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Abstract

One of the principal aims of robotics is to develop robots that are capable
of long term autonomy in unstructured and unknown environments. Such
autonomy will only be achieved through algorithms that permit robots
to perceive, interpret, and interact with the world they inhabit. The
foundation to such algorithms is the ability to build and maintain a map of
the environment and to estimate the robot’s location relative to that map.

This problem is referred to as Simultaneous Localisation and Mapping (or
SLAM).

Over the past 25 years considerable progress has been made on the SLAM
problem with a large number of solutions being reported in the literature.
Although the majority of earlier systems depended on active ranging and
proprioceptive sensors, more recently multiple approaches have been re-
ported that rely purely on visual sensors. Visual sensors provide much
richer measurements of the environment and bring with them a wealth
of techniques from the field of computer vision in areas such as feature
detection, tracking, and image matching. However, despite substantial
recent progress in visual SLAM [103], many issues remain to be solved
before a robust, general visual mapping and navigation solution can be
widely deployed.

Central among these issues is persistence - the capability for a robot to
operate robustly for long periods of time. As a robot makes repeated
transits through previously visited areas, it cannot simply treat each mis-
sion as a completely new experiment, not making use of previously built
maps. However, nor can the robot treat its complete lifetime experience
as “one big mission”, with all data considered as a single pose graph and
processed in a single batch optimisation. In this thesis this problem is ad-
dressed through the development of a framework that achieves a balance
between these two extremes, enabling the robot to leverage off the results
of previous missions, while still adding in new areas as they are uncovered
thereby improving its map over time.

The contribution of this thesis is the development of system for perform-
ing real-time multi-session visual mapping in large-scale environments.
Multi-session mapping considers the above problem ¢.e. combining the
results of multiple simultaneous localisation and mapping (SLAM) mis-
sions performed repeatedly over time in the same environment. The goal
is to robustly combine multiple maps in a common metrical coordinate



system, with consistent estimates of uncertainty. Our work employs in-
cremental smoothing and mapping (iISAM) as the underlying SLAM state
estimator and uses an improved appearance-based method for detecting
loop closures within single mapping sessions and across multiple sessions.
A critical issue is how to pose the state estimation problem for combin-
ing the results of multiple mapping missions efficiently and robustly. We
solve this problem by keeping each mission in its own relative frame of
reference and employ spatial separator variables, called anchor nodes, to
link together these multiple relative pose graphs.

The system architecture consists of a separate front-end for computing
visual odometry and windowed bundle adjustment on individual sessions,
in conjunction with a back-end for performing the place recognition and
multi-session mapping. We provide a comprehensive quantitative anal-
ysis of the system’s performance, demonstrating real-time multi-session
visual mapping. The experimental datasets were captured using wheeled
and handheld cameras and include indoor, outdoor, and mixed sequences
captured over large-scale environments.
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CHAPTER 1

Introduction

One of the principal aims of robotics is to develop robots that are capable of long term
autonomy in unstructured and unknown environments. Such autonomy will only be
achieved through algorithms that permit robots to perceive, interpret, and interact
with the world they inhabit. The foundation to such algorithms is the ability to build
and maintain a map of the environment and to estimate the robot’s location relative
to that map. This problem is referred to as Simultaneous Localisation and Mapping

(or SLAM).

1.1 Motivation for Multi-Session Visual Mapping

In a wider context mapping and localisation is a critical component in the develop-
ment of situational awareness in any mobile computational system. Although sit-
uational awareness refers to a broad set of spatiotemporal cognitive capabilities, it

can be identified with the ability to perceive the structure and state of the envi-
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Figure 1.1: Example platforms with the potential to benefit from long-term SLAM.
(a) PR-2 wheeled robot from WillowGarage'. (b) Astec Firefly unmanned aerial
vehicle (UAV) from Ascending Technologies?. (c¢) Talos Land Rover LR3 autonomous
vehicle MIT’s entry in the DARPA Urban Grand Challenge®. (d) ATLAS humanoid
robot from Boston Dynamics Incorporate (BDI)?*, currently one of three platforms in
the DARPA Robotics Challenge®

ronment and to predict its future state. It is such capabilities within humans that
permit intelligent interaction with one’s environment. The benefits of emulating this
capability in computational systems such as assistive robots, autonomous vehicles,
security applications, etc. is immediately obvious.

The raw material of any SLAM algorithm is data captured from a sensor moving
through the environment. Whether the sensor is a handheld camera carried by a user,
or a laser scanner mounted on a mobile robot, mapping an environment involves using
its data for both the determination of the scene structure and the motion of the sensor
over time. As the robot explores the environment new areas are uncovered with the
resulting local structure being added to the global map thereby providing the robot

with an ever increasing representation of the world. The difficulty with the above

"http://www.willowgarage.com/pages/pr2/overview
2http://www.asctec.de/uav-applications/research/products/asctec-firefly/
3http://grandchallenge.mit.edu/index.shtml
‘http://www.bostondynamics.com/robot_Atlas.html
Shttp://www.theroboticschallenge.org/
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is that sensor data are prone to noise from multiple sources resulting in errors in
both the map and the motion estimation process. Over time these errors accumulate
resulting in drift in the estimated position and hence unbounded global error in the
map.

The solution to this problem relies on data association between the sensor and
the map. In fact data association occurs as two levels in the SLAM pipeline: locally
and globally. As each new frame of measurements is acquired the motion relative
to the map is typically computed by refining the estimated location such that the
residual between the predicted and measured sensor data is minimised (based on some
cost). In order to compute this residual we must first identify a mapping between the
sensor data and the map. For odometry estimation we can assume a bounded motion
between consecutive sensor acquisitions and hence the data association problem can
be considered as a local search.

To correct for drift an alternative data association strategy must be employed
whereby the system must first recognise when the robot revisits a previously mapped
region, referred to as a loop closure. The significance of loop closures is that they
constitute measurements of the global error. Here the location of the sensor can
be computed relative to the immediate region of the map (i.e. through the above
odometry estimation), and also relative to the region of the map due to the previous
traversal of the region. Taking the difference between both estimates provides a
measure of the drift. Alternatively the regions of the maps themselves can be aligned
directly. In both cases instances of the data association problem arise.

The output of the above process is a set of positions and orientations, or poses,
linked via constraints derived from the odometry and loop closure estimation. This
graphical structure where the poses correspond to the nodes and the constraints
correspond to edges between the nodes is referred to as a pose graph and leads to

what has become the dominant paradigm for optimisation in the SLAM community.
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The pose graph encodes a probability density function over the set of poses with
the optimal trajectory typically computed as the maximum likelihood or mazimum
a-posteriori estimate of the model. Given that the map itself is computed from sensor
data acquired in the frame of reference of the robot, computation of the global map
is achieved by reprojecting the local structure at each pose into the optimised frame
of reference.

SLAM is a long studied problem, starting with the work of Smith and Cheeseman
[130]. Although the majority of earlier systems depended on active ranging and
proprioceptive sensors, the past decade has seen a focus on approaches that rely
purely on visual sensors. Visual sensors provide much richer measurements of the
environment and bring with them a wealth of techniques from the field of computer
vision in areas such as feature detection, tracking, image matching, and recognition.
Given the above, strong arguments have been put forward that SLAM can now be
considered a solved problem [46]. However, despite substantial recent progress in
visual SLAM [103], many issues remain to be solved before a robust, general visual
mapping and navigation solution can be widely deployed.

Central among these issues is persistence - the capability for a robot to oper-
ate robustly for long periods of time. As a robot makes repeated transits through
previously visited areas, it cannot simply treat each mission as a completely new
experiment, not making use of previously built maps. However, nor can the robot
treat its complete lifetime experience as “one big mission”, with all data considered
as a single pose graph and processed in a single batch optimisation. In this thesis
this problem is addressed through the development of a framework that achieves a
balance between these two extremes, enabling the robot to leverage off the results
of previous missions, while still adding in new areas as they are uncovered thereby
improving its map over time.

The overall problem of persistent visual SLAM involves several difficult challenges
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not encountered in the basic SLAM problem. One issue is dealing with dynamic envi-
ronments, requiring the robot to correct for long-term changes, such as furniture and
other objects being moved, in its internal representation. Another critical issue is how
to pose the state estimation problem for combining the results of multiple mapping
missions efficiently and robustly. In this thesis we concentrate on this this latter issue,
referred to as multi-session mapping. In particular the central contribution of this
thesis is the development of a system for performing real-time multi-session visual
mapping in large-scale environments. Specifically the term multi-session mapping
refers to combining the results of multiple simultaneous localisation and mapping
(SLAM) missions performed repeatedly over an extended period of time in the same
environment. The goal is to robustly combine multiple maps in a common metrical
coordinate system, with consistent estimates of uncertainty.

Cummins defines the multi-session mapping problem as “the task of aligning two
partial maps of the environment collected by the robot during different periods of
operation [19].” We consider multi-session mapping in the broader context of life-long,
persistent autonomous navigation, in which we would anticipate tens or hundreds
of repeated missions in the same environment over time. As noted by Cummins,
the “kidnapped robot problem” is closely related to multi-session mapping. In the
kidnapped robot problem, the goal is to estimate the robot’s position with respect to
a prior map given no a priori information about the robot’s position. In multi-session
SLAM, in conjunction with this global localisation problem the robot should begin
mapping immediately and upon localisation the map from the current session should
be incorporated into the global map from previous sessions.

Also closely related to the multi-session mapping problem is the multi-robot map-
ping problem. In fact, multi-session mapping can be considered as a more restricted
case of multi-robot mapping in which there are no direct encounters between robots

(only indirect encounters, via observations made of the same environmental struc-
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ture). On the other hand multi-session mapping may be considered a more general
case of multi-robot mapping in that it does not require direct robot encounters and

does not depend on any form of explicit collaboration between the sessions.

1.2 1Is SLAM Solved?

Over the past 25 years considerable progress has been made on the SLAM problem
with a large number of solutions being reported in the literature. State-of-the-art ap-
proaches have been demonstrated for a wide variety of sensors including sonar [140],
lidar [85], radar [6], cameras [92, 26, 67, 93, 136], and even pedometers [2]. They have
included systems that are capable of operating in indoor, outdoor, and mixed envi-
ronments, attached to stable smooth moving platforms or highly dynamic handheld
systems. Solutions exist for areas ranging in scale from small room sized environ-
ments [26, 67], to tens of kilometres [127].

In fact, some consider the development of accurate and robust solutions to the
SLAM problem as one of the outstanding achievements of the robotics community
over the past two decades [32]. The tremendous progress in SLAM, especially in the
past decade, has lead some to claim that SLAM is now well-understood, with the
remaining issues to primarily relating to implementation.

In 2010, Frese published a debate between Thrun and Neira to discuss the question
“is SLAM solved?” [46]. While the initial response of Thrun was that “SLAM for
static environments is solved, as far as basic research is concerned” it is clear from
the conversation that there is a considerable gap between such systems and the type
of SLAM systems required for long-term autonomy in real-world environments.

Neira emphasised the fact that current systems do not adequately address issues
such as dynamics, semantics, and real-time operation over large environments. In

fact on closer consideration both Thrun and Neira are in close agreement in the
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debate. Thrun argues that the “real goal is to impact the world through robotic
technology”. By this argument we can assess whether SLAM has reached maturity
by considering the level of adoption of SLAM in real-world robotic systems. By
any measure this is still quite low, however the demand is ever growing given the
push towards autonomous vehicles, assistive robotics, etc. Our position is that it is
precisely these limitations, such as those identified by Neira, that are the barrier to
SLAM achieving this goal. In the past five years, much of the research in SLAM has
shifted to addressing many of these issues. To achieve long-term autonomy algorithms,

the key challenges are:

Scalable Representations As the size of the environments of operation have
increased a number of research groups have focussed on the development of scal-
able representations for performing SLAM. Perhaps the earliest principled approach
to handling the issue of scale was due to Bosse et al. [9] where he developed a
sub-mapping technique modelling the environment through a set of interconnected
submaps. Such a representation allows a divide-and-conquer approach to optimisation
allowing tractable mapping over large scales. Klein and Murray [67] used a similar
approach in their parallel tracking and mapping visual SLAM algorithm, although
the resulting system is only applicable in small scale environments. An alternative
set of approaches make the choice of discarding metric information and focus on com-
puting topological maps of the environment [20, 21]. Although such algorithms can
operate over vast scales, the lack of a geometric model of the environment restricts
their applicability in many situations. More recently Sibley et al. [125] presented the
relative bundle adjustment (RBA) algorithm which permitted a trade-off between the
requirement for global consistency and computation through the use of an adaptive
windowed approach to optimising the map. In [127] Sibley et al. demonstrated this

technique over what they refer to as vast scales. Johannsson et al. [58] address the
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scale issue by only introducing poses into the pose graph if they differ in the position
and orientation of pre-existing poses by a set threshold. Results are shown over a
dataset consisting of tens of hours of video spanning the interior of multiple floors of a
building. The resulting system operates in real-time and produces globally consistent

metric maps.

Robustness Although scalability in terms of computation time is the most imme-
diate consequence of the requirement for large scale autonomy, an equally important
issue arises from the fact that as the scale of the mapping task increases in both
space and time, so too does the potential for invalid measurements. Of particular
importance here is the potential for outlier pose-to-pose constraints, for example,
from the place recognition system. Recently a number of groups have been address-
ing this problem through the development of robust estimation techniques including
the switchable constraints approach of Stiinderhauf and Protzel [138, 139], the max-
mixture model of Olson and Agrawal [112], and the realizing, reversing, recovering

(RRR) algorithm of Latif et al. [78].

Dense Mapping & Semantics FEven with the advances in SLAM over the last
25, years until recently we were still at a point where the resultant maps typically
consisted of low-level geometric primitives and/or appearance based models derived
directly from images. For example most visual SLAM systems, that use passive sen-
sors, including the one presented in this thesis, produce sparse feature based represen-
tations of the environment. In order to create truly semantic maps of the environment
researchers have recently begun focussing on dense mapping techniques. Newcombe
et al. [105, 106] developed a dense visual SLAM system for desktop scale environ-
ments that exploited the programmability and massive parallelism of modern GPUs
to compute a dense volumetric representation of the environment. More recently the

advent of consumer-level RGBD sensors has allowed researchers to side step the chal-
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lenges of monocular vision by directly measuring depth. Furthermore RGBD sensors
can measure depth in featureless environments, and compute the depth through an
on-board system-on-a-chip (SoC), thereby relieving the CPU of disparity estimation,
and more importantly permitting the use of far more pixels in the image for odometry
estimation and mapping. In [104] Newcombe et al. presented KinectFusion which has
now become a landmark technique for dense mapping with an RGB camera. Build-
ing on this work the author’s own group has addressed a number of limitations of
the KinectFusion algorithm so as to allow it to be used over extended scale envi-
ronments [149], incorporating visual odometry to overcome areas of low geometric
tezture [150], and solving the loop closure problem [151]. The importance of these
approaches is that the resulting maps provide a far richer representation of the en-
vironment, and hence are more amenable to object discovery and segmentation [41],
and hence higher-level processing. In the debate between Thrun and Neira, one of the
comments made by Thrun was “what would really be exciting is a semantic under-
standing of the individual objects in the environment, their relationship to each other,
and their characteristics.” Recently Salas-Moreno et al. [122] presented a new object
oriented 3D SLAM paradigm which they call SLAM++. Here they utilise an a-priori
database of object categories to recognise, segment and track objects in an RGBD
sequence. As objects are detected they become variables within an graph of both
objects and camera poses where the edges encode camera-object and object-object

pose constraints. Given such a representation allows SLAM at the object level.

1.3 Thesis Scope

The goal of this thesis is to create a real-time multi-session visual SLAM system to
enable persistent operation of autonomous mobile robots. Of the large literature now

published in SLAM discussed above, two prior contributions exemplify the goals of
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this thesis investigation: (1) The work of Konolige and Bowman [70] on lifelong visual
mapping and (2) Kim et al.’s work on multiple relative pose graphs for cooperative

mapping [66]. Konolige and Bowman write:

“The typical SLAM mapping system assumes a static environment and
constructs a map that is then used without regard for ongoing changes.
Most SLAM systems, such as FastSLAM, also require a single connected
run to create a map. In this paper we present a system of visual map-
ping, using only input from a stereo camera, that continually updates an
optimised metric map in large indoor spaces with movable objects: peo-
ple, furniture, partitions, etc. The system can be stopped and restarted
at arbitrary disconnected points, is robust to occlusion and localisation
failures, and efficiently maintains alternative views of a dynamic environ-
ment. It operates completely online at a 30 Hz frame rate.” [70]

Our work shares similar goals but adopts a somewhat different formulation, based
on the anchor node representation, combined with iSAM, as previously developed in
two dimensions by Kim et al.. Our work is the first example of an anchor node based
SLAM system that (i) uses vision as the primary sensor, (ii) operates in general 6-DOF
motion, (iii) includes a place recognition module for identifying inter and intra-session
loop closures in general environments, and (iv) derives 6-DOF pose constraints from
those loop closures within these general environments (i.e. removing the need for
fiducial targets, as were used in [66]).

Our system architecture for achieving these goals is shown in Fig. 1.2 and con-
sists of a separate front-end for computing visual odometry and windowed bundle
adjustment on individual sessions, in conjunction with a back-end for performing the
place recognition and multi-session mapping. The modularity of the architecture al-
lows the user to efficiently swap different components with minimal effect on other
components.

As part of this thesis we introduce the use of homogeneous point representation to
iSAM allowing the smoothing to take advantage of distant scene points tracked over

long baselines. In fact in the seminal work of Triggs et al. [146] the authors argue
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Figure 1.2: Multi-session visual SLAM system architecture. The major components
of the system include: (A) 2-D feature tracker [153]; (B) dense stereo disparity es-
timation [10]; (C) stereo odometry [42, 109]; (D) windowed bundle adjustment us-
ing iISAM [61]; (E) local map representation; (F) visual place recognition [13]; (G)
loop-closure pose estimation; (H) pose graph optimisation using iSAM; and (I) multi-
session map pose graph representation.
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that the natural geometry and error model for visual reconstruction is projective rather
than affine, and as such failure to use a projective representation can be disastrous
for distant points. In conjunction with the above, to represent the 6-DOF motion of
the camera we employ a quaternion based representation of rotations.

Incorporating both homogeneous points and quaternions into the least squares
optimisation of iSAM requires dealing with the over-parameterisation of the repre-
sentations. In both cases we employ a minimal local parameterisation of the spaces
through the use of an exponential map. That is, given that both representations can
be identified with the unit sphere in R* we can locally parameterise the optimisa-
tion in the tangent space R? which can then be mapped to an update of the global
parameterisation through the same exponential map.

We provide a comprehensive quantitative analysis of the system’s performance,
demonstrating real-time multi-session visual mapping. The experimental datasets
were captured using wheeled and handheld cameras and include indoor, outdoor, and

mixed sequences captured over large-scale environments.

1.4 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 provides a general
introduction to SLAM, starting with a formulation of the SLAM problem. Following
on from this the chapter will provide a discussion of the three principal paradigms:
extended Kalman filtering (EKF), particle filtering, and smoothing approaches. The
chapter ends with a review of some of the relevant related approaches to visual SLAM.

Visual odometry, the capability to extract motion constraints directly from visual
data, is central to any visual SLAM system. Chapter 3 provides an overview of
the main components involved in stereo based visual odometry including: camera

modelling and pose estimation, robust model fitting, feature detection and tracking,
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and windowed bundle adjustment.

Chapter 4 describes the core contribution of the thesis — the design and imple-
mentation of a visual SLAM algorithm using iISAM and anchor nodes to achieves
multi-session operation. A modular system design is presented, including a discus-
sion of the design decisions taken to arrive at the component based architecture. Each
component is treated in turn starting with the stereo odometry front-end, followed by
the iISAM optimisation system, the place recognition system employed for loop closure
detection and handling, and extension to incorporate multiple mapping sessions.

Chapter 5 provides an experimental evaluation for the system, documenting its
performance for both single session and multi-session operation. Experimental results
are provided for both wheeled robot and man-portable data collection. An analysis
of the system’s performance is provided, demonstrating the capability of the system
to achieve real-time performance.

Chapter 6 reviews the contributions of the thesis and identifies future directions
for the research. In particular the contributions are placed in the context extend-
ing SLAM for long-term autonomy and real-world applications, with a number of

synergies between contemporary research identified and discussed.
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CHAPTER 2

Simultaneous Localisation and Mapping

As was introduced in Chapter 1, SLAM poses the problem of computing a map of an
unknown environment whilst simultaneously localising the sensor platform relative
to the map. Visual SLAM (vSLAM) refers to the particular case of using camera(s)
as the input sensor. In fact the SLAM problem predates the research efforts of
the robotics community with earlier research in photogrammetry, where it is termed
bundle adjustment, and more recently in the computer vision community [146], where
it is termed structure from motion (or SfM). Although from an abstract point of
view each of these terms refers to the same problem, there are key differences in the
approaches and contributions made by each community. What differentiates the work
of the SLAM community, at least initially, was the focus on online solutions to the
problem. This paradigm stems from the fact that, as part of mobile robotics, SLAM
typically focusses on situations where the sensor is mounted on a mobile robotic
platform where the constructed map and the current location of the platform relative

to that map forms part of a larger perception system. Hence batch approaches are
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not applicable since at all points in time the robot requires a current estimate of the
environment in order to complete its task.

A central element of the SLAM problem is the representation and quantification
of uncertainty. This is due to the fact that the physical world in which the robot
exists is inherently unpredictable and hence contains elements and events that are
outside of the system’s world model, or modelling capability. Furthermore given that
sensors provide the link between the robot and the physical world, data from those
sensors will inevitably be perturbed by measurement noise. Developing autonomous
robots capable of dealing with such issues requires a probabilistic approach whereby
both the map, M, and the location of the robot over time within the map, X;, are

modelled as random variables governed by some underlying joint density function.

p(Xy, M) (2.1)

In this context, the SLAM problem becomes one of estimation of this distribution.
This chapter provides both a brief survey of the current state of the art of SLAM
techniques and an introduction to the mathematics of the SLAM problem. Section 2.1
begins by providing details of the general probabilistic formulation of the SLAM prob-
lem. Next, Section 2.2 reviews the genesis of research into the SLAM problem and
provides a historical review of the main milestones since that time. In particular
this section will begin by reviewing EKF based approaches highlighting both the
strengths and limitations of the earlier systems. Extensions to ameliorate these is-
sues will be also reviewed. Aside from the EKF solutions, two other paradigms have
received greatest attention in the literature: particle filtering (a.k.a. Monte-Carlo
methods), and graph based approaches. Both of these approaches will be reviewed
with the former focussing on the FastSLAM algorithms. The general graphical SLAM

formulation will be presented of which there are now numerous algorithms. These ap-
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2.1. MATHEMATICAL FORMULATION

proaches model the problem through the use of probabilistic graphical models where
poses of the robot at discrete intervals and features of the environment are treated
as latent variables, with measurements from sensors (e.g. odometry, visual features,
laser returns, etc.) providing constraints between these variables. Such approaches
have become predominant over the last decade and have been demonstrated in very
large scale environments. Given that the SLAM method used in this thesis is the in-
cremental smoothing and mapping (iISAM) approach of Kaess et al. [61], the section
will focus on iISAM’s graphical formulation both in terms of the underlying factor
graph representation, and in terms of the optimisation approaches employed to per-
mit incremental operation. The chapter completes by reviewing the visual SLAM

problem.

2.1 Mathematical Formulation

As mentioned above, the SLAM problem aims to estimate the joint density of the
map and trajectory of the robot as defined in Eq. 2.1. This estimation process is
achieved through incremental integration of data from the robot platform including
odometry control inputs, U, and sensor measurements, Z. We denote the dependency

between all of these variables by rewriting Eq. 2.1 as the posterior:

p(Xt,M|Ut, Zt) (22)

where, the evolution of the problem over time is highlighted by the temporal index, ,

for each of the variables X;, U, and Z,. Note here the assumption that the environ-

ment is static and hence the lack of the subscript on M. Here, X; = {xqg,x1,...,X},
represents all poses of the robot, U, = {uy,us, ..., w}, represents the control inputs,
and Z; = {z¢,z1,...,2:}, represents the measurements at each time step.

Technically Eq. 2.2 represents the full SLAM problem due to the fact that it
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u¢ : control input

Ty pose
2 . measurement
M : map

O observed
O latent

Figure 2.1: Bayesian network illustrating the structure of the SLAM problem.

includes both the current pose, x;, and all previous poses, xq.;—1. This is differentiated
from the online SLAM problem where only an estimate of the current pose, x;, is

maintained at each time step.

p(Xt,M|Ut,Zt) (23)

Note that the term online is somewhat of a misnomer and is used due to the fact that
historically only batch solutions to the full SLAM problem were available. A number
of the real-time incremental solutions to the full SLAM problem now exist.
Estimating either of the above posteriors becomes tractable through the use of
both the product rule and Bayes rule resulting in a factorisation into a set of condi-
tionally independent motion and measurement models. Here the measurement model,
p(z¢|x;, M), provides a distribution over the measurement space given the current pose
and the map estimates. The motion model, p(x;|x;_1,u;), on the other hand charac-
terises the uncertainty in the position of the robot at time ¢, given the previous pose
and the control input applied at that time. This factorisation is illustrated in the

Bayesian network shown in Fig. 2.1.
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u¢ : control input
Ty : pose

Z; . measurement
[; : landmark

O observed
O latent

Figure 2.2: Bayesian network highlighting relationship between landmarks and mea-
surements. Note that the landmarks are conditionally independent given the path.

2.1.1 Landmark-based SLAM

Although the above model is generic from the point of view of the map representa-
tion, a common representation (and the representation used throughout this thesis)
is to consider the map as consisting of a set of landmarks, M = {1y, 1;,...,1y}. Each
measurement, then corresponds to an observation of a particular landmark from a
particular pose. Hence instead of collecting all sensor data at time t into a single
measurement, z;, we associate multiple measurements with each pose; one for each
landmark observed. To make this distinction explicit we now denote measurements,
z;. This landmark based SLAM model is shown in Fig. 2.2. Note that although the
most common approach is for each landmark to correspond to a single point loca-
tion, this model does support more generic landmarks e.g. lines, or other geometric
features.

From the structure of the Bayesian network shown in Fig. 2.2 we can immediately

write the factorisation of Eq. 2.2 :

N-1 K
p (X, M[Uy, Zy) o p (x0) [] p (xelue, xe1) [ (zilxe,, 1) (2.4)

t=1 i=1

Solving the SLAM problem in this context now corresponds to computing the mai-
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mum a-posteriori (MAP) estimate of X; and M, given the measurements,

(X7, M*] = argmax {p (X;, M|U;, Z;)} (2.5)

1

In all cases in this thesis we will assume both the motion and measurement models

to be Gaussian as follows:

x: = g(x¢—1, W) + wy (2.6)
p(Xe|xi—1, 1)~ N(g(xe-1, ), ) (2.7)

o exp (=3 (v — glxa,u)) O b gl w))  (28)

z; = h(xy,l,)+ oy (2.9)
p(zilxi, 1)~ N, 1), 5) (2.10)

X exp (-; (2 — hixi,, 1)) 27" (20— h(xe,, 1];))) (2.11)

where, g(x;_1,u;) and h(x,1;) are the deterministic motion and measurement func-
tions and w; and o; are an additive noise terms which are taken to be Gaussian with

zero mean and covariances €2, and Y;, respectively.

2.1.2 Data Association

Reviewing Eq. 2.9 we note that each measurement, z;, can be considered as a con-
straint between a landmark, 1;,, and a pose, x;,. Computing these constraints requires
solving the data association problem; one of the most important and challenging prob-
lems in SLAM [102]. In simple terms the data association problem involves identifying
correspondences between measurements acquired at different time instances (i.e., so

as to permit collection of all measurements for each landmark into separate subsets).
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Often it is useful to consider the data association problem as three separate sub-
problems. The first is to identify corresponding measurements between consecutive
poses (or poses that are close in time). The second is to identify new landmarks
i.e. which have not been previously observed. And finally the third is to identify
correspondences between measurements when an area is revisited.

The benefit of distinguishing along these lines is that the first two here are typically
handled by a separate feature detection and tracking system that takes advantage of
the spatial proximity of features between poses in the sensor frame of reference. An
example of this is that of tracking a visual feature in a video sequence captured from
a moving camera. Assuming an adequately high frame rate, the induced motion of
a feature due to the motion of the camera should be such that the features detected
in a given frame should have a bounded displacement in the subsequent frame. Fur-
thermore given the modelling of uncertainty, a visual SLAM system should be able to
make an informed decision of the bounds on this displacement on a feature-by-feature
basis.

This leads to the second task of identifying new features. A common approach
to solving this problem is to take features that do not fall within these uncertainty
bounds as being new features [31]. This test is normally coupled with a geometric or
visual descriptor matching step to ensure robustness.

When revisiting a previously mapped area the accumulated drift can be significant
and as a result the above approaches do not apply. Instead the approach is normally
to first perform a global recognition step whereby the current sensor data is matched
against a database of previously visited areas [20]. This process may identify a number
of putative matches. Each of these matches is then compared against the current
sensor data in order to derive a set of local correspondences. The output of this latter
process is used to provide a measure of confidence in each of the matches. The final

match is selected as the one with the highest confidence that is above a predefined
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threshold, which is typically set quite conservatively to avoid false positives.

2.2 EKF Approaches

The earliest work on the SLAM problem within the robotics community is typically
credited to Smith and Cheeseman [130] where they addressed the representation of
uncertain spatial relationships through what they defined as approzrimate transfor-
mations (AT’s). AT’s characterised the transformations between coordinate frames
as random variables which they estimated through their mean and covariance. Im-
portantly here the covariance matrix provided a measure of the uncertainty over the
variables of the transformation.

In [131] Smith et al. built on their previous work by defining the stochastic map
which captured the relationships between all spatial variables (e.g. the structure
of the environment, and, the location of the sensor) in a single state vector. This
representation allowed the definition of a probability density function over this state
space, again estimated through the mean and covariance of the vector. Critically the
covariance matrix models not only the variance in the individual variable estimates
but also the correlations between the variables.

As the vehicle moves, uncertainty in the motion accumulates resulting in drift in
the global pose estimate. Given that measurements are represented relative to the
vehicle frame their global uncertainty is correlated with that of the vehicle and hence
grows in tandem. This network of correlations is effectively what is captured by the
stochastic map.

As explained in [32], successive sets of measurements result in greater and greater
correlations between variables. From a representational point of view this is quantified
in the off diagonal elements of the covariance, and as result, over time, the covariances

becomes fully dense requiring accurate modelling in order to avoid inconsistencies [18].
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Another important contribution of Smith et al. [131] was an EKF approach to
incrementally constructing and updating the map which constituted the first solution
to the SLAM problem. This work signalled the start of a period of intense activity
into filtering solutions to SLAM problem. A thorough review of the chronology of
developments during this period can be found in Durrant-Whyte and Bailey [32].

Although the EKF approach to SLAM has received considerable focus, and in fact
was the first paradigm employed in vSLAM ([26]), it does suffer from a number of
limitations. Principal amongst these is that although the state vector grows linearly
with the map, the covariance grows quadratically as does both the space and compu-
tational complexity. This means that EKF SLAM systems are limited in the scale of
the areas over which they can operate.

Dealing with this issue was a key driver for early SLAM research. Early approaches
to mitigate this issue include the compressed filter algorithm developed by Guivant
and Nebot [49], sequential map joining developed by Tardos et al. [140], and the
constrained local submap filter developed by Williams et al. [152]. Each of these
three approaches reduced the computational burden by a constant factor but still
had quadratic complexity. Estrada et al. [35] improved on this by achieving linear
complexity with their Hierarchical SLAM algorithm.

One of the key shortcomings of EKF based approaches is that as measurements
accumulate all of the variables in the map become completely correlated and hence
the covariance becomes dense. An alternative set of approaches is based on using the
inverse form of the covariance, also known as the information matrix [143, 36, 148].
The benefit of using the information matrix is that whilst the covariance becomes
dense over time, the information matrix maintains its sparsity as long as the entire
robot trajectory is maintained in the state vector. In fact this key insight is also
exploited in pose graph methods (see Section 2.4). Eustice exploited this insight to

realise the exactly sparse delayed state filter, which was applied to underwater camera
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data to reconstruct the wreck of the Titanic [36]. Walter developed the exactly sparse
extended information filter (ESEIF) which discarded selected odometry measurements
to maintain sparsity whilst performing landmark based SLAM.

An issue with both the EKF and EIF approaches, as shown by Julier and Uhlmann
[59], is that over extended timescales, the state estimates are guaranteed to become
inconsistent. Furthermore, the representation employed assumes a unimodal distri-
bution which can be adequately approximated through the mean and covariance.
This limitation means that the approach is unable to cater with ambiguity and alias-
ing within the environment and hence is unsuitable for global localisation, (e.g. the

kidnapped robot problem), which often involve a number of distinct hypotheses [144].

2.3 Particle Filtering

Montemerlo et al. [98] present the FastSLAM algorithm that uses a non-parametric
particle filter representation which permits approximation of multimodal distributions
and is therefore much more robust to problems such as the above. FastSLAM repre-
sents the joint density (see Eq. 2.1) over the path and the map as a set of particles.
Each particle consists of an estimate of the path and a series of independent Gaussian
estimates of the locations of each of the landmarks within the map. More specifically
at time ¢ the posterior is defined as a set of sampled particles, S; = {S?, ey StK_l}.
Here the i*® particle is defined as, S¢ = {Xi, (p,i’l, Efm) e (p,i’N, QN) }, where X!
is the full path estimate and (p,@ i Ezt" j) are the mean and covariance of landmark j.

An important aspect of the FastSLAM algorithm is the use of Rao-Blackwellization
whereby the path is estimated using a modified particle filter and the landmarks are
estimated in closed-form using a set of independent Kalman filters. A complete it-
eration of the algorithm therefore consists of a path update step followed by a map

update step. The path update step first involves using the known control input, u;, to

23



2.4. SMOOTHING APPROACHES

predict the latest pose for each particle by sampling from motion model, p(x;|x; 1, u;).
An important point to note is that although the particles within FastSLAM repre-
sent the full trajectory, the algorithm is still a type of filtering in that only the most
recent pose is used in prediction step. An importance weight is then computed for
each resulting particle by evaluating the likelihood of the measurements, p(z;|x;, m).
These weights are then used in a resampling step to generate a new set of particles by
sampling with replacement from the current set, where the probability of sampling a
given particle is given the by normalised importance weight.

Given an updated path each of the landmarks become independent and hence
can be estimated separately (see Fig. 2.2). This is achieved by a set of NK Kalman
filters (i.e. N KF’s for each of the K particles) which update the (ui’j, Z;j) vectors.
Note that unlike EKF SLAM, here the Kalman filters operate over a much lower
fixed dimension and therefore are computationally efficient. Given that a weakness
of particle filters lies in the fact that the number of particles required to approximate
the distribution grows exponentially with the number of dimensions, this combina-
tion of conditional independence with Rao-Blackwellization is critical to making the
FastSLAM algorithm tractable. Furthermore, although the above suggests a update
complexity of O (N K), this is reduced to O (N log K) through the use of a tree based

data-structure in the management of the map [98].

2.4 Smoothing Approaches

Despite the considerable breath of approaches based on filtering, a fundamental issue
with applying filtering approaches in the context of the non-linear SLAM problem is
that they have been shown to be inconsistent [59]. An alternative SLAM paradigm,
sometimes referred to as smoothing [28], is to represent the problem as a graph of

non-linear constraints where nodes in the graph represent the latent variables and
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edges correspond to soft constraints between the variables e.g. due to measurements
or odometry information.

Such a representation was first introduced by Lu and Milios [84] where they de-
fined the pose graph as a series of poses connected via pose relations, which were in
turn derived by alignment of the sensor scan data of poses involved in the relation-
ship. In this work the authors did not represent the scene structure explicitly and
instead restrict the estimation problem to the pose graph. Two types of edges be-
tween pose nodes are identified: (i) odometry constraints between consecutive poses,
and, (ii) loop-closure constraints due to revisiting a previously mapped region of the
environment. On computation of the smoothed pose graph the map is constructed
by projecting each lidar scan into the local frame of the corresponding pose.

Since then a considerable collection of graph based approaches have been reported
in the literature [50, 28, 113, 75, 72]. In fact over the last decade such graphi-
cal approaches have become the predominant method in large scale SLAM systems,
demonstrating mapping solutions at much greater scales than those shown by filtering
approaches.

The reason for this is that with graphical approaches the optimisation is performed
over the current pose and all previous poses, and hence solves the full SLAM problem.
Maintaining all poses in this fashion results in a sparsity in the underlying matrix
representation of the graphical structure which can in turn be exploited through the
use of sparse matrix optimisation techniques [25]. Although initially only batch solu-
tions were available, more recently real-time online solutions that exploit incremental
solvers have recently been presented in [61, 63].

Although many graphical representations have been used in formulating the SLAM
problem, given the focus of this thesis on incremental smoothing and mapping (iISAM),
we will follow the approach of Dellaert and Kaess [29] and use the factor graph rep-

resentation (see Chapter 8 of Bishop [8] for an excellent tutorial introduction).
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Figure 2.3: Factor graph of the SLAM problem corresponding to the Bayesian network
shown in Fig. 2.2.

A factor graph is a bipartite graph consisting of two types of nodes: variable
nodes and factor nodes. Edges in the factor graph connect variable nodes to factor
nodes, where a factor node represents a function over all of the variables to which
it is connected. A factor graph then represents a factorisation of a joint distribution

over the variables, x, as the product of all of the factors [8],

p(x) = [fs (xs) (2.12)

where, x,, is the subset of variables in s associated with the factor f,;. So, whereas
other graphical models, such as Bayesian networks, represent the factorisation of the
joint distribution as a product of conditional probability distributions, with factor
graphs the factors are general functions and hence permit more general factorisations.
Furthermore by making the factors explicit (i.e. as nodes), factor graphs can include
multiple separate factors involving the same subset of latent variables.

In order to derive the graphical formulation of the SLAM problem using factor
graphs we start with the general formulation provided in Section 2.1 and in particular

equations 2.4 and 2.5. The factor graph for the SLAM problem is shown in Fig. 2.3
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(corresponding to the Bayesian network shown in Fig. 2.2) where,

p(Xe, MU, Zy) = [[fs () (2.13)

=

N-1
= f(Xo;pO) 1T/ o xpeiiwn) [T (i s ze) - (2.14)
n=1

k=1

As can be seen from the figure three factor types are shown; measurement factors,
f(xi,,1;,; 2x), pose-to-pose factors, f(X,,Xn—1;u,), and an anchor factor, f(xq;p?),
that acts as a prior on the position of the initial pose. Each of these factors is a
function of the unknown variables, parameterised by the measurements. Note that
the pose-to-pose factors are constructed by both incremental motion constraints (i.e.
between poses from neighbouring time instants) and from loop closure constraints
(not shown in the figure).

Assuming the Gaussian motion and measurements models from equations 2.7 and
2.10 we can use the standard technique of recasting Eq. 2.5 as minimising the negative

log likelihood as

XM = argin |- 1o (T ) ) (2.15)

X¢,M s
N-1
= argmin Y (%, — 9(%ao1 wa))" 2 (%, — g(x01, 1))
XM n=1
K
+ 3 [z = Pl L) S0 (2 — b 1,))| (2.16)
k=1

Equation 2.16 corresponds to the maximum likelihood (ML) SLAM estimate which
can be estimated using non-linear optimisation techniques such as Gauss-Newton or
Levenberg-Marquardt [89]. Such approaches involve iterating the process of linearis-
ing around the current estimate and then solving for an update to the estimate t