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Decoherence of Anyonic Charge in Interferometry Measurements

Parsa Bonderson," Kirill Shtengel,” and J. K. Slingerland®
' California Institute of Technology, Pasadena, California 91125, USA
2Department of Physics and Astronomy, University of California, Riverside, California 92521, USA

3Microsoﬁ‘ Research, Station Q, CNSI Building, University of California, Santa Barbara, California 93106, USA
(Received 8 September 2006; published 12 February 2007)

We examine interferometric measurements of the topological charge of (non-Abelian) anyons. The
target’s topological charge is measured from its effect on the interference of probe particles sent through
the interferometer. We find that superpositions of distinct anyonic charges a and a’ in the target decohere
(exponentially in the number of probes particles used) when the probes have nontrivial monodromy with

the charges that may be fused with a to give a'.
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Quantum physics in two spatial dimensions allows for
the existence of particles which are neither bosons nor
fermions. Instead, the exchange interactions of such “any-
ons” are described by representations of the braid group
[1], which may even be non-Abelian [2]. Recently, there
has been a resurgence of interest in anyons, due to in-
creased experimental capabilities in systems believed to
harbor them, and also their potential application to topo-
logically protected quantum computation [3]. In this quan-
tum computing scheme, qubits are encoded in non-
localized, topological charges carried by clusters of non-
Abelian anyons. Topological charges decouple from local
probes, affording them protection from decoherence.
However, this also makes their measurement, which is vital
for qubit readout, more difficult, typically requiring inter-
ferometry. The most promising candidate system for dis-
covering non-Abelian statistics is the fractional quantum
Hall (FQH) state observed at filling fraction » = 5/2 [4],
which is widely expected to be described by the Moore-
Read state [5]. Interference experiments, similar to that
proposed [6] and only recently implemented [7] for
Abelian FQH states, may soon verify the braiding statistics
of the » = 5/2 state [8]. The analyses in these treatments
assume the target particle to be in an eigenstate of topo-
logical charge. We show that, when this is not the case, the
density matrix of the target particle is diagonalized in the
charge basis during the experiment if a simple criterion on
the braiding of source and target particles is satisfied:
superpositions of distinct anyonic charges a and a’ deco-
here as long as the probe particles have nontrivial monod-
romy with the charge differences between a and a’, that is,
with the charges that fuse with a to give a’.

We consider a Mach-Zehnder type interferometer (see
Fig. 1), though the same methods may be applied to other
types, with similar conclusions. A target “particle” A
carrying a superposition of anyonic charges [9] is located
in the region between the two paths of the interferometer. A
beam of probe particles By, k = 1,..., N may be sent into
two possible input channels, is passed through a beam
splitter 7|, reflected by mirrors around the central region,
passed through a second beam splitter 7,, and finally
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detected at two possible output channels. The state ac-
quires a phase e'® or e when a probe particle passes
through the bottom or top path around the central region
(this may come from background flux, path length differ-
ences, phase shifters, etc.) and a separate, independent
contribution strictly from the braiding of the probe and
target particles, which, for non-Abelian anyons, will be
more complicated than a mere phase. If the phases /% and
e are fixed, or closely monitored, this provides a non-
demolitional measurement of the anyonic charge of A [10].
This admittedly idealized setup is similar to one experi-
mentally realized for quantum Hall systems [11], the pri-
mary difference being that the number of quasiparticle
excitations in the central interferometry region is not fixed
in that experiment. While unsuitable for measuring a target
charge, this situation may still be used to detect the pres-
ence of non-Abelian statistics [12].

The experiment we describe was also considered in the
paper [13], where it was referred to as the ‘“many-to-one”
experiment. In that paper, the authors use a quantum group
inspired approach, where individual particles are assumed
to have internal Hilbert spaces, and they study what hap-
pens to the internal state of the target particle. In our
descriptions of the systems examined, we use the theory
of general anyon models (unitary braided tensor catego-
ries), which does not ascribe individual particles internal
degrees of freedom. Instead, the relevant observables are

FIG. 1 (color online). A Mach-Zehnder interferometer con-
taining the target anyon(s) A, to be probed by the anyons B;.
(Detectors not shown.)

© 2007 The American Physical Society



PRL 98, 070401 (2007)

PHYSICAL REVIEW

week ending

LETTERS 16 FEBRUARY 2007

the overall anyonic charges of groups of particles (our main
result will be stated in terms of the density matrix of an
anyon pair A-A). This is the situation relevant to the
topological systems (e.g., FQH states) that we have in
mind. We also remove some constraints imposed in [13],
specifically, that the probe particles are all identical and
have trivial self-braiding.

Let us recall some information about anyon models (see,
e.g., [14] for additional details). States in these models may
be represented by superpositions of oriented worldline dia-
grams that give a history of splitting and fusion of particles
carrying an anyonic charge. Each allowed fusion/splitting
vertex is associated with a (possibly multidimensional)
vector space containing normalized bra/ket vectors

C
(dof dady) "' K = (a.bye.ule Vg (D
a b
a b
(dof dady)"* Yl = la,bye,p) € VP, (2)
C

where wu labels the basis states of the splitting space V¢ of
the charges a and b from charge ¢ and the number d, = 1
is the quantum dimension of a. The factors of (d./d,d,)"/*
are necessary for isotopy invariance, i.e., so the meaning of
the diagrams is not changed by continuous deformation.
The vacuum is labeled 1, and has d; = 1. Since dimV¢ =
1 when any of a, b, ¢ equals 1, the basis label is redundant
and will be dropped. In fact, the meaning of diagrams is
invariant under addition/removal of vacuum lines, so we
may drop them and smooth out their vertices. The charge
conjugate, or antiparticle, of a is denoted a, and may also
be denoted by reversing the arrow on a line labeled by a.
Diagrams with multiple vertices correspond to tensor prod-
ucts of vertex spaces. Density matrices may be represented
by diagrams with the same numbers of lines emerging at
the top and bottom (being combinations of kets and bras).
Conjugation of states and operators corresponds to reflect-
ing their diagrams through the horizontal plane while
reversing orientations [e.g., Egs. (1) and (2)]. One may
diagrammatically trace out a charge that enters and exits a
diagram at the same spatial position by connecting the
lines at these positions with an arc that does not interfere
with the rest of the diagram (giving zero if the charges do
not match). This is actually the quantum trace, which
equals the ordinary trace with each sector of overall charge
S multiplied by d. Here are some important diagrammatic
relations:

a b a b
aNE a,b f H
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&) Z { d’(} (e.c,3),(fo 1) 4
d ¢ bHrv d c
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where d, = DS, is the value of an unknotted loop carry-

ing charge a, and D = /3", d2 is the total quantum dimen-
sion. Another useful quantity, especially for interference
experiments [15], is the monodromy matrix element
M, = % It has the property |M,,| = 1, with M,, =
1 corresponding to trivial monodromy, i.e., the state is
unchanged by taking the charges a and b all the way
around each other.

Using this formalism, it is important to keep track of all
particles involved in a process. We invoke the physical
assumption that the particles A and all Bj are initially
unentangled. This means there are no nontrivial charge
lines connecting them, and to achieve this, they must
each be created separately from vacuum, with their own
antiparticles [16]. We write the initial state of the A-A
system as

Wo) = S Adla, @ 1) (©)

and that of each B-B, system as

lowy = S BB, bi 1;s), )
b,s

where s =—, T indicates in which direction the probe
particle is traveling. The probes’ antiparticles, By, will be
taken off to the left and do not participate in the interfer-
ometry. The location of the target’s antiparticle A with
respect to the interferometer is important and we will let
it be located below the central region, as in Fig. 1.
Utilizing the two-component vector notation ((1)) = |-,
((1]) =|1), the two beam splitters, which (along with the
mirrors) are assumed to be lossless, are represented by the

unitary operators T; = [? _r/t], with |7;|* + |r;|* = 1. The
J J

evolution operator for passing the probe particle By
through the interferometer is

Up = T,24T, (8)

0 eR;l
= . B |
2k |: elelRBk,A O (9)

Diagrammatically, this takes the form

A, By
Lo , [ s rin AN rity —tits A
~tity —rits | Br” A B/ A

B, A rire 7LT7’2

(10)

Keeping track of antiparticles, we need V, = Rggk for

braiding the probe particles with A, and, adding in each
successive |¢;) from the left, we also use the operators
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Wi =Rp 5_Rp.5,_, - -Rs.5Rs.5 (11)

(and W, = 1), which move the B; B, pair from the left to
the center of the configuration B, ... B;_,B;_, ... B;. This
may be viewed either as spatial sorting after creation, or, as
shown suggestively in Eq. (13), as the temporal condition
that each BB pair is utilized before creating the next.

The state of the combined system after N probe particles
have passed through the interferometer (but have not yet
been detected) may now be defined iteratively as

[Wy) = VnUyWyloy) ® [Wy_y). (12)

Focusing on the A-A system, the reduced density matrix,
p = Trgen[| Wy )XWyl], is obtained by tracing over the By
and B, particles. This may be interpreted as ignoring the
detection results. Given the placement of A, one sees that
this averaging over detector measurements makes the sec-
ond beam splitter irrelevant. If we kept track of the mea-
surement outcomes s, we would project with |5, )(s,| after
the kth probe particle. In | ¥ ), we did not include braiding
between the B, but they may be added without changing
the results, as they drop out of p4 [17].

We will first assume that the probe particles all have the
same, definite anyonic charge b and enter through the
horizontal leg, so that |¢,) = |b, b; 1;—) for all k, and
then later return to the general case. This results in the state

(with directional indices left implicit).

We first consider the case N = 1. Tracing out the b and b
lines of |, ¥, and using Eq. (10), one finds that terms
cancel to give

Z\/d dgrdy

x |1 l? +1t41? (14)

This result simply reflects the fact that all that matters after
averaging over measurement outcomes is that the probe
particle passes between A and A with probability |¢,|?, and
passes around them with probability |r|>. Since they are
initially unentangled, each additional probe particle has the
same analysis as the first, and just results in another loop
that passes between A and A with probability |¢,|>. Noting
that an unlinked b loop may be replaced by a factor d,, we
see that the reduced density matrix for A after passing N
probe particles through the interferometer is

a n a
N ~——
A Al 2(N—n) 2n 1 —_—
PN = Z Z < )|’I“1| [t1] db g_l (15a)
é/_ ?\ a nxb @
N N . ) 1 .o
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= Z o Z {(F ) } (it 10207 2. [ | P ase)
d d"/ B).(f ) ala 1,(e,c,3) @01 (e, B),(frpav) 2
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where the relations in Eq. (5) were used to remove all the b
loops, allowing us to perform the sum over n, before
applying F' in the last step. The intermediate charge label
e represents the difference between the charges a and d’,
taking values that may be fused with a’ to give a (the F
symbols vanish otherwise). Notice the potential for this
process to transfer an overall anyonic charge f to the A-A
system.

From this result we see, noting |t,|> + |ry|> = 1, that
taking the limit N — oo will exponentially kill off the e
channels with M, # 1, and preserve only those which
have trivial monodromy with b, M,, = 1. The interpreta-
tion of M, = 1 is that a and a’ have a difference charge ¢
that is invisible (in the sense of monodromy) to the charge

&9, and so the corresponding fusion channel remains un-
affected by the probe. In general, the only e channels
guaranteed to always survive this process (even for the
most general B, states) have trivial monodromy with all
charges. This always includes e = 1 (and for modular
theories/TQFTs is the only such charge), which requires
that a = a’. Tracing over the A and A particles gives
Tr{p4] = 1 as expected, but by considering the intermedi-
ate channels, one also finds that the entire contribution to
this trace is from e = 1. We should also note that some
terms may alternatively be killed off due to their corre-
sponding F symbols having zero values.

Defining p# = limy_p%, and denoting by e, the in-
termediate charges that have trivial monodromy with b, we
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get the final result (converted back into bra/ket notation,
with an extra factor of d inserted for compatibility with
the ordinary trace)

,DA = ZA(;AZ/ Z [(Fz;da_,)_l]l,(eb,a,ﬁ)
ad (ep. . B).(f, 11, v) '

X [FZ;%](eh,a’ﬁ),(f,#,V)\/d>f|a, a;fr lu><a/’ Z; f’ Vl.
(16)

We now return to the case of general probe particle states
as given in Eq. (7). Since tracing requires the charge on a
line to match up, a similar analysis as before applies. For
the result, we simply replace (|r|> + |#,|?M,,)Y in
Eq. (15¢), with

N
]‘[[1 =SB 1y + B~ M,,e)} (17)
k=1 b
This term determines the rate at which the A system
decoheres, and will generically vanish exponentially as
N — o0 unless e has trivial monodromy (in which case
this term simply equals 1). In some cases, complete deco-
herence may even be achieved with a single probe step. By
setting |#;| = O and |¢;| = 1 in Eq. (15¢), we may do away
with the interferometer and interpret the result as decoher-
ence from stray anyons passing between A and A, which is
important to consider as a source of errors in a quantum
computation.

As a practical example, we apply the results to the Ising
anyon model, which captures the essence of the Moore-
Read state’s non-Abelian statistics. For the initial state
[Wo) = AL 15 1) + Ayl ;1) + Ay lo, o5 1), using o
probes (which have trivial monodromy only with 1) gives

pt = 1APIL LI LU+ Ay Pl i 1K, 43 1]

1
+ 14,12 3 (lo, o3 10, o3 1] + o, o3 )Xo, o; ),
(18)

which exhibits loss of all coherence. For ¢ probes (which
have trivial monodromy with both 1 and ¢) the result

pt = 1A PIL LI 11| + AyAflg, ¢ 1(1, 131
+ AL AL UK, s 1+ A PL, o5 X, s 1
+ A, *lo, o5 1¢o, o3 1] 19)

shows decoherence only between ¢ and the other charges.

The decoherence effect described in this Letter is due to
measurements being made by probe particles. Keeping
track of these measurement outcomes, one generically
finds collapse of the target system state into subspaces
where the difference charge has trivial monodromy with
the probes [18]. If this includes only the e = 1 subspaces,
the target collapses onto a state of definite charge. One may
also consider completely general initial A and B, systems
described by density matrices, but as long as they are all
still unentangled, the resulting behavior is qualitatively

similar. It may also be physically relevant in some cases
to allow initial entanglement between the probes, though
this greatly complicates the analysis and results. These
generalizations will be addressed in [18].
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