

Visual Programming Language for Tacit Subset of J Programming Language

Nouman Tariq

Dissertation 2013

Erasmus Mundus MSc in Dependable Software Systems

Department of Computer Science

National University of Ireland, Maynooth

Co. Kildare, Ireland

A dissertation submitted in partial fulfilment

of the requirements for the

Erasmus Mundus MSc Dependable Software Systems

Head of Department : Dr Adam Winstanley

Supervisor : Professor Ronan Reilly

June 30, 2013

Declaration

I hereby certify that this material, which I now submit for assessment on the program of

study leading to the award of Master of Science in Dependable Software Systems, is entirely

my own work and has not been taken from the work of others save and to the extent that

such work has been cited and acknowledged within the text of my work.

Signed:___________________________ Date:___________________________

Abstract
Visual programming is the idea of using graphical icons to create programs. I take a look at

available solutions and challenges facing visual languages. Keeping these challenges in mind,

I measure the suitability of Blockly and highlight the advantages of using Blockly for creating

a visual programming environment for the J programming language. Blockly is an open

source general purpose visual programming language designed by Google which provides a

wide range of features and is meant to be customized to the user’s needs. I also discuss

features of the J programming language that make it suitable for use in visual programming

language. The result is a visual programming environment for the tacit subset of the J

programming language.

Table of Contents
Introduction .. 7

Problem Statement ... 7

Motivation... 7

Aims and Objectives .. 8

Related Work .. 10

Tools and Technologies Used .. 10

J Programming Language .. 10

Blockly ... 10

JavaScript .. 11

Visual Programming .. 12

Diagrams ... 12

Flowcharts ... 12

Data Flow Diagrams .. 12

A Brief History of Visual Programming ... 13

HI-VISUAL .. 13

Visual Logic Programming ... 14

VLCC .. 15

VisaVis ... 15

Solution ... 16

J Programming Language .. 16

Background ... 16

Array Based Programming in J .. 17

Structure of J ... 17

Nouns .. 17

Verbs ... 18

Adverbs ... 19

Conjunctions ... 19

Order of Evaluation ... 19

Tacit Programming in J .. 20

Blockly ... 21

Language Philosophy .. 21

String and Array Indexes ... 21

Variable Names ... 21

High Level Blocks ... 22

Language Dependence .. 22

Blocks .. 22

Defining Blocks .. 23

Defining Block Inputs .. 27

A Visual Language Based on Blockly ... 31

Block for Verbs .. 31

The Monad Block .. 32

The Dyad Block .. 32

Blocks for Adverbs .. 33

Block for Conjunctions .. 34

Code Generation ... 34

Code Generation for Monads ... 35

Code Generation for Dyads ... 35

Code Generation for Conjunctions ... 35

Evaluation ... 36

Textual Complexity Metrics .. 36

Character Count .. 36

Lines of Codes ... 36

Conditional Statements .. 36

Halstead .. 37

Visual J ... 38

Understanding Results .. 38

Conclusion ... 40

Future Work .. 40

Bibliography .. 42

List of Figures
Figure 1 A sample app created using Blockly .. 11

Figure 2 Sample Blocks ... 23

Figure 3 Blockly's sample app for Block generation ... 24

Figure 4 Sample Block with setOuput set to TRUE ... 26

Figure 5 A sample block with setPreviousStatement set to TRUE .. 26

Figure 6 Sample block with setNextStatement and setPreviousStatement set to TRUE 27

Figure 7 Block depicting value input ... 27

Figure 8 Block depicting statement input ... 28

Figure 9 Block depicting dropdown menu .. 29

Figure 10 Monad Block ... 32

Figure 11 Dyad Block ... 32

Figure 12 Difference between inline and External inputs .. 33

Figure 13 The Adverb block .. 34

Figure 14 The conjunction block ... 34

Figure 15 Visual J code for calculating average .. 38

Introduction
The idea of Visual Programming Environments (VPEs) stems from the common proverb that

“A picture is worth thousand words”. Generally speaking the concept of VPE can be defined

as “use of meaningful graphic representations in the process of programming” [1]. VPEs

provide users with graphical icons and notations which can be combined together to create

computer programs. This pictorial approach to programming helps users in visualizing the

data and/or control flow of the program as well as removing the burden of learning syntax.

In this dissertation I apply the idea of a visual programming environment to the J

programming language. J is an array-based, general purpose programming language. Its

design and features make it ideal for mathematical, statistical and logical analysis of data. J

provides function-level programming through its so-called tacit subset. In this project the

entire focus is on this tacit subset. We get a comprehensive, demonstrable and useable VPE

by implementing all the features in the tacit subset of J.

Problem Statement

According to [2], one of the primary reasons text based programming languages dominate

computer programming is the greater flexibility and rich expressions that they provide.

Another challenge facing visual programming is to breach the natural language and cultural

boundaries through the use of icons which may have different meanings in different

cultures. While words have consistent meaning in natural language, icons have different

meanings in different cultures. Even if such a vocabulary of icons was to be created by some

means, there would still be the burden of learning this vocabulary to be able to write and

understand an already written code using the designed visual programming language.

The basic premise of this work is that functional programming languages are better suited

for Visual Programming than object-oriented or imperative programming languages. Also,

with J’s terseness we should be able to solve any problem that can be solved through J

through the developed VPE. Through this work I discuss the suitability of the tacit subset of

the J programming language to be adapted for visual programming. An attempt is made to

make use of a general purpose visual programming environment which when adapted for J

should provide flexibility of expression. Visual programming adds a layer of abstraction to

the underlying programming language e.g. the visual language may have one construct for

loop but the underlying programming language would provide for, while and do-while loops

thus resulting in a layer of abstraction. This abstraction should not hinder the programmer

in expressing their solution and should form a basic design principle of the visual

programming language being designed.

Motivation

J provides a terse syntax for programming as compared to many of the modern and widely

used programming languages which are much more verbose and support an imperative

programming style. This terseness of syntax, combined with the tacit programming

paradigm, makes it difficult to learn J. The developed tool reduces the learning burden.

With many of the modern object-oriented programming languages like C++ and Java, it is

very easy for a programmer versed in one of the languages to understand much of the code

written in the other language. This ease stems from the fact that these languages are much

more verbose and are developed on the common principles of OOP. Without a deep

understanding of the J programming language, it is very difficult to understand the control

and/or data flow of a J program. The developed tool provides a much easier way to

understand and visualise the control and data flow throughout the program. Glinert [3]

proposes that one of the advantages to visual programming is its ability to preserve (and

even enhance) parallelization in programming. Thus a VPE for J would have an added effect

of allowing us to visualise what parts of the program can be executed in parallel. This

understanding would help developers to take advantage of the multi core feature of

modern computers and write more efficient programs.

This leads into another problem area with visual programming: the syntax. There has been a

lot of work done on defining visual programming languages. [4] argues that the visual

programming languages are tightly coupled with the corresponding visual programming

environments and provides a possible solution for this dilemma. [5] and [6] define ways for

efficient parsing of the visual programming languages such that these languages could be

used more generically and not be as tightly coupled with the underlying VPE and more

importantly be expressive enough to be useable for general-purpose programming.

Aims and Objectives

The resulting solution should be useable by a novice programmer. It should provide a way to

set the focus on problem solving and provide a bridge towards learning J eventually. There is

appeal in this tool for expert J programmers as well. The visual representation should help

them visualize the solution more efficiently. More importantly it should provide visual clues

for any possible parallelization that can be introduced in the system to make it faster.

The first step towards this goal is to choose a programming language which is suitable for

visual programming. [7] and [8] make compelling case for suitability of functional languages

for visual programming. I discuss these and other arguments for the suitability of the J

programming language for the purpose of this work.

The next step is to develop or choose an existing visual programming language that is

expressive enough to express all the required J constructs. The visual language should

ideally make use of a commonly understood and culturally independent metaphor so that it

is easier to understand than the J syntax and provides additional visual clues towards the

user regarding the solution that has been implemented using it. I discuss this in much

greater detail in the section on Blockly.

The “Related Work” sections below will summarize some research that has been done in the

domain of Visual Programming Environments. It will also provide some background

information on the different tools and technologies that I have used in my work. In the next

section, I describe the developed solution in detail. This section will provide the technical

details of the solution along with the design decisions that were made during development.

This will be followed by an evaluation of the solution. I will present a few sample problems

and discuss how the abstraction of the visual programming does not affect the

programmer’s ability to express the solution. The final chapter will detail the conclusions

that have been drawn as a result of my work.

Related Work
This section will look at the various tools and technologies that have been employed in the

development of this solution. We will also have a look at the relevant work that has been

done in the domain of Visual Programming Environment and see what the existing literature

says about the advantages and disadvantages of VPEs and what kind of languages are best

suited for VPE representation. We will also take a look at some of the existing tools and

evaluate their suitability for the purpose of this work.

Tools and Technologies Used

This section highlights information on the tools and technologies that I employed in the

development of this solution. I will provide information on the programming language used

(JavaScript), the Open Source VPE that I improved for code generation (Blockly) and the J

programming language.

J Programming Language

In 1960 K.E. Iverson wrote a book entitled “A Programming Language”, in which he

introduced a mathematical notation which later came to be known as Iverson Notation. This

notation presented a way to describe array manipulations. The core idea behind it was to

provide a mathematical notation which would make it easier to specify computer programs

and algorithms [9]. Adin Falkof and K.E. Iverson later wrote an interpreter for the Iverson

Notation which, in reference to his book, came to be known as APL. The main guiding

principles behind the design of APL were simplicity and practicality thus resulting in a

programming language that provided brevity and was suited for practical usage in a myriad

of scenarios [10].

 In 1990, J was introduced as a simplified and enhanced version of APL which supported the

ASCII character set and thus it was useable on any compatible machine. The major

motivation behind development of J was to provide a more mathematical friendly version of

APL by replacing the APL symbols with mathematical symbols using the ASCII character set

for portability. This had the advantage of not only retaining the power of expression

provided by APL but improving it as well. The original implementation of J was done in C

using an unusual style of programming that relied heavily on C language’s pre-processor

facilities [11]. J was introduced as freeware and it is now available as open source software

under the GPL3 license.

I will go into all the relevant features of J in the Solution section. I will explain sentence

creation, trains, verbs, adverbs and conjunctions etc. and discuss in detail their role within

the language as well as their relationship to code generation through Blockly.

Blockly

Blockly is a visual programming environment developed by Google. The primary purpose

behind development of Blockly is to remove the burden of syntax from programming and

providing a natural means for implementing the algorithm. It is a versatile web based tool

that can be adapted to be used in a multitude of scenarios. The following image is taken

from one of the free and open source Blockly sample apps called Maze. This image depicts

my solution to navigate the maze from the starting point to the finish line. There are other

sample apps available with Blockly that depict code generation from Blockly blocks to

JavaScript, Python or XML. It is the same sample application that was adopted to create a

Blockly based visual programming environment for the J programming language. I will go

into more detail about Blockly in the Solution section. I will also explain the block creation

and code generation architecture of Blockly in detail then.

Figure 1 A sample app created using Blockly

JavaScript

JavaScript is an interpreter-based multi-paradigm programming language. It was developed

by Netscape to provide a light-weight mechanism for developers to provide dynamism in

web pages. All modern web browsers come with a built in JavaScript interpreter. It was

standardized through the ECMAScript language standard and the 3rd edition of the ECMA-

262 specifications is used by most modern browsers these days. JavaScript, along with CSS 3

and HTML 5, is leading the charge in innovation in web application development even today.

It allows for creation of dynamic and rich web application development.

As the code is executed on the client side, through the browser embedded interpreters,

these codes are also known as client side scripts. JS is mostly used to modify contents of a

web page dynamically based on user action, location or other triggers. It can also be used to

create non blocking function call backs thus enabling asynchronous activities. It can also be

used for server side scripting for developing scalable network based applications. Some of

the salient features of JavaScript are:

● Imperative Programming

● Object Oriented Programming

● Functional Programming

● Loosely typed dynamic binding

Blockly has been created using JS. It uses client-side scripting in defining, drawing,

connecting and decoding blocks. All my development work in creating a VPE for J was done

in JavaScript and showcases the power of this language which plays an extensive role in

today web world. I will cover more technical details about JS in the solution section where I

will go over all the features that I used and how they worked together.

Visual Programming

In this section I go over the development of visual programming and visual programming

environments over time. I will describe some of the basic building blocks of visual

programming environments and I will then look at some existing visual programming

environments and discuss their merits and drawbacks.

Diagrams

As I discussed in the introduction chapter, visual programming environments use graphical

components or icons to create computer programs. In the context of visual programming,

an icon or a visual component represent the most atomic information of or about the

system using a two dimensional visual representation.

To develop a visual programming environment, defining the language’s iconic vocabulary

would be the first step but only defining icons or symbols would be incomplete. It needs a

way to show how these atomic elements connect together to create a program. Thus

another relevant entity here is a diagram which comprises of these icons and depicts the

interconnection between these icons to form a graphical representation of the given

system. Perhaps the most comprehensive definition for diagram comes from James Maxwell

(Encyclopedia Britanica, 11th Edition), “A figure drawn in such a manner that the geometrical

relations between the parts of the figure illustrate relations between other objects”.

Flowcharts

Flowcharts are used to graphically represent a process or an algorithm or a computer

program. It is probably one of the oldest and most widely used graphical representations.

The use of flowcharts for representing a process or more specifically a mechanical process

originates from [12] where the term “Process Chart” is used to depict a processes. Goldstine

[13] claims to be the first to use this concept for the depiction of computer programs in

1947. This text will use flowcharts for depiction of computer programs or algorithms.

Flowcharts comprise blocks and arrows. The blocks have two kinds of representation. The

diamond shaped blocks are used to represent decision points whereas the rectangular

blocks are used to depict an atomic step in the algorithm. It has a defined start and end

node and all the steps required to go from the start to finish are outlined through arrows.

Data Flow Diagrams

Data Flow Diagrams (DFDs) are used to graphically represent the flow of data through an

information system. They are very useful when modelling the context-level data flow

through an information system. You can easily and comprehensively define all the data

sources and data sinks in the system. These sources or sinks can be internal as well as

external. Each of the nodes (which are all connected through arrows) represents a process

that the data flows into or out of depending on which direction the arrow(s) point to i.e.

towards the node or away from the node. This can be used to deduce data manipulation or

value addition of each process within the system.

These properties of DFDs make them ideal for modelling procedural programming

languages. Software is usually developed to solve some real world problems and a majority

of these problems can be modelled as processes thus making DFD a suitable match for

graphical representation. Owing to this, many visual programming languages have been

developed using DFDs. [14] provides very convincing arguments about the use of Data Flow

Diagrams and its use in visual programming environments along with an analysis of the

visual programming languages that use it.

A Brief History of Visual Programming

 This PhD thesis [15], provides an overview of the history and development of programming

language. According to Nickerson, the first visual programming environment was developed

by Sutherland in 1966. It used flowchart-like visual representation to depict solutions.

Similar representation has been followed by many of the visual languages that followed.

HI-VISUAL

[16] presents the iconic programming framework and a visual programming environment

based on that framework called HI-VISUAL. It provides a framework for defining icons and

their interactions with each other as a means for programming a system. The initial

prototype for HI-VISUAL was developed on the SONY NEW under the UNIX using the X-

window system and C Programming language.

HI-VISUAL used icons for representing real world objects. The interaction between these

icons was achieved based on their layering over each other, the definition of icons

themselves and a set of user defined rules governing the language semantics. The

underlying principle behind the definition of icons was that they can only represent objects

(physical or virtual) in the system. Unlike other visual programming environments which

used icons to define functions as well, HI-VISUAL avoided confusing objects with functions

by embedding functions within icons themselves. Icons had two views; Internal and

External. The External view defined the graphical representation of the icon as well as a

label. The Internal View required three pieces of information; Concept, Substance and

Messages. The concept defined the name of the icon for semantic reasons within the

language. Substance defined the internal state of the icon. Messages were further divided

into two types. The Acceptable Messages are the messages that the object can receive from

other objects and the Transmittable Messages are the set of messages that the object can

send to others. These concepts can be mapped onto Object Oriented paradigm by thinking

of the concept as class, substance as the instance variable defining the object state and

messages as methods of the object.

Although this sounds confusing but it becomes less confusing once the interpretation of the

icons comes into play. Each object can have an active role or a passive role. [Paper Ref]

explains this through the following example. Consider a scissor and a paper objects. The

scissor object has the transmittable message “cut” and the paper has transmittable message

“wrap”. If the scissor object is considered to be the active object, it will perform “cut”

operation on paper but if the paper is considered the active object, it will perform the

“wrap” action over scissor.

HI-VISUAL also provides an additional feature to define rules. These rules provide greater

flexibility when discerning object interactions e.g. by defining a priority rule which gives the

priority to the scissor object thus the cut operation has more priority than wrap message of

paper. Another important thing to note here is that, an action is only performed if one of

the transmittable messages in the active object matches one of the acceptable messages in

the passive objects.

HI-VISUAL provides a generic framework which allows the user to develop a set of objects

and define their interactions using messages and rules that are suitable for a particular

environment. But this same property binds it tighter towards a particular environment that

is being modelled. Furthermore the icons have to depict entities within the system which

may be difficult to do for complex virtual objects e.g. in an office automation environment it

would be difficult to define graphical representations for applications and memos.

Visual Logic Programming

Visual Logic Programming (VLP) provided visual programming for Prolog. There were two

main forces that drove the design principles behind this language [17]. The first was to use

experimentally proven psychological studies in designing the icons that would act as the

building blocks for this language [18] [19]. This design decision was motivated by the

argument that by coming up with better pictorial representations, it would remove the

burden of reading the visual representation from left to right or top to bottom or in any

sequential manner rather allowing the user to process the graphical information being

depicted in a parallel fashion.

The second design principle was to not do away with text altogether and instead combine

the two aspects of to get the best of both worlds. Textual programming languages owe their

dominance to the richness of expression that they provide. By combining the two it was

hoped that VLP would help overcome the limitations of visual programming.

Although the icons being used were derived from experimental research, the downside to

this approach was that they tried to model Prolog operations which being logical and mostly

abstract in nature did not lend themselves well to graphical representation. But by basing it

on some facts and due to the structure of Prolog, VLP was able to provide a good way of

handling arguments to a function.

VLCC

[20] takes a very different and interesting approach towards visual programming. They

developed a graphical tool that can be used to design a customized visual programming

environment. The tool they developed is called Visual Language Compiler-Compiler. It

provides a way for the language designer to define symbols, syntax and semantics for the

visual programming language and then generates an integrated environment with graphic

editor as well as a compiler for the designed language.

VLCC uses positional grammar as the basis of its design. A number of visual language parsers

have been proposed [5]. One primary limitation in such parsing algorithms stems from the

complexity of the language class involved. To get around this limitation, VLCC allows

selection of a language class but supports multiple language classes at the same time for

greater flexibility. The user can choose between language classes e.g. iconic design or DFD

style design. The provided positional grammar model [6] uses the LR Parsing algorithm to

support parsing of multiple visual languages.

VLCC has the added advantage of being able to support text with visual languages as well.

The overall idea limits its potential user base to language designers only. It also does not

provide any guidelines for language designs and thus leaves the onus of designing the

graphic layout and symbols lies with language designers entirely.

VisaVis

VisaVis [8] provides a visual functional programming environment. The visual programs from

VisaVis are converted to FFP (Formal system for Functional Programming). FFP provides

support for higher order functions that form the basis for functional programming. It is

used as the evaluation engine for generating results from the visual program.

VisaVis provides support from zeroth-order functions to second-order functions through a

system of graphical representation. Functions of every order are assigned a meta-Icon

signifying the function’s order. Further information about each function is encoded through

the use of colours and shadows thus providing a mechanism to present information about

the function using graphical means. To parse the graphical representation (from VisaVis

perspective) and to provide syntax (from the user’s perspective) a strategy called

substitution is introduced. This defines the interaction between the functions and

evaluation order for these functions.

Although it is very well thought out, VisaVis fails to address some key issues. First of all, it

does not address one of the primary characteristic of visual programming which is its ease

of use for novice user or non-programmers. By developing a graphical syntax based around

the order of functions, it requires the user to be well versed in lambda calculus or at least

have sufficient concepts about the functional programming to be able to use the system.

The use of FFP, while practical, limits its use as a general purpose programming language

which is a critical success factor for any programming language.

Solution
This section will detail the technical details of the developed solution. I will go through the

features of J language and look in detail as to what these are and how they are used. This

will be followed by an overview of the Blockly architecture. I will explain the architecture for

block generation and code conversion and take a look at how all these different

components come together to create Blockly. Finally I will explain the required

modifications and additions to Blockly to adapt it for code generation of J. I will go over the

design decisions and the motivations behind these design decisions.

J Programming Language

This section will take a closer look at J Programming Language. I will go through the basic

design principles of APL and J followed by the features of J language specifically the ones

that are relevant to this work.

Background

J is a general purpose, array based programming language. It provides a comprehensive

functional programming environment through its so-called tacit subset. Owing its

background to APL, it is a very terse language where its primitives consist of one or two

characters. It is, by design, very well suited for large scale and complex mathematical,

statistical and logical operations over large data sets.

APL was originally developed at IBM based on the Iverson Notation, a mathematical

notation for presenting array manipulations proposed by K. E. Iverson in his book A

Programming Language. That is also the source of its name. The programming language APL

was developed as an interpreter for the Iverson Notation [9]. It took advantage of the IBM

Selectric Typewriter which could be used to depict a large number of symbols due to its

changeable type elements. This was used to define a language with single character words

which could be combined together to form sentences. The only exception in this was the

variables which could be name using any combination of the alphabets. [11]

The use of special characters while advantageous in making the language terse did prove

challenging when APL was being implemented. One major drawback of using symbols was

that these symbols were difficult to print and not all system supported all the symbols (as

the character sets had not been standardized back then). Thus in the paper titled APL/?, J

was introduced as an enhanced version of APL. By using the ASCII character set in defining

the language tokens, J successfully achieves portability while retaining the advantage of

using single or double character words that form the language itself.

The basic mathematical symbols were adopted in J to bring it back to its mathematical

roots. But as these symbols are limited (and even more limited in the ASCII Character set), J

uses dot and colon to give new yet related meanings to mathematical symbols and to depict

functions associated with these primitives. For example, J uses the symbol <. to represent

the min in an array. By using the dot with the less than sign makes it easier to associate

meanings to these notations by acting as a mnemonic device. [11]

J is available as an open source project now through the J Software Inc. The primary source

of distribution is through their website www.jsoftware.com. The current version of J is 7.0.1

and is available for Windows, Linux and Mac platforms in both 32 bit and 64 bit versions. J

IDE is also available as iOS application that can be run over iPhone or iPad.

Array Based Programming in J

As I mentioned earlier, J is an array based programming language. It can be argued that only

supporting arrays would take away from J’s ability to be a general purpose programming

language as not all real world problems can be resolved using arrays. J uses an ingenious

approach in solving this problem where it remains an array based programming language

yet still enable it to work as a general purpose programming language. For example,

consider the following statement in J:

x + y

In this statement x and y can either be scalars or even multi-dimensional arrays and yet J

would be able to handle it correctly in both the cases.

This example also highlights another of the fundamental characteristics of J i.e. it eliminates

the need for a loop unlike a procedural or imperative programming language. The code

written in J is much more mathematical in nature thus much more compact. Given that x

and y are one dimensional arrays, most languages (like C/C++ or Java etc.) would need one

loop to calculate the same sum. The number of loops required to calculate this same sum

increased with the dimension of the arrays. But with J the programmer does not have to

worry about any of these things and the language itself takes care of all these issues.

Structure of J

This section will discuss the structure of J language, more specifically I will discuss the

constructs of J that are most relevant for the functional aspects of J through its tacit subset.

J uses a vocabulary that is based around the concepts of English grammar. A statement in J

is called a sentence. As J is an interpreted language, each sentence is executable and if using

J’s gtk IDE, the output of each sentence is displayed immediately after pressing enter. Each J

primitive in a sentence is similarly associated with an English grammar concept. The primary

components of J are very similar in nature to the primary parts of speech in the English

grammar. They are named similarly as well; noun, verb, adverb and conjunction.

Nouns

Using the popular programming convention as reference, nouns can be thought of as an

object. They hold data in J. The important thing about nouns in J is the fact that the

programmer does not have to provide a data type for it. The data type is determined

http://www.jsoftware.com/

implicitly by the interpreter based on the value being assigned to the noun. Thus J is a

weakly typed language.

Another way of looking at J nouns is in the perspective of functional programming. In

functional programming, a zeroth order function is defined as a function that takes no

arguments as input but still returns a value. [Need Ref] A noun is very similar in nature, such

that it holds some data, and in J, when trying to determine the value of a noun, one just

needs to type the name of the noun and the interpreter responds with its value hence the

zeroth order function.

Verbs

It is best to explain verbs with reference to more commonly used programming terminology

as well. Thus a verb can be thought of as a function or operator which takes in one or two

nouns as input parameters and returns a noun as return value. When looking at verbs in the

functional programming context, they can be thought of as first order functions which by

definition take zeroth order functions as input to return a value [Need Ref].

Valence of Verbs

Valence of a verb defines the number of nouns that it takes as arguments. As in any other

programming language, where each operator has a valence i.e. it is either a unary operator

or a binary operator. Similarly, verbs in J are also characterised by its valence although the

naming convention is different here.

A monad is a verb which acts on only one noun. And dyads are the verbs that act on two

nouns. The cleverness in J lies in the fact that each verb in J has a monadic and dyadic

behaviour. This holds true not just for the built in verbs but even for the user defined verbs

as well. Every verb definition has these two associated behaviours. The interpreter decides

the appropriate behaviour to call based on the usage of the verb. This behaviour can be best

explained through an example,

2 >. 6

This statement in J returns the greater of the two operands i.e. 6. The verb ‘>.’ appears in its

dyadic representation. But the same verb when used in the following manner behaves

differently (although in a mnemonically related fashion),

>. 4.5

This statement in J would return 5 because in its monadic behaviour, the same verb ‘>.’ now

acts as a ceiling function. This is an important consideration in user defined verbs and

should always be taken into account.

An important thing to note here is that J limits the number of operands to two at maximum

and one at the minimum. It is impossible to call a verb without operands. In case a verb

requires more than two arguments, a monadic or dyadic invocation can be customized so

that rest of the arguments are passed as elements of an array (where the array itself would

act as one parameter). Being an array processing language, it is very easy to unpack the

array to gather all the required pieces.

Adverbs

Adverbs are part of speech of the J vocabulary which operates on one noun or verb to

create a derivative primitive for J. They are used to change the functionality of nouns or

verbs. The visual programming environment under discussion exploits this definition and

treats adverbs as a special case of monads. This will be discussed in further detail in the

relevant section when highlighting the features of the developed visual programming

language.

Conjunctions

Conjunctions are part of speech of J vocabulary which operates on two nouns of verbs to

create a derivative primitive for J. Conjunctions and Adverbs are also called modifiers in J as

they both modify the behaviour of the associated noun(s) or verb(s). The proposed solution

here exploits this and treats conjunctions as a special case of dyads.

Order of Evaluation

The monadic and dyadic behaviour of verbs, when looking just at the definition, may look

confusing. But understanding the order of evaluation helps remove any ambiguity from the

equation. To understand the monadic and dyadic invocations, the verb precedence and

statement evaluations must be understood first.

 There are two primary rules governing the statement evaluation in J. The first rule is that all

J verbs (system defined and user defined) have the same precedence. This removes the

burden of remembering the precedence of verbs and simplifies statement evaluation

considerably. It also has the added advantage of getting rid of parenthesis to enhance

precedence like in most other languages. The second rule is that the statement is always

evaluated from right to left. For example, consider the following statement,

x * y + z

Because of equal precedence for all verbs, this statement is equivalent to x * (y + z) as

opposed to the traditional mathematical interpretation (where multiplication has more

precedence) of (x * y) + z.

When evaluating a statement, it is divided into fragments. A fragment is an executable bit of

the statement. For example, each verb with its operands forms a fragment which is in turn

independently executable. Thus a sentence is divided into fragments and these fragments

are then executed from right to left. The result of each fragment’s execution is then inserted

back into the sentence and it is again evaluated from right to left based on the new

fragments that now exist. Consider the statement,

x + - y

This statement can be divided into two fragments –y and x + (-y) forms the second

fragment. Thus in order to evaluate x + (-y), the –y fragment needs to execute first. The

negate verb (-) returns the negative of y (represented by _y) and thus the statement takes

the form x + _y which when executed adds _y to x.

Another important thing to look at in the above example is the monadic and dyadic

invocations involved. The simple rule governing interpretation is that if the verb has an

operand to its left, the dyadic interpretation will be invoked; otherwise the monadic

invocation will take place. In this example, the ‘-’ verb acts as a monad because it only has

one operand to work on. Similarly, ‘+’ acts as a dyad and returns the sum of two operands. It

is critical to know the correct part of speech being represented in a statement to

understand the order of evaluation of a J sentence. Consider the following statement,

x verb 5

While the first reaction on looking at this statement may lead one to interpret it the dyadic

verb being called upon two operands x and 5, it cannot be determined without knowing

exactly what is being represented by x. ‘verb’ would only be dyadic if x is a noun but in case

x is a user defined verb, this statement will generate very different result because verb and x

will both be have monadic invocation here.

Tacit Programming in J

Tacit Programming is the style of programming which enables programmers to define

functions without specifying any information about its arguments when defining the

function. This paradigm provides even more terseness to J. A very important consideration

here is that this tacit programming is a feature of J and is achieved through a subset of J

primitives. But even while using a subset of J, it still is not limiting and allows the

programmer to write general purpose code but with even more compactness. A good

example of tacit programming is,

avg =: +/ % #

avg 1 2 3 4 5

The first line in the code snippet above defines a function ‘avg’. It uses the ‘+’ verb and using

the ‘/’ adverb, assigns the resultant verb to the variable avg using the =: assignment

operator and finally it applies the operator to all elements in the array in the second line.

The sum of the array is then divided using the ‘%’ division operator with the length of the

array, calculated using the ‘#’ operator. The result of the second line’s execution would give

3, which is the average of the given array.

Blockly

Blockly1 is a web based visual programming environment developed by Google. It provides

an easy to use interface for creating solutions by allowing the user to use drag and drop

components from given toolbox. The basic idea behind Blockly is to provide means for the

users to solve problems by piecing together given blocks. Being a web based tool, Blockly

also removes any setup costs or barriers. Users can just open their preferred browser and

start using the tool. The original code base (available through Google Code website), for

Blockly, provides means for the user to generate code in JavaScript as well as Python.

Language Philosophy

Blockly is meant to be a tool for novice programmers2. It facilitates its target audience by

providing a simple to use interface which removes the burden of syntax from programming

and helps the users to focus on their problem solving skills instead. At the same time the

tool is not meant to create any hindrance in learning the underlying language being utilized.

This principle derives a lot of the design decisions in Blockly. Some of the prominent design

decisions are highlighted in this section. I also describe the impact these had on the

development of my solution.

String and Array Indexes

Majority of programming languages have the indexing scheme which starts with a zero.

Most commonly it applies to arrays and strings. This can be a bit confusing for the novice

programmer. Blockly solves this problem by starting all the indices from 1 and converting

them to zero internally so that the process is transparent to the end user. Once a user is

comfortable with the idea of array indexes, they can then adapt to the zero based indexing

scheme more easily rather than having to learn it from the start.

My solution does not face this problem. As J is an array based programming language, thus

all the verbs in J vocabulary work on arrays as well as scalar numbers. But for the rare

occasion that indices are needed, they need to start from zero. But keeping with Blockly’s

design philosophy, the one based indexing scheme has been used here as well. It would be

trivial for the user to revert to the zero based indexing scheme once he/she is comfortable

with the language concepts and syntax.

Variable Names

Blockly provides a case insensitive variable naming scheme to keep things simple for the

target audience. Thus a variable defined as var and another defined as Var are exactly the

same. Furthermore, Blockly also does not restrict based on the variable naming conventions

that a variable name should not start with an alphabet or that the only acceptable special

character is underscore (_). The users are even permitted to use white space (character

spacing) in variable names. The idea behind this is again to provide simplicity for the end

user. Variable naming conventions are secondary for the user to learn and the more

1
 Blockly can be found at the Blockly’s Google code page: https://code.google.com/p/blockly/

2
 https://code.google.com/p/blockly/wiki/Language

https://code.google.com/p/blockly/
https://code.google.com/p/blockly/
https://code.google.com/p/blockly/wiki/Language
https://code.google.com/p/blockly/wiki/Language

important thing is for them to understand the importance and role of variables in

programming. Variable naming rules can be learned while learning the language syntax and

should not inhibit the development of logical thinking. J is a case sensitive language. As the

developed tool is based around the tacit subset, variable definitions are not included in it for

now.

High Level Blocks

Blockly strives to provide as much abstraction as possible between the logic and the code as

possible. For example, if a user wants to add two numbers and then later wants to add all

the elements in an array, Blockly specifies that two separate blocks should be provided for

these scenarios to maintain abstraction. The user may be able to get the same results using

the addition operator combined with a looping block but to keep the focus on logical

thinking and remove the semantics as much as possible, these simplifications should be

provided.

This design philosophy is not embedded into the Blockly core design but is more a guideline

for development of tools based on Blockly. As I only implemented a visual programming

environment for the tacit subset of J, it is already very terse. Providing such layers of

abstraction would have limited the strength of the developed visual programming

environment. Thus, all the vocabulary of J has been provided in its atomic form as blocks

and no consideration was given to providing any layer of abstraction for the end user. This

was done in the hopes of making it easier for the end user to switch from visual

programming to text based J if or when the need arose.

Language Dependence

Blockly was designed to be able to handle code generation for JavaScript primarily but it was

designed not to be limited to JavaScript alone. Thus no language dependant assumptions

were made during the design process. This makes Blockly ideal for code generation of any

language that can be depicted precisely using Blockly’s visual programming language.

Blockly’s architecture goes one step ahead in this flexibility by providing separate code

generation paths for each language such that code for multiple languages can be generated

at the same time (as long as the visual language represent a similar solution for all the

languages involved). Also, by keeping the code generation for each language separate,

Blockly enables the user to make language specific assumptions in the code generation

process without affecting anything else in the system.

Blocks

Blocks are the basic building block of Blockly. These act as the primitives of the visual

programming language utilized by Blockly. Blockly uses a jigsaw puzzle style to represent

blocks such that each block has protrusions and sockets. This jigsaw style of visual

representation makes it very easy for the user to understand which blocks go together and

how they can be connected to create the solution. Blockly enhances this understanding by

providing a highlighted connection point when two compatible blocks are brought closer.

A protrusion represents the output of a block and the socket represents the inputs of a

block. Each block can have at maximum 1 protrusion signifying that only one value can be

returned by the function being represented by a block. Similarly, a socket represents inputs

to a block. Thus the solution being represented comes together by joining protrusions with

sockets. The following diagram shows two blocks. The purpose of these blocks are not

important here (these will be explained in the following section). The important thing to

note is the protrusions and sockets and the way they merge together. Also note the way

that the socket is highlighted when a compatible protrusion comes near it, thus helping the

user in understanding which components work together.

Figure 2 Sample Blocks

Defining Blocks

As Blockly’s primary purpose is as an educational tool, it provides a flexible structure for

defining blocks to allow the user to adapt Blockly to their specific purpose. While it provides

a framework for defining blocks such that a user can define blocks to meet their specific

requirements but at the same time not disturbing the overall consistency of the visual

programming language itself. Thus any application that is built using Blockly would not only

look similar but behave in a similar fashion as well. This is a testament to the generic nature

of the jigsaw metaphor that is used to define these blocks.

Blockly provides a web based tool3 that provides the users with an interface to define new

blocks. This tool is developed using Blockly itself and is provided with Blockly as a sample

application of Blockly. It has predefined blocks which represent all the configurable aspects

of a block and the user can connect these together using Blockly’s semantics to create new

blocks. The tool provides a visual representation of the block as the user connects these

blocks together along with the JavaScript code that the user would have to add to the

correct .js file in order to use the block in their application. Important thing to note here is

that this is provided as a utility to help users develop applications with Blockly as well as to

provide them with a working example of flexibility afforded by Blockly. The following

diagram shows this tool in action.

3
 http://blockly-demo.appspot.com/static/apps/blockfactory/index.html

http://blockly-demo.appspot.com/static/apps/blockfactory/index.html

Figure 3 Blockly's sample app for Block generation

I will now discuss all these parameters that can be configured for defining a new block4. The

following code snippet defines a block shown in the diagram above:

Blockly.Language.myblock = {

 helpUrl: 'http://www.example.com/',

 init: function() {

 this.setColour(65);

 this.appendValueInput("arg1")

 .setCheck("null")

 .appendTitle("");

 this.appendValueInput("arg2")

 .setCheck("String")

 .appendTitle(new Blockly.FieldDropdown([["Operator", "OPTIONNAME"], ["option",

"OPTIONNAME"], ["option", "OPTIONNAME"]]), "dropDown");

 this.setPreviousStatement(true, "Number");

 this.setNextStatement(true, "Boolean");

 this.setTooltip('');

 }

};

There are three main components that can be adjusted to configure the block to the user’s

requirements. These components are:

● Block Name

● helpURL

4
 https://code.google.com/p/blockly/wiki/DefiningBlocks

https://code.google.com/p/blockly/wiki/DefiningBlocks

● init Function

Block Name

This appears in the first line in the code snippet above. The block name in the above code is

“myBlock”. All blocks share the same namespace in Blockly and thus these names need to

be globally unique. The block names that I use make use of the J vocabulary (e.g. adverb and

conjunction etc.) for uniqueness.

helpURL

This property allows the user to provide a URL that point to a help page with information on

that particular block. This can be used to provide a user guide or documentation for your

application. Another interesting use of this property can be to specify a function here

instead of a URL. This function can then be used to dynamically generate help URLs, thus

providing a flexible framework for specifying documentation.

init Function

This function controls the looks and behaviour of the block being created. User can control

this through a host of properties. An important thing to note here is the use of “this” in the

init function. “This” here points of the block itself. The following options are configurable

inside the init function.

● setColour

● setOutput

● setPreviousStatement

● setNextStatement

● appendDummyInput, appendValueInput, appendStatementInput

○ setCheck

○ setAlign

○ appendTitle

● setInputsInline

● setTooltip

● setMutator

setColour

Blockly uses Hue-Saturation-Value (HSV) model for defining colours for blocks. But looking

at the code snippet, only one value is passed instead of the required three arguments.

this.setColour(65);

This is by design so that the user only needs to specify the value for Hue to change the

colour of the block. The values of Saturation and Value are predefined in Blockly’s core. This

is a deliberate design decision on part of Blockly to make it easier to specify colours. The

user can set a tone for their application using Saturation and Value e.g. bright colour

scheme for applications targeted to children and duller colours for business applications.

Eventually just by setting the Hue at block level, user can create different coloured blocks to

represent different types of blocks for easy visual recognition.

setOutput

Every block being defined needs to define a way in which it interacts with other blocks. As

discussed in the Introduction to this chapter, Blockly achieves this using a Jigsaw puzzle

metaphor where blocks have protrusions and sockets depicting output and inputs

respectively. User can define the output of a block using the setOutput() function. For

example, setting this property as follows in the code at the start of this section,

this.setOutput(true, "Array");

will create a block that would appear with a protrusion on the left as below:

Figure 4 Sample Block with setOuput set to TRUE

This function takes two arguments. The first argument, a Boolean, causes the protrusion on

the left to appear when it is set to true. If the function being represented by the block is not

supposed to return any value, instead of setting it to false, this statement should not be

included in the code at all.

The second argument here is the data type of the value being returned. In this example, we

define it to be Array meaning that this block would return an array. Users can also provide

an array of data types in this argument for cases where the function may return more than

one data type. It is important to understand here that the block would still only return one

value, but it may happen that for one instance it returns Integer and in another it may

return String.

Notice that this argument is a string so any suitable string value describing the return type

can be used here. The only consideration is that this return type should match others being

used in the system as Blockly assesses the compatibility of blocks when connecting them

together using this data type. Hence, a block that returns Array would not be able to

connect to a block which is expecting an Integer or a String. This mechanism ensures type

checking and hopes to help novice programmers understand type checking better.

setPreviousStatement

Not all functions return a value. Yet they would still require a way to connect with other

components in the Blockly visual language. This can be achieved using the following

statement,

this.setPreviousStatement(true);

The consequent block defined would have the following shape,

Figure 5 A sample block with setPreviousStatement set to TRUE

The statement above caused the notch on the top. This notch signifies that this block does

not return a value but at the same time provides a visual clue as to how this block will fit in

with other blocks in the visual language. This can be thought of as defining the control flow

of the program being constructed.

None of the blocks defined in my solution use this statement. In the tacit functional subset

of J that is under consideration in this project, all the functions return a value.

setNextStatement

This function is very often used in conjunction with the setPreviousStatement function to

signify the role or behaviour of the block in the control flow of the program. Like the

setPreviousStatement function, this signifies that this block does not have any return type

but provides a visual clue as to how this block will connect with other blocks. The figure

below shows a block with both setNextStatement and setPreviousStatement being used.

Figure 6 Sample block with setNextStatement and setPreviousStatement set to TRUE

Defining Block Inputs

Blockly provides three ways for specifying inputs to a block. These all depend on the type of

input required. Blockly allows the user to define if the input would be a statement, a value

or a dummy input and then control properties of these input statements. The primary

reason for this differentiation is to make it easier to generate code by providing different

avenues for different scenarios.

The three main inputs can be:

● appendValueInput

● appendStatementInput

● appentDummyInput

appendValueInput

As the name indicates, this type of input allows the user to pass values to the block. Using

the following line of code, the user can create a socket (depicted in the image below) to

capture input(s) to the function.

this.appendValueInput(“arg”)

Figure 7 Block depicting value input

This function accepts a string as input argument. This string is the parameter name that will

be used at the time of code generation to reference it during the code generation.

appendStatement

This type of input is used for cases where instead of an input parameter; the block expects

another block (representing a statement of the code mostly). Although Blockly is not limited

to provide a visual programming syntax for text based programming languages alone, this

function can best be explained using example from programming languages. A common use

case for this would be iterative statements or control structures in a programming language.

Figure 8 Block depicting statement input

In this figure above, the input part of the block has a protrusion (similar to the one achieved

by setNextStatement function) where compatible blocks can be fit to create the control flow

required.

appendDummyInput

Dummy inputs as they name suggests do not provide any form of connectivity. They are

dummy placeholder to hold text and/or drop down items. These are provided as a means

for more descriptive visual presentation and to allow configurable behaviour to the user.

Using the figure in the previous section, the top line that reads, “repeat 10 times” has been

created using the appendDummyInput function. It provides a way for the user to enter the

number of iterations for the loop involved.

This highlights two other features provided by Blockly. First it is possible to combine more

than one input statements together to form a block, as in this last example, hence providing

more opportunities for customization to the end user. The second thing of note here is that

this looping block does not bind itself to any language construct. This block can be

converted to a for or a while loop during code conversion and this implementation detail

can remain transparent to the end user. Defining a block for for loop or a while loop is

equally easy but by this highlights how abstraction can be achieved in Blockly and the user

has full control over the level of abstraction required.

Configuring Input Statements

There are more options for each of these input statements which the user can use to

configure the block inputs to their specifications. I will describe them in this section as they

are common to all three types of input statements.

appendTitle

This function is used to add information about or for the input statement. It should be

specified for each input statement separately and can also be used multiple times for the

same statement to provide more information. This additional information can be of the

following forms,

● Textual titles

● Image

● Drop down menu

● Text input

● Variable

● Check box

● Colour

I only describe a few of these here which I have used in my solution. The following code can

be used to give a textual title or a label to the input statement,

this.appendValueInput("arg1")

.appendTitle("Title");

This statement gives a label (“Title”) to the input statement as depicted in the figure in the

appendValueInput section.

A drop down menu is very useful when presenting users with a preset set of options and to

get them to choose one of them. Because of its widespread use over the years in web

applications as well as desktop applications, a dropdown’s visual representation is widely

understood. The following code adds a drop down menu to an input statement,

this.appendDummyInput()

 .appendTitle("repeat")

 .appendTitle(new Blockly.FieldTextInput("10"), "2")

 .appendTitle("times");

 this.appendStatementInput("loopStatement")

 .appendTitle(new Blockly.FieldDropdown([["for", "FORLOOP"],

["while", "WHILELOOP"]]), "dropDown");

This code results in a block that looks as follows,

Figure 9 Block depicting dropdown menu

In the appendStatementInput section above I described an example of a looping block. I

discussed the fact that the particular looping structure was independent of the

implementation detail because there was no mention that the loop would be a for loop or a

while loop. The example above takes the same example a step further by providing a drop

down menu for the end user to choose which particular loop they would like the

implementation to be in. Also, note the use of multiple appendTitle function calls for the

appendDummyInput function and the way they come together to create an easy to use

block by augmenting the visual representation with appropriate titles.

setCheck

I discussed type checking in the setOutput section above. Each block specifies its return type

(in case it returns a value). During that discussion it was mentioned that Blockly uses this

property for type checking. setCheck is also part of the type checking framework. By using

this function, user can define the acceptable input values for the input statement being

used. Two blocks can be connected together only if the data type(s) mentioned in the

setOutput function of a block match the data type(s) in the setCheck function of the other

block.

this.appendValueInput("arg1")

.setCheck("Boolean")

This statement would make sure that only blocks that return a Boolean can be used as input

to this block being defined.

Other Configurations

There are some other configurations that are available to Blockly users in creating blocks for

their applications. I am listing them here for the sake of completion. I did not have to use

any of these in my development.

● setInputsInline

● setMutator

● setTooltip

A Visual Language Based on Blockly
This section describes the visual programming language that I created using Blockly. As

discussed in the previous section, Blockly provides a flexible framework for creating blocks

to suit the user’s specifications. In this case, I derive these specifications from the J

programming language. I described the primary parts of speech for the J programming

language in the relevant section above. I also discussed the formation and evaluation of J

sentences. That discussion leads to the conclusion that if there exists a visual programming

language which provides a way for the user to define these parts of speeches and connect

them together, that would provide the required semantics to create a fully functional visual

programming environment for J.

So, I had to define blocks that would represent these parts of speech using the framework

provided by Blockly. I describe these blocks in this section.

Block for Verbs

Verbs in J are equivalent to functions in other programming languages. J provides two

behaviours associated with a verb based on the number of arguments it takes. The two

types of verbs are called monads (verbs with one input parameter) and dyads (verbs with

two input parameters). Unlike most other programming language where number of

arguments can be variable, J verbs can have a minimum of one and a maximum of two

arguments. If more than two arguments are required, then one of the parameters in a dyad

should be an array consisting of all other parameters which can then be extracted inside the

verb definition.

There were two possible ways of handling verbs using Blockly. One way to do this would be

through the use of mutator blocks. These are blocks which can be dynamically changed at

run time by the user to meet their requirements. Thus I only needed to provide one block

for verbs, with one value input, and the users would be able to add another input value at

runtime if they wished. While technically this is possible, I see two major problems with this

approach. The first problem is that this goes against the basic language philosophy of

Blockly which states that a separate block should be provided for each high level function.

Mutator blocks would be very good if the number of arguments was variable but with only

two possible options it goes against Blockly’s design philosophy. Another issue with this

approach would be in code generation. While most other languages would accept input

parameters in a comma separated list, J has a more mathematical notation. This would

require more conditionally complex code for code generation.

The second approach which I employed for this is to use two separate blocks for each type

of verbs. This approach complies with Blockly’s design philosophy for abstraction as well as

the code generation is similarly segregated for easy maintenance. These blocks also provide

a great way for the user to learn the difference between scenarios where a verb is using its

monadic or dyadic implementation (as the decision to use a particular implementation is

made at run time based on the number of arguments).

The Monad Block

Monad is a verb with only one argument similar to unary operators. This makes it

straightforward to define a block for monads. There are two basic input requirements for

the required block. It should allow the end user to provide one input and also provide a

mechanism for the user to specify the verb that is going to be used. Being a verb, it will

always return a value hence the block needs to provide an output mechanism as well. The

block I defined is shown in the figure below.

Figure 10 Monad Block

This block fulfils all three requirements highlighted above for monad. It makes use of three

primary features of Blockly. It provides a protrusion that provides a mechanism for returning

value. The drop down menu in the middle contains a list of all the verbs provided by J and

the user can simply select the required one to use. The socket on the left is an input of value

type which means it expects a noun as input. The “%:” symbol in the middle is the J verb for

square root.

The Dyad Block

Dyads are verbs that expect two input parameters similar to binary operators. Other than

the one extra parameter, all other requirements for a dyadic block are the same as the

monad block. Thus, this block provides one extra socket for adding the second parameter.

The block I used for dyads is shown in the figure below.

Figure 11 Dyad Block

With monad there is only one argument and because syntactically it is written to the right of

the verb, the input socket provides a visual representation which is very close to the actual J

code that will be generated against this block. The same is true for the dyad block as well.

There are cases where the order of the argument may be important e.g. in case of the

dyadic verb power (^). For this verb the left argument is the base and the right argument is

the power. Hence the visual representation of the block matches J notation closely. If it is

used as a training tool for novice programmers this, consistency between visual and textual

notations, should make it easier to move from Blockly diagrams to textual J.

Inline Inputs for Verbs

One of the primary reasons for pursuing a visual programming environment is the fact that

the human brains processes graphical notations in a parallel manner. [Need Ref] Combined

with the fact that the visual representation can give obvious clues as to the parts of the

system that can benefit from parallel processing, the blocks defined above seem counter

intuitive. While they provide an excellent visual representation of the underlying J code,

they hide this parallelism that can be derived from the visual representation. Thus a balance

needs to be achieved between the two. This is where another feature of Blockly comes into

play. The user can change the appearance of the inputs of a block at runtime. The blocks

defined above use the inline input style which provides a visual differentiation between the

left and the right argument. In cases where these inputs are nouns, this representation

works well. But consider a case where each argument is the output of another verb or a

combination of verbs. In such a case it would be useful to see these inputs in a manner that

would allow the user to decide if it would be more beneficial to execute each of the inputs

in parallel. The following diagram shows the alternate visual representation for dyads and

monads.

Figure 12 Difference between inline and External inputs

The user can choose between the two representations at run time by simply right clicking on

the block and choose between Inline Inputs and External Inputs options from the context

menu.

Blocks for Adverbs

Adverbs are like monads such that they only need one operand. But unlike a monad which

operates on a noun, adverbs operate on a verb. A block for adverbs needs to cater to the

same set of requirements as a monad. The only difference being that instead of a value, it

requires a verb.

This difference drives the thought process towards the statement input mechanism

provided by Blockly which allows a block to accept other blocks as inputs. When I discussed

that input process above, I used the example of a loop to highlight its possible use with

respect to code generation. While the example is very apt at describing the intended

functionality of statement input, it is a little misleading in this context. The loop example

works for conversion to JavaScript because all the statements inside the loop need to be

executed. But in this case the adverb is only applied to one verb and not all the statements

that may form part of the input.

The code generation for J also becomes complex by using this technique as it then requires a

lot of string manipulations to insert the adverb at the correct place with the correct verb.

While it is possible, it imposes a limitation by defining semantics in the code generation that

may impose limits when the developed tool is enhanced in future. Keeping in line with the

design philosophy of Blockly, I created a block where the user can choose a verb and the

corresponding adverb from two dropdown menus provided within the block. This simplifies

the code generation code a lot as each selection from the drop down is available as a

separate string at code generation and thus it is trivial to concatenate them in the correct

syntax rather than having to do complex (and potentially limiting) string manipulations. The

block I used for adverbs is shown in the diagram below.

Figure 13 The Adverb block

User can choose the verb and then the required adverb. For example, in the figure above

the adverb Insert (/) is being applied to the dyad Addition (+). This combination will return

the sum of all the elements in the array that can be passed as input to this block.

Block for Conjunctions

I discussed conjunctions in detail in the chapter on the J programming language above.

Conjunctions are similar to adverbs and differ only in so much that unlike adverbs,

conjunctions require two verbs or two nouns as input parameters. Thus the requirements

for the desired block are very close to that of a dyad. Although it is very similar in design to

dyads, I provide a separate block for conjunction in order to provide clear distinction

between dyads and rank. The image below shows the block for conjunctions.

Figure 14 The conjunction block

Code Generation

The visual language used by Blockly was defined in a context independent framework such

that its usability was not limited to visual programming language rather to provide a generic

framework that can be adopted for any suitable purpose. Generally speaking the jigsaw

metaphor lends itself well to modular problem solving even if it’s not strictly a programming

problem. This is apparent from the sample applications provided by Blockly which include a

maze navigation app, a drawing app, Block generation app etc. which all let the user solve

some problem in modular steps. Similarly, using Blockly for code conversion is also provided

as a sample application to highlight this particular use. The provided sample app provides

code generation framework for JavaScript, Python and XML. It makes use of a generic set of

blocks which represent variables, mathematical functions, loops and control structures and

thus allow the user to create a logical solution which the tool then converts to the desired

programming language.

The same approach is not feasible for code conversion to J as J does not rely on the same

constructs for many things. This is especially true for the tacit subset of J (which is the focus

of discussion in this work). Looking at the basic J philosophy of sentence creation and

evaluation makes us realize that it is not feasible to adapt the existing solution for our

purpose. This is also the reason why new blocks had to be defined to represent J constructs

more accurately.

Blockly provides a well structured mechanism for code generation. Every block, which is

defined in the intended system, has a corresponding action function associated with it. This

function defines the behaviour of the block. I discussed block definition in the last section

and the primary focus was on the visual representation in that section and not the

behaviour. This section discusses the code generation for the blocks that were defined in

the last section.

Code Generation for Monads

This is probably the easiest construct to generate code for. From the discussion about

Monads and then about the monad block, there are only two things that are needed to

generate code for a monad i.e. the verb and the associated noun. Blockly provides a generic

framework to perform actions against the blocks that the user use. The framework includes

calls to retrieve the attached input parameter(s) and the selected drop down item. From the

block definitions above, these are the two configurable items in the proposed language.

Using these calls, the code generation for monad consists of extracting the selected

operator from the drop down and then embedding it with the input parameter. Thus the

final code is simply the concatenation of the two strings.

Code Generation for Dyads

The code generation for dyads is very similar to monads. The only difference is that in this

case we have two input parameters to the block. According to the semantics of the J

programming language, the two nouns appear either side of the verb. Thus again the code

generation is simply a concatenation of the left noun, the dyadic verb and the right noun.

Code Generation for Adverbs

In my discussion of block definition for adverbs, I pointed out the possible implication on

code generation based on the design of the block and my reasons for selecting the

particular block style that I used. The design of the block makes code generation for adverbs

very easy. According to the semantics of the J programming language, the adverb appears

between the verb and the required noun. Thus the code generation in this case boils down

to simple string concatenation again with the adverb in the middle of the verb and the

noun.

Code Generation for Conjunctions

Conjunctions operate dyadically over two verbs. This is why the block design is very similar

to that of a dyad. I describe my design decision in keeping a separate conjunction block in

the discussion of block definitions. Because of the block design being the same as dyads, the

code generation follows the exact same rules as dyads as well.

Evaluation
This section provides an evaluation of my work. I explained the evaluation criterion that I

used. I explain the criterion with the help of a couple of examples. I end the discussion with

the results and explanation of my evaluation and how they relate to other works done in the

related domain.

Textual Complexity Metrics

There are a number of metrics available to calculate code complexity. [15] provides a good

review of many of the available metrics and discusses their advantages, disadvantages and

their suitability for visual programming languages. The idea is to have a quantifiable means

of calculating the complexity of a piece of code. This leads to the question of what are the

quantifiable attributes of code that would be representative of the complexity of the

program. For this work, the same problem needs to be expanded to include visual programs.

Thus the question arises, is there a complexity measure available that would lend itself to

both the text based program and a visual program.

Character Count

The number of characters in a textual program can be considered one measure. It is a very

easy to calculate and repeatable metric, which are very desired characteristic of any

complexity metric. It would only require implementing a simple character filter in any

programming language which would only need to parse a program file and count the

number of characters. But the main problem with this metric is that it is based around the

fact that the length of the program is indicative of the complexity of the program. It does

not take into account the complexity of the task being achieved and how difficult it may be

to understand for a novice programmer. This metric specifically fails for J which is a terse

language and achieves much complex operations using mathematical notations which

would only appear as a single or a double character in the metric and would disregard the

complexity of the operation performed.

Lines of Codes

The next logical attribute to be considered may be the lines of codes in the program. This is

again based over the assumption that a long program would be more complex than a short

one. While this may be true in some cases, it is not true for all the cases because this metric

does not take into account the complexity of each line of code. But at the same time it

provides a reproducible and easy to calculate metric. Like the character count, this metric is

also not suitable for my purpose because of the terse nature of the programming language

involved. LOC and character count both suffer from another drawback that they do not lend

themselves to visual programming where there are no lines of codes and thus no characters

to count.

Conditional Statements

The LOC approach suffer from the drawback that it does not take into account the

complexity of each line of code. Thus the next possibility would be to quantify the

complexity of lines of codes and form a metric around that. In [21], McCabe provides a

measure along these lines. In simple words, McCabe metric is based around the fact that the

number of conditional and loop statements in the code is representative of the complexity

of the program.

This is an interesting metric as it takes into account the length of the code and then weighs

it according to the number of the conditional structures as an indicator to the complexity of

the code. Another interesting aspect of this metric is that it was originally developed based

on graph theory approach thus it can potentially be used for visual languages as well. A

Control Flow Graph (CFG) depicts the possible execution pattern of the code and forms the

basis of the McCabe metric (including the number of edges, nodes and the connected

components). As I described in the related work section, many visual programming

languages use a graph like structure as a basis for the visual representation involved

(commonly utilizing DFD). Thus, the textual measure for McCabe is defined as,

complexity = number of conditional statements + 1

Whereas the graphical metric is,

complexity = edges - nodes + 2(connected components) [15]

While it fulfils almost all the shortcomings for complexity metrics, pointed out in the last

few sections, it is still not a good indicator of complexity for my work. Firstly, it is still based

around the length of the code. While J provides complete support for loops and conditional

statements, being an array based programming language, they are seldom used. Unlike

most other programming languages where the number of conditional statements is limited

by the language constructs, a J program may have implicit conditional statements which

would be difficult to detect by an automated tool. Secondly, the complexity metric is based

around a graph which is not the underlying metaphor in Blockly. While it may be possible to

map the jigsaw metaphor to graph one, by categorizing edges, nodes and connections, it

would still require a different language parser (than the one used by Blockly) to parse the

visual program and count these elements and the resultant metric will still suffer the flaw

described previously.

Halstead

Halstead proposed another widely used metric for calculating software complexity. [22] In

its simplest form, this metric is the sum of the number of operators and the number of

operands in the code. Because of J’s mathematical nature of expression and terseness, this

provides an excellent metric to calculate the complexity of a program written in J.

According to [Nickerson], the Halstead metric for textual program can be expressed as the

sum of the number of operands N1 and the number of operators N2 in the code.

N = N1 + N2

Halstead also provided a few other metrics based on this criterion. One of these is the

Volume, which involves the length of the program and the minimum bits required to

represent the program,

V = N log2n

where N = N1 + N2

and n = n1 + n2

where n1 and n2 are the number of distinct operators and operands required. This metric is

not particularly useful here as there are no memory considerations involved. The primary

measure used here is the program length derived by the sum of the number of operators

and operands used.

Another factor, which I mentioned in the beginning of this section, in the selection of a

complexity measure is its ability to lend itself to the visual programming language involved.

[15] provides one way to adapt Halstead metric for use with visual languages. The proposed

solution suggests that the complexity of the visual program can be expressed as a sum of its

nodes and edges. While my solution does not directly involve nodes and edges as in a

conventional graph, the metric is still useable. I categorize every block as a node and every

input as an edge. This categorization maps the jigsaw metaphor used by Blockly, to the

graph notation required by the metric. It also provides a direct mapping between the textual

measure and the graphical measure as each block represents an operator and each input

represents an operand.

Visual J

Consider the following example for calculating the average of an array,

+/ 1 2 3 4 5 % # 1 2 3 4 5

The +/ operator calculates the sum of the array (1 2 3 4 5) and then divides (%) it by the

length of the array, calculated by #. The Halstead measure of the complexity of this program

amounts to 5 (two operands and three operators). Now the equivalent visual program using

Visual J would look as follows,

Figure 15 Visual J code for calculating average

From the visual program itself it is apparent that the same program when implemented

using the visual programming language amounts to the same value of 5 (3 operators and 2

operands).

Understanding Results

It is apparent from the complexity metric that the visual language does not add any more

complexity to the program than the original textual language. There are a number of

possible conclusions that can be drawn from these results. I discuss the significance of these

results in this section. The discussion involves the evaluation of other visual languages and

how my solution compares to them. I also provide more than one perspectives of looking at

these results and what that means for the viability of my solution.

The result indicates significant success in reducing the complexity of the visual programming

language as compared to their textual counterparts. Nickerson [15] evaluation of the Visual

APL, as well as other visual frameworks, clearly shows that the complexity metric of the

visual language is in most cases higher than that of the textual equivalent. My solution

provides the same level of complexity as the textual version, which is a significant

improvement over other attempts at visual programming languages.

It can be argued that the visual language should have less complexity than the textual

equivalent to be of any help. The problem stems from the fact that the real advantage

provided by the visual programming languages lie in their graphical nature. The ease of

connection and better understand ability makes using them easier than conventional textual

languages. Unfortunately, these characteristics are not measurable meaningfully.

Also, the use of visual programming brings with it other side effects as well. For example,

the J code above for calculating the average would take much less time to type than to

compose the same program through visual language. Each block involved in the visual

language requires to be found and then drag and dropped into the correct place. The typing

comes with its own hazards though. There is a fair chance of user to making a typo thus

causing compilation errors. Also, the user will have to either remember the constructs or

look them up. Again measuring these parameters is not possible as they may vary from

person to person and depend on things like the users knowledge of the programming

language, their skill with programming in general and their skill with computers etc.

A fair conclusion that can be drawn from this discussion is that a novice user may be much

more comfortable using the visual language as it provides ease of use and removes the

burden of remembering the constructs and the semantics of the language. The semantics of

the language are built into the visual constructs along with the available vocabulary. On the

other hand an experienced J programmer may find it much easier to write the code using

the textual J because of his/her experience and knowledge. They still might benefit from the

visual representation for better understanding of the control or data flow in the program

and may be able to identify possible parallelization that may be achievable in the same

program. This interpretation is consistent with Nickerson’s [15] evaluation of visual APL as

well.

There are other issues that have been addressed with this solution though. Blockly provides

a mechanism for the solution to be scalable for larger programs. This is where the

compactness of J becomes very helpful as verbs, adverbs and conjunctions provide complex

functionalities and being an array based language, it provides independence from loops in

general as well.

Conclusion
I discussed in the introduction some of the issues that plague visual programming. First of all

it is imperative that the visual language should make use of a visual metaphor that

transcends cultural boundaries to be universally acceptable. Secondly, there are limitations

to the amount of information that can be depicted through a visual language. These

limitations arise from a multitude of factors. For example, while iteration is easy to specify,

recursion presents a challenge for visual languages. It is trivial to represent iteration using

flowcharts and/or DFD but there is no commonly used graphical notation for recursion

which leads to the problem area of coming up with a self explanatory and intuitive graphical

representation for it. Another limitation is the depiction of abstract actions. While the use of

graphical user interface over time has provided standardized icons for a number of actions,

there are still a number of actions that can be performed in the system which do not have

standardized graphical representation. Programming constructs are even more abstract as I

just explained using the recursion example.

These were the challenges that were kept in mind while working on this project. The

problem of utilizing a universally acceptable metaphor could be expressed by either utilizing

a metaphor that is globally understandable without any cultural bounds or use one that has

become accepted through wide spread use. This criterion was kept in mind while choosing

Blockly which makes use of a widely understood jigsaw puzzle metaphor for the visual

language. The J programming language, because of its design, solved a number of other

problems associated with visual programming. The tacit subset of J worked without

recursion, iteration or object oriented programming thus eliminating any reason for coming

up with symbolic representations for these abstract concepts. Based on the success of

Prograph and Visual APL [15] it was understood that functional programming does provide a

better framework for visual representation which provided another reason for using J.

As discussed in the previous section, the results suggest that the solution is useable by both

a novice programmer as well as an expert programmer. The uses that can be extracted from

it are different for each type of user. The proof of concept that was developed for this tool

suggests that with some more improvements, it can be used widely in a number of

circumstances. This is an additional value that has been added on top of all the problems

that were avoided based on the selection of J and Blockly as discussed above. With some

more focused work on creating a finished tool, this could provide a user friendly

environment for using J to solve complex and scalable data analysis problems.

Future Work

I believe that the ultimate direction for this tool should be to get it to a point where it

provides general purpose usage. To achieve this goal there are features that need to be

added to it which are useful for novice programmers as well as experienced programmers.

The most important feature that needs to be incorporated is to implement remaining

features of the J programming language. While the proof of concept implements the

available verbs, adverbs and conjunctions there are still aspects of J language that are not

implemented. The most important of these is to provide a framework for implementing

trains. A train is a sequence of operators only which are assigned a name (through assigning

them to a variable). This train can later be called over data and provides a reusable code. By

providing support for trains in the tool, the user should be able to create highly scalable

solutions.

In order to provide a proper development environment, there needs to be a way for the

user to execute the code and see the output. J provides a web based IDE which can be

adapted to connect it to Blockly for code execution. The J server can be hosted on any web

server and the code generated from Blockly can then be sent to the J server for execution.

The results can then be displayed in the same Blockly window for user.

I have discussed the possibility of introducing parallel programming with the help of visual

programming throughout the document. The emphasis so far has been on identifying what

parts of the code can be executed in parallel. This could be automated so that the

programmer does not have to worry about it. The result would be better performance than

textual J with no impact on the development process.

Bibliography
1. N. C. Shu, Visual programming, Van Nostrand Reinhold Co., 1988.
2. G.G. Roy, et al., “Towards a visual programming environment for software
development,” Proc. Software Engineering: Education & Practice, 1998. Proceedings.
1998 International Conference, 1998, pp. 381-388.
3. E.P. Glinert, et al., “Visual tools and languages: directions for the '90s,” Proc. Visual
Languages, 1991., Proceedings. 1991 IEEE Workshop on, 1991, pp. 89-95.
4. Z. Da-Qian and Z. Kang, “On the design of a generic visual programming
environment,” Proc. Visual Languages, 1998. Proceedings. 1998 IEEE Symposium on, 1998,
pp. 88-89.
5. K. Wittenburg, “Earley-style parsing for relational grammars,” Proc. Visual
Languages, 1992. Proceedings., 1992 IEEE Workshop on, 1992, pp. 192-199.
6. G. Costagliola, et al., “Towards efficient parsing of diagrammatic languages,” Book
Towards efficient parsing of diagrammatic languages, Series Towards efficient parsing of
diagrammatic languages, ed., Editor ed.^eds., ACM, 1994, pp. 162-171.
7. S. Matwin and T. Pietrzykowski, “PROGRAPH: A preliminary report,” Computer
Languages, vol. 10, no. 2, 1985, pp. 91-126; DOI http://dx.doi.org/10.1016/0096-
0551(85)90002-5.
8. J. Poswig, et al., “VisaVis: a Higher-order Functional Visual Programming Language,”
Journal of Visual Languages & Computing, vol. 5, no. 1, 1994, pp. 83-111; DOI
http://dx.doi.org/10.1006/jvlc.1994.1005.
9. K.E. Iverson, A programming language, John Wiley \\& Sons, Inc., 1962, p. 315.
10. A.D. Falkoff and K.E. Iverson, “The design of APL,” SIGAPL APL Quote Quad, vol. 6, no.
1, 1975, pp. 5-14; DOI 10.1145/585923.585925.
11. R.K.W. Hui, et al., “APL\?,” SIGAPL APL Quote Quad, vol. 20, no. 4, 1990, pp. 192-200;
DOI 10.1145/97811.97845.
12. F.B. Gilberth and L.M. Gilbreth, Process Charts, The American Society of Mechanical
engineers, 1921.
13. H.H. Goldstine, The Computer from Pascal to von Neumann, Princeton University
Press, 1972.
14. D.D. Hils, “Visual languages and computing survey: Data flow visual programming
languages,” Journal of Visual Languages & Computing, vol. 3, no. 1, 1992, pp. 69-101; DOI
http://dx.doi.org/10.1016/1045-926X(92)90034-J.
15. J.V. Nickerson, “Visual Programming,” New York University, 1994.
16. M. Hirakawa, et al., “An iconic programming system, HI-VISUAL,” Software
Engineering, IEEE Transactions on, vol. 16, no. 10, 1990, pp. 1178-1184; DOI
10.1109/32.60297.
17. D. Ladret and M. Rueher, “VLP: a visual logic programming language,” Journal of
Visual Languages & Computing, vol. 2, no. 2, 1991, pp. 163-188; DOI
http://dx.doi.org/10.1016/S1045-926X(05)80028-X.
18. J. Bertin, Graphics and the Graphic Information Processing, Walter de Gruyter Berlin,
1981.
19. J. Bertin, Semiology of graphics, University of Wisconsin Press, 1983.
20. G. Costagliola, et al., “Automatic generation of visual programming environments,”
Computer, vol. 28, no. 3, 1995, pp. 56-66; DOI 10.1109/2.366162.
21. T.J. McCabe, “A Complexity Measure,” Software Engineering, IEEE Transactions on,
vol. SE-2, no. 4, 1976, pp. 308-320; DOI 10.1109/TSE.1976.233837.

http://dx.doi.org/10.1016/0096-0551(85)90002-5
http://dx.doi.org/10.1016/0096-0551(85)90002-5
http://dx.doi.org/10.1006/jvlc.1994.1005
http://dx.doi.org/10.1016/1045-926X(92)90034-J
http://dx.doi.org/10.1016/S1045-926X(05)80028-X

22. M.H. Halstead, Elements of Software Science (Operating and programming systems
series), Elsevier Science Inc., 1977, p. 128.

