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Abstract

This paper generalizes the results of Siegel (2009) to support contestants who
are faced with constraints. It also relaxes the continuity assumptions for some
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B O D Y

1. Introduction

Often agents  make irreversible  investments  in  order  to  win a  contest  with  a  valuable  prize.  For

instance in job tournaments, in R&D races, in lobbying activities and in political contests the win-

ner  takes  the  prize  but  both  the  winners’  and  the  loosers’  costs  are  sunk.  Siegel  (2009)  provides

closed  form  formulae  for  the  players  expected  payoffs  in  these  environments  with  multi-prize

complete  information  all-pay  auctions  under  some generic  conditions.  In  this  paper  we  generalize

Siegel (2009) to include contests with constraints.

Constraints in all-pay auctions may be induced externally or they may arise naturally. In political

contests,  Meirowitz  (2008)   analyzes  the  repercussions  of  a  campaign  spending  limit  on  incum-

bency  advantage.  Che and  Gale  (1998),  Kaplan  and  Wettstein(2008),   Pastine  and  Pastine  (2010),

Matjka,  Onderstal  and  De  Waegenaere  (2002)  study  the  effect  of  political  contribution  caps  in  a

lobbying  game.  Caps are also common place in  US professional  sports  leagues  (NBA,NFL, NHL,

MLS)  where  teams  are  constrained  with  annual  salary  caps.  In  Formula  1,  cars  are  restricted  to  a

speed limit of 360km per hour (reference?).  In international trade, a potential introduction of capital

tax harmonisation in Europe would cap the minimum tax each EU country can impose. Other than

institutionally imposed limits, contestants may also naturally face budget or liquidity constraints as

in  Che  and  Gale  (1996),  Gavious,  Moldovanu  and  Sela  (2002),  Sahuguet  (2006),  Laffont  and

Robert (1996) and Pai and Vohra (2009). All-pay auctions are also used to model job tournaments

as in Rosen (1986)  . Fu (2006)  and Pastine and Pastine (2010)  model affirmative action in college

admissions as an all-pay auction. In these environments constraints arise naturally, as well, since the

day  has  a  maximum of  twentyfour  hours  for  an  employee  and  there  are  score  ceilings  in  college

admissions. One cannot exceed 2400 in SAT’s. Hence in these models one may consider analysing

the contests with limits, too.

In this paper we provide generalized payoff results for the contestants in an all-pay auction where

the  contestants  may  be  constrained.  Furthermore  we  relax  some  of  Siegel  (2009)  restrictions  on

continuity of  strategy space and on cost. We also provide common features that any contest equilib-

rium has to posses under generic conditions.
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2. The Model

Except where otherwise noted we maintain all the assumptions of Siegel (2009). In cases where

we generalize a named assumption or result in Siegel (2009) we append “Generalized” to the name

in order to make the changes clear. In cases where we alter the assumption or result but the change

is  not  a  strict  generalization  of  the  corresponding  item in  Siegel  (2009)  we append  “Modified”  to

the name. Once the assumptions or  results  are established,  and where no confusion will  result,  we

drop the epithet.

n  players  compete  for  m  homogeneous  prizes  where  0 < m < n .   Each  of  the  players  simulta-

neously and independantly choose a score s i  from their set of feasable scores S i  and each of the m

players with the highest scores wins one prize. In the case of ties any tie-breaking rule can be used

to allocate the prizes among the tied players.

We maintain  Siegel’s  assumptions  on  player  utilities  which  mean that  given  a  profile  of  scores

s = s 1, ∫, s n , s i eS i, player i’s payoff is

(1)uis = Pis visi - 1 - Pis cisi
where  P is  is  player  i’s  probability  of  winning  at  profile  s,  v is i  is  his  payoff  if  he  wins,  and

c is i  is his  payoff  if  he loses. v i  and c i  are defined on s i ea i, ¶.  We will  be able to relax the

continuity  assumptions  on  v i  and  c i  for  some,  but  not  all,  of  the  players.  We maintain  Siegel’s

other assumptions on these functions.

a i e0, ¶  is the initial score.of contestant  i before he makes any effort to improve his score.  A

positive initial score captures a headstart advanatge of the contestant. In Siegel (2009)  player i’s set

of  feasable  scores  S i = a i, ¶ .  The  primary  goal  in  this  paper  is  to  allow  for  the  possibility  that

players  may  be  constrained  in  their  choices.  Thispossiblity  can  be  incorperated  by  imposing  a

maxium  feasable  score  such  that  s i § k i  where  k i ea i, ¶ .  This  is  without  loss  of  generality  as

elimination  of  stricly  dominated  strategies  implies  that  no  player  will  choose  a  score  so  high  that

visi < 0, and hence any k i high enough so that viki < 0 will have no effect  on the equilibrium.1

A secondary goal of this paper is to relax the continuity restrictions  in Siegel (2009) for as many

players as possible. So we will permit the possibility that some of the scores  in a i, k i  are infeas-

able.  For example, donations  to a politician  below a certain threashold  may not  be recoreded with

the  donor’s  name,  and  hence  small  donations  may  not  influence  the  politician’s  behaviour  with

regard  to  the  doner.  Or  the  Olympic  committee  may  be  considering  only  the  number  of  stadiums

promised by potential host cities, so it may not be possible to increase a city’s score by less than the
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cost of a stadium. We require that a i, k i e S i  but scores between those values may or may not be in

S i.

Unfortunately  it  will  not  be  possible  to  maintain  this  level  of  generality  for  all  players  so  we

define  score continuity   on  b, d  to  mean that  b, dSi
c  has  Lebesgue  measure zero,  i.e.  scores

almost everywhere on b, d  are in S i. 

GENERALIZED ASSUMPTION A1: v i and -c i are nonincreasing  on s i eS i.

ASSUMPTION A2: v ia i > 0 and  lim siØ¶ v is i < c ia i . 

ASSUMPTION A3: c is i > 0 if v is i = 0.

Note  in  particular  that  this  gerneralization  of  Assumption  A1 allows  for  the  possibility  that  the

payoffs may be discontinous. For example applying for a loan may incur a fixed cost for the paper-

work, hence v i  and -c i  would both decrease by that fixed cost at the level where the player’s own

funds ran out.

The  limit  on  feasable  scores,  k i,  and  the  possibility  that  v i  may  be  discontinous  introduces  the

possibility that a player may be constrained. A player will be said to be constrained  at x if x œ S i,

v ix > 0  and either x = k i  or v imin si eS i  s i > x < 0, that is a player is constrained at x if he has

a positive  value  from winning  at  score x  but  he  is  either  unable  to  exceed x  or  at  his  next  highest

feasable score he would have a negative payoff  due to discontinuities   in his  valuation or feasable

scores.

3. Payoff Characterization

The four main concepts from Siegel (2009) continue to be key to the analysis. The definition of

reach must be altered to permit the possibility that a player may be constrained, but conceptually it

captures the same idea.

DEFINITIONS:

(i) Player i’s generalized reach,  r i,  is the highest feasable score at which his valuation for win-

ning is non-negative. That is, r i =max s i eS i  v is i ¥ 0 . Re-index players in any decreasing order

of their reach, so that r 1 ¥ r 2 ¥ ∫ ¥ r n.

(ii) Player m + 1 is the marginal player.

(iii) The threshold, T , of the contest is the reach of the marginal player: T = r m+1.

(iv)  Player  i’s  power,  w i,  is  his  valuation  for  winning  at  the  threshold.  That  is,

w i = v imax a i, T . For players other than the marginal player it is possible that T–Si but neverthe-
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less  we  can  leave  this  definition  unaltered.  Note  however  that  unlike  in  Siegel  (2009)  there  is  no

guarantee that the marginal player’s power will be zero. If the marginal player is constrained at T ,

w m+1 > 0.

ASSUMPTION  A4:  If  the  marginal  player  is  not  constained  at  T ,  he  has  score  continuity  on

T - ¶, T .  The  first  m  players  have  score  continuity  and  continuity  of  v i  and  c i  on

max a i, min a-i, T + ¶  where min a-i  is the lowest initial score for all players other than i . 

Note  that  these  continuity  conditions  are  weaker  than  the  continutity  requirements  in  Siegel

(2009) where continuity was imposed for all players and for all scores.  To illustrate the usefulness

of the results considder an example from the literature. Note that for exposition the examples are all-

pay  auctions  but  the  results  apply  to  non-seperable  contests  as  well,  see  Siegel  (2009)  for  a  full

dicussion and examples.

EXAMPLE  1:  Meirowitz  (2008)  analyzes  the  sources  of  incumbecy  advantage  with  a  political

contest  in  campaign spending  where  the  incumbant  (candidate  I)  and  the  challanger  (candidate  C)

have  a  common  valuation  of  the  prize  normalized  to  1.  The  candidates  have  potentially  different

maginal utility cost of raising funds, bi  "i œ I, C  and the marginal benefit of campaign spending

is one: One dollar of campaign spending raises a candidate’s score by one. Meirowitz (2008) consid-

ers a positive headstart advantage a  for the incumbent in the contest without spending limits, when

studying the effect of spending limits the analysis only presents the case without a headstart advan-

tage. For this subcase he shows that whether campaign expenditure limits benefit the incumbent or

the challanger depends cruitially on the tie-breaking rule. However for this the analysis is limited to

fundraising advantage alone. At the end of this sub-section, Theorem 1 will be applied to complete

the  analysis  and  show  that  the  Meirowitz  result   is  not  general:  with  any  a>0  expenditure  limits

always benefit the incumbent regardless of the tie-breaking rule. 

Note  that  in  this  example  both  players  face  a  common restriction  on  thier  actions:  they  cannot

spend more than a specified amount. This common restrictions on actions frequently occur: prepera-

tions by litigatinig attornies  are constrained by a common trial date, in the United States lobbyists

face common maximum political  donations,  in many sports,  teams face common cap on total sala-

ries. However, as Example 1 illistrates, a common constraint on actions does not imply that there is

a  common  constraint  on  scores.  Because  of  his  head-start  advantageif  both  candidates  spend  the

maximum  permisable  amount  the  incumbent  will  win.  Likewise  the  effect  of  players’  actions  on

their scores may differ, as illistrated  in the second example. 
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EXAMPLE 2: Example 1 fits the U.S. institutional framework well but campaign spending limits

were  declared  unconstitutional  by  the  U.S.  Supreme  Court.  However  spending  limits  are  used  in

Canada and in most of  Europe.  These countries  have parlimentary systems where it  is  common to

have more than two competative political parties.2  Because a full derivation of the equilibrium was

required for any results, Meirowitz (2008)  was restricted  to two contestants and a single prize and

hence  it  is  difficult  to  judge  whether  the  results  can  be  generalized  to  more  than  two  candidates.

However,  the payoff  charictarization   in  Theorem 1 does not  require  the derivation  of  the equilib-

rium  and  we  can  easilly  add  more  candidates.  Add  a  Third-party  candidate  (candidate  T)  to  the

model in Example 1. With three candidates the incumbent’s head-start advantage cannot be summer-

ized  in  a  single  parameter  so  define  the  initial  scores   a I > a c > a T  where  in  Example  1

a = a I - a c.  Suppose  that  the  Third-party  candidate  is  charismatic  so  that  one  dollar  of  campaign

spending  increases  his  score   by  h T > 1.We can also  incorporate   some more  realistic  fundraising

issues  as  well.  The  Third-party  candidate  can  raise  up  to  [condidtion]  dollars  from  his  core  sup-

portors  at marginal utility  cost b T = b C.  After that  he must get a loan. The banks will  not lend to

his  campaign  unless  he  hires  a  professional  campaign  manager  which  is  expensive  and  requires  a

substantial  loan. He can borrow a minimum of [condition]  and each dollar must be paid back with

interest  so the marginal utility cost of raising the funds is 1 + r b T  if he wins the seat. At the end

of this sub-section Theorem 1 will be used to show that a moderate cap will benefit the charismatic

but  finacially  challanged  Third-party  candidate,  but  that  a  very  restrictive  cap  will  benefit  the

Incumbent.

In addition to the ability to add more players or more prizes, note that in Example 2 the bank’s

reluctance   to  loan  to  a  half-hearted  campaign  results  in  a  range  of  scores  being  infeasable.  Note

also that the utility cost of paying back the loan if the candidate is not elected was not specified.  In

reality this is likely to be higher than the cost if he is elected since office holders have more fundrais-

ing  opportunities  than  private  citizens.  An  important  implication  of  Theorem  1  is  that,  although

these  costs  will  have  a  significant  effect   on  the  equilibrium  of  the  game,  they  will  not  effect  the

expected payoffs and hence we do not need to specify them here.

GENERALIZED  LEAST  LEMMA:  In  any  equilibrium   of  a  contest,  the  expected   payoff   of

each player who is not constrainted at T is at least the maximum of the player’s  power and zero.

PROOF:  In  equilibrium no  player  would  choose  a  score  higher  than  his  reach since  this  would

result in negative payoff. Players with powers less than or equal to zero can guarantee a zero payoff
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by simply chosing a i. By the definition of a player’s power, at most m  players have positive power

and are not constrained at T . Since the players with positive power and are not constrained at T  and

are  able  to  exceed  the  threshold  by  ¶  by  Assumption  A4,  they  can  at  least  guarantee  an  expected

payoff equal to their power.     Q.E.D.

In  Siegel  the  Least  Lemma establishes  that  for  every  player  the  expected  payoff  is  the  least  of

maxwi, 0 when there are no constraints. The Generalized Least Lemma, which is valid even when

there are constraints,  is different for two reasons. First, for players with strictly positive power but

score and/or  value discontinuty  on [T,T+¶]  the  expecpeted payoff  argument does not  follow.  And

the proof of the Least Lemma in Siegel does not go through if a player has a positive power but is

constrained  at T , hence the change in the lemma. See the example below. 

EXAMPLE 3:  Consider  the  contest  in  Che  and  Gale  (1998).  where  two players  {1,2}  compete

for  one  prize.  v isi = V  i - s i  and  c isi = -s i  "iœ{1,2}.  The  players  have  different   valuations  of

the prize, V  1 > V  2 > 0.  Players face a common constraint  k 1 = k 2 = k  so S i = 0, k .  Any ties are

resolved  by  coin  toss.  Che  and  Gale  (1998)  shows  that  for  a  sufficiently  restrictive  constraint,

k < V  2 2,  in  any  equilibrium  both  players  must  choose  s i = k  with  probability  1  and  they  each

have  a  50%  chance  of  winning.  Hence  the  expected  payoff  of  each  player  is  given  by  Vi 2 - k

which is greater than zero and less than the power of the player.

Example  3  also  demostrates  that  the  Tie  Lemma in  Siegel  does  not  generalize  to  contests  with

constraints.The  Tie  Lemma  in  Siegel  shows  that  if  two  or  more  players  choose  x  with  strictly

positive  probability,  those player  either  all  win with  certainty  or  they  all  loose with certainty.  The

Tie Lemma relies on the fact that if a player’s rival has an atom at x and the player has a probability

of winning at x less than one but greater than zero, that player would increase his score slightly to

avoid the chance of a tie.  However if  the player  is constrained at x this is not possible.3  We must

proceed  by  an alternative  but  related  method  of  establishing  the  equilibrium payoffs  that  does  not

require the Tie Lemma. 

In our effort to establish the expected payoffs of players in a contest with or withour constaints it

will be necessary to assume the generic conditions presented below.

GENERALIZED GENERIC CONDITIONS:

(i)  Generalized   Power  Condition   —The  marginal  player  is  the  only  player  with  reach  at  the

threshold. 
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(ii) Generalized  Cost Condition —If the marginal player is not constrained at the threshold then

for every xeS m+1  a m+1, T , v m+1x > v m+1T , that is the marginal player’s valuation of winning

is strictly  decreasing at the threshold. 

The  Generalized  Power  Condition  parallels  Siegel’s  requirement  that  the  marginal  player  is  the

only  player  with  power of  0.  However  with constraints  or  discontinuities  the marginal  player  may

be  constrained  at  the  threshold  so  there  may  be  no  player  with  zero  power.  Therefore  with  con-

straints the conditions are not equivelant.

Define  N  w = 1, ∫, m .  In  a  generic  contest  these  are  the  players  who  have  reaches  strictly

greater  than  the  threshold.  Define N  L = m + 1, ∫, n .  In  a  generic  contest  these  are  the  players

who have reaches less than or equal to the threshold.

Equilibrium  may  be  in  mixed  strategies  so  as  in  Siegel  (2009)  define  for  each  player  G i  as  a

cumulative probablilty distribution  that assigns probability one to his set of feasable pure strategies

S i.  For  a  strategy  profile  G = G 1, ∫, G n, P ix  is  player  i’s  probability  of  winning  when  he

chooses xeS i and all other players play according to G , and similarly define uix .

To establish the players’ payoffs in the contest we need two more lemmas.

MODIFIED  ZERO  LEMMA:  In  any  equilibrium  of  a  generic  contest  all  players  in  N  L  must

have  best  responses  with  which  they  win  with  probability   0  or  arbitrarilly   close  to  zero.  These

players have expected payoff of zero.

PROOF: Denote by J  a  set of players  including the m  players  in Nw  plus any one other player

je NL . Let S
è

 be the union of the best-response  sets of the players in J  and let sinf  be the infimum of

S
è

. Consider three cases: (i) two or more players in J  have an atom at sinf , (ii) exactly one player in

J  has an atom at sinf ,  and (iii) no players in J  have an atom at sinf .

Case i. Initially denote N ' Œ J  as the set of all players in J  with an atom at sinf where  N '  > 1.

Every player in J  N '  chooses  scores greater than sinf  with probability  1.  Therefore even if every

player that is not in J  chooses  scores  strictly below sinf  with probability 1 that leaves one too few

prizes to be divided between  N '   players, so P is inf = 1 " ieN '  is not possible. 

If there are any players in N' with P is inf = 1  remove them from N '  so that P is inf < 1  " ieN ' .

If  N ' =1 then that player i loses with certainty with score  s inf  and i’s expected payoff cannot be

positive.  From  the  Generalized  Least  Lemma  and  the  Generalized  Power  Condition  this  player

cannot be in N  w  so it must be player j . If  N '  > 1  let H be the set N '  N  w. Since there is only

one player in J  N  w,  H e   N '  -1,  N '  . Pis inf=0 is not possible for any ieH  since i would
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have  uis inf § 0  and  he  must  have  a  positive  payoff  by  the  Generalized  Least  Lemma  and  the

Generalized Power Condition. Likewise if player i  loses ties with other players in N '  with positive

probability Pis infe(0,1)  is not possible for any ieH  since i  can do better  by increasing his score

slightly above s inf  to avoid ties. Hence every player in H  must win every tie with other players in

N '  at s inf . This is not possible if  H =  N '   since there are not enough prizes for all the players in

N ' .  Hence   H =  N '  -1  so  jeN '  and  j  loses   all  ties  with  members  of  N '  at  s inf .  Therefore

P js inf = 0.  Since  jeN '  and  je NL  and  P j s inf = 0,  so  uis inf § 0.  By  the  Generalized  Least

Lemma his expected payoff must be zero. 

Cases  ii  and  iii.  The  corresponding  proofs  in  Siegel  (2009)  apply  without  modification  and

establish that in both cases one player ieJ  has a best response in which he wins with probability 0 or

arbitrarilly close to 0 and has a payoff of at most 0. By the Generalized Least Lemma i  must have a

payoff of 0, and by the Generalized Power Condition ieN  L and so i = j .

The above applies for each player jeN  L.  Q.E.D.

GENERALIZED THRESHOLD LEMMA:  In  any  equilibrium  of  a  generic  contest,  the  players

in Nw  have best responses that approach or exceed the threshold and, therefore,  the players in Nw

have an expected  payoff of at most their power.

PROOF:  The  proof  in  Siegel  (2009)  applies  directly  as  written,  and  hence  is  ommited  here.

However in the course of the proof Siegel considers the possibility that a player ieN  w  has G is = 1

for some s < T .  This possibility  is rejected since player m + 1  can have a profitable  deviation to a

score in max a m+1, s, T . However the continuity requirements for player m + 1  can be relaxed to

those  in  the  Gernealized  Continuity  Condition  by  considdering  instead  a  profitable  deviation  to

T - ¶  if player m + 1 is not constrained at T , or to T  if he is constrained at T .  Q.E.D.

From these intermediate  results we can establish the main result of the paper.

GENERALIZED THEOREM 1:  In any equilibrium of  a generic contest,  the expected payoff  of

every player except player m+1 equals the maximum of his power and zero. The expected payoff of

player m+1 is zero which will be less than his power if he is constrained  at T.

PROOF:  The  Generalized  Least  Lemma and  the  Generalized  Threashold  Lemma establish  that

players in Nw have expected payoffs equal to their power which is greater than zero by the General-

ized  Power  Condition.  The  Generalized  Zero  Lemma  establishes  that  the  players  in  NL have

expected payoffs equal to 0. By the Generalized Power Condition this is greater than their power for
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all players in N  w  m + 1 . If player m + 1 is not constrained at T  his power is 0. If he is constrained

at T his power is greater than zero so his expected payoff is less than his power.  Q.E.D.

COROLLARY 1:  In any equilibrium of  a generic contest,  only the constraint   of the marginal

player  will effect expected  payoffs:

è The derivitive of all players’ expected payoffs with respect to k j is zero for all j∫m+1.

è For all ieNL, the derivitive of player i’s expected payoff with respect to to km+1 is zero.
è If T=km+1, then for all ieNw the derivitive of player i’s expected payoff with respect to

km+1 is - ∑visiÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑si
 Ñ

si=T

§ 0 . If T∫km+1 then the derivitive of all players’ expected payoffs

with respect to km+1 is zero.

PROOF: The first and second points follow directly from the Theorem 1 and the definition of a

player’s power. If T = k m+1  marginal decreases in k m+1  directly decrease T .  Marginal increases in

k m+1  increase T  if player m + 1  is constrained at T . If T ∫ k m+1  then marginal changes in k m+1  do

not alter T . The third point then follows from Theorem 1, the definition of reach and the definition

of power. Q.E.D.

These results can now be applied to the first two examples.

SOLUTION TO EXAMPLE 1: The monetary limit on campaign spending is denoted by mêêê  and is

common to both players. However since the incumbent has a headstart advantage of a the constraint

on scores  is asymetric: kC=mêêê  and kI=a+mêêê . Notice that the challenger’s constraint is lower than the

incumbent’s.  The  challenger’s  payoff  functions   v Cs C = 1 - b C s C  and  cCs C = b C s C  for  s Ce

[0,kC].  Since the incumbent  starts  with  ascore of  a  his  payoff  functions are v IsI = 1 - b Is I - a
and cIs I = b Is I - a  for s I e[0,kI]. Therefore rC=min{kC,1/bC} while rI=min{kI,a+1/bI).

In  if  the  expenditure  limits  are  high enough  that  they  are not  binding  in  a  generic  game one of

two  possibilities  will  occur.  Either  1  b C < a + 1  b I  in  which  case  the  challenger  will  be  the

marginal  player,  or  1  b C > a + 1  b I  in  which case the incumbent  will  be the marginal  player  (if

the  expressions  are  equal  the  game  does  not  satisfy  the  generic  conditions).  The  marginal  player

will  have  expected  payoff  of  zero  while  the  other  player  will  have  a  postive  expected  value  by

Theorem 1.

In the first case, even after the imposition of an expenditure limit rC<rI  since each term in rC is

less than the corresponding term in rI. Therefore when the cap is binding the challenger will be the

marginal  player  and  his  expected  payoff  will  remain  zero.  However  the  limit  will  reduce  the

challenger’s reach and hence increase the expected payoff of the incumbent, .
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Using  Genralized  Theorem  1,  it  is  straightforward  to  find  the  expeced  payoffs  of  constrained

game  with  a>0.  Let  S
è

 be  the  union  of  the  best-response   sets  of  the  players  and  let  ssup  be  the

supremum of S
è

.  Without  spending limits the reach of  the incumbant  is a + 1  b1  and the reach of

the challanger is 1/b2  and Meirowitz (2008) already establishes that ssup = mina + 1  b1, 1  b2 . A

limit k < ssup  is binding. If a + 1  b1 >1  b2 , then the challanger is the m+1th player. The challanger

has zero expected payoff (less than his power) and the incumbent has expected payoff equal to his

power,  1 - b1 k .  If  a + 1  b1 <1  b2 ,  the incumbant  has zero expected payoff  (less than his  power)

and the challanger has expected payoff equal to 1- b2 k. It is then easy to derive equilibrium distribu-

tions  of the players as well as results on expected spending and probablitity of winning.

SOLUTION TO EXAMPLE 2: 

3.1. Discussion of the Payoff Characterization. 

3.2. Contests That Are Not Generic. 

For non-generic contests with constraints  neither Corollary 2 nor Corollary 3 from Siegel (2009)

continue to hold. This can be seen in Example 3 which is a non-generic contest because the Power

Condition  does  not  hold.  There  is  more  than  one  players  with  reach  at  the  threshold.   When

k < V  2 2  both players  have reaches of k  and hence player  i  has a power of wi = V  i - k .  Che and

Gale  (1998)  shows  that  in  any  equilibrium  each  player  choose  a  score  at  the  common  constraint

with  certainty  and  the  allocation   of  the  single  prize  is  decided  by  coin  toss.   Hence the  expected

payoff  for  player  i  is  0<V  i 2 - k <wi .  This  is  a  violation  of  a  conjectured   extension  of  Siegel’s

Corollary 2.

While the results in Che and Gale (1998) are for players with different valuations, the same logic

carries over to identical players facing a common constraint and non-zero probabilities of winning a

tie. If the common constraint is sufficiently restrictive there will be an equilibrium were both play-

ers choose scores at the constraint with probability one. This will yield positive expected payoffs for

both  players,  a  violation  of  a  conjectured  extension  of  Siegel’s  Corollary  3.  When constrained,  in

equilibrium  players  can  put  probability  mass  points  at  scores  where  they  do  not  win  or  lose  with

certainty.  This  drives  the  refutation  of  Siegel’s  Tie  Lemma in  the  context  of  constrainted  contests

and and the extentions to Siegel’s Corollaries 2 and 3. 

4. Conclusion

Some kind of conclusion here.
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Notes

1 Conceptually  there  are  two possible  types  of  constraints:  constraints  on effort  and con-
straints on scores.  Both types of constraint can be captured by this specification.  Examples
of constraints on effort include liquidity constraints or the maximum permissable donation
to a candidate’s political campaign in the U.S. Since effort translated directly into scores
and the most restrictive possible constraint is zero effort ki ¥ ai  captures all possibilities.
Constraints placed directly on permissable scores are also possible. For example, by con-
struction the maximum possible score that can be achieved on the SAT university enterence
exam is 2400. With constraints directly on scores,  an initial score higher than the maxi-
mum possible score is nonsensical so  ki ¥ ai  can be assumed without loss of generality.

2 And in at least one case, Ireland, more than one prize is possible. In many Irish political
districts the two candidates with the highest vote totals each take a seat in parliment.

3 If  we  revert  to  Siegel’s  strong  continuity  assumptions  we can get  this  Generalized Tie
Lemma: “If two or more players who are not constrained at x have an atom at x then all
the players with the atom that are not constrained at x either win with certainty or lose
with certainty at x.” While this is potentially useful, it is not sufficient to proceed as players
may well be constrained.
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