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Abstract

We use the idea of primary ballistic trajectories to analyse the structure and derive the stability conditions of the
‘accelerator modes’ or ‘ballistic channels’ that exist in the kicked harmonic oscillator and kicked Harper models.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The kicked harmonic oscillator (KHO) was originally proposed as a 2-dimensional model of charges moving in a
homogeneous static magnetic field while under the influence of an orthogonal time-dependent electric field [1-5]. The
model is fundamentally different from other widely studied kicked systems because the natural frequency of the
unperturbed system does not depend on energy. It therefore cannot be described using the KAM theorem [6-8].
The quantized system has been proposed as a model for electronic transport in semiconductor super-lattices
[9,10] and for atom optic modeling in ion-traps [11]. As we will see below, when a ratio of 1/4 exists between
the kicking and oscillation frequencies the KHO can be related to the kicked Harper model (KHM). This is a gen-
eralisation of the ordinary Harper model [12] introduced to approximate electron dynamics confined to a 2-dimen-
sional lattice while under the influence of a perpendicular magnetic field [13,14]. The primary goal of this article is to
examine the stability properties of ballistic or accelerator channels that occur in these kicked systems for certain
ranges of the perturbation strength. We will show that the largest channel is stable when the kicking strength u
is in the range

2mm < p < \/(2mn)’ + 4. (1)

Additional information on the web map and on accelerator modes in general can be found in the articles [15-17].
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2. Background
The Hamiltonian for the KHO may be written symmetrically in position ¢ and momentum p as

) oC
H(q.p1) =5 (P + ') + 7 coskg Y o(t—nT), 2)

n=-—00

see [18] for the derivation. The first part is just the Hamiltonian of a free harmonic oscillator with a frequency of .
The period of such an oscillator is thus 7, = 2n/mo. The frequency of the kicking pulse is given by w = 2n/T. We define
the frequency ratio as 1/R = wo/w = woT/2n. When the frequency ratio is 1/4 the motion of a particle initially at (g, po)
may be written as the following iterative mapping

pn+l = _qn7
que1 = P, T 1sin(kg,),

3)

where it is assumed that (g,,, p,,) refers to the phase space configuration just before the (n + 1)th kick. Setting k =1 and
iterating once more we obtain

Pnia = —Ppn — usin(qn)7
_ ; ~ 4)
Gy = —4, + usin(p, + usin(g,)).

This map may be trivially linked to web map of the KHM by rotating the resulting configuration through = radians
about phase plane origin. This gives

P =p+upsin(g),

¢ =g — psin(p),
where we have set (¢,,, p,) = (¢,p) and (¢,+2,pn+2) = (¢',p’). This corresponds to the symmetrical case of the KHM when
K= L =y, see Fig. 1. The use of this related map makes the subsequent analysis a little easier.

Diffusion in the KHM and KHO is defined as the mean rate of energy growth of a large ensemble of initial config-
urations over a ‘long’ time. The energy of each configuration is calculated using the simple harmonic oscillator

()
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Fig. 1. Poincaré surface of section for the kicked Harper model with k =1, u = K= L = 1.5. The mapping (5) is often called the web
map for obvious reasons.
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Hamiltonian, that is E, = % (g2 + p?). The rate of linear energy growth or diffusion over N iterations is then defined as
D(p) = ((Ex) — (Ep))/N. Analysis in [14] calculates the rate of diffusion, when k = 1, to be

1

D) = 7121 = 2Jo() = 275 ()], (6)
while that of [19-21] gives
Do) = 121~ 230) — 2+ 27300 + 230, ™)

We compare these functions with the numerically calculated values of the diffusion coefficient in Fig. 2. The results
show that while being an extremely good fit for most kicking strengths neither analysis accounts for the sharp spikes
that occur when the kicking strength u is just above a multiple of 2n. These spikes are the result of the accelerator or
ballistic channels mentioned in the introduction. They are stable structures in the phase plane that are continually trans-
lated in the same direction under each operation of the map (5).

3. The primary ballistic trajectories

Careful examination of (5) allows us introduce the concept of a primary trajectory of a ballistic channel. Consider the
case with u = 2mmn and (¢,p) = (Q, P) = (n,n/2,n,n/2) where n,, n, and m are all integers. After a little work the mapping
can be written as

P =P+ 2mn(—1)" Ve(n,),

8
0 =0 2mn(~1)" Ve(n,). ®)
where
e(n) =0 neven, )
g(n) =1 n odd. (10)

From this map we can discern eight distinct directions in the phase plane in which a particle is continually translated
upon operation of the map. For example if we set u = 27 and (g, p) = (n/2, 37/2) we see that subsequent values of p’ and
¢’ gain +2 w and therefore move in the direction i+ ] in the plane. Likewise a particle at (¢,p) = (31/2,31/2) would
move in the direction of —i +j and one at (¢,p) = (n, 51/2) would move in the —1 direction. We will define these paths
as primary trajectories of the ballistic channels.
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Fig. 2. D — v — p for kicked harmonic oscillator with frequency ratio 1/R = 1/4. The numerical calculation was performed by taking
2000 randomly distributed particles in the phase plane and evolving for 500 discrete time steps at different x. Analytical estimates of the
curve fail to account for the sharp spikes that occur around p = 2mn for integer m.
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Continuity of the kicking parameter u and of the sin function in (5) dictates that particles in the vicinity of a primary
trajectory should remain close for a number of iterations. To examine the stability of these surrounding trajectories it is
therefore logical to analyse the mapping from the reference frame of a primary trajectory. To do this we set Z = p — P,

2 = g — Q and simply subtract (8) from (5). If both 1, and n, are odd one then obtains
P =2+ (=12 Vucos(2) — 2mn], )
92 =9- (—1)%""71)[# cos(?') — 2mnm].

We show phase space diagrams for the above mapping for a number of different u in Fig. 3. If n,, is odd and #, is even

one gets
P =P+ (—1)") ysin(2), (1)
2 =2 — (=1 Vucos(#) — 2mn,

and if n, is even and n, is odd one gets

05 ———— 05—

¢Q
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Fig. 3. Graphs showing structure of a ballistic island for various values of the kicking strength u. These graphs are generated by
operating on a group of randomly distributed points in the phase plane window 2,2 € [—0.5,0.5] with the map (11).
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# =2+ (-1 [ucos(2) — 2mn), (13)
2 =2 (-1 sin(2).

Some examples of the stable structures generated by (12) are given in Fig. 4.

4. Stability analysis

We first deal with the diagonal ballistic channels of the type given in (11). Exact return points in these maps occur
when 2’ = 2 and 2' = 2. Solving for 2 and 2 gives four points at (2, 2) = (I,,1,) = (+1,+/) where / = cos™"(2mn/p).
It is immediately apparent that return points only exist if p P 2mmn (Fig. 5).

One can now calculate the Jacobian matrix

o2 o2 o2 + o2 o o2 o
J= o2 o? _ o2 o 02 o7 oP (1 4)
T\ 2| o? . |’
o2 o? o2 o?

at the return points (/;,/,). This gives
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Fig. 4. Graphs showing structure of a +i ballistic channel for various values of the kicking strength p and with (n,,n,) = (4,3). These
graphs are generated by operating with the map (12) on a randomly distributed ensemble of initial phase space points.
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Fig. 5. The diagonal ballistic channels consist of 4 return points, 2 stable and 2 unstable. The exact location of the return points is give
by the square in the diagram above. It has a length of side of 2/ where / = cos™!(2n/u) ~ 0.17724 with u=2n+0.1.

J 1442 siI}(l,,) sin(l,) wsin(l,) . (15)
usin(l,) 1
Making the substitution p= usin(/,) and g = usin(/,) we may write J as
1 | p
J:( +ap ?’). (16)
g 1

The eigenvalues of the Jacobian J determine if a point is stable or unstable [22]. Complex conjugate eigenvalues on the
unit circle ; , = e correspond to elliptic and therefore stable orbits. Real reciprocal eigenvalues 1, = ),fl correspond
to hyperbolic periodic orbit and therefore the existence of unstable manifolds. The eigenvalues of this Jacobian matrix
are

ha =5 (2 + P /gp + ). (17)

These eigenvalues are always real if g and p have the same sign and complex if the signs of g and p are different and their
absolute values are less than 2. The condition for the existence of the elliptic points is therefore

lgl = lpl = lusin(7)] = |usin(cos™! (2mm/u))| < 2. (18)

Remembering that the periodic points only occur when i P 2mm and noting that sin(cos ™ (2mn/u) = \/ 12 — 2mn)*/u
we can see that the map only has stable return points when y is in the range

2mm < p < \/(2mn)* + 4. (19)

This compares nicely the stability condition for accelerator modes in the standard map or kicked rotor [23,24]. In that

model the stability condition is 2mn < u < 1/ (2mn)* + 16.

To numerically check our value for m =1 we choose starting points (2,2) = (! + 0.0000001, F/ 4+ 0.0000001),
where [/ = cos™! (Z) and evolve the map (11) over /28 discrete timesteps. The phase points should circle the stable
return points until We approach this special value of . This is exactly what we see in Fig. 6.

Following a similar procedure for the maps (12) and (13) gives us two return points at (0, +/) or (/,0) respectively,
where again / = cos™!(2mm/u). One of these points is always unstable while it can be shown that the other point is stable
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Fig. 6. Plot of u—v— 2 over first 128 time steps. The initial starting values (2, %) are (£cos™1(2 m/p) + 0.0000001, Fcos™'(2n/
) +0.0000001). The vertical line in the graph represents where our analysis predicts the return point to become unstable. The

numerical calculation shows that our analysis to be correct.

in the range 2mn < u < \/ 2[(mn)* 4 1/ (mm)* + 4], see Fig. 7. We numerically check this by examining subsequent p val-

ues of a particle initially placed near the stable return point, see Fig. 8. That is at (0,/+ 0.0000001) and (n,,n,) = (2,1).

Subsequent configurations only move away from the return point when pu > \/ 2[(mm)* + 1/ (mn)* + 4.

From the above analysis it is clear that the diagonal ballistic modes are much more significant than the vertical and
horizontal modes. They are stable for a greater ranges of the perturbation u and because each one contains two stable
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Fig. 7. The centre of this stable —i horizontal channel is located at (Q, P) = (0,]) where in this case u = 2r + .015 so that / = cos™'(2n/

1) ~ 0.069.
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Fig. 8. Plot of u — v — 2 over first 128 time steps. The initial starting values (2, %) are (0,cos™"(2 n/u) -+ 0.0000001). In this example
(Q, P) = (2m,3n/2) The vertical line in the graph represents where our analysis predicts the elliptical stable point to become unstable.
Again the numerical calculation shows our analysis to be correct.

islands they are always larger. In addition, because points on these islands move diagonally in phase space, their
increase in energy over one iteration is, on average, twice that of their vertical and horizontal counterparts.

5. Conclusion

This completes our analysis of the accelerator modes. We have shown how the idea of primary trajectories can be
used to derive a new mapping on which linear stability analysis becomes straight forward. The exact locations of the
modes are now known and the ranges of kick parameter for which they are stable are calculated explicitly. Knowledge
of this underlying classical structure is essential for proper analysis of the quantum accelerator modes to be possible.
This article will act as a suitable starting point for such an analysis.
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