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Summary 

Newly made polypeptide chains not only require the help of molecular chaperones 

to rapidly reach their final three-dimensional forms, but also to unfold and then 

correctly refold them back to their biologically active form should  they misfold. 

Most prions are an unusual class of protein that can exist in one of two stable 

conformations, one of which leads to formation of an infectious alternatively folded 

form.  Studies in Baker’s yeast (Saccharomyces cerevisiae) have revealed that prions 

can exploit the molecular chaperone machinery in the cell in order to ensure stable 

propagation of the infectious, aggregation-prone form. The disaggregation of yeast 

prion aggregates by molecular chaperones generates forms of the prion protein that 

can seed the protein polymerisation that underlies the prion propagation cycle. In 

this article we review what we have learnt about the role of molecular chaperones in 

yeast prion propagation, describe a model to that can explain the role of various 

classes of molecular chaperones and their co-chaperones, and speculate on the 

possible involvement of chaperones in the propagation of mammalian prions.
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Introduction 
 
The information necessary for a protein to fold into its native three-dimensional  form is 

contained within the primary amino acid sequence of the polypeptide chain  (1). As the 

polypeptide chain emerges from the ribosome, possibly even before its synthesis is 

complete, it will begin to transition through one, possibly more, partially structured states 

before arriving at the biologically active, pre-ordained structure. Protein folding cannot 

occur in a random, unbiased manner where all possible combinations are explored in 

order to reach the final structure; the so-called Levinthal Paradox. Rather, each protein 

species appears to have evolved a conserved and simplified pathway of folding (2; 

review). 

 

In order to help a protein reach its final form and avoid going ‘off-pathway’ and misfold, 

many proteins call on the assistance of a number of cellular ‘chaperone’ proteins (3: 

review). The primary role of protein chaperones is to catalyse protein folding and they 

achieve this by interacting non-covalently with the nascent polypeptide chain in order to 

stabilize the encrypted folds and thereby prevent non-productive reactions that might lead 

to an incorrectly folded structure. In other words, by lowering the activation barrier 

between the partially folded structure and the native form, chaperones accelerate the 

desired folding steps thereby ensuring that the encrypted folding instructions are 

faithfully adhered to. 

 

Chaperones are also required to rescue proteins that, as a consequence of having deviated 

from their desired folding pathway, have become misfolded and aggregated. This can 
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arise spontaneously or as a consequence of a cell being subject to environmental stresses 

such as heat shock. Specific chaperones unfold the misfolded or aggregated protein and, 

in conjunction with other chaperones, rescue the protein by sequential unfolding and 

refolding the protein back to its native and biologically active form. 

 

Although the primary role of chaperones is to prevent protein misfolding and 

aggregation, an unusual class of proteins found in both mammals and fungi have 

apparently evolved to exploit the molecular chaperone machinery to remodel their 

conformation into an aggregation-prone, infectious form; the so-called prion proteins (4). 

Once the alternatively (mis)folded structure of a prion protein is established, it becomes 

self-propagating and can be transmitted from cell to cell usually in the form of protease-

resistant fibres that are characteristically rich in β-sheets. The presence of amyloid 

protein aggregates is a characteristic of a number of non-transmissible neurodegenerative 

diseases such as Huntington’s Disease and Alzheimer’s Disease (5). 

 

While the mammalian prion protein PrP (in its protease-resistant form PrPSc) is widely 

recognised as the causative agent of mammalian Transmissible Spongiform 

Encephalopathies (TSEs) such as CJD and BSE (6), the prions found in fungi are not 

necessarily detrimental to the host cell. For example, the [Het-s] prion is required for 

heterokaryon incompatibility in Podospora anserina (7) and is found in a large 

proportion of isolates of this fungus. In some cases therefore, prions may actually be of 

benefit to the host cell by acting as epigenetic regulators of cell phenotype (8).  
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Important new insights into the role(s) played by molecular chaperones in the 

propagation of fungal prions are now beginning to emerge from both genetic and 

biochemical studies particularly with the yeast Saccharomyces cerevisiae. In this review 

we will first provide an overview of yeast’s molecular chaperone machinery before 

considering what we have learned about the role chaperones play in prion propagation in 

fungi and possibly higher eukaryotes. 

 

Molecular chaperones and protein folding in the yeast cell 

The unicellular eukaryote S. cerevisiae has proven to be an invaluable tool for elucidating 

protein folding pathways within the cytosol of a eukaryotic cell. All the major classes of 

chaperone implicated in such pathways have also been identified and extensively 

characterized in yeast (Table 1). For the majority of identified yeast molecular 

chaperones, human homologues have also been identified, but with one notable exception 

– no homologue of the Hsp104 chaperone has yet been described in mammals although a 

homologue is found in plants (9). The main classes of chaperones in the eukaryotic 

cytosol are generally classified as heat shock proteins (Hsps) because their synthesis is 

induced by conditions (such as heat shock) that trigger protein misfolding and 

aggregation although not all chaperones are Hsps. 

 

The major class of chaperones belong to the Hsp70 family, a diverse collection of 70 kDa 

chaperones that exist in various compartments of the cell. The main Hsp70 component of 

the yeast cytosol is the Ssa family (Stress seventy subfamily A) comprising of the four 

closely related proteins Ssa1-4 and which collectively provide an essential cellular 
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function. The Ssa proteins are involved in various aspects of protein folding working in 

conjunction with other chaperones (10, a review). Other Hsp70s in yeast include the 

ribosome-bound Ssb and Ssz proteins and the cytosolic Sse proteins (Table 1)  which 

collectively, carry out an array of protein folding functions that ensure correct folding of 

nascent polypeptides, prevent aggregation of denatured or partially unfolded proteins and, 

in some cases, facilitate correct sub-cellular localisation.  

 

Yeast has two members of the Hsp90 class of chaperones; the heat-shock inducible 

Hsp82 and the constitutively expressed Hsc82. These two proteins are functionally 

redundant, but in combination provide an essential cellular function (11). The Hsp90s 

work in conjunction with Hsp70 and a host of other co-chaperones to facilitate the correct 

folding and maturation of an array of proteins (10). In mammalian cells, the Hsp90 

chaperone machinery facilitates the correct folding of key regulatory proteins such as 

steroid hormone receptors, transcription factors and protein kinases (10,11) although the 

‘client list’ for yeast Hsp90s is less well defined. The high degree of conservation of the 

Hsp70-Hsp90 chaperone machinery between yeast and mammals, including co-factor 

requirements, illustrates the value of using a model organism such as S. cerevisiae to gain 

real insights into protein folding in the eukaryotic cell. 

 

The yeast chaperone that appears to have no mammalian homologue, Hsp104, is a 

member of the AAA+ superfamily of ATPases and is similar in both sequence and 

function to the E. coli ClpB protease (12). Although not essential for cell viability, 

Hsp104 plays a critical role in ensuring that cells subjected to prolonged exposure to 
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physical (e.g high temperatures) or chemical (e.g. ethanol) stresses, are able to survive. 

Unlike Hsp70 and other chaperones such as the small heat shock proteins (sHsps, Table 

1), this role is not to prevent the aggregation of denatured or partially unfolded proteins, 

but rather, in conjunction with both Hsp70 and the co-chaperone Hsp40, to act as a 

protein ‘disaggregase’ leading to the resolubilisation of protein aggregates (13). Hsp104 

acts as a molecular ‘crowbar’ to shear high molecular weight aggregates into smaller 

aggregates that can then be more effectively dealt with by the Hsp70/Hsp40 chaperone 

system (Figure 1). In so doing, Hsp104 acts in a similar manner proposed for the bacterial 

ClpB/DnaK chaperones (14,15). As with prokaryotes, yeast therefore has evolved 

complimentary systems to either prevent non-productive protein aggregation or to rescue 

proteins that have become aggregated. It is yet to be established if such systems are 

present in mammalian cells although proteins such as p97/VCP/Cdc48 share both 

sequence and functional similarities with Hsp104 (see below). The existence of an 

Hsp104 homologue in plants (9) raises the possibility that a search for prions in 

genetically tractable plants such as Arabidopsis may bare fruit. 

 

In the yeast cell, as in other eukaryotes, a number of co-chaperones and co-factors can 

modulate the functions of the Hsp70 and Hsp90 proteins (Table 1). The Hsp40 co-

chaperones directly interact with both Hsp70 and Hsp90 to modify their function, 

although their main function is to bind unfolded proteins and to present these substrates 

to their relative Hsp70 partner. In other words, Hsp40s can act both as chaperones and as 

co-chaperones. Also important in the regulation of the ATPase activity of the Hsp70-

Hsp90 chaperone machinery are co-chaperones that possess the tetratricopeptide repeat 
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(TPR) motif (16). The identity of the co-chaperones present within the Hsp70-Hsp90 

complex will usually reflect the level of maturation of a particular peptide substrate (10, 

review). The Hsp90 co-chaperones Sti1p, Cpr7p and Cns1p also bind to Hsp104 under 

certain physiological conditions, although how this co-chaperone interaction modulates 

Hsp104 function remains to be established (17). 

 

A specialised cytosolic chaperone machine is also present in both yeast and higher 

eukaryotic cells, namely CCT (cytosolic chaperonin containing T-complex polypeptide-

1) or TriC (tailless complex polypeptide- 1 [TCP-1] ring complex) which belongs to the 

same class of chaperones as the bacterial GroEL/ES chaperonin (18). CCT has 8 different 

sub-units which form a heteromeric complex of two stacked rings and acts primarily to 

fold actins and tubulins (18). The CCT rings undergo an ATPase-dependent 

conformational change when bound to their relatively limited repertoire of substrates and 

provide an enclosed environment for polypeptides to fold correctly in. In terms of both 

form and function, the CCT complex is highly conserved between yeast and humans 

(18,19).  

 

Hsp26 and Hsp42 are two low molecular weight chaperones within the yeast cytosol 

(Table 1) that function independently to prevent the non-specific aggregation of about 

30% of the cytosolic protein species (20,21). As with the CCT complex, both Hsp26 and 

Hsp42 form oligomeric structures, but these are homopolymeric rather than 

heteropolymeric in nature (20,24). Only the synthesis of Hsp26 is induced by thermal 

stress while Hsp42 represents the major cellular chaperone in non-stressed cells (21). 
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What happens when a cell finds itself hosting and propagating prion aggregates? 

Chaperones represent a first line of defense against the generation and accumulation of 

misfolded, potentially toxic, protein aggregates. Yet, the very fact that prions are 

remarkably effective at self-propagation, would suggest that the prion aggregates have 

not only evolved features to avoid the disaggregation and refolding activities of the 

chaperone machinery, but can also avoid the back-up defense of degradation by the 

polyubiquitin/proteasome system (22). In fact, studies with yeast suggest that prions may 

have actually evolved to exploit the properties of the cellular chaperone machinery in 

order to propagate their infectious altered conformer. 

 

Yeast prions and their propagation 

S. cerevisiae has at least three proteins that meet the necessary genetic (23) and 

biochemical criteria (24) to be defined as a prion: Sup35p/[PSI+], Ure2p/[URE3+] and 

Rnq1p/[RNQ/PIN+]. Of these perhaps the best understood in terms of its chaperone 

requirement is the translation termination factor Sup35p. In its prion state, Sup35p 

aggregates giving rise to [PSI+] cells that show a defect in translation termination (25). In 

[PSI+] cells one usually finds greater than 90% of the Sup35p present in the form of a 

high molecular weight aggregate (26,27) although there are some natural ‘variants’ of 

[PSI+] where this figure is nearer 50% (28) and concomitantly, show a weaker 

termination phenotype. In contrast, in prion-free [psi-] cells >95% of the Sup35p is in a 

soluble functional form. 
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Critical for establishment and propagation of the [PSI+] prion aggregate is the prion-

forming domain (PrD) located at the N-terminus of Sup35p and separated from the 

essential release factor domain by a highly charged region called ‘M’ (29, review). Both 

Ure2p and Rnq1p also contain distinct regions that act as self-contained prion-forming 

domains (30,31). In vitro, the individual PrDs are able to spontaneously undergo 

conformational rearrangement in the absence of any other proteins or nucleic acids, to 

generate highly stable amyloid fibrils that show all the biophysical characteristics of the 

amyloid deposits in certain neurodegenerative diseases (32, review). Therefore, in spite 

of the presence of the protective mechanisms provided by the chaperones and the 

ubiquitin/proteasome systems, yeast prion-containing cells are able to carry and 

efficiently propagate high molecular weight aggregates that are absent from prion-free 

cells. Such aggregates can be readily visualised in both S.cerevisiae (26, 31,33) and 

Podospora (34) by fusing the respective prion protein to green fluorescent protein (GFP) 

and observing the appearance of fluorescent foci (Figure 2). Speransky et al (35) have 

also directly demonstrated that the presence of protein filaments in [URE3] strains that 

contain Ure2p although no direct evidence that any of the fungal prion proteins form 

amyloids in vivo has been forthcoming. 

 

The spontaneous conversion of Sup35p to its prion form occurs is less than one in 106 

cells suggesting that although the cell is not able to eliminate the prion once it is formed, 

nevertheless it has an effective mechanism to keep spontaneous prion protein conversion 

in check. The rate of such de novo conversion can be dramatically elevated by 

overexpressing the corresponding full-length prion protein or its isolated PrD (36) 
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provided the cells already have at least one other prion already resident in the same cell. 

Originally referred to as the [PIN] determinant - for Psi Inducibility (37) – we now know 

that [PIN] is commonly (but not exclusively) the prion form of Rnq1p (38,39). The 

requirement of a second prion for efficient prion conversion suggests that either the prion 

form of one protein can template the formation of a second, sequence-unrelated protein, 

but with amyloid-forming potential (38), or the [PIN] prion titrates out an endogenous 

inhibitor of prion conversion which may be one of the cytosolic chaperones (39). It is 

only the de novo conversion that requires [PIN] since once the [PSI+] prion is established, 

it can be stably propagated in the absence of [PIN] (37). 

 

Stable propagation of yeast prion aggregates requires not only the generation of new 

propagons (i.e. oligomeric prion ‘seeds’, 40) to drive soluble forms of the protein into 

prion aggregates, but also the propagons must be efficiently distributed during mitosis 

and meiosis. In yeast, propagon generation and transmission requires the molecular 

chaperone Hsp104 and thus plays an essential role in the propagation of all three native 

yeast prions (31,41,42). However, the structural features of the prion aggregates, or the 

propagons that seed their formation, remain to be established. The high molecular weight 

aggregates, as visualized by GFP fusions (Figure 2), may be the dead-end by-products of 

Sup35p aggregation. Exactly what constitutes a propagon at the molecular level, how its 

structure relates to the high molecular weight (amyloid-like) prion aggregates found in 

cells, and how the various chaperone proteins functionally interact to generate and 

transmit these unusual heritable units so effectively, remain important questions that, 
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through in vivo and in vitro studies (discussed below) we are at last beginning to 

understand. 

 

Do protein disaggregation and prion propagation go hand-in-hand? 

Yeast strains carrying a deletion of the HSP104 gene, although viable, are unable to 

propagate any of the three native yeast prions so far described (31,41,42). The 

requirement for Hsp104 is not however absolute because Sup35p chimaeras containing 

heterologous sequences in place of either the highly charged M region (43) or the PrD 

(44) can form transmissible prion aggregates that are propagated in the absence of 

Hsp104. 

 

Hsp104 is an ATPase and, like other members of the AAA+ protein superfamily  

mediates ATP-dependent unfolding/disassembly of protein-protein complexes and 

contains two AAA modules with motifs for ATP binding and hydrolysis (12, review). 

Inhibition of the ATPase activity of Hsp104 in vivo by 3 mM guanidine hydrochloride 

(GdnHCl) (45-47leads to a rapid block in the ability of the cell to generate new 

propagons resulting in the appearance, after 4 or 5 generations, of propagon-free i.e. 

[prion-] cells (46,48). 

 

The model that is most consistent with these data is that Hsp104 generates new [PSI+] 

propagons by disassembly of the high molecular weight prion aggregates, into smaller 

seeding competent oligomers (49,50) (see Figure 1). Inhibition of Hsp104 by GdnHCl 

does not block prion protein aggregation per se (51) but does lead to a block in the 
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fragmentation of Sup35p aggregates in vivo (52). This has lead to the proposal for a two-

cycle model for prionisation of Sup35p (and most likely, other yeast prions proteins): an 

Hsp104-dependent process that generates new propagons and an Hsp104-independent 

process that converts propagons into a high molecular weight, possibly non-seeding dead-

end product (51) (Figure 1). Consistent with this model, over expression of Hsp104 in 

exponentially growing [PSI+] cells also leads to a rapid loss of the [PSI+] prion (41) 

presumably by accelerating the disaggregation of Sup35p polymers that can then be 

efficiently dealt with by the Hsp40/70 chaperone system.  

 

The mechanism(s) by which either the absence of, or high levels of, Hsp104 can 

eliminate the [PSI+] prion has recently emerged from studies using a reconstituted in vitro 

fibrillisation assay based on recombinant Sup35pNM (53). In this assay low levels of 

Hsp104 catalyse the formation of relatively small oligomeric intermediates of Sup35pNM 

that are required for the nucleation of new fibrils in vitro. Critically, at higher 

concentrations, Hsp104 blocks the maturation of these oligomers into fibrils and 

promotes disassembly of the pre-existing fibrils into non-seeding species. To fully 

understand the consequences of manipulating Hsp104 levels on prion propagation in the 

cell it will be important to establish the nature and relationship of the various Sup35p 

oligomers present in the [PSI+] cell and the mechanism by which they are generated.  

Nevertheless, the in vitro studies provide us with strong clues to why the cellular levels of 

Hsp104 are critical for ensuring efficient prion propagation in non-stressed cells. It is 

conceivable that Hsp104 may in fact have a different function or mode of action in non-
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stressed cells that effectively propagate prions such as [PSI+], compared with stressed 

cells (54). 

 
What about mammalian prions? Higher eukaryotes, including mammals, encode various  

AAA+ proteins that share sequence features with the Hsp104/ClpB proteins. These 

include p97/VCP/Cdc48p which has a general chaperone-like function and participates in 

a number of different cellular processes (55), torsin A, an ER-lumenal protein implicated 

in torsion dystonia, a movement disorder, and SKD3, a 76kDa ATPase first identified in 

mouse macrophages (56). Although overexpression of both p97/VCP/Cdc48p (57) and 

torsin A (58) suppress the aggregation of non-transmissible polyglutamine aggregates, 

there are no data that  conclusively link the disaggregation properties of these proteins 

with the propagation of any neurodegenerative disease (12,59). Furthermore, the ability 

of p97/VCP/Cdc48p to bind to denatured proteins and maintain them in a soluble state, 

does not require p97/VCP/Cdc48p-associated ATPase activity (55) and is unable to 

promote Sup35pNM fibre disassembly in a reconstituted in vitro system (53). These 

findings may simply reflect a failure to recognise the heterologous substrate or, more 

likely, through a fundamental difference in the mode of action of p97/VCP/Cdc48p and 

Hsp104.  

 

It is important to remember that mammalian prions are largely associated with non-

dividing cells in the brain, whereas a yeast cell undergoes division every 2-3 hours 

without loss of the prion. Perhaps Hsp104 has co-evolved with prion-based epigenetic 

regulators of phenotype and has acquired specific functions that are lacking in other 
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related AAA+ ATPases, but which ensure rapid generation of new prion seeds to ensure 

efficient propagation of the prion in rapidly dividing cells? 

 

The interactions between a AAA+ protein and its substrate(s) are mediated largely 

through their N or C termini which either recognise the substrate directly or may bind 

‘adaptor’ proteins which in turn mediate substrate binding (60). Three yeast Hsp90-

binding co-chaperones, Sti1p, Cpr7p and Cns1p, interact with the C-terminus of Hsp104 

in respiring cells (17), but although both Sti1p and Cpr7p play a minor, non-essential role 

in [PSI+] propagation, this appears to be mediated via their regulation of the substrate 

binding properties of Ssa1p (Hsp70) rather than Hsp104 (61). 

 

Genetic studies using both native and artificially constructed yeast prions have 

demonstrated that, in addition to Hsp104, both Hsp70 (Ssa1/2p, Ssb1/2p) and Hsp40  

(Ydj1p, Sis1p) chaperones (see Table 1) are also components of the prion propagation 

machinery and work in conjunction with Hsp104 to generate new propagons (40,62, 

reviews) although no direct in vitro interaction, using purified proteins, has yet been 

reported.  

 

Hsp70:a key modulator of prion propagation? 

The Hsp70s are a highly conserved family of chaperones that form the central part of a 

ubiquitous protein folding system (10) and are also involved in aiding protein 

translocation across membranes, translation and regulation of the heat shock response 

(10, 63,64). The yeast genome encodes at least fourteen distinct Hsp70-related  proteins 
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that are located in various cellular compartments, but which all share the property of 

binding to short hydrophobic segments of partially folded or unfolded polypeptides 

thereby preventing their aggregation and hence aid correct folding. 

 

The Hsp70s consist of an amino-terminal ATPase domain that regulates the function of 

an adjacent peptide-binding domain, and a carboxyl-terminal variable domain. The finely 

tuned ATPase cycle of Hsp70 regulates the ability of the chaperone to bind non-

covalently to its substrate (Figure 3). When ATP is bound, the peptide-binding domain is 

in the “open” conformation and can rapidly bind and release the peptide substrate. ATP 

hydrolysis causes a conformational change to the “closed” form that establishes a tight 

association between Hsp70 and its substrate, while nucleotide exchange restores the ATP 

bound form and returns it to the “open” conformation. Various co-chaperones fine-tune 

the Hsp70 ATPase cycle (Figure 3) (65, review). 

  

Amino acid sequence divergence has allowed varying functions of Hsp70s to evolve. In 

addition, functional differences are achieved through interactions with different co-

chaperones and also through interaction with other non-Hsp70 chaperones. For instance, 

the ATPase activity of Ssa1p can be stimulated by both Sis1p and Ydj1p whereas Ssb1p 

cannot (66). For each cellular compartment in which Hsp70 resides, specific Hsp40 

partner(s) can be identified. 

 

Two sub-families of cytosolic Hsp70 have been implicated in yeast prion propagation;  

the Ssa (61, 67-72) and the Ssb sub-families (69,73,74). In addition to effects on prion 
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propagation, overexpression of Hsp70 can suppress the polyglutamine-associated 

pathogenicity and reduce the formation of the associated amyloid fibrils (reviewed in 75). 

Recently, a more tractable yeast model for the study of polyglutamine expansion diseases 

has been developed and has also implicated the Ssa family in regulating amyloid 

formation and toxicity in vivo (76). The Hsp70 family may therefore have a universal role 

in suppressing the formation of both transmissible and non-transmissible pathogenic 

aggregates. 

 

Over-expression of Ssa1p reduces the efficiency of curing of [PSI+] by Hsp104 over-

expression (67) and the complexity of the chaperone-prion interaction is highlighted by 

the differing abilities of combinations of over-expressed chaperones and co-chaperones to 

cure different strains and variants of [PSI+] (69). This most likely reflects underlying 

differences in structure of the prion oligomers that in turn affects the ability of the various 

chaperones to interact efficiently with the prion substrate. The complexity of the 

chaperone-prion interaction is further emphasised by the differing effects of over-

expression of Hsp104, Ssa1p and Ssa2p on [PSI+] and [URE3]; over-expression of 

Hsp104 can cure [PSI+] but does not cure [URE3] while over-expression of Ssa1p but not 

Ssa2p can cure [URE3]. Yet neither Ssa1p nor Ssa2p have any effect on [PSI+] when 

over-expressed in unstressed cells (41,42,70). 

 

If the non-essential Hsp70-Ssb family of chaperones is deleted in a [PIN+] background, 

the spontaneous level of [PSI+] appearance increases ten-fold, and the ability of Hsp104 

over-expression to eliminate [PSI+] is severely reduced in these cells (73). Over-
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expression of Ssb1p can also eliminate artificially constructed variants of [PSI+] (69,74). 

A possible explanation for these findings is that lack of Ssb leads to an increase in the de 

novo appearance of [PSI+] as a direct consequence of the loss of the Ssb-associated 

chaperone function needed to act on the ribosome-associated nascent polypeptide. 

Conversely, over-expression of Ssb may reduce the amount of newly synthesised Sup35 

that can be recruited into the prion form. 

 

An insight into how Hsp70-Ssa may influence prion propagation has come from the 

isolation of a novel SSA1 mutant (SSA1-21), that impairs [PSI+] propagation, reduces 

propagon number and, in cells where the encoded protein is the sole Ssa, [PSI+] cannot be 

maintained (68,71). Yet in spite of this clear effect on [PSI+] propagation, the SSA1-21 

mutation does not affect cell growth or Ssa1p function. The SSA1-21 mutation (L483W) 

creates a change in the peptide-binding domain of Ssa1p, but mapping of this residue 

onto the crystal structure of DnaK fails to give any clues as to what function of Hsp70 

may be affected (68). Eight additional SSA1 mutants with similar phenotypes to SSA1-21 

locate to the ATPase domain (71) suggesting that an alteration of the ATPase function of 

Ssa1p can alter prion propagation. It is conceivable that the Ssa1-21 protein has its effects 

by altering the communication between the ATPase and peptide-binding domains of the 

chaperone (68,71). 

 

The location of second-site suppressors of the SSA1-21 mutation in the ATPase and C-

terminal domains implicate Hsp40 and TPR co-chaperones in aiding Ssa1-21p impairing 

[PSI+] propagation, whereas those within the peptide-binding domain are located in 
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residues involved in regulating the substrate trapping mechanism of Hsp70 (71). That 

mutations that weaken the substrate binding properties of Ssa1p can suppress the SSA1-

21 mutation suggests that Ssa1-21p has enhanced substrate-binding properties. Therefore, 

by altering the finely tuned Hsp70 peptide binding cycle, prion propagation can be 

impaired. 

 

Hsp70 co-chaperones and yeast prion propagation  

The Ssa1p co-chaperones Ydj1p and Sis1p also play a role in yeast prion propagation as 

judged by monitoring the consequences of overexpression of the co-chaperone or by 

studying genetic interactions with the SSA1-21 allele. For example, over-expression of 

Ydj1p eliminates [URE3] (42) and certain variants of [PSI+] (69), while the over-

expression of Sis1p or Ydj1p, efficiently eliminate an “artificial” variant of [PSI+] (77). 

Since deletion of the non-essential YDJ1 gene enhances the effects of SSA1-21 on [PSI+] 

propagation, this indicates that the Sis1p:Ssa1p interactions might be crucial in [PSI+] 

propagation (71). Sis1p also plays a role in the propagation of the [RNQ+] prion through 

its interaction with Ssa1p (78,79). The ability of both Sis1p and Ydj1p to bind various 

peptide substrates and deliver them to Ssa1p is controlled via a common chaperone 

module within these proteins and by a region (the G/F region), adjacent to their putative 

peptide binding domains (78-82). 

 

Over-expression of Sti1p, the yeast homologue of the mammalian TPR co-chaperone 

Hop, also leads to loss of an “artificial” [PSI+] variant (77) and impairment of the 

propagation of a natural [PSI+] variant (61). Second-site intragenic suppressors of SSA1-
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21 that map to the conserved GPTVEEVD C-terminal motif of Ssa1p, suggest that a 

productive interaction between Ssa1p and TPR co-chaperones is required for the Hsp70-

mediated effects on [PSI+] (71). Although deletion of the non-essential genes encoding 

the TPR co-chaperones Sti1p and Cpr7p negates the effects of Ssa1-21p, deletion of the 

genes encoding two other TPR co-chaperones (Cpr6p or Sgt2p) does not. Furthermore, 

suppression of SSA1-21 by deletion of the CPR7 gene is reversed if the CNS1 gene is 

over-expressed in these cells. Therefore, for Ssa1-21p to alter prion propagation, a 

productive interaction with a sub-set of TPR co-chaperones is required (61). The effects 

on yeast prion propagation of over-expression of either TPR co-chaperones or Hsp40s 

suggests an Hsp70-dependent mechanism that involves the stimulation of Hsp70 ATPase 

activity and promotion of substrate binding. 

 

The finding that Ssa1-21p requires a productive interaction with TPR co-chaperones 

raises the possibility that chaperone complexes containing Hsp90 may be involved in 

prion propagation since Hsp90s also contain the highly conserved EEVD C-terminal 

motif in common with Hsp70s (83). However, over-expression of Hsp90 has no effect on 

prion propagation or curing by Hsp104, and the defects in prion propagation seen in the 

SSA1-21 mutant are not altered in strains expressing Hsp90 deleted for the C-terminal 

MEEVD domain (61,67). Perhaps it is the functional interaction between Hsp70 and the 

TPR co-chaperones that is independent of physical interactions between the TPR motif 

and the C-terminus of Hsp70 that is important for prion propagation? 
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Fes1p, a recently described nucleotide exchange factor for Ssa1p in both yeast (84) and 

humans (85), accelerates the release of ADP from substrate-bound Ssa1p (Figure 3) while 

Sti1p and Cns1p are activators of Ssa1p ATPase (86,87). In keeping with this 

antagonistic action to Hsp70 TPR co-chaperones, if FES1 is deleted in SSA1-21 cells then 

the [PSI+] prion is no longer propagated (61). Conversely, over-expression of FES1 in 

SSA1-21 cells produces a “stronger” [PSI+] phenotype (61). These data suggest that 

promotion of substrate binding by Hsp70 impairs [PSI+] propagation. 

 

The genetic data emerging suggest that in conjunction with a sub-set of co-chaperones, 

Hsp70 plays a central role in the propagation of yeast prions (Figure 4). This role 

involves the binding and release of a prion or prion-related substrate that is essential for 

the maintenance of the prion. In the same manner as Hsp70 interacts with denatured or 

partially folded polypeptides, the Hsp70-prion substrate interaction is finely balanced and 

linked to the Hsp70 ATPase cycle. 

 

Chaperones and mammalian prions? 

Given that the Hsp70 chaperones have been highly conserved through evolution, it is 

conceivable that the mammalian Hsp70 homologues may play a role in the propagation 

of the prion form of PrP. However, although it has been reported that BiP (a member of 

the Hsp70 family) is able to bind to mutant forms of PrP (88), the only chaperone that 

appears to facilitate the in vitro conversion of PrPC to a protease resistant form  is the 

bacterial chaperonin GroEL (89,90), but importantly this form has not been shown to be 

infectious. Other chaperones must also play a role in the correct folding of PrPC, for 
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example inhibition of Hsp90 by geldanamycin leads to a change in PrPC conformation 

and/or glycosylation (91). How prion seeds are generated in non-dividng cells is not 

known but their generation via a molecular chaperone-mediated process of aggregate 

dissociation is an attractive model and one that is made all the more attractive by the 

discoveries made in yeast.. 
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ABBREVIATIONS USED 

 

AAA+, ATPase associated with a variety of cellular activities; BSE, Bovine Spongiform 

Encephalopathy; CCT, cytosolic chaperonin containing T-complex polypeptide-1; CJD, 

Creutzfeldt-Jakob disease; GdnHCl, guanidine hydrochloride; GFP, green fluorescent 

protein; Hsp, heat shock protein; PrD, prion-forming domain; PrPC, soluble, non-

infectious form of the mammalian prion protein PrP;  PrPSc, insoluble, infectious form of 

PrP; TPR, tetratricopeptide repeat motif; TSE, Transmissible Spongiform 

Encephalopathy 
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FIGURE LEGENDS 

 

 

Figure 1. Cooperative functions of Hsp104, Hsp70 and Hsp40 

When exposed to stress, such as heat-shock, proteins can become denatured or misfolded 

and form into amorphous aggregates. The action of Hsp104, aided by Hsp70 and Hsp40, 

results in a disaggregation of amorphous aggregates into substrates that Hsp70 and Hsp40 

can act upon and aid in their correct refolding. It is still unclear in what order these 

chaperones interact with the initial larger aggregate, and this order may well vary 

depending on size or other physical nature of the aggregate. 

 

Figure 2. Aggregation of GFP when fused to a yeast prion domain 

When the prion-forming domain (PrD) of a yeast prion protein is fused in-frame with 

Green Fluorescent Protein (GFP), the resulting GFP fusion protein will to coalesce into 

large aggregates if the cell already contains the prion form of the wild-type prion protein. 

In the example shown, the Sup35p-PrD –GFP fusion protein has been expressed in a 

[PSI+] strain and the resulting aggregates indicated by arrows.. 

 

Figure 3. Regulation of Ssa1p reaction cycle by co-chaperones.  

Substrate binding is finely tuned by hydrolysis of ATP and nucleotide exchange. 

Stimulation of Hsp70 ATPase has been demonstrated for Ydj1p, Sis1p, Sti1p and Cns1p. 

Genetic data suggest Cpr7p may also stimulate Hsp70 ATPase. Nucleotide exchange is 

facilitated by the action of Fes1p. 
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Figure 4. A model for the role of the Hsp40 and Hsp70 chaperones in yeast prion 

propagation.  

Once a prion has formed in S. cerevisiae, the chaperone functions of Hsp104 and Hsp70 

maintain the propagation of the infectious protein. Hsp104 is the key component in 

generating infectious prion seeds from pre-existing amyloid aggregates (see Figure 1). 

Hsp70 also affects the seed generation process, and appears to require interaction with 

Hsp40 and TPR co-chaperones to function in this capacity. The complex genetic 

behaviour of the various Hsp70s and their co-chaperones in prion propagation suggest 

that subtle differences in Hsp70 substrate recognition may be achieved by altering the 

composition of an Hsp70-Hsp40-Tpr complex. The nature of the Hsp40 and Tpr co-

chaperones interacting with a particular Hsp70 may also affect Hsp70 substrate 

preference in its function in the stress response. It is also conceivable that a preference 

exists between highly homologous cytosolic Hsp70s and the choice of Hsp40 and Tpr 

partners. The conserved nature of the majority of chaperones involved in prion 

propagation in yeast and their mammalian counterparts, suggests that a similar 

mechanism for PrPSc maintenance may exist. 
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Table 1: Major chaperone and co-chaperone families in the yeast cytosol 

Family Members General functions 

Hsp100a Hsp104 Protein disaggregation, stress tolerance. 

Hsp90b Hsc82, 
Hsp82 

Protein folding and stress tolerance. Most substrates appear to 
be involved in signal transduction. 

Hsp70b Ssa1-4p 
Ssb1-2p 
Sse1-2p 
Ssz1p 

Protein folding and stress tolerance. Bind to denatured 
proteins and prevent aggregation. Also involved in aspects of 
protein translocation and translation. 

Hsp40c Ydj1p, 
Sis1p  

Deliver peptide substrates and stimulate ATPase activity of 
their relevant Hsp70 partner. Sis1p is involved in translation 
initiation. 

Hsp70/Hsp90b 
co-factors 

Sti1p, 
Cpr6p, 
Cpr7p, 
Cns1p 

Aid in the Hsp70-Hsp90 protein folding cycle. Sti1p bridges 
Hsp70 to Hsp90 and regulates ATPase activity of both 
proteins. 

Small Hspsd Hsp26, 
Hsp42 

Form oligomeric complexes that bind to unfolded proteins and 
prevent aggregation. 

 

 

FOOTNOTE 
a Detailed review in Weibezahn et al. (12).  
b Detailed review in Wegele et al. (10). 
c Detailed review in Fan et al. (82).  
d Detailed review in Walter and Buchner (2) 

 

Chaperones and co-chaperones in bold have been implicated in the propagation of yeast 

prions (see text). 
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	Chaperones are also required to rescue proteins that, as a consequence of having deviated from their desired folding pathway, have become misfolded and aggregated. This can arise spontaneously or as a consequence of a cell being subject to environmental stresses such as heat shock. Specific chaperones unfold the misfolded or aggregated protein and, in conjunction with other chaperones, rescue the protein by sequential unfolding and refolding the protein back to its native and biologically active form. 
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