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Abstract 
Oceans cover 70% of Earth’s surface but little is known about their waters. 

While the echosounders, often used for exploration of our oceans, have developed at 
a tremendous rate since the WWII, the methods used to analyse and interpret the data 
still remain the same. These methods are inefficient, time consuming, and often 
costly in dealing with the large data that modern echosounders produce. This PhD 
project will examine the complexity of the de facto seabed mapping technique by 
exploring and analysing acoustic data with a combination of data mining and visual 
analytic methods.  

First we test the redundancy issues in multibeam echosounder (MBES) data 
by using the component plane visualisation of a Self Organising Map (SOM). A total 
of 16 visual groups were identified among the 132 statistical data descriptors. The 
optimised MBES dataset had 35 attributes from 16 visual groups and represented a 
73% reduction in data dimensionality. A combined Principal Component Analysis 
(PCA) + k-means was used to cluster both the datasets. The cluster results were 
visually compared as well as internally validated using four different internal 
validation methods.  

Next we tested two novel approaches in singlebeam echosounder (SBES) 
data processing and clustering – using visual exploration for outlier detection and 
direct clustering of time series echo returns. Visual exploration identified further 
outliers the automatic procedure was not able to find. The SBES data were then 
clustered directly. The internal validation indices suggested the optimal number of 
clusters to be three.  This is consistent with the assumption that the SBES time series 
represented the subsurface classes of the seabed.  

Next the SBES data were joined with the corresponding MBES data based on 
identification of the closest locations between MBES and SBES. Two algorithms, 
PCA + k-means and fuzzy c-means were tested and results visualised. From visual 
comparison, the cluster boundary appeared to have better definitions when compared 
to the clustered MBES data only. The results seem to indicate that adding SBES did 
in fact improve the boundary definitions.  

Next the cluster results from the analysis chapters were validated against 
ground truth data using a confusion matrix and kappa coefficients. For MBES, the 
classes derived from optimised data yielded better accuracy compared to that of the 
original data. For SBES, direct clustering was able to provide a relatively reliable 
overview of the underlying classes in survey area. The combined MBES + SBES 
data provided by far the best accuracy for mapping with almost a 10% increase in 
overall accuracy compared to that of the original MBES data.  

The results proved to be promising in optimising the acoustic data and 
improving the quality of seabed mapping. Furthermore, these approaches have the 
potential of significant time and cost saving in the seabed mapping process. Finally 
some future directions are recommended for the findings of this research project with 
the consideration that this could contribute to further development of seabed 
mapping problems at mapping agencies worldwide. 
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Chapter 1 

Introduction 
 

 

 

 

 

 

It was during and after the Second World War 
that the great expansion [in oceanography], which is 
still going on, began. The realization by governments of 
the importance of marine problems and their readiness 
to make money available for research, the growth in 
the number of scientists at work and the increasing 
sophistication of scientific equipment, have made it 
feasible to study the ocean on a scale and to a degree 
of complexity never attempted and never possible 
before. ... As man increasingly overcrowds and exploits 
his tiny planet, the significance of the oceans which 
cover seven tenths of its surface has suddenly become 
apparent. 

--Margaret Deacon "Scientists and the Sea 
1650-1900" 1971 

 

Ocean covers 70% of Earth’s surface yet our understanding of its waters to 

date is quite minimal. Historically, the main reason for this was the unavailability of 

equipment for ocean exploration. Since the Second World War, with the realisation 

In this first chapter we briefly establish the context for the work 
developed in this thesis and give an overview of its structure.  
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of the importance of ocean exploration, a large portion of research has focused on the 

technological development of underwater exploration equipment. A direct result of 

that research is today’s sophisticated high-resolution acoustic echosounders. But not 

as much effort has been given on updating the methods used to process acoustic data 

collected by these advanced sensors. To this day, the acoustic data processing 

methods still stem from those used in the World War II era. These methods are not 

efficient in dealing with large volume of high resolution acoustic data produced by 

the modern sensors and as a result, creating quality seabed maps from these data is 

difficult, time consuming, and in some cases costly. This drawback in acoustic data 

processing is the motivation for the alternative approaches proposed in this thesis. 

The requirement for good quality seabed maps has risen sharply in recent 

decades for a variety of reasons, such as environmental research, management of 

marine and coastal resources and oil and gas exploration. Acoustic sonar systems, 

which transmit and receive an acoustic pulse from a device on a survey vessel, are 

typically used for this purpose. Seabed survey data usually contain the travel time of 

the acoustic pulse to the sea floor and back and the strength of the signals. Various 

measurements such as the depth to the seafloor (bathymetry), depth to sub-surface 

sediment layers (sub-bottom), and the reflectance of the sea floor (intensity of 

backscattered energy) are usually derived from these data. Among all the data 

collected, acoustic backscatter data are directly connected to the sediment 

characteristics of the seabed (Brown & Blondel, 2009; Goff et al., 2004; Huges 

Clarke et al., 1997) and are often used for classification of seabed type. 

Acoustic data are acquired using echosounders. Two types of echosounders, 

which are commonly used for seabed mapping, are multibeam echosounders (MBES) 

and side scan sonars (SSS). In the recent years, survey data from singlebeam 

echosounders (SBES) are also being used for seabed classification due to their high 

resolution and sub-surface penetration ability. There are a number of automated 

classification methodologies, most of them using image segmentation techniques (for 

MBES and SSS) or direct feature extraction techniques (for SBES) (Preston, 2009; 

Preston et al., 2004; Satyanarayana et al., 2007; Zimmermann & Rooper, 2008). 

Ultimately, a successful classification depends heavily on the quality of the 

data. In the case of seabed mapping, the data generated from seabed surveys are 
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extremely large in volume with high degree of noise. Statistical features, which act as 

descriptors of the backscatter data, are usually generated in an effort to reduce the 

data volume, thus reducing the effect of noise as well as computational intensity. 

There are several complexity issues with this method, which is commonly used in 

MBES and SSS backscatter image segmentation as well as with SBES data. 

According to Preston (2009), while the high number of statistical features is 

calculated because of the wide diversity of MBES/SSS images, many of the 

statistical features are highly correlated and therefore most likely redundant, i.e. they 

do not contribute any new information about acoustic similarity to the process. 

Because the resulting feature space is so highly-dimensional (i.e. 132 dimensions for 

MBES), it is “convenient” (Preston, 2009) to use a dimensionality reduction 

technique to facilitate interpretation of similarity patterns. On the other hand, SBES 

backscatter returns are univariate time series in nature and contain a peak when the 

emitted echo hits the seabed. Standard statistical descriptors (mean, standard 

deviation etc.), which almost always form part of the statistical feature set that is 

generated from SBES backscatter, may not always capture the ‘true’ mean or its 

variation due to the nature of the data. Other features (randomness, correlation noise 

etc) generated from SBES also depend on the standard statistical descriptors for their 

own generation and thus would also include the systematic noise. Before extraction 

of any statistical features, the time series data are filtered through various outlier 

detection algorithms. As most of these algorithms were not optimised to detect 

outliers in sonar time series data, there is always a possibility that some outliers can 

go undetected and thus affect the quality of classification.  In addition to the noise 

issues, the traditional clustering method, a combined Principal Component Analysis 

(PCA) and k-means, was developed in the post-Second World War era. At that time, 

the computers lacked the capability of dealing with large volume of acoustic datasets 

and therefore their dimensionality was reduced by using PCA and selecting the first 

three components. The three components typically account for between 90-95% of 

the information. This method includes the risk of missing small but interesting areas 

when the survey area is large as a result of omission of 5-10% of the information that 

might include that area. 

The noise issues stemming from data redundancy (MBES) and outliers 

(SBES) as well as the risk of information loss with the de facto PCA/k-means 
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clustering methods form the core research interests in this study. The primary 

objective of this thesis is to provide a set of methods that enables acoustic data 

optimisation to reduce the noise effects arising from data redundancy and outliers as 

well as to test alternate clustering methods that can improve the seabed mapping 

quality. The following core research questions, which rise from the primary 

objectives of this research, are addressed in four analysis chapters: 

1. Redundancy in feature data for MBES: Is it necessary for MBES 

classification to produce such a large number of statistical features or 

could the dimensionality be kept lower by avoiding redundancy? And if 

so, which of the features are correlated with each other and therefore 

redundant? Would clustering a optimal dataset (redundancy is removed) 

produce better, similar or worse cluster definition to that of the cluster 

definition generated from 132 statistical features using the de facto 

clustering method? 

2. Clustering of SBES time series: Can visual analytics provide an 

efficient way of detecting outliers that are undetected using traditional 

outlier detection methods? 

3.  Would direct clustering of the SBES backscatter produce 

representative clusters thus eliminating the dependency of generating 

features as well as provide a quick overview of underlying clusters in the 

survey area? 

4.  Improving seabed mapping from MBES and SBES: Can the 

optimised data produce quality clusters that will ultimately result in better 

quality seabed classes?  Seabed surfaces can have plants, shells, 

swimming fish etc all of which can contribute to the noise in MBES data. 

Can the sub-surface information of SBES be combined with MBES data 

to provide a better definition of the underlying seabed, thus avoiding the 

interference from plants and other particles lying on seabed? 

A typical high-resolution sensor results in terabytes of survey data. A typical 

MBES feature extraction for a medium to large survey area takes days, often weeks 

to process. An optimisation procedure for redundancy reduction of MBES features 

can reduce this time to a significant level thus saving cost. A successful direct 

clustering of SBES would mean that surveyors can use this to get an initial idea of 
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the underlying seabed clusters and optimise their ground truth collection points thus 

reducing additional survey runs for ground truth collection. This can also be much 

cost saving. A successful classification of combined dataset (MBES + SBES) can 

result in a better quality seabed map thus enabling researchers and investors to 

explore and analyse the seabed geology more efficiently. These factors motivate the 

central focus of this thesis, which is to implement Visual Analytics in improving the 

sonar datasets in an effort to produce better quality seabed mapping thus reducing 

cost and time in the long run. The core objectives of this thesis are: 

− To explore the two types of datasets, MBES and SBES, using a Visual 

Analytical approach.  

− Using Visual Analytics to detect redundancy in MBES features and to 

determine the optimal number of features required for clustering and 

subsequent classification.  

− To use visual exploration to detect outliers in time series SBES data 

and thus optimise the dataset for clustering.   

− To produce a classification map from optimised MBES and SBES 

datasets. Focus will also be given to the potential for combining SBES 

and MBES data to evaluate if subsurface information from SBES can 

contribute to better classification of the seabed. 

This work will examine the complexity of the traditional acoustic data mining 

method through a Visual Analytical approach by exploring the statistical features and 

backscatter time series data with a combination of data mining, knowledge 

discovery, and visualization methods. The ultimate goal of the project is to examine 

the potential of Visual Analytics to help reduce the complexity of the echosounder 

image classification methods and thereby facilitate seabed type characterization. The 

research components of this thesis are framed around the central research questions, 

which form the basis of the analytical chapters (chapters three to six). The rest of the 

thesis is structured as follows: 

Chapter two constitutes a review of the central theoretical and 

methodological issues that are built upon in the three analytical chapters. This 

chapter discusses the development of echosounders from a historical perspective, 

their working principal, as well as different aspects of seabed mapping. This chapter 
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also briefly discusses the concept of Visual Analytics and visual data mining as well 

as their potential implementation in seabed mapping.  

Chapter three assesses attribute redundancy of statistical feature data 

produced by standard automatic methods for classification of multibeam 

echosounder (MBES). A Self Organising Map (SOM) was used on the 132-

dimensional statistical feature space (also known as Full Feature Vector or FFV). 

Once the SOM was trained, the result was displayed in the 132 component planes 

(one for each feature vector), where each plane was coloured according to the FFV 

that it represented. These planes were then examined for similar colour distribution 

patterns that defined visual groups of FFVs. These patterns indicate that FFVs in 

each of these visual groups are probably correlated. Correlation is further confirmed 

with a subsequent statistical analysis. We further evaluate classification of the 

original feature data with the one produced from an optimised feature set and discuss 

potential improvement for seabed mapping. 

Chapter four explores the potential of direct clustering of SBES data. The 

SBES data volume is much less than that of MBES as it comprises of the return of 

one emitted beam. However, acoustic backscatter is a complex function of many 

factors (frequency, seabed slope, grain size, presence of flora & fauna etc.). One 

other alternative can be to apply direct clustering algorithm to the echo time series 

segments that include the peak curve (echoes hitting seabed surface) and sub-surface 

information. The central focus of this chapter is to use visual exploration technique 

to detect outlier that may still exist after the data have been filtered through an outlier 

detection algorithm. TimeSearcher© tool was used to visually explore the SBES 

dataset and after optimisation of the data, fuzzy c-means was used to cluster the 

dataset. This chapter outlines the results obtained from visual exploration and 

subsequent fuzzy clustering. 

Chapter five focuses on the potential of the clustering of combined MBES 

and SBES data and compares the results from this combined dataset to that of MBES 

classification. The central focus of this chapter is to evaluate the potential of SBES 

features contributing to the improvement of seabed maps otherwise obtained using 

only MBES data. As the SBES contains subsurface information, it is possible that the 

SBES features can help to better define the MBES classes as MBES data cannot 
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penetrate the seabed and can contain false scatters from seabed vegetation, schools of 

fish swimming at the bottom etc. 

The results from MBES, SBES and combined MBES and SBES are validated 

and outlined in Chapter six. This chapter mainly focuses on comparison of results 

obtained in Chapters 3, 4, and 5. Examination of the quality of the clustering results 

obtained from MBES, SBES, and MBES + SBES clustering by labelling the clusters 

with appropriate class definitions and comparing the results with ground truth data 

collected from the survey area. 

Chapter seven provides a summary of the results from each of the analysis 

chapters and their significance in the context of seabed classification from acoustic 

data. Their novelty in a wider methodological context is also discussed. 

 



 
 

 

 

 

Chapter 2 

Literature review 
 

 

 

 

Chapter contents 
 

2.1.     Propagation of sound in water 
2.2.     Sonar systems 
2.3.     A historical overview of acoustics and echosounders 
2.4.     Sonar applications: a brief outline 
2.5.     Systems for mapping the seabed type 
2.6.     Noise in acoustic surveys 
2.7.     Effects of environmental variability on signal quality 
2.8.     Quality & compensation 
2.9.     Sonar data: challenges 
2.10.     Data mining, Visual Analytics and applications to sonar data 
2.11.     Visual and computational data mining methods used in this thesis for sonar data 

 

 

Man’s concern with the depths of water began as soon as he mastered the 

ability to travel on the water. It was vital information for the primitive sailors to 

prevent their boats from running aground. ‘Lead lines’ have been used for the 

measurement of ocean depths for thousands of years. The earliest record of lead lines 

dates back to 2000BC. The boat model found in the tomb of Meketre in Thebes 

This second chapter reviews the relevant literature and puts the thesis into 
the context of existing research. In particular, we discuss the development 
of sonar systems and its applications, seabed mapping with sonars and 
challenges associated with sonar data, data mining, visual analytics and 
clustering of sonar data. 
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(MMA), 2011) shows a sailor poised with what looks like a lead line on the bow. For 

about 4000 years, though improved through mechanization, the technology behind 

ocean’s depth measurement remained the same (Mayer, 2006).  

Other developments such as electromagnetic waves, successfully used in 

environmental monitoring and exploration, could not be used for seabed surveys. 

Water has strong conductivity and is highly dissipative, thus rendering the 

electromagnetic wave useless due to rapid attenuation (Bass, 1972; Lurton, 2002; 

Mayer, 2006). Sound, on the other hand, has better transmission in water. Its 

propagation in water is four to five times higher than in air. Sound waves can reach 

higher levels and with less attenuation and can propagate over large distances. 

Despite these favourable characteristics, water still brings a number of limitations to 

the acoustic waves.  

Attenuation of signals due to the absorption of sound waves in water limits 

their ranges to some degree. The propagation speed is also very low (1,500 m/s) 

compared to that of electromagnetic waves in space (300,000 km/s). The variation in 

sound speed and reflection on seafloor and sea surface interfaces causes 

perturbations of the propagation. This results in inhomogeneous insonification of the 

propagation medium and delayed echoes also known as ‘multiple paths’. The 

heterogeneity of the medium, reflection of the sound waves on seafloor and sea 

surface, and frequency changes (Doppler Effect) due to the relative movement of 

sonars and targets deforms the transmitted signal. In addition to the deformation of 

signals, noise is added to the echoes from the ambient noise in the ocean coming 

from the movements of the sea surface, volcanic and seismic activity, shipping, 

living organisms, rain as well as the self-noise characteristic of the acoustic system 

and its platform (surface vessel or submarine). The characteristics of water vary in 

space and time. These fluctuations depend on, but are not limited to, geographical 

and seasonal variations in temperature and salinity, seabed relief, swell, currents, 

tides, internal waves. All these factors give the underwater acoustic signals a mostly 

random fluctuating character (Lurton, 2002; Mayer, 2006).  

The following sections discuss the theoretical background of underwater 

acoustics, how the sound propagates and how it is measured. Then the sonar systems, 

which use underwater acoustics for navigation, exploration and mapping, will be 
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discussed.  These sections will focus on the development of sonar systems from a 

historical perspective containing a brief outline of their applications and the main 

focus being how they are used in the seabed mapping. The sections that follow will 

focus on data mining and visualisation. These sections will also include a review of 

visual data mining and visual analytics as well as their potential as an alternative data 

mining technique for sonar datasets. 

2.1. Propagation of sound in water 

Sound faces several constraints and undergoes multiple transformations while 

travelling through water. The speed of sound depends heavily on the medium. For 

example, the speed of sound is approximately 341 m/s in air at a temperature of 

18°C. In contrast, that speed increases to around 1,524 m/s in salt water at 

approximately the same temperature. To understand how sound travels in water, one 

needs to understand the fundamental notions associated with the physical nature of 

acoustic waves (Lurton, 2002; Waite, 2002). 

The amplitude of the sound signal decreases as the wave propagates through 

water. This is one of the first effects of propagation and is due to both geometrical 

effects and absorption. The later is directly linked with the chemical properties of the 

sea water (Lurton, 2002; Waite, 2002). An acoustic wave originates from the 

oscillation of pressure (acoustic pressure) and travels through an elastic medium 

(solid, gas or liquid). The mechanical property (density ρ and elasticity modulus E) 

of the medium dictates the propagation speed or velocity. The elasticity modulus 

quantifies the relative variation of volume and density due to pressure variation and 

as water is less compressible than air, acoustic velocity is much higher in water than 

in air. The velocity, c of sound in water can be described by the following equation 

(Lurton, 2002; Urick, 1982): 

! =
!
!                                                                                                                                                           (2.1) 

The velocity of sound in water is affected by the oceanographic variables of 

temperature, salinity, and pressure. The velocity increases with increasing water 

temperature, increasing salinity and increasing pressure or depth (Figure 2.1). 
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Figure 2.1: Profile of speed of sound in water (adapted from DOSITS, 2011) 

Acoustic waves are also characterized by their frequency f. Frequency is the 

number of vibrations per second and is expressed in Hz. The pressure variation in a 

sound wave repeats itself in space over a specific distance. This distance is known as 

the wavelength of the sound, usually measured in meters and represented by λ. As 

the wave propagates, one full wavelength takes a certain time period to pass a 

specific point in space; this period, represented by T, is usually measured in fractions 

of a second. The relation between sound velocity and wavelength, period and 

frequency is given by the equation below: 

! = !" =
!
!                                                                                                                               (2.2) 

The frequencies in underwater acoustics vary from 10 Hz to 1 MHz. The 

corresponding wavelengths would be around 150 meters and 0.0015 meter (DOSITS, 

2011; Lurton, 2002; Urick, 1982).  These diverse values of frequency and 

wavelength correspond to the variation of physical processes of propagation medium 

as well as the acoustic system itself.  The selection of a frequency for a particular 

application directly depends on the following: 
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− The effect of dampening of sound wave in water. This is inversely 

proportional to the frequency. It limits the maximum range that is usable under the 

circumstances. 

− The size of the acoustic sound source. For a given transmission power, it 

increases with lower frequencies.   

− The directivity of the acoustic sources and receivers. It improves the spatial 

selectivity as frequency increases. 

− Physical properties of the target also have a direct influence on the 

frequency. A smaller target will reflect less energy back to the receiver. 

All these constraints are taken into account when a frequency is chosen for a 

particular application (Lurton, 2002). 

2.1.1. Measurement of underwater acoustics: logarithmic notation 

The intensity of a sound wave is the average rate of flow of energy per unit 

area perpendicular to the direction of propagation. Power, measured in watts, is the 

amount of energy per unit time and intensity is therefore measured in watts per 

square meter. Sound intensity is often specified as a logarithm of the ratio of a 

sound's intensity to reference intensity. This is often called the "Bel" in honour of 

Alexander Graham Bell, the inventor of the telephone. The human ear is very 

sensitive and can detect changes in relative intensity of as little as 1/10 of a Bel (a 

decibel is 1/10 of a Bel). For that reason, relative sound intensities are often reported 

in decibels (dB). The decibel is a relative unit, not an absolute one. The relative 

intensity, I, in decibels, is calculated as the ratio of the intensity of a sound wave to 

reference intensity: 

! = 10 log
!!"#$%

!!"#"!"$%"
!"                                                                                              (2.3) 

Acoustic intensity is rarely measured directly. Underwater microphones 

(hydrophones) measure the pressure (amplitude) of a sound wave rather than its 

intensity. Intensity of a sound wave is proportional to the square of its pressure p 

(Lurton, 2002; Urick, 1982): 
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! =
!!

2!"   
!"##$
!!                                                                                                                                                     (2.4) 

The intensity in dB can be computed directly from the measured pressure: 

! !" = 10 log
!!"#$%!

!!"#"!"$%"! = 20!"#
!!"#$%

!!"#"!"$%"
                      (2.5)   

To be able to compare relative intensities given in dB to one another, a 

standard reference intensity or reference pressure is always used. For this reason, 

sound levels expressed in decibels include a reference pressure. It is common 

practice to use 1 microPascal (µPa) as the reference pressure and 1 W/m2 as the 

reference intensity for underwater sound (DOSITS, 2011; Urick, 1982).  The 

logarithmic nature of the dB scale means that each 10 dB increase is a ten-fold 

increase in acoustic power. A 20-dB increase is then a 100-fold increase in power 

and so on. 

2.1.2. Propagation loss in underwater acoustics 

The ‘propagation loss’ or the ‘transmission loss’ is an important phenomenon 

for acoustic systems. Propagation loss (PL) occurs mainly in two ways: loss of 

intensity due to geometric spreading and absorption of energy due to the chemical 

characteristics of the medium itself. This is an important parameter as it constraints 

the amplitude of the signal and therefore, the receiver’s performance depends a great 

deal on signal-to-noise ratio.  

Geometric spreading is the process where the acoustic intensity reduces due 

to the spreading of the sound wave as it propagates from the source to a larger 

surface. Water is regarded as a dissipative propagation medium. Part of the energy 

from the transmitted wave is absorbed and is dissipated through viscosity or 

molecular relaxation. The effect of viscosity can be observed in both fresh and salt 

water. Molecular relaxation is the reduction of molecules to ions induced by the local 

pressure variation of the sound. At high frequencies (≥500 kHz), the variation of 

pressure is too rapid for the relaxation mechanism to take effect (i.e. molecules to 

recompose themselves) and as a result the energy is not absorbed and permanently 

dissipates (Lurton, 2002; Waite, 2002). 
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Formation of air bubbles at the sea surface can affect the acoustic 

characteristics (velocity, attenuation etc.) of the propagation medium. Air bubbles are 

usually created by sea surface movements and/or by boat movement. The effect of 

air bubbles on acoustic attenuation is mostly local and decreases with depth. Its 

effect is neglected when the depth is below 10 to 20m (Lurton, 2002). 

Other phenomena that contribute to underwater acoustic attenuation are 

refraction, scattering, and the presence of ocean boundaries. These ensure that free-

field (free of any interference) conditions are practically non-existent in the real 

world and therefore require clear understanding in order to develop proper speed 

profiles for underwater surveys. 

2.2. Sonar systems 

Though these characteristics of the sound waves in water were discovered 

quite early, the actual use of underwater acoustics is fairly recent. The first 

breakthrough came in the early 1900s with the development of piezoelectric crystals 

or ceramic based transducers capable of generating and receiving sound waves 

(Lurton, 2002; Mayer, 2006).  

Acoustic echosounders, also known as sonars (SOund Navigation And 

Ranging) use acoustic signals for target and obstacle detection. They do so by either 

receiving the echo transmitted by the system and sent back by the target (active 

sonar), or by receiving the acoustic noise directly radiated by the target (passive 

sonar). 

Typical active sonar uses an emitter to transmit high-power acoustic signals. 

The signal is then reflected by the target and this reflected echo is received by an 

antenna (or an array of transducers) against a background of noise and reverberation 

(unwanted echoes from the sea surface and sea bed and from scatters within the 

volume of the sea). This signal is then processed and lastly used for measurement 

and identification or characterisation of the target. The range of a target can be 

calculated from measuring the time between transmission of a pulse and reception of 

an echo. Active sonars are sometimes known as echo ranging systems (Preston et al., 

2001; Waite, 2002).  
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Passive sonars, on the other hand, detect the signal from the sound radiated 

from a target using a hydrophone (an underwater microphone) against a background 

of the ambient noise of the sea and the self-noise of the sonar platform. These 

systems classify the target from the analysis of the frequency spectrum of the signal 

and its variation in time (Waite, 2002). 

Though the development of echosounders is fairly recent, the use of 

underwater acoustics for depth measurement and navigation dates centuries back. 

The following section gives a brief overview of the development of acoustics and 

echosounders in the monitoring of depth, navigation and seabed. 

2.3. A historical overview of acoustics and echosounders 

Aristotle (384–322 BC) was among the first to assert that one can hear sounds 

in water as well as in air. Nearly 2000 years later, Leonardo Da Vinci (1452-1519) 

made the observation - “If you cause your ship to stop and place the head of a long 

tube in the water and place the outer extremity to your ear, you will hear ships at a 

great distance from you.” A significant advance in the physical understanding of 

acoustical process came with Marin Mersenne and Galileo independently discovering 

the laws of vibrating strings. Mersenne published his work on the nature and 

behaviour of sound in L'Harmonie Universelle in the late 1620's. This work and his 

later experimental measurements on the speed of sound in air provided the 

foundation for acoustics (Allaby, 2009).  

The next advancement in acoustics came in 1687 when Sir Isaac Newton 

published the first mathematical theory of how sound moves, in his famous 

Philosophiae Naturalis Principia Mathematica. Although Newton focused on sound 

in air, the same basic mathematical theory applies to sound in water (Press, 2011). 

There were, however, reservations on whether sound could travel through 

water. In 1743, Abbé J. A. Nollet conducted a series of experiments to settle that 

dispute.  With his head underwater, he reported hearing a pistol shot, bell, whistle, 

and shouts. He also noted that an alarm clock clanging in water could be heard easily 

by an underwater observer, but not in air. His experiments were one of the first 

demonstrations of sound motion in water ( DOSITS, 2011). 
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2.3.1. Studies of underwater acoustic in the 1800s 

The first record of successful measurements of the speed of sound in water 

dates back to the early 1800s. Using a long tube, scientists Jean-Daniel Colladon, a 

physicist, and Charles-Francois Sturm, a mathematician, recorded how fast the sound 

of a submerged bell travelled across Lake Geneva in 1826 (Figure 2.2). 

 

Figure 2.2: Illustration of J. D. Colladons’ experiment in Lake Geneva, Souvenirs et 
Memoires, Albert-Schuchardt, Geneva (DOSITS, 2011) 

Charles Bonnycastle performed the first documented echo sounding 

experiments in 1838. Lt. Matthew Fontaine Maury, commander of the U.S. Navy 

Depot of Charts and Instruments, attempted to use sound to measure the depth of the 

ocean in 1859. His experiments were unsuccessful, as he did not use an underwater 

receiver to listen for the echo. 1877 and 1878 can be regarded as a major 

breakthrough years for acoustics. The British scientist John William Strut, also 

known as Lord Rayleigh, published ‘The Theory of Sound’ in two volumes. This 

arguably marked the beginning of the modern study of acoustics. Lord Rayleigh was 

the first to formulate the wave equation that formed the basis for all work on 

acoustics. His ground breaking work set the stage for the development of the science 

and application of underwater acoustics in the twentieth century (Allaby, 2009; 

Press, 2011). 

In the late 1800’s, managing the navigation challenges of ever increasing ship 

traffic was a major concern. The lights and the loud sirens of the lighthouses and 

lightships did not travel far enough to warn ships about the dangers of shallow waters 

and rocks. In 1889, the American Lighthouse Board mentioned a combination of 
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underwater bell and microphone system devised by Lucien Blake as an alternative to 

the traditional warning method (Allaby, 2009). 

2.3.2. The 20th century advances (pre WWI) 

In 1901, a group of scientists formed a company called the “Submarine 

Signal Company” based on a common belief that underwater sound could be used to 

develop a more reliable warning system to the increasing ship traffic. They 

developed an instrument that comprised an underwater bell located under the light 

ship or near lighthouses that could be detected by receivers installed on ships. To 

receive the bell signals, ships used a similar carbon-granule microphone developed 

by Thomas Edison. The microphone was put in a waterproof container, serving as a 

hydrophone. In doing so, the company may have, perhaps, applied the first practical 

use of underwater acoustics (SSC, 1907; DOSITS, 2011; Lurton, 2002).  

Unfortunately, the ship-mounted hydrophones also picked up background 

noise, including ship machinery, splashing water, and fish, which made it difficult to 

hear the sounds from the bells. In mid-April 1912, Reginald A. Fessenden, a 

consulting engineer, was asked to redesign the hydrophones to filter out such noise. 

In conjunction of redesigning the hydrophones, Fessenden also suggested that the 

sources (bells) be improved instead. He proposed replacing the bells with louder, 

electric-powered sound generators designed to produce an audible tone (Allaby, 

2009; DOSITS, 2011). 

The development of active acoustic systems gathered pace after the 

unfortunate loss of the Titanic in 1912. Within a week of the ship’s tragic collision 

with an iceberg, L. R. Richardson filed a patent for an invention called echo ranging 

that used sound and its echoes off objects to determine distances in air. A month 

later, he filed a patent application for doing the same thing underwater. However, at 

this time, an appropriate acoustic source still did not exist (SSC, 1907; Lurton, 2002). 

Fessenden, while working as a consultant for the Submarine Signal 

Company, designed an echo ranging device around the same time resembling a high-

powered underwater loud speaker. It was capable of both producing and detecting 

sounds and was later called the “Fessenden Oscillator” (Figure 2.3). 
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Figure 2.3: Reginald Fessenden and the Fessenden Oscillator. In "Submarine 
Signalling," Scientific American Supplement, No. 2071, pp. 168-170, Sept. 11, 1915. 
Image courtesy of NOAA Photo Library 

In 1914, Fessenden conducted his first echo-ranging trials with the oscillator. 

The goal of his trials was detection of seafloor and icebergs. He was able to 

accurately detect the seafloor at a depth of 31 fathoms (57 meters approx). He also 

successfully used his oscillator to detect an iceberg that was approximately around 

40 meters high, 137 meters long from a distance of about 3.2 kilometers. Despite 

these encouraging results his oscillator was not put into commercial production 

before 1923. Following the World War I, the company started marketing a low-

frequency echosounder and called it “fathometer” as depth was in fathoms. By the 

mid-1930's, practically every submarine used an underwater acoustic system adapted 

from Fessenden Oscillator (Allaby, 2009). 

2.3.3. Development during the world wars  

The first efficient passive detection devices were developed during the First 

World War by the Allies to address the threat of German submarines. The major 

breakthrough came from a French physicist, Paul Langevin. Between 1915 and 1918, 

He experimented on river Seine and at sea to show that it was possible to transmit 

signals to detect submarines, giving both their angles and distance. 
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The use of submarines and underwater mines in WWI greatly influenced the 

development of underwater acoustics. German submarines targeted shipping between 

the United States and Europe. Explosions from contact mines suspended on 

underwater cables also took their toll (Allaby, 2009; DOSITS, 2011). Nearly 10 

million tons of cargo was sunk in two years and had a crippling effect on the U.S. 

and European Allied Forces’ supply lines. A total of 146 war vessels (including 40 

submarines), 267 auxiliary vessels, and 586 merchant ships were sunk due to mines 

by both German and Allied forces were (Lasky, 1974, 1975, 1977).  

The effectiveness of submarines and underwater mines in naval warfare was 

undisputable and the Allied forces needed an effective system to address this threat.  

This led to an increased interest of the military in underwater acoustics which 

subsequently became closely associated with military applications and research 

(Allaby, 2009; Lasky, 1975, 1977).  

At that time, submarines were detected by listening for their engines or 

propellers. The sonar operator wore a two-earphone device and mechanically rotated 

the receiver to determine the direction of the sound (Figure 2.4). A number of 

different towed receivers were also developed for use by surface ships, in an attempt 

to reduce noise generated from the ships by putting the hydrophones further. But this 

approach was largely inefficient (Lasky, 1977). 

 

Figure 2.4: World War I Type SE-4214 (SC) sound receiver as it was installed on a 
U.S. submarine (Lasky, 1977) 
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Paul Langevin, a French physicist, experimented with the ‘piezoelectric 

effect’ discovered by Paul-Jacques and Pierre Curie in 1880, to build an echo-

ranging system between 1915 and 1918. When a changing voltage is applied to a 

crystal at the desired frequency, they expand and contract. This generates a sound 

wave and this property of the crystal is called the ‘piezoelectric effect’. His 

developed a device made of quartz crystals placed between two steel plates to 

generate sound and tested it on River Seine and at sea to show that it was possible to 

transmit signals to detect submarines, giving both their angles and distance. 

However, his breakthrough came too late to be implemented during World War I 

(Lurton, 2002). 

2.3.4. Between wars: Non-military development 

During the time between WWI and WWII, scientists concentrated their focus 

on fundamental concepts of underwater sound propagation and on exploration of 

ocean and its inhabitants. A significant discovery during this time was by H. Lichte, 

a German scientist, who developed the theory on refraction of sound waves in 

seawater.  Lichte theorized in his 1919 paper that sound waves are refracted when 

they encounter slight changes in temperature, salinity, and pressure. He used existing 

static measurements on seawater to compute the velocity of sound in terms of its 

determining variables. From a number of field studies in a variety of shallow sea 

water areas, he concluded that like sound propagation up-wind and down-wind in air, 

sound ranges should be better in winter than in summer (Lichte, 1919). 

Following the WWI, echosounders became commercially available. They 

were already used extensively for helping ships avoid running aground in shallow 

water. Their wider availability immensely enriched our understanding of seafloor 

structure in the deep sea. In 1922, echosounders were used to determine a suitable 

underwater telegraph route between Marseilles, France, and Philippeville, Algeria. 

This is regarded as one of the first civilian application of echosounders ( DOSITS, 

2011).  

Another significant discovery during this time is the ability of low frequency 

sound waves to penetrate into the seafloor and that sound reflected differently from 

individual layers in the sediment. This enabled the scientists, for the first time; to 
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profile the sub-bottom layers beneath the seafloor. This proved to be vital in the 

studies of the history of the Earth and for prospecting for oil and gas under the 

seafloor. Pioneering work was done by Maurice Ewing and Allyn Vine, Bracket 

Hersey, and Sidney Knott at the Woods Hole Oceanographic Institution (WHOI) ( 

DOSITS, 2011; Worzel, 1994). Ewing, Vine, and Joe Worzel experimented with 

homemade bombs by exploding them on the seafloor and recording the echoes. In 

1934, they developed one of the earliest seismic recorders designed to receive sound 

signals on the seafloor (Hersey, 1977).  

Use of acoustics in fisheries also took off during this time. The possibility of 

detecting echoes from schools of sardine and herring was suggested in 1924 by P. 

Portier in France (DOSITS, 2011). The first successful published experiment in 

detecting fish by acoustic means was done by Kimura, K. in 1929 in Japan.  He 

placed a transmitter and a receiver near the two ends of a pond in such a way that the 

reflections were well received. He observed that each time a fish crossed the acoustic 

path; there was a fluctuation in the wave amplitude (Kimura, 1929). 

2.3.5. Between wars: Military developments 

After the end of the WWI, with the threat of Germany removed, there was a 

significant cutback in funding acoustic research in UK and USA. The general 

consensus was that the noise from the submarines could be quieted to such a degree 

that it would render the passive detectors useless. So, more focus was given to the 

development of echo ranging systems to detect submarines and measure the range 

and direction to them (Namorato, 2000). 

During the interwar years, England actively worked on improving their 

transducers’ capability. But as they believed that the threat from submarine warfare 

was not significant, their development was not quite at the same level as that of USA. 

The British Anti-Submarine Detection and Investigation Committee (its acronym, 

ASDIC, became a name commonly applied to British SONAR systems), by 1939, 

developed transducers that were of quartz-steel and considered their day time sonar 

capabilities very satisfactory. It is largely believed that the British only signed the 

Anglo-German Naval agreement as they were confident with their ASDIC transducer 

(Lasky, 1977; Press, 2011).  
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Germany had a different approach to their acoustical research. Though 

Germany was constrained by the Treaty of Versailles from rebuilding the submarine 

force, the realities were somewhat different. In 1922, they set up a company in 

Holland called IVS Limited. It was staffed by a German naval construction group 

which continued their work on the U-boat.  By 1930, German submarines were being 

built, tested, and even sold. After the Anglo-German Naval Agreement in 1935 

which allowed Germany to rebuild their navy and submarine force, Germany not 

only stockpiled submarines but also significantly improved the passive sonar 

systems. The most significant was ‘The Gruppen Horch Gerat (GHG)’ system that 

was custom built to fit different type of ships and submarines. The GHG comprised 

of large arrays of 108 to 120 hydrophones arranged in an elliptical or semicircular 

pattern on either side of the hull. Average ranges for the GHG were 10 km at speeds 

against targets of 21 knots. By 1945, GHG was perhaps the best passive sonar in use 

on either side (Holt, 1947; Lasky, 1974). 

But it was really in the United States that acoustics continued to flourish 

despite limited funds and personnel. The Sound Division of the Naval Research 

Laboratory (NRL), headed by Harvey Hayes, accomplished a substantial amount 

during 1920s and 1930s. They studied quartz-steel ultrasonics in an effort to improve 

the Langevin apparatus. This resulted in the development of newer ultrasonic 

equipment to be used on the submarine and surface vessels. But their range was 

considered to be too limited and the Sound Division worked on further to develop the 

JK transducer from Rochelle-Salt piezoelectric crystals. JK is the Navy term for 

passive sonars where J means that it can only be used for listening and K is merely 

the model. Used on submarines as a passive receiver, it was employed to find and 

classify targets at long ranges. Further research on the JK system led to the 

development of the rubber spherical window for the JK projector. This was an active 

sonar unit and was called the QB system. QB is also a navy term for active sonars 

with Q indicating that the transducer can be used for both sending and receiving 

signals and B indicating the model. To reduce the background noise, a streamlined 

dome was placed around the transducer (Holt, 1947; Lasky, 1974; Namorato, 2000). 

 As the research went on, NRL developed a depth finder and a variety of 

submarine detection equipment in the 1930s. They then proceeded to develop the QC 

transducer, which was continuous ping screening sonar. NRL even combined two 
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projectors (QC and JK) and used on submarines with JK to detect and classify, QC 

for range. By 1939, NRL had effectively developed passive/active sonar for the Fleet 

(Holt, 1947; Lasky, 1974, 1975; Namorato, 2000). 

Finally, the last significant development was the Bathythermograph (BT), 

developed by NRL and Woods Hole Oceanographic Institution. The BT gave a 

measurement of the temperature as a function of depth near and around the ship. The 

path of the sound beam could be developed from different temperature profiles. BT 

proved to be a quite important development for the use of underwater acoustics in 

warfare and was a standard installation on all US ships and submarines in WWII 

(Lasky, 1975, 1977). 

 In general, the accomplishment of the British, German and American 

researchers was quite remarkable during this period under severe budget constraints. 

More was required to be done and World War II appeared to have provided the 

stimulus and environment to take the development of sonar technology further 

(Namorato, 2000). 

2.3.6. World War II (WWII) 

The developments in transducers during and after WWI combined with 

advances in electronics and better understanding of the propagation of sound in the 

ocean provided the basis for development of sonar systems on the onset of WWII. In 

many respects, World War II saw the culmination of what had started in World War 

I. With new developments in warfare such as Blitzkrieg and with the appearance of 

the Luftwaffe and “wolf packs” and with German submarines causing serious 

damage to shipping off the east coast of the United States, the demands on 

acousticians was phenomenal (Lasky, 1974, 1975, 1977; Namorato, 2000). 

Several research institutes were set up in the US at the beginning of the war: 

with Columbia University’s Division of War Research (CUWR) at New London, 

Harvard University’s Underwater Sound Laboratory (HUSL) in Cambridge, and the 

University of California’s Division of War Research (UCWR) in San Diego. Their 

relentless efforts resulted in many American ships being equipped and continuously 

upgraded with echo ranging and passive listening systems as the war progressed. 

Other types of equipment employing transducers and underwater sound were also 
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developed such as acoustic homing torpedoes, acoustic mines and sonobuoys (a 

relatively small expendable sonar system that is dropped/ejected from aircraft or 

ships conducting anti-submarine warfare or underwater acoustic research). A large 

amount of practical experience was accumulated from the use of all this equipment, 

and it provided a firm basis for many new developments during and after the war ( 

NDRC, 1946). 

In an effort to deal with these threats from German and Japanese acoustic 

mines and homing torpedoes, numerous technological improvements were made to 

the existing sonar systems. Sonar domes, for example, were improved so as to reduce 

self-noise caused by the flow near the transducer and to minimize noise through a 

sound baffle-sound absorber. The QC sonar was modified to reduce reverberations, 

improve bearing indications and deviations, and ease the operation of the system 

itself. Developments were also made to the JP, JT (both passive sonars), and TLR 

(Triangulation-Listening Ranging) to assist the submarine in its attack capabilities 

(Lasky, 1975). 

Another significant development in acoustic research during World War II 

was SOFAR (Sound Fixing and Ranging). In 1943, Maurice Ewing and J.L. Worzel 

discovered permanent sound channels in the ocean at depths between 500 and 1300 

meters. They found that sound from small TNT explosions could travel well over 

1000 kilometres at such depths. Using this information, they developed SOFAR, 

which was extensively used by the downed pilots. By setting off a small explosive 

device, the signals could be picked up at receiving stations far away and rescue 

attempts for the pilot could be made.  Finally, in 1946, the NDRC issued the famous 

“Red Books” in 22 volumes. It contained a collection of summary technical reports 

on all that was researched and accomplished in underwater acoustics in the United 

States during the war. These volumes are considered as benchmarks in the history of 

acoustics and its applications to warfare (Namorato, 2000). 

In summary, World War II saw underwater acoustics develop into a highly 

sophisticated, multi-disciplined science supported and sustained by the Navy.  As a 

result, a large portion of the research was kept under the veil of secrecy. It is only 

recently that the scale of the development that took place during the WWII and the 
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cold war has come to light and the magnitude of the development could be 

researched and analysed to its entirety.  

2.3.7. Post WWII and the cold war era 

After the war and until the late 1950s, sonar systems were mainly used to 

monitor ship convoys and shipping corridors. With the development of submarines 

capable of launching nuclear missiles and attack nuclear submarines, development of 

underwater acoustics gathered pace again. Priority was given to the development of 

passive sonar systems, as vast areas of the ocean were required to be monitored for 

nuclear submarines. 

With the onset of Cold War and the rapid development of nuclear 

submarines, underwater acoustics became a fundamental part of military research but 

as a science, it divided itself up into more specialized areas and contributed 

significantly to other evolving ancillary research fields such as military 

oceanography and medicine (Namorato, 2000). As the development of nuclear 

submarine gathered pace rendering the existing sonar systems less efficient, focus 

was given to fundamental acoustics and oceanographic research. This, during the 

1950s, led to the development of split beam and all round scanning sonars. The 

transducers were also developed significantly (Lasky, 1977; Press, 2011). 

With the introduction of digital signal processing in the late 1960s and the 

evolving computer performances, passive sonars became very sophisticated. That, 

however, was countered by the equal pace of sophistication of submarines by 

dramatically lessening acoustic noise radiating from them. So the focus had shifted 

again on the development of active sonars in the 1990s.  The new breed of active 

sonars could also operate at lower frequencies and played a vital role in the conflicts 

of the late 20th century in detecting submarines (Falklands War) or under water 

mines (Gulf War) (Lurton, 2002).    

2.3.8. Civilian developments 

The civilian oceanographic industry and research institutes benefited directly 

from the military developments of acoustic echosounders during and after the WWII. 

The civilian industries were able to quickly adapt from the declassified information 
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and upgrade the commercial echosounders.  Singlebeam echosounders (SBES) were 

being extensively used for depth measurements since their development. They 

replaced the lead lines that were used for depth measurements 4000 years until the 

early 19th century. Since their first successful use in detecting fish in 1929 (L. Ding, 

1997; Kimura, 1929) using forward scattering technique, government institutes and 

researcher started to use SBES more frequently in fisheries and biomass monitoring 

after the second world war (Lurton, 2002; Mayer, 2006). 

Much of the work after the war was orientated towards sonar system design 

and development. A vast commercial aspect acted as a strong motivation in the 

search of improved materials for the transduction led to the development of 

ammonium dihydrogen phosphate (ADP), lithium sulfate and other crystals in the 

early 1940’s (Sherman et al., 2007).  A.R. von Hippel in 1944 discovered 

piezoelectricity in permanently polarized barium titanate ceramics (Dresselhaus, 

2004).  Jaffe et al. (1954; Jaffe, 1955) developed a stronger piezoelectricity in 

polarized lead zirconate titanate ceramics. These discoveries vastly improved the 

lead zirconate titanate (PZT) transducers quality and initiated the modern era of 

piezoelectric transducers. 

A great advantage of piezoelectric ceramics and ceramic-elastomer 

composites is that it can be made in variety of shapes and sizes with many variations 

of composition to address specific properties of interest in underwater exploration. 

This often resulted in practical systems built for a specific customer. This flexibility 

has led to the development and manufacture of innovative, relatively inexpensive 

transducer designs which was quite unimaginable in the early days of transducers 

(Sherman & Butler, 2007). 

 

2.4. Sonar applications: a brief outline 

Applications of sonars can be divided into two broad categories: military and 

civilian application. Depending on the application area, sonars are mainly classified 

based on their functions. 
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2.4.1. Military application 

Based on the function mode, sonars in military use are divided into two main 

categories - active and passive sonars:  

 Active sonars   

These are sonars that are able to transmit acoustic signals and receive the 

reflected echoes from the target.  They consist of an array of projectors to transmit 

acoustic pulses into the water. The time of echo arrival at the receiver is used to 

estimate the distance of the target as well as the angle of arrival of the echo. The 

echoes can be further analysed to give more details on the target (Lurton, 2002; 

Waite, 2002).  

Each transmission of echoes from active sonar is known as a ‘ping’. The term 

‘ping’ can be rather ambiguous as it can be a single acoustic pulse transmitted from 

the sonar or a sequence of pulses.  It can also be the total time between two 

transmissions, that is, the sum of the duration of both the pulses and the receive 

period. The meaning is usually clarified by the context of its use (Waite, 2002).  

 Passive sonars  

These are sonars that are capable of only receiving acoustic noises (pulses) 

radiated by the target (for example: ships, submarines, torpedoes etc.).  They can 

consist of a hydrophone or a series of hydrophones designed to detect radiated noise 

against a background of ambient and self-noise. Passive sonars have no known 

civilian application (Lurton, 2002; Waite, 2002). 

2.4.2. Civilian applications 

Use of sonars in civilian sector is highly varied and growing with time. 

Sonars have evolved with the growing need of advanced scientific instruments from 

expanding programmes of environment study and monitoring, industrial fisheries and 

offshore engineering. The following active sonars are commonly used in the civilian 

sector: 
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 Bathymetric sounders  

These sonars are mainly singlebeam echosounders (SBES) and specialised in 

depth measurements and replaced the ‘lead line’ method.  A narrow beam is 

transmitted vertically downward and the time delay of the echo is measured. This 

produces a depth or a bathymetric measurement. These sonars are ubiquitous in naval 

navigation (Lurton, 2002; Mayer, 2006). 

 Fishery sounders  

After the first successful detection of fish by Kimura (1929), use of sonars for 

detection of fish shoals took off after the Second World War. Fisheries also use 

singlebeam echosounders, which work in a similar way as the bathymetric 

echosounders. To facilitate fish detection, the echosounders also carry additional 

tools to process the echoes originating from the entire water column (Lurton, 2002).  

 Sidescan sounders  

Side scan sonars are a type of sonar that is extensively used in seabed 

mapping and are towed by the survey ship or submarine. They are capable of 

producing highly accurate observations and are used in the acoustic imaging of the 

seabed.  They transmit short pulses in the horizontal direction that sweeps the seabed 

signals as a function of time. This time series echoes yield an image of irregularities, 

obstacles, and changes in structures of the bottom surface. As they are towed, they 

can be used in surveys trying to detect specific objects by lowering them closer to 

ground thus providing a very high-resolution image of a smaller target area. These 

systems are mainly used in marine geology studies and shipwreck and mine 

detections (Lurton, 2002). 

 Multibeam sounders  

Multibeam echosounders, also known as Swath echosounders, comprise of an 

array of transducers mounted directly beneath a ship's hull. Multibeam sonars emit 

sound waves to produce fan-shaped coverage of the seafloor. The main use of these 

sounders is seafloor mapping for its ability to provide an accurate topography of the 

seabed. Each of its transducers is capable of transmitting narrow width beams, and 

sweeps a large swath of the seabed in each survey run.  The results are usually a 
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highly dimensional acoustic database that can be used to produce an accurate 

topographic map of seabed. It can also produce acoustic images if the angular 

aperture is large enough. Multibeam echosounders are also commonly used for 

geological and oceanographic research, and since the 1990s for offshore oil and gas 

exploration and seafloor cable routing (Lurton, 2002; Mayer, 2006). 

 Sediment profilers   

These are singlebeam echosounders specialising in utilising their beams’ 

ground penetrating capability more effectively. The frequency of the sonar is kept to 

a minimum, which allows the beam to penetrate from 10 to hundreds of meters of the 

seafloor. The frequency is adjusted based on the preliminary study of seafloor type. 

Another method for sediment profiling is seismic systems. In this method, explosive 

or percussive sources coupled with long antennas are used to explore several 

kilometres under the seafloor. These systems are primarily used for oil and gas 

exploration and in geophysical studies (Lurton, 2002).  

 Acoustic Doppler systems  

These systems are commonly used for river current velocity and discharge 

measurement. The acoustic Doppler profiler is mounted to a vessel that moves across 

the river perpendicular to the current. Water velocities are measured when the 

acoustic Doppler profiler transmits acoustic pulses along three or four beams at a 

constant frequency. The instrument processes the echoes to estimate the difference in 

frequency (shift) between transmitted pulses and received echoes, known as the 

Doppler Effect. It can be used to measure the relative current velocity. For discharge 

measurement, it transmits a series of acoustic pulses known as pings. Pings for 

measuring water velocities are known as water pings, and pings for measuring the 

boat velocity are known as bottom-tracking pings. These pings are normally 

interleaved and are referred to as an ensemble. A single ensemble may be compared 

to a single vertical echo from a conventional echosounder discharge measurement. 

This system is extensively used in hydrological studies (Lurton, 2002; Oberg & 

Schmidt, 1994; Yorke & Oberg, 2002).  
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2.5. Systems for mapping the seabed type 

The sonar systems that are extensively used for seabed mapping are MBES 

and side scan sonars (SSS). In the recent years, SBES systems have also been used in 

this purpose. The following sections will discuss the mapping of seabed type using 

MBES and SBES only. 

Mapping seabed type is important in a variety of applications, such as 

environmental research, management of marine and coastal resources and oil and gas 

exploration. Typically, tools used for this purpose are acoustic sonar systems, which 

transmit and receive an acoustic pulse from a device on a survey vessel. Data 

collected consist of the travel time of the acoustic pulse to the sea floor and back and 

the strength of the signals. From this, measurements such as the depth to the seafloor 

(bathymetry), depth to sub-surface sediment layers (sub-bottom), and the reflectance 

of the sea floor (intensity of backscattered energy) can be derived.  

There is a strong link between acoustic backscatter and sediment 

characteristics of the seabed (C J Brown & Blondel, 2008; Goff et al., 2004; Huges 

Clarke et al., 1997), therefore such data are often used for classification of seabed 

type. Multibeam (MBES) and Singlebeam (SBES) echosounders are now commonly 

used in the accurate mapping of the seafloor and depth profiling. Before MBES was 

developed, only SBES systems were available for this purpose. But the major 

drawback of SBES systems is that it returns only one depth value per ping. The early 

SBES systems had broad beams (30-60 degrees).  The area ensonified by these 

beams were large with area to water depth ratio varying from 0.5 to 1.  

The problem with large ensonification is that the first echo recorded can 

come from any part of this vast area. The early systems lack the within beam angular 

discrimination capability and it was assumed that the echo came from directly 

beneath the surveying vessel. This potentially resulted in a defocused and somewhat 

inaccurate picture of the seafloor topography. Later on to address this issue, high 

resolution, narrow beam SBES systems were developed. But the problem with this 

system was that it covered a small area. The sampling was dense in the along-track 

direction and widely spaced ship tracks meant that only sparse sampling of seafloor 

was possible.  This problem was addressed, later in the 1970s, with the development 

of MBES systems (Mayer, 2006). 



CHAPTER 2.LITERATURE REVIEW 

31 
 

2.5.1. Echo sounding: common features & measurement types 

Echosounders use the echo return and corrects it for several noise sources 

such as the motion of the sonar platform, inherent vibration etc. to build up a 

representation of the seabed and targets between the source and the seabed. The 

operating frequencies range between 3 kHz (sub bottom profiler) and 500 kHz 

(shallow water mapping). The frequency is predetermined and is influenced by the 

requirements of range (depth) and target size. The two main components of an 

echosounder are its transducer and display unit (Figure 2.5). The transducer creates 

and receives sound waves. Before sending out another wave, the display unit pauses 

and waits for the echo to strike the transducer. If the echo is detected, the distance to 

the object is calculated and shown on the display unit, which also sounds an alarm if 

the distance goes below a certain value (Waite, 2002). 

 

Figure 2.5: Echosounder schematics (adapted from WHSC, 2011) 

2.5.2. Singlebeam echosounders (SBES) 

Singlebeam bathymetry systems are generally configured with a transceiver 

(Figure 2.5), which is basically a system that has both a transmitter and a receiver. 

The system is either mounted to the hull, or side-mount to the ship. The hull-

mounted transceiver transmits a high-frequency acoustic pulse in a beam directly 
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downward into the water column. It then records the reflected echoes off the sea 

floor beneath the vessel (WHSC, 2011; HOMD, 2011). 

This transmit-receive cycle repeats at a fast rate, on the order of milliseconds. 

The continuous recording of water depth below the vessel yields high-resolution 

depth measurements along the survey track. Additional information such as heave, 

pitch, roll of the vessel can be measured with a Motion Reference Unit in 

combination with a Differential Global Positioning System (DGPS). The system also 

consists of a sound velocity profiler that acquires data about the precise sound 

velocity in the ambient water mass. These velocity measurements are used in the 

depth calculation (WHSC, 2011; HOMD, 2011). 

The figures below show the working principal of a typical SBES system. A 

transmit/receive switch (TR switch), which consists both the transmitter and the 

receiver, generates the pulse (Figure 2.6a) and then receives the echo, which includes 

the signal (backscatter information) and the noise (Figure 2.6b). The received 

analogue echo is filtered and then converted into a digital signal or data stream 

(Figure 2.6c) by the analogue to digital converter (A to D converter) in the system. A 

detector and low-pass digital filter is then applied to the signal to remove the carrier 

and higher frequency components, including the out-of-band portion of the 

remaining noise. The output is a smoothed signal, which is also known as ‘echo 

envelope’ (Figure 2.6d & e). Decimation is often used on the smoother echo to 

reduce the data rate. The resulting digital signal serves as the raw material for 

sediment classification (Preston et al., 2000). 
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Figure 2.6: Diagram of a singlebeam echosounder’s working principle. The upper 
row shows the important components and processes in a SBES system and the lower 
row shows the resulting signal at crucial steps (adapted from Brown et al., 2007) 

Many present-day systems record echo data digitally. These raw signals are 

filtered before sampling and A/D conversion. Filtering the raw signals limit 

bandwidth to prevent aliasing (when the sample rate is less than twice the highest 

frequency in the analogue signal) in sampling and suppress noise that is outside the 

echo bandwidth.  An echo envelope is generated from the filtered full-waveform data 

using the Hilbert transform (Haykin, 1994). 

The Figure 2.7 below shows a typical seabed echo from a SBES system. The 

steep initial rise represents the instance when the transmitted pulse has reached the 

seabed and has returned to the transducer. The peak represents the instance of the 

sound wave hitting the seabed. After the signal has reached its peak, it gradually 

descends. This section contains the information of sub bottom properties of the 

seabed. It also contains higher amount of noise due to higher degree of volume 

scattering. 
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Figure 2.7: Representative seabed echo from a calibrated echosounder. The water 
depth is the range to echo onset; after that, echo duration depends on beam width, 
seabed slope and roughness, and penetration into the sediment (C.J. Brown et al., 
2007) 

 Seabed mapping using SBES 

When a set of good quality artifact free SBES echoes are collected, the next 

step is to extract features from them.  Features in seabed mapping are a set of 

statistical descriptors that are generated from the backscatter data i.e. the echoes as 

described above. These statistical descriptors vary from common statistical measures 

(such as mean, standard deviation etc.) to more specific descriptors (such as textural, 

fractal dimensions etc.). Figure 2.8 shows the general process of feature generation 

the classification of SBES echoes. High-quality classes are derived from features, not 

from the echo amplitudes themselves. One of the objectives of feature extraction is to 

generate features that describe the shape of the echo i.e. features that can be used to 

describe the formation of echo, the nature of the curve etc. (for example: skewness, 

kurtosis). The number of shape features depends heavily on the analyst's imagination 

and experience. With the aim to capture descriptions of the echo shape and spectral 

character as numerical values, the procedure starts with the generation of an echo 

time-series as a sequence of digital samples, and the sample number that corresponds 

to the bottom pick. In practice, the time-period between some small fraction of the 

peak (for example 5%), and the peak itself, or the length at 50% of peak is measured. 
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Features that depend on arbitrary numbers are regarded as less suitable, but can have 

practical value (C.J. Brown et al., 2007). 

With the presence of variability and noise, a better approach is finding shape 

features with statistical measures. This is achieved by dividing the samples into a 

number of geographic windows (mostly rectangular) with each window containing a 

predefined number of samples. Cumulative sums, quantiles, and histograms are 

calculated on each of these windows. In this way the capture of the rise time is less 

susceptible to noise and variability. The relative number of samples in each window 

expresses echo duration and decay rate and is dependent on the length of the sample 

window. Many other variations are possible and depend on the seabed geology, 

surveyor's experience with the transducers and the region (Brown et al., 2007). 

 

Figure 2.8: Generic workflow of seabed classification using SBES 

A second group of features, which captures the spectral character of the 

echoes, are also generated. Sediment roughness has a direct effect on the variability 

in the echo tail, so features that capture spectral content in this variability can be 

useful for discrimination. The Fast Fourier transform (FFT) is commonly used to 

provide a numerical estimate of the spectra. The power spectrum is calculated by 

applying FFT on the autocorrelation of the amplitudes. It expresses echo power in 

frequency bands. Wavelet transforms can also provide complementary information if 

the elementary wavelet is chosen carefully (Tegowski & Lubniewski, 2000). These 
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methods usually operate on normalized echo time-series (with the maximum scaled 

to one). Therefore, the features generated are independent of echo amplitude 

(Hamilton et al., 1999). 

Once the set of features to be derived are determined, a feature database if 

prepared that includes feature descriptors for every echo. The next step is to use 

principal component analysis (PCA) to reduce the dimensionality. In the next step, a 

clustering algorithm (usually k-means) is run on the space of three principal 

components comprising of 90-95% of the information. The clusters are then analysed 

and labelled based on the ground truth information available and a classified map is 

generated (Brown et al., 2007; Hamilton et al., 1999; Tegowski & Lubniewski, 

2000). 

2.5.3. Multibeam echosounders (MBES) 

Multibeam echosounder works in a similar way as the singlebeam 

echosounder and can be considered as an extension of SBES. The development of 

MBES rose from the drawback of SBES, which could only take one measurement 

and the result is sparse sampling of the seafloor when the beam width is wider 

(Mayer, 2006).  A multibeam echosounder transmits and receives an array of beams 

with individual small widths (0.50-30 degrees each) across the axis of the ship. This 

array of beams sweeps a large corridor around the ship’s path. The intersection of the 

transmit pulse and the received beams results in many (100-240) simultaneous depth 

measurements across a wide swath, with echo measurements having excellent 

vertical resolution. The recent MBES systems use their larger angular width to record 

acoustic images. This provides the users with bathymetry (depth of water relative to 

sea level) and backscatter measurements (reflection of signals) at the same time 

(Augustin et al., 1994; Lurton, 2002; Mayer, 2006; Mcgonigle et al., 2009). Since the 

late 1970s, MBESs have greatly evolved and have become very varied. These 

systems can survey large areas rapidly and accurately. Some of the common uses of 

MBES are: deep water systems (12-30 kHz) for regional mapping of deeper ocean 

and continental shelves, shallow-water systems (100-200 kHz) for mapping 

continental shelves, and high-resolution systems (300-500 kHz) for local studies such 

as hydrology, shipwreck location and inspection of underwater structures (Lurton, 

2002; Mayer, 2006). 
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Seabed classification from MBES is generally attempted by analysis of 

backscatter amplitudes. However, backscatter is affected by diversity of ocean floor 

types and lateral heterogeneity of sub bottom layers, which makes the acquired data 

difficult to analyse (Arescon Ltd., 2001; Xinghua & Yongqi, 2004, 2005). Due to the 

large volume of data acquired in MBES surveys, computer-assisted classification has 

become a logical choice to achieve statistically valid and objective segmentations 

(Cutter et al., 2003; Hellequin, 1998; Hellequin et al., 2003; Mcgonigle et al., 2009). 

With the recent development of side-scan sonar (SSS) and MBESs, image-based 

seabed classification based on the characteristics of acoustic backscatter became the 

focus of sustained effort to arrive at effective segmentation (Cutter et al., 2003; 

Mcgonigle et al., 2009; Preston et al., 2004; Preston et al., 2001).  

 Structure of MBES systems and working principal 

A typical MBES system consists of an array of transducers (transmission and 

reception arrays), electronics for the transmission array, user interface, and ancillary 

systems (Figure 2.9). The electronics for the transmission array controls signal 

generation, amplification, impedance matching of the transducers as well as the 

properties of the transmission beam (width, inclination, level etc.). This function is 

influenced by the configuration parameters, which in turn depend on the seabed 

topology, weather, salinity etc. The principle functions of the electronics for the 

reception unit are digitization and demodulation of signals, and beam forming. It also 

performs level correction to keep the signal amplitudes within an acceptable range as 

constant as possible. 
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Figure 2.9: Components of a MBES system (EM 2040) (Kongsberg, 2011) 

It controls the quality of preliminary bathymetry measurements and imagery 

signals by correcting for platform movement and acoustic paths (usually by passing 

filters). In the newer MBES systems, all the electronics are controlled by a dedicated 

personal computer or workstation on board the survey vessel (Lurton, 2002; Preston 

et al., 2004, 2000).   

Most MBES use two arrays of transmission and reception sounders in one 

transducer head that can be hull-mounted (fixed) or pole-mounted (portable). The 

arrays are installed along the axis of the supporting platform.  The setup of MBES 

also allows for large width or large swath (Figure 2.10). The MBES systems have 

superior angular discrimination. This allows the beam footprints (i.e. area ensonified 

by the beam) to be kept small. The along track discrimination is controlled by the 

transmission array while the across track discrimination is controlled by the reception 

array (Lurton, 2002; Preston et al., 2004, 2000). 
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The transmit array is in the along-ship direction and generates a pulse that is 

wide in the across-ship direction and very narrow in the along ship direction. The 

receive array is located in the across ship direction and form receive beams that are 

narrow in the across-ship direction and wider in the along-ship direction (Figure 

0.10). These early systems formed lower number of beams (only 16), which limited 

their swath width to up to 45 degrees (0.75 times the water depth). Modern systems 

can form more beams (typically 100–240), which enable them to generate much 

wider swaths (typically 100–150 degrees) than the early systems. The intersection of 

the transmit pulse and the receive beams results in many simultaneous depth 

measurements across a wide swath (100 to 240). Each measurement provides 

excellent horizontal and vertical resolution. There are now a wide range of 

multibeam sonar systems available, operating at frequencies from 12 kHz (for deep-

water mapping) to 455 kHz (for working in water depths less than 100 m) (Mayer, 

2006). 

 

Figure 2.10: MBES working principal 

A multibeam echosounder (MBES) transmits and receives an array of beams 

with individual narrow widths (0.50-50) in along-track direction and wide (1000-

1500) across-track direction. The area ensonified by an individual beam refers to the 

energy or acoustic pulse from the transducer which has reached part of the seafloor 

(Clarke et al., 1997). The area ensonified by each beam takes the shape of an ellipse. 

The dimension of this ellipse varies principally as a function of depth, individual 
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beam pointing angle, and the incidence angle. The limited dimension of each formed 

beam allows the estimation of the smallest feature in the seafloor that can be 

surveyed within the ensonification region. This array of beams sweeps a large 

corridor around the ship’s path. The intersection of the transmit pulse and the 

received beams results in many (100-240) simultaneous depth measurements across a 

wide swath, with echo measurements having excellent vertical resolution. The recent 

MBES systems use their larger angular width to record acoustic images. This 

provides the users with bathymetry (depth of water relative to sea level) and 

backscatter measurements (reflection of signals) at the same time (Augustin et al., 

1994; Lurton, 2002; Mayer, 2006; Mcgonigle et al., 2009). Since the late 1970s, 

MBESs have greatly evolved and have become very varied. These systems can 

survey large areas rapidly and accurately. Some of the common uses of MBES are: 

deep water systems (12-30 kHz) for regional mapping of deep oceans and continental 

shelves, shallow-water systems (100-200 kHz) for mapping continental shelves, and 

high-resolution systems (300-500 kHz) for local studies such as hydrography, 

shipwreck location and inspection of underwater structures (Lurton, 2002; Mayer, 

2006). 

Each MBES survey provides two types of measurement: bathymetric and 

backscatter data. Bathymetric data is extensively used for terrain modelling; 

navigational maps etc. while, the common use of backscatter data is for fisheries, 

geological exploration and seabed mapping.  

 Backscattering in seabed surveys 

The echoes that are transmitted from the echosounder propagate in the ocean 

and are then reflected in all directions by objects like fish, plankton, bubbles, 

submarines and ship wreckage and the boundaries of the medium (seabed and sea 

surface). The portion of the echo that returns to the echosounder is called the 

backscatter (Figure 2.11). Clear understanding of their properties is essential to the 

good functioning of the sonar systems (Lurton, 2002). 
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Figure 2.11: Backscatter and the associated signal profile on smooth and rough 
surface (MARUM, 2011) 

In reality, the reflecting surface is never an ideal plane surface. The acoustic 

reflections are therefore much more complex. The backscatter characteristics depend 

on the signal strength, frequency, wavelength, incidence angle, and the local 

characteristics of the relief itself (MARUM, 2011).  A portion of the incident wave is 

reflected in the specular direction. This is the coherent part of the wave. The rest of 

the wave is scattered over the entire space. A high roughness of the seabed will result 

in a relatively smaller specular reflection and a higher scattering (Waite, 2002). 

During an acoustic survey, the backscatter amplitude will largely depend on 

the incidence angle or roughness considered prior to the survey. When the transducer 

is close to normal of the target, the large portion of the reflection will come from the 

specular echo, while the reflection at oblique incidence angles largely come from the 

scattering (Lurton, 2002, Waite, 2002). Other factors that influence the backscatter 

coefficient are the impedance (product of density and sound velocity), contrast 

(between the seabed and the medium) and the property of the underlying soil volume 

of the seabed (Buckingham, 2000; Chotiros, 1995).  

 Seabed mapping using MBES 

Seabed classification from MBES is generally attempted by analysis of 

backscatter amplitudes. However, backscatter is affected by diversity of ocean floor 

types and lateral inhomogeneity of sub bottom layers, which makes the acquired data 

difficult to analyse (Arescon Ltd., 2001; Xinghua and Yongqi, 2004, 2005). Due to 

the large volume of data acquired in MBES surveys, computer-assisted classification 

has become a logical choice to achieve statistically valid and objective segmentations 

(Cutter et al., 2003; Hellequin, 1998; Hellequin et al., 2003; McGonigle et al., 2009). 



CHAPTER 2.LITERATURE REVIEW 

42 
 

With the recent development of side-scan sonar (SSS) and MBESs, image-based 

seabed classification based on the characteristics of acoustic backscatter became the 

focus of sustained effort to arrive at effective segmentation (Cutter et al., 2003; 

McGonigle et al., 2009; Preston et al., 2001; Preston et al., 2004).  

Backscatter data from MBES can be used to gain insight on the spatial 

distribution of seabed properties (Goff et al., 2004; Hughes Clarke et al., 1997). 

Sonar acoustic waves within the echo levels and frequency can penetrate up to few 

tens of cm in soft sediments thus providing information on surface and sub-surface 

properties. Amplitude backscatter returns will be influenced by a combination of 

geological and non-geological variables. Geological factors will be a combination of 

surface and/or subsurface scattering processes within the sediment. Non–geological 

factors are generally divided in geometric and radiometric factors. The first ones are 

controlled by the beam incident angle and range to the system. Radiometric factors 

are controlled by system settings such us system power, time varied gains (TVG) and 

absorption coefficients.  

Image classification is usually carried out on statistical features generated 

from the MBES backscatter image. A series of rectangular patches are distributed 

over the backscatter images (see Chapter 3). The placement of these patches depends 

on the quality of the data. It is also influenced by the grazing angle and range of the 

sonar as well as constraints that come with different sensor models. The influences of 

these are removed through the process of image compensation during the next step 

where the image is separated into rectangular patches, which are superimposed on 

the image on each side (port & starboard) of the vessel (Preston, 2009; Quester 

Tangent, 2007). A matrix of amplitudes from each patch is generated and fed into 

image feature algorithms.  

Backscatter data for seabed classification can have flawed values (due to 

unreasonable depth picks, reflections from fish or artefacts, etc.). In addition, images 

can be smeared due to excessive vessel movement. Before feeding the data into 

feature algorithms, the backscatter data are first filtered to clean the data of these 

anomalies.   

The goal of the feature extraction from MBES backscatter image is to capture 

the amplitude and texture characteristics using some of the published methods. A 
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number of features can be generated and the type of features to be generated depends 

on the hydrographer who usually has prior knowledge of the area surveyed.  The 

features are called Full Feature Vectors (FFVs) and the result is a large matrix in 

which each column represents the values of one feature and each row contains all the 

features extracted from one rectangular patch.   

The most common features are the mean, standard deviation, and higher 

moments of the amplitudes in the rectangular patch. Other features can include 

quantiles, histograms, and other measures of the amplitude distribution. Texture 

features provide a “feel” of the image. It discriminates between uniform and irregular 

regions and among types of patterns (Blondel et al., 1998). The texture features are 

usually derived from a grey-level co-occurrence matrix (GLCM) that captures the 

changes in grey level between neighbouring pixels. Haralick and Shanmugam (1973) 

first described a number of GLCM features with names like prominence, shade, and 

entropy. Fractal dimension, with amplitude treated as if it were altitude, is another 

useful feature that captures image texture (Carmichael et al., 1996; Tegowski & 

Lubniewski, 2000).  

The resolution of resulting classification maps is set by the size of these 

rectangular patches, with smaller patches giving higher resolution and larger patches 

resulting in lower resolution maps. The main drawback with smaller patches is that it 

can restrict the selection of features. For a single pixel rectangle, the only possible 

feature is amplitude. The classification map is, therefore, generated by a sonar 

mosaic organized into units by a set of amplitude thresholds (Brown et al., 2007). 

Various techniques for image processing can be applied to backscatter images 

for image segmentation in order to provide classification maps of the seabed type. In 

addition to backscatter measurements, sonar geometry and the geometry of the entire 

multibeam system have to be taken into account in order to achieve a valid 

classification that depends on sediment characteristics rather than sonar artefacts 

(Preston et al., 2001). Another approach to segmentation relies on the calibrated 

backscatter levels and on their variation with grazing angle (Hughes Clarke et al., 

1997). Other recent approaches to automatic classification are based on the statistical 

nature of the image, irrespective of absolute calibration, which uses the backscatter 

amplitude and statistical properties of multibeam sonar images to classify seabed 
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sediments. A combination of PCA and k-means is currently the most common way 

of clustering and seabed data (McGonigle et al., 2009; Preston et al., 2001; Preston et 

al., 2004). 

 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a mathematical procedure that 

converts a set of observations of possibly correlated variables into a set of values of 

uncorrelated variables called principal components using an orthogonal 

transformation. The number of principal components is less than or equal to the 

number of original variables (Ding & He, 2004; Gorban et al., 2007; Jolliffe, 2002; 

Pearson, 1901). 

PCA is a widely used data compression technique. The PCA is computed by 

determining the eigenvectors and eigenvalues of the covariance matrix. Eigenvectors 

are a special set of vectors associated with a linear system of equations (i.e., a matrix 

equation) that are sometimes also known as characteristic vectors, proper vectors, or 

latent vectors (Marcus & Minc, 1988). The eigenvectors of a square matrix are the 

non-zero vectors that, after being multiplied by the matrix, remain parallel to the 

original vector. For each eigenvector, the corresponding eigenvalue is the factor by 

which the eigenvector is scaled when multiplied by the matrix. If A is a square 

matrix, a non-zero vector v is an eigenvector of A if there is a scalar λ (lambda) such 

that 

Av = λv                                 2.6 

The scalar λ is said to be the eigenvalue of A corresponding to v. A 

covariance matrix or dispersion matrix is a matrix whose element in the i, j position 

is the covariance between the i th and j th elements of a random vector (i.e., of a 

vector of random variables). To perform PCA for a given dataset, ! = {!!,!}, the 

empirical mean is first calculated (Jolliffe, 2002): 

!! =
1
! !!,!

!

!!!

                                                                                                        2.7 

Here, ! is a !×! matrix with ! = 1,… ,!  !"#  ! = 1,… ,!. In the next 

step, the deviations from the mean are calculated. The objective behind mean 
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subtraction is to find a principal component basis that minimizes the mean square 

error of approximating the data. 

! = ! − !ℎ                                                                                                                                2.8 

Here, h is a 1×! row vector of all 1s and the dimension of B is !×!. In the 

next step, a !×! empirical covariance matrix ! is calculated from the outer product 

of matrix ! with itself.  

! =
1
! !.!!                                                                                                                   2.9 

From the covariance matrix, its eigenvectors and eigenvalues are computed. 

A matrix V of eigenvectors is created which diagonalizes the covariance matrix 

(Jolliffe, 2002). 

!!!!" = !                                                                                                                                                  2.10 

Here, D is the diagonal matrix of covariance matrix C and has the dimension 

of !×!. The columns of the eigenvector matrix V and eigenvalue matrix D are the 

sorted in the order of decreasing eigenvalue while maintaining the correct pairings 

between the columns in each matrix. In the next step, the cumulative energy content 

(g) of each eigenvector is computed. The cumulative energy content (g) for the mth 

eigenvector is the sum of the energy content across all of the eigenvalues from 1 to 

m. 

!! = !!,!

!

!!!

  !"#  ! = 1,… ,!                                                    2.11 

   A subset of eigenvectors, the first L columns of V as the !×! matrix W, is 

selected as basis vectors: 

!!,! = !!,!   !"#  ! = 1,… ,!  &  ! = 1,… , !                  2.12 

Where, 1 ≤ ! ≤ !. The vector g is usually used as a guide to choose 

appropriate value of L. The objective is to choose a value of L as small as possible 

while achieving a reasonably high value of g (Jolliffe, 2002). 
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![!!!]
!!,!!

!!!
≥ 0.9                                                                                                                                2.13 

2.6. Noise in acoustic surveys 

Noise in acoustic surveys, stated by Waite (2002), “is the background against 

which sonars must detect signals from target”.  Lurton (2002) divided the noise 

present in acoustic sonar survey into four types: Ambient noise, self-noise, 

reverberations, and acoustic interference (Figure 2.12). It is an important component 

to underwater surveys and ads to the signal, decreasing its quality. 

 

Figure 2.12: Noise affecting a hull-mounted sonar system: (1) ambient noise; (2) 
self-noise; (3) reverberation; (4) acoustic interference (Lurton, 2002) 

Ambient noise originates from natural sources (waves, fish movement etc.) or 

man-made sources (shipping, drilling, submarine movements etc.). Self noise stems 

from the echosounder itself. Noise from radiated energy of the supporting platform, 

flow noise, electrical interference etc. is different forms of self-noise. Reverberations 

are exclusive to active sonars. It is the echo generated from the signal itself (parasite 

echo). It is often regarded as a limitation for sonar systems. Acoustic interference is 

the noise generated from other acoustic systems working in the same area. In some 

cases, these interferences can be from sources that are situated far away from the 

echosounder in question (Lurton, 2002; Waite, 2002). 

 Reverberation 

The effects of reverberations in underwater surveys can be very significant at 

times and can sometimes render the survey run useless. It is induced by the 

propagation medium and stems from its boundaries (surface and bottom) and the 
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heterogeneity present within this boundary (bubbles, fishes, intrinsic fluctuations 

etc.).  The spectral characteristics of reverberations are very similar to that of 

backscattered target signals and are therefore very difficult to distinguish. The level 

of reverberation decreases with time but the rate is slower than the target’s echo. 

 Noise reduction 

Suppressing noise sources often requires a lot of attention. The vessel and 

ambient noise can be dominant at low frequencies, while receiver noise usually 

appears at higher frequencies and at longer ranges. Noise from various sources may 

be apparent on the echogram if the display sensitivity is increased and in areas of the 

water columns that are free of scatters are selected (Brown et al, 2007). 

The simplest way to minimize ambient noise is to maximise the signal-to-

noise ratio. This can be done by increasing the signal strength and constraining the 

angular spread as much as possible. Another way is the use of adaptive filtering 

whose properties vary with noise fluctuations. Increasing the number of receivers 

also helps in reducing the ambient noise levels as it can increase the level of the 

coherent part of the echo received (Hodges, 2010; Lurton, 2002; Waite, 2002).  

The best way to address the self-noise issue is to identify the sources of self-

noise. An accurate identification can allow precise measure to be taken to reduce the 

noise. In some cases, for example: radiated noise from the platform, it can be very 

difficult or impossible and very expensive to reduce the noise significantly. It is often 

cost effective and more common to optimize the location of the transducer in the hull 

and enclosing it in profiled fairings that reduces turbulence. Noise from electrical 

interfaces is directly related to the quality of the components chosen (Hodges, 2010; 

Lurton, 2002; Sherman & Butler, 2007). 

A common approach to reduce reverberation is to decrease the signal strength 

and increasing its spectral width (Sherman & Butler, 2007). Adjusting the antennas 

to be spatially selective also reduces reverberations. However, it should be kept in 

mind that these two measures should not interfere with the formation of echo on the 

target (Hodges, 2010; Sherman & Butler, 2007). 

Acoustic interference can be reduced by making sure that all the acoustic 

components on board have compatible frequencies as well as there is little or no 
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acoustic sources near the survey area. This can be often difficult to achieve, as unlike 

electromagnetic signal frequencies, acoustic signal frequencies have no legal 

regulations. Moreover, interference can also occur from the harmonics of the main 

signal. Some other steps that can reduce the effects of acoustic interference are 

spatial filtering, optimal spacing of the transducers, and the use of acoustic barriers 

(Hodges, 2010; Lurton, 2002). 

2.7. Effects of environmental variability on signal quality 

Apart from the noise, environmental phenomena present during the acoustic 

survey can have significant effect on the signal quality and result in signal 

fluctuations. 

 Effects of ocean water characteristics 

Oceans are unstable and heterogeneous. The characteristics of ocean water 

vary both spatially and temporally. Perturbations in acoustic transmissions can stem 

from this variability. The variation in ocean water in space and time can be divided 

into three main scales: small, intermediate and large. 

The small scale is relative to wavelength and heterogeneity of the medium at 

this scale can induce scattering and fluctuations in the signal. The intermediate scale 

is relative to the sampling rate and at this scale; instabilities in the medium (for 

example: swell) can cause time delays in signal arrival and amplitude fading.  At 

large scales, the variation in sound velocity profiles or water depths can induce 

permanent bias in target positioning (Hodges, 2010; Lurton, 2002; Marage & Mori, 

2010; Sherman & Butler, 2007). 

 Spatial variability 

The seafloor topography changes over space at variable scale (Hodges, 2010; 

Lurton, 2002; Marage & Mori, 2010; Sherman & Butler, 2007). While the small 

slope variation over a large scale have little effect on signals, strong topography 

features such as seamounts, ridges, continental slopes can refract the signal through 

reflections on inclined surfaces and introduce reverberations (Sherman & Butler, 

2007). The type of the seabed adds to the effects from the relief. Though seabed 

types are often homogeneous in deep waters, they can vary rapidly in coastal areas. 
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These variations sometimes affect the quality of the acoustic signals (Hodges, 2010; 

Marage & Mori, 2010). The sound velocity profile varies spatially and can also 

change locally due to geographical or environmental constraints, for example: 

currents or gyres, estuaries etc. Seasonal change can also induce a regional variation 

in the signal (Lurton, 2002). 

 Temporal variability 

The temporal nature of several environmental phenomena in the ocean can 

affect the acoustic signal characteristics. The temporal changes in currents can lead 

to amplitude instability. An increased current speed can also introduce higher 

scattering of the echo. This effect is known as ‘scintillation’ effect.  Internal waves 

generated from the variation of density due to depth change can induce a sound 

velocity variation of up to several meters per second (Lurton, 2002).  These 

fluctuations in sound velocity reduce the spatial coherence of the acoustic signals 

(Flatté, 1979). Tides, which last about half a day, can also affect the sound signal in 

shallow waters. The daily and seasonal temperature variation in the ocean can, 

sometimes, induce modification of the sound velocity profiles and can noticeably 

affect the sound field structure (Lurton, 2002; Marage and Mori, 2010).  

2.8. Quality & compensation  

The priority in any acoustic survey is to ensure a good echo registration with 

low signal to noise ratio and there are several approaches to achieve that. The noise 

from the transducer or self-noise can be kept to a minimum by frequent observation 

and calibration of the sonar system. These observations and verification is done by 

routine checks and observing the operations during the survey.  

 Quality control 

Quality control and image compensation are another way to improve the echo 

quality. Quality control involves a careful watch over the survey process and filtering 

or keeping aside any echo that appears to be degraded.  Interference from the 

transducer and clipping (loss of information) can be diagnosed using an echogram 

(amplitude vs. time or depth plots). Clipping (loss of information) can be diagnosed 
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if the maximum possible digital value is present in a series of consecutive samples, 

or if some lesser digital value is frequent but never surpassed (Brown et al., 2007). 

 Compensation 

Water depth, characteristics of the water column, bottom slope and sediment 

type are the major factors that affect the amplitude and shape of an echo.  

Compensating for depth effects can often be challenging. Shape characteristics of an 

echo, such as rise time and decay time, increase with depth. Compensation is done by 

re-sampling of the digital echo so that the echo has the length it would have had if it 

had come from some selected reference depth (Pouliquen, 2004). In shallow water, 

the spreading time of the beam front on the seabed is quite short and assumed not to 

be a dominant contributor to echo durations, so calculating the re-sampling rate is 

more complicated (Preston et al., 2003). Acoustic classes are assumed to be heavily 

influenced by depth if no compensation is done by re-sampling (Lubniewski & 

Pouliquen, 2004). Therefore, compensation is highly recommended.  

2.9. Sonar data: challenges 

Common sonar systems that are frequently used for seabed classification are 

MBES, side scan sonar, and recently, SBES. The following sections will focus of 

some of the challenges researchers are often faced with when dealing with MBES 

and SBES data in the context of seabed classification.  

MBES systems have become very popular since its introduction to public 

domain in the late 70s for their ability to provide high-resolution backscatter 

information on a large area in fewer survey runs compared to SBES. But SBES 

systems have seen a recent interest as they can provide vertical backscatter 

information, which contains seabed information with minimal distortions as well as 

subsurface information as the echoes can penetrate the seabed several meters. 

 Large datasets 

Due to their capability to capture high-resolution backscatter returns, surveys 

from current MBES and SBES systems often result in very large volume of data. The 

size of a backscatter and bathymetric dataset can be several terabytes (TB). Pre-

processing these datasets is computationally intensive and can therefore be time 



CHAPTER 2.LITERATURE REVIEW 

51 
 

consuming. Clustering of the processed data can also be challenging. Most of the 

popular clustering algorithms were not developed to accommodate such large 

datasets.   Therefore, it is always a possibility that the algorithms may fail in their 

clustering attempt and the data need to be further reduced (for example: by sampling 

at equal interval, feature extraction etc.). 

 Feature extraction: MBES 

Feature extraction is an effective way to reduce the volume of data generated 

from seabed surveys. Statistical features (statistical descriptors) are extracted using 

different techniques from segments of MBES backscatter returns as described 

previously. The number of features can vary from traditional statistical descriptors 

(mean, standard deviation) to more specific descriptors (such as: fractal dimensions, 

texture analysis etc.). A large number of statistical features are usually generated for 

MBES (around 130) (Le Gall, 1993; Hellequin, 1998; Milvang et al., 1993; Pace & 

Gao, 1988). 

These statistical features are generated with the main objective to capture as 

many useful aspects of the data as possible. While extracting the features, selection 

of features i.e. type and number of features that are to be generated are frequently 

examined. This is done to see which features can provide useful discrimination and 

also to keep check if any algorithm is consistently producing redundant features. 

Each set of statistical descriptors from each segment is known as Full Feature 

Vectors (FFVs). There is no consensus as to the number and type of features that are 

generated. For example, from several studies (Preston et al., 2001; 2003), it was 

evident that the mean contributed least towards discrimination of seabed classes and 

redundancy is likely to exist when numbers of features are higher.  

 Feature extraction: SBES 

Although SBES backscatter datasets potentially contain valuable seabed 

classification information, they typically receive less attention in this context. This is 

because SBES was not designed for that purpose and is mostly used for high 

resolution bathymetry determination. It is fairly recent that SBES’s potential in 

seabed classification is explored. The advantage of SBES beams is that they are sent 

down as vertical beams directly beneath the survey ship and the echosounder 
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receives the vertical reflections off the seabed. Unlike angular beams, the vertical 

beams contain the seabed information with minimal distortions. SBES beams can 

also penetrate the seabed for several meters and can provide vital sub-surface 

information.  

The two software platforms that are most commonly used for feature 

extraction from SBES data are RoxAnnTM and QTC ImpactTM. RoxAnnTM systems 

derive feature values from the tail section of the echo time series using an echo-

integration methodology and QTC ImpactTM, on the other hand, uses only the first 

part of the echo returns to extract features using principal component analysis (PCA) 

followed by k-means clustering. Both methods suffer from the noisy nature of sonar 

signals (Satyanarayana et al., 2007; Zimmermann & Rooper, 2008), contributing 

uncertainty to seabed classification (Peter, McLoone, & Monteys, 2010). 

 Addressing the challenges 

In this thesis we explore alternatives to address some of the challenges 

outlined above. In particular, we focus on applying methods from computational data 

mining and Visual Analytics to improve the process of seabed classification from 

both MBES and SBES data and a combination of both data types. 

A better application of data mining techniques can help reduce the 

complexities in analysing both MBES and SBES data.  There are many data mining 

and visual exploration approaches available that can be applied to sonar data to 

facilitate identification of underlying patterns and reduce computational complexity. 

The following sections will briefly discuss the chosen techniques for both MBES and 

SBES data. 

2.10. Data mining, Visual Analytics and applications to sonar data 

 In the last couple of decades, with the availability of massive storage systems 

and high-resolution sensors, we have been inundated with large volume of remotely 

sensed data. The major problem with an increasing volume of data is that people’s 

understanding of the data decreases alarmingly. Potentially useful information that is 

hidden in the data can therefore go undetected or not taken advantage of.  Data 

mining techniques, in their simplest form, require identification of a problem, along 
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with collection of data that can lead to better understanding, and computer models to 

provide statistical or other means of analysis. The process of data mining is often 

supported by visualisation tools, that display data, or through some fundamental 

statistical analysis (for example: correlation analysis), all for the purpose of 

knowledge discovery. The ultimate objective of this process is finding patterns in 

data with the data stored electronically and the search for pattern is automated or at 

least augmented. But this is not a new idea. It has long been accepted that patterns in 

data can be sought automatically, identified, validated and can even be used for 

prediction. What is new with combined computational, visual and statistical data 

mining approach are increased opportunities for finding and describing patterns in 

extremely large datasets, a tool for helping to explain that data and make predictions 

from it, which is otherwise difficult if not impossible.   

A recent approach to data mining is incorporating visualisation methods to 

aid in the process of knowledge discovery. For both MBES and SBES, such 

alternative combined data mining techniques can provide a way facilitate and 

improve classification. The focus of this research project is to incorporate this 

approach to help improving seabed mapping from both MBES and SBES data. A 

brief account of historical progress of visualisation technique is given below. 

 Brief history of visualisation technique 

There are many historical accounts of developments within the fields of 

probability (Hald, 1990), statistics (Pearson, 1978; Porter, 1986), astronomy (Riddell, 

1980), cartography (Wallis & Robinson, 1987), which relate to some of the important 

developments contributing to modern data visualization. There are other, more 

specialized accounts, which focus on the early history of graphic recording (Hoff & 

Geddes, 1959, 1962), statistical graphs (Funkhouser, 1936, 1937; Royston, 1956; 

Tilling, 1975), fitting equations to empirical data (Farebrother, 1999), economics and 

time-series graphs (Klein, 1997), cartography (Friis, 1974) and thematic mapping 

(Robinson, 1982), and so forth; a detailed overview of some of the important 

scientific, intellectual, and technical developments of the 15th–18th centuries leading 

to thematic cartography and statistical thinking can be found in Robinson (1982). 

Wainer and Velleman (2001) provide a recent account of some of the history of 

statistical graphics. 
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The earliest visualization arose in geometric diagrams, in the positions of 

stars and other celestial bodies, and in the making of maps to aid in navigation and 

exploration. The idea of coordinates was used by ancient Egyptian surveyors circa 

200 BC in laying out towns as well as positions of earthly and heavenly holy 

subjects. The map projection of a spherical earth into latitude and longitude by 

Claudius Ptolemy in Alexandria would serve as reference standards until the 14th 

century (Friendly, 2005, 2008; Robinson, 1982). 

In the 14th century, the idea of a plotting a theoretical function (as a proto bar 

graph), and the logical relation between tabulating values and plotting them appeared 

in a work by Nicole Oresme [1323–1382] Bishop of Liseus (Oresme, 1968). By the 

16th century, techniques and instruments for precise observation and measurement of 

physical quantities, and geographic and celestial position were well developed (for 

example, a “wall quadrant” constructed by Tycho Brahe [1546–1601], covering an 

entire wall in his observatory). Particularly important developments during this 

period were the triangulation and other methods to determine mapping locations 

accurately and the first modern cartographic atlas (Teatrum Orbis Terrarum by 

Abraham Ortelius, 1570) (Funkhouser, 1937).  

These early steps comprise the beginnings of data visualization. By the end of 

17th century, the necessary elements for the development of graphical methods were 

at hand— some real data of significant interest, some theory to make sense of them, 

and a few ideas for their visual representation (Funkhouser, 1937; Robinson, 1982).   

The 18th century witnessed the expansion of visualization and new graphic 

forms. Iso-lines and contours as well as thematic mapping of physical quantities were 

regularly used in cartography. The two most prominent contributors in graphical 

methods were also from this century. First is Johann Lambert (1728-1777) who 

introduced the ideas of curve fitting and interpolation from empirical data points. 

Another is William Playfair (1759-1823), widely considered the inventor of most of 

the graphical forms widely used today- the line graph in 1786, pie chart and circle 

graph in 1801 (Friendly, 2008). The 19th century witnessed the explosive growth in 

statistical graphics and thematic mapping. In statistical graphics, all of the modern 

forms of data display were invented: bar and pie charts, histograms, time-series plots, 

scatterplots, and so forth. In thematic cartography, mapping progressed from single 

maps to comprehensive atlases, depicting data on a wide variety of topics (economic, 

social, medical, physical etc.) During this period graphical analysis of natural and 
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physical phenomena (weather, tides, etc.) began to appear regularly in scientific 

publications (Friendly, 2008; Friendly & Denis, 2005; Robinson, 1982). 

In the late 20th century, John W. Tukey introduced a variety of new, simple 

and effective graphical displays under the rubric of “Exploratory Data Analysis 

(EDA)”- stem-leaf plots, box plots, hanging rootograms, two-way table displays etc. 

(Tukey, 1977). By the end of this century, with the advancement in computing 

technology, graphical terminals and plotters would lead a tremendous growth in new 

visualisation methods and techniques (Andrews, 1972; Friendly, 2005, 2008).  

2.10.2. From data mining towards visual analytics 

Today’s computer systems allow us to store and exchange amounts of data 

that until very recently were considered extraordinarily vast. Data collected are 

considered a potential source of valuable information, providing a competitive 

advantage to its holders. The data are often automatically recorded via sensors and 

monitoring systems and many parameters are usually recorded, resulting in data with 

a high dimensionality.  

Spatial datasets that contain both location and attribute information are more 

and more commonly encountered in many areas, including environmental science. 

Such datasets are often extremely large, which makes the task of discovering 

meaningful information and knowledge in these datasets very difficult. With most of 

today’s data management systems, it is only possible to view quite small portions of 

these data. Having no possibility to adequately explore the large amounts of data that 

have been collected because of their potential usefulness, the data becomes useless 

and the databases become ’Data Dumps’ (Keim et al., 2003; Keim et al., 2008).  

This unprecedented data explosion resulted in a need for an alternative data 

mining approach. It is estimated that about 50% of human brain’s neurons are 

associated with vision and human visual perception system and pattern recognition 

skills are considered extremely efficient (Simoff et al., 2008). One of the recent 

approaches to knowledge discovery in large datasets is therefore to use a 

combination of computational data mining and visual data exploration techniques. 

The discipline concerned with this approach is Visual Analytics, a recent new sub 

discipline of Information Visualisation, and in the case of spatial and spatio-temporal 

data, Geovisual Analytics (Andrienko et al., 2007). Visual Analytics looks at the 



CHAPTER 2.LITERATURE REVIEW 

56 
 

integration of data mining and analytical reasoning for the purpose of exploring 

spatial data, where the process is supported by interactive visual interfaces and 

information visualisation methods. It is multidisciplinary and includes methods from 

information visualisation and data analysis (including statistics, data mining and 

mathematical modelling), but also looks at cognitive aspects of how humans perceive 

and use computerised visualisations (Andrienko et al., 2007). Figure 2.13 shows the 

overall process of visual data mining. 

According to Simoff et al., (2008), data are first pre-processed. Then one or a 

number of visualisation techniques is selected by the user the data are mapped to 

visual representation. 

 

Figure 2.13: Visual data mining process (adapted from Simoff et al., 2008) 

The user then applies a combination of visual interaction and analytical 

reasoning to infer on the underlying pattern in data. The knowledge acquired from 

this interaction and reasoning is stored for further validation. The choice of data 

visualisation tool depends on the nature of the dataset and its underlying structure 

(Ankerst et al., 2000; Siebes, & Wilhelm, 2000). 

Contemporary techniques in visualisation (Guo et al., 2005; Yan & Thill, 

2007) have been brought to the force in recent years owing to advances in 
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technology, but the essential aim remains the same: ‘to turn large heterogeneous data 

into information (interpreted data) and subsequently, into knowledge (understanding 

derived from information)’ (Hernandez, 2007). Typically, visualisation of spatial 

data is concerned with what might be termed ‘spatial ontology’ in that it seeks to 

discover the relationship between objects from a spatial perspective, or, more 

specifically, ‘what exists where’ (Galton, 2003; Goodchild et al., 2007; Longley et 

al., 2005). 

Today, any visualization system must answer the these fundamental queries: 

• What characteristics the visualization systems hold? 

• What kinds of data should it support? 

• What capabilities should it provide?  

The answers to these queries almost entirely depend on the particular task and 

application. For some users a visualization system may be nothing more than a 

simple image viewer or plotting program. For others it is integrated software 

dedicated to their personal field of work, such as a computer algebra program or a 

finite-element simulation system. While in such integrated systems visualization is 

usually just an add-on, there are also many specialized systems whose primary focus 

is upon visualization itself (Longley et al., 2005). 

On one hand, there are many self-contained special-purpose programs written 

for particular applications. Examples include flow visualization systems, finite-

element post-processors, and volume rendering software for medical images. On the 

other hand, several general-purpose visualization systems have been developed since 

scientific visualization became an independent field of research in the late 1980s. 

These systems are not targeted to a particular application area, but provide many 

different modules which can be combined in numerous ways, often adhering to the 

data-flow principle and providing means for ‘visual programming’ (Abram & 

Treinish, 1995; Dyer, 1990; Foulser, 1995; Upson et al., 1989). 

Visualisation tools can be used to visualise the effectiveness of the data 

mining model, as well as to analyse the potential deployment of the model. The gains 

chart, for example, provides a visual summary of the usefulness of the information 

provided by one or more statistical models for predicting a target event in 

comparison to always guessing it occurs. It can also be used to compare and contrast 

the performance of the models at the time they are built and once they are deployed. 
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Other multidimensional data visualisation tools are useful in analyzing the data 

mining model results, as well as comparing and contrasting multiple data mining 

models. These are just a few examples of how we can use data visualisation to 

explore the decision making and evaluation processes of data mining models. 

However, choosing the right kind of visualisation tools is absolutely imperative in 

the success of the research objective and often require substantial amount of testing 

before implementation (Soukup & Davidson, 2002). 

For visual data mining to be effective, it is important to include the human in 

the data exploration process and combine the flexibility, creativity, and general 

knowledge of the human with the enormous storage capacity and the computational 

power of today’s computers. Visual data exploration aims at integrating the human in 

the data exploration process, applying its perceptual abilities to the large data sets. 

The basic idea of visual data exploration is to present the data in some visual form, 

allowing the human to get insight into the data, draw conclusions, and directly 

interact with the data. Visual data mining techniques have proven to be very effective 

in exploratory data analysis and they also have a high potential for exploring large 

databases. Visual data exploration is especially useful when little is known about the 

data and the exploration goals are vague (Keim et al., 2008; Longley et al., 2005). 

2.10.3. Data mining & visual analytics: a comparison 

While both approaches aim to analyse and enhance the underlying properties 

of data, there are some differences between them. Data mining is computer-centred. 

A computer performs data analysis and a human analyst somehow interprets and uses 

the results.  Visualisation may be involved in the data mining process. The main 

objective of using visualisation for data mining is helping the user to understand the 

results and sometimes enabling the user to select and prepare the data for input.  It, at 

times, also enables the user to direct the work of the algorithm. Visual Analytics, on 

the other hand, is human-centred.  A human solves a complex problem and the 

computer is there to aid in the process of problem solving. Visualisations are needed 

for activating the perceptual and cognitive capabilities of the human. These 

capabilities include perception of patterns, identification and association, abstraction 

and generalisation, and reasoning and insight (Andrienko & Andrienko, 2009).  
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Visual analytics seeks to maximise human capacity to perceive, understand, 

and reason about complex and dynamic data and situations and to augment this 

cognitive reasoning with perceptual reasoning through visual representations and 

interaction. It aims to transform data into a representation that is appropriate to the 

analytical task and to effectively convey the important contents and analytical results 

to various audiences in a meaningful way (Keim, 2002; Andrienko and Andrienko, 

2009). 

An advantage of visual analytics is that in this approach the computers and 

humans work synergistically. Computers can store and process great amounts of 

information and are very fast in searching information. They are very fast in 

processing data and can extend their capacities by linking with other computers.  

They can also efficiently render high quality graphics, both static and dynamic. 

Humans, on the other hand, are flexible and inventive. They can deal with new 

situations and problems effectively and can solve problems that are hard to formalise. 

Humans can reasonably act in cases of incomplete and/or inconsistent information 

and can simply see things that are hard to compute. They can employ their 

knowledge and experience in different situations without much difficulty. What 

visual analytics does is to combine the best of both i.e. combines the capability of 

heavy duty computing of modern day computers with the extremely effective visual 

perception system and pattern recognition skills of humans (Andrienko and 

Andrienko, 2009; Simoff et al., 2008; Keim, 2002). 

2.10.4. Data visualisation  

Visual data exploration typically follows a three-step process:  Overview of 

data, zoom and filter, and then details on demand - which has often been regarded in 

the visual analytics domain as the information seeking mantra (Shneiderman, 1996). 

In the overview, the user identifies interesting patterns and focuses on one or more of 

them. For analysing the patterns, the user needs to explore the details of the data. An 

efficient way is to distort the overview visualisation in order to focus on the 

interesting subsets. To further explore the interesting subsets, the user needs a drill-

down capability in order to get the details about the data (Shneiderman, 1996).  

There are a number of well-known techniques for visualizing datasets in 

visual data mining (x-y plots, line plots, and histograms etc.). But these commonly 
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used techniques, though useful for data exploration, are limited to relatively small 

and low-dimensional data sets. In the recent decades, a number of novel information 

visualisation techniques suitable large datasets have been developed (Card et al., 

1999; Spence, 2007; Ware, 2000). 

The type of visualisation to be used depends mostly on three criteria (Keim, 

2001, 2002): the data to be visualized, the visualisation technique, and the interaction 

and distortion technique. The data can be one-dimensional (ex: time series), two-

dimensional (ex: a geographical map), or multivariate (ex: relational tables) in nature 

(Abello & Korn, 2002; Havre et al., 2002; Kreuseler et al., 2000; Shneiderman, 1992; 

Stolte et al., 2002). The dataset can also comprise text and hypertext, such as news 

articles and web documents (Keim, 2002; Havre et al., 2002) or can have inherent 

hierarchy and graphs such as cell phone calls, web documents etc. (Kreuseler et al., 

2000).  

The data type influences heavily the choice of visualisation. Depending on 

the data, it can be standard 2D/3D displays, such as bar charts and x-y plots (Stolte et 

al., 2002) or it can be geometrically transformed displays, such as landscapes and 

parallel coordinates (Kreuseler et al., 2000). It can be icon-based displays, such as 

needle icons and star icons (Abello and Korn, 2002), dense pixel displays, such as 

the recursive pattern and circle segments techniques (Keim, 2000). Some other 

examples of visualisation techniques are graph sketches (Abello and Korn, 2002), 

stacked displays such as treemaps (Johnson & Shneiderman, 1991; Shneiderman, 

1992) or dimensional stacking (Ward, 1994).  

The third factor that influences the choice of visualisation technique is the 

interaction and distortion technique used. This allows users to directly interact with 

the visualisations and can be of several types: interactive projection (Asimov, 1985), 

interactive filtering (Chris Stolte, Tang, et al., 2002), interactive zooming and 

distortion (Kreuseler et al., 2000), and interactive linking and brushing (Stolte et al., 

2002; Kreuseler et al., 2000). 

All the three factors (data type to be visualized, visualisation technique, and 

interaction & distortion technique) that influence the choice of visualisation can be 

assumed to be orthogonal. This means that for any data type, any of the visualisation 

techniques may be used in conjunction with any of the interaction or distortion 
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techniques. A system that is designed to deal with multiple data types may use a 

combination of multiple visualisation and interaction techniques (Keim, 2001; Keim, 

2002). 

One of the major focuses of this research is interactive visualisation system. 

For an effective data exploration it is necessary to use some interaction and distortion 

techniques. Interaction techniques allow the data analyst to directly interact with the 

visualisations and dynamically change the visualisations according to the exploration 

objectives, and they also make it possible to relate and combine multiple independent 

visualisations. Distortion techniques help in the data exploration process by 

providing means for focusing on details while preserving an overview of the data. 

The basic idea of distortion techniques is to show portions of the data with a high 

level of detail while others are shown with a lower level of detail. Below are short 

descriptions of some common interactive visualization techniques. 

 Dynamic Projections  

The basic idea of dynamic projections is to dynamically change the 

projections in order to explore a multidimensional data set. A classic example is the 

Grand-Tour system (Asimov, 1985), which tries to show all interesting two-

dimensional projections of a multi-dimensional data set as a series of scatter plots. 

The sequence of projections shown can be random, manual, pre-computed, or data 

driven. Systems supporting dynamic projection techniques are XGobi (Buja & Cook, 

1996; Swayne et al., 1992), XLispStat (Tierney, 1991), and ExplorN (Carr et al., 

1996). 

 Interactive filtering  

The exploration of datasets is usually done by a direct selection of the desired 

subset  (browsing) or by a specification of properties of the desired subset  

(querying). Browsing is very difficult for very large datasets and querying often does 

not produce the desired results. Therefore a number of interaction techniques have 

been developed to improve interactive filtering in data exploration. An example of an 

interactive tool that can be used for an interactive filtering is Magic Lenses (Bier et 

al., 1993; Fishkin & Stone, 1995). The basic idea of Magic Lenses is to use a tool 

like a magnifying glass to support filtering the data directly in the visualisation. The 
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data under the magnifying glass are processed by the filter, and the result is displayed 

differently than the remaining data set. Other examples of interactive filtering 

techniques and tools are InfoCrystal (Spoerri, 1993), Dynamic Queries (Ahlberg & 

Shneiderman, 1994; Eick, 1994; Goldstein & Roth, 1994), Polaris (Stolte et al.,  

2002). 

 Interactive zooming 

 Zooming is a well-known technique, which is widely used in a number of 

applications. In dealing with large amounts of data, it is important to present the data 

in a highly compressed form to provide an overview of the data but at the same time 

allow a variable display of the data on different resolutions. Zooming does not only 

mean to display the data objects larger but it also means that the data representation 

automatically changes to present more details on higher zoom levels. The objects 

may, for example, be represented as single pixels on a low zoom level, as icons on an 

intermediate zoom level, and as labeled objects on a high resolution. Examples of 

techniques and systems, which use interactive zooming, include TableLens approach 

(Rao & Card, 1994), PAD++ (Bederson, 1994; Bederson & Hollan, 1994; Perlin & 

Fox, 1993), IVEE/Spotfire (Ahlberg & Wistrand, 1995), and DataSpace (Anupam et 

al., 1995).  

 Interactive Distortion  

Interactive distortion techniques support the data exploration process by 

preserving an overview of the data during drill-down operations. The basic idea is to 

show portions of the data with a high level of detail while others are shown with a 

lower level of detail. Examples of distortion techniques include Bifocal Displays 

(Spence & Apperley, 1982), Perspective Wall (Mackinlay et al., 1991), Graphical 

Fisheye Views (Furnas, 1986; Sarkar & Brown, 1994), Hyperbolic Visualization 

(Lamping & Pirolli, 1995; Munzner & Burchard, 1995), and Hyperbox (Alpern & 

Carter, 1991). 

 Interactive Linking and Brushing 

There are many possibilities to visualise multidimensional data but all of 

them have some strength and some weaknesses. The idea of linking and brushing is 
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to combine different visualization methods to overcome the shortcomings of single 

techniques. Scatterplots of different projections, for example, may be combined by 

coloring and linking subsets of points in all projections. In a similar fashion, linking 

and brushing can be applied to visualisations generated by all visualisation 

techniques described above. Interactive changes made in one visualisation are 

automatically reflected in the other visualisations. Typical examples of visualization 

techniques which are combined by linking and brushing are multiple scatterplots, bar 

charts, parallel coordinates, pixel displays, and maps. Most interactive data 

exploration systems allow some form of linking and brushing. Examples are Polaris 

(Stolte et al., 2002) and the Scalable Framework (Kreuseler et al., 2000). Other tools 

and systems include S Plus (Becker et al., 1988), XGobi (Becker et al., 1996; 

Swayne et al., 1992), Xmdv (Ward, 1994), and DataDesk (Velleman, 1992; Wilhelm 

et al., 1995). 

In the context of this thesis and visualising sonar data - multidimensional and 

time series visualisations are considered relevant and are briefly discussed in the 

following sections.  

 Multivariate data visualisation tools 

These are the most commonly used data visualisation tools. These tools 

enable users to visually compare data variables (column values) with other data 

variables using a spatial coordinate system (Soukup & Davidson, 2002). Figure 2.14 

shows examples of some of the most common visualisation graph types. Other 

common multivariate graph types not shown in Figure 2.14 include contour, 

histogram, error, Westinghouse, colour grid and box graphs. A detail outline on 

multivariate visualisation tools can be found in Harris (1999). 

Most multivariate visualisations are used to compare and contrast the values 

of one column (data dimension) to the values of other columns (data dimensions) as 

well as to investigate the relationships between two or more continuous or discrete 

columns in the dataset. Table 2.1 lists some common multivariate graph types and 

their functions (Soukup and Davidson, 2002). 
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Figure 2.14: Commonly used visualisation tools for multivariate data (adapted from 
Harris, 1999) 

2.1: Functions of common multivariate visualisation tools (Soukup and Davidson, 
2002) 

Graph type Function 

Column and bar compare discrete (categorical) column values to continuous 
column values 

 
Area, bar, line, high-
low-close, and radar 

 
compare discrete (categorical) column values over a 
continuous column 

 
Pie, doughnut, 
histogram, 
distribution, box 

 
compare the distribution of distinct values for one or more 
discrete columns 

 
 

Scatter 
 

investigate the relationship between two or more continuous 
columns 

 

   Time series visualisation 

Recent advancements in sensor technology have made it possible to collect 

enormous amounts of time series data, often in real-time. Time series data are data 

elements that are a function of time. The data elements can represent different data 

types, for example nominal, ordinal, and quantitative data or tuples of these in the 

case of multivariate data (Marc et al., 2001). Appropriate visualisation of time-series 
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data is invaluable for exploring temporal data searching for underlying patterns that 

were previously unknown (Hao et al., 2007; MacEachren, 1995).One of the earliest 

records of time series plots dates back to the 10th or 11th century from a text from a 

monastery school (Tufte, 2001). Lambert was one of the first scientists to re-discover 

the application of time series charts in the 18th century. In his book “Pyrometrie oder 

vom Maasse des Feuers und der Wärme” published in 1779, he displayed periodic 

variation in soil temperature in relation to depth under the surface using line graphs 

(Muller & Schumann, 2003).  

The most common and frequently used visualisation techniques for time 

series data are sequence charts, point charts, bar charts, line graphs, and circle graphs 

(Marc et al., 2001). The conventional methods of visualising time dependant data 

(Figure 2.15) allow the conclusion of quantitative statements and facilitate the 

exploration of special data features and patterns as well as data values, time steps and 

positions according to the underlying scales without temporal limitations. As in 

standard cases, the choice of a technique depends on the kind of data available (i.e. 

point graphs for point data, line graphs for continuous data, bar graphs for 

cumulative data, and circle graphs for cyclic data) (Harris, 1999).   

More complex graphs can be generated by mapping a static graph as an 

independent representation of the data element di for a time-step ti (i= instance of 

time) onto a more general graph representation for more than one data element 

(Müller and Schumann, 2003). Chess plot is more appropriate if the target graph is a 

sequence graph (Monmonier, 1990).  Change chart, stacked bar chart, parallel 

coordinate plots (by mapping the different time-steps to the individual axis) are some 

examples of visualisation technique that allows the linking of independent 

representations of data for each time-step to a single map (Figure 2.15) (Inselberg, 

1997; Muller & Schumann, 2003). The main limitation of this type of visualisation is 

that in most of the cases, representations are limited to a single variable over several 

time steps or a limited number of time variables and time steps. (Müller and 

Schumann, 2003). 
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Figure 2.15: Some conventional time series plots (derived from Müller and 
Schumann, 2003) 

A substantial body of work can be found in the development of strategies for 

storing and indexing time series data. Algorithmic and statistical methods for 

identifying patterns have also provided substantial functionality to deal with time 

series data in a wide variety of situations (Berndt & Clifford, 1996; Faloutsos et al., 

1994).  

A major drawback of algorithmic research is that it only addresses one aspect 

of the data mining problem. The question of query formulation i.e. selecting the 

questions that are worth asking is often left unanswered (Aris et al., 2005; Buono et 

al., 2007; Hochheiser & Shneiderman, 2001; Shmueli et al., 2006). For example, 

problems involving identification of outliers in a time series dataset involves 

detecting time series that are similar to a known series (query sequence) thus 

isolating the records that are not or detecting the records that are dissimilar to the 

rest. This involves specification of several query parameters. In addition to the input 

query, users must provide parameters defining the range of allowable similarity or 

dissimilarity. But the identification of parameters such as these requires trial-and-

error processing, which is often challenging and computationally expensive. A 

central problem for users is that the effects of small changes on parameters such as 
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similarity or dissimilarity tolerances may be hard to gauge without running multiple 

trials (Buono et al., 2007; Shmueli et al., 2006; Aris et al., 2005; Hochheiser and 

Schneiderman, 2001). 

Visualisation of time series data introduces the various perspectives that may 

be suitable for interpreting these data sets and was influenced by factors such as 

periodicity (Brewer et al., 2000; Carlis & Konstar, 1998), multiple scales of 

resolution (Keim, 1996; Powsner & Tufte, 1994; van Wijk & Van Selow, 1999), and 

the need to display multiple variables at each time period (Carlis & Konstar, 1998; 

Powsner & Tufte, 1994). Tools such as QuerySketch (Wattenberg, 2001) and 

Spotfire (Spotfire, 2011) enable the querying of time series datasets but do not fully 

meet the need for interactive visualisation. 

Interactive tools and visualisations are usually focused on searches for 

patterns involving well-specified changes over well-defined time periods. Data 

mining algorithms for time series, on the other hand, are more ambitious in the sense 

that they often address the challenge of finding patterns that occur at arbitrary times 

and are assumed “similar” in some general manner that can often account for 

variations in scale and duration, discontinuities or other features (Berndt & Clifford, 

1996; Rafiei & Mendelzon, 2000; Yi et al., 1998).  

Combining the interactivity of dynamic query tools with the power of these 

data mining approaches presents several challenges. In order to support these 

algorithms, a query interface must include mechanisms for specifying tolerances of 

approximate fits, lengths of allowable gaps, tolerances in time dilation or contraction, 

and other constraints. Visualisation of the query results can also be challenging. The 

visualisations would need to display the results with sufficient contextual 

information to explain why the result was a match.  The requirement of combining 

the rapid, incremental updates of information visualisation with the computational 

requirements of data mining can also prove to be difficult in the implementation of 

interactive visualisation tools (Hochheiser & Shneiderman, 2001; Hochheiser, 2003). 

2.10.5. Visual analytics and sonar data 

As mentioned in section 2.8, seabed surveys result in large volumes of data 

from each survey. It is computationally intensive and difficult to explore such data 
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and to produce reliable seabed maps (Preston et al., 2004). The goal of this thesis is 

to use visual analytical methods to improve the process of seabed classification from 

sonar data. In particular, the main focus of this thesis is on three issues: 

− Removing redundancy in MBES feature data 

− Using visual exploration and time series data mining to support 

seabed classification from SBES data 

− Evaluating new seabed mapping methodologies for combined MBES 

and SBES data 

Here we briefly introduce each of these problems and in the remainder of this 

section give an overview of relevant visualisations and data mining methods. 

For MBES data, PCA is used to reduce the dimension from 132 statistical 

features and the first principal three components are usually used for k-means 

clustering. The first three components contain somewhere between 90-95% of the 

information (Preston et al., 2004; Preston, 2009). However, important information 

can be lost in the remaining 5-10%, especially if the seabed is rapidly varying. An 

alternative approach can be to optimise the number of statistical features so that only 

the numbers of statistical features that are required to describe the data completely 

are selected. This approach is based on the assumption that 132 statistical features 

have redundancy in them (Preston, 2009). Visual analytics can provide a technique to 

explore the underlying redundancy in MBES features and provide an alternative 

method for reducing dimensionality such that all relevant information is preserved 

(Soukup and Davidson, 2002).   

We chose to use Kohonen’s Self Organising Map (SOM) (Kohonen, 1989; 

Skupin & Agarwal, 2008) to explore the distribution of attributes and detect 

redundancy in MBES features dataset. SOM provides a unique feature called 

component planes that shows the attribute distribution in the feature space. Similar 

attributes will show similar distribution 10/03/2012 14:51. This feature has the 

potential to reduce bias as the component planes distribution can be subject to 

interpretation of diffident users. 

SBES data consist of univariate time series measured at various spatial 

locations i.e. at each spatial location, SBES emits an acoustic wave and after the time 
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delay (time required for the reflected echo to reach echousounder receiver) the 

receiver starts to record the backscatter at pre determined time interval. The time 

interval is dependent on the working frequency of the echosounder. The interval is 

greater at lower frequency and less at smaller working frequencies. This time interval 

together with the seabed depth determines the data dimension of each time series for 

example, the data dimension increases with increasing survey frequency and/or 

seabed depth and decreases with low frequency and/or shallow seabed depth. The 

challenge is with the high number of time series records available for the survey area.  

To get the data into a more manageable form, it is usually scaled down before any 

pre-processing. Because of the dense proximity of the time series measurements in 

geographical space, the standard approach using bar- and line-charts (Hao et al., 

2007) is ineffective for visual analysis of these data.  

Another problem is outlier detection. Although there are a number of 

computational algorithms that are available to detect outliers in time series data 

(Hung et al., 2010), with large volumes of data there is always a possibility that some 

outliers can go undetected. Visual exploration can be of use to identify outliers by 

using humans’ capability of detecting anomalies in the distribution of data.  

Here we use the ‘TimeSearcher©’ tool (Hochheiser & Shneiderman, 2001; 

Keogh et al., 2002), which provides us with an augmented visual query mechanism 

for finding patterns in time series data (Hochheiser, 2003; Keogh et al., 2002) and 

can be useful in detecting outliers in SBES data. The interactive distortion capability 

in TimeSearcher© allows data exploration by preserving the overview of data during 

drill-down operations i.e. shows portion of the data with emphasis while others are 

shown with a lower level of detail (Hochheiser & Shneiderman, 2001; Keogh et al., 

2002). 

The new MBES echosounders also come equipped with SBES echosounders 

and simultaneous measurements are acquired in the same survey run. In the case of a 

heavy presence of sea plants, shells, boulders etc., the MBES classification can be 

noisy at times. In these circumstances, information from SBES data can be 

particularly useful as SBES echoes can penetrate the seabed for several meters. The 

echo returns from the sub-surface can give us an understanding of the underlying 

layers where MBES does not penetrate. Optimal features from MBES (see Chapter 
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3) will be combined with statistical features generated from SBES backscatter. The 

resulting dataset will be clustered using fuzzy c-means as fuzzy logic allows 

overlapping of clusters, which is expected in the case of combined MBES and SBES 

where seabed surface echo returns from MBES can differ from sub-surface returns of 

SBES in the same location.  

2.11. Visual and computational data mining methods used in this thesis 

for sonar data 

In this section we discuss the visual and computational data mining methods 

that were used to address the research challenges presented previously. These 

include: A Self Organising Map and its visualisations, time series visualisation in 

TimeSearcher© and various clustering methods used for classification of sonar data. 

2.11.1. Self Organising Maps (SOM) 

Visual data mining tools can also be used to visualise the outputs of the data 

mining model and the selection of the visualisation tool depends on the nature of 

dataset and the underlying structure of the resulting model. However, not all data 

mining algorithms can be visualised with ease. One such example is neural networks. 

Neural network models simulate a large number of interconnected simple processing 

units segmented into three steps (input, hidden, and output layers). Visualising the 

entire network with its inputs, connections, weights, and outputs as a two- or three-

dimensional picture can be very challenging and continues to be a matter of research 

(Craven & Shavlik, 1991; Lang & Witbrock, 1988; Soukup & Davidson, 2002; Uzak 

et al., 2008). 

The Self-Organising Map (SOM) is an artificial neural network used for 

unsupervised classification of data. It maps multi-dimensional data onto a lower 

dimensional space, usually represented as a two-dimensional hexagonal lattice. The 

mapping function preserves the probability density and the aspatial topology of the 

input data, which means that the patterns in the attribute space are preserved in the 

result space. As an unsupervised neural network, the SOM uses similarity between 

input data objects as its only measure of separating data into groups (clusters) and is 

therefore a data-driven method (Deboeck & Kohonen, 1998). 
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The SOM mapping is typically from the multi-dimensional data space with n 

dimensions (attributes) onto a lattice of usually hexagonal cells, which represent 

neurons in the neural network. Each of the cells is assigned a vector of weights at the 

beginning of the procedure. The SOM algorithm then takes each data object in turn 

and finds the location of the cell that is the best match for this data object. The data 

object is then placed into the cell and the weights of the cell and of the neighbouring 

cells are recalculated to reflect this best match. The process of recalculating weights 

is repeated after each data object, until all weights are stable. This is the training 

process of the SOM. Which cells are affected by the same data object is determined 

through a pre-defined neighbourhood kernel function. This function has the highest 

value at the best match cell and monotonically decreases with distance to finally 

reach 0 at a certain distance from the best match cell. This means that nearby cells of 

the SOM all learn from the same data object and as a consequence, when this 

procedure is repeated over and over, it means that in the final model, similar data 

objects are mapped to cells in close proximity to each other (Figure 2.16). The 

location of the data objects in the SOM lattice therefore defines grouping of data 

according to their similarity (Kohonen, 2000).  

Since the SOM preserves both the topology and the distribution of data 

objects, it is a useful knowledge discovery tool for spatial domain and has been used 

in a number of recent applications, for example, to list a few. An overview of SOM 

applications in GIScience can be found in Agarwal and Skupin (2008). 
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Figure 2.16: Network training process in SOM 

The result space of a SOM is a lattice and therefore two-dimensional, which 

makes it suitable to present graphically. Visualising a SOM means visually exploring 

the model that was created through network training. There are many different SOM 

visualisation methods (Vesanto & Ahola, 1999) and they can be used for different 

purposes: the most basic one is to show the similarity of data objects through their 

position in the lattice. The method that is of interest in this research project is the 

component planes visualisation, as this method allows us to explore attribute 

similarity (i.e. similarity between attributes and not between particular data objects), 

which was the purpose of our experiment in eliminating redundancy of MBES 

features. In the component planes visualisation, one SOM lattice is displayed for 

each attribute, i.e. there are as many lattices as there are attributes. Figure 2.17 shows 

a typical example of SOM component planes. After the data training process, 

neurons, which are represented by hexagonal cells are coloured according to the 

attribute values of the data object in the neuron cell. The distribution of data in the 

cells is defined by the SOM mapping and is the same in all lattices. The result is that 

component planes, which belong to correlated attributes, have similar colour 

distribution. The lattices can then be visually compared to each other to identify 

similar distributions of values in two or more attributes – these are revealed as 

similar patterns at identical locations in different lattices. These patterns are used to 

identify visual groups of similar attributes (Koua & Kraak, 2004; Vesanto, 1999). 
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Figure 2.17: SOM component planes 

The ‘SOM toolbox’ (Vesanto, 1999) developed for Matlab environment was 

used for the visual exploration and evaluation of MBES feature datasets. Matlab is a 

high level programming language with a powerful visualisation and graphical user 

interface. It also has a very efficient implementation of matrix calculus. These 

features make Matlab a powerful tool for data mining research as they allow fast 

prototyping, testing and customising of the algorithms. In addition to these 

capabilities, there are also a large number of toolboxes intended for a variety of 

modeling and analysis tasks that can be added to the Matlab environment. These 

toolboxes are based on a wide span of methodologies from statistical methods to 

Bayesian networks or from mapping functions to optical/radar image analysis 

(Vesanto et al., 2000). The SOM Toolbox was developed to meet the on going need 

of an efficient, easy-to-use implementation of SOM in Matlab for research purposes. 

The main objective behind the development of the toolbox was to provide a simple 

yet powerful data mining tool with strong visualisation capabilities. The toolbox 

facilitates data processing, different topologies to initialise and train SOM, 

visualisation of SOMs in various ways, and analysis of the properties of the SOMs 

and data. Examples include SOM quality, clusters on the map and correlations 

between variables (Vesanto & Alhonierni, 2000; Vesanto, 1999; Vesanto et al., 

2000). 
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The highlights of the SOM Toolbox include the following (J Vesanto & 

Alhoniemi, 2000; Juha Vesanto, 1997, 1999): 

− Modular programming style: The functions in the toolbox are 

constructed in a modular manner. This means that the users can tailor 

the code to match their needs. 

− Component names, masks and normalizations: Users can give 

different names to the input vectors and use different kinds of 

(reversible) preprocessing operations. The components can also be 

masked, or weighted. 

− Batch or sequential training: Users can improve the training process 

considerably by using the batch version. There are also other training 

variants, like supervised SOM. 

− Map dimension: The toolbox supports N-dimensional maps, although 

visualisation is limited to two dimensions. 

− Advanced graphics: Matlab's strong graphics capabilities can also be 

implemented to generate figures. 

− Graphical User Interfaces (GUIs): SOM toolbox come with some 

graphical user interfaces, although it is recommended to use the 

command line versions of the functions as they are more efficient. 

2.11.2. Time series visualisation: TimeSearcher© and the time boxes 

Interactive exploration of the contents of time series datasets can be a useful 

tool as it can enable the users to quickly construct queries, modify parameters, and 

examine results from the datasets. These tools also help quickly develop the 

understanding of the dataset as a whole, which is useful for guiding the construction 

of queries, thus facilitating knowledge discovery (Hochheiser and Schneiderman, 

2001). The combination of graphic displays with easily customisable user-interface 

widgets for query formulation allows users to explore data sets easily (Ahlberg & 

Shneiderman, 1994). One such tool is TimeSearcher© (Hochheiser & Shneiderman, 

2001; Hochheiser, 2003). 

TimeSearcher© is a time series visualisation tool that allows interactive 

exploration of time series data (Buono et al., 2005; Hochheiser & Shneiderman, 
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2004). It is an information visualisation tool based on the use of Timeboxes 

(Hochheiser and Shneiderman, 2004) to pose queries over a set of entities with one 

or more time-varying attributes. TimeSearcher© is written in Java, using Piccolo for 

all graphics rendering and scenegraph management (Buono et al., 2005; Shmueli et 

al., 2006; Hochheiser and Shneiderman, 2004).  

TimeSearcher© can display multiple time series representing multiple 

variables (e.g. precipitation, wind velocity, rainfall intensity etc.) and can also 

associate each item with a set of attribute data (metadata) that remain constant over 

time (e.g. car rating or auction start day). In this research project, TimeSearcher© 

version 3 is used for exploration of SBEs time series data. The user interface of this 

version has four major parts:  

1. Overview 

2. Variables View 

3. Details List, and 

4. Items List and Attribute Statistics.  

 

Figure 2.18 shows the interface of TimeSearcer© (TimeSearcher, 2011). 

 

Figure 2.18: The TimeSearcher© User Interface, Main Components (TimeSearcher, 
2011) 
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The rectangular query regions that can be drawn directly on a two-

dimensional display of time series data in TimeSearcher© are known as 

“Timeboxes”. The x-axis of Timebox represents the extent of the time period of 

interest and the y-axis specifies a constraint on the range of values of interest in that 

given time period. In general, a Timeboxe acts as a filter that accepts only those 

items that have values in the given range and time extent defined by the Timebox 

(Hochheiser and Shneiderman, 2004; Hochheiser, 2003; Keogh et al., 2002). 

The application of Timebox is very simple and can be created by simply 

drawing rectangle in TimeSearcher©. As the box is drawn, it is constrained to 

occupy an integral number of time points.  Items in a dataset that completely meet all 

of the constraints implied by the one or multiple active Timeboxes are highlighted 

for exploration.  Figure 2.19 shows an example of application of Timeboxes in 

TimeSearcher© (Hochheiser and Shneiderman, 2004; Hochheiser, 2003; Keogh et 

al., 2002). 

 

Figure 2.19: Timebox queries in TimeSearcher©: (a) Graph overview display for the 
entire data set. (b) Single Timebox query (c) Two Timeboxe query: refining the 
query in (b). (d) Three Timebox query: a further refinement of the query in (c) 
(Hochheiser, 2004). 
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The graph overview provides an ongoing display of the effects of the addition 

of Timeboxes and an overview of the result set. This enables the users to explore a 

large time series dataset interactively with minimal cognitive overhead. This enables 

users to quickly try a wide range of queries with ease and the modification of these 

queries allows users to evaluate the effects of changes in query parameters easily 

(Hochheiser and Shneiderman, 2004; Hochheiser, 2003; Keogh et al., 2002). This 

can be extremely helpful in identifying specific patterns of interest, as well as in 

gaining understanding of the SBES dataset as a whole. 

2.11.3. Clustering of sonar data 

Classifiers are often used in data mining research for identification of 

important classes of objects within a data repository. It is particularly useful when a 

dataset contains examples that can be used as the basis for future decision making. A 

range of different types of classification algorithms have been developed over the 

years and they mostly fall into the following methods: nearest neighbour methods (k-

means, Fuzzy c-means), decision tree induction (Hierarchical classification), error 

back propagation (ANN, SOM), reinforcement learning (Markov Decision Process, 

MDP), and rule learning (GALE, extended classifier system (XCS)) (Bull et al., 

2007; Lagoudakis & Parr, 2003; Salzberg, 1997). 

When classifying sonar data, the most common approach is to use a 

combination of PCA and k-means (Brown et al., 2007; Mcgonigle et al., 2009; 

Preston et al., 2003; Sutherland et al., 2007). PCA is used for orthogonalisation of the 

feature dataset and dimensionality reduction (selection of three principal 

components). K-means is then used for clustering and the clusters are labelled using 

various ground truth data (Chivers et al., 1990; Orlowski, 1984; Preston et al., 2003). 

Artificial Neural Networks (ANN) have been used in several studies for the 

classification of MBES data (Blondel, 2000; Haralick, 1979; Lundblad et al., 2006; 

Marsh & Brown, 2009; Reed & Hussong, 1989). There have also been some 

classifiers that use ANN for seabed classification – for example, GENIUS developed 

by Danish Hydraulic Institute (DHI) and SeaClassTM by Triton Elics International 

(Brown et al., 2007; DHI, 2011; Triton Elics International, 2004). Atallah et al. 

(2003, 2002) used wavelet analysis to classify and segment sonar signals scattered 

from underwater seabed.  Lucieer (2005) used linear discriminant analysis (LDA) for 
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generating classes from SBES data. This technique predicts classes based on how 

close a set of measurement variables are to the multivariate means of the levels being 

predicted (Hastie et al., 2009). Lucieer used 'Spatial Analyst' tool in ArcGIS to each 

of the formula generated from the LDA to generate the probability surfaces (Lucieer, 

2005).  

Fuzzy classifiers have also been used for the classification of seabed type. 

There have been a number of studies that focused on using fuzzy logic to achieve 

seabed classification. For example, Lucieer (2008) successfully tested object oriented 

hierarchical classification, a technique that applies fuzzy rule based membership 

function, for segmentation of data acquired from side scan sonars. Tamsett (1993), 

used fuzzy logic on power spectra features from side scan sonars and Narayanan et 

al. (2011) used fuzzy classifier to achieve a soft classification of mixed seabed using 

LIDAR bathymetric data.  Lucieer and Lamarche (2011) tested unsupervised fuzzy 

classification on data acquired from a comprehensive 32 kHz MBES bathymetry and 

backscatter survey of the Cook Strait, New Zealand (survey area ~8500 km2) to map 

deep water substrates in the Cook Strait, New Zealand.  

This thesis focuses mainly on two classifiers that are commonly used for 

seabed mapping: k-means and fuzzy c-means. The following sections briefly discuss 

these two classifiers. 

 K-means classifications 

K-means is the most frequently used algorithm in sonar data clustering 

(Brown et al., 2007). This algorithm is iterative and assigns an arbitrary cluster 

vector as a first step. In the second step it classifies each pixel to the closest cluster. 

Next the new cluster mean vectors are calculated based on all the pixels in one 

cluster. The second and third steps are repeated until the difference between the 

iteration is small. The differences are commonly defined in two different ways: either 

by measuring the change in distance in the mean cluster vector between iterations or 

by the percentage of pixels that have changed between iterations (Hamerly & Elkan, 

2002; Macqueen, 1967; Rekik et al., 2006). 
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 k-means clustering 

The term "k-means" was first used by James MacQueen (1967), though the 

idea goes back to Hugo Steinhaus (1957). The standard algorithm was first proposed 

by Stuart Lloyd in 1957 as a technique for pulse-code modulation, though it wasn't 

published until 1982 (Lloyd, 1982). 

For a given a set of observations (x1, x2, …, xn), where each observation is 

a d-dimensional real vector, the principal objective of k-means clustering is to 

partition the n observations into k sets (k ≤ n) S = {S1, S2, …, Sk} so as to minimize 

the within-cluster sum of squares (WCSS): 

argmin! |x! − µμ!|!
!!∈!!

!

!!!

                                                                                                  2.14 

where, µμ! is the mean of points S!. The most common k-means algorithm uses an 

iterative refinement technique. Given an initial set of k means m1
(1),…,mk

(1) , the 

algorithm proceeds by alternating between two steps (David, 2003):  

Assignment step: Assign each observation to the cluster with the closest 

mean (i.e. partition the observations according to the Voronoi diagram generated by 

the means). 

S!! = x!: x! −m!
! ≤    x! −m!

! ∀1 ≤ j ≤ k                                             2.15 

where each x! goes into exactly one S!!, even if it could go in two of them. 

Update step: Calculate the new means to be the centroid of the observations 

in the cluster. 

m!
!!! =

1
S!!
   x!
!!∈!!

!

                                                                                                              2.16 

The algorithm is deemed to have converged when the assignments no longer 

change. Commonly used initialization methods are Forgy and Random Partition 

(Hamerly and Elkan, 2002). The Forgy method randomly chooses k observations 

from the data set and uses these as the initial means while the Random Partition 

method first randomly assigns a cluster to each observation and then proceeds to the 
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update step, thus computing the initial means to be the centroid of the cluster's 

randomly assigned points (Hamerly and Elkan, 2002). 

From a statistical perspective, the clusters obtained by k-means can be 

interpreted as the Maximum Likelihood Estimates (MLE) for the cluster means if it 

is assumed that each cluster comes from a spherical Normal distribution with 

different means but identical variance (and zero covariance). This leads to some of 

the general disadvantages of the k-means algorithm (Bradley & Fayyad, 1998; Jain et 

al., 1999):  

− K-means works best for datasets with clusters that are spherical and that have 

the same variance. This is often not true for sonar datasets. 

− The result of k-means may be heavily influenced by the initial choice of 

random cluster centres. This effect can be alleviated by repeated clustering 

and picking the set of results with the minimum between-cluster errors. 

− The number of clusters must be declared before the start of the algorithm. 

Typically this is not known a priori, leading to the common practice of 

“guessing” the best number. Inappropriate choice of ‘k’ may yield poor 

clustering results. Although various criteria are available to estimate the 

optimal number of clusters, including the elbow criterion (Aldenderfer & 

Blashfield, 1984), Akaike information criterion (AIC) (Akaike, 1974), 

Bayesian information criterion (BIC) (Schwarz, 1978), this number cannot 

always be found. 

− Another problem is that while k-means attempts to minimise intra-cluster 

variance, the algorithm does not necessarily converge towards the global 

minimum variance - the solution can be trapped in one of the local minima 

due to the nature of the update algorithm. One final disadvantage of the k-

means algorithm is that it does not recognise clusters that are non-convex, 

non-isotropic, ring-like or non-globular.  

 Fuzzy c-means classifications  

The fuzzy c-means (FCM) clustering algorithm is an unsupervised 

classification algorithm which accommodates the vagueness in class definitions by 

allowing the class clusters to overlap. The clusters are assumed to be optimal when 
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the multivariate within-cluster variance is minimal (Bezdek et al., 1984; Dunn, 

1974).  

Similarly to k-means, FCM algorithms treat each data record as an 

independent sample and apply an iterative procedure starting with an initial random 

allocation of the samples to be classified into class clusters. Based on the cluster 

allocation, the centre of each cluster (also known as the centroid) is calculated. The 

centroids are re-allocated in each iteration until the optimal locations of the cluster 

centres are found; at which point the algorithm has converged (V. Lucieer & Lucieer, 

2009). The similarity of each sample to a cluster is expressed by a membership value 

ranging from 0 to 1, where 1 represents perfect similarity. The Euclidean distance 

measure is employed to quantify distance from samples to cluster means. 

The FCM algorithm attempts to partition a finite collection of n elements X = 

{x1,...,xn} into a collection of c fuzzy clusters with respect to some given criterion. 

Given a finite set of data, the algorithm returns a list of c cluster centres C = 

{c1,...,cc} and a partition matrix U = u!,! ∈ 0, 1 , i = 1,… ,n  &  j = 1,… , c, where 

each element uij tells the degree to which element xi belongs to cluster cj . Like the k-

means algorithm, the FCM aims to minimize an objective function (Bezdek, 1981). 

The standard function is: 

u! x =
1

d(centre!,!)
d(centre!,!)

! (!!!)

!

                                                                      2.17 

which differs from the k-means objective function by the addition of the 

membership values uij and the fuzzifier m. The fuzzifier m determines the level of 

cluster fuzziness. A large m results in smaller memberships uij and hence, fuzzier 

clusters. In the limit m = 1%, the memberships uij converge to 0 or 1, which implies a 

crisp partitioning. The basic FCM Algorithm, given n data points (x1, . . . , xn) to be 

clustered, a number of c clusters with (c1, . . . , cc) the center of the clusters, and m 

the level of cluster fuzziness with, 

In fuzzy clustering, each point has a degree of belonging to clusters, as in 

fuzzy logic, rather than belonging completely to just one cluster. Thus, points on the 

edge of a cluster, may be in the cluster to a lesser degree than points in the center of 
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cluster. An overview and comparison of different fuzzy clustering algorithms is 

available (Nock and Nielsen, 2006).  

Any point x has a set of coefficients giving the degree of being in the kth 

cluster wk(x). With fuzzy c-means, the centroid of a cluster is the mean of all points, 

weighted by their degree of belonging to the cluster: 

c! =
w!(x)x!

w!(x)!
                                                                                                                                2.18 

The degree of belonging, wk(x), is related inversely to the distance from x to 

the cluster center as calculated on the previous pass. It also depends on a 

parameterm that controls how much weight is given to the closest center (Bezdek, 

1981).  

The membership function (sum of the membership values) is the basic idea in 

fuzzy set theory; its values measure degrees to which objects satisfy imprecisely 

defined properties. Fuzzy memberships represent similarities of objects to 

imprecisely defined properties. It is calculated by determining the distance of the 

point to the cluster centres (also known as degree of membership value) by taking 

into consideration the degree of fuzziness. The fuzzy exponent (also known as 

fuzziness) represents the amount of overlap between classes. A value close to 1 result 

in clusters with a distinct boundary and a very high value of fuzziness would indicate 

a fully overlapping set of clusters (Lucieer & Lucieer, 2009; Ozkan & Turksen, 

2007). 

Clustering of natural classes has always been challenging as there is usually 

no distinct boundary between classes as they tend to overlap. FCM has been 

successfully applied in the geographical context to overcome this class overlap issue 

(Burrough et al., 2000). FCM is an exploratory technique that initially does not allow 

inference about the geographical proximity of the overlapping classes, though it is 

likely that the resulting membership values will be spatially correlated if such 

correlation exists in the source data (Burrough et al., 2000). Therefore it seems to be 

a promising alternative technique for seabed type classification from MBES data, 

since borders between geological seabed type classes are rarely crisp. 
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In the next subsection, we discuss the technique to analyse clusters for their 

within-cluster compactness and between-cluster separation without using ground 

truth data. 

2.11.4. Internal cluster validation 

There is extensive literature available on data clustering.  Despite the 

intensive research, a critical issue in data clustering is the estimation of the number 

of clusters contained in the data. Most of the traditional clustering algorithms such as 

k-means, fuzzy c-means, EM (Expectation Maximisation), and hierarchical 

clustering require cluster number to be defined a priori by the users (Dempster et al., 

1977; Everitt et al., 2011; Hastie et al., 2009; Jain & Dubes, 1988; Macqueen, 1967). 

As the actual number of clusters is generally unknown and estimation of clusters 

from visual exploration is prohibitive when the dataset is multidimensional and large 

in size, this approach of defining cluster numbers a priori is quite restrictive in 

practice. Common solutions to this problem are to partition with different number of 

clusters and then select the best result according to a specific quality criterion 

(Everitt et al., 2011; Jain et al., 1999).  There are a number of clustering validity 

measures available as quantitative criteria for evaluating the quality of data 

partitions. They can be divided into two broad categories – External and Internal 

validity indices. 

External validity indices are the measures of the agreement between two 

partitions, one of which is usually a known/golden partition, e.g. true class labels, 

and another is from the clustering procedure. Internal validity indices evaluate 

clustering results by using only features and information inherent in a dataset. They 

are usually used in the case that true solutions are unknown.  For this project, some 

commonly used internal validation methods were tested (Everitt et al., 2011; Jain et 

al., 1999). 

There are a number of functions available for internal validation of clusters. 

Some of these are: Silhouette index, Davies-Bouldin index, Calinski-Harabasz index, 

Dunn’s index, R-squared index, Hubert-Levin index (C-index), Krzanowski-Lai 

index, Hartigan index, Root-mean-square standard deviation (RMSSTD) index, 

Semi-partial R-squared (SPR) index, Distance between two clusters (CD) index, 
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weighted inter-intra index, Homogeneity index, and Separation index (Everitt et al., 

2011; Jain et al., 1999). 

For this research, four indexes were tried as they are more commonly used 

than others. They are: Calinski-Harabasz or Variance Ratio Criterion (VRC) index 

(Calinski & Harabasz, 1974; Everitt et al., 2011), Davies-Bouldin index (Jain & 

Dubes, 1988), Dunn’s index (Dunn, 1974; Halkidi et al., 2001) and Silhouette index 

(Everitt et al., 2011; Halkidi et al., 2001). The validation index approaches are briefly 

discussed below: 

 Calinski-Harabasz Index (VRC) 

For a given data set ! = {! 1 …… , !(!)} of N data objects and a partition 

of these data into k mutually disjoint clusters, the Variance Ratio Criterion (VRC) is 

given as (Calinski and Harabasz, 1974): 

!"# =
!"#$%  (!)
!"#$%  (!)×

! − !
! − 1                                                                             (2.19) 

Where W and B are the within-group and between-group dispersion matrices. 

The trace of matrix W is the sum of the within-cluster variance (its diagonal 

elements). The trace of the matrix B is the sum of the between-cluster variances. 

Compact and separated clusters are expected to have small values of trace (W) and 

large values of trace (B). Therefore, a good data partition will yield a greater value of 

the ratio between traces of B and W. The normalisation term (N-k)/(k-1) prevents 

this ratio to increase monotonically with the number of clusters, making VRC an 

optimisation criterion with respect to k. 

 Davies-Bouldin Index 

This index, like VRC, is also based on a ratio that involves within-group and 

between-group distances. The index is calculated as below (Jain & Dubes, 1988): 

!" =
1
! !!

!

!!!

                                                                                                                  (2.20) 
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Where Di = max {Dij}, i≠j. Dij is the within-to-between cluster spread for the 

ith and jth clusters and is expressed as
!!!!!
!!,!

. !! and !! are the average within group 

distance for the ith and jth clusters. di,j is the inter-group distance between clusters i 

and j. The term Di represents the worst-case within-to-between cluster spread 

involving ith cluster and therefore, compact well-separated clusters are always 

distinguished by small values of DB. 

 Dunn’s Index 

Dunn’s index is also based on geometric measures of cluster compactness and 

separation. This index can be defined as (Dunn, 1974): 

!" =   
!"#

!, !   ∈ 1,… , ! ,! ≠ !
!!,!

!"#
!∈ !,…,! ∆!

                                          (2.21) 

Where Δ! is the diameter of the lth cluster and δp,q is the set distance between 

clusters p and q. The set distance is defined as the minimum distance between a pair 

of objects across clusters p and q. The diameter of a given cluster (cluster l in this 

case) is defined as the maximum distance between a pair of objects within that 

cluster. Therefore compact and well-separated clusters are always represented with 

high values of DN. 

 Silhouette Index 

Silhouette index is another well known cluster validation index and is based 

on, like other validation methods mentioned above, geometric considerations about 

compactness and separation of clusters. Before defining the criterion, let us consider 

that the jth object of the dataset, x(j), belongs to a given cluster p∈{1,…,k}. Then, let 

ap,j be the average distance of this object to all other objects in cluster p. Finally, let 

bp,j be the minimum average of the distances between this object to all other object in 

another cluster q (p ≠ q and q=1,...,k). This minimum average distance represents 

average dissimilarity of object x(j) to its closest neighbouring cluster. Then, the 

Silhouette index (also known as the Silhouette Width Criterion) can be expressed as 

(Everitt et al., 2011; Kaufman & Rousseeuw, 2005): 
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!!(!) =
!!,! − !!,!

max !!,! , !!,!
                                                                                        (2.22) 

The denominator in the above equation is a normalising factor and a higher 

value of the Silhouette index represents compact and well-separated clusters.
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The use of multibeam echosounders (MBES) in seabed mapping is fairly 

recent (late 1970s) and at this moment is the instrument of choice for most seabed 

mapping projects (Mayer, 2006).  

3.1. Research background and justification 

The goal of this project is to examine the complexity of the classification of 

MBES backscatter data (Preston, 2009; Preston et al., 2001), which is commonly 

This chapter discusses the application of the Self Organising Map (SOM) for the detection of data 
redundancy in MBES data. It also compares the clustering results obtained from using both the standard 
MBES data as well as MBES data optimised using SOM.  
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used for production of seabed maps. This method generates a very complex and 

highly dimensional new dataset of statistical features (statistical descriptors derived 

from segments of MBES image) from the original MBES image which is then used 

for clustering and classification. One of the drawbacks of the method is that many 

attributes in this complex dataset are very similar to each other, resulting in large 

redundancy on information. The main focus in this chapter will be on this particular 

complexity issue – redundancy of a method-generated feature dataset. The attribute 

similarity in this dataset is explored using a method from Visual Analytics – a Self 

Organising Map (SOM). This experiment introduces the idea of using a visual 

analytical approach and tests the feasibility of the idea of optimal feature vector 

determination on a set of MBES dataset to minimise the redundancy. The experiment 

is then further expanded by producing an alternative clustering of the backscatter 

data using a subset of non-redundant features and then compares that to the map 

generated using the traditional method. The ultimate goal of the project is to facilitate 

a more efficient seabed classification from MBES backscatter data by avoiding 

unnecessary redundancy as much as possible. 

The chapter is structured as follows: the following sections briefly describe 

the data acquisition and processing. This is followed by discussion of the experiment 

that was performed. Lastly results are presented followed by discussion of the 

results. 

3.2. Producing the feature dataset from MBES backscatter data 

Various techniques for image processing can be applied to MBES backscatter 

images for image segmentation. In addition to backscatter measurements, sonar 

geometry and the geometry of the entire multibeam system have to be taken into 

account in order to achieve a valid classification that depends on sediment 

characteristics rather than sonar artefacts (Preston et al., 2001). Another approach to 

segmentation relies on the calibrated backscatter levels and on their variation with 

grazing angle (Hughes Clarke et al., 1997). Other recent approaches to automatic 

classification are based on the statistical nature of the image, irrespective of absolute 

calibration. One of the main commercial developments (specifically for MBES) 

based on this approach is Quester Tangent Corporation’s QTC MultiviewTM  

(Mcgonigle et al.,2009; Preston et al., 2004; Preston et al., 2001), which uses the 



CHAPTER 3.REDUNDANCY DETECTION AND CLUSTERING OF MULTIBEAM BACKSCATTER DATA 

89 
 

backscatter amplitude and statistical properties of multibeam sonar images to classify 

seabed sediments. This is the method that is researched in this project. Figure 3.1 

shows the general workflow from data acquisition to feature extraction using QTC 

MultiviewTM. 

 

Figure 3.1: A typical MBES data acquisition and feature extraction process (Preston, 
2009) 

Backscatter data for seabed classification can have flawed values (due to 

unreasonable depth picks, reflections from fish or artefacts, etc.). In addition, images 

can be smeared due to excessive vessel movement. In QTC MultiviewTM’s approach, 

the backscatter data are first filtered to clean the data of these anomalies. The image 

of the seabed is then divided into a number of rectangular patches. The placement of 

these patches depends on the quality of the data. It is also influenced by the grazing 

angle and range of the sonar as well as constraints that come with different sensor 

models. The influences of these are removed through the process of image 

compensation during the next step where the image is separated into rectangular 

patches, which are superimposed on the image on each side (port & starboard) of the 

vessel (Preston, 2009; Quester Tangent, 2007). 

3.2.1. MBES raw data processing 

In the next step, a total of 132 features are calculated for each patch from the 

backscatter image by applying a number of statistical algorithms on each of these 
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rectangular patches.  The features are called Full Feature Vectors (FFVs) and the 

result is a large matrix in which each column represents the values of one feature and 

each row contains all the features extracted from one rectangular patch. This matrix 

represents the FFV space, which is 132-dimensional, i.e. each feature can be 

regarded as one new dimension/attribute. Table 3.1 presents a list of the features 

(Preston, 2009; Preston et al., 2001) in the same order as they appear in the newly 

formed FFV space. They are grouped into several sets. 

The first set of features includes mean, standard deviation and two high-order 

statistical moments (skewness & kurtosis). These features indicate interface 

roughness and changes in acoustic impedance. It should be noted that even though 

kurtosis is calculated at this step, it is assigned weighting of zero later on in the 

procedure and is therefore disabled. 

The next set of features is extracted from histograms and quantiles. 

Histogram features indicate heterogeneity. Quantile features, related to the histogram 

features, express the distribution of backscatter intensities. 

The next set of features consists of Pace power spectrum ratios, which are 

calculated from the ratios of log-normalized power in various frequency bands. 

These represent the power spectrum of backscattering strength calculated through a 

Fast Fourier transformation (FFT) and a median filter (Pace & Gao, 1988) 

An important approach to any image analysis is quantifying the texture 

content of an image. In Preston (2009) classification procedure, this is done by using 

Gray Level Co-occurrence Matrices (GLCMs). In this procedure, a total of 63 

textural features are calculated related to GLCMs in the following way: suppose a set 

of sound signals from MBES, called a ping, is emitted, at distinct angles, towards the 

sea floor and their reflectivity values recorded (Renard et al., 2005). If we consider a 

sequence of that reflectivity data (say their reflectivity values are m and n), the co-

occurrence of reflectivity m and n is the number of pairs of samples that are in a 

fixed spatial relationship and have the reflectivity m and n. A GLCM for a particular 

patch is a square matrix where each (n, m) element represents the number of times 

that the backscatter amplitude changes from n to m for a particular direction and step. 

In QTC MultiviewTM a step size of 1, 2, and 3 pixels are used in along-track 

direction, across-track direction, and in the direction that is at the 450 angles between 
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the two directions. This produces a total of 9 GLCMs for each patch. Seven textural 

features are then calculated for each GLCM – these include correlation, shade, 

prominence, contrast, energy, entropy, and homogeneity (Preston, 2009; Preston et 

al., 2004).  

Table 3.1: 132 features (Full Feature Vectors, FFVs) calculated from image patches 
(after Preston et al., 2001; Preston, 2008). 

Statistical Descriptors Number of 

features 

Mean, standard deviation, skewness, kurtosis 4 

Quantiles 9 

Pace features from power spectral ratios 15 

GLCM correlation 9 

GLCM shade 9 

GLCM prominence 9 

GLCM contrast 9 

GLCM energy 9 

GLCM entropy 9 

GLCM homogeneity 9 

Power spectrum 32 

Histogram 8 

Fractal dimension 1 

 Total = 132 

Finally, one of the last features to be calculated is the fractal dimension. This 

feature provides a measure of the structure and distribution of backscatter as well as 

depth variations of the seabed image (Collins & Preston, 2002; Quester Tangent, 

2007; Xinghua & Yongqi, 2004). This feature however, together with kurtosis, is 

disabled in further modelling, even though it is calculated at this stage. 

3.3. Challenges associated with MBES classification from FFV data 

space 

In the final step of the seabed classification, image patches are clustered 

according to their similarity in the FFV space (Figure 3.2). The idea behind this is 

that patches with similar values of FFVs exhibit similar acoustic characteristics and 
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therefore identify response from a particular type of seabed. The approach used for 

this step in the QTC MultiviewTM classification is to first reduce the dimensionality 

of the FFV space from 132 to three dimensions by taking the first three components 

from the Principal Components Analysis (PCA) performed on the FFV space. Then 

the so-obtained three-dimensional space is clustered using k-means clustering into 

unsupervised classes. These classes are finally compared to a catalogue of acoustic 

classes to link the computationally derived classes with particular seabed types 

(Preston, 2009). 

 

Figure 3.2: QTC MultiviewTM classification scheme for shallow water MBES data 

There are several complexity issues with this method. According to Preston 

(2009), while the high number of FFVs is calculated because of the wide diversity of 

sonar images, many of the FFVs are highly correlated and therefore most likely 

redundant, i.e. they do not contribute any new information about acoustic similarity 

to the process. Because the resulting FFV space is so highly dimensional (132 

dimensions), it is “convenient” (Preston, 2009) to use a dimensionality reduction 

technique to facilitate interpretation of similarity patterns. However, the 

dimensionality reduction method (i.e. PCA) and the number of components used are 

chosen arbitrarily (Preston, 2009). This brings up the main research question in this 

project: 

Is it necessary to produce such a highly dimensional FFV space or could the 
dimensionality be kept lower by avoiding redundancy? And if so, which of the FFVs 
are correlated with each other and therefore redundant? It is also important to 
consider if redundancy is related to a particular wavelength. Since the wavelength 
differs depending on the survey area depth, a high frequency beam can have a higher 
degree of scattering while a lower frequency beam should have higher penetration 
and less scattering. Therefore it would be interesting to see if within feature 
correlation remains similar with varying wavelength. 

This project aims to investigate the similarity of FFVs in order to uncover 

potential redundancy in the FFV space using a Visual Analytical method that 
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simultaneously produces dimensionality reduction and clustering – Self Organising 

Map (SOM). 

3.4. Alternative approach: Self Organising Map (SOM) 

For the experiment, Visual Analytical approach is adapted for exploring the 

similarity of statistical variables – FFVs – used in the classification of the multibeam 

echosounder images. The method chosen for this exploration was a Self Organising 

Map (SOM) together with its component planes visualisation, which is introduced in 

the rest of this section. 

3.4.1. Visual analytics approach for MBES: SOM 

The goal of the experiment is to determine through visual exploration which 

of the FFVs are sufficiently similar to each other to not bring any additional 

information to the classification and could therefore be potentially removed from the 

procedure. The Self Organising Map (SOM) is chosen for this purpose because its 

component planes visualisation allows for easy visual identification of attribute 

similarity, as described in Chapter 2. SOM will be used on the 132-dimensional FFV 

space (Figure 3.3). Once the SOM is trained, the result is displayed in the 132 

component planes (one for each FFV), where each plane is coloured according to the 

FFV that it represents. These planes are then visually examined for similar colour 

distribution patterns that define visual groups of FFVs. These patterns indicate that 

FFVs in each of these visual groups are probably correlated. 
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Figure 3.3: SOM based exploration and subsequent clustering of MBES 

Both the 132 FFVs and the reduced dimension dataset would then be 

clustered using a combination of PCA-k-means. The cluster results are then 

compared with each other and with ground truth data to establish whether reduced 

dimension dataset are able to produce representative clusters (Figure 3.3). 

3.5. MBES data 

The Geological Survey of Ireland (GSI), together with the Irish Marine 

Institute (MI), has been conducting sonar surveys in the Malin Sea, NW of Ireland 

since 2003, as part of the Irish National Survey (INSS) and INFOMAR programs 

(Cullen, 2003). The survey lines used in this study were acquired in the north part of 

the Malin Shelf, over 100 km long, between 55056΄N to 55054.N and from 90010΄W 

to 70024΄W (Figure 3.4).  

Bathymetric and backscatter MBES data were collected between 120-180m 

water depth using a Simrad EM1002 multibeam echosounder, with an operational 

frequency of 93-98 kHz and pulse lengths of 0.2 ms and 0.7 ms. Acoustic footprints 

(the width of the Earth the sensor measures- i.e., the sensor’s field of view) range 

from 3 to 10m in diameter. The acquisition software, used in conjunction with 

EM1002 MBES hardware, allows the collection of time series of echo amplitudes for 

each beam (Simrad-Kongsberg, 1999) and applies, in real-time, a series of first order 

predicted corrections for propagation losses, spherical divergence and changes in the 

insonified area (Simrad-Kongsberg, 1999). Digital Images from backscatter data 
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were assembled using the echo-amplitudes received. Backscatter values were 

filtered, compensated for angle and range and finally resample to a regular grid 

(Preston et al., 2001). 

 

Figure 3.4: Location of the MBES survey lines used in the experiment 

Raw MBES data from the survey lines (CE03_02_163, CE03_02_164, 

CE03_02_165, and CE03_02_175) have been processed into the FFV dataset by GSI 

using QTC Multiview™. This dataset contains all the FFVs for the rectangles of the 

survey lines 163, 164, 165, and 175 for two pulse lengths (0.2ms and 0.7ms) as well 

as navigation information.  The 0.2ms pulse length represents data from the shallow 

part of the survey area whereas the 0.7ms pulse length represents data from the 

deeper part of the survey lines. The pulse length change is automatic and is 

determined by the pre-determined intensity of emitted sound echo. The data of all 

four survey lines consist of a total of 2,10,216 records (rectangular patches) for the 

0.2ms pulse length and 1,49,552 records for the 0.7ms pulse length. The header of 

each data file, along with the information of the echosounder and source, provides 



CHAPTER 3.REDUNDANCY DETECTION AND CLUSTERING OF MULTIBEAM BACKSCATTER DATA 

96 
 

the total number of records, number of samples in each rectangular patches and ping 

information. In addition to this, each record in the file comes with its own acquisition 

information: the date and time of the data capture, beam number, depth and 

geographic location of the record (central point of the patch). This information is 

followed by the values of 132 features (FFVs) calculated from the backscatter for 

each patch, which are of interest in this study and which represent the 132 

dimensions of the FFV dataset.  

QTC Multiview™ generated FFV files had to be converted to the standard 

table format before they can be used in any statistical software package (Matlab, R 

etc). A Matlab function was written to read the headers and features of each sample 

from the FFV file and create a comma separated value (CSV) file where each row 

stored the values of one sample. SOM toolbox for Matlab, developed in the 

Laboratory of Computer and Information Science at the Helsinki University of 

Technology (LCIS, 2011) was the function package of choice for the analysis of data 

using Self Organising Maps in this experiment. To be used in the SOM toolbox, 

these data needed to be in spreadsheet or table data format. A second Matlab function 

was written to convert the CSV files in to table data format and store only the feature 

values. The data for SOM toolbox can have any number of samples but samples must 

have a fixed length. 

Each of the converted data files were then grouped and combined based on 

their pulse lengths resulting in two large dataset: one for 0.2ms pulse length and one 

for 0.7ms pulse length. To summarise, the dataset for visual exploration consisted 

two files- one for 0.2ms pulse length with 2,10,216 data records (patches) and the 

other for 0.7ms pulse length with 1,49,552 data records, each of which has values in 

132 dimensions (FFVs). 

3.6. Experiment 

After the dataset was prepared as per the specification of the toolbox, it was 

loaded into the Matlab environment using the SOM toolbox. First the data had to be 

normalised as each variable in the dataset had different value ranges – without the 

normalisation, there was a possibility that any attributes with a larger range would 

visually dominate over other attributes in the component planes visualisation. The 
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SOM toolbox is equipped with various normalising functions (for example, 

histogram equalization, logarithmic scaling, variance, range, etc.). For this study the 

‘variance’ function was applied to the data, in which the mean is removed from each 

of the columns in the data matrix and then each column is scaled by the standard 

deviation.  

Normalised data were used as the input for the SOM, which was trained 

based solely on the data. The SOM algorithm in SOM toolbox automatically 

determines the map size (i.e. the size of the SOM lattice, which is given by the 

number and 2D distribution of neurons) and the training parameters based on the data 

and then create, initialise and train the SOM. The map size was not manually set as 

the automated determination of map size were fairly consistent across the dataset. 

The training process is completed in two phases. It starts with a large initial 

neighbourhood radius and large learning rate. The radius and learning rate become 

finer through repetitive tuning, until a stable state is reached. For this study we used 

the default training algorithm (linear initialization and batch training).  

After the training was completed and the data distributed in the SOM cells, 

the results were visualised using the component planes visualisation (Figure 3.5 & 

Figure 3.6). 

3.7. Results 

The main objective of this research is to look for redundancy and 

relationships among the 132 features in an effort to reduce dimensionality and gain a 

better control for subsequent classification. This was achieved by analysing the 

component planes of the attribute distribution of the dataset. Each of the 132 SOM 

component planes shows a hexagonal SOM lattice coloured according to the values 

of the respective FFVs. The FFV values are in the same order as in Table 3.1.  

3.7.1. Attribute similarity using SOM 

Inspection of the component planes provided an idea of the distribution of the 

values in each component. By analysing the component planes (Figure 3.5 & Figure 

3.6) it was possible to identify visual clusters consisting of features with similar 

visual patterns.  A total of 22 visual groups were identified for the data with 0.2ms 
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pulse length and 19 visual groups for the 0.7ms pulse length data (Table 3.2 & Table 

3.3) by grouping together features that showed similar colour distribution pattern in 

their respective component planes. 
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Figure 3.5: The 132 SOM component planes for 0.2ms pulse length. Panel a) shows component planes for FFVs 1-36, panel b) for FFVs 37-72, 
panel c) for FFVs 73-108 and panel d) FFVs 109-132. Similar colour distribution patterns in different planes indicate attribute 
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Figure 3.6: The 132 SOM component planes for 0.7ms pulse length. Panel a) shows component planes for FFVs 1-36, panel b) for FFVs 37-72, 
panel c) for FFVs 73-108 and panel d) FFVs 109-132. Similar colour distribution patterns in different planes indicate attribute
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The example in Figure 3.7 shows the component planes for the FFVs 3 to 18. 

A total of three different visual groups can be identified in this selection of 

component planes. The first group consists of FFVs 3, and 4. These FFVs represent 

statistical descriptors of type ‘Skewness’ and ‘Kurtosis’. The second group includes 

component planes corresponding to FFVs 5 to13 and are of type ‘Quantiles’. The last 

group consist of component planes representing FFVs 14 to 18, which are of type 

‘Pace features from power spectral ratios’. 

 

Figure 3.7: Illustration of how visual groups were identified on a smaller selection of 
component planes 

As for these datasets (0.2ms & 0.7ms pulse lengths), a total of 16 visual 

groups are identified for both the pulse lengths in all 132 component planes – these 

are summarised in table 3.2 & 3.3. The group 16 is made of individual singletons i.e. 

FFVs that were visually distinct from all others. A total of twenty FFVs are placed 

here as they showed low visual similarity and correlation with any other FFVs. 

Details of visual groupings are included in Appendix 3, which also contains 

correlation table that are explained below. 
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Table 3.2: Visual groups identified in the SOM component planes (0.2ms pulse 
length) 

Visual 
group 
No. 

FFVs in the visual group Description of the 
FFVs in the 
group 

Level of visual 
similarity and 
correlation between 
component planes in 
the group 

1 5-13 Quantiles High 

2 14-28 Pace features 
from power 
spectral ratios 

High 

3 30-31 GLCM 
correlation 

High 

4 33-34 GLCM 
correlation 

High 

5 32, 35 GLCM 
correlation 

High 

6 36-37 GLCM 
correlation 

High 

7 38-55 GLCM shade, 
GLCM 
prominence 

High 

8 56-64 GLCM contrast High 

9 65-73 GLCM energy High 

10 74-91 GLCM entropy, 
GLCM 
homogeneity 

High 

11 94:96, 102:104, 110:112, 

118:120 

Power spectrum High 

12 93, 97, 101, 105, 109, 113, 

117, 121 

Power spectrum High 

13  122:123  Power spectrum High 

14 3:4 Skewness, 
kurtosis 

High 

15  98:99 Power spectrum High 

16 1, 2, 29, 92, 100, 106, 107, 

108, 114-116, 124-132 

 - - - - -  - Singletons 
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Table 3.3: Visual groups identified in the SOM component planes (0.7ms pulse 
length) 

Visual 
group 
No. 

FFVs in the visual group Description of 
the FFVs in the 
group 

Level of visual 
similarity and 
correlation between 
component planes in 
the group 

1 5-13 Quantiles High 

2 14-28 Pace features from 
power spectral ratios 

High 

3 30-31 GLCM correlation High 

4 33-34 GLCM correlation High 

5 32, 35 GLCM correlation High 

6 36-37 GLCM correlation High 

7 38-55 GLCM shade, 
GLCM prominence 

High 

8 56-64 GLCM contrast High 

9 65-73 GLCM energy High 

10 74-91 GLCM entropy, 
GLCM homogeneity 

High 

11 94:96, 102:104, 110:112, 

118:120 

Power spectrum High 

12 93, 97, 101, 105, 109, 113, 117, 

121 

Power spectrum Moderate 

13  122:123  Power spectrum High 

14 3:4 Skewness, kurtosis High 

15  98:99 Power spectrum High 

16 1, 2, 29, 92, 100, 106, 107, 108, 

114-116, 124-132 

 - - - - - -  Singletons 

 

Identified visual groups show that almost in all (except for group 16-

singletons) cases statistical algorithms used to generate FFVs in a particular group 

generate a similar distribution of values for each patch.  For example, the algorithm 

to generate Quantiles generates nine separate FFVs (numbers 5-13), which are all in 

the same visual group (no. 2) in pulse length 0.2ms and are therefore likely to be 

highly correlated. As another example, ‘Pace features from power spectral ratios’, 

shows similar distribution pattern in all component planes. The rest of the component 

planes were grouped in a similar fashion. 

To confirm the visually derived similarity grouping, pair-wise correlation 

coefficient was derived between members of each group-except for group 16 as it is 
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comprised of component planes with low visual similarity to other component planes 

and therefore is expected to have low correlation.  Table 3.4 and Table 3.5 

summarises the average, median, mode and the standard deviation of the pair-wise 

correlation coefficients from both set of visual groups. Full pair-wise tables for each 

visual group are given in Appendix 3. 

Table 3.4: Summary of correlation coefficient within each visual group in 0.2ms 
pulse length 

Visual Group No. Of  

Component planes 

Mean  

Corr. Coeff. 

Std. Dev. Variance 

VG 1 9 0.9427 0.0586 0.0034 

VG 2 15 0.9609 0.0342 0.0012 

VG 3 2 0.9891 0 0 

VG 4 2 0.9451 0 0 

VG 5 2 0.9775 0 0 

VG 6 2 0.8714 0 0 

VG 7 18 0.9865 0.0078 6.1495e-005 

VG 8 9 0.9791 0.0140 0.0002 

VG 9 9 0.9792 0.0155 0.0002 

VG 10 18 0.9665 0.0203 0.0004 

VG 11 12 0.8903 0.0182 0.0003 

VG 12 8 0.5167 0.0072 5.1207e-005 

VG 13 2 0.7474 0 0 

VG 14 2 0.9089 0 0 

VG 15 2 0.6011 0 0 

VG16(Singletons) 20 0.0555 0.3329 0.11109 
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Table 3.5: Summary of correlation coefficient within each visual group in 0.7ms 
pulse length 

Visual Group No. Of  

Component planes 

Mean  

Corr. Coeff. 

Std. Dev. Variance 

VG 1 9 0.9498 0.0525 0.0027 

VG 2 15 0.9679 0.0340 0.0011 

VG 3 2 0.9895 0 0 

VG 4 2 0.9460 0 0 

VG 5 2 0.9717 0 0 

VG 6 2 0.8739 0 0 

VG 7 18 0.9759 0.0165 0.0003 

VG 8 9 0.9519 0.0461 0.0021 

VG 9 9 0.9745 0.0209 0.0004 

VG 10 18 0.9606 0.0235 0.0005 

VG 11 12 0.9408 0.0112 0.0001 

VG 12 8 0.6161 0.0034 1.1861e-005 

VG 13 2 0.9076 0 0 

VG 14 2 0.8491 0 0 

VG 15 2 0.7432 0 0 

VG16 (Singletons) 20 0.0095 0.2553 0.0652 

 

The tables above show the average of all features in one visual group, their 

standard deviation and variance. Both the tables show that the average values have 

very low standard deviation and variance. A low standard deviation indicates that 

variation or "dispersion" from the average is low i.e. the data points are very close to 

the mean. The variance is a measure of how far a set of numbers is spread out from 

each other. It is one of several descriptors of a probability distribution, describing 

how far the random variable stray from its mean and a low value indicating that 

variables are not far from their mean. Therefore, it can be assumed that the 

component planes of similar FFVs (included in Appendix 3) can demonstrate the 

similarity of attributes and that one single descriptor of this type, for example an 

average of all or one single selected feature, could provide the same amount of 

information to the process as all the features together in that group.  
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3.7.2. Clustering 

A separate dataset was then prepared based on the visual grouping. The 

normalised FFVs were first grouped into 16 groups based on the component plane 

exploration and correlation coefficient results. For groups 1-15, the mean was taken 

as a representative value for that group. The group 16, comprising of singletons, 

were added as is. This resulted in a much smaller dataset with 35 variables for each 

pulse length compared to the original dataset of 132 variables. 

PCA + k-means was the classification algorithm of choice as the objective is 

to observe if lower dimension of variables produce similar results with all other steps 

remaining unchanged. 

The Principal Component analysis (PCA) was done on both 132 variables and 

reduced dimension variables extracted from visual grouping. In order to not lose any 

information, all components were selected for k-means. In this sense, PCA was used 

as an orthogonalisation method to produce an input data for the k-means clustering 

where all dimensions are orthogonal and independent of each other. It was not used 

as a dimensionality reduction technique. During the k-means clustering, the number 

of clusters specified a priori varied from three to eight. In order to minimise the 

impact of  having a ‘poor’ local minima by chance, k-means was replicated 10 times 

for each set of clusters with the algorithm running with a new set of initial cluster 

centroid positions with each replication. The cluster labels with the lowest value for 

within-cluster sums of point-to-centroid distances were retained as the optimum 

results. 

Maps of the clusters obtained for each pulse length and cluster combination 

are presented in Figures 3.8 to 3.13. In order to facilitate visual comparison, clusters 

are sorted based on cardinality. That is the cluster with the highest number of 

elements will always be labelled as ‘cluster 1’. 
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Figure 3.8a: PCA-k-means clustering  of combined pulse length 
dataset of original 132 FFVs for 3 clusters 
 

 
Figure 3.8b: PCA-k-means clustering  of combined pulse length 
dataset of 35 FFVs from 16 visual groups for 3 clusters 
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Figure 3.9a: PCA-k-means clustering  of combined pulse length 
dataset of original 132  for 4 clusters 
 

 
Figure 3.9b: PCA-k-means clustering  of combined pulse length 
dataset of 35 FFVs from 16 visual groups for 4 clusters 
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Figure 3.10a: PCA-k-means clustering  of combined pulse length 
dataset of original 132  for 5 clusters 
 

 
Figure 3.10b: PCA-k-means clustering  of combined pulse length 
dataset of 35 FFVs from 16 visual groups for 5 clusters  
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Figure 3.11a: PCA-k-means clustering of combined pulse length 
dataset of original 132 for 6 clusters 
 

 
Figure 3.11b: PCA-k-means clustering  of combined pulse length 
dataset of 35 FFVs from 16 visual groups for 6 clusters 
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Figure 3.12a: PCA-k-means clustering of combined pulse length 
dataset of original 132 for 7 clusters 
 

 
Figure 3.12b: PCA-k-means clustering  of combined pulse length 
dataset of 35 FFVs from 16 visual groups for 7 clusters 
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Figure 3.13a: PCA-k-means clustering of combined pulse length 
dataset of original 132 for 8 clusters 
 

 
Figure 3.13b: PCA-k-means clustering  of combined pulse length 
dataset of visual 35 FFVs from 16 groups for 8 clusters 
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The clustering results obtained using PCA and k-means are visualised using 

geographical scatter plots (each cluster label was plotted using their longitude and 

latitude) as shown in Figures 3.8 - 3.13. Each class label is visualised using different 

colours. An arbitrary number of classes (3 to 8) are chosen. In terms of the spatial 

distribution of clustering labels, it appears that the survey area can be divided into 

four to five well-defined clusters. The spatial distribution of major clusters appears to 

be mostly continuous, which is geologically acceptable. The other smaller clusters 

appear to be distributed in a pepper grain distribution, which, though acceptable for 

seabed geology, can represent noise or misclassification. The sixth cluster label 

appears to be more mixed and distributed compared to the first three (cluster three, 

four and five) cluster sets. For seven and eight set of clusters, the cluster boundaries 

become vague and the level of misclassification increases. Therefore, it can be 

assumed that the set of seven and eight clusters can be discarded as the results are too 

noisy to be considered as geologically valid clusters. 

3.7.3. 132 FFVs vs. 35 VGs 

To compare the effectiveness of reduced variables for clustering, a visual 

comparison is done with the geographical scatter plot of the clustering results from 

132 FFVs (Figure 3.14). 

                               132 FFVs                                                                                35 

VGs 

 
3 Clusters 
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132 FFVs                                                              35 VGs 

 
7 Clusters 

 
 

8 Clusters 

Figure 3.14: Comparison of clusters between dataset of 132 FFVs and 35VGs 

A segment of the survey lines are taken for this comparison and the clusters 

and their boundaries were inspected. From initial comparison (Figure 3.14), the 

cluster results are very similar for three clusters. In both cases, the boundaries are 

well defined. Both the cluster sets have low level of misclassification. The cluster 

boundaries for the sets of four and five clusters appear to be better defined for 

reduced visual group dataset compared to the results of original dataset with 132 

FFVs.  A line of misclassified points can be seen for 132 FFV dataset from 4 clusters 

onwards. This misclassification only appears in the reduced dimensioned dataset 

when the cluster number is 8. While the cluster boundaries are well defined in both 

sets, the cluster labels from 132 FFVs showed significantly higher amount of pepper 
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grain clusters which are likely to be a result of misclassification. From six to eight 

clusters, the boundaries of cluster labels from both dataset blurs with increasing 

amount of misclassification. A heavy presence of misclassified cluster labels can be 

seen throughout the survey lines and a valid identification of clusters would, 

therefore, be increasingly difficult.  

In brief, from visual inspection, it appears that with reduced number of variables- a 

total of 35 visual groups instead of 132 full feature vectors- a better definition of 

cluster boundaries is achievable.   

3.8. Discussion 

With the rapid improvement of Multibeam Echosounders, seabed mapping is 

an emerging research area in Geographic Information Science. With the availability 

of ever-larger volumes of data, visual analytics can be an effective approach in the 

analysis of these datasets and the results of our analysis show that SOM is well suited 

in the exploratory analysis of large acoustic data. It also seems to be well poised for 

subsequent clustering and classification, which is the next step of this experiment. 

Visual groups in the SOM component planes show that many FFVs are 

correlated on these particular MBES datasets and that there is high redundancy of 

information in the process. Because of this, not all 132 FFVs are necessary for 

further analysis - a sufficient number of attributes required (i.e. a minimal number of 

attributes that convey the same amount of information as all present 132 FFVs) 

equals the number of visual groups, which amounts to a total of 16 for both 0.2ms 

and 0.7ms pulse length survey lines. This number of attributes could be achieved by 

either selecting one representative FFV from each visual group (except for group 16) 

or taking an average (or some other combined measure) of all FFVs in each visual 

group as the representative of the respective group. As visual group 16 comprises of 

only singletons, they are all added resulting in a total of 35 variables. Another aspect 

of the result is that if we compare the similarity of colour patterns between the 

groups (see Appendix 3); some of the patterns are visually very different from each 

other. This means that probably the 35 dimensions is the optimum of variables 

required for conveying the information from this dataset and cannot be reduced any 

further. 
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In addition to visual similarity in the component planes, the visual groups 

showed a high degree of correlation within their respective groups, except for the 

singletons, which had a very low degree of correlation with each other as expected. 

This further strengthens that SOM component planes are well suited to detecting 

attribute similarity and a visual exploration can provide quite accurate assessment of 

the inherent similarity/dissimilarity among attributes in a dataset.  

Different sets of cluster runs using k-means on all the principal components 

reveal that the lower dimension dataset appears to provide better-defined cluster 

boundaries. Though there were a considerable number of misclassified points in all 

cluster runs, this is not unexpected.  The seabed, especially the shallow waters, can 

comprise plants, gravel, pebbles, shells etc. And the presence of these can contribute 

to misclassification even though the underlying ground is homogeneous in nature. 

Therefore it is more important to have a better cluster boundary as a starting point. 

The labels within those boundaries can be determined using ground truth data such 

as: underwater video recordings, grab samples, and grain size determination from the 

grab samples.  

From the cluster results, the boundary definitions started to disintegrate when 

the clustering algorithm produced six clusters or more. The level of misclassification 

was significant enough to deduce that from six clusters onwards, the cluster 

boundaries were not defined well enough to achieve a valid classification and thus 

are discarded for classification and mapping. Another conclusion from the cluster 

results is that reduced dimensioned dataset has better cluster definition and therefore 

should produce better classification maps. This is to be validated by producing 

classification and subsequent mapping of the cluster result (Chapter 5).  

In QTC MultiviewTM (Preston, 2009) classification methodology, the number 

of dimensions is reduced from 132 to three using the PCA as the next step after the 

FFV space is derived. When comparing this to the required and necessary attributes 

in our results, the question arises if three dimensions in the QTC method are really 

enough to capture the variability of backscatter characteristics or if some other larger 

number of the dimensions should be considered. Our concern is that whether only 

three components of PCA is optimum for dimensionality reduction for such large 

datasets. In a typical survey area, each survey line has around six to eight million 
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records and all the survey lines cover a large area (a couple of hundred square 

kilometres). As the first three components of PCA consist of 90-95% of the 

information, there is a possibility that the remaining 5-10% of excluded dimensions 

could hold essential information due to the sheer volume of the dataset and survey 

area. Therefore, for this project, all the components were included when clustering 

the data. 

In this experiment we used MBES data from four survey lines collected in an 

area (Malin Sea) covering several seabed types. While it may be sufficient to use 35 

variables in this environment, the numbers can be further reduced in other areas with 

different acoustic variability. It can also happen that the number of variables may 

need to increase if a larger area is more spatially varied (for example: presence of 

ridges, cliffs etc.). Therefore we plan to apply the same approach to other MBES data 

lines by further analysing other areas with different seabed types (e.g Irish Sea, 

coastal embayment) to examine if acoustic variability has an effect on the similarity 

of FFVs collected from a larger area. However, this is beyond the scope of this 

project and is currently considered for future research. 

We also did not take into account the spatial correlation of the MBES data in 

this approach as we only used the attribute space (i.e. FFVs of backscatter) as the 

input to the SOM and did not consider the geographic location of the patches. 

Therefore geographic space did not play any role in this analysis. However, due to 

the continuity in the geographic processes that formed the seabed, spatial 

autocorrelation is most likely present in the backscatter data when the survey area is 

very large and should be considered in the analysis. This could be done by using a 

GeoSOM (Bação et al., 2005) instead of the classic Kohonen SOM. In the GeoSOM, 

the algorithm is run on both the attribute and the geographic space, which means that 

both the geographic distance as well as the distance in the attribute space plays a role 

in how similarity of data objects is defined.  For this project, the survey area was not 

large enough (just 4 survey lines) to consider spatial correlation to be a significant 

variable for classification. 

As we examined one particular complexity issue of the QTC classification 

method, potential similarity and redundancy of FFVs, the particular visualisation of 

the SOM result - the component planes – proved to be an adequate tool to examine 
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similarity of attributes (the FFVs). It is shown that SOM can be an effective tool for 

examining similarity of attributes in an acoustic database and can be used as a 

dimensionality reduction tool to bring an extremely large acoustic database to a more 

manageable size and, therefore, can make the clustering and subsequent mapping less 

computationally intensive and less time consuming. 
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Characterisation of seabed floor type can provide useful information for 

various applications such as seabed mapping (Biffard et al., 2005), impact 

assessment of human activity (Eastwood et al., 2007), nature conversation 

(Hamilton, 2001) and underwater plant species classification (Brown, et al., 2007). 

Some of the traditional method of sediment type characterisation such as coring, grab 

sampling and visual inspection are increasingly becoming impractical due to the time 

and cost involved and can often lead to misleading spatial distribution of seafloor 

types, especially in survey areas where sediment patterns are too complex (Ellingsen 

et al., 2002). The difficulty of direct seabed access, even in shallow regions, means 

that most seabed surveys are carried out remotely. By far the most popular and 

widely used technique in seabed-related remote sensing is a survey based on the 

This chapter presents a new approach in the processing and clustering of singlebeam 
echosounder (SBES) data. A visual exploration tool will be used to detect outliers that would 
have, otherwise, gone undetected in automatic outlier detection algorithm. A direct clustering 
method will also be tested on the optimised SBES dataset.  



CHAPTER4.VISUAL EXPLORATION AND CLUSTERING OF SBES DATA 
 

121 
 

measurement of sound energy using either multibeam or side scan sonar. Seabed 

classification is also done prior to ground truth data collection. This is usually done 

on a smaller set of data to provide an overview of the underlying seabed geology. 

Normally, either MBES of Side Scan Sonar (SSS) are used for this purpose. 

Singlebeam sonars are rarely used in seabed mapping and when they are used a 

traditional feature based approach is adopted. A direct clustering approach 

(clustering of raw backscatter data) of singlebeam sonar however has not been used 

in the context of seabed mapping, despite its ability to provide additional subsurface 

information and thus contribute in areas with complex sediment structure as well as 

saving time and cost from not having to generate any statistical features. This chapter 

evaluates the potential of direct clustering of singlebeam echosounder (SBES) data to 

aid seabed mapping, particularly in the context of ground truth data collection 

planning. 

4.1. Research background and justification 

Common applications of SBES include bathymetry or the measurement of 

seabed depth, based on echo return timings of a transducer that emits one sound 

wave (see Chapter 2). Today, most seabed type characterisations are based on 

classifications of digital data from multi-beam echo sounders (MBES), where 

multiple sounders are used simultaneously to allow a greater area of coverage during 

seabed surveying. Although SBES time series potentially contain valuable echo data 

in yielding classification information, SBES typically receives less attention because 

it was not primarily designed for that purpose. However, the echo time series interval 

directly beneath the detected seabed has a strong signal return and minimal distortion 

within the return beam as the return is from vertical scattering. Therefore, this part of 

SBES time series contains relatively undistorted information on the subsurface 

composition and is thus a good candidate for seabed classification.  A direct 

clustering of the SBES echoes would eliminate the need of feature extraction for 

exploratory clustering prior to ground truthing. Exploratory clustering normally 

using MBES or SSS features (and rarely SBES features) is done to give the 

surveyors/geologists an initial idea of the class distribution of the survey area (Hung 

et al., 2010). This clustering helps the marine geologists to optimally design ground 

truth sample collection points as gathering and retrieving ground truth samples can 
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often be a very expensive operation. However, feature extraction on large datasets, as 

MBES, SSS or SBES data are, is usually a very time consuming procedure. A 

successful direct clustering of SBES data would, therefore, save time, reduce cost by 

eliminating unnecessary ground truthing and thus further optimise the survey 

process. This project discusses the viability of such an approach. 

This data processing exercise assumes that the rate of seabed type variation is 

much smaller than the spatial extent of survey, while the characteristics of different 

seabed types are captured only in a limited section of the echo return signal. The 

proposed approach of clustering the SBES aims at clustering only the segments of 

backscatter returns that capture the seabed surface information as well as some 

subsurface information. 

The chapter is structured as follows: the following section discusses SBES 

data acquisition and processing. This is followed by a description of the experiment 

that was performed. Lastly results are presented followed by discussion of the 

results. 

4.2. SBES data acquisition 

Data were collected by Geological Survey Ireland (GSI) and the Marine 

Institute (MI) as part of the INFOMAR programme during a series of Malin Sea 

survey in the year 2003. The main equipment used were the Kongsberg™ EA600 

singlebeam echosounder (Kongsberg & Ea, n.d.), which simultaneously emits and 

records echo returned at sonar frequencies 12, 38 and 200 kHz, respectively. Malin 

Sea (Chapter 3, Figure 3.4) is located to the north of the Republic of Ireland and has 

been chosen as a case study due to its known seabed type variations. Both MBES and 

SBES returns were acquired from a single survey vessel during the same survey runs 

simultaneously. Chapter 3 analysed the data acquired from MBES. In this chapter an 

example survey track, line 163, is used throughout the project for analysis. The track 

runs East-West at latitude of 56N and covers a survey distance of about 110 km. 

4.3. Challenges with the SBES dataset 

In the conventional method of classifying seabed type, statistical features are 

extracted from SBES datasets for clustering and classification. RoxAnnTM and QTC 

ImpactTM are the two most commonly used software platforms for this purpose. 
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Principal component analysis (PCA) is performed on the extracted features for 

orthogonalisation and dimensionality reduction (by selecting first three components), 

followed by k-means clustering. The noisy nature of the SBES datasets affects both 

these methods thus introducing a relatively high level of uncertainty in the classified 

map (Hung et al., 2010; Satyanarayana et al., 2007; Zimmermann & Rooper, 2008). 

This research project focuses on an alternative approach: a direct clustering of 

SBES data. Data used in this study consist of echo segments from both above and 

below the seabed surface. For this method to be effective, it is important that the data 

are first cleaned of any outliers that could contribute to the overall noise and 

subsequent misclassification. Therefore a visual exploration of the dataset is setup 

after it was smoothed using second order Butterworth low-pass filtering and 

‘cleaned’ of the bad samples by an automatic outlier detection algorithm.  

Low-pass filters are electronic filters that enhance low frequency signals but 

attenuate signals with frequencies higher than a cut-off value. The actual amount of 

attenuation for each frequency varies from filter to filter. Designed by Steven 

Butterworth (1930), the frequency response or gain (the ability of a circuit, often an 

amplifier, to increase the power or amplitude of a signal from the input to the output) 

in this filter is given by: 

! !" =
1

1+ !! !
!!

!!                                                                                     (4.1) 

Here, n represents the filter order, omega ω, the radian frequency, is equal to 

2πƒ (ƒ=frequency) and epsilon ε is the maximum pass band gain (Electronic-

Tutorials, 2011). The smoothed echoes are then passed through an outlier detection 

algorithm (Hung et al., 2010), which is described in the next section. 

Our particular SBES dataset contains a segment from the raw echo that is 5m 

above and below seabed surface (Figure 4.1). In Figure 4.1, the value ‘0’ on x axis 

represents the seabed surface. As the echo hits the seabed surface, it should reach its 

peak amplitude. However, from the figure we can see that the data contain 

considerable measurement error in bathymetry determination and contain a good 

amount of vertical displacement. Because of this, the peak amplitudes are distributed 

as much as 3m above seabed surface. This error raises the risk of similar classes 

(time series with a similar shaped peak) being classified as different classes and 

therefore the resulting clusters are likely to be noisy in nature with not-so-well 
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defined geographic boundaries.  However, the subsurface information should result 

in representative clusters, as it is the echo time series interval immediately beneath 

the detected seabed that provides the clearest information for seabed classification, 

due to the strong signal return and ease of detection. Because of the noisy nature of 

the data, to achieve reliable and consistent classification results, we introduced an 

additional step in the outlier detection procedure. The data already come processed 

with Butterworth filter and automatic outlier detection.  In this chapter we add visual 

exploration using a time series visualisation too as the final step in outlier detection 

procedure to ensure the best possible optimisation of the dataset prior to direct 

clustering. 

 
Figure 4.1: SBES backscatter at 12 KHz 

Our dataset was collected at three different frequencies to accommodate the 

varying degree of softness of the seabed. Lower frequencies (12 & 38 KHz) provide 

good penetration of the seabed when the surface is hard while the higher frequency 

(200 KHz) yields better surface information. The study area is expected to be sandy 

in nature with burrows and shells. As a result, the 200 KHz data showed significant 

fluctuations (Figure 4.2) even after filtering. This frequency was, therefore, not 

expected to yield good clustering results. This assumption was later confirmed in our 

analysis. 
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Figure 4.2: SBES backscatter at 200 KHz 

4.4. SBES data processing 

A typical SBES dataset consists of high dimensional (data records at varying 

depths) time series data containing heteroscedastic (random in nature) noise. A large 

number of samples are usually collected in each survey. Since SBES data contain 

less geological information and redundancy for quality assurance compared to 

MBES, additional measures need to be taken to ensure the quality of the raw data 

before further processing. The pre-processing of SBES data involves inspection for 

data integrity (usually done by an expert geologist on the survey boat), initial 

‘cleanup’ to mitigate the effects of systematic errors of sonar measurement, including 

tidal movement, decibel normalisation and conversion to industry-standard format 

for compatibility and storage purposes. In the next step, spatial sub-sampling is 

carried out to reduce data size, followed by seabed depth determination targeted for 

feature extraction. These data processing steps are carried out by GSI during and 

after survey before supplying the data. The SBES dataset (line 163) used in this study 

was pre-processed by Hung et al. (2010) as explained in the following section. 

4.4.1. SBES dataset cleaning 

For this project, the aim of identifying seabed depth is to facilitate the capture 

of complete echo envelope by segmenting the sonar data into two sections, above 

and below the seabed. Before our experiment, described in sections 4.5 and 4.6, data 

were further cleaned by Hung et al. (2010) as follows. With the assumption that the 

seabed is located somewhere at the peak amplitude of each echo return from the 
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lowest frequency sonar, each time series was smoothed using a second-order 

Butterworth low-pass filter. The aim is to smooth the backscatter to some extent so 

that outliers in the time series dataset are removed and ‘good quality’ data are kept 

for further analysis (Bianchi & Sorrentino, 2007; Butterworth, 1930).  However, 

upon initial inspection of the data (Figure 4.1), it was observed that there were small 

but regular bathymetric fluctuations (~5m). These are probably caused by the 

inherent measurement noise and are unlikely to be due to geological variations.  

Some corrupted samples with abnormal changes in bathymetry still remained 

in the dataset after its initial pre-processing, which could potentially cause data 

inconsistency. The dataset was further processed by an automatic procedure to 

identify such bad samples. The procedure that was implemented was as follows 

(Hung et al., 2010): 

We consider each unfiltered SBES time series as column vector z where 

!! = !!"           ! = 1,2,… ,!   ! = 1,2,… ,!                       (4.2) 

Here, i is the number of time series collected, while k is the number of temporal 

samples in each time series. The output matrix can therefore be written as: 

! = !!         ! = 1,2,…!                                                                                         (4.3) 

! = !!         ! = 1,2,… ,!                                                                                     (4.4) 

Here, ~ denotes data derived from the filtered SBES data. Next, a ten-fold 

stacking was performed on the dataset to improve the signal-to-noise ratio: 

! = !! =
1
10 !!!!

!"

!!! !

, ! = 1, 10, 20,… ,
!
10                     (4.5) 

The filtered version ! was obtained in a similar fashion. To indicate the 

segment of echo return used, the convention ‘A_B_’ was employed. As such, AaBb, 

which represents the echo segment ‘a’ meters above and ‘b’ meters below the seabed 

from each time series. For example, A5B25 represents 5 m above and 25 m below 

the seabed. Then, Y matrices are grouped together to form the corresponding X 

family matrices. 
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! = !! = !!"#$ , !ℎ!"!      ! ⊂ !, ! = 1, 2,… ,!                       (4.6) 

! = !! = !!"#$                                                                                                      (4.7) 

! = !! = !!"#$                                                                                                      (4.8) 

Next we define the variation in mean spatially filtered echoes, v, as 

! = !! = ! !! − ! !!                 ! = 1, 2,… ,!                                     (4.9) 

Here E is the expectation operator. In the next step, the following automatic 

outlier decision rule was employed: 

!! =   
1        ′!"!!    !"  |!!| > !"(!)
0        ′!""!!              !"ℎ!"#$%!               ! = 1, 2,… ,!                         (4.10) 

Here s(v) is the standard deviation of all v on the same survey track and α is a 

threshold based on the size of the ‘bad’ data region. In other words, any time series 

sample vector found outside α times the standard deviation of v will be labelled as 

‘bad’. The ‘bad’ data detection is performed for all three frequencies. This resulted in 

a cleaned dataset that was provided to us for subsequent direct clustering. However, 

before proceeding with the direct clustering we used visual exploration to evaluate if 

the ‘cleaned’ dataset using the above automatic method was adequate in detecting all 

the bad samples or outliers. 

4.5. Experiment, step 1: Visual exploration of SBES for outlier 

detection 

Visual exploration in general facilitates data visualisation so that human 

cognitive skills can be implemented for pattern recognition in large datasets. The 

objective of using visual exploration on time series SBES dataset is to identify and 

detect any echo time series that appears to be a bad sample and still remains in the 

dataset after it has been filtered and cleaned using the automatic algorithm described 

in the previous section. 

The tool of choice for visual exploration is TimeSearcher©, which was 

developed at the Human–Computer Interaction Laboratory, Department of Computer 

Science, University of Maryland (Hochheiser and Shneiderman, 2001). This software 

facilitates interactive visual exploration of time series data.   
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4.5.1. SBES exploration with Time Searcher 

Once the data are loaded into TimeSearcher©, the overview panel at the 

bottom of the screen displays the time series for one of the variables. This panel can 

be used to specify a specific region of the time series to be focused on. Furthermore 

it is possible to explore the attributes in the time series and to select specific time 

series based on selected attributes. 

The Timebox query within TimeSearcher© was used for visual exploration of 

the SBES dataset. Timeboxes are rectangular query regions drawn directly on a two-

dimensional display of time series data. Time boxes in TimeSearcher© can be 

created by clicking on the desired starting point of the Timebox and drag the pointer 

to the desired location of the opposite corner. The extent of the Timebox on the x-

axis specifies the time period that it constraints, while the extent of the y-axis 

specifies the constraint the Timebox puts on the range of values of interest in the 

given time period. Given a set of time series datasets, a Timebox acts as a filter that 

accepts only those items that have values in the given range during the interval 

spanned by the box.  

To be specific, a Timebox has four tuples (Figure 4.3): b=(tmin, tmax, Vmin, 

Vmax). Suppose, ni is an item in a time series dataset (N), where ni  ∈  N and ni(j) is the 

value of ni at time j. The item ni will only be selected by the Timebox if it satisfies 

the following: 

!!"# ≤ ! ≤ !!"#                                                                                                              (4.11)  

!!"# ≤ !! ! ≤ !!"#                                                                                                (4.12) 
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Figure 4.3: A Timebox query expresses constraints in time and value 

A Timebox can be dragged to a new location or resized via appropriate resize 

handles on the corners in the TimeSearcher© environment. Every time a Timebox is 

updated, the query is re-processed and the visualisation updated accordingly. 

Multiple Timeboxes can be drawn to specify conjunctive queries. Time series data 

segments in any subsequent Timeboxes must meet all of the constraints implied by 

the previous Timebox in order to be included in the result set.  

In our experiment, first the filtered SBES dataset was loaded into 

TimeSearcher© for visual exploration. Timebox query within the software 

environment was then used to interactively detect any anomaly that may still have 

remained in the dataset. Once the approximate locations of outliers were detected, 

the Timeboxes were further optimised in size and location to isolate and enhance the 

outliers. Once the outliers were identified, they were removed from the dataset using 

Matlab and the data was then ready to be used for direct clustering. 

4.5.2. Results 

The first objective of this research was to use visual exploration to detect 

outliers in acoustic time series data that may still be present after the data is filtered. 

Figures 4.4, 4.5, and 4.6 show the results of outlier detection using TimeSearcher©. 
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Figure 4.4: Detected outliers in SBES echo returns (12 KHz) 

 

Figure 4.5: Detected outliers in SBES echo returns (38 KHz) 
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Figure 4.6: Detected outliers in SBES echo returns (200 KHz) 

In TimeSearcher©, each time series is assigned a unique identifier. In our 

case the echo returns were assigned the identifiers T1, T2,…, Tn. Based on their 

identification numbers, the identified outliers in all three frequencies appear to be 

located in the same geographic locations and surveyed in sequential order. The 

locations of the outliers are at the very right end of the survey line (Figure 4.7). This 

indicates that these echo returns were recorded at the beginning or at the end of this 

particular survey run. Therefore, it is probable that they represent a gross error rather 

than a systematic error. Gross error is attributed to the surveyor, while systematic 

errors occur due to inherent limitations of the instruments and can be calibrated or 

their effect quantified. 

 

Figure 4.7: location (highlighted) for SBES echo returns (12, 38, and 200 KHz) 

These outliers or bad samples were very obvious in the visual exploration due 

to the fact that none of them contained any peaks. Peak occurs when the echo hits the 

seabed surface and as the echo penetrates the seabed, the peak value dissipates. The 

absence of a peak in the echo return indicates that the echoes have not hit the seabed 

or that the surveyor was in the process of re-calibrating the instruments as is often the 
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case at the beginning or the end of any survey run. As there was no peak present in 

these echo returns, no further tests were necessary and the echoes were discarded 

from the dataset. 

It is, however, important to point out that in spite of the obvious effect (the 

absence of a peak) these echoes were not detected as outliers in the automatic outlier 

detection process described in the previous section. Without additional visual 

exploration they would have remained in the data and influenced the results of 

subsequent classification. 

4.6. Experiment, step 2: Clustering of SBES data 

Two clustering algorithms were selected for direct clustering of SBES 

backscatter echoes. The de facto PCA and k-means clustering (QTC, 1997) was first 

tested on the dataset. PCA was used to orthogonalise the dataset and all components 

were used for k-means clustering. Fuzzy clustering was initially selected for its 

ability to accommodate overlapping of clusters. However, as the survey dataset for 

this study is relatively small and as only one survey line was available for testing, we 

decided not to use different levels of fuzziness. This decision was based on the fact 

that the seabed in this area is mostly sandy in nature and therefore just one narrow 

survey line would not be adequate in capturing the overlapping of different clusters. 

Therefore, a fuzziness of 1% was used to treat the clusters as discrete clusters. Each 

of the algorithms were run several different number of clusters (3 to 8) and in order 

to minimise the impact of hitting ‘poor’ local minima by chance, a total of 10 Monte 

Carlo simulations were performed for each cluster runs. The labels with the least 

mean of errors were retained as the optimum results and presented. 

After the clustering, the optimal number of clusters was determined using 

cluster validation indices, which measure the quality of clustering through level of 

separation between clusters. There are several available and for this experiment four 

indices were used: Calinski-Harabasz (VRC) index, Davis-Bouldin index, Dunn 

index and Silhouette index (see Chapter 2). For the VRC index, the cluster number 

with the highest index value represents the optimal number of clusters. For the other 

three, it is the lowest index number that indicates the optimal cluster number. The 

results of clustering and cluster validation are described in the following section. 
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4.6.1. SBES data clustering  

One of the objectives of this research is to test if direct clustering of SBES 

instead of commonly used feature based clustering can produce representative 

clusters from a dataset of SBES echoes. Here we present results from the two 

methods as described above: PCA + k-means & Fuzzy c-means. In order to facilitate 

visual comparison, results are presented based on cardinality sorting (ascending 

order) of the clusters obtained i.e. the cluster with highest number of points are 

always labelled as cluster 1. Due to the compactness of data points and relatively 

small length of the survey line, the visualisation of the clustered point data was not 

possible. At full extent, the points overlapped significantly and as a result the survey 

line appeared very dark, even after the points were enhanced (see Figures 4.8-4.10). 

A different approach was taken to visualise the coherence of obtained cluster 

boundaries. The survey line was converted to raster with spatial resolution set to 

three meters. This resolution was selected after several trials and the raster with three 

meters resolution appeared to produce the best geologically viable output.  Once the 

cluster areas in the raster representation were extracted, the clusters were labelled 

and coloured based on the largest amount of clustered points within each area. The 

clustered points belonging to each cluster area were counted and if one cluster label 

in any given cluster section had 50% or more of the total points then that cluster was 

coloured with the colour of the dominant cluster points. The purpose of generating a 

rasterised representation of results was to provide a clearer view of the location of 

cluster boundaries (i.e. spatial distribution of demarcation lines between cluster 

areas). Therefore, when examining cluster areas in the raster, only the location of 

their boundaries should be examined and cluster labels (i.e colours) should be 

ignored.  
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4.6.2. K-means clustering results 

Figures 4.8-4.10 show the results from SBES clustering using PCA + k-

means (three clusters). 

 

Figure 4.8: PCA + k-means clustering of SBES dataset (12 KHz) 

 

Figure 4.9: PCA + k-means clustering of SBES dataset (38 KHz) 
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Figure 4.10: PCA + k-means clustering of SBES dataset (200 KHz) 

 Working frequency for SBES clustering 

 Visual exploration of results allowed us to get an idea of the suitability of 

acquisition frequencies of sonar for direct clustering. Low cluster numbers were 

chosen for this exploration in order to minimize the effect of misclassification. 

While direct clustering of backscatter echoes is expected to produce some 

misclassification due to the noisy nature of the data, the level of misclassified points 

was higher compared to that of MBES classification (Chapter 3). From the figures, it 

was evident that while the cluster boundaries were to some extent similar in 

distribution for frequencies 12 and 38 KHz. Clustering of the 200 KHz dataset did 

not seem to provide a reliable result. Comparing the raster boundaries and zoomed 

sections of the clustered 200 KHz dataset, it seems that the effectiveness of k-means 

was severely affected due to the nature of the data. The heavy fluctuation in the data, 

present even after smoothing (section 4.2) contributed to the heavy presence of 

misclassification. This probably indicates that the seabed in this area is likely not soft 

enough for this frequency to be effective. It is therefore unlikely that any valid 

cluster boundaries could be obtained from direct clustering of 200 KHz dataset when 

the cluster number is higher than three.  
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The main objective of this part was to extract boundaries to provide a 

guideline for optimizing ground truth. Clustering of both 12 KHz and 38 KHz 

frequencies seems promising for this purpose (Figures 4.8-4.10).  However, results 

from the 200 KHz dataset were not considered for further analysis due to the reasons 

explained above. Consequently, both the 12 and 38 KHz frequencies were accepted 

as working frequencies for this study and clustering results from both frequencies 

will be validated using ground truth data in Chapter 6. 

 Cluster boundary extraction from the SBES dataset 

Due to the narrow geographic extent of the dataset and the close proximity of 

the data points, cluster boundary visualization was not possible when the whole 

dataset was plotted. Enhancement of points (by increasing their size for visualisation) 

was not effective due to overlapping. Therefore rasterisation of the point data was 

implemented to get the overview of cluster boundaries as explained previously. 

Figures 4.11 and 4.13 show the results for PCA + k-means on both SBES frequencies 

(12 and 38 KHz) in raster format. As mentioned above, here it is the geographic 

distribution of boundaries between clusters that is of interest, rather than the cluster 

labels (i.e. colours) of each cluster area. 
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Figure 4.11: PCA + k-means cluster boundaries extracted from rasterised survey line 

(12 KHz) 
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Figure 4.12: Misclassification in three selected locations (1, 2, and 3) for PCA + k-

means with cluster numbers 6, 7, 8 (SBES 12 KHz) 

The rasters obtained from the 12 KHz dataset clustering show a heavy presence of 

misclassification when higher numbers of clusters are used. Upon close examination 

of the point dataset (i.e. in locations 1, 2, and 3 in Figure 4.12) and the rasters (Figure 

4.11), results from seven and eight clusters in the 12 KHz dataset failed to display 

clusters with well defined boundaries. Misclassification (i.e. a very mixed pattern) 

was present throughout the survey line and therefore it was concluded that results 

with both seven and eight clusters should be discarded from further analysis. Cluster 

result with six clusters seemed to give somewhat of a mixed picture. PCA + k-means 

clustering produced clusters with relatively well defined boundaries from the 
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extreme left to the centre of the survey line (Figure 4.11), while the area from the 

centre to the extreme right end of survey line appeared heavily mixed and therefore 

misclassified. This could be due to the fact that the right portion of the survey line 

contains areas with mixed geological features, something that should be further 

investigated. However, because of the misclassification present in one half of the 

area, results with six clusters were also discarded from further analysis. 

From figure 4.13, which represents the PCA + k-means results from SBES dataset 

obtained with 38 KHz, we can see that for 6 clusters and upwards the whole region is 

divided into very small raster areas. This indicates a high probability of 

misclassification. A close examination of selected areas (1, 2, and 3) is displayed in 

figure 4.14. There, clustered points are heavily mixed and a boundary is not 

identifiable. Therefore, as with 12 KHz data, cluster boundaries will not be 

extractable for cluster numbers greater or equal to 6. Cluster results with 3, 4, and 5 

clusters however do contain clearer cluster boundaries and can be further used for 

subsequent cluster validation and labelling (Chapter 6).   
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Figure 4.13: PCA + k-means cluster boundaries extracted from rasterised survey line 

(38 KHz) 
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Figure 4.14: Misclassification in three selected locations (1, 2, and 3) for PCA + k-

means results with cluster numbers 6, 7, and 8 (SBES 38 KHz) 
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4.6.3. Fuzzy c-means clustering results 

Fuzzy c-means (Bezdek et al., 1984; Dunn, 1974), also known as soft k-means, was 

developed as a generalisation of k-means clustering, hence the two algorithms share 

a lot of similarities, including the need to specify the number of clusters a priori and 

the potential for getting trapped at local minima or saddle point of the objective cost 

function. The main differences between the two related clustering techniques are that 

k-means assigns a single label to each sample after completion without exception, 

whereas FCM returns a vector of label probabilities for each sample. In effect, FCM 

allows one sample the possibility of belonging to two or more clusters. This makes it 

particularly suitable for clustering of geological data where overlap between classes 

is almost always present. While Euclidean distance measure is normally used with k-

means, inverse distance weighting is employed in FCM. 

In FCM, each sample point has either a strong or weak association, namely 

membership function, to each cluster, determined by the inverse distances to centres 

of clusters and influenced by the degree of fuzziness. The iterative optimisation 

involves fuzzy partitioning by consecutively updating every membership function 

(U={uij}) and sample (cj) until the termination criteria is satisfied or the maximum 

number of iterations is reached. As in the case with k-means, this procedure only 

converges to a local minimum. To obtain the clustering labels, the membership 

function with the highest probability is required.  

To test if the discrete fuzzy boundary was effective, a plot of the difference between 

the largest (Umax) and second-largest membership function value (Umax-1) for the 

selected fuzziness was considered (Figure 4.15 and 4.16) for all clusters. A data point 

is assigned to a cluster based on the Umax value of the membership function, while 

Umax-1 represents the second highest probability value for that data point to belong 

to another cluster. If the boundaries are discrete, then there should be a sharp change 

in the difference in probability values i.e the probabilities of a sample belonging to 

one cluster or the other should have a large difference as they can only belong to one 

class. The difference between the highest membership function to the next starts to 

decrease when the fuzziness is increased, indicating the increased probability of one 

point belonging to two or more clusters. With higher fuzziness, the line in the plot 

would start to get straighter as the difference got lower. From the figures, it can be 
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seen that the change in difference in the membership function is quite sharp for all 

the clusters, indicating that the 1% fuzziness was in fact treating the samples as 

discrete. 

 

Figure 4.15: Umax-Umax-1 plot for 1% fuzziness (12 KHz dataset) 

 

Figure 4.16: Umax-Umax-1 plot for 1% fuzziness (38 KHz dataset) 

During the clustering computation, the number of clusters (p) specified a 

priori was varied from 3 to 8, while the degree of fuzziness (m) was set to 1% 

(m=1.01) for each value of p. In order to minimise the impact of hitting ‘poor’ local 

minima by chance, a total of 10 Monte Carlo simulations were performed for each 

case of p and m, and the labels with the least mean of errors were retained as the 

optimum results and presented. Example maps of the clusters obtained from fuzzy c-
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means are presented in Figures 4.17 to 4.18.  Raster representation in these maps was 

created in the same way as for PCA + k-means. 

 

Figure 4.17: Fuzzy c-means clustering of SBES dataset (12 KHz) 

 

Figure 4.18: Fuzzy c-means clustering of SBES dataset (38 KHz) 

As before, the results obtained from fuzzy c-means were closely examined 

and as the result cannot be displayed to its entirety due to the compactness of the 

points, a few selected points were selected and displayed in the above figures. As 

before the aim was to identify boundaries between cluster areas. We can see from 

one selected zone in Figures 4.17 and 4.18 that cluster boundaries are relatively well 

identifiable. This was consistent throughout the survey line. As with PCA + k-means 

we also compared geographical distribution of cluster boundaries for all values of ‘p’ 
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(cluster number). Figure 4.19 and 4.20 shows the fuzzy c-means clustering results for 

12 and 38 KHz datasets in raster form for p=3 to 8. As before, it is the location of the 

boundaries between areas that is of interest and not the specific cluster labels 

(colours) of each cluster area. 

 
3 clusters 

 
4 clusters 

 
5 clusters 

 
6 clusters 

 
7 clusters 
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Figure 4.19: Fuzzy c-means cluster boundaries extracted from rasterised survey line 

(12 KHz) 
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Figure 4.20: Fuzzy c-means cluster boundaries extracted from rasterised survey line 

(38 KHz) 

From the above figures, it appears that representative boundaries only exist for 

cluster numbers three and four. From five clusters and onwards, the level of 

misclassification increases significantly as the distribution of raster boundaries 

appears random in nature and cluster areas in the raster become smaller with frequent 

alteration of labels (colours). To further investigate this, the clustered point datasets 

(12 and 38 KHz) were visually explored. Figures 4.21 and 4.22 show some example 

locations. 
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Figure 4.21: Misclassification in three selected locations (1, 2, and 3) for fuzzy c-

means results with cluster numbers 5, 6, 7, 8 (SBES 12 KHz) 
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Figure 4.22: Misclassification in three selected locations (1, 2, and 3) for fuzzy c-

means results with cluster numbers 5, 6, 7, 8 (SBES 38 KHz) 
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Consequently, for both frequencies (12 KHz and 38 KHz), fuzzy c-means clustering 

results seem to contain a high level of misclassification when the cluster number is 

greater or equal to five. In comparison to PCA + k-means, fuzzy c-means appears to 

be more prone to misclassification. Therefore, based on this finding, clusters 5, 6, 7, 

and 8 will not be included in further analysis and validation in Chapter 6. 

 

4.6.4. Internal cluster validation 

For this experiment, we selected four commonly used indices for cluster 

quality assessment and optimal cluster number estimation: Calinski-Harabasz or 

Variance Ratio Criterion (VRC) index (Calinski & Harabasz, 1974; Everitt et al., 

2011), Davies-Bouldin index (Davies & Bouldin, 1979; Jain & Dubes, 1988), Dunn’s 

index (Dunn, 1974; Halkidi et al., 2001) and Silhouette index (Everitt et al., 2011; 

Halkidi et al., 2001). The working principal of the indices are described in Chapter 2. 

We calculated these four validity indices were extracted from the cluster results 

obtained from SBES echo returns (12 and 38 KHz) for PCA + k-means and fuzzy c-

means clustering and for cluster numbers 3 to 8. Tables 4.1-4.4 lists the results of 

these indices. 

Table 4.1: Values of validity Indices for k-means clustering from SBES dataset (12 
KHz) 

 3 Clusters  4  Clusters 5  Clusters 6  Clusters 7  Clusters 8  Clusters 
Calinski-
Harabasz index 

2037.73       1832.52       1667.37       1500.77       1375.42      1354.30 

Davies-Bouldin 
index 

1.42 1.69 1.80   1.59 1.75 1.59 

Dunn index 1.09      0.63      0.54      0.78       0.56      0.67 
Silhouette index 0.14      0.13      0.13      0.10     0.09     0.08 

 

Table 4.2: Values of validity Indices for k-means clustering from SBES dataset (38 
KHz) 

 3 Clusters  4  Clusters 5  Clusters 6  Clusters 7  Clusters 8  Clusters 
Calinski-
Harabasz index 

2952.61       2270.06       1879.08       1676.46       1676.00       1589.05 

Davies-Bouldin 
index 

1.11       1.28       1.44       1.39       1.50       1.57 

Dunn index 1.37       1.14     0.83      0.89      0.84       0.75 
Silhouette index 0.21      0.15      0.12      0.11      0.12      0.11 
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Table 4.3: Values of validity Indices for fuzzy c-means clustering from SBES dataset 
(12 KHz) 

 3 Clusters  4  Clusters 5  Clusters 6  Clusters 7  Clusters 8  Clusters 
Calinski-
Harabasz index 

3995.89       3456.04       3024.01       2670.44       2457.06       2246.47 

Davies-Bouldin 
index 

0.973       1.08       1.18       1.32        1.23       1.30 

Dunn index 1.56        1.30       1.14        1.01        1.00      0.98 
Silhouette 
index 

0.27      0.22      0.19      0.16      0.17      0.16 

 

Table 4.4: Values of validity Indices for fuzzy c-means clustering from SBES dataset 
(38 KHz) 

 3 Clusters  4  Clusters 5  Clusters 6  Clusters 7  Clusters 8  Clusters 
Calinski-
Harabasz index 

3789.63        3265.20       2833.96       2523.17       2319.61       2124.66 

Davies-Bouldin 
index 

1.00       1.11       1.24       1.30       1.26       1.31 

Dunn index 1.50       1.24        1.08      0.92      0.95       0.95 
Silhouette 
index 

0.26       0.22      0.18      0.18      0.17      0.15 

 

Figures 4.23 to 4.26 show these results as graphs. The aim of this is to 

identify the optimal number of clusters, i.e. at which number does each algorithm 

provide the best separation of data into the most compact clusters. As explained in 

Chapter 2, this happens when Calinski-Harabasz, Dunn, and Silhouette indices reach 

their maximums and Davies-Bouldin index reaches the minimum. 

In our case, all four validity indices indicate that for both frequencies and 

clustering algorithms, three is the number of clusters where the best between-cluster 

separation and within-cluster compactness are reached. This is less than the optimal 

number of clusters identified in MBES clustering (see Chapter 3). However, this is 

expected as SBES contains subsurface information and if the seabed surface has a 

heavy presence of shells, burrows or plants, the subsurface information can actually 

provide a more accurate account of what lies beneath those depositions. This is likely 

the case with this particular dataset, since the study area (Malin Head) is known to 

have a heavy deposition of shells. Thus, it is acceptable that the number of clusters 

for SBES clustering can be less than MBES clustering. This finding will be further 

analysed in Chapter 6 where we evaluate both MBES and SBES results versus a 

ground truth database. 
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Figure 4.23: Validity indices for PCA + k-means clustering from SBES backscatter dataset (12 KHz) 
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Figure 4.24: Validity indices for PCA + k-means clustering from SBES backscatter dataset (38 KHz) 
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Figure 4.25: Validity indices for fuzzy c-means clustering from SBES backscatter dataset (12 KHz) 
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Figure 4.26: Validity indices for fuzzy c-means clustering from SBES backscatter dataset (38 KHz)
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4.7. Discussion 
The recent decade brought a rapid development in SBES echosounders. Their 

resolution has improved to the point where they can produce very accurate 

information of seabed and seabed subsurface. They are normally fitted to the survey 

vessel in conjunction with MBES echosounders and thus each MBES survey run also 

yields high resolution SBES data for the same location. However, in most cases only 

MBES data are used for clustering and subsequent classification of seabed type. The 

potential of SBES to provide high resolution subsurface information can be of 

interest as the resulting clusters could provide a more accurate description of the 

seabed than that of MBES. 

SBES data in general contain a higher degree of noise compared to MBES 

data. This is due to the high resolution, sensitivity to suspended particles in water, 

presence of schools of swimming fish and other factors. Therefore, the inherent 

systematic noise in SBES data needs to be carefully explored and processed by 

experienced geologists and surveyors. Good quality raw SBES backscatter data are 

fundamental to any classification, especially when data are prone to the inevitable 

noise. This was the first drawback of the dataset that was available for this study and 

the reason for the design of our experiment: first using visual exploration for outlier 

detection, then comparing the clustering methods and finally validating cluster 

results using validity indices. 

The SBES dataset available for this study also contained a significant vertical 

displacement. This means that the optimal depth detected from the data fluctuated by 

±5m (approximately 3m above seabed and 2m below seabed from the derived 

average depth over the survey line). This fact probably had a direct effect on the 

clustering as the algorithms would not only have to consider the shape of the echo 

envelope but also the location of the peak (above, below or on seabed). This can lead 

to misclassification as peaks similar in shape can be placed at a different location 

within two time series due to this fluctuation and thus such samples will have a 

different cluster label assigned to them instead of being labelled with the same 

cluster label. After discussion with the collaborators from the Geological Survey of 

Ireland (GSI), this error was contributed to surveyor’s failure to optimally calibrate 

the echosounder configuration for seabed depth and thus is regarded as a gross error. 
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This is considered as one of the contributing factors of misclassification in the 

results. 

Another drawback this study faced is the fact that only one dataset was 

available for clustering. This meant that area that was available for clustering was 

long and very narrow as SBES emits only one vertical beam producing a narrow high 

resolution backscatter per ping. A higher number of datasets would have enabled us 

to explore and analyse the overlap or mixture of seabed classes more effectively and 

expand cluster boundary detection in the direction perpendicular to that of the survey 

line. This can be another of the reasons why the clustering results had a heavy 

presence of misclassification. 

Visual exploration of the dataset after it was ‘cleaned’ using a Butterworth 

low-pass filter and an automatic algorithm to detect ‘bad’ samples yielded promising 

results. A total of 81 records were found in the visual exploration which did not have 

any peaks and were thus deemed outliers, but were not detected in the automatic 

procedure. The absence of peaks means that at any point those echoes did not hit the 

seabed and therefore did not contain any information on the seabed. These echoes 

could be discarded without any further testing. The reason why the automatic 

algorithm failed to detect these 81 ‘bad’ samples requires further investigation and is 

recommended for future studies. The fact that a visual exploration tool was 

successfully used to incorporate human cognitive ability in detecting additional 

outliers is an indication that this approach can be used as an added step for data 

processing of acoustic backscatters obtained from SBES. This can improve data 

quality as each survey schedule usually involves hundreds of runs resulting in a large 

quantity of SBES data. 

Two clustering approaches were tested on the dataset- the de facto PCA + k-

means and fuzzy c-means. The application of fuzzy c-means was somewhat limited 

as different combinations of fuzziness could not be tested due to the narrowness of 

the dataset and the fact that only one dataset was available thus making the study 

area for this study quite small for different fuzziness to be effectively tested. The 

fuzziness was set to 1% so that the algorithm treats the cluster boundaries as discrete. 

The visualisation of clustering results was challenging as well. As the survey line 

was narrow, the clustered point overlapped and as a result could not be visualised 
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clearly. Therefore, a different approach had to be taken for visualisation. The cluster 

areas were extracted by rasterising the data with working resolution set to 3 meters. 

This enabled us to visualise the boundaries between areas. The cluster areas were 

coloured based on the summary of the clustered point present within that boundary – 

the area was coloured as per the dominant cluster points. The drawback of 

rasterisation was that it took away the sense of boundary mixture and gave a very 

discrete and somewhat ‘unrealistic’ (Figures 4.11, 4.13, 4.20, 4.21) cluster boundary 

picture. However, this does not affect further analysis as rasterised boundaries were 

generated only to provide a visual overview of the clusters present and the raster 

images were not considered in further analysis. 

Both PCA + k-means and fuzzy c-means algorithms performed similarly- 

with identifiable boundary definitions when the number of clusters was low and 

showing a high level of misclassification at higher cluster numbers. From five 

clusters and upwards, both algorithms failed to provide any representative clusters. 

This could be due to the fact that the survey area does not contain many discrete 

classes. Subsurface information contained in the dataset may also have contributed to 

higher degree of misclassification. The study area is known to be more or less sandy 

with a heavy deposition of shells. The subsurface information can therefore enhance 

the relatively homogeneous nature of the subsurface layer and thus reduce the 

number of discrete clusters in the dataset. This may be the reason why both 

algorithms were effective when the cluster numbers were low, but not for higher 

cluster numbers. 

The results were validated using four different internal validation measures- 

Calinski-Harabasz (VRC) index, Davis-Bouldin index, Dunn’s index, and Silhouette 

index. In all four occasions the optimal numbers of clusters was suggested to be three 

- the lowest number of classes in the testing. Internal validation indices provide an 

estimation of the inherent number of clusters in a dataset based on compactness and 

separation in the absence of ground truth data. This however serves only as a 

guideline and further tests and validation based on ground truth data are required to 

establish the actual number of classes.  Therefore, all three result sets (for 3, 4, and 5 

cluster numbers respectively) obtained for two frequencies (12 KHz and 38 KHz) 

were kept for further validation against ground truth data (Chapter 6). 
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Results from this chapter show that direct clustering of SBES backscatter 

dataset can, to some extent, provide information on inherent seabed type clusters. 

This could help in the process of how ground truthing is designed. The traditional 

approach to ground truthing is to do a feature based clustering of MBES backscatter 

data to give the surveyor an idea of the clusters present in a survey area so that s/he 

can determine optimal locations for ground truth collection points. However, feature 

based clustering of MBES data is a very time consuming procedure as well as being 

reliant on domain knowledge of the surveyor. Without the presence of any ground 

truth data, the selection of features to be extracted from MBES almost always relies 

on the experience of geologists involved in the survey. The selection of features is 

then redefined once enough ground truth samples are collected and the geologist has 

some idea of the nature of the seabed to be surveyed. An effective direct clustering of 

SBES could however provide an immediate approximation of clusters and eliminate 

the need of feature extraction and sampling, which would result in saving time for 

both feature computation and actual acquisition of ground truth samples. In this 

regard the results from direct clustering of SBES echoes are promising. 

If direct SBES clustering could provide a representative classification when 

data are large enough to cover a good area for the algorithms to work effectively i.e. 

when more than one survey line is taken into consideration, then it could potentially 

be integrated into the actual seabed mapping process instead of just for estimation of 

optimal ground truthing locations. Tests are required to confirm this, but if 

successful, then the need to extract features at any point in SBES classification could 

be eliminated. This could lead to significant time and cost saving as feature 

extraction from a whole SBES database (usually terabytes of data) requires weeks of 

intensive computing. 

In the next chapter we attempt to join seabed surface information from MBES 

data with subsurface information provided by SBES. The main objective is to test if a 

combination of SBES and MBES datasets leads to an improved classification of 

seabed type.
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The research focus in this chapter is to evaluate clustering and subsequent 

mapping of the seabed using a new approach by combining the MBES and SBES 

datasets with the aim of improving seabed mapping quality obtained otherwise using 

MBES data only.  

5.1. Research background and justification 

MBES has been the most commonly used echosounder for seabed mapping 

since its arrival in the civilian domain in the 1970s (Mayer, 2006). The emitted 

acoustic beams in an MBES are fan shaped and the returns include a large number of 

angular backscatter responses (see Chapter 3). The drawback of having a large 

amount of angular backscatter is that it introduces noise to the datasets. Ideally, the 

This chapter evaluates the potential of improving seabed type mapping quality by combining 
SBES features with that of MBES. 
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preferred backscatter would be the one that is returned from the beam that was 

vertical as it would contain the least amount of distortion. However, this would mean 

that for a large area, numerous survey runs would be required which would not be 

economically viable. As a result, despite the noise, angular beams are included 

(hence the name multibeam).  

The limiting factor of using only one scanner type (MBES) for seabed 

classification is that it cannot provide reliable classes on all occasions. Some seabed 

types are more easily discriminated by one sensor than the other. Different seabed 

types that have a heavy deposition of lose objects of similar size (for example: shell 

and fine gravel) can give similar backscatter responses due to MBES’s inability to 

penetrate beyond a few centimetres. It is therefore an improvement to use data from 

more than one sensor type for the same purpose. SBES is a good candidate for fusion 

with MBES due to its unique ability to penetrate seabed surface for several meters 

and therefore can bring additional information that can be potentially useful for 

better discrimination between seabed classes.  

In the current surveys, both MBES and SBES are fitted to the hull of the 

survey vessel recording echo returns from both the sensors simultaneously. This 

results in two separate acoustic databases – one for the MBES and one for the SBES 

in a single survey run (Figure 5.1). In addition to combined collection of data, SBES 

backscatter is the only backscatter collected in the survey that has high resolution 

vertical echo returns and therefore has the potential to contribute to the classification 

process. 

 
Figure 5.1: MBES and SBES data collected from a single survey run 
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This forms the central research objective of this chapter. The goal is to use 

SBES’s low distortion returns in conjunction with MBES to better define the class 

boundaries. There are only a handful of studies that focus on fusion techniques in 

acoustic classification. Kerneis & Zerr (2005) combined a DEM image from SBES 

with images from Side Scan Sonar (SSS) for improvement of classification results. 

Motao et al. (2002) used data fusion techniques within MBES data and between 

MBES and SBES data to improve the swath accuracy.  

This research project is aimed at incorporating both MBES and SBES in 

seabed classification at the same time.  A feature based classification approach is 

adopted for this study in an effort to reduce computational intensity. The MBES 

statistical features will include features that resulted from dimensionality reduction 

using SOM (see Chapter 3), while for SBES a set of statistical features will be 

generated from the time series backscatter dataset. The features generated from 

SBES will be briefly discussed later in this chapter. 

5.2. Study area 

Data were collected by Geological Survey Ireland (GSI) and the Marine 

Institute (MI) as part of the INFOMAR programme during a series of Malin Sea 

surveys in the year 2003. The main equipment used were the Kongsberg™ EA600 

singlebeam echosounder (Kongsberg & Ea, n.d.) and the Kongsberg™ Simrad 

EM1002 multibeam echosounder (Simrad-Kongsberg, 1999). The details of the data 

frequency are outlined in Chapters 3 and 4. Malin Sea is located to the north of the 

Republic of Ireland and has been chosen as a case study due to its known seabed type 

variations. The survey acquired both MBES and SBES returns in the same survey 

runs simultaneously. Chapter 3 analysed the data acquired from MBES while the 

SBES dataset was analysed in Chapter 4. As SBES echo returns from only one 

survey line, line 163, are available, the MBES data from the same survey line are 

used throughout the project for analysis. The track runs East-West at latitude of 56N 

and covers a survey distance of about 110 km (Chapter 4 pp. To be updated on final 

version). 
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5.3. Producing the feature dataset from SBES backscatter data 

The MBES data come with 132 statistical features or FFVs and these FFVs 

were further reduced using a visual analytics technique – a Self Organising Map 

(SOM). The final result was an optimized reduced MBES dataset that contained 35 

FFVs (Chapter 3). The SBES dataset consisted of raw backscatter time series. To 

combine the SBES dataset with that of MBES, they needed to be of similar type. 

Therefore, statistical features were generated from the SBES dataset. Various 

statistical techniques can be applied to SBES time series backscatter data for feature 

generation. For the SBES time series dataset, a total of four statistical features were 

used to capture the quantitative echo characteristics. These are described below. 

 Mean and standard deviation 

The first two statistical features that were generated are mean and standard 

deviation. The temporal mean (!) and standard deviation (s) are regarded as one of 

the most important statistical measures in acoustic feature extraction (Lurton, 2002). 

The mean or average echo return value reflects the influence of different types of 

sediments on echo time series. In geology, it is related to the impedance contrast of 

the seafloor. Standard deviation of sonar time series also contains information that 

has direct relationship with the seabed geology and tends to relate to the seabed 

roughness. The differences in roughness help to define cluster boundaries and thus 

make standard deviation an important feature in seabed classification.  

 Measure of randomness 

While being regarded as useful features, the applicability of mean and 

standard deviation is generally restricted to the statistical properties of one single 

echo time series. A separate feature is required to convey information about the 

relationship between adjacent time series. To address this, a measure of randomness 

(rand) is proposed using the standard deviation of the autocorrelation of the echo 

difference data. This measure of randomness (rand) is defined as (Hung et al., 2010): 

!"#$ ! = !
!!
!! !

                                                                              (5.1) 

Where,                                       !! = !!!!,… ,!!!,!!,… ,!!!!                                                     (5.2) 
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                                                                                  (5.4) 

Here Xi is the extracted segment from original echo time series for a specific 

depth (in this case 5m above and below the seabed), m is the number of spatial data 

samples (i.e. number of time series collected) and i is the position of temporal sample 

(0 < i ≤ n) with n being the total number of temporal samples in each time series. di is 

the row vector of the difference of two adjacent echo time series, σ is the standard 

deviation, λ is the time series delay during convolution u, and ai is the ‘modified’ 

autocorrelation row vector of d. To ensure that the autocorrelation is unaffected by 

the magnitude of the data, each correlation sequence is normalised by the largest 

value in the sequence as returned by the infinity norm. It has been found that the 

randomness measure will be more representative if the largest value of a 

conventional version of ai is removed before calculating the standard deviations of 

the autocorrelation sequence. In theory, a value of unity can only be found at the no 

lag point (u0) in the autocorrelation unless the sequence is perfectly autocorrelated to 

itself. The randomness measure is applied to adjacent samples only. 

 Measure of correlation noise 

The measure of correlation noise is a measure of relationship between 

neighbouring echo time series. It is a measure based on the signal-to-noise ratio of 

the mean correlation coefficient noise and is denoted by c (Hung et al., 2010): 

! ! = !"#
!!" !! − !!" !!

!!" !!
                                                                    (5.5) 

Where,                               !!" !! = !
!"

! !!   ,!!!!!"
!!!                                                                                   (5.6) 

Here r is the correlation coefficient between two time series and !!" is the average 

correlation from 10 adjacent time series records. !! is same as !! except that it is 

extracted for the same segment from the echo time series. Correlation noise is 

defined as the difference between the r from the original and temporally filtered 

version of !!. The measure of correlation noise quantifies the amount of differences 
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between consecutive samples based on correlation. It is expected to convey more 

information about the data in a spatial context. 

5.4. Experiment design 

This study will test the potential of clustering a combined MBES and SBES 

dataset. The main objective of this research is to test a novel technique for 

classification of seabed type using datasets that were optimised using visual analytics 

techniques, which involves combining SBES with MBES and subsequent clustering 

of this combined dataset.  

Once the dataset is prepared, it will be clustered using two different clustering 

methods: PCA+ k-means and fuzzy c-means. A ground truth database will then be 

developed from the grab samples obtained from the study area. Three different 

ground truth databases are to be developed- for MBES, SBES, and combined MBES-

SBES. Validation of the clustering results against these ground truth databases is 

discussed in Chapter 6. Figure 5.2 shows the overall process involved in this chapter. 

 

Figure 5.2: Overview of experiment process 

Cluster results will be visually compared with the results obtained from 

MBES clustering. The performance of the algorithms in terms of boundary 

definitions will also be subject to visual comparison. Lastly, four internal cluster 

validation indices will be calculated for estimation of the optimal number of classes, 

as previously with separate MBES and SBES cluster results (Chapters 3 & 4). 

5.5. Data processing 

Before the extraction of SBES features, the optimal seabed depth was 

calculated from the SBES backscatter dataset. Once the depth was determined, 5 

meters above and below that depth (estimated location of the seabed surface) were 
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used to segment the dataset so that it would represent echo returns from the seabed 

surface as well as some the subsurface (see Chapter 4). Figure 5.3 shows the process 

of combining SBES with MBES dataset. 

 

Figure 5.3: Combining MBES and SBES features 

Once the data from the selected segment (5m-5m above and below seabed) is 

isolated, a number of statistical features are generated (described in section 5.3). In 

the next step, the statistical features (mean, standard deviation, randomness, and 

correlation noise) were combined with the MBES data. 

5.5.1. Combining MBES and SBES 

Once the SBES feature dataset was created, the nearest SBES data location to 

each MBES was determined. This had to be done as the number of SBES echo 

returns available was far more than that of MBES sweeps (though in each sweep, 

MBES had more returns (Figure 5.1) due to the presence of multiple beams). Here a 

sweep is regarded as each set of rectangular patch records generated from each ping 

of MBES (separated by dotted lines in Figure 5.4). Therefore, the number of SBES 

returns had to be reduced to match the number of MBES sweep in order to be 

combined. To do so, using the most central MBES patches as references (Figure 5.4), 

the nearest SBES echo returns to those references were selected. 
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Figure 5.4: Selection of nearest SBES locations 

Once the SBES locations were isolated, the statistical features of those 

locations were added to the MBES patches belonging to the same sweep (Figure 5.5). 

The patches belonging to the same MBES sweep contain the same set of SBES 

statistical features as it is expected that the geological variation in the vertical (North) 

direction to be minimal due to the narrow SBES survey line and can be ignored.   

 

Figure 5.5: Combining SBES statistical features with MBES features 

If there are any significant variations in the vertical (along seabed depth) 

direction, these should be captured by the MBES features.  The combined dataset 

was clustered using two different clustering algorithms, as described in the next 

section. 
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5.6. Clustering of combined MBES and SBES dataset 

PCA + k-means and fuzzy c-means were the classification algorithms of 

choice. The Principal Component Analysis (PCA) was used as an orthogonalisation 

method to produce input data for the k-means clustering, where all dimensions are 

orthogonal and independent of each other. In order not to lose any information, all 

components were selected for k-means and PCA was not used as a dimensionality 

reduction technique. During the k-means clustering, the number of clusters specified 

a priori varied from three to six. As in other two chapters, k-means was replicated 10 

times to minimise the probability of hitting a ‘poor’ local minima by chance.  For 

each replication the algorithm ran with a new set of initial cluster centroid positions 

and the cluster labels with the lowest value for within cluster sums of point-to-

centroid distances were retained as the optimum results. 

Though fuzzy clustering can accommodate overlapping of clusters, here it 

was run with 1% fuzziness so that the algorithm would treat the clusters as discrete. 

This was decided based on the fact that the seabed in this area is mostly sandy in 

nature and just one survey line (line 163) would surely not be adequate in capturing 

the overlapping of different clusters. Like k-means, this was also replicated 10 times 

to minimise the chance of being stuck in the local minima. 

5.6.1. Clustering results 

The main objective of this research is to test if the inclusion of SBES 

statistical features results improves boundary definition in seabed clustering. In the 

following section, clustering results obtained from the combined MBES and SBES 

dataset (Line-163) are visualised and compared. 
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Figure 5.6: PCA-k-means (top) and fuzzy c-means (bottom) cluster results of 
combined MBES & SBES dataset (3 clusters) 
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Figure 5.7: PCA-k-means (top) and fuzzy c-means (bottom) cluster results of 
combined MBES & SBES dataset (4 clusters) 
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Figure 5.8: PCA-k-means (top) and fuzzy c-means (bottom) cluster results of 

combined MBES & SBES dataset (5 clusters) 
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Figure 5.9: PCA-k-means (top) and fuzzy c-means (bottom) cluster results of 

combined MBES & SBES dataset (6 clusters) 

From the results, two things are readily noticeable when compared with the 

results obtained MBES clustering only (Chapter 3). First, for both classifications, 

boundaries appear to be better defined (i.e. less mixed). Second, when the cluster 

outputs from two algorithms are compared visually, the combined PCA and k-means 

appear to have yielded better defined cluster boundaries compared to that of fuzzy c-

means, while fuzzy c-means appear to have identified more segmentation in the 

survey line than k-means. 
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The fact that the cluster definition for the combined dataset clustering 

visually appears better than cluster results from just MBES datasets is an indication 

that the statistical features from SBES may have contributed to the better definition 

of boundaries. This observation will be validated by comparison with ground truth 

(Chapter 6). When visually comparing the performance of the algorithms, the results 

obtained from fuzzy c-means appear to have more misclassification than that of k-

means. The level of misclassification increases with the number of clusters. 

Additionally, at higher cluster numbers the misclassification becomes spatially 

random (‘pepper grain’ shape) in nature, which is expected when the classes are 

more or less homogeneous (sandy) with different levels of shell presence. 

For three clusters (Figure 5.6), both algorithms produce relatively well 

defined boundaries. However, this may not be representative as, from the figures, it 

is apparent that cluster one and three (for k-means) and clusters one and two (for 

fuzzy c-means) are the dominant clusters with clusters two and three appearing as 

‘peppered’ throughout the survey line respectively. For four clusters, the cluster 

number three appears to be heavily misclassified in both algorithms and lacks proper 

boundary definition. For five and six clusters, k-means appears to perform better than 

fuzzy c-means with clearer boundaries between clusters. In the k-means clustering 

result, clusters four and five appear to be heavily mixed in the centre-left cluster 

(Figure 5.8). This could be due to the fact that this region has two classes that share a 

lot of geological properties. For fuzzy c-means, clusters one, two and three appear to 

be mixed in the centre location of the map (Figure 5.8). The same pattern was also 

noticeable with MBES clustering (Chapter 3). This can be due to the fact that the 

centre part of the study area comprises of classes that are similar in nature. The 

similar nature of misclassification can be observed for cluster six for both algorithms 

with heavier mixed classification concentration in the map centre. 

5.6.2. Internal cluster validation 

For this experiment, as with MBES and SBES, four commonly used internal 

cluster validation indices were generated and compared. As before, they are: 

Calinski-Harabasz or Variance Ratio Criterion (VRC) index (Calinski and Harabasz, 

1974; Everitt et al., 2011), Davies-Bouldin index (Davis and Bouldin, 1979; Jain and 

Dubes, 1988), Dunn’s index (Dunn, 1974; Halkidi et al., 2001) and Silhouette index 
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(Everitt et al., 2011; Halkidi et al., 2001).  Their working principals are described in 

Chapter 2. Tables 5.1-5.2 and Figures 5.10-5.11 show the internal validation index 

values calculated for both k-means and fuzzy c-means. 

Table 5.1: Internal validation indexes for k-means clustering on combined MBES, 
SBES dataset 

	
  
Cluster	
  3	
   Cluster	
  4	
   Cluster	
  5	
   Cluster	
  6	
  

Calinski-­‐Harabasz	
  Index	
   1021.2557	
   1142.7402	
   1332.6618	
   1457.0885	
  

Davies-­‐Bouldin	
  Index	
   2.1824	
   1.9945	
   2.2286	
   1.9013	
  

Dunn	
  Index	
   0.75586	
   0.62445	
   0.32581	
   0.80723	
  

Silhouette	
  Index	
   0.1185	
   0.11895	
   0.12303	
   0.12919	
  

 

Table 5.2: Internal validation indexes for fuzzy c-means clustering on combined 
MBES, SBES dataset 

	
  
Cluster	
  3	
   Cluster	
  4	
   Cluster	
  5	
   Cluster	
  6	
  

Calinski-­‐Harabasz	
  Index	
   1121.1156	
   1423.624	
   1152.955	
   1487.1102	
  

Davies-­‐Bouldin	
  Index	
   12.7785	
   12.5364	
   12.9354	
   10.5949	
  

Dunn	
  Index	
   0.098838	
   0.09871	
   0.063141	
   0.11708	
  

Silhouette	
  Index	
   0.41408	
   0.27422	
   0.12534	
   0.82308	
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Figure 5.10: Internal validation index for k-means clustering of combined MBES, SBES dataset (red marker shows the estimated optimal 

number of clusters) 
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Figure 5.11: Internal validation index for fuzzy c-means clustering of combined MBES, SBES dataset (red marker shows the estimated optimal 

number of clusters)
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These indices suggest the optimal number of inherent clusters in the data 

based on compactness and separation (see Chapter 2). In figures 5.10 and 5.11, the 

suggested optimal number of clusters is shown by the ‘red’ mark. The table shows 

the corresponding index values for each index. All four validity indices appear to 

indicate that for both clustering algorithms, six clusters are the optimum number of 

clusters which give good separation and compactness. This is similar to that of 

‘MBES only’ clustering shown in Chapter 3. The study area (Malin Head) is known 

to be sandy in nature with varying concentration of shells. Thus, it is quite possible 

that the clusters are comprised of a mixture of different grain size sands with varying 

level of shells, gravel, burrows etc. This will be further analysed in Chapter 6 where 

we develop a ground truth database for both MBES and SBES data. 

5.7. Discussion 

Rapid development in sensor technology has seen a significant improvement 

in the quality and accuracy of both MBES and SBES echosounders over the last 

decade. These sensors are now capable of providing high resolution seabed 

backscatter data and thus produce better seabed maps. Though both MBES and 

SBES are usually fitted to the hull of the same survey vessel and produce 

simultaneous echo returns from the same survey locations, only MBES data have 

been extensively used for seabed classification. The use of SBES is normally limited 

to fish shoal detection and digital elevation model generation. However, the potential 

of SBES to provide high resolution subsurface information can be of interest in 

seabed mapping as the resulting clusters could provide a more accurate description of 

the seabed that that of MBES. 

Because of their high resolution and sensitivity to suspended particles in 

water, good quality raw backscatter SBES data are fundamental to any classification, 

especially when the data are prone to inevitable noise. Given a good quality dataset, 

SBES should be able to provide a reliable seabed classification as it is the only 

echosounder that records vertical echo returns with minimal angular distortions. The 

main objective of this study was to test if SBES can provide complementary 

information to MBES classification i.e. if the MBES and SBES datasets are 

combined, would they yield better classification results than that of MBES only 

classification? 
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For this study, the visual groups (16 groups or 35 variables) obtained from 

SOM implementations on MBES were used as the main dataset. We only used line 

163 of MBES data as SBES data were available for this survey line only. Four types 

of statistical features were generated from the ‘cleaned’ SBES dataset (Chapter 4). 

The SBES dataset had a high volume of echo returns and as a result the data were 

combined using a nearest distance approach i.e. only the closest SBES echo locations 

to the MBES locations were selected. Once the combined dataset was complete the 

dataset was clustered using both PCA-k-means and fuzzy c-means and the results 

visualised. 

After visual exploration of the results, the combined dataset appears to have 

produced better defined cluster boundaries compared to MBES clustering (Chapter 

3). Among the clustering algorithms k-means had better cluster definition than fuzzy 

c-means while fuzzy c-means appeared to have performed better when only MBES 

data were used. As with any clustering of geological features that are homogeneous 

to some extent, the level of misclassification increased with the number of clusters. 

The misclassification was more concentrated in the centre to centre-left part of the 

map. This becomes more prominent in the dataset with 5 and 6 clusters and indicates 

that the centre region of the map may have classes that are more similar in nature. 

This observation will be further validated with ground truth data comparison 

(Chapter 6). 

The visual comparison of cluster results in this chapter with those of MBES 

(Chapter 3) indicates that SBES may have contributed to a better definition of cluster 

boundaries than the ones achieved with MBES data only. However, this is subject to 

ground truth validation, which we discuss in the next chapter. The main objective 

behind the combination of data from different sensors was to see if high resolution 

vertical echo returns from SBES could improve the cluster boundaries obtained from 

MBES clustering. The results, when visually compared, appear to show that SBES 

did in fact improve the boundary definitions to some extent. 

The major drawback of this study was that the SBES dataset available had 

significant vertical displacement and thus was not optimal for classification. This 

means that the optimal depth detected from the data fluctuated by ±5m 

(approximately 3m above seabed and 2m below seabed from the derived average 
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depth over the survey line).This could eventually compromise the quality of the 

classification outcome to some degree as the statistical features generated from this 

dataset included not only the echo envelope but also some portion of above and 

below seabed data segment and therefore would contain a significant bit of noise. 

However, it was still expected that SBES would, to some degree, contribute to the 

classification quality. 

Another limitation was that the study area was limited to one survey line (line 

163). Though the length of the survey line was approximately 100 km, the width 

varied from 45m to 60m. This is quite narrow and limits the clustering algorithm to 

capture the geological variation in East-West direction only. The narrow study area 

was the main reason behind limiting the fuzzy c-means to 1% fuzziness only as 

higher degree of fuzziness would not be logical for such a narrow study area. 

In the next chapter, we develop a ground truth database for the validation of 

cluster results obtained in Chapters 3, 4, and 5. In particular, cluster results using the 

estimated optimal number of clusters for MBES, SBES and combined MBES/SBES 

will be cross-validated against the ground truth data and their accuracy analysed, 

which should indicate how representative the computational clusters are of actual 

seabed. Their accuracy will also be compared with that of the MBES datasets 

clustered with all features. This will provide a quantifiable measure of how effective 

our approach was compared with the de facto standard mapping procedure (Preston, 

2009).
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The ultimate conclusion of any seabed clustering task is the generation of 

maps validated by ground truth. Good quality seabed maps have a number of 

environmental and economic uses. This chapter includes the validation analysis of 

clusters obtained in the previous studies described in Chapters 3, 4, and 5. The 

cluster results obtained in the previous chapters will be cross validated against the 

ground truth results and their accuracy analysed. This will indicate the ‘goodness’ of 

the clusters in comparison to the class labels from the ground truth dataset, thus  

ultimately providing a quantifiable measure of how effective our approach is in 

optimising the datasets.  

This chapter provides a quantifiable measure of the cluster analysis 
undertaken in the previous chapters through cluster validation using 
ground truth data. 
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6.1. Research background and justification 

The objective of clustering is the partitioning of a given dataset for 

discovering groups and identifying distributions and patterns in the underlying data. 

Clustering objective is about partitioning a given data set into groups (clusters) such 

that the data points in a cluster are more similar to each other than points in different 

clusters. In order to establish the final data partitioning from any clustering results, 

the clusters need to be validated against known class labels from the same locations. 

Cluster validation is concerned with the quality of clusters generated by clustering 

algorithms. Any validation technique for a give partitioned dataset usually attempts 

to answer questions such as:  

• For any number of clusters: how pronounced is the cluster structure that has 

been identified?  

• When more than one algorithm is used: how do clustering solutions from 

different algorithms compare?  

• For varying cluster numbers: how do clustering solutions for different values 

of algorithmic parameters (e.g. the number of clusters) compare?  

When information about true class membership is available (i.e. ground 

truth), external cluster validation techniques are usually used. These provide an 

objective way of assessing algorithm performance. When such external knowledge is 

not available, internal measures need to be used which attempt to measure the quality 

of the clusters based on the intrinsic properties of the data.  

The ultimate goal of this PhD research is to evaluate the potential of visual 

analytic methods in improving the quality of seabed mapping. Previous chapters 

concentrated on visual comparison of cluster results obtained from optimised MBES 

and SBES datasets as well as on data-driven internal cluster validation. This chapter 

will focus on quantifying those clustering results through cross correlation with 

external ground truth data. This is done by using both a confusion matrix and a kappa 

coefficient, two common techniques used in remote sensing for validating the cluster 

results obtained in segmentation of remotely sensed images of natural objects or 

features (Campbell, 2008; Lillesand et al., 2004). In the following, we briefly 

introduce these two methods. 
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 Confusion matrix 

In a confusion matrix, cluster results are compared with known class labels 

from the same locations. The confusion matrix provides a measure of how the 

algorithm performed. An example is shown in Figure 6.1, the rows (1,2,...,i) 

correspond to the known class of the data and the columns (1,2,...,j) (here, i = j) 

correspond to the predictions made by the algorithm. 

 
Figure 6.1: An example of a confusion matrix 

The value of each of element in the matrix represents the number of 

predictions made with the class corresponding to the column. The diagonal elements 

show the number of correct classifications made for each class, while the off-

diagonal elements represent the number of misclassifications (Campbell, 2008; 

Mather & Koch, 2010).   

There are two types of error measures that can be calculated from the 

confusion matrix: error of commission and error of omission (Mather and Koch, 

2010; Campbell, 2008; Lillesand et al., 2004). The commission error, which occurs 

when one incorrectly identifies data points associated with a class as other classes, or 

when one improperly separates a single class into two or more classes, can be 

calculated as: 

!"##$%%$"&  !""#" =
!"#$%  !"  !"" − !"#$%&#'  !"!#!$%&  !"  !"#$%&  !

!"#$%  !"  !"#  !             (6.1) 

For example,  

Commission  Error  of  ‘Class  1’   Figure  6.1 =
p!" + p!"

p!"
                                          (6.2) 
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Errors of omission occur whenever the algorithm fails to recognize data points that 

should have been identified as belonging to a particular class; that is data belonging 

to a particular class are classified into different classes. This is calculated as: 

Omission  Error =   
Total  of  off− diagonal  elements  in  row  i

Total  of  row  i                                     (6.3) 

To give an example, the omission error of class 1 in the confusion matrix in Figure 

6.1 is given as: 

Omission  Error  of  class  1   Figure  6.1 =
p!" + p!"

p!"
                                      (6.4) 

Another measure of the quality of clustering is the mapping accuracy, which 

provides a measure of correct classification of individual classes are calculated using 

both correct and misclassified samples for each class as follows: 

Mapping  accuracy  of  class  1   Figure  6.1 =
p!!

p!! + p!" + p!" + p!" + p!"
            (6.5) 

Finally, the overall accuracy of the clustering algorithm can be calculated from the 

ratio of the sum of the diagonal elements of the confusion matrix versus the number 

of elements in the confusion matrix: 

Overall  accuracy   Figure  6.1 =
p!! + p!! + p!!

P!"!#$
                                        (6.6) 

 Kappa coefficient or Cohen’s kappa 

When two classification algorithms applied to the same data are to be compared, the 

kappa coefficient (k) is often used to summarise the information provided by the 

confusion matrix. Kappa is calculated from the observed and expected frequencies 

on the diagonal of confusion matrix. This is a common evaluation approach in 

remote sensing where experimental results are compared with those that are known 

(i.e. ground truth) (Campbell, 2008). The calculation of kappa is based on the 

difference between how much agreement is actually present (“observed” agreement) 

compared to how much agreement would be expected to be present by chance alone 

(“expected” agreement) and is calculates as (Bishop et al., 2007; Mather & Koch, 

2010): 
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Kappa k =
observed  agreement− expected  agreement

1− expected  agreement                       (6.7) 

The observed agreement is calculated as follows (Figure 6.1): 

Observed  agreement =
P!! + P!! + P!!

P!!"#$
                                                          (6.8) 

And the expected agreement is calculated from expected cell frequencies, which is 

calculated as below (Figure 6.1): 

Expected  cell  frequency, P! =
P!"×P!"
P!"#$%

                                                          (6.9) 

where, i=range of classes (1-3 in this case) 

Finally, expected agreement is calculated using the expected cell frequencies as 

follows: 

Expected  agreement =
P! + P! + P!

P!"#$%
                                                      (6.10) 

The value of kappa is presented as a percentage. A value of zero indicates 

that there is no agreement whereas a value of 1 indicates complete agreement 

between the classification output and the reference data. Kappa statistic measures the 

proportion of agreement between two rates with correction for chance and the higher 

the value of kappa, the stronger the agreement. Kappa scores ranging from 0.4-0.6 

are considered to be fair, 0.6-0.75 are good, and scores greater than 0.75 are 

excellent. Though these guidelines are frequently used in different research fields 

they are not universally accepted as no evidence was ever given to support this 

guideline. Despite this the kappa coefficient remains a frequently used method in 

quantifying the classification accuracy (Fleiss, 1981; Landis & Koch, 1977; Mather 

& Koch, 2010).  

In the next section, we describe how we used these measures (confusion 

matrix, kappa coefficient) to validate our clustering results against a ground truth 

database generated from grab samples collected and provided by GSI and MI. 
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6.2. Data for validation 

Three different sets of clustered data sets were produced in Chapters 3, 4, and 5: 

from MBES clustering, from SBES clustering, and from combined MBES and SBES 

clustering. For clarity, we give a short description of each of these datasets before 

introducing the ground truth database against which our results are compared:  

 Clustered MBES data 

The ‘original’ form of MBES data comprised 132 Full Feature Vectors 

(FFVs) (see Chapter 3). The dimensionalities of the datasets were optimised using a 

self organising map (SOM), which resulted in 35 variables in the form of 16 visual 

groups. The datasets (both the original and optimised) were clustered using the 

commonly used combined PCA and k-means. For the original datasets, the first three 

principal components were used which comprises of around 95% of the information. 

These three components were then clustered using k-means. Therefore, for the 

original datasets, PCA functioned as both dimensionality reduction and 

orthogonalisation tool. For the datasets optimised with visual groups, all 35 

components were used in the k-means clustering thus including 100% of the 

information. Here, PCA functioned only as an orthogonalisation tool. Though 

different cluster numbers were tested, the internal validation indices estimated that 

six was the optimal number of clusters for the data. Therefore we only used results 

with six clusters for validation. Thus for the MBES clustering, two datasets were 

selected for validation: 

− 6 clusters from k-means clustering of MBES datasets (132 FFVs) 

− 6 clusters from k-means clustering of MBES datasets (35 FFVs) 

 Clustered SBES dataset 

The original SBES dataset came from only one survey line (line 163) and 

comprised a time series of backscatter amplitude in three frequencies (see Chapter 4). 

The original dataset was filtered using a Butterworth filter and an automatic outlier 

detection algorithm was run to get rid of the ‘bad’ samples. The dataset was further 

evaluated using a visual time series exploration tool TimeSearcher© and further 

outliers were detected. Once the data were cleaned, they were clustered using PCA-
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k-means and fuzzy c-means with 1% fuzziness. Different cluster numbers (3 to 8 

clusters) were tested. The results were then evaluated using four different internal 

validation indices and it was suggested that the optimal number of clusters for the 

dataset were three. A frequency of 200 KHz in this dataset was deemed too noisy to 

produce any valid clusters. Thus for the SBES clustering, four datasets were selected 

for validation: 

− 3 clusters from k-means clustering of SBES datasets (12 KHz) 

− 3 clusters from fuzzy c-means clustering of SBES datasets (12 KHz) 

− 3 clusters from k-means clustering of SBES datasets (38 KHz) 

− 3 clusters from fuzzy c-means clustering of SBES datasets (38 KHz) 

 Clustered MBES+SBES dataset 

As the SBES data were only available for one survey line (line 163), MBES 

records from that line were selected to produce the combined dataset (see Chapter 5). 

The MBES dataset comprised 35 variables from 16 visual groups, while four 

different statistical features were generated from the SBES dataset. They were 

combined using the nearest neighbour method (Euclidean distance) i.e. for each 

MBES ‘sweep’, the closest SBES was located and combined (Chapter 5). The 

combined dataset was clustered using both PCA-k-means and fuzzy c-means with 

different cluster numbers (3 to 6 clusters). From the internal validation tests, it was 

estimated that the optimal number of clusters was six. Therefore, two datasets were 

selected from the cluster results of the combined dataset: 

− 6 clusters from k-means clustering of MBES+SBES dataset 

− 6 clusters from fuzzy c-means clustering of MBES+SBES dataset 

The next section describes the process of the generation of ground truth 

databases for validation of above mentioned clustered datasets. 

6.3. Ground truth database 

For any mapping project, a good ground truth is important for proper cluster 

validation. Mapping of the seabed is not any different when it comes to cluster 

validation and labelling. However, collection of ground truth for seabed mapping 

poses a number of challenges unlike traditional Earth surface mapping. 
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In the shallow waters, ground truthing is done by collecting grab samples, 

running video lines and/or sending a diver to collect samples to establish a ground 

truth database for the region. For deep water surveys, collection of ground truth data 

gets more complicated as the survey area increases with the depth. The operation 

cost for instruments used for collecting samples becomes very high and sending 

divers beyond a certain depth becomes impossible. Unlike high resolution satellite 

images in visible spectrum (ex: Quick Bird) or photographs taken using aerial 

photography, there are no means available to obtain high resolution images for the 

entire seabed  survey area to be used as a reference ground truth image for cluster 

validation. Therefore, a combination of sample collection, videos and still images 

serves as the ground truth for seabed mapping (MESH, 2011). 

 Sample collection 

There is a variety of sampling devices available for collecting samples. These 

are usually limited to grabs and corers which sample sediments and their infauna 

(animals living within the seabed) as well as trawls and dredges. Human observers 

play a part through the use of video and still cameras mounted on towed sledges, 

drop-frames or Remote Operated Vehicles (ROVs), but these only provide a view of 

the surface substrata. A combination of these sampling and observational methods is 

required to provide all the information needed to classify the seabed (Brown et al., 

2002). 

It is important that sampling should be representative rather than exhaustive 

as the collection of samples is both costly and time-consuming to process, analyse 

and interpret. To be representative, appropriate sampling techniques should be used 

on each seabed type.  A minimum sampling requirement should be set, considering 

the level of classification accuracy and confidence required in the final map. Single 

sampling of each ground type forces the assumption that it is homogeneous. 

Replicate sampling allows some assessment of variability within and between 

different clusters. The number of replicates taken may be determined by a rule of 

thumb and expert judgement based on the assessment of the information on the 

heterogeneity/homogeneity of the ground as it appears to the remote sensing 

instrument (Brown et al., 2002). 
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In many cases it will be necessary to set aside a proportion of the ground truth 

samples to test the accuracy of the map once it has been produced. The need for these 

‘validation’ samples should be factored into the survey design. 

Optimising the ground-truth survey design is often an iterative process, and is 

kept flexible to a certain degree. A draft plan of the ground truthing survey is usually 

handed to those who will conduct the survey to check operational feasibility (access 

to sites, navigation hazards, Health & Safety matters, etc). However, the fine detail 

of the design frequently depends on the outcome of the seabed survey and the 

prevailing conditions at the time of sampling. 

For the GSI and Marine Institute (MI) surveys, which provided ground truth 

data used in this chapter, three types of equipments were used for the collection of 

grab samples: Hamon grab, Van Veen grab and Day grab. 

 Hamon grab 

The Hamon Grab (Figure 6.2) comprises of a sampling scoop that is box 

shaped and is mounted in a triangular frame.  On reaching the seabed, tension wires 

are released which activates the grab. This causes the sampling bucket to pivot 

through 90º thus driving the sample bucket through the sediment and pushing seabed 

sediment into the bucket (Figure 5.6).  The open end of the bucket then comes 

against a rubber sealed steel plate which stops the sediment escaping during 

recovery. Weights are attached to the grab to minimize the lateral movement of the 

supporting frame during sample collection. A major drawback of the Hamon grab is 

that the sediment sample is mixed during the process of collection and retrieval, 

thereby precluding the examination or sub-sampling of an undisturbed sediment 

surface. 



CHAPTER 6. CLUSTER VALIDATION 
 

188 
 

 
 

 
Figure 6.2: A Hamon grab (Brown et al, 2002) 

 Van Veen grab 

Van Veen Grabs are very simple sampling devices based on two hinged 

bucket sections connected to extended lever arms (Figure 6.3).  A simple locking 

device attached to a single lift line uses the weight of the grab to hold the jaws of the 

buckets open during descent to the seabed.  On contact with the seabed the weight of 

the grab is taken off the locking mechanism which falls away.  During recovery the 

weight of the grab acts on the ends of the lever arms applying a substantial closing 

force on the grab buckets.  The grab is a simple robust mechanism only requiring 

single wire operation and is effective in any water depth. But it also shares the major 

drawback of Hamon grab as the sediments are significantly disturbed during 

sampling. 
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Figure 6.3: Working principal of Van Veen grab (GeoSI, 2011) 

 Day Grab 

Day Grabs consist of two hinged bucket sections slung within a pyramidal 

frame (Figure 6.4). Within the frame tensioned stainless steel warp wires retain the 

sample buckets in the open position.  The instrument is triggered by contact of pad 

feet with the seabed.  Once triggered, the weight of the instrument is transferred 

along the warp wires, forcing shut the grab jaws.  Sample recovery is thus not reliant 

on the momentum of the grab during impact reducing sediment disturbance to a 

minimum. 
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Figure 6.4: A Day grab (KC Denmark, 2011) 

 

A Day grab is mainly designed for sampling soft sediments i.e. sands, muds 

etc. Its efficiency somewhat diminishes when the sediments are coarse in nature due 

to the tendency of larger particles to prevent closure of the buckets, causing loss of 

sample. However, where there is a high percentage of soft sediment (sands or muddy 

sands) associated with a gravelly component a Day grab is used for its capability to 

sample finer particles, albeit with the likelihood of a relatively high failure rate. 

 Ground truth samples at Malin Head 

The survey location used for this research represents a small section of the 

larger survey area at Malin Head. A total of 42 grab samples were taken at and 

around the survey location (Figure 6.5). Though GSI routinely use all three of the 

above mentioned grabs for sample collection, only a Hamon grab was used for 

sample collection in this study area for its simplicity, smaller size and effectiveness 

in shallow waters. Once the grab samples were collected, they were analysed by 

geologists and labelled. Almost all the grab samples were a mixture of different types 

of sand, shells and burrows. Spatial locations of these grab samples along with their 

descriptions were prepared by GSI and supplied to us to be used in the generation of 

ground truth databases. 
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Figure 6.5: Grab sample locations around the study area 

From the set of grab samples, different classification zones were created 

based on the composition of seabed materials in each grab samples. This was done to 

generalise the properties of the seabed from the grab samples for easier 

interpretation. A total of seven classification zones were created (Figure 6.6). Table 

6.1 summarises the seabed properties within these zones. 

 

Figure 6.6: Different classification zones for the survey area based on the grab 
samples collected 

These zones are created by grouping together the grab samples that showed 

similar seabed properties i.e. each zone is basically a generalisation of the seabed 

properties obtained from the grab samples that were located in close proximity and 

shared most common geological features. The zones are assumed to be vertical due 

to the small width of the study area and there are not enough grab samples available 

from the study area to establish a more representative boundary of class zones. 

Though the length of the study area is about 100 kms, the effect of vertical zone 

boundary on classification accuracy is assumed to be minimal as the grab sample 

indicate no abrupt change of boundaries. The effectes of vertical zoning on accuracy 
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can only be quantified for a wider study area that includes a higher number of grab 

samples.  

Table 6.1: Summary of classification zones in Malin Head 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 

Silty sand 
with 
organic 
material. 
Green 
brown in 
colour. 

Medium 
grain 
sand with 
small 
presence 
of shell, 
gravel 
and 
cobble. 
Green 
brown in 
colour. 

Silty clay 
with 
gravel 
size 
clasts. 
Moderate 
presence 
of sand. 

Silty 
sand. 
Presence 
of small 
shells and 
gravel 
size 
clasts. 

Fine grain 
sand. 
Heavy 
presence 
of shells 
(20% of 
sample). 

Medium 
grain 
sand. 
Heavy 
presence 
of shells 
and 
burrows. 

Coarse 
grain 
sand. 
Presence 
of fine to 
coarse 
pebbles. 

 

From Table 6.1, it is apparent that the there is not much fundamental 

variation in seabed in the survey area. The area mainly comprises of different 

mixtures of sands with varying level of shell, gravel, clast, and pebble presence. 

Shells in this area are mainly comprised of clams, scallops, and dentalia. 

 Class labels for MBES and combined MBES-SBES classification 

The next step is to define cluster labels from the zones. Clustering labels 

should be based upon the underlying composition of seabed. That is, the grain size of 

the soil/sand should be the main divisor of clusters. In that regard there are five types 

of soil present in the area – silty clay, silty sand, fine, medium and coarse grain sand. 

However, the presence of different level of shells, gravel and other materials will 

contribute to the determination of cluster labels.  Based on this, we have aggregated 

classification zones from Table 6.1 into six cluster labes as follows: ‘Zone 1’ (table 

6.1) represents a unique area that is not recurrent in any other zones. This area is silty 

sand with a presence of organic material. Therefore, this area is labelled as the first 

cluster or ‘Class 1’. 

‘Zone 2’ and ‘Zone 6’ both consist of medium grain sand. However, ‘Zone 2’ 

has a small presence of shell, gravel and cobble while ‘Zone 6’ has a heavy presence 

of shells and burrows. This difference is likely to separate these two zones into 
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different classes when classified using MBES data. Therefore, ‘Zone 2’ was labelled 

as ‘Class 2’ and ‘Zone 6’ would be labelled later on.  

The main components of ‘Zone 3’ and ‘Zone 4’ are silty clay and silty sand 

respectively. ‘Zone 3’ has some presence of clasts that are of gravel size. There is 

also some presence of sand. ‘Zone 4’ has some shells and gravel size clasts. The 

presence of sand and similar gravel sized clasts makes these two zones very similar 

in nature and the backscatter response from these two zones would be very similar as 

well. Therefore, both these zones were labelled as ‘Class 3’. Zone 5 and 7 are very 

different from each other as well as compared to other zones. Therefore, zone 5, 6, 

and 7 were labelled ‘Class 4, 5, and 6’. Table 6.2 lists the classification class labels 

and their generalised description. 

Table 6.2: Class description for MBES classification 

 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

Class value 1 2 3 4 5 6 

Zones in 

class 

1 2 3 and 4 5 6 7 

Class title Silty sand Medium 

grain sand 

with light 

shell, 

gravel, and 

cobble 

Silty sand 

with clay, 

gravel and 

clasts 

Fine grain 

sand with 

heavy 

shells 

Medium 

grain sand 

with heavy 

shells and 

burrows 

Coarse 

grain sand 

with 

pebbles 

 

 Cluster labels for SBES classification 

In order to differentiate between homogeneous features such as different 

types of sand, extensive ground truthing is required for proper establishment of 

cluster boundaries. The ground truth samples should be adequate enough to develop 

a database based on grain size and their corresponding backscatter amplitudes. This 

is to help the analyst distinguish between fine differences that are present in the 

backscatter returns. Apart from extensive ground truth availability, a combination of 

unsupervised clustering and supervised classification is almost always recommended 

in the classification of geological features that returns identical backscatters. In this 

process, enough clusters would be generated first using unsupervised clustering. A 
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post-classification aggregation would be applied on the clustered database- where the 

analyst with the help of the extensive ground truth information aggregates the 

clusters into pre-determined class labels. Unfortunately, this was not possible in the 

case of SBES classification and a precise differentiation of the geological features 

(e.g. fine sand and silty sand) would not be possible with the available ground truth 

data. 

The number of clusters present in SBES is expected to be lower than that of 

MBES (Chapter 4) as the subsurface content of SBES was taken into account when 

clustering the dataset. For the determination of cluster labels for SBES classification, 

the main five soil types in the area were taken into account. These types are: silty 

clay, silty sand, fine, medium, and coarse grain sand. The rationale is that the 

subsurface content of the SBES dataset contains information of the underlying 

seabed soil properties and is not affected by the shells, gravels and clasts present on 

the surface. 

After considering the underlying properties of different zones in Table 6.1, 

the decision was made that SBES responses to the silty sand from zones 1 and 4, to 

the silty clay with sand mixture from ‘Zone 3’, and to the fine grain sand from ‘Zone 

5’ are likely to be similar. Therefore, these three zones were labelled as ‘Class 1’ for 

SBES classification. The main argument here is the rationale behind treating of silty 

sand (zone 4) and fine grain sand (zone 5) similarly for cluster labelling. But without 

the presense of detailed grain size analysis, the backscatter responses from these two 

zones would be too close to distinguish.  

Both zones 2 and 6 have medium grain sand and are therefore labelled as 

‘Class 2’ and lastly zone 7 is the only zone with coarse grain sand. This zone is 

labelled as ‘Class 3’ for SBES classification. Table 6.3 lists the classification class 

labels and their generalised description for SBES clustering. 
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Table 6.3: Class description for SBES classification 

 Class 1 Class 2 Class 3 

Class value 1 2 3 

Zones in class 1, 3, 4, and 5 2 and 6 7 

Class title Silty & fine grain 

sand 

Medium grain sand Coarse grain sand 

 

Using the above schemes (Table 6.2 and 6.3), two separated cluster validation 

databases were developed. One (with 6 classes) will be used to validate the MBES 

clusters and combined MBES and SBES clusters and the other (with 3 classes) will 

be used to validate the SBES clusters. Figure 6.7 shows the ground truth dataset for 

cluster validation.  

 
(a) 
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(b) 

 
(c) 

Figure 6.7: Ground truth datasets for MBES, SBES and combined MBES + 

SBES cluster validation 

In the following section, we show the results of combined clustering as well 

as he validation results. 

6.4. Results and discussion 

This section will include the validation results using confusion matrices and 

kappa coefficients for clustering results obtained in the analysis chapters 3, 4, and 5.  
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 Validation of MBES clusters – 132 FFVs vs 35 FFVs (obtained from 16 VGs) 

MBES with 132 FFVs was clustered using the defacto method- using PCA to 

orthogonalise the datasets and then picking the first three components which account 

for around 90-95% of information. Tables 6.4 and 6.5 show the validation results 

obtained from clustered MBES datasets (Chapter 3): 

Table 6.4: Confusion matrix and accuracy of k-means clustering for 6 clusters of 

MBES datasets (132 FFVs) 

 
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Row total 

Class 1 79.43% 16.54% 1.41% 1.24% 1.16% 0.22% 17893 
Class 2 2.83% 50.49% 42.10% 2.23% 0.38% 1.97% 48703 
Class 3 4.17% 4.30% 73.97% 10.52% 3.82% 3.25% 137291 
Class 4 3.51% 6.10% 4.75% 82.35% 1.68% 1.64% 70101 
Class 5 2.27% 11.57% 1.77% 31.87% 50.97% 1.55% 46073 
Class 6 1.33% 4.92% 2.53% 3.97% 40.21% 47.04% 39607 
Column total 25350 44959 127451 89730 46225 25953 359668 

Total of diagonal = 240197 

Overall accuracy = 
      

66.78% 
 

Table 6.5: Confusion matrix and accuracy of k-means clustering for 6 clusters of 
MBES datasets (35 FFVs) 

 
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

Row 
total 

Class 1 
86.09

% 13.44% 0.47% 0.00% 0.00% 0.00% 17893 

Class 2 5.67% 
66.91

% 19.04% 7.39% 0.43% 0.57% 48803 

Class 3 2.31% 2.64% 
76.76

% 9.07% 8.58% 0.64% 137291 

Class 4 4.12% 1.97% 14.81% 
78.81

% 0.30% 0.00% 70101 

Class 5 1.53% 11.52% 6.12% 6.82% 
74.00

% 0.00% 46073 

Class 6 3.17% 9.98% 7.04% 5.73% 32.01% 
42.07

% 39607 
Column 
total 26187 49317 130740 76722 58983 17819 359768 

Total of diagonal = 259438 
Overall accuracy = 72.11% 
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Classification with MBES visual groups (Table 6.5) has a higher overall 

accuracy than that using all 132 FFVs (Table 6.4). In the classification of MBES 

datasets with 132 FFVs, ‘Class 2’ which is medium grain sand (Table 6.2) appears to 

be poorly classified with a significant portion of it being misclassified into ‘Class 3’, 

which is silty sand with gravel and clasts. Mapping accuracy of this class (Table 6.6) 

is just 35.6% which makes it a very unreliable class in the classification map. Class 

accuracy is much improved when the datasets classified include visual groups. This 

indicates that optimised datasets produced more reliable map than the original 

datasets. 

Table 6.6: Accuracy assessment and corresponding kappa for MBES classification 

 
MBES (132 FFVs) MBES (16 VGs) 

 

Omission 
error (%) 

Comm. 
error 
(%) 

Mapping 
Accuracy 

Kappa 
 

Omission 
error (%) 

Comm. 
error (%) 

Mapping 
Accuracy 

Kappa 
  

Class 1 20.57 62.24 48.96% 

0.55 
 
 
 
 
 

13.91 60.26 53.72% 

0.63 
 
 
 
 
 

Class 2 49.51 41.82 35.60% 33.09 34.15 49.87% 
Class 3 26.03 18.86 62.23% 23.24 18.47 64.79% 
Class 4 17.65 45.65 56.54% 21.19 30.64 60.32% 
Class 5 49.03 49.36 51.80% 25.99 54.01 48.05% 
Class 6 52.96 18.49 39.70% 57.93 2.92 40.87% 
 

Overall, the mapping accuracy of each class obtained from MBES data with 

132 FFVs vary from 35%-62%. This indicates that the classes include a good amount 

of misclassification in the form of omission and commission. Omission means a 

portion of a class being misclassified into other classes, while commission means 

other classes being misclassified into that particular class. Both the omission and 

commission error varied from 20% to as high as 60%. This can be an indication that 

loss of information by selecting the first three principal components is actually 

contributing to the misclassification. The highest commission error can be observed 

for the smallest class (Class 1). Class 1 has a total of 17,893 data locations while its 

adjacent larger classes (Class 2 and 3) have a total of 185,994 data locations. A 

relatively small portion of those larger classes, a total of 7102 data locations (2.8% of 

Class 2 & 4% of Class 3), were misclassified as ‘Class 1’. However, this equated to 

almost 50% of the total data locations correctly classified as ‘Class 1’. Therefore, this 

high commission error does not fully indicate that the mapping quality of ‘Class 1’ is 

poor but shows the influence of larger classes on relatively smaller classes. ‘Class 6’, 
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also a small class, was the most poorly classified with the highest amount of 

omission error. Almost half of its data locations were classified as ‘Class 5’. ‘Class 

6’ contains coarse grain san with some presence of fine to coarse pebbles, while 

‘Class 5’ contains medium grain san with a heavy presence of shells and burrows. 

The nature of particles present in these two zones makes them quite identical and 

could be the principal reason for heavy misclassification. 

MBES with 16 visual groups were also clustered using a combination of PCA 

and k-means, but instead of picking the first three components, all principal 

components were selected for clustering thus no information was lost. The overall 

accuracy of the map had increased by more than 5% with kappa coefficient being 

0.6383.  The mapping accuracy of individual classes also increased and ranged 

between 40% - 64%.  As in MBES with 132 FFVs, the classes 1 and 6 had the 

highest amount of commission and omission error respectively. The definition of 

‘Class 1’ was significantly better than previous with almost all of its 

misclassification concentrated on the adjacent ‘Class 2’. Classes 5 and 6 were 

defined in a similar fashion like previous i.e. almost half of the 6th class’s data 

locations were misclassified as ‘Class 5’.  

In comparison, it can be said that the reduced data seemed to have produced a 

better quality map with better class definitions than that obtained using the traditional 

method. It also indicates that SOM was able to optimise the MBES dataset thus 

contributing to the improvements.  

 Validation of SBES clusters – 12 KHz vs. 38 KHz and k-means vs. Fuzzy c-means 

Before discussing the validation results, it should be noted that The SBES 

dataset available for this study contained a significant vertical displacement. As the 

dataset was clustered directly instead of clustering the features generated from the 

backscatter, this should have a direct effect on the clustering quality as similar peaks 

could have a different location in the respective time series due to this fluctuation 

and thus may have had different cluster labels instead of being labelled as members 

of one class. In addition to this the fact that only one survey line was available for 

clustering severely limits the effectiveness of the algorithms as the area that was 

available for clustering was long and very narrow. A higher number of survey lines 

would have enabled us to explore and analyse the overlap or mixture of seabed 



CHAPTER 6. CLUSTER VALIDATION 
 

200 
 

classes effectively but as this was not the case, these limitations may have 

contributed to the higher level of misclassification present in the results. 

Tables 6.7-6.12 list validation results for SBES clustering analysis. Two 

frequencies of SBES dataset (12 & 38 KHz) were clustered using both PCA-k-means 

and fuzzy c-means (Chapter 4). 

Table 6.7: Confusion matrix and accuracy of k-means clustering for 3 clusters of 12 
KHz SBES dataset 

 
Class 1 Class 2 Class 3 Row total 

Class 1 66.28% 28.11% 5.61% 4597 
Class 2 20.70% 63.03% 16.27% 1420 
Class 3 21.52% 20.76% 57.72% 790 
Column total 3511 2351 945 6807 

Total of diagonal= 4398 
Overall accuracy= 64.61% 

 

Table 6.8: Confusion matrix and accuracy of k-means clustering for 3 clusters of 38 
KHz SBES dataset 

 
Class 1 Class 2 Class 3 Row total 

Class 1 68.91% 21.97% 9.11% 4597 
Class 2 25.07% 63.52% 11.41% 1420 
Class 3 13.04% 26.84% 60.13% 790 
Column total 3627 2124 1056 6807 

Total of diagonal = 4545 
Overall accuracy = 66.77% 

 

Table 6.9: Accuracy assessment and corresponding kappa for SBES classification (k-
means, 12 & 38 KHz) 

 

SBES (12 KHz k-means) SBES (38 KHz k-means) 
Omission 
error (%) 

Comm. 
error (%) 

Mapping 
Accuracy 

Kappa 
 

Omission 
error (%) 

Comm. 
error (%) 

Mapping 
Accuracy 

Kappa 
  

Class 1 33.72 10.09 60.20% 
 
 

0.47 
 
 

31.08 9.98 62.66%  
0.50 

 
 

Class 2 36.97 102.53 31.12% 36.48 86.06 34.14% 

Class 3 42.28 61.90 35.65% 39.87 73.54 34.65% 
 

As the optimal number of clusters from internal cluster validation was 

estimated to be three (Chapter 4), the cluster results were validated against the 

ground truth database of three classes. From the validation results, the first thing that 
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is noticeable is that the largest class overshadows the other two small classes. As the 

study area comprised of mostly fine grained sand with some silty areas, it resulted in 

a large geographic area under a single class (‘Class 1’). The largest class or ‘Class 1’ 

accounted for almost 70% of the data location while classes 2 and 3 accounted for 

about 20 and 10% of the data locations respectively.  

In this case, the k-means performed slightly better on 38 KHz dataset than on 

the 12 KHz SBES dataset. However, the difference is not substantial enough to be 

conclusive. ‘Class 2’ has a significant amount of commission error (Table 6.9). This 

is due to the fact ‘Class 1’ is a very large class with almost 70% of the total dataset 

(4597 points) and one zone (zone 2) of ‘Class 2’, a very small zone in comparison, is 

located in between zones included in ‘Class 1’ ( Figure 6.6 & Table 6.3). Though the 

overall accuracy for both datasets (12 KHz & 38 KHz) is around 65%, the mapping 

accuracy for the smaller classes is significantly lower. This is mainly due to the 

misclassification of the larger class out numbering the correctly classified smaller 

classes as mentioned before.  

From Tables 6.7 & 6.8, we can see that the mapping accuracy of classes 2 

and 3 was heavily constrained by the commission error. ‘Class 2’ which is 

surrounded by the largest class was mostly affected with 102% and 86% of 

commission error in 12 and 38 KHz datasets. A third of the points (1292 & 1010 data 

points for 12 & 38 KHz respectively) of ‘Class 1’ was misclassified into ‘Class 2’ 

and was larger than the number of points accurately classified (895 & 902 data points 

respectively) as ‘Class 2’. The omission error of all three classes remains fairly 

similar across the different frequencies. The higher degree of commission error can 

be improved by recalibrating the boundary definition of the ground truth database as 

well as through supervised classification. Tables 6.10-6.12 display the validation 

results from fuzzy c-means classification of the SBES dataset. 
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Table 6.10: Confusion matrix and accuracy of fuzzy c-means clustering for 3 clusters 
of 12 KHz SBES dataset 

 
Class 1 Class 2 Class 3 Row total 

Class 1 61.45% 30.73% 7.81% 4597 
Class 2 24.93% 68.87% 6.20% 1420 
Class 3 10.51% 27.09% 62.40% 790 
Column total 3262 2605 840 6807 

Total of diagonal = 4296 
Overall accuracy= 63.11% 

 

 

Table 6.11: Confusion matrix and accuracy of fuzzy c-means clustering for 3 clusters 
of 38 KHz SBES dataset 

 
Class 1 Class 2 Class 3 Row total 

Class 1 65.32% 28.17% 6.50% 4597 
Class 2 29.58% 65.56% 4.86% 1420 
Class 3 15.57% 17.72% 66.71% 790 
Column total 3546 2366 895 6807 

Total of diagonal = 4461 
Overall accuracy = 65.53% 

 

Table 6.12: Accuracy assessment and corresponding kappa for SBES classification 
(fuzzy c-means, 12 & 38 KHz) 

 

SBES (12 KHz k-means) SBES (38 KHz k-means) 
Omission 
error (%) 

Comm. 
error (%) 

Mapping 
Accuracy 

Kappa 
 

Omission 
error (%) 

Comm. 
error (%) 

Mapping 
Accuracy 

Kappa 
  

Class 1 38.55 9.51 56.12% 
0.48 

 
 

34.67 11.81 58.42% 
0.51 

 
 

Class 2 31.13 114.58 32.10% 34.44 101.06 32.61% 

Class 3 37.59 37.59 39.85% 33.29 46.58 45.51% 
 

The performance of fuzzy c-means was similar to that of k-means with kappa 

coefficients for 12 and 38 KHz datasets being 0.4802 and 0.5086 and overall 

accuracies 63.11% and 65.53%. Like in k-means, the smaller classes here were also 

affected but the commission error contributed by ‘Class 1’. The omission error 

remained fairly identical across the frequencies indicating that both algorithms 

performed similarly on both frequencies. 
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 Validation of combined MBES and SBES clusters 

Finally, statistical features extracted from SBES were combined with the 

optimised MBES dataset with 35 FFVs based on nearest distance i.e. for each MBES 

sweep, the closest SBES location was determined and features from that location 

combined.  The objective was to test if high resolution vertical returns from SBES 

could improve the classification results of MBES. Tables 6.13-6.16 display 

validation results obtained from clustering the combined MBES and SBES dataset. 

In this case the overall mapping quality is improved from that of MBES 

classification (Tables 6.4-6.6). The combined PCA and k-means appear to have 

performed better than fuzzy c-means. Both methods have comparatively lower 

omission errors than that achieved with the classification of MBES with all 132 

features. This means that the classes are well defined within themselves with lower 

misclassification. 

Table 6.13: Confusion matrix and accuracy of k-means clustering for 6 clusters of 
combined MBES & SBES dataset 

 
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total 

Class 1 2727 25 33 17 7 14 
2

823 
Class 2 1352 9494 1711 1135 1030 622 15344 
Class 3 533 1725 40454 1632 2164 760 47268 
Class 4 58 47 4601 16016 776 0 21498 
Class 5 7 53 147 1021 10444 1146 12818 
Class 6 109 175 6 1451 3721 6305 11767 
Total 4786 11519 46952 21272 18142 8847 111518 

Total of diagonal = 85440 
Overall accuracy = 76.62% 

 

Table 6.14: Confusion matrix and accuracy of fuzzy c-means clustering for 6 clusters 
of combined MBES & SBES dataset 

 
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total 

Class 1 2760 21 14 7 10 11 2823 
Class 2 1114 11158 2172 257 432 211 15344 
Class 3 1107 1112 40033 1499 1418 2099 47268 
Class 4 26 1308 5754 14093 197 120 21498 
Class 5 671 1333 475 1688 8519 132 12818 
Class 6 261 553 284 493 5437 4739 11767 
Total 5939 15485 48732 18037 16013 7312 111518 

Total of diagonal = 81302 
Overall accuracy = 72.90% 
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Table 6.15: Accuracy assessment and corresponding kappa for combined MBES & 
SBES classification (k-means and fuzzy c-means) 

 
MBES+SBES (k-means) MBES+SBES (fuzzy c-means) 

 

Omission 
error (%) 

Comm. 
error (%) 

Mapping 
Accuracy 

Kappa 
 

Omission 
error (%) 

Comm. 
error (%) 

Mapping 
Accuracy 

Kappa 
  

Class 1 3.40 72.93 57.13% 

0.68 
 
 
 
 

2.23 113.97 45.98%  
 

0.63 
 
 
 
 

Class 2 38.12 13.19 54.66% 27.28 28.19 56.72% 
Class 3 14.41 13.74 75.24% 15.30 18.40 71.53% 
Class 4 25.50 24.44 59.86% 34.44 18.34 55.39% 
Class 5 18.52 60.05 50.91% 33.53 58.46 41.94% 
Class 6 46.41 21.60 44.06% 59.72 21.86 33.05% 

 

From the validation results, we can see that the map had increased accuracy 

for both k-means and fuzzy c-means (76.62% & 72.90%). Performance of k-means 

was better than that of fuzzy classification. Apart from ‘Class 6’, all the other classes 

have reasonable omission errors indicating the points within the class are quite 

homogeneous. Classes 1 and 6, both smaller classes, had the highest amount of 

commission errors. A good portion of ‘Class 2’ was classified as ‘Class 1’, while 

‘Class 6’ contributed heavily to the commission error of ‘Class 5’. Composition of 

classes 5 and 6 made them quite similar hence the misclassification. ‘Class 1’ is the 

smallest class with 2823 data locations accounting for only 2.5% of the whole 

dataset. Though the class itself has low omission error (3.4% & 2.23% for k-means 

and fuzzy), misclassification in other larger classes outnumbered the total class size 

and reduced the map accuracy significantly. Therefore, despite 57% (k-means) and 

46% (fuzzy c-means) mapping accuracy, the class would have well defined class 

boundary due to low omission error. The commission error can be improved through 

calibration of ground truth boundaries and supervised classification.  

Finally, to compare the combined MBEs + SBES approach with MBES only 

clustering, we decided to look at the overall accuracy of MBES + SBES vs. The two 

MBES accuracies (132 FFVs & 35 FFVs). These overall accuracies and kappa 

coefficients are displayed in Figure 6.8. For the Combined data results, only k-means 

accuracy was selected for comparison as MBES only clustering was done only with 

k-means. 
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Figure 6.8: Comparison of overall accuracy and kappa coefficient for MBES and 
Combined MBES + SBES dataset using k-means classification 

From the figure we can observe a steady improvement of mapping quality 

from using traditional method of seabed classification to classification of optimized 

datasets and finally to classification of a combined MBES and SBES dataset.  The 

results could be further improved by using datasets covering a larger area and 

through optimization of ground truth databases. With a large enough dataset, 

different degrees of fuzziness could also be tested. Fuzzy classification with different 

degrees of fuzziness can provide interesting results given the homogeneous nature of 

the survey area. A better quality SBES dataset could also improve the overall 

mapping quality of both SBES and combined MBES, SBES classification.  

The next chapter will summarise the studies conducted in this PhD research, 

based on the analysis and interpretations from chapters 3, 4, 5, and 6. 
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7.1. Summary 

The core objectives of this thesis were to provide a set of methods for 

acoustic data optimisation that could reduce noise by eliminating redundancy in 

MBES data and detect outliers in SBES data as well as to provide alternative 

clustering methods for seabed mapping from acoustic data. These objectives were 

achieved by addressing a series of four research questions outlined in the first 

chapter. These involved:  

1. MBES data optimisation through redundancy elimination by using 

Self Organising Maps (SOM). 

2. Detecting outliers in SBES data using TimeSearcher©- a visual 

exploration tool. 

3. Direct clustering and classification of optimised SBES data, and 

4. Classification of combined MBES and SBES data to improve 

mapping quality. 

In this section we summarise the contributions from each chapter and 

comment on the results.  

In this last chapter we summarise the contributions of this thesis and 
suggest possible future research directions. 
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Chapter 2 reviewed literature from related fields of research: the development 

of sonar system technologies, underwater acoustics, acoustic data analysis, seabed 

mapping, visual analytics, data mining and clustering. 

The third chapter was concerned with the redundancy issues associated with 

MBES data. Self Organising Maps (SOM), a well established visual analytical tool 

for multivariate data, was used for attribute clustering on a dataset containing 

statistical features of MBES backscatter from two different frequencies (0.2ms & 

0.7ms). The change in frequencies is directly related to the amplitude of the emitted 

beam. Consequently, with all other variables remaining unchanged, the frequencies 

are automatically adjusted during the survey as the depth of the seabed changed in 

order to maintain the emitted beam amplitude a near constant. For both frequencies a 

total of 16 visual groups were identified among the 132 features. The groups were 

identical across frequencies. Each of the first 15 groups comprised of a different set 

of statistical features that had similar colour distribution in the SOM component 

planes, while the 16th group included features with dissimilar distribution from one 

another and to all other features. A total of 20 FFVs out of 132 were placed into the 

last group. As the rationale was to produce an optimal database that accounted for the 

majority of the information while reducing the number of variables as much as 

possible, only the FFVs that showed a high degree of visual similarity were placed in 

groups 1-15 while FFVs with any noticeable dissimilarity in colour distribution were 

placed in group 16. The level of similarity within each of the visual groups of FFVs 

was further estimated by calculating pair-wise correlation coefficients for each 

group.   Most of the groups that exhibited a very high level of visual similarity had 

high correlation coefficients (0.87-0.98). Three groups showed moderate similarity 

with correlation coefficients around the regions of 0.5, 0.6, and 0.7 respectively. 

However, standard deviations of these values of these three groups were extremely 

low (0.0072-0). This indicated that the relationships between features in those groups 

were relatively constant.  

Based on the visual and statistical analysis of attribute similarity, we 

developed an optimised MBES dataset to be used for seabed classification. This 

optimised MBES dataset had 35 attributes - 1 feature from each of the 15 visual 

groups of similar features and all 20 features from group 16, which represented a 

73% reduction in data dimensionality while preserving most of the information.  
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Both the original data and the optimised data were subsequently clustered 

using the PCA + k-means approach. For the original data, the first three principal 

components were selected to emulate the de facto standard procedure, while for the 

optimised data all the components were selected for k-means clustering. The cluster 

results were visually compared as well as internally validated using four different 

internal validation methods. The optimal numbers of clusters estimated by the 

internal validation indices were six. Consequently the datasets (both with 132FFVs 

and 35FFVs) with six clusters were validated using ground truth in Chapter 6. 

The following chapter, Chapter 4, discussed two novel approaches in SBES 

data processing and clustering – using visual exploration for outlier detection and 

direct clustering of time series echo returns. TimeSearcher©, a visual exploration 

tool of time series data was used for visually exploring the SBES dataset with the 

aim of outlier detection. This was done after the data were already cleaned using an 

automatic outlier detection procedure. Visual exploration identified further outliers 

the automatic procedure was not able to find. After the outliers were removed, the 

SBES data were clustered directly. The rationale behind direct clustering (as opposed 

to feature based clustering) was to provide the surveyor/geologist onboard the survey 

vessel a rough estimation of underlying clusters during the actual survey thus 

enabling them to optimise the ground truth collection locations. A good portion of 

the subsurface information was included in the clustering (5m below estimated 

seabed surface). Two algorithms, PCA + k-means and fuzzy c-means with different 

set of clusters were tested. Due to the noisy nature of the data, performances of both 

algorithms were not optimal from five clusters and up. The internal validation indices 

estimated the optimal number of clusters to be three.  This is consistent with the 

assumption that the SBES time series represented the subsurface classes of the 

seabed. The subsurface information may have enhanced the homogeneous nature of 

the seabed underneath layer and thus reduced the number of inherent groupings in 

the dataset. The cluster results were further validated in Chapter 6. 

The potential of improving seabed mapping using a combination of MBES 

and SBES data was discussed in Chapter 5. First, statistical features were generated 

from the SBES data. These were then joined with the corresponding MBES data 

based on identification of the closest locations between MBES and SBES. As before, 

two algorithms, PCA + k-means and fuzzy c-means were tested and results 

visualised. From visual comparison, the clusters appeared to provide better boundary 
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definitions than when compared to the results obtained from clustering MBES data 

only. Between the algorithms, k-means appeared to have yielded better results than 

fuzzy c-means. The results seem to indicate that adding SBES did in fact improve the 

boundary definitions. However, two limiting factors acting here were first that the 

SBES data quality was less than optimal since it had a high degree of vertical 

displacement. Second, SBES data were available from one survey line only thus 

limiting the fuzzy c-means to exploit its ability to account for class overlaps, which is 

quite common in homogeneous geological classes. Despite these limitations, the 

results were encouraging and the resulting clusters were further validated in the next 

chapter, as with separate MBES and SBES clustering. 

Cluster results from the analysis chapters were validated against ground truth 

data in Chapter 6. A dataset containing the details of a number of grab samples from 

GSI/MI survey at Malin was used as the basis for the development of ground truth 

database. An overview of the study area was built from the information obtained 

from the grab samples.  The study area was divided into 7 zones based on the 

mixture of underlying seabed type and different types of surface objects such as 

shells, clasts, burrows, gravel etc. From the 7 zones, two different ground truth 

databases were developed: one with 6 classes for validation of MBES and combined 

MBES/SBES clustering and the second with 3 classes based solely on the underlying 

soil types (fine, medium and coarse grain) for validation of SBES classes. Clustering 

results were then compared to those two ground truth databases using a confusion 

matrix, a well-known method of cluster validation in remote sensing with 

corresponding accuracies and kappa coefficients. For MBES, the classes derived 

from optimised reduced dimension data (35 FFVs) yielded better accuracy compared 

to classes derived from original data with all 132 FFVs. This indicates that in spite of 

the higher complexity of the standard method, there is a loss of information 

compared to our alternative approach on using the optimised data for seabed 

classification. In addition, statistical analysis of the similarity of attributes confirms 

that SOM component planes are a suitable visual approach to identify the 

redundancy in acoustic features.   

For SBES, the accuracy of mapping was somewhat limited due to data quality 

as well as the impact of one extremely large class (Class 1) on its neighbouring 

smaller classes (Class 2 and 3). The quality of each class (based on the omission 

errors) remained fairly constant across algorithms i.e. both k-means and fuzzy c-
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means performed similarly on both frequencies (12 & 38 KHz). Though, in 

comparison, the dataset from 38 KHz yielded a slightly better result, while k-means 

was the better performer (by a slight margin) of the two algorithms. Based on the 

accuracies, direct clustering of SBES data was able to provide a relatively reliable 

overview of the underlying classes in survey area.  

The combined MBES + SBES data provided by far the best accuracy for 

mapping. There was almost a 10% increase in overall accuracy when compared to 

the results from the original MBES data (with 132 FFVs), with an increase of 4.5% 

in accuracy compared to the results obtained from optimised MBES data (with 35 

FFVs). This demonstrates the potential of combining the high resolution SBES data 

with MBES. 

To summarise the novel findings of this research, we gather our results into 

the answers to four core research questions raised in the first chapter as follows: 

Is it necessary for MBES classification to produce such a large number of 
statistical features or could the dimensionality be kept lower by avoiding 
redundancy? And if so, which of the features are correlated with each other and 
therefore redundant? Would clustering a optimal dataset (redundancy is removed) 
produce better, similar or worse cluster definition to that of the cluster definition 
generated from 132 statistical features using the de facto clustering method?  

 Typical MBES data have a large amount of redundancy that can reduce the 

overall map quality. SOM’s component planes are capable of identifying those 

redundancies and can help the analyst in producing optimised MBES datasets free of 

the redundant information. Most of the redundancies were detected in the textural 

and power spectrum features. This optimised MBES data increases the accuracy of 

mapping. This finding (35 FFVs instead of 132 FFVs) has the potential to 

significantly reduce the MBES data processing time which normally takes several 

computers weeks to process and therefore cost effective as less energy and human 

input would be required for data processing. With better mapping accuracies, the 

optimisation of MBES data also contributes to the overall output of the seabed 

mapping project.  

Can visual analytics provide an efficient way of detecting outliers that are 
undetected using traditional outlier detection methods?  

TimeSearcher© was able to identify 81 outliers which the automatic outlier 

detection algorithm failed to detect. The outliers were detected by visual exploration 
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of the shapes of echo time series. Therefore it can be said that with large volumes of 

time series data, visual exploration can be an easy and effective way of detecting 

obvious outliers that may have slipped through the detection process of an automatic 

outlier detection algorithm. In doing so, visual exploration can identify potential 

weaknesses of the automatic algorithm used and help improve the effectiveness by 

addressing those weaker areas of the algorithm. This finding identifies two potential 

improvements in SBES data processing steps: using visual exploration as an added 

step to include the potential of human cognition abilities and to use as an added 

measure to assess the performance of automatic outlier detection algorithms.   

Would direct clustering of the SBES backscatter produce representative 
clusters thus eliminating the dependency of generating features as well as provide a 
quick overview of underlying clusters in the survey area?  

Direct clustering of the cleaned SBES dataset, which included subsurface 

information, was able to provide an overview of the underlying classes in the study 

area. This was a novel approach as oppose to the traditional feature based 

classification. This finding has the potential of having a significant impact on the use 

of SBES data in seabed mapping process. A quick classification of the SBES time 

series can enable the surveyor to better plan the ground truth data collection locations 

thus saving time and cost over the whole survey operation. It also has the potential of 

further being used in actual seabed classification provided that the data quality is 

optimal. If successful, SBES raw echoes can be a valuable addition to seabed 

mapping processes as it contains the least distorted echoes in high resolution. 

Improving seabed mapping from MBES and SBES: Can the optimised data 
produce quality clusters that will ultimately result in better quality seabed classes? 
Can the sub-surface information of SBES be combined with MBES data to provide a 
better definition of the underlying seabed, thus avoiding the interference from plants 
and other particles lying on seabed? 

Optimised MBES dataset was able to provide a better classification than that 

achieved with the original dataset (approx. 5.5% increases in overall accuracies). 

When the optimised MBES was combined with features from SBES, the increase in 

accuracy was almost 10%. This shows that adding SBES data has the potential of 

improving the classification results. This was a novel approach in seabed mapping as 

commonly data from the same sensor family is used in fusion (MBES & SSS). The 

rise in overall mapping accuracy was quite significant (10%) and underscores the 
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combined potential of MBES data optimisation and subsurface information from 

SBES. This approach has the potential to significantly increase the seabed mapping 

quality without much effort as both MBES and SBES data are usually collected 

simultaneously in seabed surveys. 

The operational cost of Celtic Explorer (the survey vessel used by the the MI 

& GSI) was estimated at €17,000/day in 2010 (MI, 2010). With a typical survey 

exploration extending up to anywhere between 3-4 weeks, the basic cost (cost of 

fuel, crew salary, equipment rent) can be between €357,00-€476,00. With efficient 

ground truth planning through direct clustering of SBES, each day less amount to a 

significant financial saving. If this is combined with the reduced dimension of MBES 

data (132 FFVs vs 35 VGs, almost 75% reduction in data size), the total saving in 

terms of money and manpower can be quite significant. 

7.2. Future directions 

In closing, we would like to suggest a few potential directions stemming from 

the present work. First and foremost, to firmly establish the findings in this research, 

the methods should be replicated on data covering a larger area with more seabed 

variety. The SOM component planes should be tested on a variety of seabed classes 

and survey areas to test if the visual groups remain unchanged (i.e. the same 16 

visual groups from the same 132 FFVs) or if they need to be adjusted for each 

different area. Visual interpretation should also include several analysts to minimize 

bias. While the similarities within each visual group were confirmed by correlation 

analysis, the inter-group difference should also be tested to estimate the level of their 

separation. The geographic location of the feature vectors could also be taken into 

account in future studies through some measure of spatial autocorrelation measures.  

Data quality, especially for SBES, is another pertinent issue for this work. 

The quality of the SBES data has a direct impact on the quality of the clustering 

results and is therefore of utmost importance. Raw SBES echo returns are noisy by 

nature due to their high sensitivity to suspended particles, plants, fauna, etc and care 

should be given while collecting these data. Avoidable errors present in the study 

dataset like ‘vertical displacement’, which is regarded as a gross error and is due to 

miscalculation of seabed depth, should not occur. In current practice, it is up to the 

surveyor to look out for anomalies in depth estimation. The automatic algorithm 
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estimates the depth from time gap of echo returns. This algorithm could be further 

optimised with the use of a high resolution Digital Elevation Model to establish a cut 

off depth range. Any estimated depth outside this cut off range would be marked for 

further evaluation.  

Clustering, combining MBES and SBES datasets produced promising results 

and an increase in mapping accuracy. This result could be further improved using 

supervised classification for which, however a good ground truth database is an 

important requirement. The classification should also be tested on varied seabed 

conditions to further establish and refine the method.  

The procedure for combining MBES and SBES data used in this study was a 

simple one, where the closest SBES data location was added to the corresponding 

MBES data. This could sometimes be misleading as ‘closest’ does not necessarily 

mean ‘similar’. This is due to the fact that seabed classes are homogeneous and it can 

well be the fact that the detected closet SBES data point to an MBES data point is in 

fact similar to the neighbouring MBES. To counter this effect, perhaps weighted 

distance measures could be incorporated in the procedure in the following manner: If 

a seabed type map generated from MBES and corresponding ground truth data 

already existed for the target area, we could use this map and superimposed SBES 

data locations to generate a weighted cost distance surface. This cost distance surface 

could be used to select the ‘nearest’ and ‘similar’ SBES data location for each MBES 

sweep. 

A successful generation of seabed maps, like any other mapping process, 

depends largely on the quality of collected data and available ground truth 

information. Given the amount and quality of data available for this study as well as 

limited ground truth information (i.e. sparse ground truth sampling and no grain size 

analysis available), the results proved to be promising in optimising the noisy 

acoustic data and improving the accuracy and quality of seabed mapping. 

Furthermore, these approaches can lead to a significant saving of time and money as 

surveying the sea floor is, to date, a quite expensive and time-consuming procedure, 

but one that is of increasing importance. With the rapid improvement of sensor 

quality and increasing interest of researchers, governments, explorers and investors 

in our oceans, the importance and demands for new improved approaches to interpret 

the high volume of seabed data is on the rise and the proposed approaches have the 
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potential of delivering three major requirement of any research or exploration 

projects: cost effective, time saving and better quality results. 

 
 
 

We know less about the ocean’s bottom than about 
the moon’s backside. 

--Roger Revelle "Physics Today" February, 1992
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Appendix 
 

 

 
Figure A 3.1: Visual Group 1 for 0.2ms Figure A 3.2: Visual Group 2 for 0.2ms  
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Figure A 3.3: Visual Group 3 for 0.2ms Figure A 3.4: Visual Group 4 for 0.2ms 

  

Figure A 3.5: Visual Group 5 for 0.2ms Figure A 3.6: Visual Group 6 for 0.2ms 
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Figure A 3.7: Visual Group 7 for 0.2ms 

 

Figure A 3.8: Visual Group 8 for 0.2ms 
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Figure A 3.9: Visual Group 9 for 0.2ms Figure A 3.10: Visual Group 10 for 0.2ms 
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Figure A 3.11: Visual Group 11 for 0.2ms 

 

Figure A 3.12: Visual Group 12 for 0.2ms 
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Figure A 3.13: Visual Group 13 for 0.2ms Figure A 3.14: Visual Group 14 for 0.2ms 

 

 

Figure A 3.15: Visual Group 15 for 0.2ms  
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Figure A 3.16: Visual Group 16 (singletons) for 0.2ms 
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Figure A 3.17: Visual Group 1 for 0.7ms Figure A 3.18: Visual Group 2 for 0.7ms 
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Figure A 3.19: Visual Group 3 for 0.7ms Figure A 3.20: Visual Group 4 for 0.7ms 

  
Figure A 3.21: Visual Group 5 for 0.7ms Figure A 3.22: Visual Group 6 for 0.7ms 
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Figure A 3.23: Visual Group 7 for 0.7ms Figure A 3.24: Visual Group 8 for 0.7ms 
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Figure A 3.25: Visual Group 9 for 0.7ms Figure A 3.26: Visual Group 10 for 0.7ms 
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Figure A 3.27: Visual Group 11 for 0.7ms Figure A 3.28: Visual Group 12 for 0.7ms 
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Figure A 3.29: Visual Group 13 for 0.7ms Figure A 3.30: Visual Group 14 for 0.7ms 

 

 

Figure A 3.31: Visual Group 15 for 0.7ms  
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Figure A 3.32: Visual Group 16 for 0.7ms 
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Table A 3.1: Correlation coefficient of VG 1, 0.2ms 

	
   FFV	
  5	
   FFV	
  6	
   FFV	
  7	
   FFV	
  8	
   FFV	
  9	
   FFV	
  10	
   FFV	
  11	
   FFV	
  12	
   FFV	
  13	
  

FFV	
  5	
   1	
   0.9955	
   0.9865	
   0.9734	
   0.9562	
   0.9334	
   0.9003	
   0.8491	
   0.7579	
  

FFV	
  6	
   0.9955	
   1	
   0.9962	
   0.9884	
   0.9766	
   0.9587	
   0.9304	
   0.8846	
   0.8002	
  

FFV	
  7	
   0.9865	
   0.9962	
   1	
   0.9965	
   0.9887	
   0.9757	
   0.9534	
   0.9137	
   0.8345	
  

FFV	
  8	
   0.9734	
   0.9884	
   0.9965	
   1	
   0.9963	
   0.9872	
   0.9698	
   0.9369	
   0.8654	
  

FFV	
  9	
   0.9562	
   0.9766	
   0.9887	
   0.9963	
   1	
   0.9955	
   0.9828	
   0.9559	
   0.8940	
  

FFV	
  10	
   0.9334	
   0.9587	
   0.9757	
   0.9872	
   0.9955	
   1	
   0.9937	
   0.9734	
   0.9210	
  

FFV	
  11	
   0.9003	
   0.9304	
   0.9534	
   0.9698	
   0.9828	
   0.9937	
   1	
   0.9895	
   0.9480	
  

FFV	
  12	
   0.8491	
   0.8846	
   0.9137	
   0.9369	
   0.9559	
   0.97336	
   0.9895	
   1	
   0.9762	
  

FFV	
  13	
   0.7579	
   0.8002	
   0.8345	
   0.8654	
   0.8940	
   0.9210	
   0.9480	
   0.9762	
   1	
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Table A 3.2: Correlation coefficient of VG 2, 0.2ms 

	
   FFV	
  14	
   FFV	
  15	
   FFV	
  16	
   FFV	
  17	
   FFV	
  18	
   FFV	
  19	
   FFV	
  20	
   FFV	
  21	
   FFV	
  22	
   FFV	
  23	
   FFV	
  24	
   FFV	
  25	
   FFV	
  26	
   FFV	
  27	
   FFV	
  28	
  

FFV	
  14	
   1	
   0.9798	
   0.95547	
   0.92957	
   0.90035	
   0.98252	
   0.98438	
   0.97104	
   0.95157	
   0.92813	
   0.92763	
   0.9245	
   0.92305	
   0.92043	
   0.91925	
  

FFV	
  15	
   0.9798	
   1	
   0.98339	
   0.96384	
   0.94065	
   0.95301	
   0.98807	
   0.98508	
   0.97451	
   0.95823	
   0.9552	
   0.95409	
   0.95343	
   0.9521	
   0.95144	
  

FFV	
  16	
   0.9555	
   0.98339	
   1	
   0.98589	
   0.96818	
   0.9209	
   0.9642	
   0.98979	
   0.9869	
   0.97704	
   0.97152	
   0.97234	
   0.97244	
   0.97233	
   0.9722	
  

FFV	
  17	
   0.9296	
   0.96384	
   0.98589	
   1	
   0.98636	
   0.88823	
   0.93864	
   0.96963	
   0.99228	
   0.98736	
   0.97928	
   0.98187	
   0.98266	
   0.9837	
   0.98404	
  

FFV	
  18	
   0.9003	
   0.94065	
   0.96818	
   0.98636	
   1	
   0.8526	
   0.90947	
   0.94601	
   0.97334	
   0.99287	
   0.98173	
   0.98613	
   0.98765	
   0.98986	
   0.9907	
  

FFV	
  19	
   0.9825	
   0.95301	
   0.9209	
   0.88823	
   0.8526	
   1	
   0.98278	
   0.958	
   0.9271	
   0.89556	
   0.90664	
   0.89753	
   0.89377	
   0.8874	
   0.88467	
  

FFV	
  20	
   0.9844	
   0.98807	
   0.9642	
   0.93864	
   0.90947	
   0.98278	
   1	
   0.98666	
   0.966	
   0.94224	
   0.94735	
   0.94287	
   0.94018	
   0.93554	
   0.93351	
  

FFV	
  21	
   0.9710	
   0.98508	
   0.98979	
   0.96963	
   0.94601	
   0.958	
   0.98666	
   1	
   0.98735	
   0.97025	
   0.9718	
   0.96934	
   0.96813	
   0.96488	
   0.96344	
  

FFV	
  22	
   0.9516	
   0.97451	
   0.9869	
   0.99228	
   0.97334	
   0.9271	
   0.966	
   0.98735	
   1	
   0.98864	
   0.98596	
   0.98565	
   0.98529	
   0.98441	
   0.98359	
  

FFV	
  23	
   0.9281	
   0.95823	
   0.97704	
   0.98736	
   0.99287	
   0.89556	
   0.94224	
   0.97025	
   0.98864	
   1	
   0.99378	
   0.99533	
   0.99572	
   0.99607	
   0.9961	
  

FFV	
  24	
   0.9276	
   0.9552	
   0.97152	
   0.97928	
   0.98173	
   0.90664	
   0.94735	
   0.9718	
   0.98596	
   0.99378	
   1	
   0.9989	
   0.99826	
   0.99697	
   0.99633	
  

FFV	
  25	
   0.9245	
   0.95409	
   0.97234	
   0.98187	
   0.98613	
   0.89753	
   0.94287	
   0.96934	
   0.98565	
   0.99533	
   0.9989	
   1	
   0.99968	
   0.99889	
   0.99846	
  

FFV	
  26	
   0.9230	
   0.95343	
   0.97244	
   0.98266	
   0.98765	
   0.89377	
   0.94018	
   0.96813	
   0.98529	
   0.99572	
   0.99826	
   0.99968	
   1	
   0.99941	
   0.99908	
  

FFV	
  27	
   0.9204	
   0.9521	
   0.97233	
   0.9837	
   0.98986	
   0.8874	
   0.93554	
   0.96488	
   0.98441	
   0.99607	
   0.99697	
   0.99889	
   0.99941	
   1	
   0.99981	
  

FFV	
  28	
   0.9192	
   0.95144	
   0.9722	
   0.98404	
   0.9907	
   0.88467	
   0.93351	
   0.96344	
   0.98359	
   0.9961	
   0.99633	
   0.99846	
   0.99908	
   0.99981	
   1	
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Table A 3.3: Correlation coefficient of VG 3, 0.2ms Table A 3.4: Correlation coefficient of VG 4, 0.2ms 

	
  
FFV	
  30	
   FFV	
  31	
  

FFV	
  30	
   1	
   0.98911	
  

FFV	
  31	
   0.98911	
   1	
  
 

	
  
FFV	
  33	
   FFV	
  34	
  

FFV	
  33	
   1	
   0.94515	
  

FFV	
  34	
   0.94515	
   1	
  
 

  

Table A 3.5: Correlation coefficient of VG 5, 0.2ms Table A 3.6: Correlation coefficient of VG 6, 0.2ms 

	
  
FFV	
  32	
   FFV	
  35	
  

FFV	
  32	
   1	
   0.97749	
  

FFV	
  35	
   0.97749	
   1	
  
 

	
  
FFV	
  36	
   FFV	
  37	
  

FFV	
  36	
   1	
   0.87139	
  

FFV	
  37	
   0.87139	
   1	
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Table A 3.7: Correlation coefficient of VG 7, 0.2ms 

	
  
FFV	
  38	
   FFV	
  39	
   FFV	
  40	
   FFV	
  41	
   FFV	
  42	
   FFV	
  43	
   FFV	
  44	
   FFV	
  45	
   FFV	
  46	
   FFV	
  47	
   FFV	
  48	
   FFV	
  49	
   FFV	
  50	
   FFV	
  51	
   FFV	
  52	
   FFV	
  53	
   FFV	
  54	
   FFV	
  55	
  

FFV	
  38	
   1	
   0.9886	
   0.9887	
   0.9993	
   0.9875	
   0.9877	
   0.9963	
   0.9860	
   0.9865	
   0.9964	
   0.9925	
   0.9924	
   0.9958	
   0.9910	
   0.9910	
   0.9946	
   0.9888	
   0.9887	
  

FFV	
  39	
   0.9886	
   1	
   0.9985	
   0.9876	
   0.9829	
   0.9830	
   0.9865	
   0.9773	
   0.9776	
   0.9806	
   0.9832	
   0.9827	
   0.9794	
   0.9759	
   0.9757	
   0.9780	
   0.9711	
   0.9708	
  

FFV	
  40	
   0.9887	
   0.9985	
   1	
   0.9877	
   0.9829	
   0.9831	
   0.9866	
   0.9773	
   0.9777	
   0.9808	
   0.9829	
   0.9833	
   0.9796	
   0.9760	
   0.9759	
   0.9781	
   0.9712	
   0.9710	
  

FFV	
  41	
   0.9993	
   0.9876	
   0.9877	
   1	
   0.9859	
   0.9861	
   0.9984	
   0.9844	
   0.9848	
   0.9953	
   0.9911	
   0.9911	
   0.9953	
   0.9894	
   0.9894	
   0.9947	
   0.9870	
   0.9869	
  

FFV	
  42	
   0.9875	
   0.9829	
   0.9829	
   0.9859	
   1	
   0.9942	
   0.9836	
   0.9797	
   0.9799	
   0.9809	
   0.9786	
   0.9785	
   0.9797	
   0.9835	
   0.9815	
   0.9782	
   0.9744	
   0.9741	
  

FFV	
  43	
   0.9877	
   0.9830	
   0.9831	
   0.9861	
   0.9942	
   1	
   0.9837	
   0.9798	
   0.9802	
   0.9812	
   0.9788	
   0.9787	
   0.9800	
   0.9819	
   0.9835	
   0.9784	
   0.9746	
   0.9744	
  

FFV	
  44	
   0.9963	
   0.9865	
   0.9866	
   0.9984	
   0.9836	
   0.9837	
   1	
   0.9812	
   0.9815	
   0.9900	
   0.9852	
   0.9851	
   0.9904	
   0.9829	
   0.9828	
   0.9904	
   0.9798	
   0.9797	
  

FFV	
  45	
   0.9860	
   0.9773	
   0.9773	
   0.9844	
   0.9797	
   0.9798	
   0.9812	
   1	
   0.9882	
   0.9814	
   0.9782	
   0.9781	
   0.9804	
   0.9785	
   0.9783	
   0.9790	
   0.9833	
   0.9794	
  

FFV	
  46	
   0.9865	
   0.9776	
   0.9777	
   0.9848	
   0.9799	
   0.9802	
   0.9815	
   0.9882	
   1	
   0.9821	
   0.9789	
   0.9789	
   0.9811	
   0.9791	
   0.9791	
   0.9796	
   0.9804	
   0.9836	
  

FFV	
  47	
   0.9964	
   0.9806	
   0.9808	
   0.9953	
   0.9809	
   0.9812	
   0.9900	
   0.9814	
   0.9821	
   1	
   0.9971	
   0.9971	
   0.9998	
   0.9963	
   0.9963	
   0.9991	
   0.9952	
   0.9952	
  

FFV	
  48	
   0.9925	
   0.9832	
   0.9829	
   0.9911	
   0.9786	
   0.9788	
   0.9852	
   0.9782	
   0.9789	
   0.9971	
   1	
   0.9997	
   0.9967	
   0.9964	
   0.9964	
   0.9963	
   0.9946	
   0.9946	
  

FFV	
  49	
   0.9924	
   0.9827	
   0.9833	
   0.9911	
   0.9785	
   0.9787	
   0.9851	
   0.9781	
   0.9789	
   0.9971	
   0.9997	
   1	
   0.9967	
   0.9964	
   0.9964	
   0.9963	
   0.9946	
   0.9946	
  

FFV	
  50	
   0.9958	
   0.9794	
   0.9796	
   0.9953	
   0.9797	
   0.9800	
   0.9904	
   0.9804	
   0.9811	
   0.9998	
   0.9967	
   0.9967	
   1	
   0.9959	
   0.9959	
   0.9997	
   0.9949	
   0.9949	
  

FFV	
  51	
   0.9910	
   0.9759	
   0.9760	
   0.9894	
   0.9835	
   0.9819	
   0.9829	
   0.9785	
   0.9791	
   0.9963	
   0.9964	
   0.9964	
   0.9959	
   1	
   0.9990	
   0.9954	
   0.9961	
   0.9960	
  

FFV	
  52	
   0.9910	
   0.9757	
   0.9759	
   0.9894	
   0.9815	
   0.9835	
   0.9828	
   0.9783	
   0.9791	
   0.9963	
   0.9964	
   0.9964	
   0.9959	
   0.9990	
   1	
   0.9954	
   0.9960	
   0.9961	
  

FFV	
  53	
   0.9946	
   0.9780	
   0.9781	
   0.9947	
   0.9782	
   0.9784	
   0.9904	
   0.9790	
   0.9796	
   0.9991	
   0.9963	
   0.9963	
   0.9997	
   0.9954	
   0.9954	
   1	
   0.9944	
   0.9944	
  

FFV	
  54	
   0.9888	
   0.9711	
   0.9712	
   0.9870	
   0.9744	
   0.9746	
   0.9798	
   0.9833	
   0.9804	
   0.9952	
   0.9946	
   0.9946	
   0.9949	
   0.9961	
   0.9960	
   0.9944	
   1	
   0.9981	
  

FFV	
  55	
   0.9887	
   0.9708	
   0.9710	
   0.9869	
   0.9741	
   0.9744	
   0.9797	
   0.9794	
   0.9836	
   0.9952	
   0.9946	
   0.9946	
   0.9949	
   0.9960	
   0.9961	
   0.9944	
   0.9981	
   1	
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Table A 3.8: Correlation coefficient of VG 8, 0.2ms 

	
  
FFV	
  56	
   FFV	
  57	
   FFV	
  58	
   FFV	
  59	
   FFV	
  60	
   FFV	
  61	
   FFV	
  62	
   FFV	
  63	
   FFV	
  64	
  

FFV	
  56	
   1	
   0.96457	
   0.96463	
   0.98727	
   0.95569	
   0.95589	
   0.97876	
   0.94378	
   0.94402	
  

FFV	
  57	
   0.96457	
   1	
   0.99949	
   0.98673	
   0.98969	
   0.98977	
   0.9892	
   0.97827	
   0.97844	
  

FFV	
  58	
   0.96463	
   0.99949	
   1	
   0.98678	
   0.98965	
   0.98978	
   0.98924	
   0.97824	
   0.97847	
  

FFV	
  59	
   0.98727	
   0.98673	
   0.98678	
   1	
   0.97744	
   0.97762	
   0.99862	
   0.96477	
   0.96506	
  

FFV	
  60	
   0.95569	
   0.98969	
   0.98965	
   0.97744	
   1	
   0.99824	
   0.97986	
   0.98887	
   0.98891	
  

FFV	
  61	
   0.95589	
   0.98977	
   0.98978	
   0.97762	
   0.99824	
   1	
   0.98002	
   0.98871	
   0.98895	
  

FFV	
  62	
   0.97876	
   0.9892	
   0.98924	
   0.99862	
   0.97986	
   0.98002	
   1	
   0.96706	
   0.96733	
  

FFV	
  63	
   0.94378	
   0.97827	
   0.97824	
   0.96477	
   0.98887	
   0.98871	
   0.96706	
   1	
   0.99665	
  

FFV	
  64	
   0.94402	
   0.97844	
   0.97847	
   0.96506	
   0.98891	
   0.98895	
   0.96733	
   0.99665	
   1	
  

 

Table A 3.9: Correlation coefficient of VG 9, 0.2ms 

	
  
FFV	
  65	
   FFV	
  66	
   FFV	
  67	
   FFV	
  68	
   FFV	
  69	
   FFV	
  70	
   FFV	
  71	
   FFV	
  72	
   FFV	
  73	
  

FFV	
  65	
   1	
   0.96941	
   0.96954	
   0.99438	
   0.95909	
   0.95916	
   0.99016	
   0.95962	
   0.95962	
  

FFV	
  66	
   0.96941	
   1	
   0.99772	
   0.97235	
   0.9932	
   0.99314	
   0.97294	
   0.9902	
   0.99029	
  

FFV	
  67	
   0.96954	
   0.99772	
   1	
   0.97242	
   0.99318	
   0.99318	
   0.97303	
   0.9902	
   0.99033	
  

FFV	
  68	
   0.99438	
   0.97235	
   0.97242	
   1	
   0.96068	
   0.96068	
   0.99751	
   0.96029	
   0.9602	
  

FFV	
  69	
   0.95909	
   0.9932	
   0.99318	
   0.96068	
   1	
   0.99675	
   0.96115	
   0.99334	
   0.99341	
  

FFV	
  70	
   0.95916	
   0.99314	
   0.99318	
   0.96068	
   0.99675	
   1	
   0.96109	
   0.99333	
   0.99353	
  

FFV	
  71	
   0.99016	
   0.97294	
   0.97303	
   0.99751	
   0.96115	
   0.96109	
   1	
   0.96018	
   0.96008	
  

FFV	
  72	
   0.95962	
   0.9902	
   0.9902	
   0.96029	
   0.99334	
   0.99333	
   0.96018	
   1	
   0.9954	
  

FFV	
  73	
   0.95962	
   0.99029	
   0.99033	
   0.9602	
   0.99341	
   0.99353	
   0.96008	
   0.9954	
   1	
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Table A 3.10: Correlation coefficient of VG 10, 0.2ms 

	
  
FFV	
  74	
   FFV	
  75	
   FFV	
  76	
   FFV	
  77	
   FFV	
  78	
   FFV	
  79	
   FFV	
  80	
   FFV	
  81	
   FFV	
  82	
   FFV	
  83	
   FFV	
  84	
   FFV	
  85	
   FFV	
  86	
   FFV	
  87	
   FFV	
  88	
   FFV	
  89	
   FFV	
  90	
   FFV	
  91	
  

FFV	
  74	
   1	
   0.9920	
   0.9921	
   0.9966	
   0.9900	
   0.9901	
   0.9950	
   0.9885	
   0.9888	
   0.9705	
   0.9685	
   0.9683	
   0.9662	
   0.9667	
   0.9668	
   0.9603	
   0.9628	
   0.9630	
  

FFV	
  75	
   0.9920	
   1	
   0.9983	
   0.9954	
   0.9969	
   0.9969	
   0.9958	
   0.9950	
   0.9952	
   0.9491	
   0.9713	
   0.9708	
   0.9519	
   0.9719	
   0.9720	
   0.9490	
   0.9680	
   0.9683	
  

FFV	
  76	
   0.9921	
   0.9983	
   1	
   0.9954	
   0.9968	
   0.9969	
   0.9959	
   0.9949	
   0.9952	
   0.9492	
   0.9712	
   0.9711	
   0.9519	
   0.9719	
   0.9721	
   0.9490	
   0.9681	
   0.9683	
  

FFV	
  77	
   0.9966	
   0.9954	
   0.9954	
   1	
   0.9937	
   0.9937	
   0.9984	
   0.9927	
   0.9929	
   0.9623	
   0.9692	
   0.9690	
   0.9653	
   0.9664	
   0.9665	
   0.9620	
   0.9619	
   0.9622	
  

FFV	
  78	
   0.9900	
   0.9969	
   0.9968	
   0.9937	
   1	
   0.9976	
   0.9943	
   0.9958	
   0.9959	
   0.9458	
   0.9675	
   0.9672	
   0.9488	
   0.9707	
   0.9705	
   0.9460	
   0.9669	
   0.9671	
  

FFV	
  79	
   0.9901	
   0.9969	
   0.9969	
   0.9937	
   0.9976	
   1	
   0.9943	
   0.9958	
   0.9960	
   0.9459	
   0.9676	
   0.9673	
   0.9489	
   0.9706	
   0.9710	
   0.9460	
   0.9671	
   0.9674	
  

FFV	
  80	
   0.9950	
   0.9958	
   0.9959	
   0.9984	
   0.9943	
   0.9943	
   1	
   0.9934	
   0.9935	
   0.9579	
   0.9683	
   0.9680	
   0.9622	
   0.9659	
   0.9660	
   0.9600	
   0.9617	
   0.9620	
  

FFV	
  81	
   0.9885	
   0.9950	
   0.9949	
   0.9927	
   0.9958	
   0.9958	
   0.9934	
   1	
   0.9966	
   0.9451	
   0.9647	
   0.9643	
   0.9489	
   0.9660	
   0.9661	
   0.9464	
   0.9637	
   0.9635	
  

FFV	
  82	
   0.9888	
   0.9952	
   0.9952	
   0.9929	
   0.9959	
   0.9960	
   0.9935	
   0.9966	
   1	
   0.9454	
   0.9650	
   0.9646	
   0.9491	
   0.9664	
   0.9666	
   0.9465	
   0.9637	
   0.9643	
  

FFV	
  83	
   0.9705	
   0.9491	
   0.9492	
   0.9623	
   0.9458	
   0.9459	
   0.9579	
   0.9451	
   0.9454	
   1	
   0.9504	
   0.9503	
   0.9825	
   0.9330	
   0.9331	
   0.9748	
   0.9208	
   0.9212	
  

FFV	
  84	
   0.9685	
   0.9713	
   0.9712	
   0.9692	
   0.9675	
   0.9676	
   0.9683	
   0.9647	
   0.9650	
   0.9504	
   1	
   0.9833	
   0.9524	
   0.9663	
   0.9664	
   0.9498	
   0.9536	
   0.9539	
  

FFV	
  85	
   0.9683	
   0.9708	
   0.9711	
   0.9690	
   0.9672	
   0.9673	
   0.9680	
   0.9643	
   0.9646	
   0.9503	
   0.9833	
   1	
   0.9522	
   0.9660	
   0.9661	
   0.9496	
   0.9534	
   0.9535	
  

FFV	
  86	
   0.9662	
   0.9519	
   0.9519	
   0.9653	
   0.9488	
   0.9489	
   0.9622	
   0.9489	
   0.9491	
   0.9825	
   0.9524	
   0.9522	
   1	
   0.9311	
   0.9312	
   0.9849	
   0.9167	
   0.9171	
  

FFV	
  87	
   0.9667	
   0.9719	
   0.9719	
   0.9664	
   0.9707	
   0.9706	
   0.9659	
   0.9660	
   0.9664	
   0.9330	
   0.9663	
   0.9660	
   0.9311	
   1	
   0.9786	
   0.9268	
   0.9675	
   0.9678	
  

FFV	
  88	
   0.9668	
   0.9720	
   0.9721	
   0.9665	
   0.9705	
   0.9710	
   0.9660	
   0.9661	
   0.9666	
   0.9331	
   0.9664	
   0.9661	
   0.9312	
   0.9786	
   1	
   0.9269	
   0.9677	
   0.9680	
  

FFV	
  89	
   0.9603	
   0.9490	
   0.9490	
   0.9620	
   0.9460	
   0.9460	
   0.9600	
   0.9464	
   0.9465	
   0.9748	
   0.9498	
   0.9496	
   0.9849	
   0.9268	
   0.9269	
   1	
   0.9114	
   0.9119	
  

FFV	
  90	
   0.9628	
   0.9680	
   0.9681	
   0.9619	
   0.9669	
   0.9671	
   0.9617	
   0.9637	
   0.9637	
   0.9208	
   0.9536	
   0.9534	
   0.9167	
   0.9675	
   0.9677	
   0.9114	
   1	
   0.9737	
  

FFV	
  91	
   0.9630	
   0.9683	
   0.9683	
   0.9622	
   0.9671	
   0.9674	
   0.9620	
   0.9635	
   0.9643	
   0.9212	
   0.9539	
   0.9535	
   0.9171	
   0.9678	
   0.9680	
   0.9119	
   0.9737	
   1	
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Table A 3.11: Correlation coefficient of VG 11, 0.2ms 

	
  
FFV	
  94	
   FFV	
  95	
   FFV	
  96	
   FFV	
  102	
   FFV	
  103	
   FFV	
  104	
   FFV	
  110	
   FFV	
  111	
   FFV	
  112	
   FFV	
  118	
   FFV	
  119	
   FFV	
  120	
  

FFV	
  94	
   1	
   0.91803	
   0.88043	
   0.87867	
   0.89112	
   0.87523	
   0.87477	
   0.8883	
   0.8751	
   0.87467	
   0.88681	
   0.87394	
  

FFV	
  95	
   0.91803	
   1	
   0.91782	
   0.88713	
   0.93049	
   0.88804	
   0.88686	
   0.92621	
   0.88794	
   0.88796	
   0.92327	
   0.88649	
  

FFV	
  96	
   0.88043	
   0.91782	
   1	
   0.87518	
   0.89057	
   0.87896	
   0.87351	
   0.8882	
   0.87524	
   0.8745	
   0.88589	
   0.87329	
  

FFV	
  102	
   0.87867	
   0.88713	
   0.87518	
   1	
   0.9173	
   0.87617	
   0.87789	
   0.88925	
   0.87462	
   0.87469	
   0.88584	
   0.87324	
  

FFV	
  103	
   0.89112	
   0.93049	
   0.89057	
   0.9173	
   1	
   0.91857	
   0.88961	
   0.93192	
   0.89199	
   0.88854	
   0.9252	
   0.88825	
  

FFV	
  104	
   0.87523	
   0.88804	
   0.87896	
   0.87617	
   0.91857	
   1	
   0.87395	
   0.89045	
   0.88023	
   0.87414	
   0.88686	
   0.87483	
  

FFV	
  110	
   0.87477	
   0.88686	
   0.87351	
   0.87789	
   0.88961	
   0.87395	
   1	
   0.91728	
   0.8742	
   0.87905	
   0.88843	
   0.87436	
  

FFV	
  111	
   0.8883	
   0.92621	
   0.8882	
   0.88925	
   0.93192	
   0.89045	
   0.91728	
   1	
   0.91793	
   0.88961	
   0.92959	
   0.88986	
  

FFV	
  112	
   0.8751	
   0.88794	
   0.87524	
   0.87462	
   0.89199	
   0.88023	
   0.8742	
   0.91793	
   1	
   0.87553	
   0.88852	
   0.87919	
  

FFV	
  118	
   0.87467	
   0.88796	
   0.8745	
   0.87469	
   0.88854	
   0.87414	
   0.87905	
   0.88961	
   0.87553	
   1	
   0.91807	
   0.88107	
  

FFV	
  119	
   0.88681	
   0.92327	
   0.88589	
   0.88584	
   0.9252	
   0.88686	
   0.88843	
   0.92959	
   0.88852	
   0.91807	
   1	
   0.91782	
  

FFV	
  120	
   0.87394	
   0.88649	
   0.87329	
   0.87324	
   0.88825	
   0.87483	
   0.87436	
   0.88986	
   0.87919	
   0.88107	
   0.91782	
   1	
  

 

Table A 3.12: Correlation coefficient of VG 12, 0.2ms 

	
  
FFV	
  93	
   FFV	
  97	
   FFV	
  101	
   FFV	
  105	
   FFV	
  109	
   FFV	
  113	
   FFV	
  117	
   FFV	
  121	
  

FFV	
  93	
   1	
   0.52546	
   0.52498	
   0.51649	
   0.51074	
   0.51044	
   0.51482	
   0.5093	
  

FFV	
  97	
   0.52546	
   1	
   0.51421	
   0.52756	
   0.50888	
   0.51195	
   0.50845	
   0.51183	
  

FFV	
  101	
   0.52498	
   0.51421	
   1	
   0.51312	
   0.52612	
   0.50896	
   0.51425	
   0.51101	
  

FFV	
  105	
   0.51649	
   0.52756	
   0.51312	
   1	
   0.51102	
   0.52587	
   0.51278	
   0.51375	
  

FFV	
  109	
   0.51074	
   0.50888	
   0.52612	
   0.51102	
   1	
   0.50843	
   0.52824	
   0.51312	
  

FFV	
  113	
   0.51044	
   0.51195	
   0.50896	
   0.52587	
   0.50843	
   1	
   0.51369	
   0.52509	
  

FFV	
  117	
   0.51482	
   0.50845	
   0.51425	
   0.51278	
   0.52824	
   0.51369	
   1	
   0.52724	
  

FFV	
  121	
   0.5093	
   0.51183	
   0.51101	
   0.51375	
   0.51312	
   0.52509	
   0.52724	
   1	
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Table A 3.13: Correlation coefficient of VG 13, 0.2ms Table A 3.14: Correlation coefficient of VG 14, 0.2ms 

	
  
FFV	
  122	
   FFV	
  123	
  

FFV	
  122	
   1	
   0.74743448	
  

FFV	
  123	
   0.74743448	
   1	
  
 

	
  
FFV	
  3	
   FFV	
  4	
  

FFV	
  3	
   1	
   0.9089	
  

FFV	
  4	
   0.9089	
   1	
  
 

 

Table A 3.15: Correlation coefficient of VG 15, 0.2ms 

 

	
  
FFV	
  98	
   FFV	
  99	
  

FFV	
  98	
   1	
   0.6011	
  

FFV	
  99	
   0.6011	
   1	
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Table A 3.16: Correlation coefficient of VG 15 (Singletons), 0.2ms 

	
  
FFV	
  1	
   FFV	
  2	
   FFV	
  29	
   FFV	
  92	
   FFV	
  100	
   FFV	
  106	
   FFV	
  107	
   FFV	
  108	
   FFV	
  114	
   FFV	
  115	
   FFV	
  116	
   FFV	
  124	
   FFV	
  125	
   FFV	
  126	
   FFV	
  127	
   FFV	
  128	
   FFV	
  129	
   FFV	
  130	
   FFV	
  131	
   FFV	
  132	
  

FFV	
  1	
   1	
   0.955	
   -­‐0.103	
   0.033	
   -­‐0.002	
   0.082	
   -­‐0.033	
   0.079	
   0.101	
   0.025	
   0.099	
   -­‐0.158	
   -­‐0.347	
   0.063	
   0.112	
   0.392	
   0.386	
   0.366	
   0.477	
   0.284	
  

FFV	
  2	
   0.955	
   1	
   0.072	
   0.057	
   0.037	
   -­‐0.040	
   -­‐0.047	
   -­‐0.042	
   -­‐0.039	
   -­‐0.057	
   -­‐0.042	
   0.061	
   -­‐0.293	
   -­‐0.118	
   -­‐0.067	
   0.237	
   0.261	
   0.276	
   0.420	
   0.169	
  

FFV	
  29	
   -­‐0.103	
   0.072	
   1	
   0.073	
   0.154	
   -­‐0.282	
   0.110	
   -­‐0.283	
   -­‐0.348	
   -­‐0.085	
   -­‐0.349	
   0.567	
   0.173	
   -­‐0.506	
   -­‐0.500	
   -­‐0.385	
   -­‐0.303	
   -­‐0.187	
   -­‐0.056	
   -­‐0.383	
  

FFV	
  92	
   0.033	
   0.057	
   0.073	
   1	
   -­‐0.363	
   -­‐0.173	
   -­‐0.291	
   -­‐0.172	
   -­‐0.132	
   -­‐0.225	
   -­‐0.131	
   0.101	
   0.005	
   -­‐0.091	
   -­‐0.079	
   -­‐0.053	
   -­‐0.036	
   -­‐0.027	
   -­‐0.001	
   0.076	
  

FFV	
  100	
   -­‐0.002	
   0.037	
   0.154	
   -­‐0.363	
   1	
   -­‐0.200	
   -­‐0.182	
   -­‐0.180	
   -­‐0.196	
   -­‐0.221	
   -­‐0.191	
   0.092	
   -­‐0.004	
   -­‐0.087	
   -­‐0.067	
   -­‐0.040	
   -­‐0.029	
   -­‐0.013	
   -­‐0.006	
   -­‐0.203	
  

FFV	
  106	
   0.082	
   -­‐0.040	
   -­‐0.282	
   -­‐0.173	
   -­‐0.200	
   1	
   0.507	
   0.346	
   0.269	
   0.146	
   0.251	
   -­‐0.432	
   -­‐0.118	
   0.381	
   0.363	
   0.301	
   0.219	
   0.151	
   0.076	
   0.241	
  

FFV	
  107	
   -­‐0.033	
   -­‐0.047	
   0.110	
   -­‐0.291	
   -­‐0.182	
   0.507	
   1	
   0.506	
   -­‐0.010	
   0.058	
   -­‐0.008	
   -­‐0.059	
   0.028	
   0.059	
   0.028	
   0.014	
   0.003	
   0.005	
   0.006	
   0.018	
  

FFV	
  108	
   0.079	
   -­‐0.042	
   -­‐0.283	
   -­‐0.172	
   -­‐0.180	
   0.346	
   0.506	
   1	
   0.252	
   0.149	
   0.274	
   -­‐0.432	
   -­‐0.117	
   0.383	
   0.363	
   0.299	
   0.219	
   0.149	
   0.072	
   0.247	
  

FFV	
  114	
   0.101	
   -­‐0.039	
   -­‐0.348	
   -­‐0.132	
   -­‐0.196	
   0.269	
   -­‐0.010	
   0.252	
   1	
   0.606	
   0.402	
   -­‐0.500	
   -­‐0.144	
   0.443	
   0.425	
   0.350	
   0.257	
   0.175	
   0.087	
   0.301	
  

FFV	
  115	
   0.025	
   -­‐0.057	
   -­‐0.085	
   -­‐0.225	
   -­‐0.221	
   0.146	
   0.058	
   0.149	
   0.606	
   1	
   0.607	
   -­‐0.309	
   -­‐0.055	
   0.281	
   0.244	
   0.194	
   0.135	
   0.097	
   0.057	
   0.170	
  

FFV	
  116	
   0.099	
   -­‐0.042	
   -­‐0.349	
   -­‐0.131	
   -­‐0.191	
   0.251	
   -­‐0.008	
   0.274	
   0.402	
   0.607	
   1	
   -­‐0.501	
   -­‐0.142	
   0.444	
   0.425	
   0.349	
   0.255	
   0.175	
   0.087	
   0.301	
  

FFV	
  124	
   -­‐0.158	
   0.061	
   0.567	
   0.101	
   0.092	
   -­‐0.432	
   -­‐0.059	
   -­‐0.432	
   -­‐0.500	
   -­‐0.309	
   -­‐0.501	
   1	
   0.263	
   -­‐0.829	
   -­‐0.827	
   -­‐0.709	
   -­‐0.570	
   -­‐0.440	
   -­‐0.248	
   -­‐0.446	
  

FFV	
  125	
   -­‐0.347	
   -­‐0.293	
   0.173	
   0.005	
   -­‐0.004	
   -­‐0.118	
   0.028	
   -­‐0.117	
   -­‐0.144	
   -­‐0.055	
   -­‐0.142	
   0.263	
   1	
   -­‐0.160	
   -­‐0.560	
   -­‐0.730	
   -­‐0.711	
   -­‐0.624	
   -­‐0.462	
   -­‐0.143	
  

FFV	
  126	
   0.063	
   -­‐0.118	
   -­‐0.506	
   -­‐0.091	
   -­‐0.087	
   0.381	
   0.059	
   0.383	
   0.443	
   0.281	
   0.444	
   -­‐0.829	
   -­‐0.160	
   1	
   0.552	
   0.458	
   0.267	
   0.064	
   -­‐0.029	
   0.397	
  

FFV	
  127	
   0.112	
   -­‐0.067	
   -­‐0.500	
   -­‐0.079	
   -­‐0.067	
   0.363	
   0.028	
   0.363	
   0.425	
   0.244	
   0.425	
   -­‐0.827	
   -­‐0.560	
   0.552	
   1	
   0.729	
   0.623	
   0.551	
   0.258	
   0.357	
  

FFV	
  128	
   0.392	
   0.237	
   -­‐0.385	
   -­‐0.053	
   -­‐0.040	
   0.301	
   0.014	
   0.299	
   0.350	
   0.194	
   0.349	
   -­‐0.709	
   -­‐0.730	
   0.458	
   0.729	
   1	
   0.772	
   0.660	
   0.484	
   0.335	
  

FFV	
  129	
   0.386	
   0.261	
   -­‐0.303	
   -­‐0.036	
   -­‐0.029	
   0.219	
   0.003	
   0.219	
   0.257	
   0.135	
   0.255	
   -­‐0.570	
   -­‐0.711	
   0.267	
   0.623	
   0.772	
   1	
   0.791	
   0.575	
   0.256	
  

FFV	
  130	
   0.366	
   0.276	
   -­‐0.187	
   -­‐0.027	
   -­‐0.013	
   0.151	
   0.005	
   0.149	
   0.175	
   0.097	
   0.175	
   -­‐0.440	
   -­‐0.624	
   0.064	
   0.551	
   0.660	
   0.791	
   1	
   0.684	
   0.182	
  

FFV	
  131	
   0.477	
   0.420	
   -­‐0.056	
   -­‐0.001	
   -­‐0.006	
   0.076	
   0.006	
   0.072	
   0.087	
   0.057	
   0.087	
   -­‐0.248	
   -­‐0.462	
   -­‐0.029	
   0.258	
   0.484	
   0.575	
   0.684	
   1	
   0.127	
  

FFV	
  132	
   0.284	
   0.169	
   -­‐0.383	
   0.076	
   -­‐0.203	
   0.241	
   0.018	
   0.247	
   0.301	
   0.170	
   0.301	
   -­‐0.446	
   -­‐0.143	
   0.397	
   0.357	
   0.335	
   0.256	
   0.182	
   0.127	
   1	
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Table A 3.17: Correlation coefficient of VG 1, 0.7ms 

	
   FFV	
  5	
   FFV	
  6	
   FFV	
  7	
   FFV	
  8	
   FFV	
  9	
   FFV	
  10	
   FFV	
  11	
   FFV	
  12	
   FFV	
  13	
  

FFV	
  5	
   1	
   0.9958	
   0.9877	
   0.9762	
   0.9597	
   0.9373	
   0.9065	
   0.864	
   0.7823	
  

FFV	
  6	
   0.9958	
   1	
   0.9964	
   0.9893	
   0.9775	
   0.9597	
   0.9327	
   0.8934	
   0.8161	
  

FFV	
  7	
   0.9877	
   0.9964	
   1	
   0.9966	
   0.9885	
   0.975	
   0.9533	
   0.9184	
   0.8443	
  

FFV	
  8	
   0.9762	
   0.9893	
   0.9966	
   1	
   0.996	
   0.9862	
   0.9684	
   0.9389	
   0.8712	
  

FFV	
  9	
   0.9597	
   0.9775	
   0.9885	
   0.996	
   1	
   0.995	
   0.9816	
   0.9567	
   0.8971	
  

FFV	
  10	
   0.9373	
   0.9597	
   0.975	
   0.9862	
   0.995	
   1	
   0.9931	
   0.9737	
   0.9215	
  

FFV	
  11	
   0.9065	
   0.9327	
   0.9533	
   0.9684	
   0.9816	
   0.9931	
   1	
   0.9897	
   0.9466	
  

FFV	
  12	
   0.864	
   0.8934	
   0.9184	
   0.9389	
   0.9567	
   0.9737	
   0.9897	
   1	
   0.9746	
  

FFV	
  13	
   0.7823	
   0.8161	
   0.8443	
   0.8712	
   0.8971	
   0.9215	
   0.9466	
   0.9746	
   1	
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Table A 3.18: Correlation coefficient of VG 2, 0.7ms 

	
   FFV	
  14	
   FFV	
  15	
   FFV	
  16	
   FFV	
  17	
   FFV	
  18	
   FFV	
  19	
   FFV	
  20	
   FFV	
  21	
   FFV	
  22	
   FFV	
  23	
   FFV	
  24	
   FFV	
  25	
   FFV	
  26	
   FFV	
  27	
   FFV	
  28	
  

FFV	
  14	
   1	
   0.9774	
   0.9494	
   0.9214	
   0.8923	
   0.9932	
   0.9856	
   0.9667	
   0.9431	
   0.9177	
   0.9246	
   0.92	
   0.918	
   0.914	
   0.9119	
  

FFV	
  15	
   0.9774	
   1	
   0.9883	
   0.9714	
   0.9504	
   0.9587	
   0.9943	
   0.9921	
   0.9815	
   0.9651	
   0.9658	
   0.9643	
   0.9635	
   0.9617	
   0.9608	
  

FFV	
  16	
   0.9494	
   0.9883	
   1	
   0.9931	
   0.9802	
   0.9233	
   0.9748	
   0.9944	
   0.9948	
   0.9869	
   0.9835	
   0.9842	
   0.9843	
   0.9841	
   0.9839	
  

FFV	
  17	
   0.9214	
   0.9714	
   0.9931	
   1	
   0.9939	
   0.8908	
   0.9528	
   0.9818	
   0.9956	
   0.9947	
   0.9886	
   0.9908	
   0.9915	
   0.9925	
   0.9928	
  

FFV	
  18	
   0.8923	
   0.9504	
   0.9802	
   0.9939	
   1	
   0.859	
   0.9282	
   0.9646	
   0.9853	
   0.996	
   0.9882	
   0.9915	
   0.9927	
   0.9945	
   0.9952	
  

FFV	
  19	
   0.9932	
   0.9587	
   0.9233	
   0.8908	
   0.859	
   1	
   0.9783	
   0.951	
   0.9209	
   0.8918	
   0.9057	
   0.8979	
   0.8946	
   0.8884	
   0.8855	
  

FFV	
  20	
   0.9856	
   0.9943	
   0.9748	
   0.9528	
   0.9282	
   0.9783	
   1	
   0.9894	
   0.9719	
   0.9511	
   0.9578	
   0.954	
   0.952	
   0.948	
   0.9461	
  

FFV	
  21	
   0.9667	
   0.9921	
   0.9944	
   0.9818	
   0.9646	
   0.951	
   0.9894	
   1	
   0.9929	
   0.9801	
   0.9823	
   0.9807	
   0.9799	
   0.9775	
   0.9763	
  

FFV	
  22	
   0.9431	
   0.9815	
   0.9948	
   0.9956	
   0.9853	
   0.9209	
   0.9719	
   0.9929	
   1	
   0.9943	
   0.9928	
   0.993	
   0.9928	
   0.9923	
   0.9917	
  

FFV	
  23	
   0.9177	
   0.9651	
   0.9869	
   0.9947	
   0.996	
   0.8918	
   0.9511	
   0.9801	
   0.9943	
   1	
   0.9963	
   0.9976	
   0.998	
   0.9984	
   0.9984	
  

FFV	
  24	
   0.9246	
   0.9658	
   0.9835	
   0.9886	
   0.9882	
   0.9057	
   0.9578	
   0.9823	
   0.9928	
   0.9963	
   1	
   0.9992	
   0.9988	
   0.9978	
   0.9972	
  

FFV	
  25	
   0.92	
   0.9643	
   0.9842	
   0.9908	
   0.9915	
   0.8979	
   0.954	
   0.9807	
   0.993	
   0.9976	
   0.9992	
   1	
   0.9998	
   0.9992	
   0.9988	
  

FFV	
  26	
   0.918	
   0.9635	
   0.9843	
   0.9915	
   0.9927	
   0.8946	
   0.952	
   0.9799	
   0.9928	
   0.998	
   0.9988	
   0.9998	
   1	
   0.9996	
   0.9993	
  

FFV	
  27	
   0.914	
   0.9617	
   0.9841	
   0.9925	
   0.9945	
   0.8884	
   0.948	
   0.9775	
   0.9923	
   0.9984	
   0.9978	
   0.9992	
   0.9996	
   1	
   0.9999	
  

FFV	
  28	
   0.9119	
   0.9608	
   0.9839	
   0.9928	
   0.9952	
   0.8855	
   0.9461	
   0.9763	
   0.9917	
   0.9984	
   0.9972	
   0.9988	
   0.9993	
   0.9999	
   1	
  

 

 

 

 



 
 

 
 

261 

 

Table A 3.19: Correlation coefficient of VG 3, 0.7ms Table A 3.20: Correlation coefficient of VG 4, 0.7ms 

	
  
FFV	
  30	
   FFV	
  31	
  

FFV	
  30	
   1	
   0.9895	
  

FFV	
  31	
   0.9895	
   1	
  
 

	
  
FFV	
  33	
   FFV	
  34	
  

FFV	
  33	
   1	
   0.9460	
  

FFV	
  34	
   0.9460	
   1	
  
 

  

Table A 3.21: Correlation coefficient of VG 5, 0.7ms Table A 3.22: Correlation coefficient of VG 6, 0.7ms 

	
  
FFV	
  32	
   FFV	
  35	
  

FFV	
  32	
   1	
   0.9717	
  

FFV	
  35	
   0.9717	
   1	
  
 

	
  
FFV	
  36	
   FFV	
  37	
  

FFV	
  36	
   1	
   0.8740	
  

FFV	
  37	
   0.8740	
   1	
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Table A 3.23: Correlation coefficient of VG 7, 0.7ms 

	
  
FFV	
  38	
   FFV	
  39	
   FFV	
  40	
   FFV	
  41	
   FFV	
  42	
   FFV	
  43	
   FFV	
  44	
   FFV	
  45	
   FFV	
  46	
   FFV	
  47	
   FFV	
  48	
   FFV	
  49	
   FFV	
  50	
   FFV	
  51	
   FFV	
  52	
   FFV	
  53	
   FFV	
  54	
   FFV	
  55	
  

FFV	
  38	
   1	
   0.9783	
   0.9786	
   0.9998	
   0.9733	
   0.9739	
   0.9993	
   0.9679	
   0.9687	
   0.9934	
   0.9861	
   0.9862	
   0.9934	
   0.985	
   0.9851	
   0.9932	
   0.9835	
   0.9836	
  

FFV	
  39	
   0.9783	
   1	
   0.9987	
   0.9779	
   0.9566	
   0.9572	
   0.9772	
   0.9484	
   0.9492	
   0.9685	
   0.9717	
   0.9714	
   0.9685	
   0.961	
   0.9611	
   0.9682	
   0.9584	
   0.9585	
  

FFV	
  40	
   0.9786	
   0.9987	
   1	
   0.9781	
   0.9569	
   0.9575	
   0.9774	
   0.9486	
   0.9496	
   0.9689	
   0.9718	
   0.9721	
   0.9688	
   0.9614	
   0.9615	
   0.9686	
   0.9588	
   0.9589	
  

FFV	
  41	
   0.9998	
   0.9779	
   0.9781	
   1	
   0.9728	
   0.9734	
   0.9998	
   0.9674	
   0.9681	
   0.9938	
   0.9867	
   0.9868	
   0.9939	
   0.9855	
   0.9856	
   0.9939	
   0.9841	
   0.9842	
  

FFV	
  42	
   0.9733	
   0.9566	
   0.9569	
   0.9728	
   1	
   0.9941	
   0.9719	
   0.9475	
   0.9482	
   0.9642	
   0.958	
   0.958	
   0.9642	
   0.9687	
   0.9676	
   0.9639	
   0.956	
   0.956	
  

FFV	
  43	
   0.9739	
   0.9572	
   0.9575	
   0.9734	
   0.9941	
   1	
   0.9725	
   0.9478	
   0.9487	
   0.9648	
   0.9587	
   0.9587	
   0.9648	
   0.9682	
   0.9693	
   0.9645	
   0.9566	
   0.9566	
  

FFV	
  44	
   0.9993	
   0.9772	
   0.9774	
   0.9998	
   0.9719	
   0.9725	
   1	
   0.9664	
   0.9671	
   0.9934	
   0.9863	
   0.9863	
   0.9936	
   0.985	
   0.985	
   0.9938	
   0.9836	
   0.9836	
  

FFV	
  45	
   0.9679	
   0.9484	
   0.9486	
   0.9674	
   0.9475	
   0.9478	
   0.9664	
   1	
   0.9852	
   0.9601	
   0.9532	
   0.9532	
   0.9601	
   0.9537	
   0.9538	
   0.9598	
   0.9652	
   0.9625	
  

FFV	
  46	
   0.9687	
   0.9492	
   0.9496	
   0.9681	
   0.9482	
   0.9487	
   0.9671	
   0.9852	
   1	
   0.9609	
   0.9541	
   0.9541	
   0.9609	
   0.9546	
   0.9546	
   0.9606	
   0.9633	
   0.9659	
  

FFV	
  47	
   0.9934	
   0.9685	
   0.9689	
   0.9938	
   0.9642	
   0.9648	
   0.9934	
   0.9601	
   0.9609	
   1	
   0.9958	
   0.9958	
   1	
   0.9949	
   0.9949	
   0.9998	
   0.994	
   0.9941	
  

FFV	
  48	
   0.9861	
   0.9717	
   0.9718	
   0.9867	
   0.958	
   0.9587	
   0.9863	
   0.9532	
   0.9541	
   0.9958	
   1	
   0.9999	
   0.9957	
   0.9948	
   0.9949	
   0.9955	
   0.9936	
   0.9937	
  

FFV	
  49	
   0.9862	
   0.9714	
   0.9721	
   0.9868	
   0.958	
   0.9587	
   0.9863	
   0.9532	
   0.9541	
   0.9958	
   0.9999	
   1	
   0.9957	
   0.9948	
   0.9949	
   0.9955	
   0.9936	
   0.9937	
  

FFV	
  50	
   0.9934	
   0.9685	
   0.9688	
   0.9939	
   0.9642	
   0.9648	
   0.9936	
   0.9601	
   0.9609	
   1	
   0.9957	
   0.9957	
   1	
   0.9948	
   0.9948	
   0.9999	
   0.9939	
   0.994	
  

FFV	
  51	
   0.985	
   0.961	
   0.9614	
   0.9855	
   0.9687	
   0.9682	
   0.985	
   0.9537	
   0.9546	
   0.9949	
   0.9948	
   0.9948	
   0.9948	
   1	
   0.9994	
   0.9945	
   0.9943	
   0.9943	
  

FFV	
  52	
   0.9851	
   0.9611	
   0.9615	
   0.9856	
   0.9676	
   0.9693	
   0.985	
   0.9538	
   0.9546	
   0.9949	
   0.9949	
   0.9949	
   0.9948	
   0.9994	
   1	
   0.9945	
   0.9943	
   0.9943	
  

FFV	
  53	
   0.9932	
   0.9682	
   0.9686	
   0.9939	
   0.9639	
   0.9645	
   0.9938	
   0.9598	
   0.9606	
   0.9998	
   0.9955	
   0.9955	
   0.9999	
   0.9945	
   0.9945	
   1	
   0.9937	
   0.9937	
  

FFV	
  54	
   0.9835	
   0.9584	
   0.9588	
   0.9841	
   0.956	
   0.9566	
   0.9836	
   0.9652	
   0.9633	
   0.994	
   0.9936	
   0.9936	
   0.9939	
   0.9943	
   0.9943	
   0.9937	
   1	
   0.9987	
  

FFV	
  55	
   0.9836	
   0.9585	
   0.9589	
   0.9842	
   0.956	
   0.9566	
   0.9836	
   0.9625	
   0.9659	
   0.9941	
   0.9937	
   0.9937	
   0.994	
   0.9943	
   0.9943	
   0.9937	
   0.9987	
   1	
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Table A 3.24: Correlation coefficient of VG 8, 0.7ms 

	
  
FFV	
  56	
   FFV	
  57	
   FFV	
  58	
   FFV	
  59	
   FFV	
  60	
   FFV	
  61	
   FFV	
  62	
   FFV	
  63	
   FFV	
  64	
  

FFV	
  56	
   1	
   0.8615	
   0.8615	
   0.9382	
   0.8583	
   0.8584	
   0.917	
   0.8544	
   0.8542	
  

FFV	
  57	
   0.8615	
   1	
   0.9998	
   0.9568	
   0.9847	
   0.9848	
   0.9705	
   0.9732	
   0.9735	
  

FFV	
  58	
   0.8615	
   0.9998	
   1	
   0.9569	
   0.9847	
   0.9849	
   0.9706	
   0.9732	
   0.9735	
  

FFV	
  59	
   0.9382	
   0.9568	
   0.9569	
   1	
   0.9496	
   0.9497	
   0.9967	
   0.9412	
   0.9413	
  

FFV	
  60	
   0.8583	
   0.9847	
   0.9847	
   0.9496	
   1	
   0.9991	
   0.9623	
   0.9836	
   0.9838	
  

FFV	
  61	
   0.8584	
   0.9848	
   0.9849	
   0.9497	
   0.9991	
   1	
   0.9625	
   0.9836	
   0.9839	
  

FFV	
  62	
   0.917	
   0.9705	
   0.9706	
   0.9967	
   0.9623	
   0.9625	
   1	
   0.9528	
   0.953	
  

FFV	
  63	
   0.8544	
   0.9732	
   0.9732	
   0.9412	
   0.9836	
   0.9836	
   0.9528	
   1	
   0.998	
  

FFV	
  64	
   0.8542	
   0.9735	
   0.9735	
   0.9413	
   0.9838	
   0.9839	
   0.953	
   0.998	
   1	
  

 

Table A 3.25: Correlation coefficient of VG 9, 0.7ms 

	
  
FFV	
  65	
   FFV	
  66	
   FFV	
  67	
   FFV	
  68	
   FFV	
  69	
   FFV	
  70	
   FFV	
  71	
   FFV	
  72	
   FFV	
  73	
  

FFV	
  65	
   1	
   0.9532	
   0.9532	
   0.9976	
   0.9434	
   0.9438	
   0.9932	
   0.937	
   0.9377	
  

FFV	
  66	
   0.9532	
   1	
   0.9998	
   0.9656	
   0.995	
   0.9951	
   0.977	
   0.9926	
   0.9925	
  
FFV	
  67	
   0.9532	
   0.9998	
   1	
   0.9657	
   0.9951	
   0.9951	
   0.9771	
   0.9926	
   0.9925	
  
FFV	
  68	
   0.9976	
   0.9656	
   0.9657	
   1	
   0.9565	
   0.9569	
   0.9984	
   0.9502	
   0.9511	
  
FFV	
  69	
   0.9434	
   0.995	
   0.9951	
   0.9565	
   1	
   0.9995	
   0.9692	
   0.9946	
   0.9948	
  
FFV	
  70	
   0.9438	
   0.9951	
   0.9951	
   0.9569	
   0.9995	
   1	
   0.9695	
   0.9943	
   0.9948	
  
FFV	
  71	
   0.9932	
   0.977	
   0.9771	
   0.9984	
   0.9692	
   0.9695	
   1	
   0.9634	
   0.9643	
  
FFV	
  72	
   0.937	
   0.9926	
   0.9926	
   0.9502	
   0.9946	
   0.9943	
   0.9634	
   1	
   0.9988	
  
FFV	
  73	
   0.9377	
   0.9925	
   0.9925	
   0.9511	
   0.9948	
   0.9948	
   0.9643	
   0.9988	
   1	
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Table A 3.26: Correlation coefficient of VG 10, 0.7ms 

	
   FFV	
  74	
   FFV	
  75	
   FFV	
  76	
   FFV	
  77	
   FFV	
  78	
   FFV	
  79	
   FFV	
  80	
   FFV	
  81	
   FFV	
  82	
   FFV	
  83	
   FFV	
  84	
   FFV	
  85	
   FFV	
  86	
   FFV	
  87	
   FFV	
  88	
   FFV	
  89	
   FFV	
  90	
   FFV	
  91	
  

FFV	
  74	
   1	
   0.9789	
   0.9791	
   0.9901	
   0.9753	
   0.9757	
   0.9851	
   0.9712	
   0.9719	
   0.9694	
   0.9509	
   0.9507	
   0.9711	
   0.9492	
   0.9494	
   0.9606	
   0.9452	
   0.9457	
  

FFV	
  75	
   0.9789	
   1	
   0.9983	
   0.993	
   0.9961	
   0.9962	
   0.9944	
   0.9937	
   0.994	
   0.9228	
   0.9704	
   0.9701	
   0.962	
   0.9665	
   0.9667	
   0.9615	
   0.9597	
   0.9602	
  

FFV	
  76	
   0.9791	
   0.9983	
   1	
   0.9931	
   0.996	
   0.9962	
   0.9945	
   0.9936	
   0.994	
   0.9231	
   0.9704	
   0.9704	
   0.9623	
   0.9665	
   0.9669	
   0.9616	
   0.9599	
   0.9603	
  

FFV	
  77	
   0.9901	
   0.993	
   0.9931	
   1	
   0.9903	
   0.9906	
   0.9983	
   0.9877	
   0.9882	
   0.9424	
   0.9642	
   0.964	
   0.9755	
   0.9596	
   0.9598	
   0.9725	
   0.9532	
   0.9537	
  

FFV	
  78	
   0.9753	
   0.9961	
   0.996	
   0.9903	
   1	
   0.9975	
   0.9924	
   0.9949	
   0.9951	
   0.9182	
   0.9672	
   0.9671	
   0.9589	
   0.9669	
   0.967	
   0.9592	
   0.9591	
   0.9596	
  

FFV	
  79	
   0.9757	
   0.9962	
   0.9962	
   0.9906	
   0.9975	
   1	
   0.9925	
   0.9948	
   0.9951	
   0.9189	
   0.9675	
   0.9673	
   0.9593	
   0.9669	
   0.9674	
   0.9594	
   0.9594	
   0.9599	
  

FFV	
  80	
   0.9851	
   0.9944	
   0.9945	
   0.9983	
   0.9924	
   0.9925	
   1	
   0.9904	
   0.9908	
   0.9344	
   0.9656	
   0.9654	
   0.9736	
   0.9599	
   0.9601	
   0.9732	
   0.9528	
   0.9533	
  

FFV	
  81	
   0.9712	
   0.9937	
   0.9936	
   0.9877	
   0.9949	
   0.9948	
   0.9904	
   1	
   0.9963	
   0.9136	
   0.9652	
   0.9649	
   0.9566	
   0.9623	
   0.9625	
   0.9584	
   0.9576	
   0.9576	
  

FFV	
  82	
   0.9719	
   0.994	
   0.994	
   0.9882	
   0.9951	
   0.9951	
   0.9908	
   0.9963	
   1	
   0.9147	
   0.9655	
   0.9654	
   0.9573	
   0.9628	
   0.963	
   0.9589	
   0.9576	
   0.9586	
  

FFV	
  83	
   0.9694	
   0.9228	
   0.9231	
   0.9424	
   0.9182	
   0.9189	
   0.9344	
   0.9136	
   0.9147	
   1	
   0.9084	
   0.9082	
   0.9659	
   0.901	
   0.9012	
   0.9478	
   0.8955	
   0.896	
  

FFV	
  84	
   0.9509	
   0.9704	
   0.9704	
   0.9642	
   0.9672	
   0.9675	
   0.9656	
   0.9652	
   0.9655	
   0.9084	
   1	
   0.9865	
   0.9478	
   0.958	
   0.9582	
   0.9482	
   0.9472	
   0.9475	
  

FFV	
  85	
   0.9507	
   0.9701	
   0.9704	
   0.964	
   0.9671	
   0.9673	
   0.9654	
   0.9649	
   0.9654	
   0.9082	
   0.9865	
   1	
   0.9476	
   0.9578	
   0.9581	
   0.948	
   0.947	
   0.9475	
  

FFV	
  86	
   0.9711	
   0.962	
   0.9623	
   0.9755	
   0.9589	
   0.9593	
   0.9736	
   0.9566	
   0.9573	
   0.9659	
   0.9478	
   0.9476	
   1	
   0.9346	
   0.9349	
   0.9897	
   0.9246	
   0.925	
  

FFV	
  87	
   0.9492	
   0.9665	
   0.9665	
   0.9596	
   0.9669	
   0.9669	
   0.9599	
   0.9623	
   0.9628	
   0.901	
   0.958	
   0.9578	
   0.9346	
   1	
   0.9796	
   0.9323	
   0.9561	
   0.9564	
  

FFV	
  88	
   0.9494	
   0.9667	
   0.9669	
   0.9598	
   0.967	
   0.9674	
   0.9601	
   0.9625	
   0.963	
   0.9012	
   0.9582	
   0.9581	
   0.9349	
   0.9796	
   1	
   0.9326	
   0.9563	
   0.9566	
  

FFV	
  89	
   0.9606	
   0.9615	
   0.9616	
   0.9725	
   0.9592	
   0.9594	
   0.9732	
   0.9584	
   0.9589	
   0.9478	
   0.9482	
   0.948	
   0.9897	
   0.9323	
   0.9326	
   1	
   0.9204	
   0.9208	
  

FFV	
  90	
   0.9452	
   0.9597	
   0.9599	
   0.9532	
   0.9591	
   0.9594	
   0.9528	
   0.9576	
   0.9576	
   0.8955	
   0.9472	
   0.947	
   0.9246	
   0.9561	
   0.9563	
   0.9204	
   1	
   0.9714	
  

FFV	
  91	
   0.9457	
   0.9602	
   0.9603	
   0.9537	
   0.9596	
   0.9599	
   0.9533	
   0.9576	
   0.9586	
   0.896	
   0.9475	
   0.9475	
   0.925	
   0.9564	
   0.9566	
   0.9208	
   0.9714	
   1	
  

 

 

 



 
 

 
 

265 

Table A 3.27: Correlation coefficient of VG 11, 0.7ms 

	
  
FFV	
  94	
   FFV	
  95	
   FFV	
  96	
   FFV	
  102	
   FFV	
  103	
   FFV	
  104	
   FFV	
  110	
   FFV	
  111	
   FFV	
  112	
   FFV	
  118	
   FFV	
  119	
   FFV	
  120	
  

FFV	
  94	
   1	
   0.9653	
   0.9367	
   0.9367	
   0.9401	
   0.9313	
   0.9309	
   0.9381	
   0.9317	
   0.9303	
   0.9359	
   0.9318	
  

FFV	
  95	
   0.9653	
   1	
   0.9648	
   0.9394	
   0.953	
   0.9376	
   0.936	
   0.95	
   0.9366	
   0.936	
   0.9483	
   0.9376	
  

FFV	
  96	
   0.9367	
   0.9648	
   1	
   0.9318	
   0.9399	
   0.9358	
   0.9305	
   0.9375	
   0.9315	
   0.9312	
   0.9365	
   0.9315	
  

FFV	
  102	
   0.9367	
   0.9394	
   0.9318	
   1	
   0.965	
   0.9318	
   0.9353	
   0.9404	
   0.9318	
   0.9322	
   0.9364	
   0.9318	
  

FFV	
  103	
   0.9401	
   0.953	
   0.9399	
   0.965	
   1	
   0.9645	
   0.9399	
   0.9536	
   0.9397	
   0.9379	
   0.9494	
   0.9382	
  

FFV	
  104	
   0.9313	
   0.9376	
   0.9358	
   0.9318	
   0.9645	
   1	
   0.9311	
   0.939	
   0.9354	
   0.9298	
   0.9348	
   0.9301	
  

FFV	
  110	
   0.9309	
   0.936	
   0.9305	
   0.9353	
   0.9399	
   0.9311	
   1	
   0.9646	
   0.9325	
   0.9356	
   0.9382	
   0.9309	
  

FFV	
  111	
   0.9381	
   0.95	
   0.9375	
   0.9404	
   0.9536	
   0.939	
   0.9646	
   1	
   0.9649	
   0.9401	
   0.9532	
   0.9395	
  

FFV	
  112	
   0.9317	
   0.9366	
   0.9315	
   0.9318	
   0.9397	
   0.9354	
   0.9325	
   0.9649	
   1	
   0.9311	
   0.9375	
   0.9349	
  

FFV	
  118	
   0.9303	
   0.936	
   0.9312	
   0.9322	
   0.9379	
   0.9298	
   0.9356	
   0.9401	
   0.9311	
   1	
   0.9648	
   0.9358	
  

FFV	
  119	
   0.9359	
   0.9483	
   0.9365	
   0.9364	
   0.9494	
   0.9348	
   0.9382	
   0.9532	
   0.9375	
   0.9648	
   1	
   0.9653	
  

FFV	
  120	
   0.9318	
   0.9376	
   0.9315	
   0.9318	
   0.9382	
   0.9301	
   0.9309	
   0.9395	
   0.9349	
   0.9358	
   0.9653	
   1	
  

 

Table A 3.28: Correlation coefficient of VG 12, 0.7ms 

	
  
FFV	
  93	
   FFV	
  97	
   FFV	
  101	
   FFV	
  105	
   FFV	
  109	
   FFV	
  113	
   FFV	
  117	
   FFV	
  121	
  

FFV	
  93	
   1	
   0.6221	
   0.6184	
   0.6108	
   0.6166	
   0.6129	
   0.6131	
   0.6105	
  

FFV	
  97	
   0.6221	
   1	
   0.6167	
   0.6207	
   0.6164	
   0.6174	
   0.6125	
   0.6132	
  

FFV	
  101	
   0.6184	
   0.6167	
   1	
   0.6146	
   0.6207	
   0.6123	
   0.6138	
   0.6123	
  

FFV	
  105	
   0.6108	
   0.6207	
   0.6146	
   1	
   0.6138	
   0.619	
   0.6108	
   0.614	
  

FFV	
  109	
   0.6166	
   0.6164	
   0.6207	
   0.6138	
   1	
   0.6154	
   0.6233	
   0.6164	
  

FFV	
  113	
   0.6129	
   0.6174	
   0.6123	
   0.619	
   0.6154	
   1	
   0.6166	
   0.6199	
  

FFV	
  117	
   0.6131	
   0.6125	
   0.6138	
   0.6108	
   0.6233	
   0.6166	
   1	
   0.6206	
  

FFV	
  121	
   0.6105	
   0.6132	
   0.6123	
   0.614	
   0.6164	
   0.6199	
   0.6206	
   1	
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Table A 3.29: Correlation coefficient of VG 13, 0.7ms Table A 3.30: Correlation coefficient of VG 14, 0.7ms 

	
  
FFV	
  122	
   FFV	
  123	
  

FFV	
  122	
   1	
   0.9077	
  

FFV123	
   0.9077	
   1	
  
 

	
  
FFV	
  3	
   FFV	
  4	
  

FFV	
  3	
   1	
   0.8491	
  

FFV	
  4	
   0.8491	
   1	
  
 

 

Table A 3.31: Correlation coefficient of VG 15, 0.2ms 

 

	
  
FFV	
  98	
   FFV	
  99	
  

FFV	
  98	
   1	
   0.7432	
  

FFV	
  99	
   0.7432	
   1	
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Table A 3.32: Correlation coefficient of VG 15 (Singletons), 0.2ms 

	
  
FFV	
  1	
   FFV	
  2	
   FFV	
  29	
   FFV	
  92	
   FFV	
  100	
   FFV	
  106	
   FFV	
  107	
   FFV	
  108	
   FFV	
  114	
   FFV	
  115	
   FFV	
  116	
   FFV	
  124	
   FFV	
  125	
   FFV	
  126	
   FFV	
  127	
   FFV	
  128	
   FFV	
  129	
   FFV	
  130	
   FFV	
  131	
   FFV	
  132	
  

FFV	
  1	
   1	
   0.8648	
   -­‐0.0046	
   0.0205	
   0.0392	
   -­‐0.006	
   -­‐0.0265	
   -­‐0.0074	
   -­‐0.016	
   -­‐0.0476	
   -­‐0.0193	
   -­‐0.0435	
   -­‐0.269	
   -­‐0.2487	
   -­‐0.1128	
   0.1577	
   0.2668	
   0.4016	
   0.5738	
   0.1224	
  

FFV	
  2	
   0.8648	
   1	
   0.0934	
   -­‐0.0151	
   0.0499	
   -­‐0.0248	
   -­‐0.0088	
   -­‐0.0263	
   -­‐0.0401	
   -­‐0.0384	
   -­‐0.0419	
   0.0574	
   -­‐0.1455	
   -­‐0.2003	
   -­‐0.1437	
   0.0791	
   0.1494	
   0.2576	
   0.3384	
   0.1494	
  

FFV	
  29	
   -­‐0.0046	
   0.0934	
   1	
   -­‐0.0422	
   0.0749	
   -­‐0.0206	
   0.1016	
   -­‐0.0216	
   -­‐0.0535	
   0.0528	
   -­‐0.0538	
   0.1946	
   0.1265	
   -­‐0.085	
   -­‐0.1398	
   -­‐0.1447	
   -­‐0.0458	
   -­‐0.0239	
   -­‐0.1231	
   -­‐0.1055	
  

FFV	
  92	
   0.0205	
   -­‐0.0151	
   -­‐0.0422	
   1	
   -­‐0.2249	
   -­‐0.0918	
   -­‐0.1904	
   -­‐0.0924	
   -­‐0.0562	
   -­‐0.1376	
   -­‐0.0618	
   -­‐0.1159	
   -­‐0.0478	
   0.0659	
   0.0786	
   0.0612	
   0.0429	
   0.024	
   0.0185	
   0.0194	
  

FFV	
  100	
   0.0392	
   0.0499	
   0.0749	
   -­‐0.2249	
   1	
   -­‐0.2818	
   -­‐0.3155	
   -­‐0.2645	
   -­‐0.2794	
   -­‐0.3382	
   -­‐0.2774	
   0.1611	
   0.0146	
   -­‐0.1414	
   -­‐0.1056	
   -­‐0.0483	
   -­‐0.0086	
   0.018	
   0.0373	
   -­‐0.2624	
  

FFV	
  106	
   -­‐0.006	
   -­‐0.0248	
   -­‐0.0206	
   -­‐0.0918	
   -­‐0.2818	
   1	
   0.7034	
   0.3028	
   -­‐0.0402	
   -­‐0.1175	
   -­‐0.0486	
   -­‐0.1715	
   -­‐0.0888	
   0.1053	
   0.1372	
   0.1031	
   0.0681	
   0.0306	
   0.0052	
   0.1333	
  

FFV	
  107	
   -­‐0.0265	
   -­‐0.0088	
   0.1016	
   -­‐0.1904	
   -­‐0.3155	
   0.7034	
   1	
   0.7053	
   -­‐0.1513	
   -­‐0.1811	
   -­‐0.1453	
   -­‐0.0321	
   0.0094	
   0.0431	
   0.0214	
   0.0011	
   0.0022	
   -­‐0.0109	
   -­‐0.04	
   0.1266	
  

FFV	
  108	
   -­‐0.0074	
   -­‐0.0263	
   -­‐0.0216	
   -­‐0.0924	
   -­‐0.2645	
   0.3028	
   0.7053	
   1	
   -­‐0.0538	
   -­‐0.1192	
   -­‐0.0374	
   -­‐0.175	
   -­‐0.0917	
   0.1057	
   0.1421	
   0.1046	
   0.0721	
   0.0341	
   0.0041	
   0.1389	
  

FFV	
  114	
   -­‐0.016	
   -­‐0.0401	
   -­‐0.0535	
   -­‐0.0562	
   -­‐0.2794	
   -­‐0.0402	
   -­‐0.1513	
   -­‐0.0538	
   1	
   0.7168	
   0.3123	
   -­‐0.2355	
   -­‐0.1096	
   0.1505	
   0.1877	
   0.1328	
   0.0773	
   0.0355	
   0.0007	
   0.1535	
  

FFV	
  115	
   -­‐0.0476	
   -­‐0.0384	
   0.0528	
   -­‐0.1376	
   -­‐0.3382	
   -­‐0.1175	
   -­‐0.1811	
   -­‐0.1192	
   0.7168	
   1	
   0.7171	
   -­‐0.1458	
   -­‐0.0237	
   0.1268	
   0.1081	
   0.052	
   0.0173	
   -­‐0.0077	
   -­‐0.0501	
   0.1585	
  

FFV	
  116	
   -­‐0.0193	
   -­‐0.0419	
   -­‐0.0538	
   -­‐0.0618	
   -­‐0.2774	
   -­‐0.0486	
   -­‐0.1453	
   -­‐0.0374	
   0.3123	
   0.7171	
   1	
   -­‐0.2331	
   -­‐0.1045	
   0.15	
   0.1863	
   0.1294	
   0.0711	
   0.0297	
   -­‐0.0007	
   0.1622	
  

FFV	
  124	
   -­‐0.0435	
   0.0574	
   0.1946	
   -­‐0.1159	
   0.1611	
   -­‐0.1715	
   -­‐0.0321	
   -­‐0.175	
   -­‐0.2355	
   -­‐0.1458	
   -­‐0.2331	
   1	
   0.5151	
   -­‐0.4847	
   -­‐0.7139	
   -­‐0.6199	
   -­‐0.4994	
   -­‐0.384	
   -­‐0.1459	
   -­‐0.2397	
  

FFV	
  125	
   -­‐0.269	
   -­‐0.1455	
   0.1265	
   -­‐0.0478	
   0.0146	
   -­‐0.0888	
   0.0094	
   -­‐0.0917	
   -­‐0.1096	
   -­‐0.0237	
   -­‐0.1045	
   0.5151	
   1	
   -­‐0.0054	
   -­‐0.6222	
   -­‐0.8051	
   -­‐0.7609	
   -­‐0.6569	
   -­‐0.3422	
   -­‐0.0839	
  

FFV	
  126	
   -­‐0.2487	
   -­‐0.2003	
   -­‐0.085	
   0.0659	
   -­‐0.1414	
   0.1053	
   0.0431	
   0.1057	
   0.1505	
   0.1268	
   0.15	
   -­‐0.4847	
   -­‐0.0054	
   1	
   0.1495	
   0.0278	
   -­‐0.1659	
   -­‐0.3499	
   -­‐0.3349	
   0.1757	
  

FFV	
  127	
   -­‐0.1128	
   -­‐0.1437	
   -­‐0.1398	
   0.0786	
   -­‐0.1056	
   0.1372	
   0.0214	
   0.1421	
   0.1877	
   0.1081	
   0.1863	
   -­‐0.7139	
   -­‐0.6222	
   0.1495	
   1	
   0.5693	
   0.4271	
   0.3378	
   -­‐0.0747	
   0.1544	
  

FFV	
  128	
   0.1577	
   0.0791	
   -­‐0.1447	
   0.0612	
   -­‐0.0483	
   0.1031	
   0.0011	
   0.1046	
   0.1328	
   0.052	
   0.1294	
   -­‐0.6199	
   -­‐0.8051	
   0.0278	
   0.5693	
   1	
   0.7033	
   0.5315	
   0.1118	
   0.123	
  

FFV	
  129	
   0.2668	
   0.1494	
   -­‐0.0458	
   0.0429	
   -­‐0.0086	
   0.0681	
   0.0022	
   0.0721	
   0.0773	
   0.0173	
   0.0711	
   -­‐0.4994	
   -­‐0.7609	
   -­‐0.1659	
   0.4271	
   0.7033	
   1	
   0.7392	
   0.2763	
   0.061	
  

FFV	
  130	
   0.4016	
   0.2576	
   -­‐0.0239	
   0.024	
   0.018	
   0.0306	
   -­‐0.0109	
   0.0341	
   0.0355	
   -­‐0.0077	
   0.0297	
   -­‐0.384	
   -­‐0.6569	
   -­‐0.3499	
   0.3378	
   0.5315	
   0.7392	
   1	
   0.4903	
   0.0281	
  

FFV	
  131	
   0.5738	
   0.3384	
   -­‐0.1231	
   0.0185	
   0.0373	
   0.0052	
   -­‐0.04	
   0.0041	
   0.0007	
   -­‐0.0501	
   -­‐0.0007	
   -­‐0.1459	
   -­‐0.3422	
   -­‐0.3349	
   -­‐0.0747	
   0.1118	
   0.2763	
   0.4903	
   1	
   0.0003	
  

FFV	
  132	
   0.1224	
   0.1494	
   -­‐0.1055	
   0.0194	
   -­‐0.2624	
   0.1333	
   0.1266	
   0.1389	
   0.1535	
   0.1585	
   0.1622	
   -­‐0.2397	
   -­‐0.0839	
   0.1757	
   0.1544	
   0.123	
   0.061	
   0.0281	
   0.0003	
   1	
  

 


	Thesis_Final_Corrected_1
	Thesis_Final_Corrected_1.2
	Thesis_Final_Corrected_1.3
	Thesis_Final_Corrected_1.4
	Thesis_Final_Corrected_1.5
	Thesis_Final_Corrected_1.6
	Thesis_Final_Corrected_1.7
	Thesis_Final_Corrected_1.8
	Thesis_Final_Corrected_1.9
	Thesis_Final_Corrected_1.10

