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Abstract: Reliable measures of body composition are essential in order to develop 

effective policies to tackle the costs of obesity. To date the lack of an acceptable gold-
standard for measuring fatness has made it difficult to evaluate alternative measures 
of obesity. In this paper we draw on work in other areas of epidemiology and use 
latent class analysis to evaluate alternative measures of obesity in the absence of a 
gold standard. Using data from a representative sample of US adults we show that 
while measures based on Body Mass Index and Bioelectrical Impedance Analysis 
appear to misclassify large numbers of individuals, this is not the case for 
classification based on waist circumference. The error rates waist circumference are 
of the order of 3% for most of our samples compared to error rates as high as 40-50% 
with the other measures. These results have implications for racial differences in 
obesity. Our estimated true prevalence rates imply that the obesity rate among black 
women is substantially higher than among white women. However, the opposite is 
true for men, with the black men having a significantly lower obesity rate among 
black men. The fact that neither the BMI nor the BIA based measures of obesity are 
capable of capturing both these features highlights the dangers associated with 
measuring obesity and the potential costly policy mistakes that may arise from 
arbitrarily adopting a single measure as a gold standard.  
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1. Introduction 
 

Obesity is an important cause of morbidity, disability and premature death and 

increases the risk for a wide range of chronic diseases (WHO 2009, Antonanzas and 

Rodriguez 2010, Konnopka et al 2011). In June 2013, the the American Medical 

Association voted to classify obesity as a disease in the hopes that by recognizing 

obesity as a disease it will help change the way the medical community tackles this 

complex health issue. However, the decision to classify obesity as a disease raises 

fresh concerns as to how best to measure and diagnose obesity. The traditional and 

most popular measure of obesity is based on an individual’s body mass index (BMI), 

defined as weight in kg/height in m2. Despite its widespread use there is a body of 

research arguing that BMI is, at best, a noisy measure of fatness since it does not 

distinguish fat from muscle, bone and other lean body mass. (for example Johansson 

et al. 2009, Burkhauser and Cawley 2008, McCarthy et al. 2006, Smalley et al. 1990). 

Consequently, a number of alternative measures of fatness have been proposed. These 

include percent body fat estimated using Bioelectrical Impedance Analysis (BIA) and 

measures based on Waist Circumference and Waist to Hip ratio. In the obesity 

literature to date researchers have settled on a specific, preferred measure as a gold-

standard and used this measure to benchmark the other diagnostic tests. For example, 

Burkhauser and Cawley (2008) use obesity status defined on the basis of BIA to 

estimate the misclassification rates associated with BMI based measures. They find 

that 61.25% of women classified as non-obese by BMI are false negatives, with no 

false positives, while for men 14.20% of those classified as obese by BMI are false 

positives and 33.5% classified as non-obese are false negatives. These estimates are 

based on the assumption that the misclassification rates with the BIA methods are 

zero. 

In this paper we take a different approach to comparing the accuracy of alternative 

measures of obesity which is motivated by the fact that a-priori there is no strong 

basis for choosing any single measure of obesity as a gold standard.  In their survey of 

alternative measures of obesity Freedman and Perry (2000) note that “The lack of an 

acceptable gold-standard limits the assessment of the validity of field methods that 

can be used to estimate body fat.” Rather than specifying a gold-standard ex-ante we 

allow all measures to be potentially imperfect measures of fatness. When one test is 

specified as a gold standard evaluating all other possible tests is straightforward. 

https://en.wikipedia.org/wiki/American_Medical_Association
https://en.wikipedia.org/wiki/American_Medical_Association
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However, in the case where all of the tests are potentially imperfect the task of 

evaluating the diagnostic tests is more difficult because the true underlying disease 

status of each individual in the study is unknown. However, by treating the true 

unknown disease status as a latent variable, it is possible to use latent class analysis to 

estimate the true underlying prevalence of the disease along with measures of the 

sensitivity and specificity of each of the tests (see for example Walter and Irwig 1988, 

Biemer and Wiesen 2002 and Biemer 2011).1 This approach has been used elsewhere 

in biostatistics, for example when comparing alternative skin tests for the presence of 

tuberculosis (Hiu and Walter 1980), comparing diagnosis of myocardial infarction 

(Rindskopf and Rindskopf 1986), evaluating diagnostic tests of autism (Szatmari et al. 

1995) and malaria (Gonçalves 2012).  However, to our knowledge latent class 

analysis has not been used to evaluate alternative measures of obesity.  

Using data from a representative sample of US adults we show that that while 

obesity rates based on Body Mass Index and Bioelectrical Impedance Analysis 

misclassify large numbers of individuals, this is not the case for measures based on 

Waist Circumference. The error rates for Waist Circumference measures of obesity 

are of the order of 3% compared to error rates as high as 45-50% with the BMI and 

BIA approaches. This has important implications for the measurement and 

classification of obesity and suggests that Waist Circumference measures may provide 

a cheap effective means of classifying obesity. Furthermore the latent class approach 

allows us to compare estimated true prevalence rates of obesity across racial groups. 

The estimated true racial gap in obesity for women is similar to that based on BMI, 

both of which in turn are significantly higher than that gap suggested by the BIA 

method. In contrast however, the BMI approach suggests no difference in the obesity 

rate between black and white men, while our estimated true rates imply a significantly 

lower obesity rate for black men, which is in keeping with the findings from the BIA 

analysis.  The fact that neither the BMI nor BIA based measures of obesity are 

capable of consistently measuring the racial gap for both men and women highlights 

the dangers associated with measuring obesity and the potential costly policy mistakes 

that may arise from arbitrarily adopting a single measure as a gold standard.  
                                                      
1 Discrepant Analysis (DA) and Composite Reference Standards (CRS) have been proposed as 
alternatives to latent class analysis when assessing the accuracy of  diagnostic tests in the absence of a 
gold standard (see for example Alonzo and Pepe 1999). The DA approach may be biased even when 
carried out under ideal conditions (Miller 1998). The CRS approach requires initial judgements about 
the characteristics of the existing tests in order to form the composite reference standard. Such prior 
information may not be available.   
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In Section 2 of the paper we discuss latent class modelling in diagnostic testing, 

while Section 3 discusses the NHANES data used throughout the analysis, while 

section 4 presents our key results. Section 5 concludes. 

 

2. Methods: Latent Class Models in Diagnostic Testing 

Let Ci denote the unobserved or latent variable denoting true obesity status for 

person i and let T1i, T2i, and T3i denote three alternative tests designed to measure 

outcome C. In our application Ci is a dichotomous variables indicating the presence or 

otherwise of true underlying obesity, while T1i, T2i, and T3i are dichotomous 

indicators of C. Considering the cross-classification table for the variables C, T1, T2, 

and T3, let (c, t1, t2, t3) denote the cell associated with C=c, T1=t1, T2=t2, and T3=t3. 

Also let πc,t1,t2,t3 denote the probability of an observation falling in this cell. Likewise 

πୡ = Pr(C=c) for c=1,0  andπ୲ଶ|A=Pr(T2= t2|A). So for example π୲ଶ|୲ଵ,ୡ=Pr(T2= 

t2|T1=t1, C=c). 

U ing the a ls law of condition l probabi ities 

 πୡ,୲ଵ,୲ଶ,୲ଷ ൌ PሺC ൌ cሻPሺTଵ ൌ tଵ|C ൌ cሻPሺTଶ ൌ tଶ|Tଵ ൌ tଵ, C ൌ cሻ PሺTଷ ൌ

tଷ|Tଶ ൌ tଶ, Tଵ ൌ tଵ, C ൌ cሻ =  πୡπ୲ଵ|ୡπ୲ଶ|୲ଵ,ୡπ୲ଷ|୲ଶ,୲ଵ,ୡ 

Therefore the probability that a unit is classified into cell (T1=t1, T2=t2, and 

T3=t3) is given by  

π୲ଵ,୲ଶ,୲ଷ ൌ  πୡπ୲ଵ|ୡπ୲ଶ|୲ଵ,ୡπ୲ଷ|୲ଶ,୲ଵ,ୡ
ୡ

 

This is a mixture model with unobserved regimes determined by πୡ. 

Let nt1,t2,t3 denote the number of observations in cell (T1=t1, T2=t2, and T3=t3) 

and assume that the cell counts are distributed as a set of multinomial random 

variables. Then the kernel of the likelihood of observing the full table {T1, T2,T3} is  

LሺTଵ, Tଶ, Tଷሻ ൌ ෑ ෑ ෑ π୲ଵ,୲ଶ,୲ଷ
୬౪భ,౪మ,౪య

୲ଷ୲ଶ୲ଵ
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In total we have 23=8 possible cells, but since the probabilities must sum to 1 

we only have 23-1=7 degrees of freedom. Unfortunately in this model there are 15 

parameters to est : imate

πଵ, π୲ଵ ଵ|ଵ,π୲ଵୀଵ ,π୲ଶୀଵ|ଵ,ଵ ୲ଶୀଵ|ଵ,π ଶୀଵ|,π୲ ଵ|,ଵ ୀ | π ୲ ଶୀ

π୲ଷୀଵ|ଵ,ଵ,ଵπ୲ଷୀଵ|ଵ,ଵ,π୲ଷୀଵ|ଵ,,π୲ଷୀଵ|,,π୲ଷୀଵ|,ଵ,ଵπ୲ଷୀଵ|,ଵ,π୲ଷୀଵ|,,ଵπ୲ଷୀଵ|ଵ,,ଵ 

Therefore in order to proceed we must impose some restrictions on the model. 

The standard identifying restrictions in this approach is to assume that the three tests 

are independent conditional on true status. This is known as local independence 

assumption (LIA) and specifies that the errors in the three tests are mutually 

independent. Moldes that allow for conditional dependence between tests typically 

require results from at least four different tests in order to be identified.1 While LIA 

need not be true in general, in Section 3 we will argue that it may be reasonable in the 

context of our analysis.  

LIA implies that π୲ଶୀ୨|ଵ,ଵ ൌ π୲ଶୀ୨|,ଵ and π୲ଶୀ୨|ଵ, ൌ π୲ଶୀ୨|, which eliminates 

two parameters and also π୲ଷୀ୨|ଵ,ଵ,ଵ ൌ π୲ଷୀ୨|,ଵ,ଵ ൌ π୲ଷୀ୨|,,ଵ ൌ π୲ଷୀ୨|ଵ,,ଵ and 

π୲ଷୀ୨|ଵ,ଵ, ൌ π୲ଷୀ୨|ଵ,, ൌ π୲ଷୀ୨|,, ൌ π୲ଷୀ୨|,ଵ, which eliminates a further six 

parameters. Therefore the restrictions imposed by LIA reduces the number of 

parameters to 7 allowing us to identify the remaining parameters.  

Letting y denote the data vector of joint test results; y=( y111, y110, y100, y000, 

y011, y101,y001,y101) and π denote the (7x1) vector of parameters specified above we 

write the for r m y|π s   data generating process  ou odel Pr( ) a

~ૈ|࢟ ultino l൫ ሺ ଵଵଵ πଵଵ ଵ, π, πଵଵ, πଵଵ, πଵ, πଵଵሻ൯ m mia n, π , , π

where π୲ଵ,୲ଶ,୲ଶ ൌ ∑ πୡπ୲ଵ|ୡπ୲ଶ|ୡπ୲ଷ|ୡୡ . 

Fo xamr e ple  

πଵଵଵ πଵπ୲ ଵ|ଵπ୲ ଵ πଵሻ ୲ଶୀଵ| |  ൌ ଵୀ ଶୀ |ଵπ୲ଷୀଵ|ଵ  ሺ1 െ π୲ଵୀଵ|π π୲ଷୀଵ 

ൌ πଵπ୲ଵୀଵ|ଵπ୲ଶୀଵ|ଵπ୲ଷୀଵ|ଵ  ሺ1 െ πଵሻ൫1 െ π୲ଵୀ|൯൫1 െ π୲ଶୀ|൯ሺ1 െ π୲ଷୀ|ሻ 
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π୲୨ୀଵ|ଵ is known as the sensitivity of test j and is the probability that test j 

records a positive outcome when the individual truly has the latent characteristic. 

π୲୨ୀ| is known as the specificity of test j and is the probability that test j records a 

negative outcome when the individual truly does not have the disease. The seven 

parameters to be estimated are the overall true prevalence πଵ and the sensitivity and 

specificity of each of the three tests.  

With three or more tests there is no closed form solution for the maximum 

likelihood estimates (Hiu and Walter 1980) but estimates can be obtained using a 

numerical algorithm such as Newton-Raphson or the EM algorithm. Alternatively 

Joseph et al (1995) propose a Bayesian framework for estimation of this model, which 

allows additional information about the unknown parameters to be incorporated in the 

form of prior distributions, Pr(π). Branscum et al. (2005) provide a useful overview of 

Bayesian approaches to estimation of the sensitivity and specificity of diagnostic tests. 

 In particular uncertainty about the parameters is typically modeled using 

independent beta prior distributi nso : 

π ~beta൫a , b ൯
,௧ୀଵ|ଵ~beta൫αଵ,୨ߨ βଵ,୨൯, j ൌ 1,2,3
,௧ୀ|~beta൫α,୨ߨ β,୨൯, j ൌ 1,2,3

 

The choice of the as and bs determine the degree of prior information on each 

of the parameters and imply probabilistic restrictions on the parameter vector π. In 

results below we set all as and bs equal to 0.5 which corresponds to Jeffrey’s 

uninformative priors.  

The posterior distributions of the parameters are given by Pr ሺπ|yሻ ൌ
P୰ሺ୷|ሻP୰ሺሻ

P୰ሺ୷ሻ
.  However, evaluation of this distribution is difficult since it requires 

solving for the probability of the data over all possible parameter values. However, 

we note that the posterior distribution is proportional to the product of the likelihood 

function and the prior:Pr ሺπ|yሻ ן Prሺy|πሻPrሺπሻ. Markov Chain Monte Carlo 

(MCMC) provides a mean of sampling from the full posterior distribution given the 

above likelihood and priors. MCMC is a popular technique for generating random 

draws from posterior distributions that may be only known up to a constant of 

normalization as it overcomes the need to evaluate the probability of the data (Gilks et 
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al. 1996). Once we have generated sufficient draws from the posterior distribution 

using MCMC then a range of summary statistics, such as the median, mode and 95% 

credible interval can be computed to summarise the posterior distribution of each of 

the parameters.  

The key to MCMC is finding a transition kernel, Pr ሺπ୲ାଵ|π୲ሻ, such that the 

chain converges to the distribution of interest Pr ሺπ|yሻ. The Metropolis-Hastings 

algorithm guarantees such a chain. For the Metropolis-Hastings algorithm, one starts 

off with an arbitrary value π and then samples a candidate πଵ from some proposal 

distribution qሺ. |πሻ.  For example q(.|πሻ might be a multivariate normal distribution 

with mean π and fixed covariance matrix. The candidate point πଵ is then accepted as 

the next iteration in the chain with probability equal minቀ1, P୰ሺ୷|భሻP୰ሺభሻ୯ሺబ|భሻ
P୰ሺ୷|బሻP୰ሺబሻ୯ሺభ|బሻቁ. If 

accepted the candidate point πଵ becomes the next iteration in the chain, if not the 

chain does not move and π is used again to make the draw at the next iteration. This 

process is competed a large number of times, say T, and the first m, of these iterations 

are discarded. This burn-in period m, captures the period needed for the chain to have 

converged to its stationary distribution. The remaining T-m iterations in the chain are 

taken as random draws which can be used to evaluate the posterior distribution of the 

parameters. The key feature of the Metropolis-Hastings algorithm is that the proposal 

distribution can have any form and the chain will converge to the required stationary 

posterior distribution (Gilks et al. 1996).2 

 

3. Data 

For this analysis we use the National Health and Nutrition Examination Survey 

(NHANES III). The NHANES III is a nationally representative survey of 33,994 

individuals in the U.S. aged two months of age and older. The interviews were carried 
                                                      
2 While any proposal distribution will ultimately deliver a sequence of draws from the target 
distribution, the convergence of the chain to this target distribution will depend on choice of the 
proposal distribution. Therefore it is important to check convergence of the chain when using MCMC. 
We discuss this later in the paper. The Gibbs sampler is a special case of the Metropolis-Hastings 
algorithm wherein the random draw is always accepted. The key to the Gibbs sampler is that it only 
considers univariate conditional proposal distributions – only one element of the vector is sampled at a 
time with the remaining elements remaining fixed. Thus at a given iteration one simulates n random 
variables sequentially from n univariate conditional distributions rather than a single n-dimensional 
vector in single pass from a joint distribution. For methods of sampling from full-conditional 
distributions see Gilks (1996). The WinBUGS software (Lunn et al 2000) used in this paper uses a 
form of adaptive rejection sampling (Gilks and Wild (1992)). 
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out over the period from 1988-1994. The NHANES data have been used in previous 

studies looking at the impact of obesity of labour market outcomes (e.g. Cawley, 

2004). Burkhauser and Cawley (2008) describe the NHANES III as the “Rosetta 

Stone” for many measures of fatness, in that it includes a range of alternative 

measures of body composition.  

In this paper we focus on three alternative measures of fatness Body Mass 

Index (BMI), Waist Circumference (WC) and Bioelectrical Impedance Analysis 

(BIA). In the NHANES survey all the health measurements were performed in 

specially-designed and equipped mobile centres by a team of physicians and health 

technicians. BMI is the most widely-used measure of obesity and is defined as weight 

in kg/height in m2. Individuals are classified as overweight if their BMI is between 25 

and 30 and are classified as obese if their BMI exceeds 30. Waist circumference 

measures of obesity are based on a numerical measurement of your waist. According 

to the World Health Organisation's data gathering protocol, the waist circumference 

should be measured at the midpoint between the lower margin of the last palpable rib 

and the top of the iliac crest, using a stretch‐resistant tape that provides a constant 100 

g tension. Men are classified as being at “high risk” of obesity if their waist 

circumference exceeds 102cm, while for women the threshold is 88cm. Finally 

BIA determines the opposition to the flow of an electric current through body tissues 

which can then be used to estimate body fat. Fat-free mass contains mostly water, 

while fat contains very little water.  Thus, fat-free mass will have less resistance to an 

electrical current.  By determining the resistance of a current running through your 

body, theoretically we could get an estimate of how much fat-free and fat mass you 

have. The Valhalla Scientific Body Composition Analyzer 1990 B is the instrument 

used for the measurement of whole body electrical resistance (Bio-resistance) in 

NHANES. Electrodes were attached to the right wrist, hand, ankle and foot of the 

respondents and an electrical current is passed through the body. We follow the 

approach adopted in Burkhauser and Cawley (2008) to derive a measure of percent 

body fat (PBF) from the bio-electrical resistance data. The National Institute of Health 

(NIH) classifies a man if his PBF exceeds 25 percent and a woman as obese if her 

PBF exceeds 30 percent. We use these obesity thresholds throughout our analysis.   

Each method of measuring body fat has its strengths and weaknesses 

(Freedman and Perry 2000).  BMI does not distinguish fat from fat free-mass such as 

http://en.wikipedia.org/wiki/Iliac_crest
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muscle and bone, BIA readings are affected by a range of factors such as electrode 

placement, body position, dehydration, exercise and ambient temperature, while 

waist-circumference tells you the location of your body fat but not the absolute 

percentage of body fat and may be prone to standard measurement problems. Despite 

the advances that have made in measuring fatness, there is little evidence that more 

recent measures of body fat are more accurate than simple combinations of height and 

weight (Freedman and Perry (2000)). Thus rather than taking one measure as a gold 

standard we treat all measures of fat available as a-priori imperfect measures of 

underlying latent fatness and use the latent class approach outlined in the previous 

section to uncover the underlying characteristics of each of the tests, as well as a 

measure of latent obesity.  

As noted in section 2 estimation of the latent class model with 3 tests and one 

population requires identifying assumptions in the form of local independence, which 

requires that observed associations between the three tests is fully explained by the 

disease status (errors in the three tests are independent). This assumption need not be 

valid in general and inappropriate specification of the dependence structure between 

tests may lead to invalid inferences Albert and Dodd (2004). For instance LIA may 

fail when two or more of the tests are based on the same biological basis or when 

different tests are subjected to a common source of contamination due to similar 

storage conditions. These factors are unlikely to be a problem in our context. For 

instance while dehydration may be a major source of error for BIA, this is unlikely to 

a problem for measurement of waist circumference or BMI. Since all measurements 

were taken by the same physician it is possible that common physician error in 

reading tests or in calibrating the equipment could lead to dependent errors. However, 

while we believe that calibration errors may lead to misclassification in a given test, it 

is less likely that the calibration errors on very different pieces of equipments would 

lead to systematic error across tests.  

We carry out our analysis separately for four groups; white women, white 

men, black women and black men. We restrict attention to individuals aged between 

18 and 64 and for women we excluded those women who were pregnant at the time of 

the examination. Excluding those with missing values on at least one of our three tests 

the final sample sizes were 2142 (white women), 1924 (white men), 1852 (black 

women) and 1629 (black men).  
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4. Results 

Table 1 provides the prevalence rates for “at risk of  obesity” for each of these 

groups using our three different diagnostics. There are clear and substantial 

differences in the prevalence rates using different measures. The BMI measure tends 

to return the lowest obesity rate of all three tests, while BIA returns the highest rate 

for all groups. However, the difference between these two tests varies across groups, 

with the BIA prevalence being 3-4 times higher for women relative to that based on 

BMI, but approximately twice the rate for men. The relationship between obesity 

using WC and the other measures also show some differences. For white men, white 

women and black women the prevalence rate using WC lies between the BMI and 

BIA rates, however for black men prevalence based on WC is lower than both the 

other measures.   

To apply latent class analysis we need to consider the joint distribtion of the 

three tests. There are eight different combinations of tests outcomes to consider when 

using three dichotomous tests. Table 2 provides the cross-classification of the three 

tests for each of our four groups. Looking down the rows in this table allows us to 

examine the level of agreement across the three tests. There is substantial variation in 

the consistency of the tests across the four groups. The level of agreement across the 

three tests (sum of first and last row) was 49.68% for white women, 63.64% for white 

men, 59.39% for black women and 77.94% for black men.  

The data in Table 2 provide the raw input for our latent class analysis. Before 

looking at the results in detail Figures 1 and 2 provide information on the history of 

the simulations to help assess convergence of the Markov chain. For each parameter 

we ran one long chain with 25,000 iterations in total. The first 5000 iterations were 

used for the burn-in period and discarded from the analysis, leaving us with 20,000 

draws from the assumed stationary distribution. Figure 1 provides a history trace of 

the simulations for every parameter, along with the median and the 95% credible 

interval. These plots simply show the value of πt chosen at each iteration t of the 

chain. The plots provide no evidence of drift and the mixing is good for each 

parameter. If the chain has converged to its stationary distribution then we would 

expect the distribution of draws to be the same over different ranges of the chain. 
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Figure 2 plots the density of the chains for the first 10,000 iterations and the second 

10,000 iterations along with the density based on the full chain. The similarity of all 

three distributions supports convergence of the chains.3 

Table 3 reports the mean of the posterior distribution for each parameter, 

along with the 95% credible interval. A number of interesting features emerge from 

this analysis. Looking first at the characteristics of the three tests we see a number of 

important differences across tests. The specificity rate of the BMI based test is 

relatively high for all four groups, implying that this test returns very few false 

positives. Therefore it is very unlikely that this test diagnosis someone as obese when 

in fact they are truly not obese. The false positive rate is higher for men than for 

women, which might be expected given that men tend to have more muscle and fat 

free mass than women. However, even then the probability of a false positive is still 

only 1.5% for men. While the specificity rate of BMI is high, the same is not true of 

the estimated sensitivity rate. The rate is less than 70% for white men and women and 

for black women, reaching a low of 55% for white women. Only for black men does 

the sensitivity rate exceed 80%. Thus the problem with BMI is not that it misclassifies 

non-obese people as obese but rather its failure to truly detect obesity when it is 

present. The relatively high specificity rate and low sensitivity rate of BMI is 

consistent with previous work using different approaches. For example Smalley et al 

(1990) report a sensitivity rate of 55.4% (44.3%) for all women(men) and a specificity 

rate of 98.2% (90.1%) using densitometric analysis based on underwater weighting as 

a reference point. Underwater weighting is generally perceived as one of the more 

accurate means of measuring body fat. However, it is not typically used nor is it 

widely accessible in publically available data sets.  

It is also interesting to compare these estimated misclassification rates to those 

reported by Burkhauser and Cawley (2008). Like us they report a false positive rate 

for BMI of zero for women and a false negative rate of approximately 33% for men. 

However, their estimated false negative rate for women (61.25%) is much higher than 

either our estimates or those of Smalley et al (2009). Part of the reason for this is that 

in contrast to the densiometric gold-standard used by Smalley et al (2009), 
                                                      
3 We have also carried out formal Geweke test for convergence. This test splits the sample into two 
parts and tests for equality of the means in the two subsamples. We follow previous work and compare 
the first 10% of the chain with the last 50%. For none of our parameters or groups can we reject 
equality of the means. 



 12

Burkhauser and Cawley use PBF based on BIA as the gold-standard. However, as 

noted by Freedman and Perry (2000) while BIA can prove useful because of its low 

interobserver error, moderate costs and simplicity it “has not consistently been found 

to provide more accurate estimates of adiposity than has anthropometry.  Pg. S41). 

This is a view shared by NHI who state that “Neither bioelectric impedance nor 

height-weight tables provide an advantage over BMI in the clinical management of all 

adult patients, regardless of gender.” pg NHLBI (2000) pg1. The specific problems 

associated with the BIA are evident in column three of Table 3. Although the 

sensitivity of BIA is estimated to be of the order of 90% or higher for all our groups, 

the specificity rate is much lower, particularly for women, where it is only of the 

order of 40-50%. This is in contrast to the 100% specificity rate assumed by 

Burkhauser and Cawley (2008). In contrast to BMI measured obesity, the probability 

of a false negative with BIA is very low but the probability of a false positive is high, 

suggesting that BIA overestimates true obesity rates. This can partly explain why the 

false negative rate reported by Burkhauser and Cawley for women seems so high; 

many of those classified as truly obese by Burkhauser and Cawley based on BIA are 

not in fact obese. Consequently the BMI classification is not a false negative but in 

fact a correct diagnosis. The relatively poor performance of BIA for women in our 

analysis is consistent with some previous work. Gleichauf and Roe (1989) and 

Dehghan and Merchant (2008) both discussed the impact of menopause and the 

menstrual cycle when using BIA to measure obesity. Dehghan and Merchant (2008) 

note that increased progesterone plasma levels after ovulation along with the change 

in hydration status can lead to the within-subject variability of impedance to be higher 

in women, while Gleichauf and Roe (1989) recommend the average of several BIA 

measures during a menstrual cycle be considered when estimating body composition.  

In contrast to the BMI and BIA measures the results in Table 3 suggest that 

the classification of latent obesity based on waist circumference exhibits high degrees 

of accuracy both in terms of sensitivity and specificity. The probability of both false 

negatives and false positives is of the order of 3% for white men and women and 

black women. Only in the case of sensitivity measure for black men does the error 

rate exceed 5%. These results suggest that waist circumference may provide a cheap 

and effective measure of latent obesity. It is interesting to consider this finding in the 

light of recent work relating alternative measures of body composition to health and 
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economic outcomes. In their study of obesity and labour market success in Finland 

Johannson et al. (2009) found that only waist circumference had a negative 

association with wages for women. Also Janssen et al (2004) and Wang et al (2005) 

found that that WC outperformed BMI at predicting health risk associated with 

obesity. Wang et al (2005) concluded that “WC is the anthropometric index that most 

uniformly predicts the distribution of adipose tissue….there apparently being little 

value in measuring WHT (Waist to hip ratio) or BMI.” 

Finally the last column of Table 3 reports our estimated true prevalence of 

latent obesity derived from LCA. It is interesting to compare these estimates to the 

estimates based on other measures. In particular we follow Burkhauser and Cawley 

(2008) and examine racial differences in obesity rates. We first consider the raw 

obesity rates in Table 2. The racial patterns we report using the raw data are consistent 

with the results reported in Burkhauser and Cawley (2008). When one defines obesity 

using BMI the obesity rate among black women is about 12% points higher than 

among white women, while there is less than 1% point difference in the rates between 

white men and black men. However, the black-white gap in obesity changes 

dramatically when one classifies people using PBF. The female racial gap is 

significantly reduced while the PBF measure implies a substantially higher obesity 

rate among white men. However, since both these measures appear to suffer from 

misclassification bias neither of these racial gaps need reflect actual racial differences 

in obesity. To determine actual racial differences we turn to the estimated true 

prevalence rates reported in Table 3. Our estimated true prevalence rates imply a 

racial gap for women that is similar to the gap using BMI (of the order of 12% 

points). However, while there is no male racial gap in BMI based obesity measures 

our estimated true rates imply a significantly lower obesity rate among black men 

though the gap of 6% points is smaller than that based on PBF (20% points). These 

findings highlight the danger of relying on single measures such as BMI and BIA 

when comparing obesity rates. 

 

5. Conclusion 

It is generally accepted that obesity rates have increased substantially over the 

last 40 years and that the costs of rising obesity can be significant. However, to date 
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the lack of an acceptable gold-standard has limited the assessment of the validity of 

field methods used to measure obesity. When competing measures of obesity give 

conflicting results it is challenging to know how to reconcile these differences. In this 

paper we use latent class analysis to evaluate alternative measures of obesity in the 

absence of a gold standard. Using data from a representative sample of US adults we 

consider three popular measures of obesity; Body Mass Index, Bioelectrical 

Impedance Analysis and Waist Circumference. Rather than giving one of the 

measures ex-ante preference over another we treat all three as potentially imperfect 

measures of underlying obesity and use class analysis to estimate the true underlying 

prevalence of the disease along with measures of the sensitivity and specificity of 

each of the tests. 

We show that while measures based on Body Mass Index and Bioelectrical 

Impedance Analysis appear to misclassify large numbers of individuals, the 

classification of latent obesity based on waist circumference suffers from significantly 

less bias. The probability of both false negatives and false positives with this measure 

is of the order of 3% for white men and women and black women. This has important 

policy implications since Waist Circumference is a very simple and cheap procedure. 

The fact that all our measurements were taken by trained physicians clearly limits the 

chance of misclassification, however the results for WC do suggest that if properly 

implemented this approach can be effective in classifying obesity. With this in mind a 

simple information campaign illustrating the appropriate procedure for measuring 

waist circumference could prove highly effective in the fight against obesity.  

The importance of having accurate measures of obesity is evident in our 

findings on racial-obesity gaps. Our estimated true prevalence rates imply a racial gap 

for women, with black women being significantly more obese than white women. 

However, the opposite is true men; the estimated true prevalence rates imply a 

significantly lower obesity rate among black men. The fact that neither the BMI nor 

the BIA based measures of obesity are capable of capturing both these features 

highlights the dangers associated with measuring obesity and the potential costly 

policy mistakes that may arise from arbitrarily adopting a single measure as a gold 

standard.  
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Table 1 
Obesity Prevalence Rates using alternative measures of Body composition 

 
  

BMI 
 

Waist Circumference 
 

BIA 
White Women 23.30 42.16 72.50 

White Men 19.85 29.63 48.86 
Black Women 36.07 54.97 74.62 

Black Men 20.69 19.95 28.99 
 
 

Table 2 
Cross-classification of BMI, WC and BIA tests 

Test Outcome White 
women 

White 
Men 

Black 
women 

Black 
Men 

BMI WC BIA % % % % 
+ + + 22.7 16.94 35.15 13.3 
+ + - 0 1.5 .10 2.82 
+ - + 0.51 .78 .81 2.70 
- + + 18.86 8.84 18.68 2.14 
+ - - 0 .57 0 1.84 
- + - 0.51 2.28 1.0 1.66 
- - + 30.3 22.29 19.88 10.8 
- - - 26.98 46.7 24.24 64.64 
    

100 
 

100 
 

100 
 

100 
 

 
Table 3 

Latent Class analysis of Obesity Measures: Mean of the Posterior Distribution with 
95% Credible Interval in parentheses. 

 
 Sensitivity 

BMI 
Specificity 

BMI 
Sensitivity 

WC 
Specificity 

WC 
Sensitivity 

BIA 
Specificity 

BIA 
Prevalence 

White 
Women 

55.4 
(52.1-58.7) 

100 
(99.5-100) 

97.8 
(96.3-99.0) 

98.1 
(96.9-99.1) 

99.9 
(99.5-100) 

 

47.4 
(44.5-50.2) 

42 
(39.8-44.2) 

White 
Men 

67.5 
(62.9-72) 

98.8 
(97.9-99.5) 

97.0 
(94.2-99.6) 

 

96.8 
(95.2-98.4) 

91.4 
(88.2-94.1) 

67.9 
(65.3-70.4)   

28.2  
(25.9-30.6) 

Black 
Women 

66.2 
(63.2-69.2) 

99.9 
(99.4-100) 

 

97.7 
(96.4-98.8) 

96.1 
(94.1-97.8) 

99.6 
(99-99.9) 

55.3 
(51.8-58.7) 

 

54.4 
(52-56.8) 

Black 
Men 

87 
(82.1-91.3) 

98 
(96.8-99.1) 

84.0 
(78.8-88.6) 

98.1 
(97-99.1) 

82.3 
(77.3-86.8) 

86.0 
(84.0-88) 

 

22.0 
(19.7-24.4) 
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Figure 1a: History Plot of MCMC simulations: White Women 
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Figure 1b: History Plot of MCMC simulations: White Men 
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Figure 1c: History Plot of MCMC simulations: Black women 
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Figure 1d: History Plot of MCMC simulations: Black Men 
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Figure 2a: Posterior density estimates for sections of the Markov chain. Dashed lines, 
densities for first and second half of the chain; solid line, density based on full chain: 
White Women 
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Figure 2b: Posterior density estimates for sections of the Markov chain. Dashed lines, 
densities for first and second half of the chain; solid line, density based on full chain: 
White Men 
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Figure 2c: Posterior density estimates for sections of the Markov chain. Dashed lines, 
densities for first and second half of the chain; solid line, density based on full chain: 
Black Women 
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Figure 2d: Posterior density estimates for sections of the Markov chain. Dashed lines, 
densities for first and second half of the chain; solid line, density based on full chain: 
Black Men 
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1 Such models can be identified within a Bayesian context if one is able to impose strong priors on a 
sufficient number of  the parameters  (see for example Dendukuri and Joseph (2001), Branscum et al. ( 
2005)). Such strong priors are not reasonable in our analysis.  


