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Abstract A
Java-based tool for determining if polygons require simplification before delivery

to a mobile device using a Location-based Service (LBS) is described. Visualisation
of vector-based spatial data on mobile devices is constrained by: small screen size;
small data storage on the device; and potentially poor bandwidth connectivity. Our
Java-based tool can download OpenStreetMap (OSM) XML data in real-time and
calculate a number of shape complexity measures for each object in the data. From
these measures an overall complexity score is calculated. If this complexity score
is above a pre-defined threshold, specific to LBS, then the data is passed to a re-
lated software component which generalises (simplifies) the data. Our experimental
results with actual OSM data confirm our expectations that some OSM polygon
features can undergo simplification before delivery to an LBS with a significant re-
duction in the amount of data exchanged. The tool is completely web-based and runs
free and open source software; all XML data processing is performed “on-the-fly”
and the tool can be used for OpenStreetMap data anywhere in the world. This tool
can become part of a very useful and efficient pre-processingstep in the delivery of
OSM data to mobile devices accessing LBS.

1 Introduction

Access to geographical data and spatial information (referred to from here as
geospatial data) is a crucial aspect of Location-based Services (LBS). LBS have
a very wide range of application domains [16] but as [10] comments, irrespective of
the range of application domains, user interfaces, etc “allLBS will continue to re-
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quire spatial data to link position information with other data sources and services”.
If an LBS cannot access good quality geospatial data it is unlikely that it will succeed
in meeting user requirements and expectations. The downloading of large ”chunks”
of geospatial data to mobile devices is prohibitive due to limited storage space on
the device, lack of GIS-capable software on the device, and potentially poor wire-
less network bandwidth and speed [11]. When a mobile device accesses a LBS an
inherent tradeoff immediately exists between transmitting as much geospatial data
as necessary to satisfy the user request/query against the restrictions of network
latency, limited storage on the mobile device, and the user expectation of aquick
responsefor their query.

1.1 Overview of this paper

In this paper we describe one component of a larger geospatial data simplication
software framework which is specifically aimed at delivery of geospatial data to mo-
bile devices accessing LBS. The OpenStreetMap database is used as a case study.
The geospatial data stored within the OpenStreetMap database is available at the
highest resolution possible including all spatial attributes for all of the geographical
features [5]. However, for the purposes of most LBS types -POI queries, where
am I queries?, display of specific features nearby, a simplified version of the geo-
graphic features stored in the OpenStreetMap database for that location is sufficient.
We describe a software component which can take as input a setof geographic fea-
tures from OpenStreetMap and decide if this dataset requires simplication before
it is delivered to a mobile device. The software component described in this pa-
per computes a number of shape complexity [20] and shape description measures.
Based on the quantitative output from these measures afinal complexity score is
calculated for the dataset. If this complexity score exceeds a pre-determined thresh-
old this dataset is sent directly to a connected software component which performs
the simplication. Otherwise the dataset in question is marked as “LBS-ready” and
is suitable for transmission and subsequent display on the mobile device. This pro-
cess is illustrated in the flowchart in Figure 1. The input vector data is currently
imported in OpenStreetMap XML format. However this could beeasily extended
to other geospatial data formats such as ESRI Shapefiles or directly from geospatial
databases such as PostgreSQL by writing Java code to processinput data in these
forms. The GeoTools library for Java can read ESRI Shapefilesand there is very
good Java library support for PostgreSQL.

OpenStreetMap (OSM) was chosen as the geospatial data source for this project
for a number of reasons. While the problems of generalisation and simplification of
vector data are inherent in any geospatial vector-based dataset the reasons for our
choice of OSM included:

• OSM is becoming a popular choice in LBS services and applications [8, 9].
Some authors argue that OSM is a “comprehensive dataset and vocabulary en-
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abling the disambiguation and alignment of other data and information” which
can also be “transformed and represented in other formats”.

• OSM is created by organised groups of volunteers. Real worldphenonema are
represented by points, lines, and polygons in the OSM database. The geospatial
data collected is taken from GPS traces, bulk vector data upload to OSM, tracing
over aerial imagery (Yahoo!) using Web-map-services (WMS)within various
OSM, and digitisation of out-of-copyright maps and other paper map sources.
Some lines and polygons are over-represented (too many vertices) while others
are under-represented (too few vertices given the complexity of the real-world
feature the polygon represents. For over-represented polygons we feel that sim-
plification can take place before this data is sent to a mobiledevice accessing
an LBS.

1.2 Contributions of this paper

Overall we feel that this approach can assist in improving spatial query response
times for LBS by presenting a simplified version of the geospatial data [19]. The
growth of web and wireless gis presents a new set of challenges for map generali-
sation and simplification techniques because users of web and wireless GIS require
information which is: quickly delivered, quickly downloaded, and relevant to the
specific task in hand [23]. OpenStreetMap stores spatial data at a 1:1 scale in the
OSM database and then other software and GIS extract data anddisplay at different
scales. The data layers describe the same geographic area but with varied resolu-
tion [2]. Reducing the data volume as much as possible is an important requirement
for multi-scale representation of spatial data [2]. Spatial data most usually undergo
some form of generalisation and simplification. In one study[1] the authors show
generalised route maps based on a detailed study of the typesof distortions humans
make of route maps in handdrawn maps. Another key reason for simplification and
generalisation is customisation. Users like to be able to easily build their own maps
according to their own preferences and their own GPS-based location [7]. This re-
search work is part of a larger project which is examining advanced techniques for
generalisation of geospatial data. This work appears at a very appropriate time in
the development of LBS when the visual respresentations (maps) of geospatial data
are becoming increasingly complex while the need to improvethe general usability
of interactive maps on mobile devices [13] has never been greater. The remainder
of the paper is organised as follows. Section 2 describes theJava software devel-
oped to guide simplification of geospatial data for use in LBS. Each component
of the Java software is described. In section 5 the details ofhow a training set of
polygons from OpenStreetMap was selected and the subsequent classification of
these polygons by five participants. Section 4 provides a mathematical overview of
the measures/metrics computed to establish complexity classification rules for the
polygons and the conditions under which a polygon becomes a candidate for sim-
plification. Some experimental results are presented in section 5. The paper closes
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Fig. 1 A flowchart describing the decision making and data flow in oursoftware

Fig. 2 A schema of the Java software components used to: process thevector data from Figure 1,
calculate complexity measures, and transport data to othersoftware components (ie simplification)

with section 6 where we briefly summarise the key points in thepaper followed by
a discussion of some immediate issues for further work.
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2 Description of Java Software Components

In this section we give an overview of the Java software developed to support the
processing steps in Figure 1. As illustrated in Figure 1 spatial data in vector format
is used as input. Figure 2 shows a schematic of the componentsof the Java software.
There are four components - the user interface, the data extractor, the data processor,
and finally the data transporter. Each of these components will now be discussed.
The user interface is designed for both inputting the data and displaying the data
processing results. Input vector data can be provided in three ways:

1. Users can specify a location by clicking on the OpenStreetMap map displayed.
The map is displayed using OpenLayers and the Cloudmade API.A combi-
nation of the OpenLayers Javascript library and CloudeMadeAPI extract the
(latitude, longitude) coordinates of the clicked point

2. Users can type the (latitude, longitude) coordinates into simple text-boxes on
the user interface avoiding the need to click on the map.

3. If a large number of locations require checking then the user interface provides
functionality for input of a list of (latitude, longitude) coordinates in a CSV text
file. This is particularly useful for testing purposes.

Immediately upon input of the (latitude, longitude) coordinates processing of the
polygons begins. Direct Web Remoting (DWR) is a Java librarythat enables Java
on the server and JavaScript in a browser to interact and calleach other as sim-
ply as possible. When polygon processing has completed AJAXtechnologies, en-
abled by DWR, are used to display results immediately in a dynamically created
HTML table. The “Data Extractor” component of the software is responsible for
downloading the raw OpenStreetMap XML data corresponding to the latitude, lon-
gitude) coordinates provided. OpenStreetMap provides an API for this purpose. We
assume that for LBS applications a bounding box, centered onthe (latitude, lon-
gitude) coordinates, with area of approximately 2km2 is sufficient. All polygon
features inside this bounding box are processed. Requests for the OpenStreetMap
XML data for this bounding box are issued as a GET HTTP requestto http://
www.openstreetmap.org/api/0.6/map?bbox=L,B,R,T where L and
R are the western and easter sides (longitudes) of the bounding box while B and
T are the southern and northern sides (latitudes) of the bounding box. When the
OSM XML has downloaded the “Data Extractor” traverses all ofthe XML nodes
to automatically extract the necessary polygon. Java XMLBeans technology is used
for accessing XML in Java-friendly way by binding the XML to Java types. OSM
XML is presented in WGS84 (Latitude Longitude) so it is necessary for accurate
area and distance calculations that the data be transformedto a meter-based coor-
dinate system. For this the UTM (Universal Transverse Mercator) is used. The key
function of the “Data Transporter” is to move OSM XML data between this soft-
ware and the connected generalisation/simplification software developed inanother
part of the project. The work of the “Data Processor” is to establish whether the
polygons extracted are “simple” or “complex” and if these polygons must undergo
simplification. The “Data Processor” will be discussed in greater detail in section 4.
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3 Experimental Setup

In order to establish complexity measures for the OpenStreetMap polygons we
needed to establish a test set of ground-truth polygons wereestablished and how
polygons are described as either “complex” or “simple”.

3.1 Establishing a ground-truth training set of polygons

A ground-truth training set is required to establish rules on how to automatically
distinguish shapes based on the characteristic of being “simple” or “complex”. The
human eye can determine a shape to be either “simple” (i.e. a circle, a triangle, a
rectangle) or “complex” (a multi vertex polygon) very quickly. Human visual per-
ception can identify complex polygons very quickly when presented with a carto-
graphic representation of the polygons [4, 6]. A training set was established by se-
lecting 65 individual polygons from OpenStreetMap. The polygons are taken from
OpenStreetMap for Ireland and Wales. This set contains a good overall distribution
of different types of polygons representing different natural phenonemum. The fi-
nal set of polygonsP was chosen a larger set of polygonsQ. The setQ comprises
of all polygons in Ireland and Wales satisfying two criteria: For a polygon to be a
member of setQ it must represent a water feature (lakes, ponds, resevoirs), a natural
feature (forests, parks, open space, green areas), or a mixture of these two features
(reclaimed land, quarries, etc) and it must have an area of greater than 0.5km2. Five
people were chosen as test subject participants who were required to indicate their
visual evaluation of the shape. The five people chosen for this task comprised of:
two of which were two of the authors, another person who is an expert in GIS map-
ping, and finally two people with no GIS or IT backgrounds. Allparticipants were
shown the 65 shapes in the same order on a hand held mobile device (smart-phone)
and asked to indicate if they thought the shape was “simple” or “complex”. When
all five people had taken part in the experiment the majority vote for each polygon
was taken. So for each polygonpi in the set of polygonsP a value of 1 indicated if
pi was deemed “complex” otherwise a value of 0 indicated thatpi was “simple”. For
the 65 shapes 34 were voted as “complex” while 31 were voted as“simple”. In the
next section we use the test set to assist in establishing some mathematically based
shape description measures which are used by the “Data Processor” (see Figure 2)
to automatically decide if a given polygon should undergo simplification.

4 Mathematical Overview

This section provides an overview of the mathematical aspects of this project. A
number of shape complexity measures were calculated for each polygonpi in the
test set. This section will outline each of the complexity measures. The concept of
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Fig. 3 Results from the test-set of polygons are plotted (circularity against area ratio). Two distinct
clusters of polygons are evident - those with simple and complex shapes

significance of vertices in a polygon is also described. The section finished with a
description of nearest neighbour and Bayesian classification of an unknown polygon
based on the shape attributes of the polygons in our trainingtest dataset.

4.1 Computing shape description measures

Measuring the complexity of polygon shapes using shape description measures is
a mature area of research in pattern recognition and machinevision [15, 18]. Many
different shape description measures exist and in most situations one choses a subset
of these measures to apply to a specific task or problem [17]. As the set of polygons
in our training set represent real-world geographic objects (as will our unknown and
as yet unclassified polygons) it is important to focus on shape description measures
which exploit the spatial characteristics of the shape [14,21,22]. Each polygonp in
the set of polygonsP extracted from the OSM XML corresponding to the bounding
box centered at the specified coordinates hasn vertices labelled 0. . .(n− 1). The
following shape measures are computed for each polygonp:

• The coordintes of the polygon centroid(cx,cy)

• The area (A) of the polygon whereA = 1
2 ∑n−1

i=0 (xiyi+1−xi+1yi)
• Distancedi, j between all adjacent vertices(i, j) in pi .
• The permimeterPRof the polygon
• The CircularityCp is an important shape characteristic. It is calculated asCp =

4πA
PR2 . This is a normalised value with range[0. . .1.0]
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• The Convex HullCHp is computed.CHp is also a polygon which is the minimal
convex set containing the set of points inp. Intuitively it is a band which en-
closes the entire polygonp.CHp is computed using the Quickhull Algorithm [3]

• The diameter of the convex hullCHp.

• Normalised AreaNAor area ratio which is calculated as follows:NA=
area(CHp)−area(p)

area(CHp) .

This is a normalised value with range[0. . .1.0]
• The turning angle at every vertex( j) in p. The angle is computed using the

cosine dot product with the incident edgesi, j and j,k (wherei andk are the
verticesbeforeandafter vertexi in p.

In the next sections some of these shape characterics (circularity, area ratio, and
turning angles (vertex significance)) will be described in greater detail.

4.2 Complexity measurement rules

Based on the shape description measures described in the previous section we com-
puted all of these for each polygonpi in the test set. In Figure 4 a “complex” shape
is displayed. The area ratio measure for this shape is 0.442 while the circularity
measure is 0.092. The area ratio measure is high indicating that the convex hull
has a very large area in comparison to the area of the polygon itself. The circularity
value is almost 0 indicating that the polygon has no circularcharacteristics. Figure 3
shows a plot of area ratio (x axis) against circularity (y axis) for every polygonpi

in the test setP. The polygons inP classified as “simple” by the five test partici-
pants are shown with an astericks while polygons inP classified as “complex” are
shown with a circle. Two clear clusters are evident from the data. Using this pair of
features we classified a set of test polygons using a nearest neighbour classification
algorithm. The means of both clusters in Figure 3 are taken: for “simple” polygons
this is (x̄s

i , ȳ
s
i ) and for “complex” polygons this is(x̄c

i , ȳ
c
i ). Then for some polygon

k with (area ratio, circularity) values(xk,yk) we use the Euclidean distance formula
to estimate which cluster mean that(xk,yk) is closest to. On the test setP this al-
gorithm achieved a classification accuracy of over 90% whichwe feel is more than
sufficient for the requirements of this project.

4.3 Establishing if a polygon should undergo simplification

Informally a polygon should undergo simplification if the removal of a subset of
the polygon’s vertices can be performed without affecting the overall shape of the
polygon to such an extent that it is unrecognisable to it’s original form. Only in-
significant vertices can be considered for removal during simplification. Latecki et
al. [12] proposed the following metricK which determines the significance of each
vertex to the overall shape of the polygon in question. Suppose for some vertexs
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Fig. 4 A complex shape: Shape no. 18 (area ratio = 0.442, circularity = 0.092,K̄S= 0.038)

in the polygonp with incident edges ons calleds1 ands2 then theK metric for
significance is given by:

K (s1,s2) =
β (s1,s2) l (s1) l (s2)

l (s1)+ l (s2)
(1)

l is the length function normalized with respect to the total contour length of
the polygon, andβ (s1,s2) is the turning angle at the vertex in question. Informally
this metric will determine vertices with a greater turning angle and adjacent edges
of a greater length as being more significant to the contour ofthe polygon. Very
significant vertices are assigned a highKSvalue with insignificant vertices assigned
a low KSvalue. To establish the overall significanceKSof removing vertices from
a given polygonp the following steps are performed:

1. For each polygon vertex with adjacent edgesi and j, determine its correspond-
ing significance by evaluatingK(i, j).

2. CalculateSK which represents the sum ofK over all polygon vertices; that is
SK= ∑K(i, j).

3. For each polygon vertex calculateKS(i, j) which represents the significance of

that vertex to the overall polygon shape:KS(i, j) = K(i, j)
SK

4. The meanKSvalue (K̄Sover allKS(i, j) is calculated

Figure 4 illustrates the concept of̄KSwith K̄S= 0.038 which represents a very low
value. This indicates that overall there are small turning angles with short incident
edges at these vertices. Given that there is a large number ofvertices representing
the polygon some of these vertices could be removed by simplification.
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4.4 Nearest Neighbour Classification of Polygons

We divided the training set of polygonsP into two separate clusters:PS containing
all of the polygons inP classified as “simple” andPC containing all of the poly-
gons inP classified as “complex”.K̄S is then calculated for every polygon in both
PS andPC. The meanK̄S value for the clusterPC is calculated and labelled̄KSC

while the meanK̄S value for the clusterPS is calculated and labelled̄KSS. After a
number of simulation runs for other sets of polygons it was found that the decision
to remove vertices (simplify) for a given polygonQ based on the nearest-neighbour
calculation betweenK̄SQ (the K̄S for Q) and the centroids of the clusters̄KSC and
K̄SS provided a reasonably consistent and robust decision rule.So if the polygonQ
contains vertices which could be removed by simplification it will have aK̄SQ close
to K̄SS. OtherwiseK̄SQ will be close toK̄SC.

4.5 Bayesian Classification of Polygons

Rather than use Nearest Neighbour classification alone we wanted to implement an-
other computationally feasible approach to classifying ifan unknown polygon was
“simple” or “complex”. We decided to exploit the generic principle of the so-called
supervised Naive Bayesian classifier. Bayes’ Theorem is a simple mathematical for-
mula used for calculating conditional probabilities. Suppose we have an unknown
polygonPuabout which we can calculate all of the properties descibed in section 4
includingK̄S for Pu. Then Bayes’ Theorem can estimate the probability thatPu is
a “simple” or “complex” polygon. To use Bayes’ Theorem as a classification tool
a Gaussian Probability Density Function is implemented (see Equation 2 below).
Equation 2 uses the Guassian mean and variance of the input dataset as the ini-
tial set of parameters for the estimator. We build a separateestimator for “simple”
and “complex” polygon based on thēKSvalues of each polygon in the two clusters
above. Gaussians are not the only PDF to be applied to the Bayes Classifier although
they have very strong theoretical support and nice statistical properties. Suppose that
ksPu is the vertex significance measure of the unknown polygonPu. Then given the
a-priori knowledge of the clusters of “simple” and “complex” polygons we can very
quickly computef (ksPu) to compute the probability ofPu being “simple” fs(ksPu)
or “complex” fc(ksPu). Pu is classified based onmax( fs(ksPu), fc(ksPu)).

f (x) =
1

σ
√

2Π
exp(

(−x− µ)2

2σ
) (2)
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Fig. 5 A polygon, with 411 nodes, from the Denmark dataset - classified as “complex” with very
smallK̄Svalue. The simplified result is shown at the left of the image with 47 nodes.

5 Experimental Results

Three datasets were chosen: the first includes polygons fromDenmark Open-
StreetMap, and the second includes polygons from Iceland OpenStreetMap, and
the final dataset is made up of polygons from Ireland OpenStreetMap. The Den-
mark dataset is similiar to the training set of polygons fromIreland: mostly foresty,
woodland, lakes, and residential. The Iceland dataset is different to the training set
as it includes polygons representing features such as glaciers and islands. The dif-
ference in the characteristics of the two case-study datasets will allow us to evaluate
if the approach described above provides consistent results for different types of
polygon features. The Ireland dataset contains polygons which are similiar to the
training set but are drawn from geographically different areas. The polygon on the
left of Figure 5 shows shape 16 from the Denmark dataset whichwas classified as
“complex” by the test both of our classifiers above but was selected as a candidate
for simplification. The OpenStreetMap XML corresponding tothe polygon (shape
16) and adjacent features is passed directly to the generalisation/simplication com-
ponent of this project. After generalisation shape 18 is rendered as in the right side
of Figure 5. The total number of vertices (or nodes) requiredto represent the poly-
gon in Figure 5 is 411. After generalisation and simplification the total number of
vertices required for representing the same feature in Figure 5 is 47 which represents
almost a 90% reduction in the number of vertices required to visualise the features.
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Table 1 Results of classification and suggestions for simplification of Iceland OSM polygons

Dataset Classifier Polygon Suggestion No. Polygons
Iceland NN ComplexDont Simplify 5
Iceland Bayesian ComplexDont Simpify 4
Iceland NN ComplexSimplify 13
Iceland Bayesian ComplexSimplify 14
Iceland NN Simple Dont Simplify 10
Iceland Bayesian Simple Dont Simpify 9
Iceland NN Simple Simplify 22
Iceland Bayesian Simple Simplify 23

Table 2 Results of classification and suggestions for simplification of Denmark OSM polygons

Dataset Classifier Polygon Suggestion No. Polygons
DenmarkNN ComplexDont Simplify 4
DenmarkBayesian ComplexDont Simpify 4
DenmarkNN ComplexSimplify 26
DenmarkBayesian ComplexSimplify 26
DenmarkNN Simple Dont Simplify 5
DenmarkBayesian Simple Dont Simpify 4
DenmarkNN Simple Simplify 35
DenmarkBayesian Simple Simplify 36

Table 3 Results of classification and suggestions for simplification of Ireland OSM polygons

Dataset Classifier Polygon Suggestion No. Polygons
Ireland NN ComplexDont Simplify 7
Ireland Bayesian ComplexDont Simpify 7
Ireland NN ComplexSimplify 31
Ireland Bayesian ComplexSimplify 31
Ireland NN Simple Dont Simplify 14
Ireland Bayesian Simple Dont Simpify 13
Ireland NN Simple Simplify 12
Ireland Bayesian Simple Simplify 13

The results of applying both the Nearest Neighbour (NN) and Bayesian Classi-
fier to the Iceland OSM polygons are shown in Table 1. The classifiers only differ
on onesimpleand onecomplex. In the results for the Denmark OSM polygons in
Table 2 both classifiers are in full agreement for thecomplexpolygons but disagree
on two simplepolygons. Finally, for the Ireland OSM polygons (Table 3) there is
only one disagreement over asimplepolygon. Figure 6 shows the polygon in Ire-
land where NN (Don’t Simplify) and Bayesian Classifier (Simplify) disagreed over
the suggestion to simplify. We feel that the Bayesian classifier is correct due to the
concentration of vertices in the lower left corner of the polygon. Many of these ver-
tices have very lowKSvalue meaning they can be removed without compromising
the overall shape of the polygon. In Table 4 the results of thethree test datasets are
summarised. One of the key findings in this table is that thereis no strict relationship
between the complexity (either simple or complex) of a polygon and the potential
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Fig. 6 An example from the Ireland dataset where Nearest Neighbourand Bayesian Classifier
disagreed over the suggestion to simplify the polygon. The polygon has OSM-ID 22728087

Table 4 The summary of classification results from the three OSM polygon datasets listed in
Table 1, Table 2, and Table 3

Polygon Suggestion No. PolygonOverall
ComplexDont Simplify 16 9%
ComplexSimplify 60 34%
Simple Don’t Simplify 28 16%
Simple Simplify 70 40%

for that polygon to undergo simplification. However over 70%of OSM polygons
in the test datasets are candidates to undergo simplification as they are classified as
being over-represented (having low̄KSvalues).

6 Conclusions and Future Work

The results of this work, which is at a very early stage, are promising. Using three
difference test datasets containing OSM polygons we have demonstrated an efficient
means of inspecting OSM polygons based on their shape complexity and spatial rep-
resentation. The results of this inspection is used to decide if a given OSM polygon
should undergo simplification before being delivered to a mobile device for display
or further processing. As the results in Table 4 indicated over 70% of the poly-
gons in the test set were recommended for simplification. This could indicated that
these polygons are over-represented and the number of vertices used to represent
the polygon could be reduced. We believe that the results of this work will prove
particularly useful in two ways. Firstly for LBS looking to deliver GIS data formats
such as KML, GML, and ESRI Shapefile to mobile devices this approach can assist
in greatly reducing the quantity of spatial data which must be delivered to repre-
sent a given set of polygon features [24] without the need to store large volumes
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of data on a server. Secondly this work could contribute towards efforts to perform
“on-the-fly” real-time generation of map tiles from OpenStreetMap databases. Cur-
rently map tile generation from OpenStreetMap databases isdone offline as there
are considerable overheads associated with this process. Another advantage of the
software described here is that OSM XML data is downloaded inreal-time. There
is no requirement to have the OpenStreetMap data for any particular country or re-
gion stored in a PostGIS database on the web server. One can specify geographic
coordinates for any location and provided OpenStreetMap has coverage at the loca-
tion our software downloads the OSM XML in real-time and begins processing the
data. OpenStreetMap has provided a very useful test dataset. But as stated earlier the
“Data Extractor” component can be extended to import and process other popular
GIS data formats (GML, Shapefile, etc).

6.1 Issues for Future Work

There are a number of issues which are of immediate interest for futher work on this
project. Firstly, the training set described in Section 5 issmall. While it is sufficient
for the requirement of establishing proof-of-conceptwe need to create a larger, more
extensive, training set which contains a larger distribution of polygon types and fea-
ture representations. This will facilitate the development of a more robust set of
shape complexity classification criteria and a better distribution of polygons which
are: suitable represented, over-represented, and under-represented (not enough data
points). As other authors have stated [6] it is extremely important to obtain good
ground-truth datasets for the testing of metrics for shape representation. Following
this another issue for further work is quantifying the efficiency of this approach to
operate in a real-time LBS environment. The accepted way forstoring and accessing
OpenStreetMap data is by using the PostgreSQL database withthe PostGIS exten-
sion enabled. This provides relational database storage ofall of the geographical
features (points, lines, polygons) for a particular geographic area covered by Open-
StreetMap. PostGIS provides a powerful set of GIS functionality for working with
these points, lines, polygons. The work described in this paper purposely avoided
the use of PostGIS and performed all computation of shape complexity measures
and associated calculations in real-time by downloading OpenStreetMap data in
XML format and perform subsequent processing in Java. An interesting task for fu-
ture work will be the comparison of performance of the software described in this
paper (processing OSM XML on the fly) against adapting our software to access a
PostGIS database containing OpenStreetMap data. We intendto publish the results
of this work in a follow-on paper. Finally, the measures described in this paper for
shape description and shape representation are primarily taken from established and
well known techniques in the fields of computer vision, pattern matching, and shape
modelling. The delivery of simplified spatial content in theform of vector data for
LBS is a special use-case for generalisation. This spatial data will be visualised on
a very small screen under differing lighting conditions. This topic will involve the
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investigation of the potential to describeLBS specificshape description and shape
representation measures which should be evaluated to indicate if a set of geographic
features (points, lines, polygons) should undergo generalisation and simplication
before being delivered to a device accessing the LBS. While the results in Table 4
do not reveal a strong correlation between the complexity (“simple” or ”complex”)
of polygons and the need to simplify them their complexity could be useful in con-
sidering optimal approaches to displaying polygon shapes on maps on small devices
accessing LBS.
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