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Abstract 

 

Although Software Verification technology is rapidly advancing, the process of formally 

specifying the intended behaviour of a program can still be difficult and time consuming as the 

program increases in size and complexity. In this project we focus on the source code matching 

module of Arís (Analogical Reasoning for reuse of Implementation & Specification) platform in 

which we aim to increase the number of verified programs by reducing the effort of writing 

specifications. Our approach promotes the advantages of code reuse and the possibility of 

transferring specifications between similar implementations. In order to effectively compare two 

source code files we represent them using Conceptual Graphs that allow us to explore the semantic 

content of the code while also analysing its structural properties using graph-based techniques. For 

comparing two conceptual graphs, we propose to use an incremental matching algorithm based on 

IAM (the Incremental Analogy Machine (Keane, et al., 1994)) and find the best mapping between 

isomorphic (exact matches) or homomorphic (non-identical) sub-graphs. We further develop 

analogical inferences from the acquired mapping using the CWSG (Copy With Substitution and 

Generation) algorithm for pattern completion and generate new specifications into our 

target/problem code. Finally, we present our evaluation and show that between structurally similar 

programs, the formal specifications can be fully transferred and successfully verified. Our overall 

results are very encouraging and clearly show the potential of reusing formal specifications in 

creating more dependable software systems. 
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1.  Introduction 

 

 1.1. Formal Software Verification 

Nowadays software systems are playing a vital part in all of our day to day activities, as they 

are embedded in all sorts of systems ranging from entertainment devices like music players, game 

consoles to more indispensable ones like our telephones, PCs and even into critical safety systems 

like medical devices, avionics, banking, automotive and many more.  

One of today’s biggest concerns regarding software is how to demonstrate and guarantee its 

reliability, since faults in the code can lead to increases in production costs, expose security 

weaknesses or even cause system failures in critical applications (for example the overflow 

exception that caused the Ariane 5 missile to crash (Johnson, 2005)). Verification (Hoare, et al., 

2009) represents the process of ensuring that such errors will be avoided by formally proving using 

a rigorous method that the software will behave correctly (within the bounds of its specified 

properties) and will fulfil its intended purpose.  

Formal Software Verification uses mathematical analysis as a rigorous method to construct a 

formal proof of a program’s correctness. The correctness is measured with respect to a Formal 

Specification which describes how the program will behave in certain situations. The past decade 

brought many improvements for the software verification technology (Woodcock, et al., 2009) and 

many formal programming languages that implement the Design-by-Contract (DbC) approach 

(Meyer, 1992) have been developed in order to allow the specification of programs written in more 

popular languages like Java and C#.  

 

1.2. Programming by Contract 
 

Meyer built the Design-by-Contract approach based on two important key concepts: first, it is 

fundamentally connected with the Object Oriented design world and second, each participant 

(class) in the construction process of a program, has a very specific and clear role that it needs to 

fulfil. Thus, Meyer makes a distinction between a supplier role - classes that document and 

implement the solution, maintain its code and publish just the class interface; and a client role 
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which corresponds to classes that are informed about the supplier’s documentation and receive the 

supplier’s interface through which they can access the necessary methods, without knowing 

anything about their implementation. In this way the client knows exactly in which situations he 

can use a method and what consequences to expect after running it. The DbC pattern was first 

applied in the Eiffel programming language, but due to Meyer’s efforts in popularising the 

approach, it can now be found in numerous other programming languages such as Ada (used in 

critical safety systems), C++, Java or C# (still active research areas).    

The main principles in Programming by Contract (applying DbC to a programming language) 

is being able to specify, using a formal specification language, different constraints regarding the 

public methods in the supplier’s interface, some of which are given below: 

- preconditions: what does the method expect to receive as input in order to function 

properly. This is the client’s obligation to ensure that each method is called with the 

corresponding preconditions satisfied.  

- postconditions: what happens when the method executes properly. This is the supplier’s 

responsibility to make sure that the postcondition is true when the method is called with 

the corresponding preconditions satisfied. 

- class invariants: statements that are true during the lifetime of the objects for all class 

instances. This is also the supplier’s obligation. 

For the C# programming language, Microsoft Research has developed the Spec# (Microsoft 

Research, n.d.) formal language which extends C# with the ability to support pre and post 

conditions, invariants and other specifications using clauses such as ensures, modifies, requires or 

invariant. In this project our goal is to transfer and reuse Spec# specifications in order to increase 

the number of formally verified programs. 

 

1.3. Arís – Why reuse of implementations and specifications? 

Although we now have the tools for formally specifying the intended behaviour of our 

programs, the process usually becomes difficult and time consuming as the program increases in 

size and complexity. Apart from this, users also face another major difficulty in learning how to 

interact with these tools, how to write good assertions that describe what the program must do and 

how to develop the appropriate implementations so that the verification goal can be achieved more 
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easily (Leino & Monahan, 2007). This is one of the main reasons why Design-by-Contract 

programming is not yet fully adopted in large scale industry projects and the overall set of verified 

programs still remains very small (see the Verified Software Repository in (Woodcock, et al., 

2009)). 

In the Arís1 (Figure 1) (Pitu, Mihai; Grijincu, Daniela; Li, Peihan; Saleem, Asif; O'Donoghue, 

Diarmuid; Monahan, Rosemary, 2013) project we address the following questions: How can we 

help increase the number of verified programs? How can we aid developers in the process of 

writing and reusing specifications and/or implementations? Our framework proposes to reuse 

existing formal specifications in the same way we reuse code (which is a very common practice 

among software developers), by transferring specifications and reusing proofs from previous 

verified programs, thus making software verification more accessible to programmers.  

 

1.4. Source code matching 

In the source code matching module of Arís we focus on the problem of matching two 

programs at the implementation level, because as we previously described, if we can find two 

similar implementations then we can transfer the specification from one to the other - Figure 2). 

 

 

                                                 
1 Arís – meaning “again” in the Irish Language 

Figure 2. Transferring specifications between two matched implementations 

Figure 1. Arís logo 
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Although methods for measuring source code similarity are beneficial in many scenarios as 

we will see shortly, limited research exists towards a framework for transferring and generating 

new specifications based on mapping source code level implementations, thus the Arís project 

comes as a novel approach in this area of research.  

We’ve identified a few other fields in which a system for comparing two source code files can 

prove useful: 

 Code duplication management.  As previous studies show (Chanchal, et al., 2009), 

duplicated code can represent up to 23% of the total source code in a typical application. 

This has posed many serious problems for software engineers because “copy-pasted” code 

is known to be a bad habit that increases the risk of distributing bugs in the system, causing 

a decrease in productivity (because if something needs to be changed in one place, then the 

changes have to be made in all the other places where the code was duplicated) and also 

makes unnecessary use of the system’s resources (increasing the program’s size and 

complexity, compilation time, etc.). 

 Plagiarism detection. Source code plagiarism (copying a piece from someone else’s work 

and presenting it as being your own) has proved a very easy task as source code can be 

easily modified and copied. It is especially common amongst students programming 

assignments (Cosma & Joy, 2006), although it can also occur in large, commercial projects. 

 Software evolution. As software systems develop, their source code implementation is 

continuously improved and changed to more advance states. A source code similarity 

measurement that could indicate in which areas was the code changed could help engineers 

detect trends and patterns in modifications along a software life cycle and better understand 

how software evolves (Bhattacharya, et al., 2012). 

Some of the problems concerning source code modifications that any type of source code 

matching system needs to be sensible to (i.e. be able to detect as similarity or ignore accordingly) 

are listed below: 

- changes in identifier names,  types, comments, whitespaces, layout 

- reordered, modified, added or removed statements (that may or may not change the logical 

structure of the program) 
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- code fragments that are implemented using different structural (syntactic) constructs and 

that however perform the same computation   

Our system is able to detect all of the above changes and match not only structurally identical 

programs but also programs that differ in their approach to solving the same problem (which is 

what we desire in Arís, as we want to reuse specifications from previous verified programs that 

perform the same computational process).  

The rest of this paper is organized as follows: Chapter (2) gives an overview of the related work 

to our problem, more specifically we describe previous solutions to source code representation and 

source code matching by critically analyzing the methods used and their results. Next, in Chapter 

(3) we present the theoretical background on which we built our system that is described in detail 

in Chapters (4) and (5). Finally we present our evaluation results in Chapter (6) and we give our 

conclusions in Chapter (7) where we also discuss future work directions. 
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2. Related Work 

In this chapter we critically analyse other systems and papers that have researched related 

problems to our domain or have been especially influential to our solution choice. Section (2.1) 

talks about previous systems for code similarity detection and their utility, classifying them by the 

approach they take at comparing the source code files (some are aimed at finding structural 

matches, others search for certain patterns, identical content, etc.). In Section (2.2) we critically 

discuss the paper that influenced our choice for the conceptual representation of source code and 

present their algorithm for comparing two conceptual graphs. We show that their method can be 

improved and extended and present our proposed solution in Chapter (4) and Chapter (5). 

 

2.1. Detecting source code similarity 

Code duplication and plagiarism detection have in the past years become very significant 

problems in field of software engineering and also very active research areas. Many tools2 and 

techniques based on source code comparisons have been proposed in the literature that solve these 

issues (good reviews on such tools can be found in (Chanchal, et al., 2009)  (Rattana, et al., 2013)).  

Source code matching algorithms that have been implemented before now can vary depending 

on the approach they take at modelling the source code or on the degree of similarity they aim to 

find. Systems such as PMD3, Simian4 or CCFinder (Kamiya, 2002) that use patter-matching or 

tilling algorithms to find pieces of duplicated code in large scale applications, represent the source 

code as tokens or lexical entities that can be either lines of code or programming language tokens. 

They are known to be fast, although simple structural changes (e.g. modification of data structures) 

of the code can affect their accuracy.  

Systems that compare the structural properties of the programs, on the other hand, have been 

shown (Wilkinson, 1994) to be much more effective at measuring similarity. Tools such as MOSS5, 

                                                 
2 List of free source code similarity detection tools - 

http://www.ics.heacademy.ac.uk/resources/assessment/plagiarism/detectiontools_sourcecode.html 
3 PMD: Project Mess Detector. http://pmd.sourceforge.net/. 
4 Simian: Similarity Analyser. http://www.harukizaemon.com/simian/index.html. 
5 MOSS: Measure Of Software Similarity. http://theory.stanford.edu/~aiken/moss/. 

http://www.ics.heacademy.ac.uk/resources/assessment/plagiarism/detectiontools_sourcecode.html
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YAP3 (Wise, 1996) or JPlag6 represent programing structures as string tokens that they then 

compare using string based distance. They are mostly used to detect plagiarism in student’s 

assignments and although they do not provide much written documentation about their internal 

algorithm, they have been shown to be vulnerable to code reordering (Hage, 2010). 

Other systems that explore the structured nature of the source code, parse the programs into 

different graph-based data structures from which they extract different metrics or perform structural 

comparisons. For example, in (Yang, 1991) source code similarities are found by comparing the 

source code Parse Trees7 which express the syntactic structure of the grammar describing the 

programming language. One of their disadvantage is the fact that the nodes are actual grammar 

tokens and literals, being a much too verbose representation and providing no abstraction layer. 

Abstract Syntax Trees8 structures on the other hand (used, for example, in source code evolution 

analysis by (Neamtiu, et al., 2005)), provide some abstraction compared to the parse trees, but they 

are still very much detailed, preserving information about whitespaces, punctuations and similar 

information that we would not need in our representation. Graph-based techniques have been used 

extensively in the past (a good review of the past 30 years of graph matching algorithms can be 

found in (Conte, et al., 2004)) and are still a very active research area.  

A recent paper (Bhattacharya, et al., 2012) showed how different graph-based metrics extracted 

from ASTs can be used to detect differences and similarities in structure across programs and can 

help developers to better understand how software evolves and changes over time. Their study is 

based on extracting and monitoring different code-based graph metrics across several large open 

source programs. Of particular interest is their use of the Node Rank metric to assign a numerical 

weight to every node in a graph that represents the relative importance of that node in the program. 

This metric could be very useful in other graph matching algorithms, where determining which 

part of the programs are more important to be mapped is essential in order to reduce the algorithm’s 

complexity.  Although they prove that a graph-based representation can capture many relevant 

properties of a software system, their solution is adapted for analysing how software evolves and 

not for a general purpose code similarity measurement.  

                                                 
6 JPlag: Detecting Software Plagiarism. https://jplag.ipd.kit.edu/ 
7 Parse Tree - https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Parse_tree.html 
8 Abstract Syntax Tree - http://www.cse.ohio-state.edu/software/2231/web-sw2/extras/slides/21.Abstract-Syntax-

Trees.pdf 

https://jplag.ipd.kit.edu/
https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Parse_tree.html
http://www.cse.ohio-state.edu/software/2231/web-sw2/extras/slides/21.Abstract-Syntax-Trees.pdf
http://www.cse.ohio-state.edu/software/2231/web-sw2/extras/slides/21.Abstract-Syntax-Trees.pdf
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2.2. Source code matching on Conceptual Graphs 

Sowa’s (Sowa, 1984) formalism of Conceptual Graphs (Section (3.1)) has often been used as 

an abstract layer for representing data in many retrieval and classification systems. Good results 

have been reported for document retrieval (Montes-y-Gomez, et al., 2000), modelling of complex 

medical information (Kamsu-Foguem, et al., 2013) or semantic search for structured/multimedia 

documents (Jiwei, et al., 2000) where WordNet9 is used as the main concept hierarchy. Although 

all these document types have much in common with source code files (where structural features 

can be extracted from the content), very few papers explore the advantages of representing source 

code as conceptual graphs. 

An influential and successful system that implements the conceptual graph formalism to 

describe source code documents was proposed by Mishne and De Rijke in (Mishne & De Rijke, 

2004). Their main contribution is a notion of source code contextual similarity based on conceptual 

graphs that tries to explore both the structure of the source code and also the content inside the 

nodes, with reported good results for programs written in the C programming language. 

Based on the conceptual graph definition, they create a taxonomy for source code elements (the 

support of the graph) formed by different concept types that represent actual programming 

constructs such as Assign, Function, Variable, Struct and others. Then they give a set of relation 

types (Condition, Contains, Comment, Defines, etc.) and indicate which concepts they can connect 

and what referents can each concept type have. In order to construct the graph from a source code 

file they define an extension of the C programming language parser that allows them to create the 

conceptual graph in the same time the compiler creates the Abstract Syntax Tree. Although this 

method proves fast it involves defining graph construction procedures and adding them into certain 

rules of the grammar language, process which can become very burdensome for some complex 

programming languages. 

For comparing two conceptual graphs they propose a contextual similarity measure that 

compares the graphs node-by-node using the information stored in each concept. However, they 

do not actually compare the structure of the graphs – instead they augment each concept node by 

embedding some structural information regarding the concepts that are adjacent to it, taking into 

                                                 
9 WordNet: A lexical database for English. http://wordnet.princeton.edu/ 

http://wordnet.princeton.edu/
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account a numerical weight that it is associated with each concept type in the graph (they manually 

assign weights for each concept and relation type depending on their importance, for example, they 

can view a String concept as more important than an If concept – which is a subjective 

interpretation).  

The concept similarity measure is defined as the product of the concept type similarity (which 

is 1 - if the two concepts have the same type or one derives from the other, and a smaller value 

otherwise) and the concept referent similarity (a content similarity measurement) normalized by 

their weight. The content matching algorithm used is in some level rudimentary (the Levenshtein 

string-distance10), because this mechanism does not take into account certain aspects of the source 

code anatomy that our system is sensible to (e.g. type hierarchies such as, if two Variable concept 

nodes are to be matched, say int i and long j, then the string distance function will yield a 0 

similarity score, although both variables are holding integer values).  

Finally their work is evaluated by carrying out a number of experiments and comparisons with 

other baseline retrieval models. Although they leave much room for improvement (in terms of 

optimization, as their algorithm works in 𝑂(|𝐺|3), the large amount of free parameters used, 

finding a better content matching algorithm, extending the support defined for conceptual graphs 

to include more programming constructs), their results strongly suggest that using conceptual 

graphs to represent source code files and performing a graph matching algorithm that compares 

both structural and content features, can help in assessing code similarity more accurately.   

 

2.3. Conclusions 

In this chapter we have identified and critically analysed related systems that perform source 

code matching with the purpose of finding similarities between two programs. In Section (2.2) we 

discussed in detail Mishne and De Rijke’s paper on source code retrieval as their approach and 

results influenced us to represent our source code files as conceptual graphs. In our project we 

propose to extend their work on representing conceptual graphs from source code and to use a new 

algorithm for mapping two such representations. We base our new approach on the Analogical 

                                                 
10 Levenshtein distance. http://www.comp.dit.ie/bduggan/Courses/OOP/EditDistance.pdf 

http://www.comp.dit.ie/bduggan/Courses/OOP/EditDistance.pdf
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Reasoning process (described in the next chapter) that allows us to find detailed correspondences 

between two domains and create new specifications in the target code. We also mentioned a recent 

graph metric developed by Bhattacharya, et al. (Section (2.1)) which we will use in determining 

which parts in a program are the most important and relevant to the mapping process. 

 Although many systems that compare source code have been proposed in the past, little 

research exists towards the reuse of formal specifications. A notable example is the work in (Park 

& Bae, 2011) on UML diagram specification matching based on Gentner’s Structure Mapping 

Theory, which we also use in our solution and will be described in the following sections. 

 Thus, in the Arís project we come with a novel approach that addresses the problem of source 

code matching with the purpose of reusing previously verified code and reducing the efforts in 

writing specifications. We first present the background knowledge of our system in Chapter (3) 

and then give our proposed solution in Chapters (4) and (5).         
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3.  Background  

In this chapter we formally describe different concepts, terminology and algorithms that are 

used in our proposed solution in Chapter (4) and Chapter (5). Section (3.1) presents the Conceptual 

Graph structure that is a knowledge representation formalism we use in order to model the 

structural and content features of the source code. Next, in Section (3.2), (3.3) and (3.4) we describe 

the abstract Analogical Reasoning process that will help us identify detailed correspondences 

between two conceptual graphs and create new specifications for our target (unspecified) code. 

Finally, Section (3.5) talks about how analogical reasoning can be applied in practice by describing 

the Incremental Analogy Machine algorithm and then we give our conclusions regarding this 

chapter in Section (3.6). 

 

3.1. Conceptual Graphs 

A Conceptual Graph [CG] can be described as a powerful inference system and knowledge 

representation11 language that was introduced by Sowa in 1984 (Sowa, 1984) with origins from 

the semantic networks used in Artificial Intelligence and from Charles Sanders Peirce work on 

existential graphs. They were also devised from linguistic and philosophical grounds (Sowa, 2000), 

so they reside on a very solid and diverse theoretical background. Although they were introduced 

decades ago, they can be easily correlated to modern object-oriented and database features. As 

Sowa said in his book, a conceptual graph “can serve as an intermediate language for translating 

computer-oriented formalisms to and from natural languages” being humanly readable and at the 

same time computationally feasible. 

 A conceptual graph is a directed, finite and bipartite graph in which a node has an associated 

type (can be either a concept node or a relation node) and a referent value (or marker) that can 

refer to a generic (usually denoted by a “*” symbol) or particular instance of that node. Concept 

                                                 
11 Knowledge representation - http://groups.csail.mit.edu/medg/ftp/psz/k-rep.html 

http://groups.csail.mit.edu/medg/ftp/psz/k-rep.html
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nodes usually represent entities, attributes, states and events in the knowledge domain, while 

relation nodes show how they relate to one another (Figure 3). 

 

 

A conceptual graph needs a support or cannon that defines different rules, syntactic constraints 

and background information about the specific knowledge domain that it is built upon. This notion 

of support contains the following: 

 A set of concept types that is structured as a finite connected lattice12 in which nodes are 

disposed in a “is-a-kind-of” hierarchical order. For example a relation that connects two 

adjacent concept nodes A and B, denotes the fact that B “is-a-kind-of” A. 

 A set of relation types. 

 A set of “star graphs” which indicate for all relation concepts, which other concept types 

it is allowed to connect. 

 A set of referent sets for concept nodes that will help to distinguish between generic entities 

and individual ones. Each set of referents must have at least the generic “*” referent. 

A more formal definition of a support is a 4-tuple 𝑆 =  〈 𝑇𝑐, 𝑇𝑟 , 𝐺, 𝑅 〉 where: 

(1) 𝑇𝑐, the concept type set defined as a lattice with ≤ as order, 1 as supremum, 0 as infimum  

(2) 𝑇𝑟, the finite set of relation types, 𝑇𝑐 ∩ 𝑇𝑟 = ∅. 

(3) 𝐺, {𝐺𝑟𝑖, 𝑟𝑖 ∈  𝑇𝑟 }, the set of “star graphs” every 𝐺𝑟𝑖 is built like this: every node in 𝐺𝑟𝑖 is 

labelled by the corresponding element 𝑟𝑖 of 𝑇𝑟, thus every such kind of node has an ordered 

set of neighbors that are pairwise non-adjacent and each one of them is labeled with a 

concept from 𝑇𝑐. 

(4) 𝑅 is the countable set of individual referents. There also exists a generic referent (*) such 

that ∀𝑟𝑖  ∈  𝑅𝑡 : 𝑟𝑖  < ∗, where < is the order defined by the lattice. 

                                                 
12 Lattice - http://mathworld.wolfram.com/Lattice.html 

Figure 3. Example of a conceptual graph structure. This can be read as: 

"The relation of Concept 1 is a Concept 2". The arrows indicate the 

direction of the reading and they also express a hierarchical order. 

http://mathworld.wolfram.com/Lattice.html
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Based on this definition of a support, a conceptual graph can be expressed as a 5-tuple 𝐶𝐺 =

 〈 𝑆𝐶 , SR, 𝐸, 𝑜𝑟𝑑, 𝑙𝑎𝑏 〉 where: 

(1) 𝑆𝐶 and 𝑆𝑅 refer to the concepts and relations in the graph; 𝑆𝐶  ∩  𝑆𝑅 =  ∅ and 𝑆𝐶 ≠ ∅. 

(2) 𝐸 represents the set of edges in the CG: for every 𝑟 ∈ 𝑆𝑅, edges connected to the relation 𝑟 

are totally ordered by the defined 𝑜𝑟𝑑 function. 

(3) Every vertex in the graph has a label defined by the function 𝑙𝑎𝑏 such that for a given node 

𝑐, its label 𝑙𝑎𝑏(𝑐) is a pair (𝑡, 𝑟), 𝑡 ∈ 𝑇𝐶  𝑎𝑛𝑑 𝑟 ∈ 𝑅. 

An example of a support for conceptual graphs can be seen in Figure 4 (the concepts are 

represented as simple text and the lines denote the hierarchical order). Figure 5 shows two examples 

of conceptual graphs that can be built on this support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Example of a partial support for a 

conceptual graph. 
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After presenting the general basics about conceptual graphs, in his book, Sowa then describes 

a set of different operations and extensions that can be performed on them: morphisms, projections, 

specialization, generalization and others. Because we will not use them later in our system, we will 

not discuss them further here. More detailed introductions on Sowa’s conceptual graphs can be 

found in (Chein & Mugnier, 1992) and (Polovina, 2007). 

In the past decades conceptual graphs have been implemented in a wide range of information 

retrieval applications (Montes-y-Gomez, et al., 2000) (Chein & Mugnier, 1992), natural language 

processing, database design and also on source code retrieval (Mishne & De Rijke, 2004) (paper 

that is influential to us and we discussed in detail in Section (2.2)). The fact that they can be 

manipulated using graph-based techniques makes them a very attractive and powerful structure13. 

In addition they also provide a rich knowledge representation that facilitates developing inferences, 

making them fit for representing problems in an analogical reasoning framework that we describe 

next (Section (3.2)). 

 

3.2. Analogical Reasoning 

While CG are used to represent source code, we also need an approach to compare two such 

graphs. We propose to use Analogical Reasoning (AR) because as we shall see this can be 

                                                 
13 A set of useful tools for manipulating CGs can be found at - http://conceptualgraphs.org/ 

Figure 5. Example of conceptual graphs based on the given support in Figure 

4. James is the individual referent value for the concept Student and * denotes 

the generic referent (unspecified type).  

http://conceptualgraphs.org/
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effectively reduced down to graph mapping14. Analogical reasoning is a very basic but fundamental 

cognitive ability of human kind. We apply analogical reasoning all the time when we want to 

understand a new concept or extend our understanding about an old one. As Gentner and Smith 

(Gentner, 2006) (Gentner & Smith, 2012) describe it, it is the key process in scientific discovery, 

problem-solving, decision-making and categorization, being a very active research area of 

Artificial Intelligence and Cognitive Science. 

In every analogical process we find a familiar situation (known as the base or the source 

domain) and try to match it with less familiar situation (known as the target domain) that we are 

trying to better understand. A classic analogy (Gentner, 2006) example is between the structure of 

the atom and the solar system15 – as planets revolve around the sun so do the electrons revolve 

around the nucleus in the atom domain. Developing an analogical process like this, however, may 

involve many steps, but the most important (Keane, et al., 1994) ones are described below: 

1. Representation. In order to find a solution to a problem using analogical reasoning, one 

has to first represent the problem in a meaningful form. (Novick, 1988) has shown that the 

form in which a problem is represented affects the later success of the analogical transfers. 

2. Retrieval. Given a target situation, the retrieval phase of analogy focuses on finding the 

best candidate to match it with. This usually involves searching through a database of 

situations and retrieving the most similar one to the target.   

3. Mapping. This is the core of analogical thinking as it is responsible for discovering which 

elements of the base domain can be matched to which elements from the target domain. As 

there can be many different ways of mapping two situations (by object type, attributes, etc.) 

it can become a very complex and computationally expensive process. 

4. Transfer. Based on the acquired mapping between the two domains, new knowledge is 

generated and transferred into the target. 

5. Evaluation.  After the analogical mapping is finished, the transferred knowledge 

(inferences) need to be validated in order to establish whether the new knowledge can be 

applied to the target domain.   

                                                 
14 and the NP hard task of finding the largest common sub-graph (LCS) between two graphs. 
15 A comparison first proposed by the Nobel Physicist Ernest Rutherford around 1914. 
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 In Arís we use analogical reasoning for developing inferences and generating new 

information in our target code (which we want to formally specify using the existing specifications 

from the base problem). We use the conceptual graph formalism described previously as the 

representation method for modeling source code files and the Source Code Retrieval module (Pitu, 

2013) for retrieving the most similar solution to our target problem. In the next section, we describe 

the theory behind our analogical mapping algorithm for matching two conceptual graph 

representations. 

 

3.3. Structure Mapping Theory 

The most important process and unique to analogical reasoning is Analogical Mapping. The 

process takes as input two structured representations of the base and target domains and finds the 

detailed collection of correspondences between them (Gentner, 1983): linking particular elements 

from the base domain with particular elements in the target. It has received a lot of attention from 

the research community and many computational models have been developed (Gentner & Forbus, 

2011) that implement various versions of it. The most influential theory on analogical mapping is 

Gentner’s Structure Mapping Theory (SMT) (Gentner, 1983). It involves aligning the base and 

target domains by finding a structural similarity between them and developing candidate inferences 

(from the base to the target) following this alignment.  

The SMT theory proposes some constraints (that are also referred to as informational 

constraints) for the analogical mapping process, of which of particular interest are: 

 Structural consistency: There must to be a one-to-one mapping between the base and the 

target items. This means that all the ambiguous matches that may occur (one-to-many or 

many-to-one) have to be discarded. Also, if a correspondence between two objects is 

found, then the correspondences between their arguments should also be included in the 

mapping. 

 Systematicity:  Highly connected groups are preferred over independent ones for 

developing the mapping. 

Gentner (Gentner, 1983) demonstrated in her experiments that finding this kind of structural 

isomorphism (a one-to-one matching) between the target and base domains is essential for the 
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mapping process. Other informational constraints regard the similarity of the objects being matched 

(for example (Gentner, 1983), a constraint my ensure mapping only identical objects) or concern 

the importance/relevance of the current mapping as people usually prefer matches that are 

pragmatically more important or more goal relevant than other alternative mappings (these are also 

called pragmatic constraints (Holyoak & Thagard, 1989)). 

Other influential factors in the analogical mapping process are the working memory capacity 

and the background knowledge constraints described in (Keane, et al., 1994) as behavioural 

constraints which have the advantage of better simulating people’s performance at the analogical 

mapping task. 

The Structure Mapping Theory was best identified (Gentner, 1983) with graph-matching as the 

means to efficiently find analogical comparisons between two domains. By representing our base 

and target source code files as conceptual graphs (which as presented in Section (3.1), are an 

abstract layer that describe the relational nature of the source code), structure mapping allows us 

to extract detailed correspondences between them. Previous work has been done by (O'Donoghue, 

et al., 2006), where graph matching based on Gentner’s structure mapping was used to process 

geographic and spatial data. 

 

3.4. Analogical Inference and Pattern Completion 
 

Although analogical mapping is viewed as the central process in analogical reasoning, the 

process of generating post-mapping inferences based on the mapping found can be considered in 

certain situations just as important because it can give a better understanding of the target/problem 

domain by completing missing information or even generate a solution for it. Gick and Holyoak 

have shown in their study on analogical problem solving (Gick & Holyoak, 1980) that this process 

comes naturally to people and that we can easily transfer missing knowledge from the source into 

the target domain. 

After successfully mapping two domains together, we can extract the detailed correspondences 

between them such that each element in the source has a correspondent element in the target. The 

process of generating new analogical inferences (knowledge) based on this acquired mapping has 

been referred to by (Holyoak, et al., 1994) as pattern completion. In their book they give a simple 
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pattern completion algorithm Copy with Substitution and Generation (CWSG) that has been 

successfully used in different analogical reasoning computational models (for example ACME-

Analogical Constraint Mapping Engine (Holyoak & Thagard, 1989) or in the structure mapping 

algorithm developed by (O'Donoghue, et al., 2006)).  

Basically, the CWSG algorithm first finds a statement 𝑆 and a relation 𝑟(𝑎, 𝑏) with attribute 

objects a and b in the source domain that does not have a corresponding mapped statement in the 

target. Next, based on the fact that both the relation r and its attributes are mapped accordingly 

with elements in the target ( 𝑟 → 𝑟′, 𝑎 → 𝑎′ and b → 𝑏′), the algorithm creates and transfers the 

new statement 𝑆′:  𝑟′(𝑎′, 𝑏′) into the target domain. This process is very useful in our system 

because it enables us to generate new specification statements in our target code, using the mapping 

found with the incremental matching algorithm presented in the next section. 

 

3.5. Incremental Analogy Machine (IAM) 

The Incremental Analogy Machine (IAM) is a computational model originally developed by 

Keane and Brayshaw (Keane & Brayshaw, 1988) in 1987 based on Gentner’s structure mapping 

theory and that implements both informational and behavioural constraints using serial constraint 

satisfaction (Holyoak & Thagard, 1989). Given the base and target domains it constructs a near 

optimal mapping incrementally, by selecting and matching small portions of the base domain, 

rather than matching every element in the domain at once. 

The IAM algorithm as Keane et al. describe it (Keane, et al., 1994) is given in Table 1 below.  

1. Select the seed group. Form groups of connected elements in the base domain and order them 

by some assigned ranking. Take the first such group in the ordered list as the seed group. 

2. Select the seed match. From the seed group, select an element and try to find a good match for 

it in the target domain. 

3. Find isomorphic (one-to-one) matches for the group. For all the elements in the selected group, 

try and find a mapping with elements from the target domain by applying a set of constraints 

(structural, similarity, pragmatic).  

4. Find transfers for the group. Add candidate inferences to the mapping derived from the previous 

matches found. 



 

22 

 

5. Evaluate the group mapping. If the mapping found is not optimal, backtrack to Step 2 and find 

an alternative seed match. If there is no better seed match, then backtrack to Step 1 and find 

another group as the seed group. Otherwise, proceed to the next step.  

6. Continue mapping the other groups. Try to find successful matches for the remaining 

unmapped groups and incrementally add them to the inter-domain mapping (Step 1 to Step 5). 

Table 1. IAM Algorithm 

IAM has been compared (Gentner & Forbus, 2011) (Keane, et al., 1994) with other 

computational models that implement analogical mapping and has been shown to obtain good 

performances (and even outperform other models that do not implement behavioural constraints).  

The previous optimal and greedy search strategies of another analogy model (SME - (Falkenhainer, 

et al., 1989)) subsequently also adopted Keane’s incremental strategy.  

The main advantages of using the IAM algorithm when comparing two structural 

representations are:  

- Reduced processing complexity (can function in a limited working-memory capacity). 

Because it is an incremental process that iteratively finds and adds new mappings between the 

target and base domains it is much faster than trying to map all the elements in a domain. 

- Possibility of backtracking. If the acquired mapping is not evaluated as being successful 

(usually, when less than half of the elements have been mapped) it can go back and find 

alternative mappings. 

The challenging aspects, however, of using the IAM algorithm are: 

- Selecting a good seed group choice criteria. Choosing an appropriate method of ranking the 

groups of elements in the base domain is very important for finding a successful seed group to 

be used in the incremental process. 

- Selecting a good seed match choice criteria. After selecting a seed group, the algorithm has to 

find a seed match (the first valid (legal) mapping between an element in the base and an 

element in the target domain). 

- Defining a set of match rules and constraints. In order to determine what it means for a match 

to be valid certain constraints must be satisfied. As IAM produces a one-to-one mapping 
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between the source and target domains, specific rules must be used in order to discard 

ambiguous matches such as one-to-many or many-to-one. 

In Arís we use the IAM algorithm to build an incremental mapping between two conceptual 

representations of source code files by iteratively selecting and matching sub-graphs. We use a 

recently developed and promising graph metric as a selection criteria in picking the seed group and 

the seed match. As match constraints we define different similarity, structural and pragmatic rules 

that help us achieve an efficient and one-to-one mapping as IAM requires. 

 

3.6. Conclusions 

In this chapter we presented different terminology and background concepts that we will refer 

to in the following sections as we describe our proposed solution. At the beginning we talked about 

the Conceptual Graph formalism that we use to represent our input source code files (in Chapter 

(4)) as it has the great advantage of capturing not only the content information from the source 

code but also its structural properties, in a manner that is inter-leaved. We then described the 

Analogical Reasoning process with emphasis on its key task of Analogical Mapping. As Gentner’s 

Structure Mapping Theory was best identified with graph-matching as the means to efficiently find 

analogical comparisons between two domains, we then showed how analogical reasoning can be 

applied computationally by using the Incremental Analogy Machine model. The following chapters 

of this paper describe our prototype, evaluation and results.  
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4. Source Code as Conceptual Graphs 

As described earlier in Section (3.1), conceptual graphs are a powerful structure for 

representing data in which the information is stored not only in the content but also in the structure 

making them fit to model source code documents. In this chapter we detail (Section (4.1)) the 

concept and relation types (graph support) that we allow in our conceptual graphs and how they 

can be constructed from the source code files (Section (4.2)). We also give some examples of 

graphs built with our system and finally in Section (4.3) we present some limitations of this choice 

of representation. 

 

4.1. Source code concepts - hierarchy and semantics 

In order to build our conceptual graphs, we studied the method described by (Mishne & De 

Rijke, 2004) in which a partial support for representing C source code files is given. We extended 

their model so that we could represent more programming features and adapted it to the C# 

programming language. We start by describing the concepts and relations that are allowed in our 

graphs and then indicate how they can be connected together and what possible referents each 

concept type can have. 

After examining various C# source code files and based on (Clayton, et al., 1998) and (Mishne 

& De Rijke, 2004) we constructed a hierarchy of concepts (the support of the graph) which is 

presented in Figure 6. In Table 2 below we briefly describe the meaning of every concept. 

Concept Type Description 

ASSIGNOP An assignment of a value to a field or variable (including assignments such as 

“+=”, “*=”) 

BLOCK A set of concepts that are structurally grouped together (for example, code that is 

inside curly brackets {...}) 

CLASS A declaration or definition of a class 

COMPAREOP A binary comparison operator like “<=”, “!=”, etc. 

ENUM A declaration of an enumerated set of values 

FIELD A declaration of a variable directly in a class (a class attribute) 

IF A conditional branch statement 

LOGICALOP A binary logical operation, such as “OR”, “AND”, etc.  
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LOOP An iterative process that depends on a condition 

MATHOP A mathematical operation like “+”, “*”, etc. 

METHOD A declaration or definition of a function inside a class 

METHOD-CALL A method invocation (execution) 

NAMESPACE Defines a scope that can contain one or more classes. Useful for code organization 

NULL A null reference (keyword null in C#) 

STRING A textual entity (numbers are also represented as strings) 

SWITCH A conditional statement that has multiple branches 

TRY-CATCH 

STATEMENT 
A try block followed by one or more catch clauses, which specify handlers for 

different exceptions 

VARIABLE An entity declared in the program that holds values during execution 

Table 2. Concept types allowed in the graph and their description 

 

  

Figure 6. Hierarchy (from left to right) of source code concepts in 

the conceptual graph cannon. 
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In order for our conceptual graph support to be complete, we must define a partial order for the 

concepts, but since we will not use any features of conceptual graphs that would require such an 

ordering, like (Mishne & De Rijke, 2004), we can define any arbitrary order, for example the 

lexicographical one.  

Next, we present the types of referents (indicating whether the node is an individual entity or a 

generic one) and also the types of relations that can connect concepts together (Table 3). 

- Variable, Field, Enum, Method, Class, Method-Call – will always have an individual 

referent which is a programing language identifier (for C#, identifiers conform to the 

Unicode Standard16) 

- String – will always have an individual referent which can be text of any length 

- Block – can either have a generic (“*”) referent or an individual one (an identifier as above) 

- All other concepts can have only the generic (“*”) referent 

Below you can see a list of possible relation types and which concepts they can connect. We 

used a shortcut notation “Action” to imply any of the concepts Assign, CompareOp, LogicalOp, 

MathOp, Method-call. 

Relation Type From Concept To Concept Description 

Condition If  Action 

String 

Variable 

Field 

Describes the conditional statement within the 

if clause. 

 Loop Action 

String  

Variable 

Field 

Specifies the conditional statement that 

determines the iterative process 

Contains Action Action 

String 

Variable 

Field 

The action can use (or depend on) other 

concepts 

                                                 
16 Unicode Standard - http://www.unicode.org/standard/standard.html 

http://www.unicode.org/standard/standard.html
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 Block Action 

String 

Variable 

If 

Enum 

Try-catch 

A block can contain this concept 

 Class Field 

Method 

A class definition contains this concept 

 Enum String The enumeration elements are defined as 

strings 

 Method Block The method definition contains a block of 

concepts 

 If Action 

Block 

The branching statement can contain a block 

with multiple concepts, or just an action 

 Loop Action 

Block 

Variable 

Field 

The loop can contain or initialize other concepts 

 Namespace Class The namespace definition contains the class 

Defines Block Namespace A block (usually the root of the file) gives a 

definition of the namespace 

Depends Block Namespace A block can depend (require) other namespaces 

Parameter Method String 

Variable 

The method definition contains the concept as 

parameter 

 Method-call String 

Variable 

Field 

The method is called with this concept as 

parameter 

Returns Method Action 

Variable 

Field 

String 

The method returns a value 

Table 3. Relation types and how they connect the concepts 

So far we described what concept types we allow in our conceptual graphs, in what ways they 

can be connected together and what information they can store about the source code elements they 

represent. In order to get a better understanding of how a conceptual graph is created we next 
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present our graph construction algorithm and also give an example showing how a simple program 

is transformed into its corresponding conceptual graph representation.  

 

4.2. Graph construction algorithm 
 

In order to analyse C# source code files we require a tool that parses the code into an 

intermediate representation that contains all information about both the structure and content of the 

document. As (Mishne & De Rijke, 2004) create an extension of a parser for the C programming 

language grammar, we first looked at something similar for the C# language. We found that Coco/R 

(Mössenböck, et al., 2011) compiler generator tool can take the grammar of a programming 

language and generate a scanner and a parser it – and similar to the compiler it is able to generate 

the Abstract Syntax Tree (AST) representation of the source code (which reflects the logical 

structure of the compiled program). However, extracting the AST with Coco/R involves manually 

defining its structure and node classes, which although gives full control over the contents of the 

AST, can become a difficult process and since we wanted a faster way of obtaining a program’s 

structural representation (that also worked for the last version 4.5 of .NET framework17) we chose 

to use the Microsoft Roslyn Project (Warren, et al., 2012). Roslyn is a system that exposes the C# 

compiler’s code analysis and can provide us directly with the AST from a C# file without any other 

requirements.  

The AST we obtained is quite similar to the conceptual graph representation in that both give 

a formal description of the attributes and expressions in the code. However, unlike our source code 

conceptual graphs, the AST is very detailed (containing a lot of unnecessary information such as 

whitespaces, punctuation marks, etc.) and it does not provide any level of abstraction (like our 

conceptual graph, where for example, a Loop concept can refer to any of do-while, while, for or 

foreach statements). Our conceptual graph construction process takes the AST root (using Roslyn) 

and traverses all its descendant nodes in a Depth First Search18 manner in order to create the 

corresponding concepts and relations in the conceptual graph. The key to that is the ability to map 

expressions (nodes) at the AST level to concept types in the conceptual graph (Figure 7).  

                                                 
17 .NET Framework - http://www.microsoft.com/net 
18 Depth First Search - http://www.cse.ust.hk/~dekai/271/notes/L06/L06.pdf 

http://www.microsoft.com/net
http://www.cse.ust.hk/~dekai/271/notes/L06/L06.pdf


 

29 

 

  

 

 

 

 

 

 

 

 

Each time we encounter a node of interest in the AST, we create the appropriate nodes in the 

conceptual graph, which we store using the graph structures in the QuickGraph19 library (another 

good option would have been to use the Cogitant20 library that provides C++ classes for modelling 

conceptual graphs, however we did not used it because we opted for .NET as a development and 

testing grounds platform). Below you can see an example of the conceptual graph construction 

process: Table 4 describes a simple C# function that sums the first k numbers; Figure 8 shows the 

parsed AST and Figure 9 presents the constructed conceptual graph. A more “real life” conceptual 

graph, for a more complicated program that contains more than one method and trivial operations, 

can be seen in Figure 10. 

 

 

 

                                                 
19 QuickGraph, Graph Data Structures And Algorithms for .NET - http://quickgraph.codeplex.com/ 
20 COGitant - http://cogitant.sourceforge.net/ 

   public int Sum(int k){ 
      int s = 0; 
      for (int n = 0; n < k; n++) 
               s += n; 
      return s;} 

Table 4. example1.cs 

Figure 7. Example of mapping between the Abstract Syntax Tree classes and types of 

concepts and relations in a conceptual graph (rectangles denote concepts and ovals relations) 

http://quickgraph.codeplex.com/
http://cogitant.sourceforge.net/
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Figure 9. The resulting (full) conceptual graph for example1.cs generated with the 

Conceptual Graph Visualizer Tool that we developed in our system using the GraphViz .NET 

library. 

Figure 8. Fragment (describes only the first declaration in the program int s = 0;) 

of the AST example1.cs. 
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Figure 10. C# class that implements the QuickSort algorithm. 
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4.3. Analysis and conclusions 

Although the set of concepts and relations that we defined is not complete (it contains the basic 

concept types in order to allow us to experiment with our graph matching algorithm, described next 

in Chapter (5)), it can be easily extended to support more programming features of the C# language 

such as properties, delegates, events, etc. The concepts Namespace, Class, Try-catch-statement, 

Field, Null are an addition to those proposed by (Mishne & De Rijke, 2004) which do not convert 

some components (for example, pre-processor directives such as “#includes”) into concepts at all.  

However, unlike them, our system does not model comments in the source code (which are natural 

language descriptions attached to various source code elements). We chose to ignore them as in 

the Arís project, we perform source code retrieval based on extracting semantic and structural 

information from the programming constructs (Loop, If, Variable, Block, etc.). Also, matching code 

comments is best performed by using Natural Language Processing21 techniques like, for example 

(Marcus & Maletic, 2001) or (Notkin & Michail, 1999) that implement Latent Semantic Indexing22 

or n-grams23. But such kind of algorithms become less efficient when the source code is poorly 

documented, which is why most of the tools that match source code ignore the “noise” from the 

comments.  

Another drawback of our conceptual graph representation is that it does not capture any 

information about the order in which the statements are executed, which in some cases may be 

useful. For example, if we want to model an “if – else” statement, then an If concept is constructed 

that has a Condition relation to an expression and one or more Contains relations that represent the 

statements executed in both the if and the else blocks. Thus, only by examining the conceptual 

graph we can’t know what statements are executed when the condition is true and when it is false. 

A solution to this (although in our project we do not need such kind of information) would be to 

extend the graph formalism to include an Else concept that can be mapped to an ElseClauseSyntax 

type in the AST extracted with the Roslyn API. However, extending the graph cannon can also be 

another possible difficulty, because it requires first to examine the AST classes in order to add 

another mapping between an AST type and a conceptual graph type that would then be used in the 

graph construction process described in Section (4.2).  

                                                 
21 Natural Language Processing - https://en.wikipedia.org/wiki/Natural_language_processing 
22 Latent Semantic Indexing - http://nlp.stanford.edu/IR-book/html/htmledition/latent-semantic-indexing-1.html 
23 N-grams - http://en.wikipedia.org/wiki/N-gram 

https://en.wikipedia.org/wiki/Natural_language_processing
http://nlp.stanford.edu/IR-book/html/htmledition/latent-semantic-indexing-1.html
http://en.wikipedia.org/wiki/N-gram
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5. Comparing Conceptual Graphs 
 

5.1. Overview and intuition 

As discussed in Section (3.1), conceptual graphs have been used in various fields such as 

information retrieval, case based reasoning or machine learning. A number of techniques have been 

proposed for comparing conceptual graphs, most importantly, Sowa’s set of projections and 

morphisms defined in (Sowa, 1984).  A notion of semantic distance that can measure the distance 

between two concepts from the support of the graph has also been discussed in (Foo, et al., 1992), 

although it is not extended to an entire graph. The problem with Sowa’s morphisms is that they are 

too strict (they focus on finding structurally identical graphs or sub-graphs) whereas we wanted 

our method to be able to match even homomorphic graphs, allowing somewhat different structures 

to be mapped together. Also, as our project is designed to be used in the Source Code Retrieval 

phase of the Arís project, this required a more “relaxed” measure of similarity (retrieval models 

usually permit a certain degree of structural “fuzziness”) so that even graphs that don’t share the 

exact same structure (but are related) could be retrieved (see, for example the two graphs in Figure 

11). An influential work for us, (Mishne & De Rijke, 2004), that also used conceptual graph 

comparisons for source code retrieval, defined a contextual similarity measurement with the same 

goal as us, to combine the structural with the content information stored in the graphs. However, 

their method does not actually perform a structural comparison (more details about their algorithm 

are given in Section (2.2)) and their content matching algorithm relies on just a simple string based 

distance.  

 

 

Figure 11. Two related program graphs 
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Our main motivation in developing a method for mapping source code files is the possibility 

of transferring specifications from one program to the other, based on the amount of mapped 

elements found. In this sense, we use the term source to refer to each retrieved candidate solution 

program (with specifications) and the term target to refer to our unspecified problem code.  The 

objective is to identify the best mapping between two isomorphic graphs (where the two programs 

can use different identifier names) and also cater for mapping homomorphic graphs (with different 

structural shapes like the ones in Figure 11). But since we opted for the rich representation of a 

conceptual graph (where each node can have content information), we also wanted to perform a 

more elaborate content based similarity measurement rather than just the basic string distance (for 

example, ensure that variables are matched with variables and loops with loops, also, add the ability 

to indicate that an int i and long j are two similar statements as they both hold numeric values).    

The graph matching problem is known to be difficult (falling into the NP-complete24 class of 

problems), Bunke (Bunke, 2000) and Conte, et. al. (Conte, et al., 2004) give a good overview over 

the last 30 years of graph matching applications (including case-based reasoning, machine learning, 

semantic networks and conceptual graphs), and although polynomial isomorphism algorithms exist 

for special kinds of graphs, most types of exact graph matching have exponential time complexity 

in the worst case. (Mishne & De Rijke, 2004) avoid this by doing a node-by-node comparison (in 

which, based on their defined notion of maximally similar concept, they match every concept in a 

graph G1 to a concept in another graph G2 to which it is compared) and manage to bound their 

algorithm to run in 𝑂(|𝐺|3), but still, considering the sizes of real life source code files, it is not 

very optimal for a retrieval based system like the Arís project).  

Our proposal is to use an incremental graph matching algorithm based on the Incremental 

Analogy Machine (IAM) (Keane & Brayshaw, 1988) which is a computational model for analogical 

reasoning (for more details see Section (3.2)),  based on Gentner’s structure mapping theory 

(Section (3.3)). Previous work has been successful in applying analogical reasoning for finding 

detailed correspondences between two domains, for example (O'Donoghue, et al., 2006) combine 

Gentner’s structure mapping theory with an attribute matching algorithm for mapping geographic 

and spatial data, or (Park & Bae, 2011) that implement the Structure Mapping Engine (SME) for 

matching UML specifications. 

                                                 
24 NP-completeness - http://cs.brown.edu/~jes/book/pdfs/ModelsOfComputation_Chapter8.pdf 

http://cs.brown.edu/~jes/book/pdfs/ModelsOfComputation_Chapter8.pdf
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The main reason for choosing the IAM algorithm is that it allows us to explore the relational 

nature of the conceptual graphs and also because it is considered (Keane, et al., 1994) to obtain 

similar results to people’s analogical reasoning process: first, because it has the ability to generate 

complex analogical mappings very quickly and accurately and also, because it can reconsider a 

mapping and generate new alternative ones. In a nutshell, IAM begins by matching the two largest 

sub-graphs from the source and target domains. This forms a seed mapping from which additional 

structures from the source and target are added iteratively forming a single mapping between the 

new code and the previously specified code. The first challenging aspect when applying the IAM 

algorithm is finding the appropriate “root” concept (the most referenced node in the graph) from 

which to start the matching process and create the seed match. We will describe our approach 

concerning this process in the next paragraphs as follows: Section (5.2.1) describes how we 

extracted and sorted the nodes using the Node Rank graph metric, Section (5.2) talks about how we 

adapted and applied the IAM algorithm for mapping two conceptual graphs, Section (5.2.6) 

presents the match rules and constrains that must be enforced in order to find valid mappings and 

in Section (5.3) we present the Copy With Substitution and Generation algorithm for transferring 

specification between the source and target programs.  

 

5.2. Incremental matching using the IAM algorithm 

In this section we describe, step by step, how we applied Keane & Brayshaw’s Incremental 

Analogy Machine (Section (3.5)) algorithm for mapping two conceptual graphs. Our system 

receives as input two source code files that have a structure similar to the one in Table 5, for which 

the graph matching module then finds the detailed mapping and outputs a similarity score based 

on the extent of the mapping acquired. 

// using directives, namespace definition 

class ClassName{ 

    // class members 

    field_1 

    field_2 

    … 

    // class methods 

    method_1(list_of_parameters) {...} 

    method_2(list_of_parameters) {...} 

    method_3(list_of_parameters) {...} 

    … } 

Table 5. Example a C# program file structure that we receive as input to our system 
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We first start by constructing the conceptual graph representations for both files (applying the 

process described in Section (4.2)) and compute the node ranks for each concept in the graphs using 

the Node Rank metric. Next we map the two graphs by selecting parts (sub-graphs) of them and 

doing a node-by-node comparison in an analogical mapping process (Section (3.5)) composed by 

the following steps. 

 

5.2.1. Sorting nodes by Node Rank  

In this project we experiment using a graph-based metric called Node Rank in order to increase 

the efficiency of the incremental matching process by mapping nodes based on their relative 

importance in the graph. In order to do this we sorted the elements in the base and target domains 

such that the highest ranked nodes represent the most important elements in the program. 

Node Rank (NR) is a metric proposed by (Bhattacharya, et al., 2012) and is similar to the Page 

Rank25 (Brin & Page, 1998) algorithm that represents a probability distribution expressing the 

likelihood that a person surfing the web will arrive at any particular page. Applied to our problem, 

the Node Rank algorithm assigns a numerical weight to each node in the conceptual graph, 

basically measuring the structural importance of that node in the graph (depending on the other 

nodes that have ongoing or outgoing edges to or from it, see for example Figure 12).  

In order to formally describe the recursive calculation of the node ranks in a graph, let 𝑢 denote 

a node in the graph, 𝑁𝑅(𝑢) its node rank, 𝐼𝑁(𝑢) the set containing all the nodes 𝑣  that have an 

outgoing edge into 𝑢 and 𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑢) represent the number of edges going out of the node 𝑢. 

Initially, all nodes have an equal node rank (we used  
1

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
).  

An iterative process calculates a new 𝑁𝑅(𝑢) in every iteration as the sum over all 𝑣 ∈ 𝐼𝑁(𝑢): 

𝑁𝑅(𝑢) =  ∑
𝑁𝑅(𝑣)

𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑣)𝑣 ∈𝐼𝑁(𝑢)  (Bhattacharya, et al., 2012) 

                                                 
25 made famous by Google. 
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The iteration process stops when the values converge (when the change in the sum of all the 

NRs due to one iteration is small enough, e.g. the difference between the old sum and the current 

one is less than or equal to a 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑒𝑟𝑟𝑜𝑟 factor, that we set to 0.001, or the iteration limit 

has been exceed, e.g. > 50). Also, in order to enable convergence, after each iteration we normalize 

the node ranks so that their sum adds up to one.  

 

 

 

 

5.2.2. Selecting sub-graphs 

This is the key process that reduces the complexity of IAM’s analogical mapping as it 

incrementally selects portions from the source domain to map with the target, which, instead of 

mapping all the elements in the base with all the elements in the target in an exhaustive manner, it 

is much more efficient. The sub-graphs in our case, could be any function in the program, as any 

function represents an interconnected or systematic group of graph nodes, respecting IAM’s initial 

indication for selecting the seed group.  

Figure 12. Fragment from the conceptual graph for the example1.cs in Table 4 

showing the node ranks assigned. The node rank values are normalized to values 

between 0 and 1 for more clarity. Variables s and n have the highest NR values 

because they are important variables in the program, used for the sum calculation 

and in the return statement. 
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Selecting methods with identical names. Given that two similar source code files that 

implement related algorithms can possibly also have identical method names, we first preference 

selecting methods from the base that have identical names with methods from the target domain. 

This can increase the efficiency of finding fast correspondences between two graphs, although it is 

more common in cases of source code duplication or plagiarism detection and would not work in 

a general situation. In cases where the target or the source domain contain multiple instances of the 

same method (e.g. overloading) then we accept the mapping with the highest similarity score, 

which we obtain by evaluating different similarity functions defined in Section (5.2.6).   

Selecting methods by their Node Rank order. If no identical function names exist, we then 

use the Node Rank metric described in Section (5.2.1) and sort all the methods in the graph base 

domain by their NR values. We then map the methods one-by-one selecting them in a decreasing 

manner (remember when we described the NR metric as a means of sorting nodes in a graph by 

their relative importance – thus a method with the highest NR value in a source code file means 

that it plays an important role in the structure of the algorithm as other functions call/depend on it). 

This can also be viewed as applying a pragmatic constraint (Holyoak & Thagard, 1989): preferring 

the elements which are more goal relevant (ore more important) over other alternatives in the 

analogical mapping process.  

The mapping algorithm builds up one single inter-domain mapping, which is used to check 

and enforce the 1-to-1 mapping constraint required by IAM. In this way, additional sub-graphs are 

matched and added to the inter-domain mapping only if they are consistent with the previous 

correspondences found (this implies discarding one-to-many and many-to-one mappings).  

Although the IAM algorithm only orders the source domain, in our case this is not enough as 

it would mean to search through the whole target domain in order to find the most similar functions 

to the functions in our base domain. Thus, in an analogical way, we also sort by NRs all the methods 

in the target domain. We then start matching the two domains by comparing the functions one-by-

one taken decreasingly by their NRs. The process of finding correspondences between two methods 

is explained in the following section. 
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5.2.3. Mapping sub-graphs 

After selecting two methods from the source and target domains we begin matching their 

corresponding sub-graphs (in a conceptual graph every method in the source code is represented 

by a Method concept that is related to other concepts through relation types such as Contains, 

Returns or Parameter – thus forming a sub-graph).  

Looking at the original IAM algorithm, after finding a seed group in the base domain it 

continues on to find a seed match – a first valid match between an element in the seed group and 

an element in the target domain, before the rest of the seed group is matched. In order to check if 

two nodes in a CG form a valid match, they must first comply with the mapping constraint that 

ensures they have the same concept type. 

Because we are dealing with a specific type of mapping process that maps two source code 

methods, we first employ a very simple check between the parameters of the methods. We do this 

by comparing each parameter of the base domain method with every parameter of the target method 

(looking at the concepts connected by the Parameter relation in the corresponding sub-graphs) and 

measure a similarity score 𝑠𝑖𝑚 between two concepts (described in Section (5.2.6)) to select the 

best possible mapping. This ensures that our parameters are matched successfully and that changing 

their order in the method definition does not influence the matching process. This approach also 

helps disambiguate later mappings between the method’s body implementations. 

The rest of the concepts that describe the body of the methods are then sorted by their NRs 

(similar to the method sorting process) and each concept in the source domain is then mapped to 

its most similar concept in the target domain by taking each candidate node under decreasing order 

of its NR value. However, we do not search the whole space of the target domain, instead we use 

a threshold parameter called 𝑚𝑎𝑡𝑐ℎ𝑑𝑒𝑝𝑡ℎ that represents the number of concepts in the target to 

which we compare each concept from the base domain (a pseudo-code description of how we 

compare the concepts can be seen in Table 6). 

 

 



 

40 

 

sort BaseDomain decreasingly by NodeRank values 

sort TargetDomain decreasingly by NodeRank values 

i : = 0; j := 0; match_depth:= 10; 

for (i = 0; i < size (BaseDomain); i++) 

  validMatch := false; curr_depth := 0; backtrack := false; 

  for (; j < size (TargetDomain); j++) 

     if (curr_depth >= match_depth) 

        if (backtrack = false)  

           // if backtrack is possible then backtrack once.backtrack := true 

           // otherwise j := i + 1, move to the next elem  

        else  j := i + 1; backtrack := false; break;     

        end if 

     end if 

     curr_depth := curr_depth + 1; // count the current comparison 

     if (ValidMatch(BaseDomain(i), BaseDomain(j))){ 

       // resolve many-to-one mappings 

       // resolve one-to-many mappings 

       // update inter-domain mapping 

        … 

       validMatch := true; 

       break;  

      end if 

  end for 

  if (validMatch == true) 

     // find all derived, valid matches 

     // update inter-domain mapping 

  end if 

  j := i + 1; // move to the next corresp target elem of the curr base elem       

end for 

Table 6. Algorithm description of the mapping process between elements in the source method 

and elements in the target method. Certain parts of the algorithm are left out due to space reasons, 

however they are explained in the next sections. 

In order to ensure that our mappings are consistent we use a Boolean function 𝑣𝑎𝑙𝑖𝑑 

(described in Section (5.2.6)) that determines, based on the similarity score 𝑠𝑖𝑚, whether a match 

is accepted as valid and added into our inter-domain mapping (consisting of individual elements 

from the base and their correspondent elements from the target). If a match is not considered valid, 

we try to match the current base element to the next highest NR valued element from the target and 

so on, until the 𝑚𝑎𝑡𝑐ℎ𝑑𝑒𝑝𝑡ℎ threshold is exceeded (in our experiments it was set to 10).  

 After we’ve found a valid mapping between two concepts, we then check their immediate 

context (sub level) in the corresponding graphs for finding other related mappings. We compare 

each child node of the mapped element in the source to each child node of the mapped element in 

the target - for example see Figure 13 - and if any comparison is considered a valid match then the 
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match is saved to the current mapping we are building. The algorithm then moves on to match the 

rest of the elements from base group in an analogical way. 

 

 

 

 

 

 

Returning to the formal description of IAM, the seed match can be found by trying to map 

concepts from the source domain (taken in descending NR values) to the first 𝑛 <  𝑚𝑎𝑡𝑐ℎ𝑑𝑒𝑝𝑡ℎ 

elements in the target, using backtracking, until a valid match is found. If no valid mapping can be 

identified (when none of the elements in the source domain have corresponding similar elements 

in the target) then this sub-phase of the overall mapping process terminates. A sub-graph mapping 

is accepted only if at least 50% of the source nodes have been mapped, otherwise it is rejected. 

 

5.2.4. Resolving ambiguities 

In order to enforce 1-to-1 correspondences (isomorphism) and resolve possible ambiguities we 

define our inter-domain mapping as a structure holding < 𝐾𝑒𝑦, < 𝐾𝑒𝑦′, 𝑉𝑎𝑙𝑢𝑒′ >> triples, where 

the keys are concepts from the source domain and the values are also < 𝐾𝑒𝑦′, 𝑉𝑎𝑙𝑢𝑒′ > pairs in 

which the keys are the corresponding mapped concepts from the target domain and the values are 

real numbers that represent the 𝑠𝑖𝑚 similarity score obtained. This semantic similarity is used to 

disambiguate subsequent matches such that if one match in a set of one-to-many mappings has a 

Figure 13. Example of how other mappings are derived after a valid match has been found. 

At the beginning our inter-domain mapping contains the match {Loop: For <-> Loop: 

While}. We take this mapping and check whether the concepts it relates to (the subsequent, 

children nodes) can also form valid mappings. In this case, they do, so we also add the pairs 

{Contains <-> Contains} and {Condition <-> Condition} to our mapping. We proceed 

similarly with all the elements in the groups. This process can also be correlated to the 

Attribute-mapping problem (Holyoak & Thagard, 1989), where if two predicates are 

matched, then their arguments are also mapped accordingly.  
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greater 𝑠𝑖𝑚 score, then it is preferred over other alternatives previously found. Thus an initially 

poor mapping can potentially be improved at a later stage. For example, if we had an initial 

mapping <{CompareOp:<=}, <{CompareOp:>=}, 0.7>> and later we found another better 

mapping of the same key <{CompareOp:<=}, <{CompareOp:<=}, 0.9>> then the last 

correspondence would replace the first one. The fact that the algorithm can replace a mapped item 

by another item can possibly allow non-isomorphic structures to map together, although in practice 

this happens rarely and can often be attributed to small non-isomorphic details in the code. 

Whenever we find a potential valid match between concepts from the source and target domains 

we check for the following possible ambiguities (you can see the actual code snippet in Table 7): 

1. Many-to-one mappings: are when multiple concepts from the source domain are being mapped 

to the same concept from the target domain.  

2. One-to-many mappings: are when the same concept from the source domain is being mapped 

to multiple concepts from the target domain.  

In both cases, the algorithm replaces the old mapping with the new one found if it has a higher 

𝑠𝑖𝑚 score, thus discarding any ambiguities and preserving the 1-to-1 constraint of IAM. 

// Check content matching 

if (ValidMatch(curr_source_elem, curr_target_elem) == true){ 

  // Save new similarity score found 

  new_sim_score = SimilarityScore(curr_source_elem, curr_target_elem); 

  // Get the previous base elem that has been mapped to the curr target 

elem 

  GraphConcept previous_mapp = InterDomainMapping.Keys.FirstOrDefault(k =>     
                            InterDomainMapping[k].Key==curr_target_elem); 
  if (previous_mapp != null){ 

 // Resolve many-to-one matchings  

    if (InterDomainMapping(previous_mapp).Score < new_sim_score){ 

     // Delete the previous mapping in order to add the new one 

        InterDomainMapping.Remove(previous_mapp); 

      // Add the current match to the inter domain mapping 

     if (InterDomainMapping.Contains(curr_source_elem) == false){ 

          InterDomainMapping.Add(curr_source_elem, new   

          KeyValuePair(curr_target_elem, new_sim_score);} 

     else{ 

         // Resolve one-to-many matchings 

        if (InterDomainMapping(curr_source_elem).Score < 

new_sim_score){  

              InterDomainMapping(curr_source_elem) = new  

              KeyValuePair(curr_target_elem, new_similarity_score);} 

     } } 

else {// the curr_source_elem has never been matched before 

   // Add the current match to the inter domain mapping  
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   if (InterDomainMapping.Contains(curr_source_elem) == false){  

         InterDomainMapping.Add(curr_source_elem, new  

         KeyValuePair(curr_target_elem, new_sim_score);} 

   else { 

     // Resolve many-to-one matchings 

     if (InterDomainMapping(curr_source_elem).Score < new_sim_score){  

              InterDomainMapping(curr_source_elem) = new  

              KeyValuePair(curr_target_elem, new_sim_score)} 

    } 

 } 

} 

Table 7. Code example of how our algorithm resolves one-to-many and many-to-one 

ambiguous matches. 

 

5.2.5. Evaluating sub-graph mappings 

Just like the IAM algorithm, after finding all the valid matches for the seed group (current 

method in the source file), we perform a minimal evaluation on it (evaluation that has been shown 

to work on several other domains of knowledge (Keane, et al., 1994)). If more than half of the 

elements in the group have been matched successfully, then the mapping is considered as being 

successful and the algorithm moves on to incrementally map the next groups (the other methods in 

the class, if we remember the structure of the program that we considered at the beginning in Table 

5). This 50% mapping threshold is known as the IAM mapping constraint. If the mapping found is 

not successful, the algorithm backtracks and selects an alternative seed match if there is any other 

(remember how elements are selected under decreasing order of their NR values). If sufficient 

similarity cannot be found (no successful mapping exists) then the group is abandoned and another 

two groups are selected (again by their NR order). 

After successfully mapping the current group the algorithm proceeds to match the next 

unmapped groups in the source domain and incrementally adds the corresponding matches found 

to the inter-domain mapping as long as they respect the 1-to-1 constraint enforced by IAM. We 

highlight that each of these incremental mapping activities contributes to the one same inter-

domain mapping, forming one consistent interpretation of the comparison. 

When the mapping process finishes finding all the valid matches between the sub-graphs in 

the source and target domains, we calculate the graph similarity score of the conceptual graphs as 
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a real number equal to the total number of nodes matched over the total number of actual nodes in 

the source domain (because we map the source to the target). This can be formally written as: 

 𝐺𝑟𝑎𝑝ℎ𝑆𝑖𝑚(𝐶𝐺𝑠𝑜𝑢𝑟𝑐𝑒 , 𝐶𝐺𝑡𝑎𝑟𝑔𝑒𝑡) =
|𝐼𝑛𝑡𝑒𝑟𝐷𝑜𝑚𝑎𝑖𝑛𝑀𝑎𝑝𝑝𝑖𝑛𝑔(𝐶𝐺𝑠𝑜𝑢𝑟𝑐𝑒,𝐶𝐺𝑡𝑎𝑟𝑔𝑒𝑡)|

|𝐶𝐺𝑠𝑜𝑢𝑟𝑐𝑒|
 

In order for our system to be fit for use in source code retrieval applications such as Pitu’s 

(Pitu, 2013) work in retrieving similar previous verified programs to the target query in Arís, our 

algorithm needs to respect the following constraints: 

1. Symmetry:  ∀𝐶𝐺𝑠𝑜𝑢𝑟𝑐𝑒  ∀𝐶𝐺𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐺𝑟𝑎𝑝ℎ𝑆𝑖𝑚(𝐶𝐺𝑠𝑜𝑢𝑟𝑐𝑒 , 𝐶𝐺𝑡𝑎𝑟𝑔𝑒𝑡) = 𝐺𝑟𝑎𝑝ℎ𝑆𝑖𝑚(𝐶𝐺𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐶𝐺𝑠𝑜𝑢𝑟𝑐𝑒) 

2. Maximal similarity: ∀𝐶𝐺𝑠𝑜𝑢𝑟𝑐𝑒  ∀𝐶𝐺𝑡𝑎𝑟𝑔𝑒𝑡, 𝐺𝑟𝑎𝑝ℎ𝑆𝑖𝑚(𝐶𝐺𝑠𝑜𝑢𝑟𝑐𝑒 , 𝐶𝐺𝑠𝑜𝑢𝑟𝑐𝑒) ≥ 𝐺𝑟𝑎𝑝ℎ𝑆𝑖𝑚(𝐶𝐺𝑠𝑜𝑢𝑟𝑐𝑒, 𝐶𝐺𝑡𝑎𝑟𝑔𝑒𝑡) 

Although our graph matching algorithm complies with the second requirement, in order to 

enable symmetry (which given the analogical reasoning framework of IAM the resulting mapping 

will not be symmetric if the source and target domains are different, as the process depends on the 

order and the number of seed groups in each domain, etc.) we calculate the similarities in both 

ways and take their average score (
𝐺𝑟𝑎𝑝ℎ𝑆𝑖𝑚(𝐶𝐺𝑠𝑜𝑢𝑟𝑐𝑒,𝐶𝐺𝑡𝑎𝑟𝑔𝑒𝑡) + 𝐺𝑟𝑎𝑝ℎ𝑆𝑖𝑚(𝐶𝐺𝑡𝑎𝑟𝑔𝑒𝑡,𝐶𝐺𝑠𝑜𝑢𝑟𝑐𝑒)

2
) as the final 

similarity that we output to the source code retrieval module of Arís. We emphasize that when we 

generate and transfer new specifications into the target, we use the mapping from the source (which 

has the specifications) to the target domain. 

 

5.2.6. Mapping constraints 

  In order to establish whether a match between two conceptual nodes is a valid match or not, 

our algorithm (similar to IAM) enforces some match rules and constraints which we implemented 

as similarity functions that check if certain properties hold in the mapping. Each similarity function 

receives as input the two concepts being compared (one from the source and one from the target) 

and outputs a similarity score ∈ [0,1]. Below we describe each similarity function in detail. 

1. Type similarity function  

This function checks if the two nodes being matched have the same concept type (i.e. Variable 

– Variable, Defines-Defines, etc.). Ensuring the mapping only between entities of the same type 
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will reduce the total number of matches that need to be considered (Holyoak & Thagard, 1989) and 

make the mapping process more efficient. We define the type similarity function as:  

𝑠𝑖𝑚𝑡𝑦𝑝𝑒(𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2) =  {
1, 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒1 = 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒2

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

2. Structural similarity function  

This function checks that the nodes having edges into or from the input nodes also have the 

same concept type (for preserving structural consistency, useful in eliminating ambiguous 

mappings, since the most structurally similar matches will also have the highest similarity score). 

This means that two concepts are mapped together only if they are found in a similar context within 

the local graph (where the context refers to all the adjacent nodes, see for example Figure 14).  

 

Given as input two concept nodes, the 𝑠𝑖𝑚𝑠𝑡𝑟𝑢𝑐𝑡 function compares the nodes on the immediate 

upper and lower levels in the two graphs, counts the number of nodes that have the same concept 

type and divides it over the total number of nodes in the largest context of the input nodes. For the 

example in Figure 14, where Method:Sum are the input nodes, we have 2 pairs of nodes of the same 

type (Contains – Contains, Parameter – Parameter) and an equal number of 4 nodes in both 

contexts. Thus the structural similarity will always output values between 0 and 1 (in the example 

given, the  𝑠𝑖𝑚𝑠𝑡𝑟𝑢𝑐𝑡(𝑀𝑒𝑡ℎ𝑜𝑑: 𝑆𝑢𝑚, 𝑀𝑒𝑡ℎ𝑜𝑑: 𝑆𝑢𝑚) =
2

4
= 0.5). 

 

 

Figure 14. Example of how the structural similarity function ensures structural consistency. On 

the left hand side we have a part of the method from example1.cs. In example2.cs we 

declared a function without implementation.  
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3. Content similarity function.  

One of the main advantage of our work compared with Source Code Retrieval using Conceptual 

Similarity by (Mishne & De Rijke, 2004) is the fact that we perform a more sophisticated content 

based comparison in addition to their simple string-based distance algorithm. Our content similarity 

function applies different comparisons depending on the concepts being mapped. A restriction 

however, needs to be set, since not all concepts in our conceptual graphs have content information. 

For example, relation types (Depends, Contains, etc.) do not have an individual referent and they 

only contain information about the concepts they connect. Thus all concepts that do not have an 

individual referent value are excluded from this type of similarity comparison.  

The most important process is how we compare C# variable types, information that is stored in 

Variable, Field and Method concept types. Our intuition was that types that do not match exactly 

(for example, two objects from different classes or two numeric variables, one int and the other 

double) should be checked if they have the same super-type or one is the sub-type of the other 

within a class hierarchy. This makes our algorithm accept more flexible comparisons and find 

similarities that can be missed by a simple string-distance measure (for example in comparing an 

int to a double). In order to achieve this, we add an attribute to Variable, Field and Method concepts 

that stores the C# type-specific information extracted from the Roslyn Abstract Syntax Tree. 

However, with the Roslyn AST, we do not obtain the fully qualified C# type name that we need in 

order to do a semantic comparison (for example, for an int its fully qualified type name is 

System.Int32, since all value types 26  derive from System.ValueType). Moreover, for the user 

defined types (classes in C#) we need to access their compiled assemblies27 in order to establish 

whether there is a class hierarchy between them. The Source Code Retrieval using Case Base 

Reasoning (Pitu, 2013) module of Arís project performs structural and semantic source code 

retrieval by analysing C# compiled assemblies, thus being able to extract all the types (with fully 

qualified names) used in a given C# source code file. We use this work to obtain a list of all the 

types (classes) that are being referenced in the two programs that we are comparing, such that when 

                                                 
26 Value types in C# include structs, enumerations, numeric types, Booleans - http://msdn.microsoft.com/en-

us/library/s1ax56ch(v=vs.80).aspx 
27 C# Assemblies - http://msdn.microsoft.com/en-us/library/ms173099(v=vs.80).aspx 

http://msdn.microsoft.com/en-us/library/s1ax56ch(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/s1ax56ch(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/ms173099(v=vs.80).aspx
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we want to match two concepts that have a Type attribute (Variable, Field or Method concepts) we 

determine the similarity between their attributes in the following way: 

- we retrieve their fully qualified C# types from the list of exported types obtained using the 

source code retrieval module of Arís. This gives us information about the objects and the 

hierarchy from which they derive. 

- we used different C# functions (described in Table 8) to determine whether the two types 

come from the same hierarchy or one is the sub-type of the other or they are both of the 

same, equivalent type (i.e. numeric type).  

 

bool Type.IsAssignableFrom (Type other)

  

Checks if an instance of the current Type can be 

assigned from an instance of the specified Type. 

bool Type.IsEquivalentTo (Type other) 
Checks if two types have the same identity can be 

considered as equivalent. 

bool Type.IsSubclassOf (Type other) 
Checks if the class represented by the current Type 

derives from the class represented by the specified 

Type. 

Table 8. Example of functions from the C# Type class28 used to compare types of two C# 

objects. 

If any of the properties described above are true, then we assign a score of 1 to the content 

matching and 0 otherwise. For the rest of the concepts that have referent values (CompareOp, 

LogicalOp, MathOp, Loop) we use the widely-known Levenshtein29 string distance. Levenshtein’s 

algorithm takes as input two strings s1, s2 and calculates the minimum number of single edits 

necessary to transform s1 into s2. The returned score is a value between 0 (no edits necessary) and 

the maximum length between s1 and s2 (when they are totally different). We use this score to 

compute the similarity between two input strings, however we normalize the Levenshtein output 

score to the maximum length between s1 and s2, thus our 𝑠𝑖𝑚𝒄𝒐𝒏𝒕𝒆𝒏𝒕 function, obtaining in both 

cases (C# type comparison and string-based distance) values between 0 and 1, as required. 

                                                 
28 Documentation for the C# Type class - http://msdn.microsoft.com/en-us/library/system.type.aspx 
29 Levenshtein string distance - http://software-and-algorithms.blogspot.ie/2012/09/damerau-levenshtein-edit-

distance.html 
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For example, if we want to map two variables defined as: Employee instance1 and Person 

instance2, where class Employee derives from class Person, then by checking if typeof 

(instance1).IsSubclassOf(typeof(instance2)), which in this case is true, we can infer that 

instance1 and instance2 can be mapped together (Liskov’s Substitution Pronciple30). 

As some types of similarities can be more important than others depending on the context and 

in cases where we want our mapping algorithm to perform a more “relaxed” matching (where, for 

example, even concepts that don’t share the same concept type can be mapped together) we 

assigned to each similarity function a weight representing its contribution to the overall similarity 

score 𝑠𝑖𝑚 that we defined as a linear combination of the three similarity functions as follows: 

𝑠𝑖𝑚 (𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2) = 𝑤𝑒𝑖𝑔ℎ𝑡𝑡𝑦𝑝𝑒 ×  𝑠𝑖𝑚𝑡𝑦𝑝𝑒(𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2) + 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑡𝑟𝑢𝑐𝑡  × 𝑠𝑖𝑚𝑠𝑡𝑟𝑢𝑐𝑡(𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2) + 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑜𝑛𝑡𝑒𝑛𝑡 × 𝑠𝑖𝑚𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2) 

     In our implementation (where we aimed for a more strict matching), we obtained good results 

using 𝑤𝑒𝑖𝑔ℎ𝑡𝑡𝑦𝑝𝑒 = 0.5, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑡𝑟𝑢𝑐𝑡 =  0.3 and 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 0.2. 

Next we defined, based on the overall similarity score 𝑠𝑖𝑚, in which cases we accept a mapping 

as being valid and in which cases we reject it. For this we defined the function 𝑉𝑎𝑙𝑖𝑑𝑀𝑎𝑡𝑐ℎ that 

uses another threshold value described below, to choose which mappings are kept and which ones 

are discarded (basically the mapping is valid only if the function returns true) 

𝑉𝑎𝑙𝑖𝑑𝑀𝑎𝑡𝑐ℎ(𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2) =  {
𝑡𝑟𝑢𝑒, 𝑠𝑖𝑚 (𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2) > 0.5

𝑓𝑎𝑙𝑠𝑒,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

5.3. Using pattern completion to generate target specifications 
 

Although in many cases when we apply analogical reasoning we just want to verify if two 

given domains can be mapped together in this project the mapping by itself (which contains the 

detailed correspondences between the source and the target) is insufficient for our goal of reusing 

formal specifications. In order to achieve this we need an algorithm such that once IAM has found 

a successful mapping it can generate the analogical inferences and transfer the required 

                                                 
30 The Liskov Substitution Principle - http://www.objectmentor.com/resources/articles/lsp.pdf 
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specifications into the given target code. In our system, we generate the analogical inferences by 

using an algorithm for pattern completion called CWSG - Copy with Substitution and Generation 

(Holyoak, et al., 1994) that has been widely used before in analogical reasoning computational 

models (see Section (3.4) for references).  

CWSG transfers the additional specifications from the retrieved code and adds it to the target 

code by substituting source code items with their mapped equivalents. This allows our 

target/problem code to be formally verified using the newly generated specification. In order to 

increase the number of formally verified programs, in Arís we also retain the newly formally 

verified source code artefacts for further use (for example, in other retrieval queries). 

 Next we show an example of how the specification is transferred from the base domain 

example1.cs (for which we gave its conceptual representation in Section (4.2)) into the target 

source code example2.cs using CWSG based on the correspondences found after applying IAM. 

Table 9 shows the two programs received as input by our system and Table 10 presents the detailed 

correspondences between their conceptual graphs. We omit due to space reasons to show the CGs 

corresponding to the programs.  

 

 

 

// base example1.cs 

public static int Sum(int k) 

requires 0 <= k; 

ensures result==sum{int i in (0:k); i};  

{ 

 int s = 0; 

 for (int n = 0; n < k; n++) 

 invariant n <= k; 

 invariant s == sum{int i in (0:n); i};       

 { 

   s += n; 

 } 

 return s;} 

} 

// target example2.cs 

public static int Sum(int x) 

{ 

 int add = 0; 

 int k = 0; 

 while (k < x) 

 { 

   add += k; 

   k++; 

 } 

 return add; 

} 

Table 9. Base and target methods received as input by our system. The source is formally 

verified using Spec#. Both the implementations are highly similar, they calculate the sum of the 

first n numbers, however their structure is slightly different (e.g. one declares a variable inside 

the loop). 
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Based on the correspondences we obtained during the matching process, we can see that the 

important variables used in the specifications attached to the base domain (written in bold face in 

Table 10) have been mapped accordingly to the variables in the target code. Thus we can now use 

this mapping to generate a new specification for the target by replacing the appropriate variables 

that appear in requires, ensures and invariant statements with their mapped equivalents. We 

currently implemented the actual transfer based on string processing. The new specification 

generated into the example2.cs target code can be seen in Table 11. 

  { Parameter }  matched with  { Parameter } (1) 
  { Variable: k }  matched with  { Variable: x } (1) 

  { Variable: n }  matched with  { Variable: k } (0.96) 

  { Variable: s }  matched with  { Variable: add } (0.9429) 

  { Method: Sum }  matched with  { Method: Sum } (0.8) 

  { Loop: For }  matched with  { Loop: While } (0.725) 

  { Condition }  matched with  { Condition } (1) 

  { Contains }  matched with  { Contains } (1) 

  { Assign:* }  matched with  { Assign:* } (1) 

  { Contains }  matched with  { Contains } (1) 

  { Contains }  matched with  { Contains } (1) 

  { Block:* }  matched with  { Block:* } (0.8) 

  { Contains }  matched with  { Contains } (1) 

  { Contains }  matched with  { Contains } (1) 

  { CompareOp: < }  matched with  { CompareOp: < } (1) 

  { Contains }  matched with  { Contains } (1) 

  { Contains }  matched with  { Contains } (1) 

  { Assign:* }  matched with  { Assign:* } (0.8) 

  { Contains }  matched with  { Contains } (1) 

  { Contains }  matched with  { Contains } (0.7) 

  { Contains }  matched with  { Contains } (1) 

  { Block:* }  matched with  { Block:* } (0.8) 

  { Contains }  matched with  { Contains } (1) 

  { Assign:* }  matched with  { Assign:* } (0.8) 

  { String: 0 }  matched with  { String: 0 } (1) 

  { String: 0 }  matched with  { String: 0 } (0.8) 

  { Contains }  matched with  { Contains } (1)   

  { Returns }  matched with  { Returns } (1) 

   { Block: Root }  matched with  { Block: Root } (1) 

Table 10. Output of IAM algorithm containing the correspondences (and their similarity score) 

derived from the mapping in Table 9. 
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public static int Sum(int x) 

requires 0 <= x; 

ensures result==sum{int i in (0:x); i};   

{ 

 int add = 0; 

 int k = 0; 

 while (k < x) 

 invariant k <= x; 

 invariant add == sum{int i in (0:k); i};       

 { 

   add += k; 

   k++; 

 } return add; 

Table 11. Transferred specification from the source problem example1.cs into the target code 

example2.cs. Now our target problem can also be formally verified using the automated 

verification tool Spec#. 

Although in most cases the requires, ensures and modifies specifications can be correctly 

generated by our pattern completion CWSG algorithm (because they depend only on the exact 

parameter matching at which the mapping process obtains good results), generating the 

corresponding specifications for the invariant statements is a much harder problem, since the 

invariants are very closely related to the structure of the loop. For example, if instead of a loop 

from 0. . 𝑥̅̅ ̅̅ ̅̅  in the example2.cs we used a decreasing loop from 𝑥. .0̅̅ ̅̅ ̅̅ , then our target program 

could no longer be formally verified because the invariant would be semantically different. Even 

so our implementation generates both the method contract as well as the invariant clauses that need 

to be transferred into the target code in order to help the user as much as possible with guidance on 

how the verify its program.  

 

5.4. Analysis and conclusions 
 

In this chapter we presented our system for comparing two implementations represented as 

conceptual graphs and finding the detailed correspondences between them. Based on these 

correspondences we then showed how using a pattern completion algorithm we can generate and 

transfer missing specifications into the target, relying on the premise that our base problem is 

formally specified and verified. Our system thus proposes a novel approach for reusing formal 

specifications and/or implementations and due to the similarity score that we give as output in the 
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mapping process, it can also be useful in other types of applications like for example in detecting 

plagiarism or code duplication.  

However, our incremental graph matching algorithm has some limitations regarding the extent 

of the mapping it can perform. A first limitation is that our implementation currently can match 

only methods in a C# class. This means that any class field members or defined properties that can 

appear inside a class are not being mapped. We point out that, however, in cases where the fields 

are being used by the method’s code, they will participate in the matching process as the 

corresponding conceptual sub-graph of the method will contain edges to the respective fields. 

Similarly, we currently do not match multiple classes in the same file but we propose this as future 

work in Chapter (7). Other mapping limitations also depend on the capabilities of our conceptual 

graph construction process and how much of the source code is actually represented in the graph. 

Another vulnerable point in our IAM algorithm, is the likelihood of detecting false positive 

mappings due to the fact all nodes in our conceptual graph representation have equal importance 

in the matching process. This can sometimes cause the algorithm to find valid mappings between 

relation nodes such as Contains, Condition, Depends, Parameter or Block:* which are common in 

every conceptual graph and do not have an impact on the generated specifications, like, for 

example, a Variable or a Loop concept would have. 

The overall complexity of the algorithm is polynomial due to the fact that we only match 

methods in decreasing order of their NR values. This means that we compare at most 𝑛 methods 

(all the methods from the source domain) and inside the method mapping process we perform 2 

sorting operations plus at most  𝑚 × 𝑚𝑎𝑡𝑐ℎ𝑑𝑒𝑝𝑡ℎ (where 𝑚 denotes the number of nodes in a sub-

graph representing a method) comparisons since we do not search the whole space of the target 

domain but instead we use a threshold parameter 𝑚𝑎𝑡𝑐ℎ𝑑𝑒𝑝𝑡ℎ  to set a limit on the number of 

concepts in the target to which we compare each node from the source method. Thus in the worst 

case our algorithm performs in 𝑂(𝑛 × 𝑚𝑙𝑜𝑔𝑚), if we consider a 𝑂(𝑚𝑙𝑜𝑔𝑚) sorting function.  
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6. Evaluation 
 

In this chapter we present the experimental setup for testing our system in which we evaluate 

the impact of the Node Rank metric on the IAM algorithm, the capabilities and boundaries of the 

conceptual graph matching module in finding similarities between identical, modified and totally 

different source code inputs and finally we present our promising results in generating and 

transferring specifications into the target queries. 

 

6.1. Document corpus 

In order to evaluate our system’s performance at mapping and transferring specifications 

between a formally verified source domain and an unspecified target, we first need a document 

collection that is fit for the task at hand. This means that we have to obtain a corpus of source code 

files that contain only methods (as our current implementation matches only methods) and that 

each method is formally specified using an appropriate specification language. The main problem 

with finding formally verified programs is that in the current context of software development there 

are very few such collections publicly available (which are mostly for research purposes), thus 

obtaining real world examples of verified source code files is a hard task. Given that, as previously 

mentioned, our system is built upon .NET framework and analyses C# files (which can be formally 

specified using the Spec# language) we selected our corpus of verified source code files from the 

Spec# test suits publicly available on the open-source hosting platform CodePlex31. We collected 

a corpus of 102 files which contain 249 formally verified methods and approximately 7470 lines 

of code. As a sanity check for our system, we also duplicated all the files with their unspecified 

equivalents to be used in the identical document mapping. For this small set of verified programs, 

the average ratio between nodes in the conceptual graph and lines of code was 2.63 (with the 

average document size of 30 lines and the average number of 78 nodes). 

To obtain a more thorough evaluation, the source code retrieval module of Arís (Pitu, 2013) 

which uses our system to perform graph matching and to transfer specifications, also collected a 

large corpus of real world projects (consisting of 2,191 applications with 2,033,623 methods), 

                                                 
31 CodePlex open-source hosting platform - http://www.codeplex.com  
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downloaded from open-source repositories publicly available. Their evaluation results also provide 

us with relevant information regarding the impact of our system in a retrieval task, but more details 

about this combined evaluation will be presented later, in the end of this chapter. 

In order to perform identical and modified document comparison as the evaluation process in 

(Mishne & De Rijke, 2004), we randomly selected 30 files from our document collection without 

specifications. We then transformed them by applying different levels of modifications. Some of 

the most frequent code changes as reported by (Wilkinson, 1994) that we did in order to obtain our 

modified document corpus from which we selected targets for our system are given below: 

1. Lexical changes: renaming variables, methods and parameters. For example changing 

finalResult to outputValue.  

2. Type changes: changing the type of variables, methods, and parameters to an equivalent type 

(where possible). For example where a variable was defined as an int we changed it to a long. 

User defined types were excluded. 

3. Changing code constructs: changing the order of parameters in method declarations or in 

method calls, rewriting for loops as a while loops.  

4. Adding, removing or modifying comments in the code. 

5. Reordering statements: reversing conditional statements, changing the order of statements in 

a method’s body (where it does not affect the program’s functionality). 

6. Adding extraneous statements: for example declaring unused variables, calling the same 

method multiple times, etc. 

7. Removing certain statements (again, without affecting the functionality of the program). 

Therefore we created a corpus of modified documents that we use to test the performance of 

our system at generating and transferring specifications. We note that for the graph similarity score 

gave as output by our IAM algorithm, values close to 1 mean that the target is highly similar to the 

source. We then classified the types of modifications depending on the extent on which they 

structurally modify the source code as following: 

- Small modifications: all changes from 1-4 presented above.  

- Medium modifications: all changes from 5-7 presented above. 

- Large modifications: changes that alter the functionality of the program so that it does not 

perform the same computation anymore. 
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6.2. Experiments 

We next present the experiments that we conducted to optimize our system and evaluate its 

performance at generating and transferring specifications between different programs. 

 

6.2.1. Parameter optimization 

We carried out this first experiment as a basic tuning process for the parameters used in the 

analogical mapping process (match depth, weights for the three similarity functions and the valid 

match threshold). As presented in Section (5.2.6), we use three types of mapping constraints 

(functions) when comparing two nodes in a conceptual graph: a type function that ensures type 

consistency, a structural similarity function that evaluates if the contexts of the two nodes in the 

graphs are also type consistent and a content similarity function that compares the information 

inside the nodes (their referent value). All these three functions have associated weight values 

which represent their contribution to the overall similarity score 𝑠𝑖𝑚 calculated between two given 

nodes in order to establish whether or not they can be mapped together.  

We intuitively set a predefined weight value 𝑤𝑒𝑖𝑔ℎ𝑡𝑡𝑦𝑝𝑒 = 0.5 for the type similarity function 

(that returns 1 if two concepts have the same type and 0 otherwise) and as well for the 𝑚𝑎𝑡𝑐ℎ𝑑𝑒𝑝𝑡ℎ 

threshold that helps us identify valid matches based on the similarity score 𝑠𝑖𝑚. Thus for a match 

between two nodes to be considered valid it must obtain at least a score of 0.5 (when the two 

concepts have the same type) in order to enforce type consistent mappings.  

For the content and structural similarity function weights we did a limited number of 

experiments using 30 randomly chosen sources and their corresponding modified targets (with 

small and medium changes) and recorded the average graph similarity score (computed by the 

formula we gave in Section (5.2.5) in which we divide the number of mapped concepts over the 

total number of concepts in the source domain) obtained for each parameter configuration. Based 

on the results in Table 12 we set the weight values 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑡𝑟𝑢𝑐𝑡 = 0.3 and 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 0.2 

after conducting a Mann-Whitney32 test that showed (p = 0,0922) the results we obtained using this 

configuration were significant.   

                                                 
32 Mann-Whitney Test - http://www.vassarstats.net/ 

 

http://www.vassarstats.net/
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As an observation, we can see that for higher structural weight values the system performs 

better, meaning that indeed the structural nature of the source code captured by the conceptual 

graph can help in finding better matches. 

 For the 𝑚𝑎𝑡𝑐ℎ𝑑𝑒𝑝𝑡ℎ parameter, we incrementally assigned values between 0 and 100 (see Table 

13) and recorded the graph similarity scores obtained. We used the same base document corpus, 

formed by randomly choosing 30 programs from our verified document collection and taking their 

corresponding modified versions (with small and medium modifications) as targets. We found out 

that for 𝑚𝑎𝑡𝑐ℎ𝑑𝑒𝑝𝑡ℎ > 10 the Mann-Whitney test results were no longer significant and reliable (as 

can be observed from Table 14). Intuitively, the reason for this is that we take the nodes in 

decreasing order by their NRs, thus the chances of finding a valid match for the current element in 

the source also decreases as we go further in the target. Thus we set the 𝑚𝑎𝑡𝑐ℎ𝑑𝑒𝑝𝑡ℎ =  10. 

 

 

 

 

 

 

 

 

 

 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑡𝑟𝑢𝑐𝑡 0.1 0.2 0.3 0.4 

𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑜𝑛𝑡𝑒𝑛𝑡 0.4 0.3 0.2 0.1 

𝐴𝑣𝑔(𝐺𝑟𝑎𝑝ℎ𝑆𝑖𝑚(𝑠𝑜𝑢𝑟𝑐𝑒𝑖 , 𝑡𝑎𝑟𝑔𝑒𝑡𝑖)) 0.720 0.748 0.8382 0.8324 

Table 12. Parameter optimization for the content and structural weights. 

Configurations 𝒎𝒂𝒕𝒄𝒉𝒅𝒆𝒑𝒕𝒉 

#C1 0 

#C2 10 

#C3 20 

#C4 30 

#C5 40 

#C6 50 

#C7 60 

#C8 70 

#C9 80 

#C10 90 

#C11 100 

Configurations 

compared 

Mann-Whitney 

result 

#C1, #C2 P = 0.0655 

#C2, #C3 P = 0.2358 

#C3, #C4 P = 0.4247 

#C4, #C5 P = 0.4404 

#C5, #C6 P = 0.5 

#C6, #C7 P = 0.4562 

#C7, #C8 P = 0.484 

#C8, #C9 P = 0.484 

#C9, #C10 P = 0.484 

#C10, #C11 P = 0.484 

Table 13. System configurations for testing the 

𝒎𝒂𝒕𝒄𝒉𝒅𝒆𝒑𝒕𝒉 parameter 

 Table 14. Mann-Whitney significance test       

results for the system configurations in Table 13. 
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6.2.2. Evaluating Node Rank impact on the mapping process 

In this experiment we tested the hypotheses that using the Node Rank metric (detailed in 

Section (5.2.2)) for sorting the elements in the base and target domains can help us find better 

analogical mappings. The NR metric is closely related to the structure of the program, for example, 

if a variable is used multiple times in the program, then it will have a high node rank. In our system 

we used this information to sort the concepts in the base and target methods and to map them 

decreasingly by their NR order. In order to assess the effect of this metric on our graph matching 

algorithm, we used as baseline the order gave by a Breadth-First-Search algorithm starting from 

the root of the graph. We selected again 30 random files from our corpus of verified documents to 

use as source domains and their 30 correspondent modified versions to use as targets. We 

conducted two experiments, one using the NR metric for ordering and selecting the elements in the 

matching process and one using the BFS order, and for both runs we stored the mappings obtained 

and their similarity scores (calculated in terms of the number of valid mappings found relative to 

the total number of nodes in the source domain). 

Our results confirm that using the Node Rank metric as a sorting criteria for the nodes in the 

source and target, brings visible improvements on the number of valid mappings found by our 

adapted IAM algorithm (Section (5)). The average similarity score 𝐺𝑟𝑎𝑝ℎ𝑆𝑖𝑚(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡) 

recorded for the 30 documents we tested using the NR metric was 0.8532 and when using BFS it 

was 0.786 (where closer to 1 is better). This means that indeed using the NR metric helps in 

detecting more valid matches, however a Mann-Whitney test revealed that the difference between 

the two sets of similarity scores obtained was not very statistically significant (p = 0.1911) thus, 

without extended evaluation, we cannot draw a firm conclusion to whether the NR metric is a 

suitable criteria to use in IAM for selecting the seed groups and finding the seed match. 

 

6.2.3. Evaluating the transferred formal specifications 

The most important feature in our system that sets it apart from other source code matching or 

retrieval systems is the fact we can generate and transfer specifications from a formally verified 

input into an unspecified target code. The main premise that guided our work in Arís is the fact that 

similar implementations also have similar specifications. In this section we evaluate how much of 

the transferred specifications can actually be formally verified by an automated verification tool 
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such as Spec# and also, what are the limits of our system in finding similarities between two 

different implementations. 

Identical Document Setting. As a sanity check evaluation we first tested an identical 

document setting in which we used as base documents 30 randomly chosen verified methods from 

our Spec# test suite corpus collection and their mirror version with specifications removed as target 

documents. For each mapping task we obtained the maximum matching (with a graph similarity 

score of 1) between the base and target programs, and in every case the specification was fully and 

successfully transferred and verified by Spec#. This first result emphasizes that our system is 

capable of detecting identical matches and correctly generating and transferring the specifications 

based on the mapping obtained.    

Modified Document Setting. For the modified document evaluation, we divided our tests 

depending on the class of modifications (given in Section (6.2)) that were applied to the target 

documents. We randomly selected a smaller subset of 20 documents from the verified corpus and 

gradually applied modifications on the code. We thus obtained 40 modified documents, 20 with 

small modifications and 20 with small and medium modification.   

In Table 15 you can see an example of where the target contains small modifications compared 

to the original verified source and where we also give the similarity score found by our algorithm. 

Table 15. Example of two mapped inputs where the target (right) has small modifications 

compared to the original source (left). 

public int Count_IDD(int[] a, int x) 

requires a != null; 

ensures result == count{int i in (0:   

                  a.Length); (a[i] == x)}; 

{ 

 int s = 0; 

 for (int i = 0; i < a.Length; i++) 

 invariant s == count{int j in (0: i);     

                a[j] == x}; 

 invariant i <= a.Length;    

 { 

  if (a[i] == x) 

  { 

     s = s + 1; 

  } 

 } Console.Writeline(“s”); 

 return s;} 

public long Number_MOD(long y,  

                       int[] array) 

{ 

 long add = 0; 

 int pos = 0; 

 // iterating the array 

 while (pos < array.Length) 

 { 

   if (array[pos] == y) 

   { 

    // updating the sum 

     add = add + 1; 

   } 

   ++pos; 

  }  

  Console.Write(“add”); 

  return add;} 

𝐺𝑟𝑎𝑝ℎ𝑆𝑖𝑚(𝐶𝑜𝑢𝑛𝑡_𝐼𝐷𝐷, 𝑁𝑢𝑚𝑏𝑒𝑟_𝑀𝑂𝐷) = 0.8648 (32 mapped / 37 total nodes)  
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Result: 0.8648 (32 mapped / 37 total nodes) 

1.{Parameter} matched with {Parameter} (1) 

2.{Variable:a} matched with {Variable:array} 

(1) 

3.{Parameter} matched with {Parameter} (1) 

4.{Variable: x} matched with {Variable: y} 

(1) 

5.{Variable: s} matched with {Variable: add} 

(1) 

6.{Variable: i} matched with {Variable: pos} 

(0.9) 

7.{Contains} matched with {Contains} (1) 

8.{CompareOp: ==} matched with {CompareOp: 

==} (0.8933) 

9.{Contains} matched with {Contains} (1) 

10.{Block:*} matched with {Block:*} (1) 

11.{Contains} matched with {Contains} (1) 

12.{Assign:*} matched with {Assign:*} (1) 

13.{Contains} matched with {Contains} (1) 

14.{Contains} matched with {Contains} (1) 

15.{Assign:*} matched with {Assign:*} (0.8) 

16.{Contains} matched with {Contains} (1) 

17.{Loop: For} matched with {Loop: While} (1) 

18.{Contains} matched with {Contains} (1) 

19.{Condition} matched with {Condition} (1) 

20.{If:*} matched with {If:*} (1) 

21.{Condition} matched with {Condition} (1) 

22.{Contains} matched with {Contains} (1) 

23.{String: 0} matched with {String: 0} (1) 

24.{Block:*} matched with {Block:*} (0.8) 

25.{MethodCall: Console.Writeline()} matched 

with {MethodCall: Console.Write()} (0.8909) 

… 

public long Number_MOD(long y,  

                       int[] array) 

requires array != null; 

ensures result == count{int i in(0:   

   array.Length);(array[i] == y)}; 

{ 

 int add = 0; 

 int pos = 0; 

 while (pos < array.Length) 

 invariant add == count{int j in    

      (0: pos); array[j] == y}; 

 invariant pos <= array.Length;    

 { 

   if (array[pos] == y) 

   { 

     add = add + 1; 

   } 

   ++pos; 

  } 

  Console.Write(“add”); 

  return add; 

} 

Table 16. Part of the mapping of the inputs in Table 15 and the transferred specifications. 

In above table we can see the detailed correspondences between the source and target 

documents and the transferred specifications. In this case the transferred specification was 

successfully transferred and formally verified by Spec#.  

The average graph similarity score we computed for the 20 small modified targets was 

0.8581 and 16 out of 20 generated specifications into the targets were successfully verified. 

This was a great achievement in our project and strengthens the fact that reusing previous verified 

programs is actually possible. Moreover it shows that even if we insert small modifications into 

the target, our algorithm is still able to detect the correct mappings between the similar constructs 

in the programs and successfully transfer the specifications, which is indeed a very promising 

result. By analyzing the unverified programs, we observed that the problems were regarding the 

generated loop invariants which had different variable name conflicts (for example if instead of the 

parameter long y we would have used long j then the generated invariant condition would have 
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become array[j] == j causing a name conflict) and thus requiring further user input in order to 

be verified. However, the method contract (requires, ensures) was in all cases successfully 

transferred implying that our mapping algorithm can correctly compute parameter mappings and 

is not influenced by modifications such as inserting comments, reordering parameters or changing 

variable names, types or loop constructs as long as they do not change the overall functionality and 

structure of the program. This encourages us to think that our adapted IAM algorithm coupled with 

the abstract representation of source code as conceptual graphs are a good combination in a source 

code mapping system and fit for our goal of generating specifications.  

We next give an example of the target program in Table 16 to which apart from the small 

changes, medium modifications were also applied by inserting extra statements and reordering or 

removing existing ones (changing the structure of the program, but not its functionality). This 

represents a more serious challenge to our (retrieval and) code matching and transfer process. 

public int Count_IDD(int[] a, int x) 

requires a != null; 

ensures result == count{int i in (0:   

                  a.Length); (a[i] == x)}; 

{ 

 int s = 0; 

 for (int i = 0; i < a.Length; i++) 

 invariant s == count{int j in (0: i);     

                a[j] == x}; 

 invariant i <= a.Length;    

 { 

  if (a[i] == x) 

  { 

     s = s + 1; 

  } 

 }  

 Console.Writeline(“s”); 

 return s; 

} 

public long Number_MOD(bool work, long 
y, int[] array) 
{ 
if (work == true){ 
  int result = 0;  
  int add = 0; //long add = 0.0; 
  int pos = array.Length - 1; 
  if (pos != -1){ 
     while (pos >= 0){ 
       if (array[pos] - y == 0) { 
         add += 1; // count 
         Console.Write("add = "+add); 
        } 
        pos = pos - 1; 
      } 
      int has = pos + add; 
  } 
  return add; 
}else return 0; } 

𝐺𝑟𝑎𝑝ℎ𝑆𝑖𝑚(𝐶𝑜𝑢𝑛𝑡_𝐼𝐷𝐷, 𝑁𝑢𝑚𝑏𝑒𝑟_𝑀𝑂𝐷) =  0.6756 (25 mapped / 37 total nodes)  

Table 17. Example of medium modified target and the graph mapping similarity score obtained 

when compared to the original source 

We can observe form the above tables that the mapping similarity decreases as more structural 

change is applied to the target. In the example in Table 17, the main loop was rewritten in such a 

way that it does a reverse traversal in the vector, thus when the loop specifications were transferred, 

the loop invariant condition from the source program did not longer hold. In general, changes like 
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reversing the logical structure of a loop influence the invariant statements generated, as the 

invariant is closely related to the loop it describes.     

The average graph similarity score we obtained for the 20 medium modified targets was 

0.6391 and 9 out of 20 targets were successfully verified by Spec#. The results show that when 

adding extraneous statements or changing the structure of the target, it affects the outcome of the 

mapping process and implicitly the transferred specifications. The main reason why inserting 

unnecessary statements (that, for example, may use other variables defined in the program) affects 

the number of valid mappings found is because they change the structure of the conceptual graph 

and due to the fact that the NR metric is strictly computed based on the graph structure, the nodes 

are going to be mapped in a different order, thus possibly missing important mappings. Extraneous 

statements also affect the process of verifying the specification, for example, when trying to verify 

the generated specification for the target in Table 17, Spec# gives a warning about the variable 

'result' not being used. However, even the fact that we can transfer partially correct 

specifications gives a great starting point in trying to verify a program. Although in most cases of 

medium modified targets further used input is required in order to verify them, the results exceeded 

our expectations and proved that our tool is very useful in guiding the user on writing specifications, 

which is something that many current verification tools are trying to achieve.  

In the cases were the mapping obtained a score lower than 0.5 our algorithm rejected the 

mapping because transferring specifications between two significantly different programs would 

be less useful for the user, as the chances for the specification to actually be verified are very small. 

In Table 18 we give an example of a target that is functionally different than the source and we 

show that our algorithm is able to reject the mapping and not transfer the specification.  

public int Count_IDD(int[] a, int x) 

requires a != null; 

ensures result == count{int i in (0:a.Length);   

                        (a[i] == x)};          

{int s = 0; 

 for (int i = 0; i < a.Length; i++) 

 invariant s == count{int j in 0:i);a[j]== x};    

invariant i <= a.Length{ 

  if (a[i] == x){s = s + 1; } 

 } Console.Writeline(“s”); 

 return s;} 

public static void Swap_MOD(int 

i, int j, int[] Array) 

{ 

  int v = Array[i]; 

  int df = i + j; 

  Array[i] = Array[j]; 

  Array[j] = v; 

} 

𝐺𝑟𝑎𝑝ℎ𝑆𝑖𝑚(𝐶𝑜𝑢𝑛𝑡_𝐼𝐷𝐷, 𝑆𝑤𝑎𝑝_𝑀𝑂𝐷) =  0.3514 (13/37) – Reject 

Table 18. Example showing a rejected mapping where our system does not transfer the 

specifications. 
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6.2.4. Combined evaluation in Arís 

Our system was integrated into Arís and evaluated by (Pitu, 2013) in Source Code Retrieval 

Using Case Based Reasoning in which they built a source code retrieval system that uses our 

detailed structural matching to identify the best mapping for a given query. We receive from their 

system 2 input files (a verified source and a target program) and based on the similarity score 

obtained, we also transfer the specifications into the target. Their evaluation was based on a 

document collection extracted from real world applications as well as on a small set of verified 

programs (as we discussed in Section (6.1)). The results they obtained show that our graph 

matching algorithm improves the overall quality of the retrieval. Using our system to check for 

structural similarity, their results improve by 15%, selecting more accurate candidates for 

transferring specifications into the target. This means that our system can also be successfully 

integrated with other systems that compare source code files and need a detailed mapping. 

 

6.3. Discussion 

In this chapter we presented the experimental evaluation that we did in order to optimize and 

test our system. The document collection we used was described in Section (6.1.) and basically 

consisted of a set of verified C# programs and their manually modified versions. 

We first conducted a parameter tuning experiment in which we searched to find the best 

configuration for the parameters we use in comparing two nodes in a graph. We tested the system 

with different configurations and, where it was possible, we also applied a Mann-Whitney 

significance test to check whether our results were indeed statistically significant between 

consecutive runs of the system. Our conclusion after analyzing the results are that higher weight 

values for the structural similarity function (given in Section (5.2.6)) increases the number of valid 

mappings found, as the IAM algorithm depends on the structural nature of the data to efficiently 

find and derive new mappings. 

In Section (6.2.1) we evaluated the Node Rank metric (Bhattacharya, et al., 2012) which we 

used in our IAM algorithm to order sub-graphs and map the most important ones first. In our 

experiment using small and medium modified targets we observed that the average graph similarity 

score improved when we sorted the nodes using the NR metric as compared to the sorting gave by 
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a BFS traversal. Although more evidence is necessary in order to draw a firm conclusion, given 

that our system obtained good overall mapping results we can acknowledge the ability of the NR 

metric in discovering the most relevant parts in a program and its potential as a choice criteria in 

finding the seed group and seed match in IAM.  

The most important part of our project is the ability to generate new specifications into a target 

program. Our last experiments were conducted in order to try to answer the following questions: 

Is specification reuse possible in practice? What degree of similarity is required between two 

programs in order to successfully verify the transferred specification? The results we obtained 

show that reusing specifications is possible in practice and that our system can successfully transfer 

specifications between two structurally similar programs. We showed that our graph matching 

algorithm is not influenced by small code modifications like reordering parameters, changing 

variable type, names, inserting comments or changing loop constructs as long as they don’t affect 

the general structure of the program (which inserting a new statement for example, would do). For 

80% of the small modified targets the transferred specifications were successfully verified, result 

with was very good and exceeded our expectations. The percentage dropped to 45% for the medium 

modified targets where the code suffered many structural changes like insertion, deletion or 

reordering of statements, further user input being required in order to verify them. 

As an overall conclusion regarding the evaluation, our results firmly show that our tool is 

capable of successfully transferring specifications between structurally similar versions of the same 

program and can give at least a partial correct specification to guide the user when trying to verify 

a more structurally different program compared to the retrieved (verified) source.  
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7. Conclusions  

In the fast growing field of Software Verification technology our aim in this thesis was to 

explore the possibility of transferring formal specifications between similar programs in order to 

help increase the number of verified implementations and reduce the effort of writing 

specifications. Our system was created as a module of a bigger project called Arís (Pitu, Mihai; 

Grijincu, Daniela; Li, Peihan; Saleem, Asif; O'Donoghue, Diarmuid; Monahan, Rosemary, 2013), 

in which we wanted to  provide an interactive user platform for source code retrieval with the 

purpose of reusing not only specifications but also implementations and proofs. 

 Our proposed solution focused on the detailed mapping of two source code files and on the 

process of transferring specifications between them. In order to effectively compare two source 

code implementations we represented them as Conceptual Graphs which have the great advantage 

of storing not only structural information but also content relevant details. As graph matching was 

best identified with Structure Mapping as the best way to find detailed mappings between two 

domains, we used an Analogical Reasoning computational model called Incremental Analogy 

Machine (Keane, et al., 1994)) to help us find either isomorphic (exact matches) or homomorphic 

(non-identical) sub-graph mappings. Finally, we used the Copy with Substitution and Generation 

pattern completion algorithm to transfer specifications into the target based on the detailed 

correspondences found. 

In elaborating our solution we used the work in (Mishne & De Rijke, 2004) as the main 

inspiration and guideline (we critically analysed their system in Section (2.2)). Our work differs 

from their system in the following ways:  

- our conceptual graph construction process can support additional features of the source 

code such as namespaces, classes, try-catch-statements and fields;  

- in matching two conceptual graphs our approach extensively uses the structural information 

from the graphs, as opposed to their solution which embeds some structural information inside 

the nodes but then does a simple string comparison on the content;  

- we developed a more specific content matching algorithm to compare the content in the 

nodes, in addition to the string distance which they propose;  

- our incremental graph matching algorithm based on the NR metric assures us that we are 

mapping the most structurally relevant parts in the program first (taking them in a decreasing 
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order), whereas they define a notion of most similar concept in which they compare (by string 

distance on the content) all the nodes in the first graph with all the nodes in the second graph 

in order to find the maximally similar pairs between the two graphs. This exhaustive process 

is very inefficient compared to our fast and effective IAM algorithm which uses structural 

inference and pragmatic constraints to find the best matches. 

Finally we evaluated our system’s performance at finding correspondences between similar 

and structurally different programs and its capability of generating new specifications into the 

target document. We obtained very good results at transferring specifications between structurally 

similar programs where 80% of the total specifications generated were successfully verified using 

Spec#. The evaluation also showed that our analogical mapping framework is capable of mapping 

even structurally different programs where, even though in half the cases the specifications were 

not fully verified, they can be considered valuable user guidance and a starting point in verifying a 

target program.  

Overall, we believe our results are very encouraging and open a promising avenue for future 

work in this direction as we are convinced by the potential of reusing formal specifications to create 

more dependable software systems. 
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7.2. Future work 

Although we gave a conceptual graph construction process which can build the most common 

concept types found in any programming language, it can be easily extended to support more 

programming features that could also improve the accuracy of the mapping process, because if 

certain lines of code are not translated into the graph, then our algorithm does not match them.  

Currently our implementation is capable to match only methods in a class, but the adapted IAM 

algorithm we gave can be generalized to fields in the class and classes in a file (in the same way 

we map the methods by taking them in decreasing NR order, we could also map multiple classes 

in a file). 

Because we based our testing on a small set of documents, more experiments could help us 

firmly establish the impact of the Node Rank metric in the IAM algorithm and also, find better 

optimized parameter values for our similarity constraint functions. The incremental graph matching 

algorithm could also be improved and adapted more to our target of generating correct 

specifications. For example, in a conceptual graph, we have many relation type concepts such as 

Contains, Parameter, Condition, etc. which intuitively do not have the same level of importance 

as actual programming constructs such as Loop, Variable, Action that we actually need to map in 

order to be able to transfer specifications. However, in our current implementation, they equally 

affect the similarity score and the mapping obtained. In the future, we plan to assign a weighting 

scheme based on the importance of each concept (or we could also use the NR metric) and construct 

a mapping which can filter out any irrelevant nodes that are not used in generating new 

specifications.  

Last, given that our system is capable of finding detailed correspondences between two source 

code files and give a measure of similarity between them, it makes it a very versatile tool that can 

be easily integrated with many different source code processing systems where a thorough 

comparison is needed. In the future we plan to look at code duplication or plagiarism detection 

integration possibilities as they have many applications in both industry and academia.  
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