected. This 

could be considered to be a decrease in system performance (lower reliability). 

However, the appearance of a reliability of 0.75 is caused by an increase in system 

performance and through simulations improving from a resilience level of 0.67. The 

same applies also to Resilience and Duration vulnerability, where an apparent 

decrease of system performance is actually caused by the elimination of one higher 

level and a better performance in another level. This highlights the need of combined 
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interpretation of the RRV levels instead of focusing on a single category, without 

also analysing changes in other levels. 

6.5 Discussion and Conclusions 

The modelling tool developed in this research allows the identification of 

vulnerability within water supply systems and the assessment of robust adaptation 

options through an exploratory scenario-based modelling approach. Ranges of 

possible future outcomes are explored by the incorporation of uncertainties stemming 

from climate and hydrological models. This enables an assessment of robustness to 

possible futures and departs from the traditional ‘predict, provide and optimise’ 

approach to a single outcome approach. The tool derived is flexible and can be used 

with different threshold criteria and can be updated as new information and 

projections become available.  

The differences in the results between the two URR threshold criteria investigated 

highlight the importance of the selection of the threshold criterion or the need to use 

multiple criterions for the analysis of the sensitivity and sustainability of the water 

resource system and the selection of robust adaptation options. Nevertheless, through 

the flexibility in the selection of the threshold criteria, a wide range of additional 

criteria could be investigated in future work. Additionally, the different responses in 

the RRV indices, which represent changes in the system characteristics to different 

adaptation options highlights the need for an assessment of multiple criteria (here 

critical thresholds used) to evaluate the performance of water supply systems with 

multiple performance measures. These critical thresholds are water resource system 

specific and expert knowledge is required to determine these.  

For the case studies employed, climate change in combination with population 

growth is likely to result in a reduction in the reliability and resilience and an 

increase in the vulnerability of water supply. In many cases, the reduction in leakage 

and demand is successful in reducing the occurrence or the level of water stress. 

However, each water abstraction point responds differently to such adaptation 

measures, resulting in different response signatures in relation to the RRV 
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performance indices analysed. The adaptation measures proposed for Ireland are able 

to increase system performance for some future simulations particularly by 

interrupting continuous series of unsatisfactory system performance and therefore 

increasing the overall water resource performance. 

For example, in Western Ireland for the water abstractions at Culimore and Laghta 

(with a UUR threshold of >10%), the RRV analysis identified a tipping point 

between the decades 2030-2039 and 2040-2049. Up to 2030-2039 the water 

resources systems where able to cope with the changes; however from 2040-2049 

onwards a rapid decrease of system performance is indicated by the RRV indicators. 

However, when adaptation measures are applied the system performance decrease is 

less pronounced.  

The example of performance changes in Western Ireland highlight the utility of the 

tool and analysis framework in identifying when and where vulnerability threshold 

are being approached. By identifying such thresholds, water managers are able to 

identify when changes in water management or adaptation procedures might become 

necessary.  

The effects of the adaptation options are mainly evident in the reductions in the low 

system performance. This is particularly important when aiming to manage these 

extremes and a detailed analysis such as the RRV analysis employed here can 

provide valuable information. However, for some abstractions, the investigated soft 

strategies alone will not be sufficient to avoid the occurrence of high water stress and 

alterative supply sources or additional adaptation measures may be required. Within 

this context, consideration will need to be given to what is an acceptable level of 

residual risk once demand management options have been exhausted. 
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6.6 Chapter Summary 

In this chapter the adaptation information appraisal tool, developed in Chapter 4, is 

applied to 12 illustrative Irish cases study water abstraction points. Nationally 

proposed low-regret, ‘win-win’ adaptation options are assessed for their performance 

in relation to uncertainty ranges obtained from projected future hydrological changes 

in Ireland. A framework based on the assessment of critical system thresholds and 

system performance indicators is used to test the functionality of these adaptation 

options under multiple future stream flow realisations. 

The modelling tool is applied in a process-oriented ‘assess-risk-of-policy’ framework 

instead of a scenario-led, top-down ‘impacts-thinking’ approach to adaptation. The 

framework within which the modelling tool is applied here to test and explore 

adaptation options, combines flexibility with planning over long time horizons and 

monitoring, as well as adaptive management, recognising the uncertainty in projected 

hydrological changes.  

The main findings of this chapter can be summarised as follows: 

 The modelling tool developed can be used to test the functionality of adaptation 

options and analyse the system performance across a range of future scenarios. It 

also allows the identification of when and where critical thresholds in specific 

water resources systems might emerge. Thus, it is important not to focus only on 

a single level of a system performance metric, but to analyse levels together to 

identify changes of the system characteristics. 

 The illustrative case studies show various degrees of responses to projected 

future changes and the proposed adaptation measures. Therefore, the sensitivity 

of the system and the effectiveness of such measures are highly dependent on the 

characteristics of the water resources system. 

 Due to the differences in responses of individual water abstraction points the 

assessment of system performance should be based on multiple critical threshold 

indicators and multiple performance matrices to ensure that the system response 

to the investigated adaptation measures is appraised in detail. In applying the 
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techniques presented here, the outcomes from multiple future realisations can be 

summarised and presented in a meaningful manner. 

 The proposed Irish ‘low-regret’ adaptation options are able to increase the water 

resources system performance. However, the proposed measures are not 

sufficient in some cases to eliminate the occurrence of water stress in the entire 

range of future projections and can therefore not be considered as the only 

options needed to reduce potential future vulnerabilities. Such cases will have to 

be assessed in conjunction with stakeholders. 

 Due to the flexibility of the tool, the input data and the assessment of adaptation 

options can be readily updated, as soon as new information becomes available. 

Therefore, the developed tool can help to inform anticipatory adaptation decision 

planning. 

This chapter provides an illustrative sample application of the first attempt to use 

uncertain climate information in a tool developed for anticipatory decision appraisal 

in Ireland. In the next chapter, the overall findings of the possible information 

sources in providing information for future planning and management of Irish water 

resources are summarised and discussed to conclude this thesis. 
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7 Discussion and Conclusion 

7.1 Introduction 

Future water resources planning and management is challenged by the anticipated 

impact of climate change on the natural stream flow regime. In order to prepare 

water resources systems, information is required to support decision-making on 

anticipatory adaptation. This thesis sets out to explore possible information sources 

to aid future planning and management of Irish water resources. To date, limited 

information about future changes can be extracted from observational hydrological 

data using traditional trend techniques, due to high variability of Irish low flow 

indicators. Therefore, in this thesis, a tool for the Irish water sector is developed to 

facilitate the transition from the traditional top-down, predict-and-provide approach 

to the use of future climate scenarios for decision appraisal.  

In this final chapter, Section 7.2 provides a summary of the thesis. This is followed 

by a summary (Section 7.3) and a discussion (Section 7.4) of the main research 

findings of this thesis. In Section 7.5 the limitations of work are presented and 

followed by suggestions for a future research agenda. The thesis finishes with the 

concluding remarks in Section 7.6.  

7.2 Thesis Summary 

Observational hydrological records and future stream flow projections are the two 

key sources to information for informing anticipatory adaptation. The two main aims 

of this thesis are built around the analysis of historical records and the development 

of a modelling and decision-support tool to inform anticipatory adaptation to climate 

change in the Irish water resources sector. 

The thesis has investigated the utility of observational data and modelled projections 

of future stream flow in providing information for anticipatory decision-making. An 

analysis of trends in historical stream flow records for selected indices relevant to 

water resources management has been conducted in Chapter 3. This was followed by 
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the development of a tool to inform adaptation decisions based on future projections 

in a framework for anticipatory adaptation in Chapter 4. The tool developed is 

applied in an Irish context in Chapter 5 using 12 illustrative case study water 

abstraction points. In applying the tool, the uncertainties stemming from various 

sources are incorporated into the modelling framework. Uncertainty sources 

integrated into the framework include uncertainties associated with future climate 

scenarios, hydrological model parameter uncertainties and uncertainties related to the 

need of estimating stream flows at un-gauged water abstraction sites. Finally, in 

Chapter 6, recommended adaptation options are examined with regard to their 

effectiveness in reducing water stress based on uncertainty ranges in stream flow 

obtained in Chapter 5, by analysing the potential changes in the water resources 

system performance and characteristics.  

7.3 Summary of Main Research Findings 

In the first part of this thesis, the utility of trend analysis in river flow observations 

for informing decision-making for anticipatory climate change adaptation in the Irish 

water sector was examined. Results of the trend analysis highlight the danger of over 

interpreting trends derived from short fixed period, as these are highly dependent on 

the study period selected. Trends obtained from long observational datasets in the 

Irish Hydrometric Reference Network are important to put shorter flow records into 

context. However, due to the relatively low number of long record stations with near-

natural low flow records, it is difficult to distinguish between real long-term changes 

and medium-term and long-term natural variability. Further research is required to 

understand the increasing trends in low flow indicators in summer. The increases 

found in low flows are contradictory to what is projected by future scenarios and 

calls the representativeness of the selected period (1976-2009) into question.  

In addition to the challenges to trend detection described above, high inter-annual 

variability and a low signal-to-noise-ratio amongst others, makes it difficult to 

extract a robust anthropogenic climate change signal from hydrological records, 

particularly for the low flow indicators investigated here. This makes it difficult to 

detect trends with a high statistical significance using traditional statistical trend 
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detection techniques in an Irish context. The length of time or magnitude of change 

required for detecting linear changes in such highly variable indicators is too long 

and respectively too high to be able to wait until a robust climate change signal can 

be statistically detected. Therefore, it is suggested that anticipatory adaptation has to 

take place with this limited information available from observational data, 

highlighting the need for flexible or reversible, non -path dependant measures. 

The key aim of the second part of this thesis is to develop a tool for informing 

anticipatory planning and adaptation in the water sector in Ireland. This tool is 

developed to provide a starting point for further investigation into how climate 

scenarios can be used for decision appraisal. The development of the tool and its 

application here marks the first attempt in Ireland to go beyond the top-down, 

predict-and-provide-approach that has been the basis of climate policy development 

so far. This is the first work in Ireland that goes beyond the first order impact 

assessment and explores how observed and projected climate information can be 

used to inform water resource management and planning. 

The tool developed here couples a conceptual rainfall-runoff model (HYSIM) with a 

water resource model (WEAP). Nationally available climate scenarios are integrated 

to generate future stream flow projections and appraise identified adaptation options 

for the Irish water resources sector in the context of uncertainty. While it is 

recognised that the climate scenarios used do not represent a large sample of the 

uncertainties from Global Climate Models, this work is important to initiate the 

transition to the alternative use of climate scenarios for decision appraisal in the Irish 

context. Further work, as discussed below should continue to tackle the challenges 

identified and incorporate the suggestions for future research that are outlined. 

Unlike many applications of such decision-making tools in the literature, the tool 

developed particularly for the structural conditions of the Irish water resources 

systems, allows deriving future stream flow projections at un-gauged water 

abstraction points. This is an important feature for Irish water resources as many of 

the abstraction points do not have hydrometric gauges in their vicinity. This is also 

likely to be the case in other regions of the world. The uncertainties that are 
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associated with modelling flow at un-gauged locations are large and should be 

considered more comprehensively in future application of such tools. The future 

stream flow information obtained in the modelling framework incorporates 

uncertainty ranges stemming from both climate scenarios and hydrological 

modelling.  

The ranges of future stream flow information are used to appraise the utility of 

nationally identified adaptation options in conjunction with population growth as 

non-climatic pressure. Overall, the tool developed is fit for purpose and provides a 

methodology to appraise and compare anticipatory adaptation options under 

projected future uncertainty ranges by analysing potential changes in water resource 

system performance through a threshold-based analysis of system performance 

indicators.  

The catchments and their associated water abstraction points represent different 

hydro-climatic environments, which are representative of Irish conditions. The 

stream flow series for the un-gauged water abstraction points were obtained using 

proxy-basin-split-sample approach. This widely applied approach has been 

augmented in this thesis to account for the concept of equifinality in accounting for 

the uncertainties associated with the estimation of hydrological model parameters. 

Parameter uncertainties have a strong influence on the lower part of the flow regime, 

which is of particular interest to water resources management. 

The selection of the future climate scenarios, used to drive the hydrological model to 

obtain future stream flow projections, influences the range and variability of change 

under which adaptation options are appraised. Therefore, the results obtained are 

strongly dependant on the choice of such scenarios. Here a set of six statistically 

downscaled climate scenarios is chosen. While this is a relatively small sample of 

possible changes in climate, the comparison of these scenarios with national 

probabilistic scenarios, and indirectly with a wider range of CMIP3 scenarios suggest 

that the scenarios used here fall within the more extreme low flow range. 

Nonetheless, a priority of future work will be to expand the scenarios available.  
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Here, to the best of knowledge, for the first time, the Water Evaluation and Planning 

System (WEAP) is coupled with a strongly physically based rainfall runoff model 

(HYSIM), to allow for the appraisal of adaptation options. In doing so envisaged 

adaptation options for un-gauged catchments can be analysed within WEAP with 

regard to future uncertainty ranges. Therefore, WEAP is used with the aim of 

appraising changes in the water resource system performance under a wide range of 

uncertainties and not as a simple climate change impacts assessment or optimisation 

tool, which is different to the traditional application of WEAP (Hӧllermann et al., 

2010; Ingol-Blanco & McKinney, 2010; Sandoval-Solis et al., 2011; Harma et al., 

2012). 

Within the analysis framework, the performance and the responses to suggested 

anticipatory adaptation options of the water resource systems was investigated. The 

results show that when applying a threshold-based approach combined with different 

system performance indices that each water abstraction point responds differently to 

both climate change impacts and adaptations options. The results show that 

depending on the system capacity projected changes can result in variable 

vulnerabilities and a ‘one-size-fits-all’ approach to anticipatory adaptation is not 

realistic. Small changes can have a significant impact when water supply systems 

operate close to their system capacity. However, other water abstraction points do 

show little or no vulnerabilities to the most extreme future stream flow simulations, 

with regard to the employed critical thresholds. Vulnerability and response to 

adaptation measures are site specific. Therefore, to ensure a best possible assessment 

of the system, thresholds and indicators need to be selected for each water resource 

system explicitly, preferably with strong stakeholder engagement. 

7.4 Discussion of Main Research Findings 

The analysis of trend in the first part of the thesis highlighted the challenges involved 

in detecting climate-driven trends in Irish hydrological records. High natural inter-

annual and inter-decadal variability of analysed indicators makes it difficult to 

discern monotonic trends from and long-term oscillations. Additionally, if a series of 

unusual extremes is present at the end of the investigated record, it cannot be decided 



Chapter 7 Discussion and Conclusion 

 

246 

whether these extremes are outliers in the time series, or present an actual change in 

the regime, such as the wet recent summers in Ireland. Only when sufficiently long 

time after the commencement of such a potential change will be available, change 

detection will be possible. However, even when changes in hydro-climatological 

records cannot be statistically detected, this does not prove the absence of a trend. 

Trend test can fail to detect weak changes or changes which have occurred only 

recently (Radziejewski, 2009).  

Furthermore, in the case of Ireland, the relatively low number of near-natural, good 

quality, long hydrological records makes is particularly difficult to extract 

information that can guide planning and decision-making with regard to specific 

options for anticipatory decision-making. However, the shortage of suitable 

observational hydrometric data for change analysis is a commonly encountered 

problem internationally (Whitfield et al., 2012).  

Additionally, it needs to be considered whether the spatial distribution and sampling 

frequency in a network such as the Hydrometric Irish Reference Network are 

appropriate to detect climate-driven trends. Near-natural catchments are often small 

upstream catchments which might not be representative of the entire hydrometric 

conditions in a country. Particularly the streams that are used for abstracting surface 

water are often located in the downward reaches of a catchment close to the sea. 

Additionally, Blӧschl & Sivapalan (1997) have shown that in smaller catchments the 

coefficient of variations (CV) is particularly high compared to large catchments. This 

makes it even more difficult to detect changes in the IRN, and results in long 

detection times and high change magnitudes to be able detect changes that are 

statistically significant. 

However, without the use of specifically approved stations within a reference 

network the quest for trends in hydrological data becomes even more difficult. Due 

to multiple possible drivers of change such as land use change, or changes induced 

by artificial hydraulic changes in addition to changes in climate, attribution of any 

detected changes becomes even more difficult. Attribution of processes and key 

drivers that result in changes in hydrometric records is currently an area attracting the 
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interest of the scientific community (Merz et al., 2012). Until drivers and physical 

processes of change are identified and better understood, observational hydrological 

data can only provide limited information for long-term planning in the water sector, 

as observed changes cannot simply be extrapolated into the future.  

For water resources planning and management, it is important to assess hydrological 

records for statistically significant trends in magnitude and timing, and attribute these 

changes (if present) to certain drivers. However, it is also important to assess in 

which parts of the flow regime; and when and where changes will occur (Ziegler et 

al., 2005). The analysis of low flow indicators suggest, that the number of years or 

trend magnitudes required until trends become statistically significant (α=0.05) will 

be too large to provide practical guidance to anticipatory adaptation. A less 

conservative approach to risk (e.g. α=0.1) results in an increased detectability, 

however, the detection times still remain long.  

Nevertheless, waiting until changes in hydro-climatological records can be identified 

and attributed is not an option for the water resources sector due to long planning 

horizons and design life of water supply infrastructure (Murphy et al., 2011). 

However, climate change impacts on future stream flow is highly uncertain and is 

unlikely to become constrained within the timeframe required for adaptation. Future 

climatic and non-climatic uncertainties influence the assessment of future water 

resource system performances and if future planning is based on projections, the 

assessment has to account for these uncertainties.  

Therefore, tools are needed that are able to extract information content from the 

uncertainty ranges derived. Exploratory modelling where outcomes of an ensemble 

of multiple future simulations are used to explore the implications of a wider range 

of assumptions can provide a tool to appraise adaptation and policy decisions with 

regard to their robustness to future climate change uncertainties (Samaniego & 

Bárdossy, 2008).  

However, an exploratory modelling approach becomes challenging when applying it 

to actual water resources systems. In the case of Ireland, difficulties are encountered 

in areas with limited data availability, such as un-gauged sites. In such settings, the 
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uncertainties in the approaches and models used to generate future scenarios become 

increasingly important. For example, the selection of the hydrological model or how 

hydrological modelling uncertainties such as parameter uncertainties are treated, will 

determine the overall system performance. HYSIM, a physically based conceptual 

rainfall-runoff model, in combination with the proxy-basin-split-sample-approach, 

extended using equifinal parameter sets, is used to address these challenges. 

However, it is acknowledged that by using a different hydrological model or 

different regionalisation approaches to derive flows, it is likely that different future 

stream flow scenario ranges would have been obtained.  

Modelling future hydrology is ad difficult process, due to the complex feedbacks 

between climate change, human actions and catchment responses, which are difficult 

to represent in models. Therefore, large assumptions are made that land-use and 

hydrological model parameters remain unchanged over the period considered (for 

example Poulin et al. (2011)). However, in reality these simplifications, assuming 

future stationarity, are not likely as land-use will change in response to external 

divers such a climate and population growth. It can also be expected that the 

hydrological model would need to be adjusted due to the co-evolution of catchment 

characteristics (e.g. rate of infiltration and flow pathways) and dominant climatic 

regime. The inability to represent such feedback mechanisms introduces another 

layer of uncertainty and is to date not commonly accounted for in future scenarios. 

As shown above, water supply system performances are highly dependent on each of 

the decisions in study design taken throughout (e.g. selection of future climate 

scenarios) and modelling steps involved to generate the future stream flow scenarios, 

performance metrics and critical thresholds used for the analysis.  

One focus of this thesis was the development of a tool that can support anticipatory 

adaptation in the water resources sector. The 12 illustrative case study water 

abstraction points are a first-pass application of the tool. Through the incorporation 

of multiple future hydrological time series, the tool facilitates awareness raising of 

where and when potential vulnerabilities to climate change could arise. Here a 

limited sample of possible future adaptation options was modelled; however, the 
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future application of the model allows examining multiple options and operation 

rules under wide uncertainty ranges.  

The flexible setup of the tool permits the user of the tool to update climatic scenarios 

or other characteristics of the water supply system such as population growth. 

Additionally, depending on the end-users needs, different assessment criteria and 

performance measures can be employed within WEAP; for instance constraining the 

amount of abstractions depending on specific in stream flow requirements, when 

exploring the performance of adaptation or management options. This is particularly 

important as the responses of water supply systems to thresholds and measures vary 

considerably and are therefore site specific. If for a particular indicator the water 

system indicates no unsatisfactory performance this does not necessarily mean that 

the systems are not vulnerable with regard to other indicators. It could just be the 

case that the system has little or no sensitivity to the selected critical thresholds, 

performance measures of climate scenarios. Here it is found that for some abstraction 

points, robust adaptation options such as demand and leakage reduction will not be 

sufficient in reducing vulnerability to future change. In such cases, further adaptation 

options will need to be considered, preferably with stakeholder engagement. 

In this first application of the tool, the critical thresholds used to appraise the water 

resources system performance are assumed to be constant over time. However, it is 

likely that over time, with each iteration of the decision-support loop described in 

Chapter 4, the system requirements and therefore the thresholds selected will need to 

be adjusted depending on new information, altered requirements or changed 

management objectives. The system performance and the responses to set strategies 

will therefore also change, as might the thresholds change dynamically over time.  

A key constraint in modelling future stream flow and exploring the performance of 

future adaptation options is that the changes in natural variability are not taken into 

account in future climate scenarios. To date climate models are not able to fully 

capture the processes that influence natural variability (Ledbetter et al., 2012). This 

has strong implications for future water resources planning and management, as 

particularly the sequences of periods with low water availability, i.e. droughts have 
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the highest potential to affect water direct abstractions from streams if no storage is 

available, as it is typical for smaller water supply schemes in Ireland. 

The tool developed here can provide information on the water resources system 

performance and robustness of adaptation options under the ranges of future 

scenarios explored and thresholds investigated here. However, when practically 

aiming to adapt water supply systems to climate change, their robustness to 

uncertainty will only be one amongst other assessment criteria employed. A 

successful adaptation option or a set of adaptation options will always involve trade-

offs between robustness, economic efficiency and social preferences and equity 

amongst others (Adger et al., 2005).  

Overall, in the thesis presented here only planned anticipatory adaptation to the 

modelled scenarios is considered. Additionally, the modelling framework presented 

is not able to incorporate autonomous adaptation. It has not been possible to 

incorporate direct human responses into the modelling approach, such as for example 

short term water use restrictions put into place as a result of drought conditions, or 

increasing water demands due to higher temperatures.  

7.5 Current Limitations and Suggestions for Future Research 

In this thesis, trends are analysed using methods for detecting monotonic changes in 

time series. However, hydro-climatic data is often spatially poorly sampled and have 

a low signal-to-noise ratio. Additionally, changes in hydrological variables cannot 

only be expected to occur as linear changes, but might also take place as step 

changes or oscillations. Therefore, future studies should also focus on extracting 

signals from the observed time series that are different to linear changes, such as 

long-term oscillations and quasi-periodic signals.  

Generally, long detection times were found for trends to become statistically 

significant. However, certain stations and indicators indicated lower detection times 

than others due to less variability or a stronger change signal. To maximise the 

potential of being able to detect changes in the hydrological record, it is important to 

identify and further investigate the characteristics of such catchments.  This also 
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applies to the selection of indicators investigated, as some indicators showed in this 

study to have lower detection times than others. Future work would benefit by 

identifying hydro-climatic indicators that are specifically sensitive to changes in the 

climate driver. Further work could also consider that the relevance and sensitivity of 

indicators might change over time, as the climate and hydrological system co-evolve.  

While the future climate scenarios used here were found to fall within the lower end 

of the ranges of comparatively larger samples, they represent a partial sample of the 

possible uncertainty space. As a priority, future application of the tool should 

incorporate a much greater selection of future climate scenarios, derived from, for 

example, the use of different climate models and perturbed physics ensembles, to 

obtain a more representative sample of the possible uncertainty ranges obtained from 

climate model uncertainty.  

The stream flow series, generated here to provide information input into the water 

resources model, are derived using a single hydrological model. Although the 

modelling approach employed here takes into account parameter uncertainty, the 

uncertainty space related to hydrological model structure uncertainty is not being 

fully addressed. A future application of the modelling framework should include 

hydrological model uncertainty as an additional source of uncertainty by 

incorporating a multi-model approach. However, this is secondary to the 

incorporation of a greater sample of Global Climate Models. 

The work presented here primarily focuses on providing water managers with 

information on the volumetric raw surface water availability, based on observed and 

modelled data. However, climate change can also to affect surface waters not only by 

changing volumetric availability. Amongst others, for example, an increase in the 

magnitude of rainfall events has the potential to cause damaging floods or increased 

erosion and might in this way adversely affect water supply systems and water 

abstraction due to decreased water quality, high turbidity and disrupted systems, or 

by increasing cost of water treatment. Another effect of a changing climate on water 

resources might for example happen through increased water demand due to higher 

temperatures. When planning for future anticipatory adaptation of the water sector to 
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climate change, the possibility of such additional climate change related effects will 

have to be also taken into account. Additional future uncertainties also exist in 

relation with other non-climate related changes and challenges, such as changing 

legislation frameworks in the water resources sectors, which can potentially affect 

both water availability and demand. 

7.6 Concluding Remarks 

Adapting future water resources systems to potential climatic and non-climatic 

changes is challenging due to the wide range of future uncertainties involved.  

Observational information from near-natural, long, good quality hydrological time 

series are regarded as a valuable source of information for future water resources 

planning and management. However, internationally there are only a low number of 

stations fulfilling these criteria. In practice, as shown for Ireland, only relatively short 

records that are dominated by natural variability are available, which makes it 

difficult to detect a long-term change signal in hydrological data. Therefore, until key 

driver and processes of change in hydrological time series are deciphered, only 

limited information about future hydrological changes can be extracted to be 

potentially used to inform water resources planning in Ireland. For that reason, 

additional sources of information and tools are required to allow the appraisal of 

future management options, to facilitate anticipatory adaptation in the water 

resources sector. 

Decision information tools that are developed to provide alternative approaches such 

as exploratory modelling to test the robustness of future measures can offer a way 

forward. However, in line with the framework on anticipatory adaptation as an 

iterative process presented in Chapter 4, such assessments will not be a once-off task, 

but will rather require continuous monitoring and adjustments of the strategies to 

bring and keep the water resources systems into a desired state. Therefore, flexible 

and reversible strategies are advocated, when faced with such an uncertain future, to 

minimise the risk of becoming locked into a single future trajectory (path 

dependency) that could require disproportional effort and investment to adapt. 
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This thesis marks the first attempt to move beyond first order climate change impacts 

assessment on hydrology in Ireland toward the development of methods forming a 

tool for exploratory modelling and 'stress-testing' the potential performance of 

specific scenarios and adaptation options. The tool developed is aimed at application 

at a catchment and or local authority level in Ireland and can be used to inform water 

resources planning. Tools that support robust decision-making by combining 

multi-scenario approaches with exploratory modelling will play an important role in 

supporting successful adaptation of water resources under conditions of uncertainty. 

The tool developed here marks the first attempt in transitioning towards using 

climate scenarios and associated uncertainties, to explore potential policy directions, 

rather than relying on the traditional top-down, predict-and-provide approach to 

inform decision-making for adaptation.  
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I. Appendix I 

 
Figure I.1 Trends in seasonal Q50 Flows for five stations with long records, for all possible start and end 

dates. Number of positive trends (left), negative trends (middle) and significant trends at 5% level (right). 
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Figure I.2 Trends in seasonal Q70 Flows for five stations with long records, for all possible start and end 

dates. Number of positive trends (left), negative trends (middle) and significant trends at 5% level (right). 
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Figure I.3 Trends in seasonal Q90 Flows for five stations with long records, for all possible start and end 

dates. Number of positive trends (left), negative trends (middle) and significant trends at 5% level (right). 
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Figure I.4 Trends in Magnitude and Timing for 7-day and 30-day Sustained Lows, for all possible start 

and end dates. Number of positive trends (left), negative trends (middle) and significant trends at 5% level 

(right). 
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Figure I.5 Minimum change magnitude required for seasonal Q50. Changes occurring by mid 2020s 

(2050s) are plotted in red (blue). Light (dark) colours represent a significance level of α=0.05 

(α=0.1).Dashed horizontal lines show from bottom to top 25%, 50% and 75% of the investigated stations. 

 
Figure I.6 Minimum change magnitude required for seasonal Q95. Changes occurring by mid 2020s 

(2050s) are plotted in red (blue). Light (dark) colours represent a significance level of α=0.05 

(α=0.1).Dashed horizontal lines show from bottom to top 25%, 50% and 75% of the investigated stations. 
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Figure II.1 Liscarthan: RRV analysis for Scenario A (grey), and D (red) Vulnerability. Blue points show 

the RRV levels per year out of 3000 simulations. The darker the bars the higher the percent of simulations 

showing a RRV level. Threshold: URR 10%;  
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Figure II.2 Liscarthan: RRV analysis for Scenario A (grey), and D (red) Vulnerability. Blue points show 

the RRV levels per year out of 3000 simulations. The darker the bars the higher the percent of simulations 

showing a RRV level. Threshold: URR 20%;  
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Figure II.3 Drogheda: RRV analysis for Scenario A (left), and D (right) Vulnerability. Blue points show the 

RRV levels per year out of 3000 simulations. The darker the bars the higher the percent of simulations 

showing a RRV level. Threshold: URR 10%. 

 

 

 

 
Figure II.4 Drogheda: RRV analysis for 10 year windows for Scenario A, B, C and D showing the percent 

of simulations in each Reliability, Resilience and Duration Vulnerability category. UUR >%10. 
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Figure II.5 Culimore: RRV analysis for Scenario A (grey), and D (red) Vulnerability. Blue points show the 

RRV levels per year out of 3000 simulations. The darker the bars the higher the percent of simulations 

showing a RRV level. Threshold: URR 10%;  
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Figure II.6 Culimore: RRV analysis for Scenario A (grey), and D (red) Vulnerability. Blue points show the 

RRV levels per year out of 3000 simulations. The darker the bars the higher the percent of simulations 

showing a RRV level. Threshold: URR 20%;  
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Figure II.7 Laghta: RRV analysis for Scenario A (grey), and D (red) Vulnerability. Blue points show the 

RRV levels per year out of 3000 simulations. The darker the bars the higher the percent of simulations 

showing a RRV level. Threshold: URR 10%;  
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Figure II.8 Laghta: RRV analysis for Scenario A (grey), and D (red) Vulnerability. Blue points show the 

RRV levels per year out of 3000 simulations. The darker the bars the higher the percent of simulations 

showing a RRV level. Threshold: URR 20%;  
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Figure II.9 Culimore (right) and Laghta (left) with UUR threshold >20%. RRV analysis is based on 10 

year windows for Scenario A, B, C and D showing the percent of simulations in each Reliability, Resilience 

and Duration Vulnerability category.  
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Figure II.10 Louisburgh: RRV analysis for Scenario A (left), and D (right) Vulnerability. Blue points show 

the RRV levels per year out of 3000 simulations. The darker the bars the higher the percent of simulations 

showing a RRV level. Threshold: URR 10%. 

 

 

 

 
Figure II.11 Louisburgh: RRV analysis for 10 year windows for Scenario A, B, C and D showing the 

percent of simulations in each Reliability, Resilience and Duration Vulnerability category. UUR >%10. 
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