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Abstract A

Java-based tool for determining if polygons require sifigation before delivery
to a mobile device using a Location-based Service (LBS)ssideed. Visualisation
of vector-based spatial data on mobile devices is congtdiy: small screen size;
small data storage on the device; and potentially poor baitdwonnectivity. Our
Java-based tool can download OpenStreetMap (OSM) XML chatadl-time and
calculate a number of shape complexity measures for eaeletdhjthe data. From
these measures an overall complexity score is calculdtéislcomplexity score
is above a pre-defined threshold, specific to LBS, then tha idgbassed to a re-
lated software component which generalises (simplifiesptita. Our experimental
results with actual OSM data confirm our expectations thates®SM polygon
features can undergo simplification before delivery to asth a significant re-
duction in the amount of data exchanged. The tool is comigleteb-based and runs
free and open source software; all XML data processing i®paed “on-the-fly”
and the tool can be used for OpenStreetMap data anywhere imdHd. This tool
can become part of a very useful and efficient pre-processamin the delivery of
OSM data to mobile devices accessing LBS.

1 Introduction

Access to geographical data and spatial information (refeto from here as
geospatial data) is a crucial aspect of Location-basedic&er(LBS). LBS have
a very wide range of application domains [16] but as [10] cants, irrespective of
the range of application domains, user interfaces, etd B8 will continue to re-
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quire spatial data to link position information with othextd sources and services”.
If an LBS cannot access good quality geospatial data it ikelglthat it will succeed
in meeting user requirements and expectations. The dodinigaf large "chunks”
of geospatial data to mobile devices is prohibitive duendtkd storage space on
the device, lack of GIS-capable software on the device, atenpially poor wire-
less network bandwidth and speed [11]. When a mobile deviceszes a LBS an
inherent tradeoff immediately exists between transngjtis much geospatial data
as necessary to satisfy the user request/query againseéshétions of network
latency, limited storage on the mobile device, and the uspe&ation of aquick
responsdor their query.

1.1 Overview of this paper

In this paper we describe one component of a larger geospatia simplication
software framework which is specifically aimed at delivefgeospatial data to mo-
bile devices accessing LBS. The OpenStreetMap databasedsas a case study.
The geospatial data stored within the OpenStreetMap dseaisaavailable at the
highest resolution possible including all spatial atttésfor all of the geographical
features [5]. However, for the purposes of most LBS typ&O{ queries where
am | queries?display of specific features nearlsy simplified version of the geo-
graphic features stored in the OpenStreetMap databadesfidotation is sufficient.
We describe a software component which can take as inputad gebgraphic fea-
tures from OpenStreetMap and decide if this dataset reggiraplication before
it is delivered to a mobile device. The software componestdked in this pa-
per computes a number of shape complexity [20] and shapeipliésc measures.
Based on the quantitative output from these measufesmbcomplexity score is
calculated for the dataset. If this complexity score exseepre-determined thresh-
old this dataset is sent directly to a connected softwarepoomnt which performs
the simplication. Otherwise the dataset in question is edds “LBS-ready” and
is suitable for transmission and subsequent display on titglendevice. This pro-
cess is illustrated in the flowchart in Figure 1. The inputteedata is currently
imported in OpenStreetMap XML format. However this coulddasily extended
to other geospatial data formats such as ESRI Shapefilessatlglifrom geospatial
databases such as PostgreSQL by writing Java code to priopesslata in these
forms. The GeoTools library for Java can read ESRI Shapeditelsthere is very
good Java library support for PostgreSQL.

OpenStreetMap (OSM) was chosen as the geospatial dataedoutbis project
for a number of reasons. While the problems of generalisatial simplification of
vector data are inherent in any geospatial vector-baseelathe reasons for our
choice of OSM included:

e OSM is becoming a popular choice in LBS services and apjmicat[8, 9].
Some authors argue that OSM is a “comprehensive dataseiaabwary en-
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abling the disambiguation and alignment of other data afaimation” which
can also be “transformed and represented in other formats”.

e OSM is created by organised groups of volunteers. Real vwarshonema are
represented by points, lines, and polygons in the OSM datalide geospatial
data collected is taken from GPS traces, bulk vector datzaaiib OSM, tracing
over aerial imagery (Yahoo!) using Web-map-services (WM&hin various
OSM, and digitisation of out-of-copyright maps and othepgramap sources.
Some lines and polygons are over-represented (too marige®rivhile others
are under-represented (too few vertices given the contplekihe real-world
feature the polygon represents. For over-representedpodmwe feel that sim-
plification can take place before this data is sent to a malgiéce accessing
an LBS.

1.2 Contributions of this paper

Overall we feel that this approach can assist in improvirgtiapquery response
times for LBS by presenting a simplified version of the getigpdata [19]. The
growth of web and wireless gis presents a new set of chaltefigyenap generali-
sation and simplification techniques because users of welwarless GIS require
information which is: quickly delivered, quickly download, and relevant to the
specific task in hand [23]. OpenStreetMap stores spatial aah 1:1 scale in the
OSM database and then other software and GIS extract datiispidy at different
scales. The data layers describe the same geographic aredttbwaried resolu-
tion [2]. Reducing the data volume as much as possible is poiitant requirement
for multi-scale representation of spatial data [2]. Spatéda most usually undergo
some form of generalisation and simplification. In one stlidythe authors show
generalised route maps based on a detailed study of thedygéestortions humans
make of route maps in handdrawn maps. Another key reasoinfiptiScation and
generalisation is customisation. Users like to be able sdyebuild their own maps
according to their own preferences and their own GPS-baszdion [7]. This re-
search work is part of a larger project which is examiningeaambed techniques for
generalisation of geospatial data. This work appears atyaampropriate time in
the development of LBS when the visual respresentationpgjra geospatial data
are becoming increasingly complex while the need to imptbeegeneral usability
of interactive maps on mobile devices [13] has never beeatgrerhe remainder
of the paper is organised as follows. Section 2 describeddhe software devel-
oped to guide simplification of geospatial data for use in LBE&ch component
of the Java software is described. In section 5 the detailwuf a training set of
polygons from OpenStreetMap was selected and the subdecjassification of
these polygons by five participants. Section 4 provides &emaatical overview of
the measures/metrics computed to establish complexisgifieation rules for the
polygons and the conditions under which a polygon becomesdidate for sim-
plification. Some experimental results are presented itisseb. The paper closes
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Fig. 2 A schema of the Java software components used to: processdtue data from Figure 1,
calculate complexity measures, and transport data to stfievare components (ie simplification)

with section 6 where we briefly summarise the key points inpiger followed by
a discussion of some immediate issues for further work.
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2 Description of Java Software Components

In this section we give an overview of the Java software aged to support the
processing steps in Figure 1. As illustrated in Figure liapdata in vector format
is used as input. Figure 2 shows a schematic of the compoofthis Java software.
There are four components - the user interface, the datactatr the data processor,
and finally the data transporter. Each of these componefitaeovi be discussed.
The user interface is designed for both inputting the dathdisplaying the data
processing results. Input vector data can be provided aetivays:

1. Users can specify a location by clicking on the OpenSttaptmap displayed.
The map is displayed using OpenLayers and the Cloudmade AABbmbi-
nation of the OpenLayers Javascript library and CloudeMaldkeextract the
(latitude, longitude) coordinates of the clicked point

2. Users can type the (latitude, longitude) coordinates @ntple text-boxes on
the user interface avoiding the need to click on the map.

3. If alarge number of locations require checking then trer irderface provides
functionality for input of a list of (latitude, longitudepordinates in a CSV text
file. This is particularly useful for testing purposes.

Immediately upon input of the (latitude, longitude) comates processing of the
polygons begins. Direct Web Remoting (DWR) is a Java libthat enables Java
on the server and JavaScript in a browser to interact anceaah other as sim-
ply as possible. When polygon processing has completed A& &nologies, en-
abled by DWR, are used to display results immediately in aadyinally created
HTML table. The “Data Extractor” component of the softwaserésponsible for
downloading the raw OpenStreetMap XML data correspondirthe latitude, lon-
gitude) coordinates provided. OpenStreetMap providesRirfdr this purpose. We
assume that for LBS applications a bounding box, centeretherflatitude, lon-
gitude) coordinates, with area of approximately Zkis sufficient. All polygon
features inside this bounding box are processed. Requestisef OpenStreetMap
XML data for this bounding box are issued as a GET HTTP reqtodsttp://
www.openstreetmap.org/api/0.6/map?bbox=L,B,R,T where L and
R are the western and easter sides (longitudes) of the bogibdix while B and
T are the southern and northern sides (latitudes) of the dingrbox. When the
OSM XML has downloaded the “Data Extractor” traverses althef XML nodes
to automatically extract the necessary polygon. Java XMirBdechnology is used
for accessing XML in Java-friendly way by binding the XML tava types. OSM
XML is presented in WGS84 (Latitude Longitude) so it is nesagg for accurate
area and distance calculations that the data be transfailmredneter-based coor-
dinate system. For this the UTM (Universal Transverse Meryds used. The key
function of the “Data Transporter” is to move OSM XML dataween this soft-
ware and the connected generalisation/simplificatiomsott developed inanother
part of the project. The work of the “Data Processor” is tablsh whether the
polygons extracted are “simple” or “complex” and if thesdygons must undergo
simplification. The “Data Processor” will be discussed iaaer detail in section 4.
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3 Experimental Setup

In order to establish complexity measures for the OpenBii@e polygons we
needed to establish a test set of ground-truth polygons e&eblished and how
polygons are described as either “complex” or “simple”.

3.1 Establishing a ground-truth training set of polygons

A ground-truth training set is required to establish rulashow to automatically
distinguish shapes based on the characteristic of beingptei’ or “complex”. The
human eye can determine a shape to be either “simple” (i.ecke,ca triangle, a
rectangle) or “complex” (a multi vertex polygon) very quligkHuman visual per-
ception can identify complex polygons very quickly whengaeted with a carto-
graphic representation of the polygons [4, 6]. A trainingwgas established by se-
lecting 65 individual polygons from OpenStreetMap. Theygohs are taken from
OpenStreetMap for Ireland and Wales. This set contains d geerall distribution
of different types of polygons representing different matyphenonemum. The fi-
nal set of polygon® was chosen a larger set of polygd@sThe setQ comprises
of all polygons in Ireland and Wales satisfying two criteff@r a polygon to be a
member of seQ it must represent a water feature (lakes, ponds, reseyainsitural
feature (forests, parks, open space, green areas), or armddtthese two features
(reclaimed land, quarries, etc) and it must have an areaeattgr than ®kn?. Five
people were chosen as test subject participants who weugeedo indicate their
visual evaluation of the shape. The five people chosen fertétsk comprised of:
two of which were two of the authors, another person who isxer in GIS map-
ping, and finally two people with no GIS or IT backgrounds. pdirticipants were
shown the 65 shapes in the same order on a hand held mobitedswart-phone)
and asked to indicate if they thought the shape was “simplét@mplex”. When
all five people had taken part in the experiment the majoitye for each polygon
was taken. So for each polyggnin the set of polygonP a value of 1 indicated if
pi was deemed “complex” otherwise a value of 0 indicated hatas “simple”. For
the 65 shapes 34 were voted as “complex” while 31 were votédiaple”. In the
next section we use the test set to assist in establishing swethematically based
shape description measures which are used by the “Datag3atdsee Figure 2)
to automatically decide if a given polygon should undergaggification.

4 Mathematical Overview

This section provides an overview of the mathematical aspefcthis project. A
number of shape complexity measures were calculated fdr palygonp; in the
test set. This section will outline each of the complexityasiees. The concept of
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Fig. 3 Results from the test-set of polygons are plotted (ciritylagainst area ratio). Two distinct
clusters of polygons are evident - those with simple and d¢exnghapes

significance of vertices in a polygon is also described. Twtien finished with a
description of nearest neighbour and Bayesian classditafian unknown polygon
based on the shape attributes of the polygons in our tratestglataset.

4.1 Computing shape description measures

Measuring the complexity of polygon shapes using shaperiggisn measures is

a mature area of research in pattern recognition and maefsios [15, 18]. Many
different shape description measures exist and in mositgitns one choses a subset
of these measures to apply to a specific task or problem [1s7fhA set of polygons
in our training set represent real-world geographic olsjéas will our unknown and
as yet unclassified polygons) it is important to focus on shdgscription measures
which exploit the spatial characteristics of the shape1422]. Each polygomp in

the set of polygonP extracted from the OSM XML corresponding to the bounding
box centered at the specified coordinates masrtices labelled 0..(n—1). The
following shape measures are computed for each polygon

The coordintes of the polygon centrdick, cy)

The areag) of the polygon wheré\ = % Z?;&(Xiyi+1 —Xi+1Vi)

Distanced; ; between all adjacent verticéis j) in p.

The permimetePR of the polygon

The CircularityCy is an important shape characteristic. It is calculate@as
‘F‘%Ré. This is a normalised value with rangie .. 1.0]
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e The Convex HuUlCHp is computedCHj is also a polygon which is the minimal
convex set containing the set of pointspnintuitively it is a band which en-
closes the entire polyggm CH, is computed using the Quickhull Algorithm [3]

e The diameter of the convex h@iHp.

e Normalised AredNAor arearatio which is calculated as folloWsA =

This is a normalised value with rang® .. 1.0]

e The turning angle at every vertex) in p. The angle is computed using the
cosine dot product with the incident edgeg and j,k (wherei andk are the
verticesbeforeandafter vertexi in p.

area(CHp)—area(p)
area(CHp) ’

In the next sections some of these shape charactericsléitguarea ratio, and
turning angles (vertex significance)) will be describediieager detail.

4.2 Complexity measurement rules

Based on the shape description measures described in theyseection we com-
puted all of these for each polyggnin the test set. In Figure 4 a “complex” shape
is displayed. The area ratio measure for this shapedig2while the circularity
measure is @92. The area ratio measure is high indicating that the cohudl
has a very large area in comparison to the area of the polygelf iThe circularity
value is almost 0 indicating that the polygon has no circcitearacteristics. Figure 3
shows a plot of area ratix @xis) against circularityy(axis) for every polygorp;

in the test seP. The polygons irP classified as “simple” by the five test partici-
pants are shown with an astericks while polygonP iclassified as “complex” are
shown with a circle. Two clear clusters are evident from thdUsing this pair of
features we classified a set of test polygons using a neaiggthour classification
algorithm. The means of both clusters in Figure 3 are takarisimple” polygons
this is (X°,y?) and for “complex” polygons this i$X",yF). Then for some polygon
k with (area ratio, circularity) valuesy, yx) we use the Euclidean distance formula
to estimate which cluster mean that;, y«) is closest to. On the test sktthis al-
gorithm achieved a classification accuracy of over 90% whielfeel is more than
sufficient for the requirements of this project.

4.3 Establishing if a polygon should undergo simplification

Informally a polygon should undergo simplification if thenreval of a subset of
the polygon’s vertices can be performed without affectimg dverall shape of the
polygon to such an extent that it is unrecognisable to itiginal form. Only in-
significant vertices can be considered for removal duringpification. Latecki et
al. [12] proposed the following metri€ which determines the significance of each
vertex to the overall shape of the polygon in question. Sepgor some vertes
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Fig. 4 A complex shape: Shape no. 18 (area ratio44Q, circularity = 0092, KS= 0.038)

in the polygonp with incident edges os calleds; ands, then theK metric for
significance is given by:

B(s1,9)!(s1)l (s2) 1)
I(s1)+1(s2)
| is the length function normalized with respect to the totahtour length of
the polygon, angB (s1,s,) is the turning angle at the vertex in question. Informally
this metric will determine vertices with a greater turninggke and adjacent edges
of a greater length as being more significant to the contodh®fpolygon. Very
significant vertices are assigned a higBvalue with insignificant vertices assigned
a lowKSvalue. To establish the overall significan€8 of removing vertices from
a given polygorp the following steps are performed:

K(s1,8) =

1. For each polygon vertex with adjacent edgasd j, determine its correspond-
ing significance by evaluating(i, j).

2. CalculateSK which represents the sum Kf over all polygon vertices; that is
SK= S K(i, ).

3. For each polygon vertex calculd€&(i, j) which represents the significance of
that vertex to the overall polygon shapes(i, j) = %

4. The mearKSvalue KSover allKS(i, j) is calculated

Figure 4 illustrates the concept KSwith KS= 0.038 which represents a very low
value. This indicates that overall there are small turningles with short incident

edges at these vertices. Given that there is a large numhertides representing
the polygon some of these vertices could be removed by dingilon.
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4.4 Nearest Neighbour Classification of Polygons

We divided the training set of polygomsinto two separate clusterBS containing
all of the polygons inP classified as “simple” an&° containing all of the poly-
gons inP classified as “complex’ KSis then calculated for every polygon in both
PS and P°. The mearKsS value for the clusteP® is calculated and labelleldS”
while the mearKS value for the clustePS is calculated and labelledS’. After a
number of simulation runs for other sets of polygons it wasmfbthat the decision
to remove vertices (simplify) for a given polyg@nhbased on the nearest-neighbour
calculation betweei S2 (the K S for Q) and the centroids of the clustefs” and
KS® provided a reasonably consistent and robust decision$alé.the polygorQ
contains vertices which could be removed by simplificattamill have aKs? close
to KS>. OtherwiseK S® will be close toKS”.

4.5 Bayesian Classification of Polygons

Rather than use Nearest Neighbour classification alone weedd@o implement an-
other computationally feasible approach to classifyingnifunknown polygon was
“simple” or “complex”. We decided to exploit the genericnueiple of the so-called
supervised Naive Bayesian classifier. Bayes’ Theorem implsimathematical for-
mula used for calculating conditional probabilities. Sogg we have an unknown
polygonPuabout which we can calculate all of the properties descibegction 4
includingKSfor Pu. Then Bayes’ Theorem can estimate the probability Ehais

a “simple” or “complex” polygon. To use Bayes’ Theorem as asslfication tool
a Gaussian Probability Density Function is implementeé quation 2 below).
Equation 2 uses the Guassian mean and variance of the infagetias the ini-
tial set of parameters for the estimator. We build a sepastimator for “simple”
and “complex” polygon based on theS values of each polygon in the two clusters
above. Gaussians are not the only PDF to be applied to thesBzgssifier although
they have very strong theoretical support and nice stedigtroperties. Suppose that
kspy is the vertex significance measure of the unknown poly@garThen given the
a-priori knowledge of the clusters of “simple” and “complex” polygome can very
quickly computef (kspy) to compute the probability dPu being “simple” fs(kspy)

or “complex” fo(kspy). Puis classified based anax fs(kspy), fe(kspu)).

v 11\2
(0 = ——ex =) @




Geospatial data simplification for LBS 11

Fig. 5 A polygon, with 411 nodes, from the Denmark dataset - cla&ss#is “complex” with very
smallKSvalue. The simplified result is shown at the left of the imagia w7 nodes.

5 Experimental Results

Three datasets were chosen: the first includes polygons Bemmark Open-
StreetMap, and the second includes polygons from IcelarehSpeetMap, and
the final dataset is made up of polygons from Ireland Oper8itep. The Den-
mark dataset is similiar to the training set of polygons floefand: mostly foresty,
woodland, lakes, and residential. The Iceland datasefferelnt to the training set
as it includes polygons representing features such asegsaand islands. The dif-
ference in the characteristics of the two case-study datasikallow us to evaluate
if the approach described above provides consistent sefarltdifferent types of
polygon features. The Ireland dataset contains polygonshadre similiar to the
training set but are drawn from geographically differergea. The polygon on the
left of Figure 5 shows shape 16 from the Denmark dataset whiashclassified as
“complex” by the test both of our classifiers above but wasded as a candidate
for simplification. The OpenStreetMap XML correspondingtie polygon (shape
16) and adjacent features is passed directly to the gesatial/simplication com-
ponent of this project. After generalisation shape 18 isleead as in the right side
of Figure 5. The total number of vertices (or nodes) requicecpresent the poly-
gon in Figure 5 is 411. After generalisation and simplifieatthe total number of
vertices required for representing the same feature inr€igis 47 which represents
almost a 90% reduction in the number of vertices requiredsigalise the features.
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Table 1 Results of classification and suggestions for simplificatiblceland OSM polygons

Datase{Classifier| Polygon|Suggestion |No. Polygons
Iceland (NN ComplexDont Simplify, 5
Iceland |Bayesian|ComplexDont Simpify 4
Iceland NN Complex Simplify 13
Iceland|Bayesian|ComplexSimplify 14
Iceland NN Simple |Dont Simplify| 10
Iceland|Bayesian| Simple |Dont Simpify 9
Iceland NN Simple |Simplify 22
Iceland|Bayesian| Simple |Simplify 23

Table 2 Results of classification and suggestions for simplificatbDenmark OSM polygons

Dataset |Classifier| Polygon|Suggestion |No. Polygon
DenmarfNN ComplexDont Simplify| 4
DenmarkBayesian|ComplexDont Simpify 4
DenmarkNN Complex Simplify 26
DenmarkBayesian|ComplexXSimplify 26
DenmarkNN Simple |Dont Simplify, 5
DenmarkBayesian| Simple |Dont Simpify 4
DenmarkNN Simple |Simplify 35
DenmarkBayesian| Simple |Simplify 36

Table 3 Results of classification and suggestions for simplificatblreland OSM polygons

Datase{ Classifier| Polygon|Suggestion |No. Polygons
Ireland [NN ComplexDont Simplify] 7
Ireland [Bayesian|ComplexDont Simpify 7
Ireland (NN Complex Simplify 31
Ireland [Bayesian|Complex Simplify 31
Ireland (NN Simple |Dont Simplify| 14
Ireland [Bayesian| Simple |Dont Simpify 13
Ireland (NN Simple |Simplify 12
Ireland [Bayesian| Simple |Simplify 13

The results of applying both the Nearest Neighbour (NN) aaygd3ian Classi-
fier to the Iceland OSM polygons are shown in Table 1. The iflassonly differ
on onesimpleand onecomplex In the results for the Denmark OSM polygons in
Table 2 both classifiers are in full agreement for tbenplexpolygons but disagree
on two simplepolygons. Finally, for the Ireland OSM polygons (Table 3t is
only one disagreement oversamplepolygon. Figure 6 shows the polygon in Ire-
land where NN (Don't Simplify) and Bayesian Classifier (Slify) disagreed over
the suggestion to simplify. We feel that the Bayesian cliesss correct due to the
concentration of vertices in the lower left corner of theygan. Many of these ver-
tices have very lovikK Svalue meaning they can be removed without compromising
the overall shape of the polygon. In Table 4 the results oftihee test datasets are
summarised. One of the key findings in this table is that tiseme strict relationship
between the complexity (either simple or complex) of a polyand the potential
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Fig. 6 An example from the Ireland dataset where Nearest NeighhodrBayesian Classifier
disagreed over the suggestion to simplify the polygon. Tdlggon has OSM-ID 22728087

Table 4 The summary of classification results from the three OSM gty datasets listed in
Table 1, Table 2, and Table 3
Polygon|Suggestion [No. PolygorOverall
ComplexDont Simplify 16 9%

ComplexSimplify 60 34%
Simple |Don’t Simplify 28 16%
Simple |Simplify 70 40%

for that polygon to undergo simplification. However over 70%60SM polygons
in the test datasets are candidates to undergo simplificatighey are classified as
being over-represented (having &6 values).

6 Conclusions and Future Work

The results of this work, which is at a very early stage, amising. Using three
difference test datasets containing OSM polygons we havedstrated an efficient
means of inspecting OSM polygons based on their shape cgityded spatial rep-
resentation. The results of this inspection is used to @dti given OSM polygon
should undergo simplification before being delivered to diealevice for display
or further processing. As the results in Table 4 indicateera®0% of the poly-
gons in the test set were recommended for simplifications Tauld indicated that
these polygons are over-represented and the number ofegrtised to represent
the polygon could be reduced. We believe that the resulthisfwtork will prove
particularly useful in two ways. Firstly for LBS looking teetiver GIS data formats
such as KML, GML, and ESRI Shapefile to mobile devices thigaagh can assist
in greatly reducing the quantity of spatial data which mustdelivered to repre-
sent a given set of polygon features [24] without the needdoedarge volumes
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of data on a server. Secondly this work could contribute td&&fforts to perform
“on-the-fly” real-time generation of map tiles from OperegttMap databases. Cur-
rently map tile generation from OpenStreetMap databasderig offline as there
are considerable overheads associated with this processhér advantage of the
software described here is that OSM XML data is downloade@afttime. There
is no requirement to have the OpenStreetMap data for anicplat country or re-
gion stored in a PostGIS database on the web server. One eaifyspeographic
coordinates for any location and provided OpenStreetMagchaerage at the loca-
tion our software downloads the OSM XML in real-time and Imsgdrocessing the
data. OpenStreetMap has provided a very useful test daBageds stated earlier the
“Data Extractor” component can be extended to import andess other popular
GIS data formats (GML, Shapefile, etc).

6.1 Issues for Future Work

There are a number of issues which are of immediate intesegither work on this
project. Firstly, the training set described in Section &nell. While it is sufficient
for the requirement of establishing proof-of-concept wed® create a larger, more
extensive, training set which contains a larger distrimutif polygon types and fea-
ture representations. This will facilitate the developieha more robust set of
shape complexity classification criteria and a better ithstion of polygons which
are: suitable represented, over-represented, and uegersented (not enough data
points). As other authors have stated [6] it is extremelyangmt to obtain good
ground-truth datasets for the testing of metrics for shapeasentation. Following
this another issue for further work is quantifying the ety of this approach to
operate in areal-time LBS environment. The accepted wastéoing and accessing
OpenStreetMap data is by using the PostgreSQL databas¢éheifPostGIS exten-
sion enabled. This provides relational database storagdl of the geographical
features (points, lines, polygons) for a particular gepgraarea covered by Open-
StreetMap. PostGIS provides a powerful set of GIS functignfor working with
these points, lines, polygons. The work described in thepaurposely avoided
the use of PostGIS and performed all computation of shapelexity measures
and associated calculations in real-time by downloadingr@reetMap data in
XML format and perform subsequent processing in Java. Aerésting task for fu-
ture work will be the comparison of performance of the sofevdescribed in this
paper (processing OSM XML on the fly) against adapting outnsok to access a
PostGIS database containing OpenStreetMap data. We itdgnublish the results
of this work in a follow-on paper. Finally, the measures diesal in this paper for
shape description and shape representation are primekéy from established and
well known techniques in the fields of computer vision, patteatching, and shape
modelling. The delivery of simplified spatial content in floem of vector data for
LBS is a special use-case for generalisation. This spedial @will be visualised on
a very small screen under differing lighting conditionsisTtopic will involve the
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investigation of the potential to describ®S specifishape description and shape
representation measures which should be evaluated tatedf@ set of geographic
features (points, lines, polygons) should undergo geisatadn and simplication
before being delivered to a device accessing the LBS. Whéeesults in Table 4
do not reveal a strong correlation between the complexgyr(ple” or "complex”)

of polygons and the need to simplify them their complexitylddoe useful in con-
sidering optimal approaches to displaying polygon shapesaps on small devices
accessing LBS.
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