
Source Code Retrieval using Case Based Reasoning

Mihai Pitu

Dissertation 2013

Erasmus Mundus MSc in Dependable Software Systems

Department of Computer Science

National University of Ireland, Maynooth

Co. Kildare, Ireland

A dissertation submitted in partial fulfilment

of the requirements for the

Erasmus Mundus MSc Dependable Software Systems

Head of Department: Dr Adam Winstanley

Supervisors: Dr. Diarmuid O’Donoghue and Dr. Rosemary Monahan

July, 2013

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

Declaration

I hereby certify that this material, which I now submit for assessment on the program of study leading

to the award of Master of Science in Dependable Software Systems, is entirely my own work and has not been

taken from the work of the others save and to the extent that such work has been cited and acknowledged

within the text of my work.

 Mihai Pitu

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

Acknowledgement

I would like to thank Dr. Diarmuid O’Donoghue and Dr. Rosemary Monahan from the National University

of Ireland, Maynooth for their support and input on the project.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

Contents

Abstract ... 1

1. Introduction ... 2

1.1. Problem statement .. 2

1.2. Motivation .. 3

1.3. Design by Contract ... 4

Summary ... 4

2. Related Work... 6

2.1. Source Code Retrieval using Conceptual Similarity .. 6

2.2. CLAN: Detecting Similar Software Applications .. 8

Summary ... 9

3. Definitions ... 10

3.1. Artificial Intelligence techniques .. 10

3.1.1. Instance Based Learning .. 10

3.1.2. K-Nearest Neighbours .. 11

3.1.3. Case Based Reasoning.. 12

3.1.4. Analogical Reasoning .. 14

3.1.5. K-Means Clustering ... 15

3.2. Source code representation and retrieval techniques .. 17

3.2.1. Conceptual Graphs ... 17

3.2.2. Vector Space Model ... 18

3.2.3. Latent Semantic Indexing ... 21

3.2.4. Damerau-Levenshtein distance .. 22

Summary ... 23

4. Proposed Solution ... 24

4.1. The Case Base of Source Code and Specifications .. 27

4.2. Semantic Retrieval .. 29

4.2.1. Extracting API calls ... 30

4.2.2. Indexing API calls .. 32

4.2.3. Weighting API calls ... 34

4.2.4. Computing source code artefacts similarities ... 35

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

4.2.5. Critical analysis of semantic retrieval .. 38

4.3. Structural Retrieval ... 39

4.3.1. Conceptual graph support for source code ... 40

4.3.2. Content vectors ... 41

4.3.3. Content vectors similarity .. 43

4.3.4. Efficient case comparison .. 45

4.3.5. Critical analysis of structural retrieval ... 47

4.4. Combined Retrieval .. 48

4.5. Overview of all parameters and definitions used in retrieval ... 50

4.6. Evaluation of retrieved specifications... 51

4.7. Interactive interface of Arís .. 52

Summary ... 53

5. Evaluation.. 54

5.1. Source code retrieval evaluation ... 54

5.1.1. Computational characteristics .. 54

5.1.2. Evaluation case-base and queries ... 55

5.1.3. Retrieval parameters selection experiments ... 58

5.1.4. Comparison with other retrieval systems ... 61

5.2. Formal specification reuse evaluation .. 63

Summary ... 65

6. Conclusions ... 66

6.1. Future work... 67

References ... 68

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

1

Abstract

Formal verification of source code has been extensively used in the past few years in order to

create dependable software systems. However, although formal languages like Spec# or JML are

getting more and more popular, the set of verified implementations is very small and only growing

slowly. Our work aims to automate some of the steps involved in writing specifications and their

implementations, by reusing existing verified programs. That is, for a given implementation we

seek to retrieve similar verified code and then reapply the missing specification that accompanies

that code. In this thesis, I present the retrieval system that is part of the Arís (Analogical Reasoning

for reuse of Implementation & Specification) project. The overall methodology of the Arís project

is very similar to Case-Based Reasoning (CBR) and its parent discipline of Analogical Reasoning

(AR), centered on the activities of solution retrieval and reuse. CBR’s retrieval phase is achieved

using semantic and structural characteristics of source code. API calls are used as semantic anchors

and characteristics of conceptual graphs are used to express the structure of implementations.

Finally, we transfer the knowledge (i.e. formal specification) between the input implementation

and the retrieved code artefacts to produce a specification for a given implementation. The

evaluation results are promising and our experiments show that the proposed approach has real

potential in generating formal specifications using past solutions.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

2

1. Introduction

1.1. Problem statement

Software systems are ubiquitous nowadays in our society. We rely very much on software and

we need to make the process of software engineering more rigorous because of economic and safety

reasons - software faults are costing a huge amount of money and they expose software systems to

risk of catastrophic failures in critical applications (Hoare, et al., 2007). In this context, the Design

by Contract paradigm (Meyer, 1992) is a pragmatic design approach that seeks to improve the

quality of software and has the potential to truly revolutionize the software development discipline.

Software verification using formal methods is the process of demonstrating software

correctness with respect to a formal specification that expresses the desired behaviour. In order to

help software engineers to formally specify and verify their implementations, the set of verified

software applications, which is currently very small, needs to grow. This will also help Design by

Contract and formal methods like Spec# (Rustan, et al., 2010), JML (Leavens & Cheon, 2006),

Eiffel (Meyer, 2006) to increase their popularity, because developers will have access to a rich

software repository with verified code examples (Verified Software Repository (Woodcock, et al.,

2009)). Therefore, a framework capable of automating some of the steps involved in writing

specifications and their implementations by reusing existing verified software artefacts, will greatly

add to the creation of dependable software systems.

Figure 1: Arís logo

This project is part of Arís1 (Figure 1) (Pitu M., Grijincu D., Li P., Saleem A., O’Donoghue D.

P., Monahan R., 2013), a system that aims to solve the burden of some of these steps, using retrieval

techniques i.e. for a given implementation, Arís will retrieve similar verified code and then reapply

the missing specification that accompanies that code. Similarly, for a given specification, Arís

1 Meaning “again” in the Irish Language

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

3

retrieves code with a similar specification and uses its implementation to generate the missing

implementation. Source Code Retrieval using Case Based Reasoning is responsible in Arís for

retrieving programs from a large set of samples and to perform knowledge (formal specification)

transfer from the retrieved implementations to the query.

1.2. Motivation

The authors of the Verified Software Initiative (VSI) (Hoare, et al., 2007) envisioned a world

with fewer software defects due to the use of formal verification. VSI consists of a research

program spanning fifteen years with the purpose of turning software verification into a core method

for creating dependable software. As part of the VSI, a Verified Software Repository (Bicarregui,

et al., 2006) is being created, which is the result of an international effort that will eventually

contain hundreds of fully or partially verified programs.

This idea has inspired us to create a system capable of automatic generation and verification of

specifications for software components that will help increase the number of formally verified

programs and therefore, aid software developers to create reliable software systems. In addition,

using an existing set of verified software components, the framework could verify query software

artefacts, i.e. one can retrieve similar specified software components and formally verify the query

by transferring knowledge (specification) from the retrieved components. This can also mean that

the developer does not need to learn the specification language, because the transfer will be done

automatically. In addition, the framework aims to assess how well the generated specification

performs, because formal methods often require human intervention in order to fully verify an

implementation. Thus, the project should facilitate interaction, if automatic generation of new

specifications is not successful.

The core concept of this project is software retrieval, which itself can be motivated by a series

of used cases. For example, existing source code retrieval systems are used for: detecting

plagiarism and code theft, rapid prototyping, knowledge acquisition by comparing different

implementations, improving understanding of source code and in programming by analogous

examples (PBE) (Repenning & Perrone, 2000).

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

4

1.3. Design by Contract

Design by Contract (DbC) (Meyer, 1992) represents an approach used for designing

dependable (correct and robust) software systems in the Object Oriented Programming context,

while, in the same time assuring that the designed software keeps its OOP qualities: reusability,

extendibility and compatibility. One way of achieving such desirable properties is using formal

methods, which can verify a software implementation if a formal specification is associated.

Every set of software statements that performs a useful task has an implicit precondition and

postcondition associated. A precondition implies the constraints under which a software

component will function correctly, while a postcondition expresses the expected result after the

execution. The functionality of that code is expressed by a specification, which is implied from the

preconditions and postconditions. This specification can also be understood as a contract between

two entities: the client, who calls a specified routine and expects a functionality without knowing

anything about the implementation; the supplier, who knows, maintains and assures that the

implementation meets the required functionality, expressed by the postcondition.

 Precondition Postcondition

Client obligation: ensures the precondition

is true

benefit: expects the functionality

established by the postcondition

Supplier benefit: assume precondition is true obligation: ensure the postcondition is true

The above obligations and benefits represent the contract between the client and the supplier

and illustrate how preconditions and postconditions constitute a specification of a given software

implementation. These definitions allow us to further understand formal specifications, in order to

achieve our main goal of automatic verification of software implementations, through reuse of

specifications.

Summary

We have presented a short description of the problem statement and we have motivated this

project in the context of Design by Contract paradigm. The rest of this paper is organized as

follows: In chapter (2), we present the current state of the art and give a brief critical review of

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

5

relevant related work and existing retrieval systems. In chapter (3), we set the theoretical

background for our work using definitions. In chapter (4), we give a detailed description of our

proposed solution and describe experiments and methods used in the creation of the system. In

chapter (5), we present some evaluation experiments for our solution, followed by results and a

comparison with existing projects. Finally, in chapter (6) we draw the conclusions from our work

and we identify potential areas for future progress.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

6

2. Related Work

In this chapter, we present the current state of the art and systems that were inspirational for

our proposed framework. Although source code search engines like Google Code Search (Google

Inc., n.d.), CodePlex (Microsoft, n.d.), SourceForge (Slashdot Media, n.d.) and Krugle (Aragon

Consulting, n.d.) are helping software developers to reuse software components (Sim, et al., 2011),

Source Code Retrieval is still an active area of research (McMillan, et al., 2012) (Gu, et al., 2004)

(Kawaguchi, et al., 2006) (Mishne & De Rijke, 2004) (Reiss, 2009). This fact can be explained by

the difficulty of the source code retrieval task, which involves understanding the blended nature

between structure and content of source code and therefore between syntax and semantics of

programming languages.

In the current state of the art, there exists a variety of approaches for source code retrieval, for

example: exploring the semantic meaning of the code, taking advantage of the code structure or

applying free-text indexing techniques used in conventional information retrieval (Michail &

Notkin, 1999). In the area of formal verification, although the Design by Contract paradigm and

Formal Methods have gained popularity (Woodcock, et al., 2009), the research activity concerning

implementation/specification reuse is still in its inception phase, with few influential papers that

reach this area by addressing UML specification reuse (Park & Bae, 2011) (Robles, et al., 2012).

In the related work literature, systems capable of retrieving source code snippets (i.e. methods,

classes, etc.) are often called Component Retrieval systems. However, in our proposed framework,

we refer to methods, classes or collection of classes as source code artefacts, because of the

possibility of having an associated formal specification with the software component.

2.1. Source Code Retrieval using Conceptual Similarity

The Language & Inference Technology Group from University of Amsterdam has proposed a

successful model for source code retrieval (Mishne & De Rijke, 2004). The central representational

formalism for source code, is the Conceptual Graph (3.2.1) (Sowa, 1984), which allows the

combination of representing the “contents” of documents (source code) with techniques for

handling graphs, that capture the structural characteristics of source code.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

7

In order to create a basic taxonomy for source code, the authors of the system defined a set of

concept types (e.g. Assign, Func-Call, If, Loop, Variable, Struct) that are specific to source

code documents and a set of relation types (e.g. Condition, Comment, Defines, Returns,

Parameter) (notions further explained in section (3.2.1)). Using these definitions, the Conceptual

Graph is constructed in parallel with the Abstract Syntax Tree (Neamtiu, et al., 2005) (that would

be generated by a compiler when generating executable code). The retrieval process consists of

ranking all documents from memory according to their similarity score with respect to a given

source code snippet. Therefore, the quality of the retrieval results depends on the similarity measure

for Conceptual Graphs. The proposed system introduces a new similarity measure that takes

advantage of both structure and content, by comparing Conceptual Graphs node-by-node. This

process is sensitive to the node type (relation of concept) and to the information contained in the

concepts by computing the Levenshtein (3.2.4) string distance between node contents. Because the

similarity measure is computationally expensive (𝑂(|𝐺|3) , where 𝐺 is a Conceptual Graph),

reducing the number of graphs compared in the retrieval algorithm with the query was important

(only a number of samples were fully compared with the query), by the use of an indexing

mechanism for graphs and offline computation of some intermediate results.

The evaluation process is interesting and hard, because of the nature of the system that needs

to be evaluated (source code retrieval). The main problem is the lack of a publicly available set of

source code artefacts that are grouped by their similarity, since this is an error prone and laborious

manual task. Instead, the authors experimented with a set of source code documents that contain

with “high probability”, clusters of similar documents. As a primary sanity check, the first test case

used random samples from the set of documents in memory and the expected result was that, the

retrieved documents had to contain these samples with high similarity score. In the second test

case, the random samples from the set of documents in memory were slightly modified and the

system was supposed to retrieve these documents as well with high similarity score. The results

were compared in terms of precision with other source code retrieval frameworks and the overall

conclusion was that the proposed method outperformed other well-established models.

The main contributions of this project are the usage of Conceptual Graphs in the context of

Source Code Retrieval and a custom similarity measure developed for CGs. However, the system

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

8

has a large amount of free parameters chosen manually and the retrieval algorithm is highly

complex from a computational point of view.

2.2. CLAN: Detecting Similar Software Applications

CLAN (Closely reLated ApplicatioNs) (McMillan, et al., 2012) is a novel approach for

automatically detecting similar software applications developed in Java. The system is motivated

by a practical scenario that relates to the typical lifecycle of a project in the Accenture2 consulting

company, where, at any point in time, the company consultants are working in over 3000 software

projects and the company has several thousands of projects contained in repositories. CLAN seeks

to improve reusability of these software projects, because this will help save time and resources in

building or prototyping software systems.

CLAN is capable of retrieving applications that are relevant to an input text query (short

description of requirements) or a query in the form of full software applications. In order to achieve

software retrieval, CLAN extends Mizzaro’s conceptual framework for relevance (Mizzaro, 1998),

where documents are relevant to each other if they share common concepts. Documents (software

applications) can be clustered by how relevant they are to these concepts. In Mizzaro’s framework,

semantic anchors are constructs that accurately define the documents’ sematic meaning. In CLAN,

API calls (for example, a function call to a cryptographic function) serve as semantic anchors,

because of their well-defined semantics.

The retrieval model in CLAN relies on Latent Semantic Indexing (3.2.3) and its use is justified

by the fact that CLAN users express textual queries in natural language. Thus the retrieval

algorithm must deal with the synonymy problem (different requirements can be described by the

same words by different software engineers) and the polysemy problem (different words can

describe the same requirements). In addition, CLAN implements LSI because the Java

Development Kit3 exports over 115000 API calls and this may lead to computational infeasibility

due to exponential increase of the representational space (Powell, 2007). As a result of LSI, a

Similarity Matrix that encodes similarity scores between applications is computed.

2 http://www.accenture.com
3 http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://www.accenture.com/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

9

The authors of CLAN evaluated the system performance by using manual relevance judgments

by experts (Manning, et al., 2008) using 33 Java programmers. The participants evaluated CLAN,

MUDABlue (Kawaguchi, et al., 2006) (the closest relevant work to CLAN) and a combination of

MUDABlue and CLAN. The results have shown that the proposed system finds similar

applications with a higher precision than MUDABlue.

In conclusion, the authors of CLAN improved the state of the art by using Mizzaro’s framework

in context of software retrieval. However, CLAN relies entirely on semantic anchors, without

considering the structural characteristics of software implementations. Also, the quality of retrieval

is correlated with the number of dimensions, manually set for LSI (in case of CLAN, 𝑟 = 300).

Summary

In this chapter, we discussed the state of the art for influential source code retrieval systems

and we identified some tangent work for reuse of software specifications. However, to the best of

our current knowledge, we were unable to identify work that has the exact same purpose as Arís

(i.e. automation of software formal verification by reuse of software

implementations/specifications). We will continue our critical analysis of these existing systems

by comparing them to the proposed solution.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

10

3. Definitions

We will now define the theoretical foundations that underlie this project, consisting of

definitions of algorithms or disciplines used by our system. The concepts are briefly motivated

with their practical value in this project, because we detail the overall architecture and design

decisions of Arís in the following chapter (Proposed Solution (4)).

3.1. Artificial Intelligence techniques

This section introduces the theoretical background and methodology for the proposed

framework. We discuss Artificial Intelligence disciplines like Case-Based Reasoning and

Analogical Reasoning, which constitute the high-level methodologies for generating new

specifications from past retrieved solutions. Moreover, we present the K-Nearest Neighbours and

K-Means Clustering techniques, which are used in Arís in order to facilitate efficient retrieval of

source code artefacts.

3.1.1. Instance Based Learning

Instance Based Learning (Russell & Norvig, 2003) is a family of machine learning algorithms,

often categorized as lazy learning (Mitchell, 1997). Lazy learning algorithms (including K-Nearest

Neighbour, Case Based Reasoning below) simply store training data (past problems and their

solutions) with only minor or no pre-processing and wait for a query before generalizing. This

means that lazy learning methods effectively use a richer hypothesis space than the alternate “eager

learning” strategies, because many local linear functions are used to form an implicit global

approximation of the target (Mitchell, 1997). In contrast, eager learning algorithms (e.g. Decision

trees, Naïve Bayes, Support Vector Machines) generalize the hypothesis function before seeing the

query, thus creating a single global approximation.

The computational complexity of Instance Based Learning algorithms for the classification step

(Mitchell, 1997) is O(n), because the hypothesis function is dependent in the worst case on all n

training examples (existing instances in memory). This is one of the main disadvantages associated

with the lazy learning methods (computation of the distance metric between the query and all the

instances from memory). In addition, finding a good distance metric can be difficult and bad results

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

11

may arise if irrelevant attributes of instances are considered – this is known as the “curse of

dimensionality” (Powell, 2007).

Among the attractive qualities of Instance-Based techniques for this project are the following

qualities:

 Ability to easily incorporate additional solutions (i.e. retain successfully transferred

formal specification)

 Represent and learn complex data, containing complex non-numeric data that is full of

rich structure (both semantic and structural characteristics can be analysed from source

code)

3.1.2. K-Nearest Neighbours

The most common example of an Instance Based Learning is K-Nearest Neighbours (k-NN).

As a classification algorithm (Figure 2), k-NN works by retrieving the k most similar past cases

(with respect to the query case), where each case is a point in ℝ𝑑 (d-dimensional real vector) and

by assigning the most common class amongst the query’s k nearest neighbours.

Figure 2: Example of k-NN where k=4. The query case (gray hexagon) should be classified as

similar to the red squares (3 cases) because these cases represent the majority of samples that are

nearest to the query

K-NN relies on a good distance metric because this function is selecting the nearest

neighbours. For example, if cases are represented as continuous variables in memory, a common

distance function used is the Euclidian distance (Manning, et al., 2008). The “curse of

dimensionality” problem (for example, instances are described by 30 attributes, but only five are

relevant to the target function) can be avoided by assigning weights to each element of the feature

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

12

vectors. In addition, selecting the appropriate k parameter can be challenging and it usually depends

upon the data or on a heuristic function (Everitt, et al., 2011).

In this project, we use K-NN together with the K-Means Clustering (3.1.5) in the Structural

Retrieval (4.3) model, in order to calculate computationally expensive functions only on the nearest

neighbours of a given query, which enables a significant speed-up of the overall process. In chapter

(5) we present the advantages and results of this technique.

3.1.3. Case Based Reasoning

Case Based Reasoning (CBR) (Kolodner, 1993) is an Artificial Intelligence technique, being

closely related to K-NN. CBR focuses on problem solving and it is a form of Instance Based

Learning. In CBR, new problems are solved by searching and retrieving similar previous problems

(cases) from memory and reusing old solutions by transferring knowledge to the new problem.

CBR frequently uses K-NN as its retrieval mechanism. A key part of CBR concerns the direct

relationship between the problem instance and the recorded instances stored within the case base.

The CBR process (Figure 3) can be divided into four main phases:

1. Retrieve most similar cases from previous experience (memory)

2. Reuse the information and knowledge learned from past cases and solve the new problem

3. Revise by evaluating the generated solution

4. Retain the new found solution for future problem solving (optional step)

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

13

Figure 3: Case Based Reasoning process

Because CBR is a form of Instance Based Learning, cases from memory can be represented as

symbolic descriptions (Table 1) and this may lead to high storage costs, as each case is often stored

with as much information as possible because this might be useful at the Reuse step.

Table 1: Example of a symbolic description for software bugs cases in a CBR memory (modified

example from (O’Donoghue, 2012))

[((bug-type Arithmetic)

(bug-name Division-by-zero)

(bug-severity Normal)

(software-component Database-model)

(author William-Smith)

(stack-trace ???)), …]

CBR has foundations in cognitive psychology theories, which have shown empirical evidence

in several studies (Aamodt & Plaza, 1994), that previously experienced situations (cases) have an

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

14

important role in human problem solving. Using this as a model, the Machine Learning community

has developed CBR into a mature and successful discipline that has been applied in many real

world situations (e.g. Compaq SMART (Acorn & Walden, 1992), Cool Air system (Watson &

Gardingen, 1999), General Electric system (Cheetham & Goebel, 2007) and many personalisation

and product recommender systems).

In our proposed system, we use CBR process phases as our primary theoretical methodology,

with a strong focus on the retrieval phase, which is achieved using semantic and structural

characteristics of source code. The actual problem-solving step is knowledge transfer, where an

unspecified implementation is formally verified using information from past cases

(implementations with an associated formal specification). The new generated specification is

evaluated by use of formal methods and if this previous phase is successful, the new case is retained

for potential further use.

3.1.4. Analogical Reasoning

Analogical reasoning (AR) has been defined (Gentner & Smith, 2012) as the ability to perceive

and use relational similarity between two conceptual structures (situations, events). The ability to

reason using analogy is arguably the most important cognitive mechanism for humans and it

implies the use of a familiar domain (the source) as a model, which is used to draw inferences

about a less familiar domain (target) in decision-making or problem-solving situations. Typically,

we have one given target problem and a number of available sources – as with CBR. While this

project adopts a CBR like approach to creating specifications, our use of a “structure mapping”

makes it a form of analogical reasoning rather than traditional CBR.

Analogical Reasoning solves problems not from first principles, but by re-using old solutions

to solve new problems. Analogical reasoning can be subdivided into the following set of processes

(Keane, et al., 2004):

1. Retrieval: Given a memory (database) of recorded solutions, a person or a system may use

previous situations, similar to a newly arisen one. In the retrieval step, one or more possible

sources are retrieved, such that the source and target situations are similar in their relational

structure.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

15

2. Mapping: Align the source and target representations and transfer the additional knowledge

from source to the target. This process is formalized in (Gentner, 1983), by a theory called

structure mapping which sets the principles used in the mapping process of AR. Structure

mapping involves finding the largest “graph mapping” between the source and target

descriptions.

3. Evaluation: After the mapping process is completed, the inferences are evaluated. The

criteria for this step can be grouped into three classes: factual correctness (checks if the

inferences are actually true), goal relevance (the newly formed mapping should be relevant

to the problem that needs a solution) and the amount of new knowledge the analogy can

provide (Gentner, 1983).

Analogical Reasoning enables creation of formal specifications from previously stored cases,

by using the structure mapping theory. This mapping is possible due to Conceptual Graphs (3.2.1)

representation of source code (Grijincu, 2013) and allows generation of formal specifications by

using the knowledge from the source domain (4.6).

3.1.5. K-Means Clustering

Cluster analysis is concerned with the problem of grouping a set of objects in subgroups

(clusters) by their similarity. In our framework, we use clustering for grouping source code artefacts

representations by their similarity, which will be used at query time. Using the K-NN technique

(3.1.2), the “closest” sub-groups of documents are determined, in order to retrieve and efficiently

compute the similarity scores only with relevant results relative to the query.

Clustering is computationally difficult (NP-hard) (Dasgupta, 2008) and it is addressed by a

number of techniques that are categorized as unsupervised learning (Mitchell, 1997) algorithms.

K-Means (MacQueen, 1967) is an example of such a technique, which aims to partition the

instances from memory into k (defined a priori) clusters where each instance belongs to the closest

cluster centre (centroid).

The algorithm’s input is a set of n instances (𝑥1, 𝑥2, … , 𝑥𝑛) where each instance is a point in

ℝ𝑑 (d-dimensional real vector) and a number 𝑘 ∈ ℕ∗ with 𝑘 ≤ 𝑛. K-means intends to minimize the

squared error function (MacQueen, 1967) (optimization objective):

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

16

𝐽 = ∑ ∑ ‖𝑥𝑖
(𝑗) − 𝑐𝑗‖

2𝑛
𝑖=1

𝑘
𝑗=1 ,

where ‖𝑥𝑖
(𝑗) − 𝑐𝑗‖

2
 is the distance (e.g. Euclidian) between instance 𝑥𝑖

(𝑗) and centroid 𝑐𝑗.

Table 2: K-means algorithm

Init: Randomly select k centroids (optionally from the set of input instance points)

 Repeat:

 -Assign each instance point to the closest cluster

 -Refresh each centroid position by using the average distance to the

 points in associated cluster

 Until: No change in centroids positions

Although the K-means algorithm (Table 2) does not necessarily find the most optimal

configuration (i.e. the global minimum for the objective function), the algorithm is guaranteed to

terminate (Dasgupta, 2008). Therefore, a different random initialization of the centroids positions

in the “Init” step, may lead to a different local minimum for the objective function (different cluster

sub-groups of the initial set of n instances). Then, every instance from the input set is associated

with the closest centroid, creating “temporary clusters” and the centroids’ positions are updated

with respect to the average distance between them and their associated instance points. The process

is repeated until no change in any of the centroids positions occurs (Figure 4).

Figure 4: First iterations of K-means algorithm where k=3 and n=11

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

17

The number of clusters k, may also represent a challenge and it is often dependant on the input

dataset or on a later purpose of clustering (why do we need clusters).

3.2. Source code representation and retrieval techniques

This section introduces the techniques used for representing source code artefacts in rich

structures, which can be explored for both structural and semantic characteristics. We discuss the

power of Conceptual Graphs and Vector Space Model in expressing source code information and

how can we use these concepts to facilitate retrieval. In addition, the Latent Semantic Indexing

mechanism is presented purely for comparison reasons with the Vector Space Model and we will

cover the advantages and disadvantages of each technique later in section (4.2.5). Further, the

Damerau-Levenshtein distance is an algorithm used in Arís in order to overcome some limitations

of the Vector Space Model.

3.2.1. Conceptual Graphs

Conceptual Graphs (CG) (Sowa, 1984) are bipartite, directed, finite graphs, where each node

in the graph is either a concept node or a relation node (Figure 5).

Figure 5: Example of a CG. CGs can be constructed using the standard graphical notation, where

concept nodes are represented by rectangles and relation nodes are represented by circles.

Concept nodes in CGs can encode information in various forms, for example states, entities,

events, while relation nodes express the interconnectivity between these concept nodes. All nodes

in a conceptual graph are either of type concept or of relation. In addition, each node in a CG is

associated with a referent value that contains information related to its type (for example, in

(Figure 5) Matt is the referent value for the first concept node). A conceptual graph relies on a so-

called support (Figure 6), which represents the general knowledge base and encodes various rules

and syntactic constraints used when constructing a conceptual graph. The support must contain a

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

18

set of concept types (expressed in a hierarchical structure), a set of relation types (with constraints

that state which kind of concept types are permitted to connect) and a set of referent sets (for each

concept type).

Figure 6: Example of a partial support for Conceptual Graphs that express the structure of a

piece of source code. The nodes in the support represent concept types used in CGs and their

inheritance hierarchy is expressed by undirected arrows.

Conceptual Graphs are useful and powerful because of their flexible structure that can be used

to represent information in various formats as graphs, which can then be processed and explored

using well-known graph-based methods. CG have been successfully used in many retrieval systems

(Montes-y-Gómez, et al., 2000) (Mamadolimov, 2012) (Zhong, et al., 2011) as well in the context

of source code retrieval (Mishne & De Rijke, 2004). In this project, CGs are used for retrieval of

source code artefacts only from a structural point of view, using the Content vectors representation

(4.3). Using Analogical Reasoning structure mapping techniques, the CG matching module in Arís

(Grijincu, 2013) further explores the information encoded in CGs and the results are integrated

with this project as discussed in section (4.4).

3.2.2. Vector Space Model

Vector Space Model (VSM) (Salton & McGill, 1986) is a procedure capable of representing

documents as vectors and it is used mainly in Information Retrieval (Manning, et al., 2008). In this

model, documents in this context are usually considered textual, but the technique can be applied

to various other document types (objects). In this project, we use API calls as words in source code

artefacts (documents) as part of the semantic retrieval process (discussed in section (4.2)). VSM

treats documents as bags of terms (bag-of-words model) and applies weighting (Ko, 2012) for each

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

19

indexed term in order to accomplish document retrieval (with respect to a query, which is also

treated as a document).

The main idea in VSM is to represent documents and queries as vectors: 𝑑1, 𝑑2, … , 𝑑𝑛 ∈

𝐷, 𝑑𝑖 = (𝑤1𝑖 , 𝑤2𝑖 , … , 𝑤𝑡𝑖) , where 𝐷 is the set of all documents (corpus), 𝑑𝑖 is a document

represented as a vector where each dimension corresponds to a word (term) and t is the number of

words in the vocabulary (the set of all words). If 𝑤𝑗𝑖 ∈ ℝ is a non-zero value, the j-th term appears

in the document 𝑑𝑖 and this value represents the weight of this term in document 𝑑𝑖 (for example,

the number of occurrences of a term in the document (Table 3)).

Table 3: Example of VSM document indexing using term frequencies

𝐷 = { "Matt likes Computer Science. Andy likes it too.", "Alice likes movies." }

 𝑀𝑎𝑡𝑡 𝑙𝑖𝑘𝑒𝑠 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝐴𝑛𝑑𝑦 𝑖𝑡 𝑡𝑜𝑜 𝐴𝑙𝑖𝑐𝑒 𝑚𝑜𝑣𝑖𝑒𝑠
𝑑1 = 1 2 1 1 1 1 1 0 0
𝑑2 = 0 1 0 0 0 0 0 1 1

VSM has many usage advantages (Manning & Schütze, 1999) including ranked retrieval, term

weights by importance, partial matching or simple algebraic model, but also some disadvantages

(depending on the context in which VSM is applied) like the assumption that terms are statistically

independent, the fact that VSM requires query terms to exactly match document terms (no support

for common problems arising in natural languages, for example, synonymy or polysemy (3.2.3))

or the fact that the order in which terms appear in documents is not preserved in the vector

representation. Also, VSM’s performance is much related with the weighting scheme used for

terms in the vector representation (term frequency and TF-IDF are amongst the techniques highly

used).

 TF-IDF Weighting

TF-IDF (Term Frequency – Inverse Document Frequency) (Salton & McGill, 1986) is a

numerical statistic technique that helps assessing the importance of terms in a document with

respect to a collection of documents. The model was first used in the classic Vector Space Model

and TF-IDF reflects the importance of a term by computing the frequency of the term used in a

particular document and, at the same time, how often is the term encountered across all documents.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

20

In the semantic retrieval module of Arís, we use TF-IDF weighting scheme for API calls because

it provides a good balance between the frequency of an API call in a source code artefact and the

occurrence in corpus. Thus, the overall quality of the retrieved source code artefacts will increase

because truly important API calls will weigh more when similarity scores are computed (5).

The term frequency (TF) encodes the number of occurrences of the term t in document d. This

simple definition is sometimes augmented in order to prevent problems in VSM, for example, in

order to prevent poor representation of longer documents (they might yield low similarity scores

when computing a scalar product), term frequency can be divided by the maximum frequency of

any term in the document.

The inverse document frequency (IDF) is a measure designed to balance with the term

frequency discriminating power (all terms are equally important no matter how frequent a term

occurs across the collection of documents) (Manning, et al., 2008). For example, in the English

language, the term “the” is very common across all text documents (stop-words), therefore by using

only TF weighting, this term will have a high importance in VSM. IDF introduces a mechanism

that reduces the importance of such terms by using a factor that grows with the term’ frequency

across all documents:

𝑖𝑑𝑓(𝑡, 𝐷) = log
#𝐷

1 + #{𝑑 ∈ 𝐷 ∶ 𝑡 ∈ 𝑑}

where D is the set of all documents, #D is the cardinality of D, d is a document and t is a term.

The formula yields high scores for rare terms across documents and low scores for frequent terms.

The TF-IDF is calculated as the product between TF and IDF:

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑)𝑖𝑑𝑓(𝑡, 𝐷)

 Cosine Similarity

In VSM, after documents are represented as vectors that encode the importance of terms,

similarity scores can be computed between these vectors using measures such as the cosine

similarity (Manning, et al., 2008). This is calculated between two input vectors 𝑑1and 𝑑2, using the

dot product (sum of the pairwise multiplied elements) and dividing by the product of the vector

Euclidian lengths:

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

21

𝑠𝑖𝑚𝐶𝑜𝑠(𝑑1, 𝑑2) = cos(𝜑) =
𝑑1 ∗ 𝑑2

||𝑑1|| ||𝑑2||
=

∑ 𝑑1𝑖 𝑑2𝑖
𝑁
𝑖=1

√∑ (𝑑1)2𝑁
𝑖=1 √∑ (𝑑2)2𝑁

𝑖=1

The denominator has the effect of normalizing the vectors 𝑑1 and 𝑑2 by their length. Because

the vectors have non-negative weights (e.g. TF-IDF), the similarity score is always between 0 and

1 (the angle between the vectors is not greater than 90 degrees), with 1 for identical vectors and 0

for absolutely different vectors. In our system, we implemented a modified algorithm of cosine

similarity (described later in section (4.2.4), (Table 5)) that effectively computes similarity scores

between the query and source code artefacts in the case-base. In addition, we will further discuss

the advantages and disadvantages of VSM in the context of source code retrieval in section (4.2).

3.2.3. Latent Semantic Indexing

Latent Semantic Indexing (LSI) (Deerwester, et al., 1990) (also known as Latent Semantic

Analysis) is a technique for indexing and retrieving documents, capable of overcoming some

disadvantages encountered in VSM (3.2.2) (e.g. synonymy and polysemy). Synonymy refers to the

problem where two or more different terms that have the same significance. Polysemy refers to the

case where a word has multiple meanings in different contexts (Manning, et al., 2008). VSM fails

to capture the relationship between terms because it treats each of this term independently (a

separate dimension in the vector representation). LSI helps overcome these problems by clustering

terms in a number of domains that share the same semantic information. The intuition behind LSI

is the fact that terms that are used in the same contexts usually have similar substance; therefore,

LSI captures the latent meaning of the terms by taking advantage of the context in which each term

is used.

The term-document matrix (TDM) (bag of words model) (Manning, et al., 2008) represents the

collection of vector space representations of each document in corpus and has the potential to grow

in several hundreds of thousands of rows and columns. LSI uses a matrix decomposition technique

called Singular Value Decomposition (SVD) (Gilbert, 2009) in order to reduce the size of TDM by

constructing a low-rank approximation of TDM to create domains that share the same conceptual

similarity. This decomposition yields three new matrices that have a reduced number of dimensions

r, generally chosen empirically in the low hundreds:

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

22

Computing similarities between documents is done using the Cosine Similarity (i.e. between

rows in the approximated matrix). Also, LSI achieves language independence (because of the

mathematical abstraction used), which means that the technique can be used to extract semantic

content from a variety of structured information.

LSI has some good advantages when contrasted with VSM depending on the context where

each technique is used, but it also has some disadvantages (Rosario, 2000): storing the resulting

matrix is often more expensive than storing the sparse TDM in VSM; VSM is more robust in terms

of efficiency when using techniques like inverted indexing (Luk & Lam, 2007) which allow fast

comparison only between the query and a subset of the corpus, as opposed to LSI.

In this section, we discussed the problems that are specifically addressed by LSI, in order to

better understand their nature and to conclude whether they apply to API calls in source code

documents. We will present the results of our reasoning in section (4.2.5) and we will further justify

why we used VSM for semantic retrieval.

3.2.4. Damerau-Levenshtein distance

Because VSM represents source code artefacts as bag-of-words, the order of API calls in

documents is lost, but in the case of software implementations, this order is definitely important

because a different ordering would yield very different functional results. Damerau–Levenshtein

distance can be used to express this information, therefore we can achieve a more accurate retrieval

system by applying this technique and our argumentation will be presented in section (4.2.4).

Damerau–Levenshtein distance, also known as the edit distance, represents a technique used to

calculate the “distance” between two arbitrary vectors or strings. The distance computes the

minimum number of single edits needed to transform one vector into another using four basic

operations: insertion, substitution, deletion or transposition of two adjacent characters (Damerau,

1964). The algorithm uses dynamic programming (Vazirani, et al., 2006) by dividing the general

problem into sub-problems and by storing the results of these sub-problems in a matrix, 𝐶. Each

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

23

element 𝐶[𝑖, 𝑗] represents a sub-problem and the final goal is to compute 𝐶[𝑚, 𝑛], where 𝑚, 𝑛 the

lengths of the two input vectors. Each matrix element is the minimum of all “close” sub-problems:

Table 4: Damerau–Levenshtein distance pseudo-code

int DamerauLevenshteinDistance(int[] source, int[] target)

{ for (i = 1; i <= source.Length; i++) C[i,0] = i;

 for (j = 1; j <= target.Length; j++) C[0,j] = j;

 for (k = 1; k <= source.Length; k++)

 for (l = 1; l <= target.Length; l++)

 {

 if (source[k] == target[l]) cost = 0;
 else cost = 1;
 C[k, l] = Min(C[k-1, l] + 1, //deletion
 C[k, l-1] + 1, //insetion
 C[k-1, l-1] + cost) //substitution
 if (k>1 && l>1 && source[k] == target[l-1] && source[k-1] == target[l])
 C[k, l] = Min(C[k,l], //previous
 C[k-2, l-2] + cost) //transposition
 }

 return C[source.Length, target.Length];

}

 The algorithm complexity is O(mn). This method for calculating the minimum distance is

widely used in Natural Language Processing (Manning & Schütze, 1999), Information

Retrieval (Manning, et al., 2008), fraud detection and DNA matching.

Summary

In this chapter, we discussed the theoretical foundations of Arís and we briefly outlined some

of their advantages and disadvantages. In the following chapters, we will constantly refer to these

sections as we describe our proposed solution.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

24

4. Proposed Solution

In this chapter, we describe the architecture of our proposed solution for the retrieval module

in Arís (1.1). The main purpose of our framework is generation of new specifications using previous

knowledge recorded in memory. In order to formally verify correctness of software

implementations using formal methods, we propose a Case-Based Reasoning approach that works

as follows: for a given unverified implementation as input, similar implementations are retrieved

from case-base by exploring structural and semantic similarities between the query and memory

source code artefacts. The results have an associated formal specification and the top ranked source

code artefacts can potentially be used to generate a new specification for the query. Effectively, the

specifications are transferred to the input implementation until a successful knowledge transfer is

achieved (the generated specification is verified using existing formal method tools). Finally, if the

previous step is successful, the new solution is stored for further use.

In this project, the main focus is on the retrieval process of CBR because this directly affects

the rate of success on our proposed overall goal (formal verification of implementations bye ruse

of existing specifications). In addition, a good source code retrieval system can be used for a

number of other purposes, as described in section (1.2). Therefore, this framework primarily aims

to retrieve similar source code artefacts with a given input software implementation and potentially

generate a formal specification for the given partial or full implementation. Also, we seek to

automate the verification process of the new generated specification and to allow the user to

optionally interfere in the process.

In the following sections, we give a detailed description of our system. In section (4.1), we

present the case base of source code and formal specifications. Section (4.2) describes the semantic

retrieval process using Vector Space Model theory for representing source code artefacts,

weighting API calls and computing similarities between these representations. In addition, we

critically analyse semantic retrieval by outlining the advantages and disadvantages of the proposed

method, in comparison to similar work described in the Related Work chapter. Section (4.3)

presents the Conceptual Graph representational structure and although this is a powerful method

of expressing source code, the structural retrieval process in this project explores only the structural

characteristics of source code, by the use of content vectors. Then, we describe a method for

comparing content vectors as well a technique that facilitates efficient case comparison and again

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

25

we critically analyse the proposed model for structural retrieval. Finally, for the retrieval process,

in section (4.4), the structural and semantic results are combined and the top ranked documents are

further analysed with the Conceptual Graph-Matching module in Arís. Section (4.6) describes how

we can practically evaluate the newly generated specifications and section (4.7) briefly presents a

user interface for the retrieval system.

On a high-level view, the heart of our framework is the Case Based Reasoning (3.1.3) discipline

and our main focus is the retrieval phase (Figure 7) of CBR.

Figure 7: Diagram of the Retrieval process in Arís. A query is encoded using Conceptual Graph

and Vector Space representations that will be used to compute structural and semantic similarity.

These representations allow selection of a subset of relevant cases, which are inputs for structural

and semantic retrieval. Because these two processes are designed to be independent and can

potentially run in parallel, we combine their results and apply Conceptual Graph-Matching on the

top ranked source code artefacts.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

26

Our current model is implemented to perform retrieval for C# source code and corresponding

Spec# (Rustan, et al., 2010) specifications. In addition, because we wanted a robust Case-Base

(Figure 8) model that can handle requests from a retrieval algorithm with respect to a certain type

of code artefact, our cases (source code and formal specifications) are organized by their type

(either a method, a class or a full application).

Figure 8: The Case Base contains source code artefacts and corresponding formal specifications

The proposed retrieval algorithm works exclusively on source code artefacts (i.e. for a given

query in the form of source code: method, class or a collection of classes) encountered in the Object

Oriented Programming paradigm. Therefore, our model is closely related in terms of functionality

with other code retrieval systems presented in chapter (2) - Related Work, but differs from them in

the sense that the retrieval process is designed to consider both semantic (4.2) and structural (4.3)

characteristics of source code. As a comparison note between structural and semantic retrieval

processes, they are independent (although their design is complementary) from each other and

follow roughly the same pattern: source code representation, selecting a subset of documents from

the corpus that are semantically/structurally relevant to the query and defining a similarity function

between representations.

In Arís, we continue the canonical Case-Based Reasoning process after the Retrieval step is

completed, with the Reuse (2), Revise (3) and Retain (4) phases, by transferring our knowledge

(formal specification) from the retrieved problem(s) (best ranked source code artefacts) to the

current problem (Figure 9), evaluating the mapping and optionally retain the new resolved case.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

27

Figure 9: Knowledge transfer for reusability of formal specifications

4.1. The Case Base of Source Code and Specifications

Similar to other Source Code Retrieval systems discussed in the Related Work section, in order

to assess the correctness of our retrieval algorithm and to perform knowledge transfer using formal

specifications on a larger set of implementations, we needed a repository of software artefacts.

From an architectural point of view, the Case Base Memory is a collection of past cases, which

aggregates source code artefacts optionally associated with the corresponding formal specification

for that implementation.

Because our framework was designed to retrieve C# source code artefacts, we decided to create

our corpus of documents from managed compiled assemblies (i.e. only managed assemblies:

Dynamic-Link Libraries4 (DLLs) or Executables5 (EXEs)). The main advantages of this approach

are:

 Compactness of the corpus is achieved by storing only compiled assemblies, without

any associated resources and source files that may be needed to compile the software.

 Documents are with high probability finished work (at least free of compilation errors).

 Documents contain Common Intermediate Language (CIL) (Microsoft, 2012) code,

which can be converted back into C#, VB, F#, etc. documents using third party libraries

(Figure 10). This means that the code retrieval algorithm can be used independently

for a wide range of programming languages that are translated to CIL.

 Fully qualified API calls can be easily extracted directly from CIL code.

Some disadvantages of this approach are:

4 http://msdn.microsoft.com/en-us/library/windows/desktop/ms682589.aspx
5 http://msdn.microsoft.com/en-us/library/windows/desktop/aa368563.aspx

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682589.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa368563.aspx

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

28

 Reconstruction of the original code is relatively costly from a computational point of

view (from our experiments, 0.05 seconds on average to decompile a method from a

sample of 30,000 methods).

 All comments in the original source code are lost and code reconstruction may not yield

the exact original code (i.e. the decompiled code has the same functionality as the

original code, but the coding style may be different).

Figure 10: A variety of programming languages are translated to CIL and can be decompiled

(reconstructed) into the original code using third party libraries (ICSharpCode, 2012)

One of the primary use cases of Arís is knowledge transfer from a small set of verified

implementations to a larger set of unverified implementations. However, we were able to find only

a small set of verified implementations (102 formally specified classes which contain 249 methods

that are associated with a full or partial specification) using Spec# formal method, which consists

of various test suits, from the Spec# project source control web-page (Rustan, et al., 2010). While

the number of verified software artefacts is growing because of active research in this area, the rate

of growth is still relatively modest.

To better test our source-code retrieval process, it was decided to augment the corpus with

additional un-verified implementations, because they represent a more realistic test of the potential

efficacy of the Arís retrieval system. Our corpus of software projects was thus extended with a

large number of open source programs downloaded from Codeplex (Microsoft, n.d.), GitHub

(GitHub, Inc., n.d.), SourceForge (Slashdot Media, n.d.) and NuGet (Outcurve Foundation, n.d.)

and consists of 2,191 software applications, which contain 175,291 classes and 2,033,623 methods.

It is worth noting that only 925,014 methods and 147,728 types contain API calls or calls to third

party libraries.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

29

An Abstract Factory (Gamma, et al., 1994) is responsible of creating cases (Figure 11)

(CodeArtefact objects), by extracting all the information needed (sections 4.2 and 4.3) to

accomplish semantic and structural retrieval (we call this step knowledge acquisition). The abstract

factory mechanism is needed because it provides a way to separate the case objects creation from

their usage in the retrieval process.

Figure 11: Class diagram of the Case Base model

4.2. Semantic Retrieval

In Arís, we desire a retrieval model that is able to detect similarity between cases (source code

artefacts) that may have slightly different implementations while conforming to the same high-

level specification. This means that these cases must have the same semantic meaning, but with a

possible different structure (Biggerstaff, et al., 1993).

Similar to the work of CLAN (2.2) (McMillan, et al., 2012) and other code search engines

(Chatterjee, et al., 2009) (Grechanik, et al., 2007), we rely on API calls as semantic anchors,

because the meaning of such a construct is precisely defined and the programmer’s intent when

implementing high-level requirements can be expressed by combinations of such notions. The use

of API calls is justified by real world software applications, where existing implementations that

solve a given task are often used (for example, if a string replacement is needed, one would most

likely use the API call String.Replace() method, rather than implementing another solution).

These API calls can be considered words in documents (source code) and a similarity score between

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

30

documents may be computed based on the number of shared words (Mizzaro, 1998); this fact links

our system to techniques used in Information Retrieval.

Further, in Arís we extend the usage of API calls as terms in documents, by allowing terms to

be function calls to third party libraries, thus not only function calls to the dependent programming

framework (e.g. API calls to classes and interfaces exported by the Java Development Kit for Java

implementations or to the .NET Framework for C# implementations). This can considerably affect

the size of the API calls vocabulary (the set of all possible API calls) (i.e. from our corpus of 2,191

software projects, we extracted 185,303 API calls made exclusively to the .NET framework and

127,398 API calls made to third party libraries). This extension may potentially have a negative

impact on the computational time needed in retrieval, but in the same time, it can improve the

quality of the retrieval results (with a richer API calls thesaurus, we recognize a larger set of terms

in documents).

4.2.1. Extracting API calls

In Arís, API calls are indexed as words in source code files; therefore, we need to evaluate the

full definition of an API call, with the exact source of the class that exports that call, in order to

avoid name conflicts. For example, the use of an API call from a Timer class can be ambiguous

because both System.Threading and System.Timers namespaces contain a Timer class).

In .NET Framework, namespaces (Gunderloy, 2002) are organized in a tree-like (hierarchical)

structure (Figure 12), with the System node as root. The absolute root of the namespaces tree is

global (e.g. global::System refers to the System namespace). It is worth noting that namespaces

can start with something other than the System namespace (e.g. Windows, Microsoft) and third

party libraries as well as client code usually have other defined structure for namespaces (e.g.

Figure 13).

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

31

Figure 12: Hierarchical organization (System is the parent of all nodes in the tree, split into three

sub-trees for space reasons) of a subset of System namespace in .NET 2.0 Framework6

The task of extracting API calls from source code files can be difficult, mainly because of the

anatomy of such a file (Figure 13). The C# language allows the use of both fully qualified

statements with the corresponding namespace and declaring namespaces with the using keyword

at the beginning of the source file. The second usage implies finding a correct mapping between

the namespace and the API class (e.g. in (Figure 13), mapping line 1 to the usage of the String

class on line 10). However, in Arís we take advantage of the fact that the corpus of documents is

an aggregation of managed compiled assemblies, containing CIL code, therefore such a mapping

is not needed because the CIL language always encodes fully qualified API calls.

6 Modified image from: http://grounding.co.za/blogs/brett/archive/2007/07/15/net-2-0-framework.aspx

http://grounding.co.za/blogs/brett/archive/2007/07/15/net-2-0-framework.aspx

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

32

Figure 13: C# source code mapped to CIL code example: The StringBuilder class is not fully

qualified with the System.Text namespace on line 15. On line 10, the SHA1 class is fully qualified.

These C# language constructs are translated in CIL language with their corresponding namespace

From a practical point of view, we loaded CIL instructions from our managed assemblies using

the Mono.Cecil library (Evain, n.d.) and we inspected a set of OpCodes (Microsoft, 2012)

representations of the CIL instructions that express API calls:

 OpCodes.Call: Calls the method indicated by the passed method descriptor.

 OpCodes.Calli: Calls the method indicated on the evaluation stack (as a pointer to an

entry point) with arguments described by a calling convention.

 OpCodes.Callvirt: Calls a late-bound method on an object, pushing the return value

onto the evaluation stack.

4.2.2. Indexing API calls

The previous extraction process produced a very large number of API calls in our thesaurus.

Therefore, the retrieval algorithm can easily reach computational infeasibility without applying a

proper indexing technique. Because at the core of semantic retrieval is VSM (3.2.2), it is thus

imperative to design a method that trims unnecessary computations in our retrieval process, such

that we can achieve similar response times to other retrieval systems (curse of dimensionality

(Powell, 2007)) (e.g. the use of Latent Semantic Indexing (3.2.3) helps overcome this problem, but

with possible trade-offs).

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

33

In VSM, documents are represented as vectors of real numbers and the similarity between two

documents is computed using the simCos distance measure defined in section (3.2.2), which is a

division of the dot product of those two vectors and the product of the vector Euclidian lengths.

This fact points out that if the dot product of the two vectors is zero (i.e. the vectors share no API

call), then the similarity score between the two documents is zero and there is no point in computing

the distance measure in the first place. This can be achieved by computing the distance measure

only with the set U of documents that share common words (API calls) with the query, which is a

subset of all documents in the corpus. Therefore, the semantic retrieval results should only contain

results that share at least one API call with the query, not only for performance/speed reasons, but

also because the results should contain only relevant information that relates to the query.

In order to obtain the set of documents that share words with the query, our first intuition was

to organize API calls for indexing in a tree like hierarchy (an extension of the tree in (Figure 12))

(this was the model for our first implementation of the indexing mechanism, but in the version

where the system was evaluated, the second approach described later in this section was used). For

each leaf in this tree associated with an API call, there will be maintained a set of documents (source

code artefacts) that use that particular API call. The nodes of the tree would be extracted from the

textual representation (e.g. System.Object::ToString(), System.Text.Encoding::

getBytes(System.String)) of API calls, by splitting the definition using the “.” and “::” operators

as delimiters. This structure would then allow us to easily access each document that used every

API call. The time needed to access this tree structure (T) would be O(height(T)), where height(T),

the height of the tree T is usually a small integer (determined by the longest namespace i.e. with

the maximum number of the “.” and “::” operators in its definition. For example, the namespace

System.Object::ToString() would yield nodes System, Object and ToString in T). The set

U of documents that share API calls with the query is obtained by reunion of all the sets associated

with each API call in the query document (usages). The main advantage of this approach is the fact

that a higher level of fuzziness in retrieval can be achieved (a main goal set for the system presented

in section (2.1) (Mishne & De Rijke, 2004)), by obtaining the set U from union of sets associated

with nodes from a lower level (for example, leafs parents in (Figure 14)). Furthermore, this model

can be augmented with support for class inheritance, by maintaining for each node of type class

(e.g. Encoding, Object, StringBuilder), a separate list of pointers to nodes in this tree, which

derive from that class.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

34

Figure 14: Example of a sub-tree of T containing API calls (leafs) with associated documents

that use that API call. The set of documents U obtained with respect to a query q that contains

API calls System.Text.Encoding::ToString() and System.Object::GetType() will be in this

case {d1, d2, d3, d5}. However, if the query contains only API call System.Text.Encoding

::GetBytes(), the set U will be empty and a weaker constraint can be imposed, for example, at

Encoding node level, U will be {d1, d3, d5} the reunion of all sets associated with child nodes.

Our second approach to obtain the set U of documents that share common API calls with respect

to the query uses a faster and stricter model, bonded to our primary goal in Arís: reuse of formally

specified implementations. This goal can be achieved with a lower level of retrieval fuzziness and

a faster implementation, by maintaining API calls in a Hash Set data structure using their textual

representation as keys (inverted indexing technique (Manning, et al., 2008)). In addition, each API

call has an associated set of document usages, similar to our previously described model, which

are used to compute the set U as the reunion of sets associated with API calls encountered in query.

4.2.3. Weighting API calls

The weighting process of words in documents represents an important task because this will

directly affect the quality of the retrieved documents. The authors of CLAN (2.2) (McMillan, et

al., 2012) observed that some API calls are likely to be shared between programs that implement

different requirements (for example, their experiments have shown that over 60% of 2080 Java

programs use String objects and 80% contain collection objects). This fact suggests that some API

calls are more important than others and their relevance is dependent on the corpus of documents,

as well on the document that contains an API call.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

35

We use the TF-IDF (discussed in section (3.2.2)) weighing scheme to overcome these

problems and from a practical point of view, we compute IDF scores for each API call after the

knowledge acquisition step is finished (i.e. extraction of API calls and the corpus of documents is

complete). The TF score of an API call a in a document d is simply the number of occurrences of

a in d and we encode this information along with the method code artefact (Figure 11) using a

Hash Map with API calls as keys and TF scores as values.

4.2.4. Computing source code artefacts similarities

In our framework, a source code artefact might be either a method, a class or collection of

classes. However, API calls are used in the implementation of methods, which in turn are contained

in a class. Therefore, it makes sense to consider only methods as documents in our corpus and to

express classes as documents based on the collection of methods that appear in it.

As stated earlier, in VSM documents are represented as vectors of real numbers, where each

element in the vector corresponds to the weight of an API call in that document and the size of our

API call thesaurus can be very large (311,696 API calls extracted – (4.1)). It is thus impractical to

store such a large vector for each of our source code artefacts. Instead, we assign unique integer

identifiers to each API call in our thesaurus and we implement a modified version of the classical

Cosine Similarity (3.2.2) to calculate the distance between documents (Table 5).

Table 5: Modified algorithm (from (Thomee, et al., 2010)) for computation of the Cosine

Similarity between two source code artefacts (represented by the APICalls class that contains a

sorted collection of API calls by their ApiIndex i.e. its corresponding unique identifier). The dot

product between the two vectors is calculated in the main while loop and the result is divided by

the Euclidian norms len1 and len2 of the two vectors, which are pre-computed in the

knowledge acquisition phase.

double CosineSimilarity(APICalls calls1, double len1, APICalls calls2, double len2)
{
 double distance = 0.0d; //the final distance between documents calls1 and calls2
 int ac1Index = 0; //an index to the current position in the calls1 vector
 int ac2Index = 0; //an index to the current position in the calls2 vector

 while (ac1Index < calls1.Count)
 {
 if (ac2Index == calls2.Count) break;

 //compare API calls indexes
 if (calls1[ac1Index].ApiIndex < calls2[ac2Index].ApiIndex)
 ac1Index++;

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

36

 else
 if (calls1[ac1Index].ApiIndex > calls2[ac2Index].ApiIndex)
 {
 do
 {
 ac2Index++;
 if (ac2Index == calls2.Count) break;
 }
 while (calls1[ac1Index].ApiIndex > calls2[ac2Index].ApiIndex);
 }
 else //equal identifiers i.e. indexes in vectors
 { //add TFIDF for these API calls in order to compute the dot product
 distance += calls1[ac1Index].TF * calls1[ac1Index].IDF *
 calls2[ac2Index].TF * calls2[ac2Index].IDF;
 ac1Index++;
 ac2Index++;
 }
 }
 distance /= Math.Sqrt(len1) * Math.Sqrt(len2); //divide by norm: euclidian length
 return distance;
}

Using the Cosine Similarity algorithm described in (Table 5), distance scores between the

query and a subset U of the entire corpus (obtained as described in section (4.2.2)) are used to rank

results. Our design of the Cosine Similarity algorithm is also motivated by the fact that source code

artefacts contain a fairly low number of API calls (usually less than a few hundred), thus the dot

product is computed efficiently between two documents compared by their vector space

representation.

The same algorithm also works for source code artefacts other than methods (i.e. classes and

collection of classes), by treating these documents as containers of methods and aggregating every

API call in every method used in its definition. For example a source code artefact of type class,

we obtain the corresponding set of API calls as the union of all uses in all methods by summing

the TF scores: if three method in this class contain the same API call a with TF scores 1, 3 and 4,

the TF score for a in this class will be 8).

Because in VSM (3.2.2) the order of appearance of terms in a document is not preserved, we

use Damerau-Levenshtein distance to express the differences between the arrangements of API

calls in source code artefacts. We employ this technique because in case of implementations, a

different order of API calls usages can yield totally different functional results, as the

implementation most likely corresponds to a different specification each time this order is changed

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

37

(e.g. if the API calls String.ToString() and String.ToUpper() are interchanged, the

corresponding implementations will achieve different functional results). In order to compute the

similarity between two documents (source code artefacts) from this point of view, we utilize the

Damerau-Levenshtein algorithm presented in section (3.2.4) for two vectors containing unique API

call identifiers (in the order they appeared in the source code artefact), as inputs. The Damerau-

Levenshtein distance between two vectors of integer identifiers returns the number of minimum

single edits needed to transform one vector into another (i.e. Damerau-Levenshtein distance 𝑑 ∈

ℕ, with 𝑑 ≤ 𝑀𝑎𝑥(𝑚, 𝑛)), therefore, in order to compute the similarity score (i.e. 𝑠𝑖𝑚𝐷𝐿 ∈ [0,1])

between the two documents we use:

𝑠𝑖𝑚𝐷𝐿(𝑣1, 𝑣2) = 1 −
DamerauLevenshteinDistance(v1, v2)

𝑀𝑎𝑥(#𝑣1, #𝑣2)

where 𝑀𝑎𝑥(#𝑣1, #𝑣2) is the maximum between the lengths of the two input vectors 𝑣1 and

𝑣2. The 𝐷𝐿𝑠𝑖𝑚 function will yield scores of one if the vectors are identical and scores of zero if

the vectors are completely different.

Finally, the overall semantic similarity score between two source code artefacts is a linear

combination of 𝑠𝑖𝑚𝐶𝑜𝑠 and 𝑠𝑖𝑚𝐷𝐿 similarity scores:

𝑠𝑖𝑚𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐(𝑑1, 𝑑2) = 𝑤𝑐𝑜𝑠 ∗ 𝑠𝑖𝑚𝐶𝑜𝑠(𝑑1, 𝑑2) + 𝑤𝑑𝑙 ∗ 𝑠𝑖𝑚𝐷𝐿(𝑑1, 𝑑2)

where 𝑤𝑐𝑜𝑠 is a weight factor for the Cosine similarity and 𝑤𝑑𝑙 is a weight factor for the

Damerau-Levenshtein similarity score, such that 𝑤𝑐𝑜𝑠 + 𝑤𝑑𝑙 = 1. In our implementation of the

proposed model, 𝑤𝑐𝑜𝑠 was set to 0.7 and 𝑤𝑑𝑙 was set to 0.3, because using these values, the best

results were achieved in our preliminary experiments, as discussed in chapter (5). Different values

for 𝑤𝑐𝑜𝑠 and 𝑤𝑑𝑙 can be assigned, depending on the type of source code artefact (method, class,

collection of classes) used in the retrieval process.

Until this point, we discussed the design of semantic retrieval, which is an independent process

(i.e. it is not dependent for example on structural retrieval) in the retrieval module of Arís. In

addition, an efficient indexing technique for API calls was presented in order to select relevant

documents relative to the query, which can then be compared using the cosine similarity technique.

Moreover, we analysed the importance of API calls order in source code and we proposed using

the Damerau-Levenshtein distance to express this information when comparing implementations.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

38

The following section outlines the differences between our proposed semantic retrieval solution

and CLAN (presented in the related work) and argues the validity of our overall architectural

design.

4.2.5. Critical analysis of semantic retrieval

In Arís, we accomplish semantic retrieval using the Vector Space Model (3.2.2). In contrast,

the primary technique used by CLAN system (presented in section (2.2)) for computing similarity

scores between applications is Latent Semantic Indexing (3.2.3).

LSI’s potential and value is still an active area of research (Manning & Schütze, 1999) and has

been primarily used in Natural Language Processing and text retrieval. As stated (section (3.2.3)),

LSI deals with issues of non-independence of terms in the thesaurus, i.e. synonymy and polysemy.

However, in the case of source code retrieval where API calls are considered terms, the problems

of synonymy and polysemy slightly change. API calls have precisely defined semantics (i.e. an

API call has only one functional role) which means that the polysemy problem of an API call is

somewhat non-existent. That is, the API call itself does not change in meaning, though its use

within the local context may differ. Also, in a perfect OOP environment where code reuse is a

central concept, there will be no two functions that implement exactly the same requirements, yet,

software developers still may be implementing functionalities that already exist in some API call,

because another (more efficient) implementation is needed or there is simply no knowledge about

an existing API call. Therefore, we conclude by stating that the polysemy problem in the case of

API calls still exists but is far less prevalent than in natural language, especially when the thesaurus

aggregates only API call terms from the programming framework (e.g. Java Development Kit or

.NET Framework, where the probability of having two API calls that have the same requirements

is low).

The classic VSM is known to be computationally infeasible when applied on a very large

collection of documents with large thesaurus and LSI addresses this issue by performing

dimensionality reduction using SVD. However, in Arís we addressed this problem by indexing API

calls and source code artefacts (4.2.2) in an efficient data structure (inverted indexing (Luk & Lam,

2007)) that facilitates fairly good retrieval response times (chapter (5)).

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

39

 As a last argument that motives our choice in using VSM for semantic retrieval is the main

purpose of Arís – reuse of formally specified implementations. This can be achieved with a more

rigid retrieval mechanism i.e. the best ranked results, share some of the same API calls with the

query, which means that there is a higher chance of successfully reapplying formal specifications

on unverified implementations in the knowledge transfer phase. This is in contrast to where these

results can share API calls that are not exactly the same but are assigned to the same domain (e.g.

API calls like System.Math.Min() and System.Math.Max() could be assigned in the same domain

by the LSI algorithm. Therefore, a plausible scenario for such a retrieval model is: for a query that

contains the System.Math.Min() API call, amongst the best results can be a software artefact that

contains the System.Math.Max() API call. However, it is clear that these two implementations

implement different requirements (because of their use of very different API calls), thus the chance

of successfully verifying the query with the formal specification of the retrieved source code

artefact, is potentially lower).

4.3. Structural Retrieval

Another technique used in Arís as part of its retrieval model is Structural Retrieval. This method

focuses on structural or topological characteristics of the source code. As with Semantic Retrieval

(4.2), we seek retrieval at various granularity i.e. methods, classes or collection of classes. In

addition, this process can be run independent of the semantic retrieval process because at this stage,

we use a different representational structure for source code and because different source code

artefacts from the case base are structurally similar to the query. After this process finishes, the

results are combined with the results from semantic retrieval (presented later in section (4.4)).

In order to express the source code topology, we rely on the structure derived from Conceptual

Graphs of source code. This structure was successfully used by (Mishne & De Rijke, 2004) and

their work was inspirational for Arís both in terms of retrieval and conceptual graph matching (2.1).

The main advantage of using Conceptual Graphs is the fact that its versatile structure enables us to

explore both the semantic content and structural properties of source code using graph-based

techniques. Another advantage of CGs is the fact that its syntax is not as verbose as the alternate

Abstract Syntax Trees and Parse Trees (Neamtiu, et al., 2005), which contain much more detail

about the original source code document, therefore it enables a more flexible retrieval mechanism.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

40

In Arís, the retrieval module focuses on exploring the shallow structural properties of the

conceptual graph representation, which enables fast ranking of relevant source code artefacts with

respect to a give query. After such a ranking is retrieved, the subsequent Source Code Matching

module (Grijincu, 2013) further refines this ranking by performing a more expensive but deeper

analysis between conceptual graph representations.

4.3.1. Conceptual graph support for source code

In the Source Code Matching module of Arís, (Grijincu, 2013) defines a taxonomy that allows

the construction of conceptual graphs from source code. The CGs formalism was adapted for C#

source code documents in order to perform a proof of concept. A CG support is composed by a set

of concept types (Table 6) defined in a hierarchical structure (a partial hierarchy was described in

section (3.2.1), (Figure 6)).

Table 6: The set of concept types defined in the CG formalism.

Concept Type Summary

AssignOp An assignment of a value to a field or variable

Block Set of concepts that are logically grouped together (e.g., code that is inside {…})

Class Declaration or definition of a class

CompareOp Binary comparison (e.g. >=, ==, !=, etc.)

Enum Declaration of an enumerated set of values

Field Declaration of a variable in a class

If A conditional branching statement

LogicalOp Binary logical operation (e.g. &&, ||, etc.)

Loop Iterative process that depends on a condition

MathOp Mathematical operation (e.g. *,+,-, etc.)

Method Declaration or definition of a function part of a class

Method-Call Method invocation

Namespace Defines a scope that can contain one or more classes

Null Null reference

String Constant textual entity

Switch Conditional statement that has multiple branches

Try-Catch Try block followed by catch clauses

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

41

Variable Entity declared in an implementation that holds values during execution

The set of possible relation types that are part of the defined CG taxonomy in (Grijincu, 2013)

are presented in (Table 7), without the full description of the specification of which concepts nodes

they can connect.

Table 7: The set of relation types defined in the CG formalism.

Relation Type Summary

Condition Conditional statement within an If clause

Contains A concept that contains or depends on another concept

Defines Block that gives a definition of a namespace

Depends Block that depends other namespaces

Parameter A parameter in a method definition

Returns Return statement of a method

4.3.2. Content vectors

Content vectors are a type of feature vectors defined in (Gentner & Forbus, 1994) as an

encoding mechanism for structured representations, which can be used to entail if the

corresponding structural representation are similar by using the dot product between two such

vectors. In order to encode the structural properties of source code, we used Conceptual Graph

representation extracted by (Grijincu, 2013), together with content vectors extracted by this

module, as further described here.

Given a set of functors (i.e. relations, connectives, functions, attributes, etc.) that were used to

describe the structural content of documents in a memory, a content vector is an n-tuple of natural

numbers (i.e. for a particular document d from memory, its content vector is: 𝑣𝑑 =

(𝑖1, 𝑖2, … , 𝑖𝑛), 𝑖𝑘 ∈ ℕ) where each component 𝑖𝑘 corresponds to a particular element from the given

set of functors. Also, each component 𝑖𝑘 is equal to the frequency of the corresponding functor in

a document d.

In our framework, we used the union of the concept types and relation types of a Conceptual

Graph taxonomy (4.3.1) as the set of functors, which is the necessary basis for the creation of

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

42

content vectors. Therefore, for each node type defined in (Table 6) and (Table 7) there exists a

content vector index which corresponds to the number of occurrences of that type of node in the

conceptual graph representation of a source code artefact (e.g. (Figure 15)). Although content

vectors might seem similar to the vector space representations used for semantic retrieval, they are

encoding only structural information about the source code (as opposed to semantic information

expressed by API calls), therefore a different indexing and retrieval mechanism is needed in order

to evaluate structurally similar documents relative to a given query.

Figure 15: Example of a CG constructed from the source code artefact presented in (Table 8),

visualized using the Conceptual Graph Visualizer tool from (Grijincu, 2013).

Table 8: Example of method source code artefact

public byte[] GetSHA1HashData(byte[] bytes)
{
 var sha1 = SHA1.Create();
 byte[] hashData = sha1.ComputeHash(bytes);
 foreach (byte b in hashData)
 Console.WriteLine(b);
 return hashData;
}

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

43

 In (Figure 15), we present an example of a conceptual graph from which a corresponding

content vector can be constructed from the source code artefact in (Table 8). For example, there

exist three concept nodes of type MethodCall which means that the value for the MethodCall

component of its content vector will be 3. Similar values can be obtained for each node type in CG

and if such a node type is not present in the graph, the zero value is assigned.

Similar to the work in (O'Donoghue & Crean, 2002) for analogy retrieval, measures and metrics

can be extracted from the graph representation in order to express the structure of documents.

Because we later describe a versatile mechanism of comparing content vectors, we concatenate

some extracted metrics by the Graph-Matching module in Arís (Grijincu, 2013), to content vectors

as if they were regular feature vectors. For each Conceptual Graph representation of a source code

artefact, some of the measures and metrics used are the following:

 Vertex count (#V): number of vertices

 Edge count (#E): number of edges

 Average degree:
2(#𝐸)

#𝑉
 two times number of edges divided by number of vertices

 Graph diameter: the longest shortest path between any two vertices

 Maximum out degree: maximum number of outgoing edges in a node

 Maximum in degree: maximum number of incoming edges in a node

 Average node rank: average node rank between all nodes (defined in (Grijincu, 2013))

4.3.3. Content vectors similarity

The authors of (Gentner & Forbus, 1994) demonstrated that the dot product between two

content vectors 𝑣𝑑1
= (𝑖1, 𝑖2, … , 𝑖𝑛) and 𝑣𝑑2

= (𝑗1, 𝑗2, … , 𝑗𝑛) is a good estimate for relative

similarity, which is a consequence of the fact that each of the product 𝑖𝑘 × 𝑗𝑘 is an overestimate of

the number of matched hypotheses between functor types. However, in our retrieval model, we use

the Radial Basis Function (RBF), which is has been successfully used to compute similarity scores

between feature vectors in other retrieval systems (Manning, et al., 2008):

𝑅𝐵𝐹(𝑥, 𝑦) = exp (−
||𝑥−𝑦||2

2𝜎2) = exp (−𝛾||𝑥 − 𝑦||2)

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

44

 where x and y are two points in a n-dimensional Euclidian space, ||x - y|| is the Euclidian

distance between vectors x and y, 𝜎 is a free real parameter and 𝛾 =
1

2𝜎2.

Figure 16: RBF plot with γ=1 and γ=5. For example, if two cases x and y are similar, their

Euclidian distance will be close to zero and the similarity score will be close to one.

 The main advantage of RBF is the fact that the function is more flexible than dot product when

the feature vectors contain other attributes (i.e. different from the functor types established for

content vectors) which can express other properties of conceptual graphs (e.g. total number of

nodes, number of loops, loop size, connectivity (O'Donoghue & Crean, 2002)). The downside of

RBF is the fact that the 𝛾 parameter is free, therefore its value must be chosen experimentally. In

our implementation, we used custom values for the 𝛾 parameter depending on the type of the source

code artefact (Figure 16) (i.e. 𝛾𝑚𝑒𝑡ℎ𝑜𝑑 = 0.05 , 𝛾𝑐𝑙𝑎𝑠𝑠 = 0.01 , 𝛾𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 0.005 chosen

empirically based on the evaluation results) each content vector is describing (i.e. we compute RBF

only between content vectors that are both associated with methods, classes, collection of classes).

RBF computes the similarity score applied between the content vectors associated with the

query and the cases in memory (associated with source code artefacts) and the result is used in

ranking, from a structural point of view (the implementation for Euclidian distance and RBF

similarity are presented in (Table 9)).

Table 9: Euclidian Distance implementation used to compute RBFSimilarity

double Distance(StructuralFeatureVector v1, StructuralFeatureVector v2)
{
 double d = 0.0d;
 for (int i = 0; i < VectorDimension; i++)
 {
 double f1 = v1.Features[i], f2 = v2.Features[i];
 if (f1 != 0 && f2 != 0)

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

RBF (γ=1)

RBF (γ=5)

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

45

 d += Math.Pow(f1 - f2, 2);
 else if (f2 == 0)
 d += f1 * f1;
 else
 d += f2 * f2;
 }
 return d;
}

double RBFSimilarity(StructuralFeatureVector v1, StructuralFeatureVector v2)
{
 if (v1.Artefact is MethodCodeArtefact) // v2.Artefact is also MethodCodeArtefact
 return Math.Exp(-MethodRbfGamma * Distance(v1, v2));
 else if (v1.Artefact is TypeCodeArtefact)
 return Math.Exp(-ClassRbfGamma * Distance(v1, v2));
 else return Math.Exp(-ClassesRbfGamma * Distance(v1, v2));
}

So far, we have presented a way of encoding information about the source code topology by

using Conceptual Graphs and Content Vectors and we have defined a way of computing similarity

scores between these representations. In addition, we argued that this process is analysing different

structural characteristics of source code, as opposed to semantic retrieval. Therefore, a different

mechanism for selecting the subset of relevant source code artefacts is needed and its designed is

described in the following section.

4.3.4. Efficient case comparison

Because our database of source code artefacts will potentially be very large, we need an

efficient way of retrieving the most similar cases. We propose using the K-Means Clustering

algorithm (3.1.5) in order to create sub-groups of content vectors and perform K-Nearest

Neighbours (3.1.2) only on the “closest” sub-groups to a given input content vector, thus speeding

up the structural retrieval process, at the cost of an extra learning step in the knowledge acquisition

phase.

Similar to the technique described for semantic retrieval in section (4.2.2) (i.e. inverted

indexing used for selecting semantically relevant documents, relative to the query), we need to

select the subset S of structurally relevant documents from the entire corpus and to compare the

query only with this subset S. This technique is employed only for content vector (structural)

representations, because in the case of semantic retrieval, the proposed inverted indexing method

(4.2.2) can easily obtain the set of relevant documents by taking advantage of vector space

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

46

representations. However, content vectors are no different than general purpose feature vectors,

therefore we cannot expect any special particularities in their topology as in the case of vector space

representations.

In order to compute the subset S of structurally relevant source code artefacts, we propose prior

clustering of the set of content vector representations, which will yield representative cluster

centroids. The major challenge when applying K-means clustering algorithm is the choice of K.

Currently there exists no well-established method for automatic selection of K (we have

experimented with the elbow method7, but with no significant results), therefore we established

𝐾 = √
𝑛

2
, (where n is the total number of content vectors) by analysing the data set of content vectors

and evaluating the results. After clustering our source code artefacts in sub-groups by their

structural features expressed by content vectors, at retrieval time we compare the query with the

established K centroids and apply K-nearest neighbours in order to determine the nearest sub-group

(all distances between content vectors were computed using the implementation in (Table 9)).

An interesting behaviour manifested by the K-means clustering algorithm is the random

initialization phase of the centroids, which may cause different local optimal solutions each time

we run the algorithm. Empirical evidence has shown that centroids should be placed (in the “Init”

step) as far away as possible from each other; thus, centroids should be initialized from randomly

chosen points from the input set (MacQueen, 1967). In our implementation, we first select centroids

from the data set using the initialization procedure of the K-means++ algorithm (Arthur &

Vassilvitskii, 2007). Therefore, as a safety measure, our subset S of structurally relevant source

code artefacts is initialized from the closest two clusters to query (i.e. 3-nearest neighbours), which

will result in a trade-off between slower retrieval times and a longer retrieved list of source code

artefacts.

This technique is optional and its purpose is to speed up the retrieval process by comparing the

query only with structurally relevant documents, from a potentially large database of source code

artefacts. Also, as a consequence, the structural retrieval results will only consist of documents that

are related to the query (with high probability). This technique can be used with regular feature

7 http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set#The_Elbow_Method

http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set#The_Elbow_Method

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

47

vectors, however the generation of clusters can be computationally expensive, as opposed to the

“shortcut” method used with vector space representations in semantic retrieval.

We have discussed the design of the structural retrieval technique, which is an independent

process in the retrieval module of Arís. In addition, an efficient indexing technique for content

vectors (extracted from Conceptual Graphs) was presented in order to select relevant documents

relative to the query, which can then be compared using RBF. The following section outlines the

advantages, disadvantages and differences between our proposed structural retrieval solution and

the system presented in section (2.1).

4.3.5. Critical analysis of structural retrieval

The proposed structural retrieval model in Arís relies on conceptual graphs and content vectors.

Content vectors are not taking into account the full relational structure of the documents, however

their main advantage is the light representational mechanism which allows fast retrieval. Their

design role in Arís is justified by the fact that a deeper, more computational expensive comparison

between the query and the top ranked retrieved source code artefacts is applied later (4.4).

Conceptual graphs (4.3.1) have proven representational power of source code and our primary

inspiration for use of this structure was the work presented in section (2.1). However, the retrieval

system presented in (Mishne & De Rijke, 2004) is different from the one in Arís. Although the

authors argued that a lightweight retrieval mechanism was applied in order to rank relevant source

code segments, the overall conclusion was that their proposed system is still computationally

complex.

As stated earlier, the main threat to validity for our proposed structural retrieval algorithm is

the fact that content vectors are not an exhaustive (structural) description mechanism for source

code artefacts, but the results from our Evaluation (chapter (5)) show the promising potential of

conceptual graphs and content vectors in representing source code.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

48

4.4. Combined Retrieval

Our final step in the retrieval phase in Arís is combining the results from semantic (4.2) and

structural (4.3) retrieval. These two processes are independent because they analyse different

properties of documents in case-base relative to the query, thus their execution can be parallelised

and their results can be processed just before the retrieval system responds. In addition, despite

their independence, the processes are designed to complement each other by analysing different

characteristics found in source code and their symbiosis is reached in combined retrieval, where

both structural and semantic features are reflected in the results. Moreover, the design of combined

retrieval is modular, which means that other retrieval algorithms can easily be integrated with Arís,

for example, a technique that explores the documentation of the software in case-base (e.g.

comments in the source code).

We obtain the final set of documents relevant to the query by union of the set U of semantically

similar documents (4.2.2) and the set S of structurally similar documents (4.3.4). Therefore, each

document d from this final set has two similarity scores associated (with respect to the query q)

and one combined score between them:

 𝑠𝑖𝑚𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 (𝑑, 𝑞): Semantic similarity score between document d and query q. If d is

not included in U, the score is equal to 0.

 𝑠𝑖𝑚𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙(𝑑, 𝑞): Structural similarity score between document d and query q. If d is

not included in S, the score is equal to 0.

 𝑠𝑖𝑚𝑐𝑜𝑚𝑏(𝑑, 𝑞) = 𝑤𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 × 𝑠𝑖𝑚𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐(𝑑, 𝑞) + 𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 × 𝑠𝑖𝑚𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 (𝑑, 𝑞) :

Combined similarity score between document d and query q. 𝑤𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 and 𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙

are factor weights for each score, such that: 𝑤𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 + 𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 = 1 . In our

implementation, the assignment 𝑤𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = 0.5 and 𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 = 0.5 yielded good

results.

There are situations when the weights of semantic or structural retrieval need to change. For

example, if two identical source code artefacts do not contain any API calls, the semantic similarity

score will be zero, although the overall similarity score should be close to one. Instead, when this

situation occurs, we alter the weights of semantic and structural similarity in combined retrieval

(for example, 0.001 for semantic similarity and 0.999 for structural similarity).

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

49

The final set of documents relevant to the query, is then ranked by their corresponding 𝑠𝑖𝑚𝑐𝑜𝑚𝑏

scores. Further, we seek ranking precision for the top retrieved documents, because their order in

the results is crucial (i.e. selecting most similar implementations such that the knowledge transfer

(formal specification) step will have a higher chance of success; also, these top documents

represent the most interesting subset of corpus, to a possible interactive user of Arís). This increased

level of attention to ranking of the top retrieved documents is a widely used practice in other

retrieval systems (Mishne & De Rijke, 2004) (Gentner & Forbus, 1994).

We rely on the Conceptual Graph-Matching module in Arís (Grijincu, 2013) to return a more

precise similarity score between query and top retrieved source code artefacts (in our

implementation, the top 10% of retrieved source code artefacts) However, if none of the top

retrieved documents has a similarity score greater than a threshold i.e. 0.5, the CG matching is no

longer applied. This module is using a deeper, more computationally expensive algorithm to match

source code artefacts by their conceptual graph (3.2.1) representations. The module is capable of

comparing any type of source code artefact (i.e. method, class, collection of classes. In fact, the

conceptual graph representation can be extracted from any source code snippet). The returned

conceptual graph similarity score 𝑠𝑖𝑚𝐶𝐺𝑚𝑎𝑡𝑐ℎ is part of the following linear combination:

𝑠𝑖𝑚𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑑, 𝑞) = 𝑤𝑐𝑜𝑚𝑏 × 𝑠𝑖𝑚𝑐𝑜𝑚𝑏(𝑑, 𝑞) + 𝑤𝐶𝐺𝑚𝑎𝑡𝑐ℎ × 𝑠𝑖𝑚𝐶𝐺𝑚𝑎𝑡𝑐ℎ(𝑑, 𝑞)

where 𝑤𝑐𝑜𝑚𝑏 and 𝑤𝐶𝐺𝑚𝑎𝑡𝑐ℎ are weights for the combined retrieval score and conceptual graph

matching score, such that 𝑤𝑐𝑜𝑚𝑏 + 𝑤𝐶𝐺𝑚𝑎𝑡𝑐ℎ = 1. Once again, these weights were chosen based

on the evaluation results of our implementation: 𝑤𝑐𝑜𝑚𝑏 = 0.35 and 𝑤𝐶𝐺𝑚𝑎𝑡𝑐ℎ = 0.65.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

50

4.5. Overview of all parameters and definitions used in retrieval

As a summary of all parameters, weights, similarities and metrics that affect or tune the retrieval

system, in (Table 10) we give a description of all such variables.

Table 10: Overview of all definitions used for source code retrieval, in the order presented in this

chapter.

 Description

Vector space

representation

Vector that contains the importance (weight) of all API calls, used to express

the semantics of source code artefacts

U The subset of semantically relevant source code artefacts relative to the query

𝒘𝒄𝒐𝒔 Weight for Cosine similarity between vector space representations

𝒘𝒅𝒍 Weight for Damerau-Levenshtein similarity between sorted lists of API calls

𝒔𝒊𝒎𝑪𝒐𝒔(𝒅, 𝒒) Cosine similarity between documents d and q

𝒔𝒊𝒎𝑫𝑳(𝒅, 𝒒) Damerau-Levenshtein similarity between documents d and q

𝒔𝒊𝒎𝒔𝒆𝒎𝒂𝒏𝒕𝒊𝒄(𝒅, 𝒒) Semantic similarity between documents d and q

𝑺 The subset of structurally relevant source code artefacts relative to the query

Content vectors Feature vectors that encodes the number of every node type in Conceptual

Graphs (e.g. Loop, Variable, MethodCall) and various measures that express

CG structure (e.g. Average degree, Graph diameter, Average node rank)

K The number of clusters used for content vector clustering with K-means

𝜸𝒎𝒆𝒕𝒉𝒐𝒅 RBF parameter for computing similarity between two methods

𝜸𝒄𝒍𝒂𝒔𝒔 RBF parameter for computing similarity between two classes

𝜸𝒄𝒍𝒂𝒔𝒔𝒆𝒔 RBF parameter for computing similarity between two collections of classes

𝒘𝑪𝑮𝒎𝒂𝒕𝒄𝒉 Weight for Graph-Matching similarity

𝒘𝒔𝒆𝒎𝒂𝒏𝒕𝒊𝒄 Weight for semantic similarity between two vector space representations

𝒘𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒂𝒍 Weight for structural similarity between two content vectors

𝒘𝒄𝒐𝒎𝒃 Weight for combined (semantic and structural) similarity

𝒔𝒊𝒎𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒂𝒍(𝒅, 𝒒) Structural similarity between documents d and q

𝒔𝒊𝒎𝒄𝒐𝒎𝒃(𝒅, 𝒒) Combined (semantic and structural) similarity between documents d and q

𝒔𝒊𝒎𝑪𝑮𝒎𝒂𝒕𝒄𝒉(𝒅, 𝒒) Graph-Matching similarity between documents d and q

𝒔𝒊𝒎𝒐𝒗𝒆𝒓𝒂𝒍𝒍(𝒅, 𝒒) Overall similarity between documents d and q

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

51

4.6. Evaluation of retrieved specifications

After the combined retrieval process is complete, knowledge transfer (formal specification

generation) can now be performed from the top ranked verified implementations to the unverified

query.

The top ranked source code artefacts are relevant if their overall similarity score with the query

is higher than an established threshold (in our implementation, 0.7). Using the source code artefacts

which have an associated formal specification from these top ranked results, we iteratively “feed”

each retrieved verified implementation as source and the query as target to the Specification

Generation module in (Grijincu, 2013), which uses a pattern completion algorithm called Copy

with Substitution and Generation (Holyoak & Thagard, 1999). After the formal specification is

generated for the query (Reuse phase of CBR), our module is responsible of evaluating this newly

formed solution (Revise phase of CBR) (Table 11).

Table 11: Example of a successful specification generation (right) using the existing Spec#

formal specification from the Source implementation (left).

Source Target

string NextWord(string src, int n,
StringBuilder sb)
 requires 0 <= n && n <= src.Length;
 requires sb.Length == n;
{
 int start = n;
 while (n < src.Length)
 invariant sb.Length == start;
 invariant start <= n && n <=
src.Length;
 {
 if (src[n] == ' ')
 {
 n++;
 break;
 }
 n++;
 }
 string s =src.Substring(start,n-start);
 sb.Append(s);
 return s;
}

string NextWord_MOD(MyStringBuilder sb,
int i, string source, int ChunkSz)
 requires 0 <= i && i <= source.Length;
 requires sb.Length == i;
{
 int begin = i;
 for (;i < source.Length; i++)
 invariant sb.Length == begin;
 invariant begin <= i && i <=
source.Length;
 {
 if (source[i] == ' ')
 { //extraneous
 i++;
 break;
 }
 }
 string str = source.Substring(begin, i
- begin);
 sb.Append(str);
 return str;
}

In our implementation, we use the Spec# (Rustan, et al., 2010) formal method to verify the

implementation. If the generated specification does not formally verify the query, a new source

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

52

code artefact from the top ranked results is used as source for specification generation, until the

process is successful or there are no more relevant source code artefacts in the retrieval results. In

addition, in case of success (a generated specification formally verifies the query), the new

generated solution is stored in the case base for further use (Retain phase of CBR).

4.7. Interactive interface of Arís

The practical implementation of the proposed system follows closely the specification of the

presented model and a useful Graphical User Interface for Arís was developed in order to perform

proof of concept.

Figure 17: Interactive interface of Arís.

The interface (Figure 17) was developed using WPF .NET Framework 4.5 in C# and XAML.

It consists of a tree view from where a particular source code artefact can be selected as query and

a list view where the retrieval results are loaded and ranked based on their overall similarity score.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

53

In addition, the user can manually transfer knowledge (formal specification) from the retrieved

source code artefacts to the query and verify it. This software tool is also justified by use-cases

(1.1) where an actual interactive user is searching for similar source code artefacts, relative to a

given input. Even in the case of applying knowledge transfer of formal specifications, further

assistance or intervention from a human user might be needed for successful verification of

implementations (in this case, our framework is similar to Conversational Case Based Reasoning

systems (Gu, et al., 2004)).

Summary

We presented the proposed solution relative to the original problem statement (1.1) with a

strong focus on source code retrieval. Moreover, we analysed our implementation in contrast to

existing methods, we justified our design decisions and we described in detail critical fragments of

our model by showing practical algorithm implementations or various values assigned to our free

parameters. Further, we described how the assessment of formal specifications is performed and

we have presented a tool that facilitates interaction with the framework.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

54

5. Evaluation

In this chapter, we will present some of the experiments used for evaluating the proposed

system and the associated results. Because this project was focused on the retrieval phase of Case

Based Reasoning, the performance of this process will be evaluated separately from the

performance of the overall project, which has as a main goal formal specification reuse.

5.1. Source code retrieval evaluation

Although the source code retrieval module can be used independently of our overall purpose,

its design was created with the overall goal of Arís in mind (as discussed in chapter (4)). Therefore,

the experimental setup environment for the source code retrieval process must be aware of the fact

that Arís doesn’t seek the same level of “fuzziness”, as desired by other frameworks, presented in

the Related Work chapter (2). Instead, the system should be able to retrieve source code artefacts

that achieve the same functionality, i.e. that implement the same requirements as the query. Also,

as opposed to CLAN, which detects similarity between software applications, we seek software

retrieval at various OOP granularity: methods, classes or collection of classes, where formal

specifications currently define the functionality of implementations.

In the following sections we analyze the computational characteristics of the proposed

technique and we discuss the experiments that helped in parameter selection or evaluation of

retrieval performance.

5.1.1. Computational characteristics

The source code retrieval process consists of the following two steps: knowledge acquisition

and query response. The knowledge acquisition step is responsible of enriching the case-base with

source code artefacts and with extraction of various information needed for retrieval.

In the knowledge acquisition step for semantic retrieval, API calls are extracted and indexed

from a set of compiled assemblies, as presented in section (4.1). Respectively, for structural

retrieval, methods are decompiled into valid C# source code; the result is passed to Conceptual

Graph Construction module and content vectors are stored in the case-base. The knowledge

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

55

acquisition phase takes approximately 5 hours on a 1.7GHz i7 processor, for the set of 2,191

software applications, which contain 2,033,623 methods. If performed separately, extracting API

calls takes 45 minutes and extracting content vectors takes 4 hours and 35 minutes. Optionally,

API calls and content vectors computed at this step can be stored offline for further use.

At query time, the source code retrieval system responses vary in time depending on the

complexity of the input source code artefact. For example, if the query contains many API calls,

the subset of related implementations extracted using the technique described in section (4.2.2) will

have a high cardinality, thus many similarity scores must be computed with the query. The

complexities for computing the similarity scores for the two retrieval methods are:

 Semantic similarity: 𝑂(𝑚2), where m is the maximum number of API calls between the

two compared source code artefacts (𝑂(𝑚) for Cosine similarity and 𝑂(𝑚2) for Damerau-

Levenshtein distance)

 Structural similarity: 𝑂(𝑙), where l is the fixed length of content vectors (complexity of

RBF similarity function)

The average time needed to retrieve similar source code artefacts using the same number of

software applications in the case-base, is 2.89 seconds. This response time is also due to prior use

of clustering with K-means of content vectors, which requires another 5 hours in the knowledge

acquisition step. If clustering is not used for structural retrieval, the response time increases with

5.5 seconds, on average. We will also show in our experiments, that the use of clustering does not

significantly affect the quality of retrieval. As a comparison note, the system presented in section

(2.1) reported that the system responds in approximately 5-6 minutes when retrieving from a corpus

of 2,932 files, which contain 88363 lines of code.

5.1.2. Evaluation case-base and queries

Evaluation of a source code retrieval system is a difficult task, mainly because of the lack of a

publicly available test set, which would contain sets of source code artefacts that implement the

same requirements. This setting would allow, for example, selecting one element from such a set

as query and evaluating whether the retrieval system is able to retrieve from memory all documents

that implement the same requirements. The inexistence of such a test set is due to the fact that its

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

56

creation is laborious work and may be subjective or inappropriate for the actual purpose of the

retrieval system (i.e. detecting code theft, rapid prototyping, etc.).

The problem was also encountered by work presented in chapter (2) and different solutions

were found. The system presented in section (2.1) was evaluated using a small number of queries

(i.e. 25 source code files) that were identical or modified versions of documents in the database.

The authors of CLAN (section (2.2)) evaluated performance using 33 software engineers that

manually evaluated the retrieved software applications and then compared the results with the

MudaBlue system (Kawaguchi, et al., 2006).

In order to evaluate source code retrieval in Arís, the set described in section (4.1) with 2,191

software applications, which contain 175,291 classes and 2,033,623 methods was selected to

aggregate the case-base. The methods have on average 36 lines of source code and the case-base

comprises of approximately 74,215,100 lines of code. These documents are real world examples

of unverified software implementations and amongst them, we have added test-suite examples of

verified implementations from the Spec# version control website (as described in section (4.1)). It

is worth noting that at a higher level view on the corpus, the test-suits examples for Spec# contains

relatively short implementations of simple tasks (sum of elements in a vector, sorting an array, etc.)

with little or no use of API calls (we extracted 30 API calls from all test-suite examples), while the

real world examples contain implementations of harder tasks, where the use of API calls is

ubiquitous (Table 12).

Table 12: Randomly selected methods illustrating the content of each corpus.

Spec# test-suite example Example from a Codeplex project

int Count(int[] a, int x)
 requires a != null;
 ensures result == count{int i in (0:
a.Length); (a[i] == x)};

{
 int s = 0;
 for (int i = 0; i < a.Length; i++)
 invariant i <= a.Length;
 invariant s == count{int j in (0:
i); (a[j] == x)};
 {
 if ((a[i]) == x)
 s = s + 1;
 }
 return s;

string ResolveUrl(string appPath, string
relativeUrl)
{
 string result;
 if (relativeUrl == null)
 result = null;
 else
 {
 if (!relativeUrl.StartsWith("~"))
 result = relativeUrl;
 else
 {
 string text = appPath +
relativeUrl.Substring(1);
 result = text.Replace("//", "/");
 }

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

57

} }
 return result;
}

The query set selected to test the source code retrieval technique, contains 50 modified source

code artefacts (methods) from documents in our case-base. Amongst these queries, there are some

unmodified versions of examples from our case-base (i.e. identical document retrieval) that serve

as a sanity test for the retrieval system. We expect that in this setup, the similarity score between

the two identical documents will be one, because both semantic and structural similarity is one, for

reasons discussed in section (4.2.4) and (4.3.3) respectively. Indeed, in all our experiments, Arís

was able to retrieve the corresponding identical source code artefact with similarity score of one

from the case-base.

For the modified versions of source code artefacts in the query set, we have applied some

modifications that do not change the functionality of the original implementation (Wilkinson,

1994):

1. Lexical modifications: changing names of variables, methods, parameters

2. Parameter order: changing the order of input parameters in the method’s definition

3. Code comments: adding, removing or modifying comments in source code

4. Code style changes: changing the type of loop used (for, while)

5. Order of statements: changing order of source code statements, where this does not affect

the desired functionality

6. Extraneous statements: adding source code statements (for example, int n = i + j; or

unnecessary API calls, String.IsNullOrEmpty(“example”))

7. Changing variable types: changing types of variables where this does not affect

functionality (for example, changing type int with type long, or changing type Superclass

with type Subclass)

Our source code retrieval system is not affected by any of the modifications from 1 to 4 (we

do not consider names of variables, parameter order, code comments in our representational

structures). However, changing order of statements (5), adding extraneous statements (6) and

changing variable types (7) will possibly result in different API calls or a different order of API

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

58

calls, which will affect the returned semantic similarity score. Also, this will yield a different

Conceptual Graph representation of source code, which affects the structural similarity score.

5.1.3. Retrieval parameters selection experiments

In chapter (4), we defined a number of free parameters that directly affect the quality of

retrieval (for example, selection of weights for semantic, structural modules and the Conceptual

Graph-Matching similarity score).

In order to assess the performance of retrieval under different parameter settings, we used the

case-base and queries defined above. We know that for every query in this set, there exists the

original source code artefact in the case-base, from which the query was modified, therefore their

similarity score should be close to 1. Thus, the mean similarity score between all queries and their

corresponding source code artefacts in the case base should be close to 1, in a good retrieval

framework. Also, we make use of the Mann-Whitney (Mann & Whitney, 1947) and Kruskal–

Wallis (Kruskal & Wallis, 1952) statistical significance tests, in order to determine whether the

results of our experiments occurred by chance (our null-hypothesis is that the retrieval system tuned

with a set of free-parameters is equivalent to the retrieval system tuned with a different set of

parameters). In (Table 13), we present the results (expressed by the Mean column) of a few

parameter configurations of the retrieval module configured with different sets of parameters.

Because exhaustive selection of values for all parameter combinations is a time consuming and

difficult task, we selected a few values by intuition and assessed performance by selecting the

configuration with the highest mean. The parameters selected in Config1 yielded the best results

(highest mean).

Table 13: A subset of parameters selected for the source code retrieval system.

Retrieval

System

𝒘𝒄𝒐𝒔 𝒘𝒅𝒍 𝒘𝒔𝒆𝒎𝒂𝒏𝒕𝒊𝒄 𝜸𝒎𝒆𝒕𝒉𝒐𝒅 𝑲 𝒘𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒂𝒍 𝒘𝒄𝒐𝒎𝒃 𝒘𝑪𝑮𝒎𝒂𝒕𝒄𝒉 Mean

Config 1 0.7 0.3 0.5 0.05 3 0.5 0.35 0.65 0.921

Config 2 0.4 0.6 0.5 0.05 3 0.5 0.35 0.65 0.908

Config 3 0.7 0.3 0.7 0.05 3 0.3 0.35 0.65 0.893

Config 4 0.7 0.3 0.2 0.05 3 0.8 0.35 0.65 0.901

Config 5 0.7 0.3 0.5 0.40 1 0.5 0.35 0.65 0.841

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

59

Config 6 0.7 0.3 0.5 0.005 3 0.5 0.35 0.65 0.899

Config 7 0.7 0.3 0.4 0.99 3 0.7 0.35 0.65 0.915

Config 8 0.7 0.3 0.7 0.05 3 0.3 0.9 0.1 0.771

Config 9 0.5 0.5 0.5 0.05 3 0.5 0.5 0.5 0.873

Config 10 0.6 0.4 0.5 0.01 3 0.6 0.2 0.8 0.901

 In (Table 14) we present the results of a few statistical significance tests that test the null-

hypothesis between runs from (Table 13). Only a few of these tests were computed, depending on

the retrieval systems compared. For example, it makes sense to compare Config1 and Config2 in a

single test because the only parameters that vary in the two configurations are Cosine similarity

and Damerau-Levenshtein similarity in semantic retrieval. The null-hypothesis is rejected if 𝑃 ≤

0.1, which means that there is a significant difference in the results of the configurations compared.

Table 14: Mann-Whitney8 statistical significance test for testing the null-hypothesis for two

retrieval configurations and Kruskal-Wallis generalized test of Mann-Whitney for three or more

retrieval configurations.

Mann-Whitney/

Kruskal–Wallis

Systems compared Null-hypothesis

P=0.482 Config1, Config2 Accept

P=0.241 Config1, Config3, Config4 Accept

P=0.204 Config1, Config5, Config6, Config7 Accept

P=0.046 Config1, Config8 Reject

P=0.354 Config1, Config9, Config10 Accept

P=0.191 Config7, Config9, Config10 Accept

 From table (Table 14) we can infer that the null-hypothesis (two or more parameter

configurations are equivalent) is accepted in the majority of the tests, which means that changing

various values in the system does not significantly change the quality of retrieval. However, this

result can be explained by the fact that a small number of queries were used in the experiments and

8 Computed using: http://www.vassarstats.net/

http://www.vassarstats.net/

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

60

most of the queries are test-suit examples for Spec# (as discussed above), which explains that

assigning a higher weight for semantic retrieval does not make a significant difference in the

results.

 One important observation that can be inferred from tables (Table 13) and (Table 14) is

the fact that assigning a low value for the Graph-Matching module affects the overall quality of the

retrieval system and we can state that the differences in results between Config1 and Config8 are

significant and they do not occur by chance (the null hypothesis is rejected in the Mann-Whitney

test). In (Figure 18) we can observe that by using graph matching, the similarity scores are

improved.

Figure 18: Responses in Config1 for each of the 50 queries sorted by retrieval similarity scores

 This fact can be explained by observing that, the combined retrieval similarity score does

not take into account some of the modification rules applied when we have created the queries (as

discussed in section (5.1.2), order of statements, extraneous statements, changing variable types).

For example, in (Table 15), the similarity score between the two implementations, assigned by

combined retrieval is 0.78 and the score assigned by Conceptual Graph-Matching is 0.88. This is

justified by the fact that the Conceptual Graph-Matching module is capable of inferring that

MyStringBuilder is a subclass of StringBuilder and their usage is equivalent (Liskov

Substitution Principle (Meyer, 1992)). Although both modules are not sensible at method parameter

re-ordering, name changing or loop style change, they are affected by adding or removing

statements, mainly because the corresponding Conceptual Graph representations are different

(Grijincu, 2013).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Graph matching similarity Retrieval combined similarity

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

61

Table 15: Example of a query (left) modified from a source code artefact that is part of the case-

base (right).

Modified source code artefact Original source code artefact

string NextWord_MOD(MyStringBuilder sb,
int i, string source, int ChunkSz)
{
 long begin = i;
 for (;i < source.Length; i++)
 {
 if (source [i] == ' ')
 {
 long v = begin + i; //extraneous
 i++;
 break;
 }
 }
 string s = source.Substring((int)
begin, i-begin);
 sb.Append(s);
 return s;
}

string NextWord(string src, int n,
StringBuilder sb)
{
 int start = n;
 while (n < src.Length)
 {
 if (src[n] == ' ')
 {
 n++;
 break;
 }
 n++;
 }
 string s =src.Substring(start,n-start);
 sb.Append(s);
 return s;
}

5.1.4. Comparison with other retrieval systems

Another challenging task when evaluating the proposed solution was comparing our results

with other source code retrieval frameworks. For a conclusive comparison between retrieval

software, the same set of queries must be set as input for each compared system. This task is

difficult because an actual copy of the software implemented by the authors of the frameworks

described in chapter (2) is hard to obtain (not publicly available). Instead, a solution might be

implementing a baseline system using the presented specifications in the original paper (for

example, the authors of CLAN (McMillan, et al., 2012) fully implemented MudaBlue (Kawaguchi,

et al., 2006) for evaluation purposes). In addition, the goal of our retrieval module is unique (reuse

of formal specifications), thus a detailed comparison with other source code retrieval frameworks

that seek a different purpose, might be irrelevant. However, even if we use a different set of queries

(from the ones used by other systems (2)), we compute some standard measures (Manning, et al.,

2008) useful for comparing retrieval systems:

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

62

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ∩ 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑|

|𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑|

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ∩ 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑|

|𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡|

where 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 is the set of relevant documents in the collection (relative to a given query) and

𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 is the set of documents retrieved by the system. Measuring recall means assessing the

entire corpus of documents because it requires discovering every source code artefact similar to the

query. Precision, on the other hand, requires assessing only the top ranked retrieval results (i.e.

above the established threshold in section (4.6)). Both of these measures require human evaluation

(by a software engineer) and similar to the experiments in (Mishne & De Rijke, 2004) and

(McMillan, et al., 2012), we focus only on measuring precision.

In addition, because ranking is an important aspect of our retrieval system, we measure the

Mean Reciprocal Rank (suitable when there is a single relevant item to a given query):

𝑀𝑅𝑅(𝑄) = 𝑎𝑣𝑔 {
1

𝑟𝑎𝑛𝑘(𝑑(𝑞1))
, … ,

1

𝑟𝑎𝑛𝑘(𝑑(𝑞𝑛))
}

where, 𝑟𝑎𝑛𝑘(𝑑(𝑞𝑖)) returns the rank of the associated document in corpus relative to the i-th query

(e.g. 𝑟𝑎𝑛𝑘(𝑑(𝑞𝑖)) = 2 if the document relative to 𝑞𝑖 is returned second).

In (Table 16) we present the results of our experiments. These results are purely informative

because a statistical significance test that would show if the differences between these measures

occurred by chance or not, cannot be applied (the queries used in evaluation of the systems were

different).

Table 16: Results for Precision and MRR for Source Code Retrieval system in Arís, Source Code

Retrieval System using Conceptual Graphs and CLAN.

SC Retrieval Systems Precision MRR

SC Retrieval in Arís (section 4) 0.442 0.908

SC Retrieval using CG (section 2.1) 0.352 0.813

CLAN (section 2.2) 0.45 (n/a)

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

63

When measuring precision, another sanity test was developed for the proposed system: using

another set of queries (used only for this experiment) and a smaller corpus of source code artefacts

that are very different from the queries, we tested whether these irrelevant queries retrieve any

source code artefacts. Again, Arís responded as expected and none of the queries retrieved any

source code artefacts with a similarity score higher than the threshold established in section (4.6).

We conclude this comparison by stating that the retrieval module in Arís performs very well

on the set of queries we provided, which means that the system has a good chance in achieving its

main goal (formal specification reuse). In addition, our framework outperforms other existing

systems, by successfully retrieving relevant source code artefacts from a very large set of

documents in a reasonable amount of time.

5.2. Formal specification reuse evaluation

In this section we analyse whether Arís is successful in reuse of formal specifications. That is,

for a given unverified implementation we aim to retrieve similar verified code and then reapply the

missing specification that accompanies that code. In this process, the top retrieved verified source

code artefacts are iteratively used to generate formal specifications, as described in section (4.6).

In this experiment, we used the same set of modified queries from the existing verified source

code artefacts in our case-base, presented in section (5.1.2) (Spec# test-suite). Thus, our aim is to

formally verify 100% of these established queries, because we expect that for a given modified

query from a verified implementation existing in the case-base, the retrieval system will give a

good ranking of the corresponding verified source code and the Specification Generation module

in (Grijincu, 2013) will successfully transfer the associated specification.

From a set of 30 selected queries that have an associated verified implementation

correspondent in the case base, we were able to verify 18 (60% of implementations), using the

above described steps to generate specifications. However, when the output of the Spec# formal

method was analysed, we discovered that the generated specifications could not verify most of the

queries because of the modifications applied in order to create the set of queries (presented in

section (5.1.2)). For example, the Spec# formal method returns the following warning when

verifying the modified source code artefact from (Table 15):

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

64

warning CS0219: The variable 'v' is assigned but its value is never used

This means that some of the modifications made on the queries generated additional errors

when transferring specifications. Therefore, some of the errors are not due to incorrect

Specification Generation and this fact justifies again the usefulness of an interactive interface (4.7)

when such small errors occur. However, 7 unsuccessful generated specifications were assessed as

unverified due to incorrect mappings between source and target (4.6).

In (Table 17), we present a typical example of an unsuccessful transfer of specification to the

query. We observed that when the similarity score is below 0.7 (the threshold established in section

(4.6)), the source code artefacts significantly differ in functionality, and therefore the probability

of success in transferring the specification using these sources, is very low.

Table 17: Example of query and retrieved source code artefact, with similarity score of 0.621.

Query Source for knowledge transfer

int CountEven(int[] a)
{
 int s = 0;
 int v = s + 1;
 int i = 0;
 while (i < a.Length)
 {
 if ((a[i] % 2) == 0)
 {
 s += 1;
 }
 i++;
 }
 return s;
}

void CountNonNull(string[] a)
 requires a != null;
{
 int ct = 0;
 for (int i = 0; i < a.Length; i++)
 invariant i <= a.Length;
 invariant 0 <= ct && ct <= i;
 invariant ct == count{int j in (0:
i); (a[j] != null)};
 {
 if (a[i] != null)
 ct++;
 }
}

We are conscious of the fact that the main treat to validity is the limited set of queries used in

our experiments, however, we conclude this experiment by stating that the results are encouraging

and exceed our initial expectations. By verifying 60% of the set of modified queries provided, we

demonstrated that the framework is capable of generating new formal specifications using similar

past cases.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

65

Summary

In this chapter we presented the experiments and the results of the proposed solution evaluation

process. We decided to separately evaluate the source code retrieval system because this was the

main focus in our project and because we can relate the evaluation results to other existing

frameworks. We concluded the experiments for parameter selection by stating that using the

Conceptual Graph-Matching module generally improves the quality of retrieval and we showed

that this result does not occur by chance, by using statistical significance tests. Further, we

computed some standard metrics for retrieval systems and informally compared the results with

existing frameworks. In terms of formal specification reuse evaluation, the results are encouraging

and we confirm that in some of the cases, human assistance might be needed in order to fully verify

an implementation. The overall performance of Arís is very good not only for generating

specifications, but also for fast retrieval of source code artefacts. The experimental setup was

discussed in detail and the results were validated when this was possible. Also, we critically

analysed our work, by outlining the limitations and strong points of Arís.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

66

6. Conclusions

We have presented a novel solution to the problem stated in section (1.1). Our work aimed

automation of some of the steps involved in writing specifications and their implementations, by

reusing existing verified programs. The results exceeded our initial expectations and demonstrated

that this model can successfully generate formal specifications. In addition, Arís can retrieve source

code artefacts from a large corpus, with significantly faster response times than other existing

retrieval frameworks.

This approach is unique, to the best of our current knowledge, in terms of both model design

and proposed goal. The overall methodology of the Arís project is very similar to Case-Based

Reasoning and its parent discipline of Analogical Reasoning, centered on the activities of solution

retrieval and reuse. Although using CBR for source code retrieval is not a new approach, in this

project we have creatively combined the semantic and structural characteristics of software

implementations in a modular framework, which is flexible enough to enable weighting of existing

retrieval methods or “plug in” similarity algorithms like Conceptual Graph-Matching. After

retrieval, we iteratively attempt to transfer the formal specification from the top ranked verified

implementations to the query, using the Specification Generation module in Arís, and if the process

is successful, the new generated solution is stored in the case-base for further use.

In the evaluation chapter, we discussed the experimental setup that helped in establishing good

parameters for Arís. The main conclusion of these experiments was that using the Conceptual

Graph-Matching module generally improves the overall accuracy of retrieval. Further, some

standard measures for retrieval systems were analysed and we constantly compared the proposed

solution to the related work systems. We demonstrated that our framework successfully performs

software retrieval from a large set of source code artefacts, with very good response times. The

overall results of the evaluation process show that the proposed solution performs very well relative

to its main goal, therefore, we strongly believe that Arís represents promising work towards reuse

of formal specifications.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

67

6.1. Future work

The overall architectural design for the proposed framework relies on the assumption that

similar implementations have similar formal specifications. In future work, we need to discover

whether this is a truly reliable source for generating specifications, by establishing our results with

strong statistical significance. Another interesting direction of research for this project can be

retrieving similar source code artefacts that are different in implementation. For example, in order

to verify a sorting algorithm, the formal specification of a different implementation for sorting can

be used to achieve verification.

As discussed in the evaluation chapter, the parameter selection experiments were not

exhaustive and further attention to this process may further improve the quality of the system. In

addition, a more thorough comparison with existing solutions would more precisely confirm the

efficiency of our proposed retrieval system in source code retrieval.

Arís was initially envisioned as a framework for software reuse, thus not only for formal

specifications using past verified implementations, but also for generating the “missing”

implementations using similar specifications. In addition, a separate Arís module focuses on

specification reuse using data refinement, which can help software clients to focus only on

specifications, rather than on details of software implementations. These tools (Pitu M., Grijincu

D., Li P., Saleem A., O’Donoghue D. P., Monahan R., 2013) have evolved into separate projects;

however, in the future we seek to combine these approaches into an integrated platform that allows

reuse of software implementations and formal specifications.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

68

References

Aamodt, A. & Plaza, E., 1994. Case-Based Reasoning: Foundational Issues, Methodological Variations and

System Approaches. Artificial Intelligence Communications, Volume 1, pp. 39-59.

Acorn, T. & Walden, S., 1992. SMART: Support management automated reasoning technology for Compaq

customer service. s.l., MIT Press.

Aragon Consulting, n.d. Krogle code search. [Online]

Available at: http://www.krugle.org/

Arthur, D. & Vassilvitskii, S., 2007. K-means++: the advantages of careful seeding. Proceedings of the

eighteenth annual ACM-SIAM symposium on Discrete algorithms, p. 1027–1035.

Bicarregui, J., Hoare, J. & Woodcock, J., 2006. The Verified Software Repository: a step towards the verifying

compiler. Formal Asp. Comput., 18(2), pp. 143-151.

Biggerstaff, T. J., Mitbander, B. G. & Webster, D., 1993. Concept assignment problem in program

understanding. Proceedings - International Conference on Software Engineering, January, pp. 482-498.

Chatterjee, S., Juvekar, S. & Sen, K., 2009. SNIFF: A search engine for java using free-form queries. s.l., 12th

International Conference on Fundamental Approaches to Software Engineering.

Cheetham, W. & Goebel, K., 2007. Appliance call center: A successful mixed- initiative case study. AI

Magazine, Volume 28, pp. 89-100.

Damerau, F., 1964. A technique for computer detection and correction of spelling errors. Communications of

the ACM, 7(3), pp. 171-176.

Dasgupta, S., 2008. The hardness of K-means clustering, San Diego: University of California.

Dasgupta, S., 2008. The K-means clustering problem, San Diego: University of California.

Deerwester, S. et al., 1990. Indexing by latent semantic analysis. Journal of the American Society for

Information Science, 41(6), pp. 391-407.

Evain, J., n.d. Mono Cecil Project. [Online]

Available at: http://www.mono-project.com/Cecil

Everitt, B., Landau, S., Leese, M. & Stahl, D., 2011. Miscellaneous Clustering Methods. 5th ed. s.l.:John Wiley

& Sons.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J., 1994. Design Patterns: Elements of Reusable Object-

Oriented Software. s.l.:Addison-Wesley.

Gentner, D., 1983. Structure-Mapping: A Theoretical Framework for Analogy. Cognitive Science, pp. 155-170.

Gentner, D. & Forbus, K., 1994. MAC/FAC: A model of similarity-based retrieval, s.l.: Proc. Cognitive Science

Society.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

69

Gentner, D. & Smith, L., 2012. Analogical reasoning. In: Encyclopedia of Human Behavior (2nd Ed.).. Oxford:

UK: Elsevier, pp. 130-136.

Gilbert, S., 2009. Introduction to Linear Algebra. 2nd ed. s.l.: Wellesley-Cambridge Press.

GitHub, Inc., n.d. GitHub. [Online]

Available at: http://www.github.com

Google Inc., n.d. Google Code. [Online]

Available at: http://code.google.com

Grechanik, M., Conroy, K. M. & Probst, K. A., 2007. Finding relevant applications for prototyping. s.l., ICSE

2007 Workshops: Fourth International Workshop on Mining Software Repositories.

Grijincu, D., 2013. Source Code Matching for reuse of Formal Specifications, Dublin: s.n.

Gu, M., Aamodt, A. & Tong, X., 2004. Component retrieval using conversational case-based reasoning. s.l., In

Proceedings of the International Conference on Intelligent Information Systems.

Gunderloy, M., 2002. Understanding and Using Assemblies and Namespaces in .NET. [Online]

Available at: http://msdn.microsoft.com/en-us/library/ms973231.aspx

Hoare, T., Misra, J., Leavens, G. T. & Shankar, N., 2007. The Verified Software Initiative: A Manifesto. ACM

Computing Surveys, April.

Holyoak, K. & Thagard, P., 1999. Analogical Mapping by Constraint Satisfaction. Cognitive Science, 13(3),

pp. 295-355.

ICSharpCode, 2012. ILSpy .NET Decompiler. [Online]

Available at: http://ilspy.net/

Kawaguchi, S., Garg, P., Matsushita, M. & Inoue, K., 2006. MUDABlue: An automatic categorization system

for Open Source repositories. Journal of Systems and Software, 79(7), p. 939–953.

Keane, M. T., Forbus, D., Aamodt, A. & Watson, I., 2004. Retrieval, reuse, revision and retention in case-

based reasoning., s.l.: The Knowledge Engineering Review.

Kolodner, J., 1993. Case-Based Reasoning. San Mateo: Morgan Kaufmann Publishers.

Ko, Y., 2012. A study of term weighting schemes using class information for text classification. Portland,

Proceedings of the International ACM SIGIR Conference on Research and Development in Information

Retrieval.

Kruskal & Wallis, 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical

Association, 47(260), p. 583–621.

Leavens, G. T. & Cheon, Y., 2006. Design by Contract with JML, s.l.: s.n.

Luk, R. & Lam, W., 2007. Efficient in-memory extensible inverted file. Information Systems, 32(5), pp. 733-

754.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

70

MacQueen, J., 1967. Some Methods for classification and Analysis of Multivariate Observations. Proceedings

of 5-th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281-297.

Mamadolimov, A., 2012. Search Algorithms for Conceptual Graph Databases, s.l.: Cornell University Library.

Mann, H. & Whitney, D., 1947. On a Test of Whether one of Two Random Variables is Stochastically Larger

than the Other. Annals of Mathematical Statistics, 18(1), pp. 50-60.

Manning, C. & Schütze, H., 1999. Foundations of Statistical Natural Language Processing. Cambridge:

Foundations of Statistical Natural Language Processing, MIT Press. .

Manning, C. D., Raghavan, P. & Schütze, H., 2008. Introduction to Information Retrieval. s.l.: Cambridge

University Press.

McMillan, C., Grechanik, M. & Poshyvanyk, D., 2012. Detecting similar software applications. Proceedings -

International Conference on Software Engineering, pp. 364-374.

Meyer, B., 1992. Applying "Design by Contract". Computer IEEE, 25(10), pp. 40-51.

Meyer, B., 2006. Basic Eiffel language mechanisms. s.l.:s.n.

Michail, A. & Notkin, D., 1999. Assessing software libraries by browsing similar classes, functions and

relationships. Proceedings - International Conference on Software Engineering, pp. 463-472.

Microsoft, 2012. ECMA C# and Common Language Infrastructure Standards. [Online]

Available at: http://msdn.microsoft.com/en-us/vstudio/aa569283.aspx

Microsoft, n.d. CodePlex: Project Hosting for Open Source Software. [Online]

Available at: http://www.codeplex.com/

Mishne, G. & De Rijke, M., 2004. Source Code Retrieval using Conceptual Similarity. s.l., Conf. Computer

Assisted Information Retrieval.

Mitchell, T., 1997. Machine Learning. s.l.:McGraw Hill.

Mizzaro, S., 1998. How many relevances in information retrieval?. Interacting with Computers, 10(3), p. 303–

320.

Montes-y-Gómez, M., López-López, A. & Gelbukh, A., 2000. Information Retrieval with Conceptual Graph

Matching. s.l., In Database and Expert Systems Applications.

Neamtiu, I., Hicks, M. & Jeffrey, S., 2005. Understanding source code evolution using abstract syntax tree

matching. ACM SIGSOFT Software Engineering Notes, 30(4), pp. 1-5.

O’Donoghue, D., 2012. K-Nearest Neighbours and Case-Based Reasoning lectures, s.l.: National University of

Ireland Maynooth.

O'Donoghue, D. & Crean, B., 2002. RADAR: Finding Analogies using Attributes of Structure, Limerick,

Ireland: Proc. AICS.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

71

Outcurve Foundation, n.d. NuGet Gallery. [Online]

Available at: http://nuget.org/

Park, W. J. & Bae, D. H., 2011. A two-stage framework for UML specification matching. Information and

Software Technology, 53(3), pp. 230-244.

Pitu M., Grijincu D., Li P., Saleem A., O’Donoghue D. P., Monahan R., 2013. Arís: Analogical Reasoning for

reuse of Implementation & Specification, Rennes: Artificial Intelligence for Formal Methods.

Powell, W. B., 2007. Approximate Dynamic Programming: Solving the curses of dimensionality. 2nd ed.

s.l.:Wiley Series in Probability and Statistics.

Reiss, S. P., 2009. Semantics-based code search. Vancouver, Canada, 31st International Conference on

Software Engineering.

Repenning, A. & Perrone, C., 2000. Programming by analogous examples. Communications of the ACM, 43(3),

pp. 90-97.

Robles, K., Fraga, A., Morato, J. & Llorens, J., 2012. Towards an ontology-based retrieval of UML Class

Diagrams. Information and Software Technology, 54(1), p. 72–86.

Rosario, B., 2000. Latent Semantic Indexing: An overview, s.l.: s.n.

Russell, S. & Norvig, P., 2003. Artificial Intelligence: A Modern Approach. 2nd ed. s.l.:Prentice Hall.

Rustan, K., Leino, M. & Müller, P., 2010. Using the Spec# language, methodology, and tools to write bug-free

programs, Microsoft. Lecture Notes in Computer Science, Volume 6029, pp. 91-139.

Salton, G. & McGill, M., 1986. Introduction to modern information retrieval. New York: McGraw-Hill, Inc..

Sim, S. E., Umarji, M., Ratanotayanon, S. & Lopes, C. V., 2011. How well do search engines support code

retrieval on the web?. ACM Transactions on Software Engineering and Methodology, 21(1).

Slashdot Media, n.d. SourceForge. [Online]

Available at: htttp://www.sourceforge.net

Sowa, J. F., 1984. Conceptual structures: information processing in mind and machine. s.l., Addison-Wesley

Longman Publishing Co., Inc..

Thomee, B., Bakker, E. M. & Lew, M. S., 2010. TOP-SURF: a visual words toolkit. Firenze, Italy, Proceedings

of the 18th ACM International Conference on Multimedia.

Vazirani, U. V., Papadimitriou, C. H. & Dasgupta, S., 2006. Algorithms. s.l.:s.n.

Watson, I. & Gardingen, D., 1999. A Case-Based Reasoning System for HVAC Sales Support on the Web. The

Knowledge Based Systems Journal, Volume 3, pp. 207-214.

Wilkinson, R., 1994. Effective retrieval of structured documents. Proceeding of the 17th annual internation

ACM SIGIR conference on Research and development in information retrieval, pp. 311-317.

Mihai Pitu – Source Code Retrieval using Case Based Reasoning

72

Woodcock, J., Larsen, P. G., Bicarregui, J. & Fitzgerald, J., 2009. Formal Methods: Practice and Experience.

ACM Computing Surveys, 41(4).

Zhong, M., Duan, J. & Zou, J., 2011. Indexing conceptual graph for abstracts of books. Shangha, Proceedings -

2011 8th International Conference on Fuzzy Systems and Knowledge Discovery.

