

Evaluate and Benchmark Aris

Felicia Halim

Dissertation 2014

Erasmus Mundus Msc in Dependable Software Systems

Department of Computer Science

National University of Ireland, Maynooth

Co. Kildare, Ireland

A dissertation submitted in partial fulfillment

of the requirements for the

Erasmus Mundus MSc Dependable Software Systems

Head of Department: Dr Adam Winstanley

Supervisors: Dr. Diarmuid O’Donoghue and Dr. Rosemary Monahan

July, 2014

Declaration

I hereby certify that this material, which I now submit for assessment on the program of

study leading to the award of Master of Science in Dependable Software Systems, is entirely my

own work and has not been taken from the work of the others save and to the extent that such

work has been cited and acknowledged within the text of my work.

Felicia Halim

Acknowledgment

 I would like to thank Dr. Diarmuid O’Donoghue and Dr. Rosemary Monahan from the

National University of Ireland, Maynooth for their help and support during the project. I also

thank Daniela Grijincu, Mihai Pitu, and Fahrurrozi Rahman, who also involved in Aris project for

their help and input.

1

Abstract

In this paper, we present evaluation and benchmark of Aris (Analogical Reasoning for reuse of

Implementation & Specification). Aris aims to increase the number of verified programs by

promotes the advantages of code reuse and the possibility of transferring specifications

between similar implementations. Source code retrieval in Aris acts as an enabling technology

for the reuse of formal specifications. Although the result of the early version of Aris is

encouraging and show potential reuse of formal specifications, it still has many rooms for

improvements and wide possibility for feature enhancement. By using experimental

methodology, we identify the issues and limitation of Aris 1.0. We develop Aris 2.0 that improve

the construction of conceptual graph, reduce the occurrences of false variable and loop

mapping, enable adjustment for transferring specifications between different iteration process

of for loop, and support assert and assume specifications transfer. We also introduce new

metric (specification score) to ensure that the top ranked retrieved documents possess good

quality specifications for transferring specifications. Finally, we compare the performance of Aris

1.0 and Aris 2.0 as retrieval and mapping system and also its ability to create the verified

specification. In order to evaluate and benchmark Aris, we use 2 million methods of unverified

implementations real world example amongst verified implementation. Our overall result shows

the improvement in Aris 2.0 able to produce more successful mapping between similar source

code files, increase ranking precision in retrieval phase, and generate more verified

specifications.

2

Contents

Abstract……………………………………………..………………………………………………………………………………………1

1. Introduction ... 4

1.1. Problem statement .. 4

1.2. Design by Contract ... 4

1.3. Introduction to Aris .. 5

1.4. Source code retrieval ... 7

1.5. Source code matching .. 7

1.6. Motivation .. 9

1.7. Conclusion .. 10

2. Related Work and Aris 1.0 ... 11

2.1 Source Code Similarity Detection Technique ... 11

2.2 Source Code Matching on Aris 1.0 ... 12

2.2.1 Conceptual Graphs .. 13

2.2.2 Graph Construction Algorithm .. 16

2.2.3 Analogical Reasoning .. 18

2.2.4 Incremental Analogical Machine (IAM) .. 19

2.2.5 Comparing Conceptual Graph using IAM Algorithm .. 21

2.2.6 Analogical Inference and Pattern Completion.. 27

2.3 Source Code Retrieval .. 29

2.4 Source Code Retrieval on Aris 1.0 .. 29

2.5. Conclusion .. 32

3. Aris 2.0 ... 34

3.1 Overview .. 34

3.2 Methodology .. 34

3.3 Issues in Aris 1.0 and its improvement in Aris 2.0 ... 36

3.3.1 Poor Mapping in Loop Construct .. 36

3.3.2 False Variable mapping ... 39

3.3.3 Translate Statement in Conceptual Graph ... 42

3

3.3.4 Lexical Similarity Problem ... 43

3.4 Added Features in Aris 2.0 ... 44

3.4.1 Specification score metric in the retrieval module... 44

3.4.2 Adapt Specification transfer for Increment/Decrement for Loop 46

3.4.3 Assert and Assume Transfer Specification .. 48

3.5 Conclusion .. 51

4. Evaluation .. 52

4.1 Document corpus .. 52

4.2 Aris result on Mapping and Retrieval (based on Wilkinson 1994) 56

4.3 Aris Result on Creating Specifications .. 59

4.4 Aris as Creativity Assistance Tool ... 62

4.5 System limitation.. 67

4.6 Conclusion ... 68

5. Conclusions .. 69

5.2 Future Work .. 71

References .. 72

4

1. Introduction

1.1. Problem statement

Nowadays, we depend more with software system to do daily activities such as check bus

schedule with mobile application or do online banking transaction. As more people use the

software system, it is crucial to ensure that this software is reliable software. However,

software faults sometimes are unavoidable and it leads to time and cost inefficiency or even

cause system failures in critical applications (e.g. overflow exception that caused the Arianne 5

missile crash (Johnson, 2005)). Therefore, there are increasing interest to proof the correctness

of the system. Verification (Hoare, et al., 2009) is able to formally prove that the software will

behave correctly (within the bounds of its specification) and fulfill its intended purpose.

Formal Software Verification uses formal methods of mathematics to construct a formal

proof of a program’s correctness. Proving correctness of a program is measured with respect to

a Formal Specification which describes how the program will behave in certain situations.

(Woodcock, et al., 2009) have discussed various improvements in software verification

technology. Formal programming languages that implement Design-by-Contract (DbC) (Meyer,

1992) have been developed in order to allow specification of programs written in languages

such as Java and C#.

Source code retrieval may act as an enabling technology for the reuse of formal

specifications. The basic principle of software reuse is building a new software system based on

contents of existing systems. Aris (Analogical Reasoning for reuse of Implementation &

Specification) project (Monahan. R and O’Donoghue, 2012) presented in this paper as useful for

retrieving source code for reuse for creating formal specifications.

1.2. Design by Contract

Object oriented technique is widely used in the software development. There is a particular

attention to the Dependability in object oriented development. Dependability can be defined as

5

the combination of correctness and robustness, or in a straightforward term, as the absence of

bugs. One way to guarantee the dependability is by relying on the concept of design by contract

(Meyer, 1992). A contract protects two entities: the client, who calls the specified routines and

entitled to receive certain results without knowing about the implementation; the supplier, who

maintains and assures that the implementation, meets the required functionality. Design by

contract (DbC) pattern was first applied in the Eiffel programming language and Meyer puts the

effort to popularize the approach to different programming languages such as C# and Java.

Applying DbC for a programming language is called Programming by Contract (Meyer, 1989).

The main principle for Programming by Contract is specifying different constraints using a

formal specification language which implied from precondition, postcondition, and class

invariants. Precondition implies the constraints under which the software component will

function correctly, postcondition implies the constrains of expected results after the execution,

and class invariants implies the statements that always true during the lifetime of the objects for

all class instances.

Microsoft research has developed Spec# programming language that extends the capability

of C# and enables software developer to document software design decision in the code.

Based on (Leino, et al., 2004), Spec# programming system has a program verifier to check

whether the implementation is correctly corresponds to the specification. While software

developer explicitly specifies their assumption in the code, Spec# makes sure the program

works under specified assumptions. It supports pre and post condition, invariants, and other

specifications using clause such as ensures, modifies, requires, invariant, assert, or assume.

1.3. Introduction to Aris

Although there are significant benefits of writing verified software, the practice of writing

formal specification is not largely adopted. One reason is because users face major difficulty to

learn how to interact with formal verification tool such as how to write good assertions that

describe what the program must do, and how to develop appropriate implementation so that

the verification goal can be achieved more easily (Leino & Monahan, 2007). Moreover, Formal

6

verification tool uses many mathematical approach which people sometimes hard to

understand in limited amount of time. The cost and time allocated to train people in this field

also expensive.

Aris1 (Analogical Reasoning for reuse of Implementation & Specification) project (Monahan.

R and O’Donoghue, 2012) aims to promote the use of Spec# programming language in order to

increase the number of verified software. The system reuses and transfers specification from

previous verified programs, thus making software verification more accessible to software

developers.

Figure 1.1. Overall architecture of Aris

Aris is a form of integration of sub-project of Source Code Retrieval using Case Based

Reasoning (Pitu, 2013) and Source Code Matching for Reuse of Formal Specifications (Grijincu,

2013). Source Code Retrieval using Case Based Reasoning is responsible to retrieve similar

verified code from past solutions based on semantic and structural characteristics of source

code. Source Code Matching for Reuse of Formal Specifications (Grijincu, 2013) transfers the

1
 Irish for “again”

7

specifications from verified program to other program based on the mapping source code level

implementations. The overall architecture of Aris can be seen in Figure 1.1.

1.4. Source code retrieval

Based on a survey conducted by (B. Dit, etc, 2013), there is various approaches of feature

location techniques for software reuse. One specific example is an approach based on

information retrieval that uses information from software repositories. Source code retrieval

module in Aris creates a framework that able to automate the writing of specifications by

reusing existing verified software artefacts. Aris will retrieve programs from a large set of

samples and transfer formal specification from the retrieved implementation to the query. The

core concept of this module is software retrieval and a source code retrieval system is also used

in:

 Detecting plagiarism and code theft: There is a growing concern of plagiarism in

University programming class. Therefore, tools using retrieval techniques are built

nowadays to improve plagiarism detection.

 Programming by analogous examples: Programming by example (PBE) helps end-

user to build a program without prior formal training in programming. PBE uses

analogies mechanism to construct new knowledge based on understood previous

knowledge. Instead of creating the solution from the beginning, PBE supports reuse

of previous recorded examples. (Repenning & Perrone, 2000).

 Rapid prototyping: In the initial phase of software development, project stakeholder

and software engineers often use rapid prototype to list the software requirements

and discuss possible features. To reduce the cost of creating software prototype,

there are tools that can help to find the software component in the open source

repositories. (McMillan, et al., 2012).

1.5. Source code matching

Central motivation of our research is the re-use of formal specifications obtained from

carefully selected similar methods. Given a repository of verified software, Aris matches the

8

new implementation to the most similar block of source code identified in the repository,

reusing that specification so the new implementation can be automatically verified. Although

methods for measuring source code similarity are beneficial in various scenarios; there are still

little research towards a framework for transferring and generating new specification. Thus, Aris

project comes as a novel approach in this area of research (Grijincu, 2013).

There are some few other fields in which system compares two source code files in its approach:

 Source Code Plagiarism Detection: Plagiarism ranging from copying source code or

adopting ideas from other authors without providing adequate acknowledgements

(Cosma & Joy, 2006). Plagiarism often occurs in programming class assignment.

Therefore, the marker of the assignment uses tool to automatically compare the

similarity of programming solution and detect the plagiarism.

 Software evolution: To maintain evolving software is an expensive process, as software

continues to grow, the complexity of the software also increases gradually. With the

increase in complexity, it is usually difficult to fully understand the modifications and

also an extension of the software. A source code similarity measurement is used to

detect trends and patterns in modification along a software life cycle development.

Thus, it would give a better understanding how software evolves (Bhattacharya, et al.,

2012).

 Code duplication management: Previous research reports (Chanchal, et al., 2009) the

proportion of code duplication in software systems may be as low as 5% or even as high

as 50%. Duplicated code brings negative impact in maintenance effort. Redundant codes

also increase resource requirements. One might remove duplicate code by refactoring,

though not all duplicate codes are removable using this way. Therefore, there are needs

to detect and manage code duplication efficiently.

9

1.6. Motivation

Although the result of the early version of Aris is encouraging and show potential reuse of

formal specifications, it still has many rooms for improvements and wide possibility for feature

enhancement. In this project, we address the following question: How we evaluate and

benchmark first version of Aris (Aris 1.0)? We propose to use experimental methodology

(Amaral, et.al, 2007) to address the research question. Experimental methodology can be

divided into exploratory phase and evaluation phase. In exploratory phase, we collect a list of

questions regarding the performance and competence of Aris 1.0 as the retrieval system for

specifications reuse. Then, we attempt to answer the questions produced in the exploratory

phase in the evaluation phase.

Based on the source code matching module evaluation result, we develop Aris 2.0 to

improve graph construction process, enhance IAM algorithm for finding valid mapping, generate

more verified specifications e.g. enabling the transfer of assert and assume specifications, and

adapt the specifications in the target context. Aris 2.0 will also improve the retrieval module of

Aris 1.0 to retrieve and rank the document not only based on the implementation similarity, but

also considering the possibility of each document for specification reuse.

In order to characterize the performance of Aris 2.0, we will benchmark the system against

Aris 1.0 focusing on the system ability to identify source code similarity, retrieve verified

documents in the retrieval module, and generate verified specifications in the problem domain.

The benchmarking process assesses the system performance in four different categories that

represent different degree of similarity with original unmodified implementation (Wilkinson,

1994):

 Identical implementations: There is no source code modification

 Small modifications: Transform the source by applying different levels of modifications

such as renaming variables¸ data type changes such as int and float, and change loop

constructs with its equivalent such as for and while (without change functionality).

10

 Medium Modifications: The modification introduce redundant statements or removing

certain statements (once again without change code functionality)

 Dissimilar: Alter the functionality of the program (e.g. from a program that sums the

element in the array into program that swap the element in the array)

1.7. Conclusion

We have presented the problem that we have focused on in this project. We also provide

the motivation for developing this project and describe its impact. The rest of the paper is

organized as follows: Chapter(2) gives an overview of previous version of Aris system which

later called as Aris 1.0 and also other related system and research that have influenced the

solution choice of Aris. In the Chapter (3), we present the methodology we have used to

evaluate and benchmark Aris. We also will explain our proposed solution to address problems

in the earlier version of Aris to improve the overall system. Finally, we present our evaluation

results in Chapter (4) and give our conclusions with future work discussion in Chapter (5).

11

2. Related Work and Aris 1.0

This chapter will give an overview of the previous version of Aris system which later called

as Aris 1.0 and also other related systems and researches that have influenced the solution

choice of Aris. Section (2.1) explains about code similarity detection techniques and classifies

them based on their approaches. Section (2.2) will summarize the concepts, terminology, and

algorithm used in the source code matching module in Aris 1.0. We will also give an overview of

other related researches in the retrieval module in Aris 1.0 (Section 2.3) and specifically

describe the implementation of the retrieval module in Aris 1.0 (Section 2.4).

2.1 Source Code Similarity Detection Technique

Software reuse has been a common practice in software development field which involves

copying and pasting of code blocks. The code clone usually needs slight modifications before it

is able to work properly in the new environment. (Bellon, et al., 2007) analyzes and compares

various tools and techniques used to detect source code similarity.

System such as CCFinder (Kamiya, 2002), PMD2, or Simian3 uses pattern-matching algorithm

which found to be effective to detect duplicated code or very similar segment of code that

scattered around large-scale enterprise project. The algorithm in pattern matching transforms

the source code as tokens or lexical entities and detects the similarity by finding the

occurrences of the pattern. This technique is known to be fast, but a very simple structural code

change will negatively affect the accuracy of the algorithm.

System such as MOSS4, YAP, or JPlag5 compares the structural properties of the programs

which is more effective when measuring the code similarity. The algorithm represents source

code as string tokens and compares using string based distance. These tools are common to

2
 PMD: Project Mess Detector. http://pmd.sourceforge.net/

3
 Simian: Similarity Analyser. http://www.harukizaemon.com/simian/index.html.

4
 MOSS: Measure Of Software Similarity. http://theory.stanford.edu/~aiken/moss/.

5
 JPlag: Detecting Software Plagiarism. https://jplag.ipd.kit.edu/

12

detect plagiarism in student’s assignments. However, (Hage, 2010) reported MOSS and JPlag

are sensitive to insertion of redundant statements such as the insertion of many

Console.Writeline statements.

Other systems parse programs into graph-based data structure and then extract several

metrics and perform structural comparisons of the source code. (Yang, 1991) compares source

code Parse Trees6. One of the weaknesses of this algorithm is each node are the actual

grammar of tokens and literals which make this approach too verbose representation and

provide no abstraction layer (Grijincu, 2013). On the other hand, abstract syntax trees 7 provide

some abstraction. However, it still preserves unnecessary information such as whitespaces or

punctuation.

Graph-based techniques have been widely used and are very active research area.

(Bhattacharya, et al., 2012) showed a different graph-based metrics extracted from AST can

help analyze software evolution and subsequently facilitate software development and

maintenance. The particular section is the usage of to calculate the importance of

the certain code component that represented by the node in the overall source code. The

 metric is used to reduce complexity in the graph matching algorithm.

2.2 Source Code Matching on Aris 1.0

Aris explores the possibility of transferring the specification between two similar programs

in order to reduce the effort of writing specifications. Aris measures the similarity of two

programs and if the similarity degree has value above the certain threshold, it will transfer the

specification. The mechanism of specifications transferring begins by comparing two C# source

code files. Each source code is represented as Conceptual Graphs (Pitu, et al., 2013) which able

to store the structure and content of the source code. It matches the graphs to identify the

structure mapping between two domains. The next step is to perform Analogical Reasoning

6
 Parse Tree - https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Parse_tree.html

7
 Abstract Syntax Tree - http://www.cse.ohio-state.edu/software/2231/web-sw2/extras/slides/21.Abstract-Syntax-

Trees.pdf

13

computational model called Incremental Analogy Machine (Keane & Brayshaw, 1988) to find

either isomorphic (exact matches) or homomorphic (non-identical) sub-graph mappings. Finally,

it transfers the specifications into target based on the detailed correspondences found by using

Copy with Substitution and Generation (CWSG) pattern algorithm (Holyoak, et al., 1994).

2.2.1 Conceptual Graphs

A Conceptual Graph [CG] was introduced by Sowa in 1984 with origins from the semantic

networks used in Artificial Intelligence and Sanders Peirce work on existential graphs. A

conceptual graph is a connected graph that has a finite number of nodes and also a bipartite

graph as it models the relation between two kinds of nodes: concepts and relations. Concept

node in CG is able to represent entities, attributes, and events in the knowledge domain. While

Relation node describes how concepts relate to one another. Each node in CG associated with

referent value which is a particular instance of the node.

CG relies on a support, which defines the syntactic constraints and provides background

information on a specific domain. This notion of support can be grouped by the following:

 A set of concept types which structured in a lattice and represents “is-a-kind”

relationship.

 A set of relation types

 A set of star graphs which shows for each relation concepts, which other kind of concept

types able to connect.

 A set of referent sets for concept vertices: at least a generic “*” marker and individual

markers which allow distinguishing and naming distinct entities.

Conceptual graphs have been implemented in various information retrieval applications,

natural language processing, database design, and source code retrieval.

In this project, Aris uses conceptual graph by starting to define the concepts and relations

that are allowed in the graph and indicate how they can connect each other and possible

14

referents each concept type can have. (Figure 2.1) explains the hierarchy of concepts based on

examining C# source code files. The description of each concept and relation can be seen in

Table 2.1 and Table 2.2 respectively.

Figure 2.1 Example of Hierarchy of concepts in C# source code files

Concept Type Description

AssignOP Assign new value to a field or variable. Assignment also
may perform operation such as addition “+=” or
subtraction “-=“

Block A set of concepts that are structurally grouped together.
For example, code inside curly brackets {..}.

Class A declaration or definition of a class

CompareOP A binary comparison operator such as “>=”, “!=”, etc

ENUM A declaration of an enumerated set of values

Field A declaration of variable directly in a class (a class
attribute)

IF A statement that controls conditional branching

LogicalOP Symbols that perform logical operation such as
“OR”,“AND”, etc.

LOOP Iteration statements that can cause statements to be
executed in number of times depend on termination
criteria.

15

MATHOP Mathematical operations such as “+”, “-“ , etc.

METHOD Code block that contains series of statements that perform
as function.

METHOD-CALL A method invocation or execution

NAMESPACE Declare a scope that contains a set of related object such as
one or more class, ENUM, etc.

NULL A null reference

STRING String represents a sequence of Unicode characters.

TRY-CATCH STATEMENT Try block followed by one or more catch clauses, which
specify handlers for specific exception.

VARIABLE An entity in the program that store specific type of value

Table 2.1 List of concepts and its description

Relation
Type

From
Concept

To Concept Description

Condition If Action Describe the conditional statement within the if
clause. String

 Variable

 Field

 Loop Action Specifies the conditional statement that determines
statements to be executed in number of times
depend on termination criteria.

 String

 Variable

 Field

Contains Action Action The action can use or depend on other concepts

 String

 Variable

 Field

 Block Action A block can contain this concept

 String

 Variable

 If

 Enum

 Try-catch

 Class Field A class definition contains this concept

 Method

 Enum String The enumeration elements are defined as strings

 Method Block The method definition contains a block of concepts

 If Action The branching statement can contain a block with
multiple concepts or just an action Block

 Loop Action The loop can contain or initialize other concepts

 Block

16

 Variable

 Field

 Namespace Class The namespace definition contains the class

Defines Block Namespace A block gives a definition of the namespace

Depends Block Namespace A block can depend other namespaces

Parameter Method String The method definition contains the concept as
parameter

 Variable

 Method-
call

String The method is called with this concept as parameter

 Variable

 Field

Returns Method Action The method returns a value

 Variable

 Field

 String

Table 2.2. List of relation types and explanation for concepts they can connect.

2.2.2 Graph Construction Algorithm

 Aris needs an Abstract Syntax Tree (AST) representation in order to analyze the C# source

code files. One way to generate AST for C# files is using Microsoft Roslyn Project. However, the

AST generated by Rosalyn does not provide any level of abstraction of conceptual graphs. For

example, a Loop concept refers to any of do-while, while, for, or foreach statements. Therefore,

the conceptual graph construction process takes the AST root and traverses all its descended

nodes in a Depth First Search8 manner in order to create the corresponding concepts and

relation in the conceptual graph. In Figure 2.2, we can see the mapping between the

expressions (nodes) at the AST level to the concept or relation nodes in conceptual graph and in

Figure 2.3, there is an example of conceptual graph representation of a simple program.

8
 Depth First Search - http://www.cse.ust.hk/~dekai/271/notes/L06/L06.pdf

17

Figure 2.2. Maps of expression (nodes) at the AST level to the concept or relation nodes in
conceptual graph (Grijincu, 2013)

public int Sum(int k){
 int s = 0;
 for(int n=0; n < k; n++)
 s+=n;
 return s;
}

Figure 2.3.The transformation of a program into conceptual graph

18

2.2.3 Analogical Reasoning

In order reducing the complexity of graph mapping9, Aris uses Analogical Reasoning (AR).

In every analogical process, we find similar situation and try to match with less familiar

situation. (Gentner & Smith, 2012) describes it as key process in scientific discovery, problem-

solving, decision making, and categorization, which is very active research of Artificial

Intelligence and Cognitive Science. A classic analogy (Gentner, 2006) example is between the

structure of the atom and the solar system – as planets revolve around the sun so do the

electrons revolve around the nucleus in the atom domain. (Keane, et al., 1994) point out most

important process involved in developing an analogical process:

1. Representation. In order to find the solution of a problem, Theproblem needs to be

represented in a meaningful form. (Novick, 1988) has shown that how the problem

is represented, affects subsequent success of the analogical transferring.

2. Retrieval. This step focus on finding the best candidate that matches with the target.

This step involves searching through the database and retrieving the most similar

one to the target.

3. Mapping. This step matches element of the base domain with element from the

target domain. It is often very complex and computationally expensive process.

4. Transfer. Based on mapping result, new knowledge is generated and transferred

into the target domain.

5. Evaluation. The transferred knowledge needs to be validated to ensure newly

generated knowledge is suitable within the target domain.

In Aris we use analogical reasoning of developing inferences and generating new

information in target code (which we want to formally specify using the existing specifications

from the base problem).

The most important process and unique to analogical reasoning is Analogical mapping. The

process takes as input two structured representations of the base and target domain and finds

9
 Graph Mapping known as NP hard task

19

the detailed collection of correspondence between them (Gentner, 1983). Correspondences are

linking particular elements from the base domain with particular elements in the target. The

most influential theory of analogical mapping is Gentner’s Structure Mapping Theory (SMT)

(Gentner, 1983) which involves aligning base and target domains by finding structural similarity

between them and developing candidate inferences. The SMT proposes some constraints for

the analogical mapping process:

 Structural consistency: It enforces one-to-one mapping of element between base and

target domain. This means ambiguous matches (one-to-many or many-to-one) have to

be replaced with one-to-one mapping.

 Systematicity: In order to develop mapping, connected group is preferred over

independent ones

Example of analogical mapping in the source code is for loop and while loop. Based on

(Gentner, 1983), the structure mapping theory was best identified with graph-matching

because structure mapping help extract detailed correspondences between two conceptual

graphs. One of the examples of SMT framework implementation is done by (O'Donoghue, et

al., 2006) in the GeoComputation domain.

2.2.4 Incremental Analogical Machine (IAM)

(Keane & Brayshaw, 1988) has developed the Incremental Analogy Machine (IAM) as a

computational model based on Gentner’s structure mapping theory that implements both

informational and behavioral constraints using serial constraint satisfaction (Holyoak &

Thagard, 1989). Rather than match every element in the domain at once, IAM constructs the

mapping incrementally by selecting small portion of base domain and mapping it before moving

to map another portion. The IAM algorithm by (Keane, et al., 1994) is described in the following

steps:

20

1. Select Seed Group. Rank each connected elements in the group and reorder them. Take

the first such group in ordered list as the seed group.

2. Select the Seed Match. Select the element in the first group and find good matching in

the target domain.

3. Find Isomorphic (One-to-One) Matches for the Group. Find valid matches between

elements in the selected group and target domain and enforce constraint satisfaction in

order to find one-to-one set of matched that discard ambiguity using pragmatic,

similarity, and structural constraints.

4. Find Transfers for the Group. Add candidate inferences to mapping based on matches

found in step 3.

5. Evaluate the group mapping. If the mapping is evaluated as being good, then continue

to step 6, otherwise go to step 2 to try with an alternative seed match. If there is no

better seed match, go to step 1 and find another group as the seed group.

6. Find other Group Mappings. Perform step 1 until step 5 to incrementally map

remaining unmapped groups.

IAM as a computational model that implements analogical mapping has shown good

performances compare to other computation model (Gentner & Forbus, 2011). IAM algorithm

greatly reduce the process of comparing two structural representations as it uses incremental

model that iteratively adds new mapping between the base and target domain, rather than try

to map all elements in the domain. Moreover, algorithm can do backtrack to find the

alternative mappings if current acquired mapping evaluated as less successful. However, there

are also challenging aspects of IAM algorithm. Firstly, the difficulty to select the good seed

group, algorithm that is used to rank elements in the groups is essential for finding a successful

seed group used in incremental process. Second, we have to define set of match rules and

constraints in order to determine valid matches and produces one-to-one mapping between

source and target domain, specific rules must be applied to discard ambiguous matches such as

one-to-many and many-to-one mappings (Griijincu, 2013).

21

2.2.5 Comparing Conceptual Graph using IAM Algorithm

Earlier research in comparing conceptual graph is Sowa’s set of projections and morphisms

defined in (Sowa, 1984) by measuring the distance between two concepts from the support of

the graph and also known as semantic distance. Sowa’s approach, however, is too strict and

focuses on finding structurally identical graph or sub-graphs, for Aris we are interested in

finding and matching homomorphic graphs (allow different level of structures to be mapped

together). Moreover, this algorithm also works together with the Source Code Retrieval module

in Aris where the nature of retrieval model usually allows a certain degree of “fuzziness”

(Mishne, 2003).

The graph matching is known to be difficult due to NP-Completeness10 nature of the

problem. (Bunke, 2000) has discussed the recent development of graph matching in numerous

applications including case-based reasoning, machine learning, conceptual graph, etc. Although

there is a standard algorithm for graph and subgraph isomorphism detection that guarantees to

find the optimal solution, it requires exponential time and space. Therefore (Mishne & De Rijke,

2004) avoid this by doing node-by-node comparison which also known as maximally similar

concept. They compare a concept in graph to all concepts in graph and the complexity

would be .

Aris uses Incremental graph matching algorithm based on Incremental Analogy Machine

(IAM) (Keane & Brayshaw, 1988). The main reason for choosing IAM algorithm is because it

allows us to explore the nature of conceptual graph and able to obtain similar results to

human’s analogical reasoning process: it is able to generate complex mapping relatively quick

and can reconsider the mapping and generate new alternative ones (Keane, et al., 1994).

Aris compares two source code files that have related structure by first constructs the

conceptual graph representation of both files and computes the node ranks for each concept or

relation in the graphs using the Node Rank metric. We later map the two graphs by selecting

10

 NP-completeness - http://cs.brown.edu/~jes/book/pdfs/ModelsOfComputation_Chapter8.pdf

22

their sub-graphs and doing node-by node comparison in an analogical mapping process which

composed by following steps:

2.2.5.1 Sorting nodes by Node Rank

(Bhattacharya, et al., 2012) proposed Node Rank which is similar to the Page Rank 11(Brin &

Page, 1998) that represents a probability score proportional to the number of times a random

surfer would visit a particular web page. Node Rank is used to reduce complexity of the

incremental matching process by mapping nodes based on their relative importance in the

graph. We sort elements in the base and target domains such that the highest ranked nodes

means the most important element in the program. This means we measure the structural

importance of the nodes based on their ongoing and outgoing edges to or from it.

Node Rank algorithm measures the importance of the certain code component that

represented by the node in the overall source code by assigning numerical weights for each

node in conceptual graph. We define the formal description of the recursive calculation of the

node in a graph as follows: let denote a node in the graph, represents node

rank,) represents the set of nodes that have an outgoing edge into u and

 represents the number of edges going out the node u. An iterative process

calculates a new in every iteration as the sum over all .

 The iteration process stops when the values converge. Here the definition of convergence in

here is when the difference between old sum and current sum is less or equal to 0.001, or the

iteration limit has been exceeded, e.g. > 50. In order to enable convergence, after each

iteration, the node ranks are normalized so that their sum adds up to one.

11

 Page Rank. http://homes.cs.washington.edu/~pedrod/papers/nips01b.pdf

23

2.2.5.2 Selecting sub-graphs

Next we map the two graphs by selecting their sub-graphs. This is the key process to reduce

the complexity of analogical mapping where it incrementally selects the sub-graph from the

source domain to map with target domain instead of mapping all elements from base to target

in an exhaustive manner. We uses sorted node rank values and then map the methods one-by-

one in a decreasing manner. The mapping algorithm enforce 1-to-1 mapping.

2.2.5.3 Mapping Sub-graphs

Both methods in the source and target domains are represented by conceptual graph. First,

we employ parameter subgraphs check between the parameter of the method by comparing

each parameter of the base domain method with every parameter of the target method (This

can be done by looking at the concepts connected by the Parameter relation in the

corresponding sub-graphs). Next measure similarity score between two concepts to select the

best possible mapping.

The rest of the concepts that describes the body of the methods become the second sub-

graph. Each concept in the source domain is mapped to the most similar concept in the target

domain by taking each candidate under decreasing order of NR value. We do not search the

whole space of the target domain, instead we use a threshold parameter called

that represents the number of concepts in the target to which we compare each concept from

the base domain. To ensure that the mappings are consistent, we use a Boolean function valid

(Section (2.2.5.6)) that determines whether a match is accepted as valid and added into inter-

domain mapping (consisting individual elements from the base and their corresponding

element from the target). If a match is not considered valid, using backtracking, we try to match

the current base element to the next highest NR valued element from the target until

 threshold is exceeded (it was set to 10).

24

2.2.5.4 Resolving ambiguities

To enforce 1-to-1 correspondence, Aris uses inter-domain mapping as a structure holding

 triples where keys are concepts from the source domain and the values

are also pairs in which the keys are the corresponding mapped concepts from

the target domain and the values are sim, the similarity score obtained. Whenever it finds

potential valid match between concepts from the source and target domains, Aris checks for

possible ambiguities:

1. Many-to-one mappings: Multiple concepts in the source domain correspond to one

concept in the target domain.

2. One-to-many mappings: A concept from in the source domain corresponds to multiple

concepts in target domain.

In both cases, the algorithm replaces the old mapping with the new found if the new

correspondence has higher sim score.

2.2.5.5 Evaluating sub-graph mappings

This process corresponds to the evaluation steps in IAM algorithm. Aris performs minimal

evaluation by setting threshold of mapped elements in the group. Aris uses 50% mapping

threshold or known as IAM mapping constraint. If the mapping considered as successful, then

it incrementally map for the next group (other method) in the class. Although there are

separate sub-group mapping, the incremental mapping activities contributes to one same inter-

domain mapping, forming one consistent interpretation of the comparison.

 When the mapping process finishes finding all the valid matches between sub-graphs in

the source and target domain, then the graph similarity score is the number of valid matches

between two domains over the total of actual nodes in source domain, which can be formally

written as:

25

 Aris calculates similarities by considering mapping from source to target and mapping

target to source. The mapping result will not be symmetric if the source and target are different

as the process rely on the order and the number of seed groups in the domain. The final score

for calculate a similarity is average score in both ways or it can be formally written as:

However, for generating and transferring the specification Aris 1.0 only relies on the graph

matching result from source to target without considering the target to source graph matching

result.

2.2.5.6 Mapping constraints

In order to check the validity match between two conceptual nodes, the algorithm enforces

some match rules and constraints which implemented as similarity functions that check if

certain properties hold in the mapping.

1. Type Similarity function: Ensuring the mapping only between the same type entities (i.e

Variable with Variable, Defines with Defines) which greatly reduced unnecessary match

and make the mapping process more efficient. The formal definition of similarity

function is:

2. Structural similarity function: Ensuring the structural consistency by checking the

nodes having edges into or from input nodes also have the same concept type. This

function particularly useful to eliminating the ambiguous mappings since the most

26

structurally similar matches will return the highest similarity score. function

compares the nodes on immediate upper and lower levels in both graphs and then

count the number of nodes that have the same concept types and divides it with total

number of nodes from the largest context of the input node.

Figure 2.4. Example of graph to calculate structural similarity function where graph in
the left hand side is part of the method from example1.cs and

the graph in the right hand side is the part of the
method from example2.cs (Grijincu, 2013)

To demonstrate the similarity function, see Figure 2.4 as an example. Method:Sum are

the input nodes, it has 2 pairs of nodes that have the same type (Contains-Contains,

Parameter-Parameter) and an equal number of 4 nodes in both contexts. Thus the

3. Content Similarity function: This function compares the similarity of information that is

stored in concept types. For Variable, Field, and Method concept types, it checks

whether types have the same super-type or one is the sub-type of the other within class

hierarcy e.g variable int and double. If both types come from same hierarchy or one is

the sub-type of the other or both have the same type, then content matching similarity

score is 1 and 0 otherwise. For the rest of the concepts that have referent value

27

(CompareOp, LogicalOp, MathOp, and Loop), it use Levenshtein 12string distance that

computes the similarity between two input strings. The returned score for content

similarity between 0 and 1, where 1 represents the maximum values of similarity.

After computing of each similarity function, then, we need to calculate the overall similarity

score sim, which can be defined as:

It uses = 0.5, =0.3 and = 0.2

From the overall similarity score, it defines the next function that will decide

whether to accept mapping as being valid or reject it. The formal definition of can

be defined as follows:

2.2.6 Analogical Inference and Pattern Completion

Aris uses an algorithm from pattern completion called CWSG – Copy with Substitution and

Generation (Holyoak, et al., 1994) to generate analogical inferences. CWSG transfers the

specification from Base code and adds it to the target code by substituting source code items

with their mapped equivalents. Thus, it transfer modifies, requires, ensures, and invariant

statements with mapped equivalents. In Table 2.3, there are examples of program from source

and target domain and Table 2.4 presents the detailed correspondences between their

conceptual graphs. These examples also presented in (Grijincu, 2013).

12

 Levenshtein string distance - http://software-and-algorithms.blogspot.ie/2012/09/damerau-levenshtein-edit-
distance.html

28

// base
public static int Sum(int k)
requires 0 <= k;
ensures result==sum{int i in (0:k); i};
{
 int s = 0;
 for (int n = 0; n < k; n++)
 invariant n <= k;
 invariant s == sum{int i in (0:n); i};
 {
 s += n;
 }
 return s;
}

// target
public static int Sum(int x)
{
 int add = 0;
 int k = 0;
 while (k < x)
 {
 add += k;
 k++;
 }
 return add;
}

Table 2.3. Base and target methods examples. Although their structure slightly different
in loop constructs (base uses for loop and target uses while loop), both implementations are

highly similar.

{ Parameter } matched with { Parameter } (1)

{ Variable: k } matched with { Variable: x } (1)

{ Variable: n } matched with { Variable: k } (0.96)

{ Variable: s } matched with { Variable: add } (0.9429)

{ Method: Sum } matched with { Method: Sum } (0.8)

{ Loop: For } matched with { Loop: While } (0.725)

{ Condition } matched with { Condition } (1)

{ Contains } matched with { Contains } (1)

{ Assign:* } matched with { Assign:* } (1)

{ Contains } matched with { Contains } (1)

{ Contains } matched with { Contains } (1)

{ Block:* } matched with { Block:* } (0.8)

{ Contains } matched with { Contains } (1)

{ Contains } matched with { Contains } (1)

{ CompareOp: < } matched with { CompareOp: < } (1)

{ Contains } matched with { Contains } (1)

{ Contains } matched with { Contains } (1)

{ Assign:* } matched with { Assign:* } (0.8)

{ Contains } matched with { Contains } (1)

{ Contains } matched with { Contains } (0.7)

{ Contains } matched with { Contains } (1)

{ Block:* } matched with { Block:* } (0.8)

{ Contains } matched with { Contains } (1)

{ Assign:* } matched with { Assign:* } (0.8)

{ String: 0 } matched with { String: 0 } (1)

{ String: 0 } matched with { String: 0 } (0.8)

{ Contains } matched with { Contains } (1)

{ Returns } matched with { Returns } (1)

{ Block: Root } matched with { Block: Root } (1)
Table 2.4. Output of IAM algorithm containing element correspondences of base and

target domain in Table 2.3

Based on the correspondence found in IAM algorithm, variable in base domain can be

mapped with variable in the target domain. We can use these mapping to generate new

29

specification by replacing the appropriate variables that appear in requires, ensures, and

invariant statement with their mapped equivalents. The solution can be seen in Table 2.5.

public static int Sum(int x)
requires 0 <= x;
ensures result==sum{int i in (0:x); i};
{
 int add = 0;
 int k = 0;
 while (k < x)
 invariant k <= x;
 invariant add == sum{int i in (0:k); i};
 {
 add += k;
 k++;
 }
 return add;
}

Table 2.5. Example of target code with its specifications transferred

2.3 Source Code Retrieval

Source code retrieval requires understanding of the structure and content of the code (Pitu,

2014). (Michail & Notkin, 1999) presents two matching techniques that used in source code

retrieval which are name matching and similarity matching. The name matching method

matches components that have standardized name in the library of specific programming

language. Similarity matching uses text in the libraries applying free-text indexing technique that

used in conventional information retrieval. (Mishne & De Rijke, 2004) has proposed model for

source code retrieval by using conceptual graph as source code representations. Conceptual

graph allows extracting the contents and structural characteristics of source code.

2.4 Source Code Retrieval on Aris 1.0

Retrieval module in Aris generates new specifications using previous knowledge recorded in

memory. The overall methodology of retrieval module in Aris is similar to Case-Based Reasoning

(CBR). Case Based Reasoning (Kolodner, 1993) is an Artificial intelligence technique that focuses

30

on problem solving and it is a form of Instance Based Learning (Russell & Norvig, 2003). In CBR,

new problems are solved by searching and retrieving similar previous problems (cases) from

memory and reusing the old solutions by transferring knowledge to the new problem. Case-

Based reasoning approach in Aris works as follows: for a given unverified implementation as

input query, similar implementations are retrieved from case-base by exploring structural and

semantic similarities between the query and memory source code artefacts and also combined

with the similarity score from the source code matching module. The results will be displayed in

decreasing rank manner depends on the similarities between the query and retrieved candidate;

the top ranked source code artefacts potentially generate a new specification for the query. The

specification is transferred to the input implementation until generated specification is verified

using existing formal method tools. If previous step is successful, the new solution is retained for

further use. In order to perform knowledge transfer using formal specifications on large set

implementations, this module use repository of software artefacts from managed compiled

assemblies such as Dynamic-Link Libraries (DLLS) or Executables (EXEs).The repository contains a

small set of verified implementations using Spec# formal method and extended with a large

number of open source programs.

 Semantic retrieval process in the retrieval module of Aris uses the API Vector Space

Model (VSM) (Salton & McGill, 1986) for representing source codes and computing similarities

between these representations. Vector Space Model is a procedure capable of representing

documents as vectors where the documents in this context are usually considered textual, but

the technique actually can be applied to various other document types (objects). VSM treats

documents as bags of terms and applies weighting for each indexed term in order to achieve

document retrieval. In this project, the similarity score computed based on number of shared

API calls in documents (source code). The used of API calls is justified by real world software

applications since they have precisely defined semantics unlike variable names, type, or

method names that programmers use. Source code in document is represented as vector of

real numbers and similarity between two documents by division of dot product of those two

vectors and product of the vector Euclidian lengths.

31

Another technique used in the retrieval phase of Aris is Structural Retrieval. This

technique focuses on structural topological characteristics of the source code. This process can

be run independent without semantic retrieval process as it use different representational

structure for source code and different source code artefacts from the case base are

structurally similar to the query. In this project, Structural retrieval process in the retrieval

module of Aris computes the similarity between the query and the cases in memory (associated

with the source code artefacts) by exploring the structural characteristics of the source code

derived from Conceptual Graphs. Conceptual Graph is used in this process because it enables us

to explore both semantic content and structural properties of the source code using graph-

based technique. Conceptual graph also contains much more detail information regarding

original source code document rather than other alternate Abstract Syntax Trees and Parse

Trees. In this project, Aris uses Content Vectors (Gentner & Forbus, 1994) to represent

structures which encode information extracted from the conceptual graph. Content vectors are

an encoding mechanism for structured representations. For each of conceptual graph

representation of a source code artefact, measures and metrics used are as followed (Pitu,

2014):

 Vertex count(#V) : number of vertices

 Edge count(#E) : number of edges

 Average degree: two times number of edges divided by number of vertices

 Graph diameter: the longest shortest path between any two vertices

 Maximum out degree: maximum number of outgoing edges in a node

 Maximum in degree: maximum number of incoming edges in a node

 Average node rank: average node rank between all nodes

Since the Case-Base size can be very large, therefore the comparison of query is limited to only

relevant source code artefacts.

Retrieval in is combining the results from semantic and structural retrieval. These

two processes are independent as each of them analyzes different properties of documents

relative to the query. Besides working as independent process, they are design to complement

32

each other and their symbiosis is reached through combined retrieval, where both structural

and semantic features are reflected in the results.

In order to assess the correctness of the retrieval algorithm and perform knowledge

transfer using formal specification on a larger set of implementations, we use a repository of

software artefacts. This repository also supported from an architectural point of view where

Aris uses Case Base Memory approach. Case Base Memory is a collection of past cases which

aggregates source code artefacts optionally associated with the corresponding formal

specification for that implementation.

The repository consists of corpus of documents from managed compiled assemblies

such as Dynamic-Link Libraries (DLL) or Executables (EXEs). There are some benefits of using this

approach which are the compactness of the corpus, documents are with high probability

finished work (at least free of compilation errors), and the documents contain Common

Intermediate Language (CIL) can be converted back into C#, VB, F#, etc. This means that the

code retrieval algorithm can be used independently for a wide range of programming languages

that are translated to CIL, and fully qualified API calls can be easily extracted directly from CIL

code.

2.5. Conclusion

In this chapter, we have explained related systems that influenced the development of Aris

and the earlier version of Aris (Aris 1.0). We discussed in detail the source code matching

module (Section 2.2) (Grijincu, 2013) and Source Code Retrieval (Section 2.4) (Pitu, 2013). The

source code matching module represents source code files as conceptual graph and mapping

two such representations. Their approach on the Analogical Reasoning process finds detailed

correspondences between the two domains and creates new specifications in the target code.

The source code retrieval system retrieved similar implementations by exploring structural and

semantic similarities between the query and memory source code artefacts and also combined

with the similarity score obtained from the source code matching module. Semantic retrieval

33

uses the API vector space model to represent source codes and computing similarities between

these representations. The similarity score computed based on number of shared API calls in

the documents (source code). The structural retrieval computes the similarity between the

query and the cases in memory (associated with the source code artefacts) by exploring the

structural characteristics (vertex count, edge count, average degree, etc) of the source code

derived from Conceptual Graphs. Approaches and results of Aris 1.0 will be evaluated and

benchmarked against Aris 2.0 in chapter (3) and Chapter (4).

34

3. Aris 2.0

3.1 Overview

In this chapter, we explain in detail the problems we have identified in the previous Aris

system (Aris 1.0). We first present our methodology for improving the first version of Aris,

leading to version two of Aris. The subsequent section explains our proposed solution to

address problems in the earlier version of Aris and also improve the overall system. The newer

version of Aris will be mentioned as Aris 2.0.

3.2 Methodology

The development process of Aris 2.0 was subject to regular weekly meetings of Aris group,

each meeting lasted one or 2 hours. The supervisors of these meetings are Dr. Diarmuid P.

O'Donoghue and Dr. Rosemary Monahan and the rest attendees are Felicia Halim, Fahrurrozi

Rahman, Donny Hurley, and Abgaz Yalemisew. The supervisors become project leader who sets

the meeting agenda and research direction. My role in team meetings was shared progress and

issues during the development of Aris 2.0. While the supervisor and other attendees gave

feedback or suggestion regarding my progress, I carefully document the inputs which are

important for the next iterative development process.

Based on the input given during project meeting, I evaluate Aris 1.0 by using experimental

methodology that can be divided into exploratory phase and evaluation phase (Amaral, et.al,

2007). In the exploratory phase, I explore the graph matching result based on similarity score,

mapped element, and specifications transferred for different level modification e.g. identical,

small modifications, medium modifications, and large modifications (Wilkinson, 1994).

Exploratory phase of the source code matching module is driven by a few main questions:

 Is the similarity score represents the level of modification? Small modifications should

not significantly reduce the similarity score. Meanwhile, medium modification may have

35

greater affect the similarity score, but we have to make sure that it is still in the

acceptable range.

 Is all the elements in the source can be mapped to the element of the target?

 Is the generated specification is transferred into correct position? And is the transferred

specifications can be verified?

Problem code known as a query in the retrieval phase will return the subset of documents in a

database that is considered relevant to the query. Relevant in this context means its

specifications can be reused for problem code. Exploratory phase for source code retrieval can

be summarized into questions:

 Is the retrieved documents are relevant to the input query?

 How well the retrieved documents from source code artifacts are ranked with respect to

a given query?

After producing a list of questions from exploratory phase, I begin the evaluation phase

that attempts to answer these questions. In the evaluation phase, I can identify problems in

the Aris 1.0. For each problem found, I attempt to relate it with the algorithm or concept used

in Aris 1.0. I improve the algorithm and reevaluate the result to measure how it improves the

system. These improvements and progresses will be presented in the weekly project meeting to

make sure the improvement still in line with research direction and also identify issues that may

occur. Algorithm developments that able to improve the overall system are finally used in Aris

2.0.

36

3.3 Issues in Aris 1.0 and its improvement in Aris 2.0

In this section, we focus on identify problems in Aris 1.0 and also further discuss how Aris

2.0 address these problems.

3.3.1 Poor Mapping in Loop Construct

We have identified some of the results of the evaluation of Aris 1.0 that fail to map

equivalent loop statement between base and target code. One of the examples of unsuccessful

mapping is bounded search method where the base program has a for loop and target program

has a while loop (see Table 3.1). These 2 loops actually can be matched and shared same

specification since they also shared the same functionality in each program domain. However,

there is no loop mapping in the matching results in Table 3.2. Aris 1.0 does not find

correspondence for for loop in the target context, consequently the loop invariant that

embedded in for loop cannot be transferred.

/* base
Monahan, Rosemary. (2014). Bounded Search.
(Version 1.0) [Computer program] Available
at http://www.rise4fun.com/SpecSharp/SvgB
(Accessed 1 March 2014)*/
public static int BS(int[] a, int key)

requires a != null;

ensures 0 <= result &&

 result < a.Length ==> a[result]==key;

ensures result < 0 ==> forall{int n in

 (0: a.Length); a[n] != key};

{

 int n;

 for (n = 0; n < a.Length && a[n]

 != key; n++)

 invariant n <= a.Length;

 invariant forall{int i in (0:n);

 a[i] != key};

 {

 }

 if (n == a.Length)

 return -1;

 else return n;

}

/* target
Monahan, Rosemary. (2014). Bounded Search.
(Version 1.0) [Computer program] Available
at http://www.rise4fun.com/SpecSharp/SvgB
(Accessed 1 March 2014)*/
public static int BS(int[] a, int k)

{

 int n =0;

 while (n < a.Length && a[n] != k)

 {

 n++;

 }

 if (n == a.Length)

 return -1;

 else return n;

}

Table 3.1. Example of Aris input system. Base program in the left column use for loop and

Target program in the right column use while loop

http://www.rise4fun.com/SpecSharp/SvgB
http://www.rise4fun.com/SpecSharp/SvgB

37

 G1->G2: 0.6818 (15 mapped / 22 total nodes
in the source domain)
1.{Parameter} matched with {Parameter} (1)
2.{Variable: a} matched with {Variable: a} (1)
3.{Parameter} matched with {Parameter} (1)
4.{Variable: key} matched with {Variable: k}
(0.9)
5.{Variable: n} matched with {Variable: n} (1)
6.{CompareOp: ==} matched with {CompareOp: ==}
(1)
7.{Contains} matched with {Contains} (1)
8.{Condition} matched with {Condition} (1)
9.{Block} matched with {Block} (1)
10.{Contains} matched with {Contains} (0.9)
11.{Contains} matched with {Contains} (1)
12.{Contains} matched with {Contains} (1)
13.{String: 0} matched with {String: 0} (1)
14.{Contains} matched with {Contains} (0.9)
15.{Contains} matched with {Contains} (0.8)

 G2->G1: 0.4138 (12 mapped /29 total nodes in
the source domain). No specs transferred.
1.{Parameter} matched with {Parameter} (1)
2.{Variable: a} matched with {Variable: a} (1)
3.{Parameter} matched with {Parameter} (1)
4.{Variable: k} matched with {Variable: key}
(0.9)
5.{Variable: n} matched with {Variable: n} (1)
6.{Contains} matched with {Contains} (0.9)
7.{If} matched with {If} (1)
8.{Condition} matched with {Condition} (1)
9.{Contains} matched with {Contains} (0.8)
10.{Contains} matched with {Contains} (0.8)
11.{Contains} matched with {Contains} (0.8)
12.{Contains} matched with {Contains} (0.8)

Table 3.2. Aris 1.0 result where for loop and while loop is not successfully match (not found in

the correspondences above)

Based on our evaluation, the problem of unsuccessful mapping in the loop statement is

because the insufficient range of backtracking process when finding valid mapping in

conceptual graph. IAM algorithm map concepts from the base domain to target domain by

taking each candidate under decreasing order of node rank value (Section 2.2.5.3). If the

current acquired mapping evaluated as not valid, IAM algorithm backtracks to find alternative

candidate for mapping. The backtracking processes in Aris 1.0 only visit node with lower node

rank from current node to find the alternative candidate. However, there are possibility that

valid match can be found in node with higher node rank.

 Aris 2.0 has improved the condition for mapping the loop statement in conceptual graph by

allowing backtracking for higher and lower rank node instead of solely visit node with lower

node rank as Aris 1.0 performed. We expect more valid mapping can be found. Aris 1.0 also set

the depth of backtracking using static values, which may not always relevant for various length

of input code to the system. Aris 2.0 set the depth of backtracking is based on the line of

implementation codes in target domain. Hence, the depth of backtracking is become more

properly relevant to system input.

38

Other factor that contributes to unsuccessful mapping is deficient criteria in content

similarity function when resolves valid mapping. Content similarity function is one of the

mapping constraints that are used in the IAM algorithm to establish a valid mapping (Section

2.2.5.6). When attempt to match for loop and while loop in the Table 3.1, IAM algorithm in Aris

1.0 computes the content similarity between the loops by calculating string distance of

operator token in the first binary expressions found from both loop statement. For example, for

loop statement of base program is for (n = 0; n < a.Length && a[n] != key;

n++), the first binary expressions found is n = 0, and the operator token is “=“. The target

uses while loop: while (n < a.Length && a[n] != k), the first binary expression found is

n < a.Length && a[n] != k, and the operator token in the while loop graph is “&&”. Aris

1.0 compute string distance between these operator token “=” and “&&” to validate match

between for loop in base domain and while loop in target domain.

Operator token in the first binary expression found is not sufficient to represent the content

of the loop statement. Thus, Aris 2.0 match the loop statement in the base domain and target

domain by using operator token in loop condition. The loop condition gives stronger

representation in semantically and functionally. Loop condition is a well-formed representation

which allows more reliable string distance comparison. It also has a functional role which

determines how loop body is executed. In Table 3.1, the loop condition of for loop in the base

domain is n < a.Length && a[n] != key and its operator token is “&&”. The loop

condition of while loop is n < a.Length && a[n] != k and its operator token is

“&&”. Aris 2.0 compute string distance of operator token in loop condition (“&&” and

“&&”) to validate match between this loop statement.

The backtracking and content similarity function improvement in Aris 2.0 effectively

mapped for loop and while loop, therefore it able to transfer the loop invariant where the

solution is successfully verified (see Table 3.3).

// unverified solution of Aris 1.0
public static int BS(int[] a, int k)
requires a != null;
ensures 0 <= result && result < a.Length
==> a[result]==k;

// verified solution of Aris 2.0
public static int BS(int[] a, int k)
requires a != null;
ensures 0 <= result && result < a.Length
 ==> a[result]==k;

39

ensures result < 0 ==> forall{int n in (0:
a.Length); a[n] != k};
{

 int n =0;
 while (n < a.Length && a[n] != k)
 {
 n++;
 }
 if (n == a.Length)
 return -1;

 else return n;
}

ensures result < 0 ==> forall{int n in (0:
 a.Length); a[n] != k};
{
 int n =0;
 while (n < a.Length && a[n] != k)
 invariant n <= a.Length;
 invariant forall{int i in (0:n);
 a[i] != k};
 {
 n++;
 }
 if (n == a.Length)
 return -1;
 else return n;
}

Table 3.3. Aris 1.0 solution in the left column cannot be verified because loop invariant is not

transferred, while Aris 2.0 solution in the right column can be verified because loop invariant is

successfully transferred.

3.3.2 False Variable mapping

Another frequent problem we found is false variable mapping. For example, in the program

below, the target is modified from the base code implementation. The modification in target

code involves use variables in the extraneous statement without change the functionality

(yellow highlighted). The expected result between the mappings should be variable in the

source with variable in the target and variable in the source with variable s in the target.

However, Aris 1.0 has mismatch mapping results where variable at the source with variable s

at the target and variable at the source with variable at the target.

40

//base
/*
O’Donoghue, Diarmuid. (2013). Aris
Online. (Version 1.0) [Computer program]
Available at http://ec2-54-213-12-95.us-
west-2.compute.amazonaws.com/ (Accessed 1
March 2014)
*/
public int CountEven(int[] array)
ensures result == count{int i in (0:
 array.Length); ((array[i] % 2)== 0)};
requires array != null;
{
 int i = 0;
 int _S = 0;

 while (i < array.Length)
 invariant _S == count{int j in (0:
 i); ((array[j] % 2)== 0)};
 invariant i <= array.Length;
 {
 i++;
 i--;
 if ((array[i] % 2) == 0)
 {
 _S += 1;
 }
 i++;
 }
 return _S;
}

//target
/*
Monahan, Rosemary. (2014). Count Even.
(Version 1.0) [Computer program] Available
at http://rise4fun.com/specsharp/DRkO
(Accessed 1 March 2014)
*/
public int CountEven(int[] a)

{

 int s = 0;

 for (int i = 0; i < a.Length; i++)

 {

 if (a[i] % 2 == 0)

 {

 s++;

 }

 }

 return s;

}

Table 3.4. Example of base and target methods received as input by Aris 1.0 which produce

false variable mapping.

In this section we focus on reducing the occurrence of false variable mapping. Aris transfer

specification using CWSG - Copy with substitution and generation algorithm, the algorithm

transfer additional specifications of the base code and add it to the target code by substituting

variable in base code items with their mapped equivalents. For example, in the Table 3.4,

variable array in the base is mapped into variable a in the target context. Therefore, variable

array in precondition requires array != null, will be replaced and produce requires a

!= null in the target context. The false mapping of variable will form new specifications that

cannot be verified.

The problem of frequent occurrence of mismatch variable mapping is because Aris 1.0 only

consider one way graph mapping when generating and transfer specifications into the target.

One way graph mapping means it relies on the mapping result from base (which has the

41

specifications) to the target domain. Aris 1.0 does not consider mapping result from other way,

target to base domains. Mapping result from target to base domains and base to target

domains can be different if the base and target domains are not identical, as the process

depend various factors such as node order and number of seed groups in each domain, etc

(Grijincu, 2013). The default mapping result from base to target in Aris 1.0 cannot be

guaranteed produce more valid mapping than mapping result from target to base domain.

Therefore, Aris 2.0 consider both ways to generate and transfer specifications into target

domain.

Aris 2.0 will calculate the total similarity score for variable mapping for both ways graph

matching. The CWSG (Copy with Substitution and Generation) algorithm will use the graph

matching that has the higher total similarity score for variable mapping. Intuitively, graph

matching with a higher total similarity score for variable mapping means the graph matching

more successful to generate variable mapping. For example, base and target code in Table 3.4

produce different mapping results in both ways (see Table 3.5). Mapping result from base to

target was not successful to match 1 variable (variable _S) and mapping result from target to

base had a higher similarity score for variable mapping as it able to match all the variables in

the source domain. Aris 1.0 always uses mapping result from base to target, although the

quality of variable mapping is lower than the other way, while Aris 2.0 will generate and

transfer specification based on the mapping result that gives better quality of variable mapping.

In this case, we choose mapping result from target to base as it gives higher similarity score for

variable mapping.

Mapping result from base to target Mapping result from target to base

Variable: array} matched with{Variable: a} (1)
{Variable: i} matched with {Variable: s} (1)

{Variable: a}matched with{Variable: array} (1)
{Variable: s} matched with {Variable: _S} (1)
{Variable: i} matched with {Variable: i} (0.92)

Total similarity score variable mapping = 2.0 Total similarity score variable mapping = 2.92

Table 3.5. Mapping result for variable mapping in both ways

42

3.3.3 Translate Statement in Conceptual Graph

 Based on our evaluation, there are certain lines of codes or programming features that

are not translated into the graph such as conditional operator13, else if statement, and

iterate segment of for loop in Aris 1.0. In order to improve the accuracy and completeness of

mapping process, we translate the conditional operator, else if statement, and iterate

segment of for loop in Aris 2.0.

Conditional operator which is one of the programming features in C# is not translated in

Aris 1.0. For instance, a method with conditional statement in Table 3.6 only generates very few

nodes in the conceptual graph as can be seen on the left hand side of (table 3.7). In Aris 2.0, this

programming feature is translated and produce more nodes compared to nodes produced in

Aris 1.0 (see on the right hand side of table 3.7).

/*
Microsoft Developer Network. (2013).
Conditional Operator. (Version 1.0) [Computer
program] Available at
http://msdn.microsoft.com/en-
us/library/ty67wk28.aspx (Accessed 1 March
2014)
*/

static double sinc(double x)

{

 return x != 0.0 ? Math.Sin(x) / x : 1.0;

}

Table 3.6. Example of conditional operator statement in the program.

Concept node created in Aris 1.0 Concept node created in Aris 2.0

1.
2.
3.
4.{

1.{Parameter} matched with {Parameter} (1)

2.{Variable: x} matched with {Variable: x} (1)

3.{MathOp: /} matched with {MathOp: /} (1)

4.{Contains} matched with {Contains} (1)

5.{Contains} matched with {Contains} (1)

6.{MethodCall: Math.Sin()} matched with

{MethodCall: Math.Sin()} (1)

7.{Parameter} matched with {Parameter} (1)

8.{MathOp: !=} matched with {MathOp: !=} (1)

9.{Contains} matched with {Contains} (1)

10.{Contains} matched with {Contains} (1)

11.{Conditional} matched with {Conditional} (1)

12.{Contains} matched with {Contains} (1)

13

 Conditional Operator. http://msdn.microsoft.com/en-us/library/ty67wk28.aspx

43

13.{Contains} matched with {Contains} (1)

14.{Contains} matched with {Contains} (1)

15.{Returns} matched with {Returns} (1)

16.{Block} matched with {Block} (1)

17.{Null:*} matched with {Null:*} (1)

18.{Null:*} matched with {Null:*} (1)

19.{String: 0.0} matched with {String: 0.0} (1)

20.{Contains} matched with {Contains} (1)

21.{String: 1.0} matched with {String: 1.0} (1)
Table 3.7. Comparison of concept node created in Aris 1.0 and Aris 2.0 for program code

that contains conditional operator.

Every for loop statement defines initialization, condition, and iteration section

(Microsoft, 2013). Part of for loop statement that was not translated in the conceptual graph of

Aris 1.0 is the iteration segment (Rahman, 2014). This missing representation is already

addressed in the Aris 2.0. We also identified else if statement was not translated in Aris

1.0, therefore the new version of Aris have addressed this problem. Our solution is also able to

handle multiple else if statement.

3.3.4 Lexical Similarity Problem

Aris makes flexible comparison of content similarity between 2 mapped code-graphs.

This will include assessing similarities between two variables. If both variables that used

identically with different variable type, for example one int and one double. It will be

considered as match variable. However, based on our evaluation in previous Aris version, there

are some pairs of numeric type that possibly can be matched together, but not included. In Aris

1.0, it collects element of one class equivalents that can be considered as convertible,

assignable, type such as int and double. We improve the condition by supporting additional

data type in this class, such as numeric type float and decimal.

Aris 1.0 does not handle variable mapping with bool data type. When content similarity

function checks between two variables with bool data type, it immediately rejected. Aris 2.0

address the problem of matching bool data type by ensuring the variable with bool data type is

matched with a variable with bool data type.

44

3.4 Added Features in Aris 2.0

In this section, we focus on identifying limitation of available features in Aris 1.0 and we will

explain new feature that added in Aris 2.0 to improve the overall system performance.

3.4.1 Specification score metric in the retrieval module

The retrieval module in Aris analyzes different properties of documents in the software

artefacts relative to the query (see Section 2.4). Each document will be analyzed based on its

semantic similarity, structural similarity, and the similarity score from source code matching

module in Aris (Grijincu, 2013). The semantic similarity score and structural similarity score are

combined in the combined similarity score by assigning a particular weight for each score. The

overall retrieval score is obtained from the combined similarity score and the similarity score

from source code matching module (once again with assigning particular weight for each

score).

Retrieval module of Aris 1.0 rank the final set of documents to the query according overall

retrieval score. Top rank retrieved documents represent a subset of the corpus that has most

similar implementations for specification transfer. However, if we look to the purpose of Aris is

to reuse specifications. But the overall retrieval score does not have components that assess

the specifications qualities in each document. Therefore, the documents are ranked only based

on the implementation similarity with the query without considering whether a document

possesses quality for transferring specifications.

In order to ensure that the top ranked documents possess good quality specifications for

transferring specifications, Aris 2.0 will add the new metric that measure the completeness of

specification in each document related to given query. The new metric examines the existence

of preconditions, post-conditions, loop invariant (if applicable), and the relationship between

loop invariants and postconditions in the source code document. Subset of documents that

related to the query and have a high degree of specifications completeness should appear in

the top ranked of retrieval. Further, we seek ranking precision for the top retrieved documents,

45

because their order in the results is crucial as these top documents represent the most

interesting subset of the corpus, to a possible interactive user of Aris.

Aris 2.0 measures the completeness of the specifications in each document by checking the

existence of requires, ensures, loop invariants and also takes into account the relationship

between loop invariant and postconditions. The relationship of postcondition and loop invariant

is important because based on (C. A. Furia and B. Meyer, 2010), loop invariant is a weaken form

of postconditions and can be created by modifying postconditions through constant

replacement, term dropping, and substitute the variable. Therefore, we measure the

relationship between postcondition and loop invariant based on their string distance between

the statements. The relationship of postcondition and loop invariant is strong if there’s

minimum edits necessary to transform postcondition into loop invariant. The existence of assert

and assume currently does not take part in the specification score calculation because it is

difficult to predict in which location assert and assume statements are actually needed.

Aris 2.0 counts the expected and actual number of specifications in each retrieved

document. Each document (in this case a method) should have precondition and postcondition

and if the method contains a loop, every loop expected to have upper bound invariant, lower

bound invariant, and quantifier invariant. The loop quantifier invariant that has a relationship

with the method’s post-condition will have a higher specification score. We will assign 1 for

each specification/relationship exists and 0 if it does not exist in the source code. The expected

number of specifications is the maximum cumulative value that is expected to appear in the

source code. While, actual number of specification score is the actual cumulative value of

specifications that appear in the source code. The new metric that will be added in the overall

similarity score is obtained from divide the actual number of specification over expected

number of specification and multiply the result with a similarity score from the source code

matching module.

The formal formula for specification score is:

46

Aris 2.0 introduce the new specification score metric , therefore there is a need

to alter the formula for , the new formula is:

We also have to alter the weight assigned to the score components to fit with the new formula

where , , are weights for the combined retrieval score and conceptual graph

matching score and are the weights for the specification completeness score, such that

 + . The weights were chosen based on the experimental results of

Aris 2.0 implementation: = 0.4d, = 0.4d, and .

3.4.2 Adapt Specification transfer for Increment/Decrement for Loop

Transfer specification between identical implementation can generate a target method with

added verified specification without any needs to adjust the newly generated specification.

However in most cases source and the target method does not have identical implementation.

Therefore there’s need to adjust the newly transferred specification in the target code to

ensure the successful verification.

Although there are effort to adapt the generated specification in the target context by

substitute variables for their mapped equivalents in the base code, however the newly

generated specification may not immediately valid within target context. Invalid specification

will eventually be rejected by the verification tool. Thus, in some cases, software developer is

required to modify generated specifications for formal verification. The modification may

involve repositioning variables, change the operator, etc.

Interesting particular case is the transfer specification between methods with increment for

loop and another related method with decrement for loop and vice versa. This case may share

exact precondition and postcondition. However, boundary of loop invariant will be semantically

47

different as variable for iteration start and end in different value. For example, increment loops

from and decrement loop from .

The loop invariant for for loop can be classified to boundary loop invariant and quantifier

loop invariant. The second type of loop invariant often needs adjustment when the newly

generated transfer specification is between increment for loop and decrement for loop. For

example, if we have a summation method in the source domain with increment for loop and

another summation method in the target domain with decrement for loop. Aris 2.0 will

automatically adjust the generated quantifier loop invariant based on target implementation as

can be seen in the Table 3.8. The transformation of loop invariant of for loop is necessary if the

iteration section in one domain uses increment, while in other domain use decrement

expression. Aris 2.0 will adapt the specification by swapping position of the variable in loop

quantifier and also change its boundary. In Table 3.8, Increment for Loop in the source has loop

invariant that focuses on what has been summed so far s == sum{int i in (0: n);

a[i]}.Therefore, when transfer specifications to the target domain , Aris 2.0 adjust the

quantifier loop invariant (see the highlighted part in the Table 3.8) that produce verified

specification.

//base
/*
Monahan, Rosemary. (2010). The Spec#
Programming System. (Version 1.0)
[Computer program] Available at
http://www.loria.fr/~mery/malg/SpecSharpN
ancy2013.pdf (Accessed 1 March 2014)
*/
public static int Sum(int[]! a)
ensures result == sum{int i in
 (0:a.Length); a[i]};
{
 int s = 0;
 for (int n = 0; n < a.Length; n++)
 invariant 0 <= n;
 invariant n <= a.Length;
 invariant s == sum{int i in (0: n);
 a[i]};
 {
 s += a[n];
 }
 return s;
}

//target
/*
Monahan, Rosemary. (2010). The Spec#
Programming System. (Version 1.0) [Computer
program] Available at
http://www.loria.fr/~mery/malg/SpecSharpNanc
y2013.pdf (Accessed 1 March 2014)
*/
public static int Sum2(int[]! a)
ensures result == sum{int i in
 (0:a.Length); a[i]};
{
 int s = 0;
 for (int n = a.Length;0 <= --n;)
 invariant 0 <= n;
 invariant n <= a.Length;
 invariant s == sum{int i in (n:a.Length);
 a[i]};
 {
 s += a[n];
 }
 return s;
}

48

Table 3.8. Program code example where the right column is the example of transfer and adapt

specification of Aris 2.0. The solution can be formally verified. Shaded code indicate the

transformation of generated specification

3.4.3 Assert and Assume Transfer Specification

Aris 2.0 enable assert and assume transfer specification which are not being covered by Aris

1.0. Assert and assume are interesting because they are part of the proof strategy in the

verification. Asserting something in the proof asks the verifier to validate the thing we have

asserted is true and if it allows the theorem prover to use assertion in its proof. It also gives the

theorem prover a “hint” regarding which proof strategy to take. Assume statement also almost

does the similar concept, except the verifier believes everything we have assume, therefore it

does not check it before using it.

We find the corresponding location of each of the assert/assume statement in target

domain based on its location in the source domain. The initial design of assert and assume

specification is between assert/ assume statement and its location. The

location is the last code implementation before the assert/assume statement. However after

further analyze the case studies, we conclude is not suitable to be applied in

this solution because need a key, and neither the assert/assume statement nor

the location can be the key. It can be seen from one of the example Table 3.9. Assertion cannot

be the key as assert statement assert q == i * x; can be duplicated and located in different

location (after while loop and after i= i+1 statement). Moreover, the location cannot be the

key as well where after while loop there are two consecutive assertions (assert q == i * x;

and assert q + x == (i * x) + x). These two assertions corresponds to the similar location

while (i <y).

/*
Monahan, Rosemary. (2010). The Spec# Programming System. (Version
1.0) [Computer program] Available at
http://www.loria.fr/~mery/malg/SpecSharpNancy2013.pdf (Accessed 1
March 2014)
*/

static int multiply(int x, int y)

requires 0 <= y;

requires 0 <= x;

49

ensures result == y * x;

{

 int q = 0;

 int i =0;

 while(i <y)

 invariant 0<= i;

 invariant i<= y;

 invariant q == (i * x);

 {

 assert q == i * x;

 assert q + x == (i * x) + x;

 q = q + x;

 assert q == (i * x) + x;

 assume (i*x) + x == (i+1) * x;

 assert q == (i+1) * x;

 i= i+1;

 assert q == i * x;

 }

 return q;

}
 Table 3.9. Example of program code with asserts and assumes statement

Therefore, the assert statement and the solution are stored in

 which allow 2 identical assert statement in different location of code

implementation and also allow a location corresponds to more than one assertion.

The successful transfer of assert/assume statement is rely on valid mapping found in graph

matching. The more valid mapping found between base and target domain, the more accurate

the transfer location for assert/assume. However, In Aris 1.0, we found mapping for statement

with postfix unary expression (s-- or s++) is not successful. There is bug in translating postfix

unary expression syntax, therefore every statement with that type are not represented in the

code. Aris 2.0 fix the bug of translating postfix unary expression syntax statement into

conceptual graph. We decide the location of assert/assume in the target domain by taking

from the corresponding of location in the source domain. If there is one-to-many mapping, we

use string distance measure (Damerau-levenshtein) to decide the most similar statement with

the current target.

50

/* base
Monahan, Rosemary. (2014).[Computer
program] Available at
http://www.rise4fun.com/SpecSharp/kh6B
(Accessed 5 June 2014)
*/
public static int Summation(int k)
requires 0 <= k;
ensures result==sum{int i in (0:k); i};
{
 int s = 0;
 int n=0;
 while (n < k)
 invariant n <= k;
 invariant s == sum{int i in (0:n); i};
 {
 int variant = k- n;// record value
of variant function
 s = s + n;
 n++;
 assert 0 <= variant; // check
boundedness of variant function
 assert (k- n) < variant; // check
that variant has decreased
 }

 return s;
 }

/* target
Monahan, Rosemary. (2014).[Computer
program] Available at
http://www.rise4fun.com/SpecSharp/kh6B
(Accessed 5 June 2014)
*/
public static int Sum(int x)
{
 int add = 0; int k = 0;
 int irrelevantVariable = 0;
 Console.WriteLine(irrelevantVariable);
 while (k < x)
 {
 int variant = x - k;// record value
of variant function
 add += k;
 k++;
 }

 return (int)add;
}

Table 3.10. Base and Target code for assertion transfer example

public static int Sum(int x)
requires 0 <= x;
ensures result==sum{int i in (0:x); i};
{
 int add = 0; int k = 0;
 int irrelevantVariable = 0;
 Console.WriteLine(irrelevantVariable);
 while (k < x)
 invariant k <= x;
 invariant add == sum{int i in (0:k); i};
 {
 int variant = x - k;// record value of
variant function
 add += k;
 k++;
 assert 0 <= variant; // check boundedness
of variant function
 assert (x- k) < variant; // check that
variant has decreased

 }
 return (int)add;
}

51

Table 3.11. Verified solution generated from Table 3.10. Shaded statement is generated
assertion.

In the Table 3.10, two assertions are located after n++ statement in the base code. Graph

matching result Variable: , therefore the algorithm will transfer the assertion statement

after k++ statement in the target code as can be seen in the shaded statement (Table 3.11).

However, Aris still has difficulty to transfer the specifications if the statement where

specifications related to, is being semantically modified. For example, if the target code changes

 statement into and , Aris will unable to locate the assertion in the

correct position and transfer specification as commented specification in the beginning of the

method.

3.5 Conclusion

In this section, we have presented the experimental methodology to evaluate and

benchmark Aris system. We have found and discussed some issues in Aris 1.0 and also explain

in detail how Aris 2.0 have addressed such problems. Problems that we have addressed in the

new version of the system are poor mapping in the loop constructs, frequent occurrences of

false variable mapping, statement translation in the conceptual graph, and lexical similarity

problem. We also explained the new features in Aris 2.0 such as new specification score metric

in the retrieval module, adapt transferred specification, and assert/assume specification

transferred.

The graph matching complexity Aris 2.0 is polynomial (similar to Aris 1.0). The process of

matching methods in decreasing order of their NR values means compare at most n methods

from the source domain and inside method mapping process are 2 sorting operations plus at

most (m denotes number of nodes in a subgraph representing a method)

comparisons. The algorithm uses threshold parameter to limit the number of

concepts in target for comparison. If the sorting function performs thus the worst

case of the algorithm performs (Grijincu, 2013). In Aris 2.0, we also add new

metric specification score in retrieval module. The complexity of specification score is (n

denotes the length target code).

52

4. Evaluation

In this chapter, we give experimental results for testing and compare the

performance with Aris 1.0. In particular, we evaluate the similarity score, the abilities to

transfer specification between identical and functionally similar source code and also evaluate

the performance of specifically at the source code retrieval phase. Evaluation is divided

into two main sections, the first section will address a recognition problem, and this will focus

on the retrieval and mapping phase measuring the capability of Aris to identify the similar

source code to some given problem. The degree of similarity between pairs of source code

artefacts has been carefully controlled, forming four different categories that represent

different degree of similarity with original unmodified implementation (Wilkinson, 1994).

These results focus on the ability of Aris to identify similarities between identical source code as

well as code artefacts with gradually reduced similarity.

The second section of the evaluation will address a software generation problem focusing

on the ability of Aris to generate new specification to the selected method from the open

source repositories and also to identical and modified sources specified in (Wilkinson, 1994).

An SMT theorem prover is used to verify and validate the generated specifications. Here, the

focus is on the ability of Aris to produce a verified specification for any given piece of source

code.

4.1 Document corpus

In order to evaluate Aris performance at retrieval, mapping and transferring specification

between the formally verified source code and unspecified target, we collect the corpus of

source code files that contains verified methods (matches only using method information).

Each method has appropriate ensures, requires, modifies, loop invariants, and assert/assume

annotation depends on each method’s need.

Both Aris 1.0 and Aris 2.0 are built on .NET framework and analyses C# files (which can

be formally verified using Spec# language). Therefore, we collected verified source code files

53

from Spec# test suite publicly available on the open-source hosting platform CodePlex14. We

also use formally verified sources that using Spec# language from textbook examples15 and

class assignments. 52 methods were collected from these varieties of sources, this collection

contains with a total of 54 preconditions statements, 67 postconditions statements, 9 modifies

statement, 110 loop invariants statements, 27 assert/assume statements, some of which may

represent the conjunct of two or more individual specifications. There are 273 Spec#

specifications statements as well as associated source code in the database.

We conducted the evaluation by selecting some methods out of 52 methods that have

Spec# statements from the database. These selected methods were used to generate four

distinct test sets (known as TS1 –TS4) where each test suites represents the increasing level of

difference from the original unmodified code. TS1 –TS4 do not contain any Spec# statements

which allow us to evaluate Aris in generating the specifications.

Test Suite 1 (TS1) Identical Implementations – Isomorphic

The first set of tests was derived directly from original methods from the database, but with

their Spec# statements removed. We keep the source code remain unchanged. These problem

methods were therefore identical to the original implementations. This represented the first

category of challenge to Aris.

Test Suite 2 (TS2) Small Modifications – Near Isomorphic

The second set of test was derived by transforming a fresh copy of the source code in TS1 by

applying different level of modifications. The changes in this test suite will not affect the

functionality of the code, thus the specifications remain usable by TS2.

1. Lexical changes: modify identifier names, parameter, or method name (e.g. int

result may become int output)

14

 Codeplex. http://www.codeplex.com/
15

 Textbooks examples.http://rosemarymonahan.com/specsharp/

54

2. Type changes: change data type (e.g double may become float, int may become

long)

3. Changing code constructs: change loop constructs (e.g for with while and vice versa),

changing the order of parameters in method declarations, change order of operands in

expression (e.g a < b may become b > a)

4. Introduces or removing white space or comments

We note that many code obfuscators also change identifiers, so this category should partly

challenge Aris to retrieve obfuscated code.

Test Suite 3 (TS3) Medium Modifications – Homomorphic

The third test suite applied the following modifications from 5-7 to the methods produced for

Test Suite 2. These modifications, once again, do not affect the functionality of the code and all

specifications remain unaffected.

5. Change the order of statements: reversing a conditional statement, changing the order

of statements, add the redundant conditional statement

6. Introduce dummy field or redundant statements such as declarations or initializations

7. Adding/ remove certain statements that do not change the functionality

TS3 represent the category involving the most serious changes to the original

implementation – but which can still use the same specifications as the effective functionality

has not been changed.

Test Suite 4 (TS4) Large Modifications – Dissimilar

The modifications in this category alter the functionality of the method. For example, a

program that sums the element of an array, was might become modified into storing a sorted

array.

55

Here, we give example of original code in the database in the Table 4.1 and its transformation

for every category of test suite in the Table 4.2.

public int SumTotal(int[] array)
 ensures result == sum{int i in (0:
 array.Length); array[i]};
{
 int num = 0;
 for (int i = 0; i < array.Length; i++)
 invariant 0 <= i && i <= array.Length;
 invariant num == sum{int k
 in(0:i);array[k]};
 {
 num += array[i];
 }
 return num;
}

Table 4.1. Example of original methods from database

public int SumTotal(int[] array)
{
 int num = 0;
 for (int i = 0; i < array.Length;
 i++)
 {
 num += array[i];
 }
 return num;
}

public int SumTotal(int[] arr)
{
 int j =0;
 int sum = 0;
 while(j < arr.Length)
 {
 sum += arr[j];
 j++;
 }
 return sum;
}

Test suite 1 Test suite 2
public int SumTotal(int[] arr)
{
 int j =0;
 int sum = 0;
 int irrelevantVariable = 0;

Console.WriteLine(irrelevantVariable);
 while(j < arr.Length)
 {
 sum += arr[j];
 j = j - 1;
 j = j + 2;

 }
 return sum;
}

public void sortArray(int[] a)
{
 int ka;
 int ta;

 if (a.Length > 0){
 ka=1;
 while(ka < a.Length){
 for(ta = ka; ta >0 && a[ta-
 1]>a[ta]; ta--){
 int temps;
 temps = a[ta];
 a[ta] = a[ta-1];
 a[ta-1] = temps;
 }
 ka++;
 }
 }
}

Test suite 3 Test Suite 4

Table 4.2. Examples of source code modification in each test suite.

56

In order to evaluate the source code retrieval module of Aris, we augment the collected

verified source code with a large corpus of real world projects from open source programs e.g.

CodePlex, NuGet, and SourceForge. This consists of 2309 software applications with 2,315,022

methods. The large corpus downloaded from open-source repositories publicly available.

Results focus on main metrics: retrieval and mapping metrics and quantities of information

identified. Table 4.3 is the list of entire contacts of the full test suite:

Category Number of Methods

TS1 12

TS2 12

TS3 12

TS4 12

Open source 2,315,022

Table 4.3. List of entire contacts of full test set

4.2 Aris result on Mapping and Retrieval (based on Wilkinson 1994)

In this section, we compare the performance of Aris 2.0 against Aris 1.0 in mapping phase of

the source code matching module and retrieval phase using the problems produced for TS1-

TS4. Throughout this section, we use the entire corpus of 2,315,074 methods that contains of

small set of verified methods and the rest 2,315, 022 of unverified methods.

Firstly, we compare the performance of Aris 2.0 against Aris 1.0 in mapping phase using

small set of verified methods that augmented with over 2 millions unverified methods. Detailed

results mapping phase for Aris 1.0 and Aris 2.0 can be seen in table 4.4. For TS1, both versions

produce similar score where mapping scores reach on or are very near the maximum score of

1.0 (blue highlighted in Table 4.4). Thus, we can conclude that the “improvements” discussed in

earlier chapters did not significantly change these (already excellent) results.

TS2 involved the next collection of lexical changes to the source code in TS1. TS2 produced

the next best set of results in terms of the mapping score. In TS2 category, Aris 2.0 have

generally higher mapping score, with an average of 0.78 compared to 0.73 for Aris 1.0 (yellow

highlighted in Table 4.4). The increase of mapping scores for Aris 2.0 also occurs for TS3, from

57

0.65 in Aris 1.0 into 0.72 in Aris 2.0 (orange highlighted in Table 4.4). The increment of

mapping scores in Aris 2.0 for these modified codes in TS2 and TS3 means Aris 2.0 on average

able to produce more successful mapping between similar source code files.

TS4 which contains functionally different to the source code resulted in the weakest

mapping score for both Aris version, both averaging at 0.36 (green highlighted in Table 4.4).

For the most similar categories (TS1), both Aris 1.0 and Aris 2.0 show remarkable consistency

across their mapping scores. TS2, TS3, and TS4 in both systems showed greater diversity among

their mapping results as their increase numbers of difference resulted in difference in the

various matching process (see column StDev Mapping Score in Table 4.4). Finally, in Aris 2.0 we

can point out there appears to be the natural threshold occurring around 0.7 for mapping score

since TS1-TS3 are above the threshold while TS4 is below this threshold.

Test Suite

Mapping result
Aris 1.0

Mapping result
Aris 2.0

Average
Mapping

Score

StDev
Mapping

Score

#Mapped
sources

Average
Mapping

Score

StDev
Mapping

Score

#Mapped
sources

TS1 - Identical 1.00 0.00 65 1.0 0.00 168

TS2 - Near
Isomorphic

0.73 0.05 75 0.78 0.04 156

TS3 -
Homomorphic

0.65 0.05 86 0.72 0.05 193

TS4 - Dissimilar 0.36 0.08 78 0.36 0.03 82

Table 4.4. Performance of mapping phase in Aris 2.0.

Next, we compare the performance of Aris 2.0 against Aris 1.0 in the retrieval phase (once

again using 2,315,074 methods that contain a small set of verified methods and 2,315,022 of

unverified methods). Retrieval module of Aris analyzed structural properties of the conceptual

graph representation which enable ranking the relevant source code artefacts with respect to

the query (Section 2.4). Aris 2.0 have done improvements to translate more programming

features and fixing bugs that found in the conceptual graph creation process. This improvement

affected the number of retrieved sources (see columns #retrieved sources in Table 4.5) that

eventually will give better precision (see Table 4.6).

58

Test Suite

Retrieval result
Aris 1.0

Retrieval result
Aris 2.0

Average
Retrieval

Score

StDev
Retrieval

Score

#Retrieved
sources

Average
Retrieval

Score

StDev
Retrieval

Score

#Retrieved
sources

TS1 - Identical 0.99 0.00 480,418 0.99 0.00 251,386

TS2 - Near
Isomorphic

0.97 0.02 479,082 0.97 0.02 385,381

TS3 -
Homomorphic

0.93 0.05 150,395 0.93 0.04 127,211

TS4 - Dissimilar 0.21 0.23 60,041 0.14 0.18 103,095

Table 4.5. Performance of retrieval phase of Aris 1.0 and Aris 2.0.

Table 4.6 summarizes the precision results for Aris 1.0 and Aris 2.0, as we can see Aris 2.0

consistently achieve better precision results for similar implementation (TS1-TS3) compare to

precision in Aris 1.0. The precision increase in Aris 2.0 is also because we use a new metric of

specification score when computing the overall retrieval score. The specification score metric

will greatly reduce the value attribute to documents without formal specification. Thus, ensure

the top ranked retrieved documents are documents that are relevant for reusing formal

specification. As expected, the dissimilar source code (category 4) precision is zero for both Aris

1.0 and Aris 2.0.

Test Suite Total Retrieved Precision

Aris 1.0 Aris 2.0 Aris 1.0 Aris 2.0

TS1 – Identical 595 20 0.00389 0.40

TS2 - Near
Isomorphic

665 11 0.0015 0.15

TS3 - Homomorphic 634 6 0.00161 0.31

TS4 - Dissimilar 508 2 0 0

Table 4.6. Precision result for Aris 1.0 and Aris 2.0

 Table 4.7 and table 4.8 gives ranking result for TS1-TS4 categories in Aris 1.0 and Aris 2.0.

The result shows that for the isomorphic problems in TS1, both systems can return the

document as the first rank. As the modification becomes increase in TS2 and TS3, the rank

gradually decreases for both versions. However, Aris 2.0 can rank document better for TS2

where the document on average at 2nd rank, while in Aris 1.0 the rank dramatically drop into

59

rank 28th. Ranking result for TS3 is also higher in Aris 2.0 with on average rank 16th, and fall into

rank 86th in Aris 1.0. As expected, TS4 that represents dissimilar functionality of the code has

the worst rank among all categories, with on average rank 20183rd in Aris 1.0 and 25000th in

Aris 2.0.

Method Avg
Retrieval

Score

#Retrieved
sources

Avg
Mapping

Score

#Mapped
sources

Average
Rank

Overall
retrieval

score

TS1 - Identical 0.99 480,418 1.00 65 1 0.99

TS2 - Near
Isomorphic

0.97 479,082 0.73 75 28 0.87

TS3 -
Homomorphic

0.93 150,395 0.646 86 86 0.81

TS4 -
Dissimilar

0.21 60,041 0.359 78 20,183 0.27

Table 4.7. The rank given by Aris to the desired items by presentation of a problem from each
category for Aris 1.0

Method Avg
Retrieval

Score

#Retrieved
sources

Avg
Mapping

Score

#Mapped
sources

Average
Rank

Overall
retrieval

score

TS1 - Identical 0.99 251,386 1.0 168 1 0.90

TS2 - Near
Isomorphic

0.97 385,381 0.78 156 2 0.746

TS3 -
Homomorphic

0.93 127,211 0.72 193 16 0.72

TS4 -
Dissimilar

0.14 103,095 0.36 82 25,000 0.20

Table 4.8. The rank given by Aris to the desired items by presentation of a problem from each
category for Aris 2.0

4.3 Aris Result on Creating Specifications

To test its usefulness of generating new Spec# code, we explore its ability to generate new

Spec# statements for the Open Source repository described above – containing over 2 million

methods and over 74 million lines of code. We select methods from the Open Source

Repository (methods without specification) and we evaluate how Aris generate new Spec#

60

specifications. Table 4.9 details the number of newly generated specifications. The columns

#pre, #post, and #inv list the number of requires, ensures, and loop invariant statements that

were generated by Aris and that were subsequently verified by an SMT theorem prover –

unverified specifications are not listed. For example, a transferred specification from the

method Factorial(int n), if the Spec# output does not contain any error about the postcondition,

we count the generated postcondition as verified. The 20 specified methods resulted in 82 new

and verified specifications being generated by Aris 1.0 and 103 new and verified specifications

being generated by Aris 2.0. In the Table 4.9, we also can see that the same specification is

suggested by Aris 1.0 and Aris 2.0 more than 1 time. Therefore, we would have more

confidence in the relevance of suggested specifications than if it was only suggested once. It

should be noted that some of the specified methods did not include some of the pre, post, or

invariant and thus could not generate specifications of the corresponding categories in the

open source collection.

Aris 1.0 Results
#retrieval

#mapped

verified

No Method name #pre #post #inv #total

1 Add(int x, int y) 977220 150 1 1

2 AtLeastSquare(int[] inp) 270857 78 2 2 4

3
BoundedSearch_Spec(int[] a, int
key) 165230 19 0

4 CheckArray2(int[] arr) 235432 297 0

5 Count(int[], int) 464061 118 10 3 13

6 CountEven(int[] a) 251766 120 4 4 8

7 CountNonNull(string[] a) 111068 82 6 5 11

8 Factorial(int n) 4480 26 2 2

9 fibonacci(int fib) 7017 12 1 1 2 4

10 max(int x, int y) 1106713 80 2 2

11 multiply3(int x, int y) 150635 52 2 2

12 Product(int limit) 152246 71 4 2 6

13 Search(int[] a, int key) 945382 137 1 4 5

14 SumEvenIndex(int[] a) 138041 68 2 2

15 Square(int n) 5148 20 2 2 4

16 Sum(int[] a) 151448 82 1 2 3

17 Sum_x(int x) 83862 70 1 1 2

18 Swap(int[] A, int i, int j) 83862 1 4 3 7

19 SwapOriginal(int[] A, int i, int j) 205346 546 2 2 4

20 ZeroArrayForLoop(int[] array) 1826751 218 3 6 9

61

Aris 2.0 Results
#retrieval

#mapped

verified

No Method name #pre #post #inv #total

1 Add(int x, int y) 937050 190 3 1 4

2 AtLeastSquare(int[] inp) 216936 337 2 2

3 BoundedSearch(int[] a, int key) 83824 108 2 2

4 CheckArray2(int[] arr) 38209 67 1 1

5 Count(int[], int) 112747 203 9 5 14

6 CountEven(int[] a) 112042 182 2 6 8

7 CountNonNull(string[] a) 192209 394 5 1 5 11

8 Factorial(int n) 4434 20 2 2 4

9 fibonacci(int fib) 5527 38 1 1 3 5

10 max(int x, int y) 1106278 170 1 1

11 multiply3(int x, int y) 150632 106 3 3

12 Product(int limit) 152150 193 3 2 5

13 Search(int[] a, int key) 83824 108 1 5 2 8

14 SumEvenIndex(int[] a) 114366 199 0 2 2

15 Square(int n) 74858 74 3 2 5

16 Sum(int[] a) 144984 210 0 4 4

17 Sum_x(int x) 224216 632 2 1 3

18 Swap(int[] A, int i, int j) 81004 124 6 2 8

19 SwapOriginal(int[] A, int i, int j) 204893 566 2 2 4

20 ZeroArrayForLoop(int[] array) 1831988 339 5 1 13 19

Table 4.9. Aris 1.0 and Aris 2.0 result on creating specifications for selected methods in the 2
million open source repository.

Next, we compare the performance of Aris 1.0 and Aris 2.0 at the task of generating and

transferring specifications in carefully controlled modified settings (TS1-TS4). The main principle

for Aris is the fact that similar implementations also have similar specifications. Therefore, we

evaluate how many transferred specifications that are formally verified using Spec# automatic

verification tool16. For identical implementation (TS1), every case of specification was

successfully transferred and verified by Spec# for both Aris 1.0 and Aris 2.0.

For Test suite 2, Aris 2.0 able to perform better by generating 115 verified specifications

compared to Aris 1.0 that only generate 73 specifications in total. We also observed that for

the unverified programs in Aris 1.0, one of the common problems involved incorrect variable

names caused by mismatched variables. Other problems such as poor loop matching in Aris 1.0

16

 Automatic verification tool. http://rise4fun.com/SpecSharp/

62

also affect the smaller number of verified invariant statements. Enabling assert or assume

statements to be transferred in Aris 2.0 also contribute higher number of verified statements.

In Test suite 3, the improvements in Aris 2.0 enable it to perform better by generating 62

verified specifications compared to Aris 1.0 that only generate 47 specifications in total. In

Test suite 3, we add extraneous statement or changing the structure of the target. These

modifications affect the mapping process and eventually the transferred specifications. The

problems of Aris 1.0 (mismatch variable mapping and poor loop matching) when generate

specifications in test suite 2, also occur in test suite 3.

Transferring specifications between two significantly different programs would be less

useful for reusing specifications as the chances for the specification to be verified are very

small. Aris 1.0 and Aris 2.0 able to reject the mapping and do not transfer the specification

between two functionally different programs.

4.4 Aris as Creativity Assistance Tool

The principle of Aris is to ease software developer works in creating specifications for their

code implementation. This principle also guided our work in the transfer specification.

Although, similar implementation may lead to reuse specification, however the transferred

specification may not always verified within the target context and thus require human users to

adapt the specifications for verification, for example transfer specification between method

CountOdd and CountEven (see Table 4.10). This pair of method is not included in the test suite

because the functionality of the method is different. The method in source count number of

odd elements in an array, while the target method counts number of even elements in an array.

public int CountOdd(int[] array)
requires 0 < array.Length;
ensures result == count{int k in
 (0:array.Length); array[k]%2 != 0};
{
 int num = 0;
 for(int i = 0; i < array.Length; i++)
 invariant 0<= i && i <=array.Length;
 invariant num == count{int k in(0:i);
 array[k]%2 != 0};
 {
 if (array[i] % 2 != 0)

public int CountEven(int[] array)
requires 0 < array.Length;
ensures result == count{int k in
 (0:array.Length); array[k]%2 != 0};
{
 int i = 0;
 int num = 0;
 while (i < array.Length)
 invariant 0<= i && i <=array.Length;
 invariant num == count{int k in(0:i);
 array[k]%2 != 0};
 {

63

 {
 num++;
 }
 }
 return num;
}

 if (array[i] % 2 == 0)
 {
 num++;
 }
 i++;
 }
 return num;
}

Aris 1.0 sim_score: 0.76

Aris 2.0 sim_score: 0.85

Table 4.10. Example of transfer specification between CountOdd method to CountEven
method.

Although, these two methods in the source and target domain have different functionality,

however they are highly related and able to share common specifications. The generated

solution at first was not verified as Spec# gives warning After loop iteration: Loop

invariant might not hold: num == count{int k in(0:i); array[k]%2 != 0}.

The transferred specification still holds specification that suits with source method

implementation and therefore human users need to modify the generated specifications to

make the solution verified. The modification involved human users’ knowledge to change the

checking odd element process into an even element computation that captured in

postcondition and loop invariant (see Table 4.11).

Generated Specification Verified Specification
ensures result == count{int k in
 (0:array.Length); array[k]%2 != 0};

ensures result == count{int k in
 (0:array.Length); array[k]%2 == 0};

invariant num == count{int k in(0:i);
 array[k]%2 != 0};

invariant num == count{int k in(0:i);
 array[k]%2 == 0};

Table 4.11. The modification for generated specifications requires human’s user knowledge

Another relevant example is transferring specification between source methods that check

whether an array is sorted decreasingly and target method that check whether an array is

sorted increasingly (see Table 4.12).

public bool CheckArrayDecr(int [] arr)
requires arr.Length >= 0;
ensures result == true ==>
forall{int k in(0:arr.Length-1);arr[k+1] <=
 arr[k]};

public bool checkArrayIncr(int[] a)
requires a.Length >= 0;
ensures result == true ==>
forall{int k in(0:a.Length - 1);a[k+1] <=
 a[k]};

64

ensures result == false ==>
arr.Length == 0|| exists{int k in
 (0:arr.Length-1); arr[k+1] >arr[k]};
{
 if(arr.Length > 0)
 {
 for (int i=0; i<arr.Length-1;i++)
 invariant i >=0 && i < arr.Length;
 invariant forall{int k in(0:i);
 arr[k+1]<= arr[k]};
 {
 if (arr[i + 1] > arr[i])
 return false;
 }
 return true;
 }
 else
 return false;
}

ensures result == false ==>
a.Length == 0||exists{int k in(0:a.Length
 – 1); a[k+1] > a[k]};
{
 for(int i=0; i<a.Length - 1; i++)
 invariant i >=0 && i < a.Length;
 invariant forall{int k in(0:i);a[k+1]
 <= a[k]};
 {
 if(a[i] > a[i+1])
 return false;
 }
 return true;
}

Aris 1.0 sim_score: 0.71

Aris 2.0 sim_score: 0.74

Table 4.12. Example of transfer specification between check array decreasing method to
check array increasing method.

Once again, the solution is not verified and gives 3 warning message which are:

1. unsatisfied postcondition: result == false ==> a.Length == 0 ||

exists{int k in(0:a.Length - 1);a[k+1] > a[k]}

2. Initially: Loop invariant might not hold: i < a.Length

3. After loop iteration: Loop invariant might not hold: forall{int k

in(0:i);a[k+1] <= a[k]}

Therefore, software developer needs to modify the generated specification for verification,

which include changes in the boundary limit in requires and logical operator in the opposite

direction in the postcondition and the loop invariant (e.g from <= to >= and > to <) as

shown in the Table 4.13:

Generated Specification Verified Specification
requires a.Length >= 0;

requires a.Length >= 1;

ensures result == true ==> forall{int k
in(0:a.Length - 1);a[k+1] <= a[k]};

ensures result == true ==> forall{int k
in(0:a.Length - 1);a[k+1] >= a[k]};

ensures result == false ==> a.Length == 0 ||
exists{int k in(0:a.Length - 1);

ensures result == false ==> a.Length == 0 ||
exists{int k in(0:a.Length - 1);

65

a[k+1] > a[k]};

a[k+1] < a[k]};

invariant forall{int k in(0:i);a[k+1] <=
a[k]};

invariant forall{int k in(0:i);a[k+1] >=
a[k]};

Table 4.13. The modification for generated specifications requires human’s user knowledge

Aris is able to create the new formal specifications for specific segment of code and also

interacts with human users to ensure the quality of generated specifications in the less similar

implementation. Aris can yield potentially useful specification between different method

functionality. However, human users need to adapt the newly transferred specification for the

solution to be verified. (Donoghue et all, 2014) argues the human user’s inference and

validation will emulate and support the workaday little-c creativity of formal software

developers within this highly specific domain.

The other example in Table 4.14 is reuse assertion which is one of core feature in Aris 2.0

since it was not covered by Aris 1.0

public int factorialforloop(int n)
requires n >= 0;
ensures result == ((n == 0) ? 1
 :product{int j in (1..n); j});{
 if (n == 0)
 {
 return 1;
 }
 Else {
 int f = 1;
 assert f == product{int j in
 (1..0); j};
 for (int i = 1; i < n+1; i ++)
 invariant 1 <= i;
 invariant i <= n+1;
 invariant f == product{int j
 in (1..i-1); j};
 {

assert f * i == (product{int j in (1..i-
 1); j}) * i;
assert f * i == product{int j in (1..i);
 j};
 f = f * i;
assert f == product{int j in (1..i); j};
 }
 return f;}
}

public int factorialwhileloop(int n)
{
 if (n == 0)
 {
 return 1;
 }
 else
 {
 int f = 1;
 int i = 1;
 while (i < n + 1)
 {
 f = f * i;
 i = i + 1;
 }
 return f;
 }
}

Table 4.14. Example of transferring assertion in factorial method

66

And the result is:

public int factorialwhileloop(int n)
requires n >= 0;
ensures result == ((n == 0) ? 1 : product{int j in (1..n); j});
{
 if (n == 0)
 {
 return 1;
 }
 else
 {
 int f = 1;
 assert f == product{int j in (1..0); j}; //verified

 int i = 1;
 while (i < n + 1)
 invariant 1 <= i;
 invariant i <= n+1;
 invariant f == product{int j in (1..i-1); j};
 {
 assert f * i == (product{int j in (1..i-1); j}) * i; //verified
 assert f * i == product{int j in (1..i); j}; //verified

 f = f * i;
 i = i + 1;
 assert f == product{int j in (1..i); j}; //not verified

 }
 return f;
 }
}

Table 4.15. Verified and unverified example of generated specifications based on
program code in the Table 4.14.

In the Table 4.15, we can see that from 4 assertions, there are 3 assertions that can be

verified and 1 assertion failed to be verified. To make it verify, we have to modify the variable in

assertion from "assert f == product{int j in (1..i); j};" into "assert f

== product{int j in (1..i-1); j};". After modification, the assertion can be verified.

This is because in base code use for loop and target code use while loop. While loop in the

target code needs to increment the iteration variable through statement "i=i+1". Meanwhile,

the transferred assertion actually used to check the condition before the iteration variable

incremented. Therefore, we need to adapt the assertion by decrements the variable in

generated assertion for verification.

67

4.5 System limitation

The Aris system tries to map the equivalent loop construct and transfer the missing

specification such as from for loop to while loop. However, in Aris 2.0, we ignore transfer

specification from/to ForEach loop statement. For and while loop specifies the loop bounds for

its minimum and maximum which enable them to share boundary invariant whereas ForEach

loop does not specify loop bounds. Spec# does not support verification for ForEach loop,

neither; Spec# is a research language, therefore all C# features will not be supported.

We acknowledge some Spec# features that are not covered in Aris such as object invariant,

sub typing and inheritance, and aggregates. The object invariants specify, design of an

implementation such as expose block; statements under expose blocks indicate that an

object’s invariant may temporarily be broken. Subtyping and inheritance introduces additive

annotation; this annotation needed when an attribute of the subclass is mentioned in the

object invariant of the superclass and additive expose. Aggregates object introduces a Rep

annotation to identify objects that are components of the larger aggregate object. Another

abstraction such as modifies and model clause also not covered in current Aris version. Some of

Spec# features above are not covered because they are case by case basis and difficult to

extract as they are embedded in the code.

The source code retrieval process consists of knowledge acquisition and query response.

Knowledge acquisition is responsible to enrich case base with source code artefacts. In the

knowledge acquisition step for semantic retrieval, API calls are extracted and indexed from a

set of compiled assemblies. In the structural retrieval, methods are decompiled into C# source

code and used to construct a conceptual graph and content vectors that stored in the case-base

(Pitu, 2013). The knowledge acquisition takes approximately 5 hours on 2.4 GHz i5 processor,

for the collection that contains over 2 million methods. These 5 hours can be divided into two

main tasks which are extracting content vectors and extracting API calls. API calls may take

around 45 minutes, and the rest of the time is allocated to extract content vectors. At query

time, the source code retrieval system responses vary in time depending on the complexity of

the input source code artefact.

68

4.6 Conclusion

In this chapter we presented the evaluation and benchmark Aris 2.0 in order to test the

significance of improvement in the newer system against Aris earlier system version (Aris 1.0).

Evaluation is divided into two main sections, the first section address a recognition problem,

and it focuses on the retrieval and mapping phase measuring the capability of Aris to identify

the similar source code to some given problem. The degree of similarity between pairs of

source code artefacts has been carefully controlled, forming four different categories that

represent different degree of similarity with original unmodified implementation (Wilkinson,

1994). The second section of the evaluation will address a software generation problem

focusing on the ability of Aris to generate new specification for the selected method from the

open source repositories and also to identical and modified sources specified in (Wilkinson,

1994). We also explained Aris as creativity assistance tool and the system limitation.

69

5. Conclusions

There is increasing interest in using Formal Software Verification in order to ensure

program’s correctness and minimize the occurrence of software faults (especially for critical

applications). Aris project aims to explore the possibility of transferring formal specifications

between similar programs in order to help increase the number of verified implementations

and reduce effort of writing specifications. The first version of Aris was developed by (Grijincu,

2013) and (Pitu, 2013).

Although the result of the early version of Aris is encouraging and show potential reuse of

formal specifications, it still has many rooms for improvements and wide possibility for feature

enhancement. In this project, we address the following question: How we evaluate and

benchmark first version of Aris (Aris 1.0)? Our solution uses experimental methodology

(Amaral, et.al, 2007) to address the research question.

In elaborating our solution, our work differs from the earlier version in the following

ways:

- Our incremental graph matching algorithm ensures the backtracking process does not

miss the valid match by backtracking to node with higher node rank value and lower node rank

value (the earlier system only visits node with lower node rank value, however, in many case

valid matches occur with node with higher node rank value). We also consider its efficiency by

limit the backtracking into certain threshold that appropriately depends on the length of the

source code.

- We reduce the occurrences of false variable mapping by considering two ways graph

matching as opposed to one way graph matching in Aris 1.0. Aris 2.0 analyzed both ways graph

matching and use the graph matching result that generates a higher variable mapping similarity

score.

- We have developed more relevant criteria for matching loop concept. The first version

of Aris match based on the operator token in the first binary expression found in the loop

statement (first binary expression in the loop statement is not sufficient to represent the loop

70

concept, whereas the loop condition gives stronger representation in semantically and

functionally).

- We address the lexical similarity problem when assessing similarities between

variables in earlier version by supporting additional data type such as float, decimal, and bool.

- Our conceptual graph construction process can support additional features of the

source code such as conditional operator, else if statement, and the iterated section of for loop

statement.

- Our solution ensures the top ranked documents possesses good quality of

specifications for transferring specifications in the retrieval phase. The new system uses the

specification score metric that will measure the completeness of the specification in each

document related to the source code query.

- We enable adjustment of specification for transferring specification between different

ways of iteration in for loop. This adjustment will help produce a verified solution. This

adjustment is new in Aris because the earlier version of the system only focuses on transfer the

specification into the corresponding element of target domain.

- Our solution can support additional specifications by transferring assert and assume

specifications.

Finally, we evaluated Aris 2.0 and compare its performance over Aris 1.0 by collecting a

small set of methods with specifications and over 2 million methods (without specifications) of

real world projects from open source program. We have evaluated retrieval and mapping

phase, which measure the ability of both systems to identify the similar source code given to

any given problem – forming four different categories that represent different degree of

similarity with original unmodified implementation (Wilkinson, 1994). We also evaluate the

performance of Aris to generate new specification to selected methods from open source

repositories and also identical and modified sources specified in (Wilkinson, 1994).

71

Overall, our improvements in Aris 2.0 able to generate more verified specifications to

the problem code, identify more valid mapping, and increase the precision of retrieved

documents that similar to the problem code.

5.2 Future Work

Because our solution of transferring assert and assume specification based on the

succeeding statement in the source code (expecting identical structure of the statement).

Therefore, if the succeeding statement in the target domain is not structurally identical, then

the algorithm cannot find its corresponding in the target domain. For example, in the base

domain the succeeding statement relative to assert/assume statement is k++ and in the target

domain it may become n = n – 1; n = n + 2 (variable k is mapped to variable n). The algorithm

expects n++ rather than n = n – 1; n = n + 2, therefore assert or assume statement cannot be

transferred in this case. This challenge for transferring asserts and assumes statement needs

further analysis in the future.

Aris 1.0 and Aris 2.0 were developed to support C# programming language. (Rahman) has

developed Aris 2.1 to support Java programming language which means Aris system is actually

can be extended to support more programming feature. In the future, Aris can be developed to

support other programming language. It is also interesting to enable reuse specification across

programming language such as The Java Modeling Language (JML) specifications used in C#

programming language.

The development of Aris 2.0 depends on Spec# as a research language. Current version of

Spec# may not cover all programming feature, for example Spec# is currently does not support

specifications for foreach loop. Consequently, current system of Aris does not support

transferring specifications to foreach loop. However, Spec# is still an active research field and

there are possibilities for Spec# to support other C# programming features. In the next

development of Aris, we should also consider the development of Spec# programming system.

72

References

Amaral, Jose. 2007. About Computing Science Research Methodology. [Online] Available at:

http://webdocs.cs.ualberta.ca/~c603/readings/research-methods.pdf [Accessed 2014].

B. Dit, B. Revelle, M. Gethers and M. Poshyvanyk. 2013. Feature Location in Source Code: A

Taxonomy and Survey," Journal of Software:Evolution and Process, vol. 25, no. 1, pp. 53-95,

2013.

Bhattacharya, P., Iliofotou, M., Neamtiu, I. & Faloutsos, M., 2012. Graph-Based Analysis and

Prediction for Software Evolution. International Conference on Software Engineering, June, pp.

419-429.

Bunke, H., 2000. Recent developments in graph matching. Pattern Recognition, 2000.

Proceedings. 15th International Conference on , Volume 2, pp. 117-124.

Chanchal, R. K., Cordya, J. R. & Koschke, R., 2009. Comparison and Evaluation of Code Clone Detection

Techniques and Tools: A Qualitative Approach. Science of Computer Programming, 74(7), p. 470–495.

C. A. Furia and B. Meyer. Inferring loop invariants using postconditions. In Fieldsof Logic and

Computation, volume 6300 of Lecture Notes in Computer Science,pages 277–300. Springer,

2010

Evain, J., n.d. Mono Cecil Project. [Online] Available at: http://www.mono-project.com/Cecil

Gentner, D., 1983. Structure-mapping: A theoretical framework for analogy. Cognitive Science,

Volume 7, pp. 155-170

Gentner, D. & Forbus, K., 1994. MAC/FAC: A model of similarity-based retrieval, s.l.: Proc.

Cognitive Science Society

Gentner, D. & Forbus, K. D., 2011. Computational models of analogy. Cognitive Science, Volume

2, pp. 266-276

GitHub, Inc., n.d. GitHub. [Online] Available at: http://www.github.com

Google Inc., n.d. Google Code. [Online] Available at: http://code.google.com

Grijincu, D., 2013. Source Code Matching for reuse of Formal Specifications, Dublin: s.n..

Hage, J. P. R. N. v. V., 2010. A comparison of plagiarism detection tools. Utrecht Uni-versity.
Kamiya, 2002

http://webdocs.cs.ualberta.ca/~c603/readings/research-methods.pdf

73

Holyoak, K. J. & Thagard, P., 1989. Analogical Mapping by Constraint Satisfaction. Cognitive
Science, pp. 295-355.

Holyoak, K. J., Novick, L. R. & Melz, E. R., 1994. Component Processes in Analogical Transfer:
Mapping, Pattern Completion and Adaptation. K. J. Holyoak & J. A. Barden (Eds.), Analogical
Connections (Vol. 2, pp. 113-180) ed. s.l.:s.n.

ICSharpCode, 2012. ILSpy .NET Decompiler. [Online] Available at: http://ilspy.net/

Keane, M. T. & Brayshaw, M., 1988. The Incremental Analogy Machine: A computational model
of analogy. s.l.:Third European Working Session on Machine Learning.

Keane, M. T., Ledgeway, T. & Duff, S., 1994. Constraints on analogical mapping: A comparison of
three models. Cognitive Science, July, pp. 387-438.

Kolodner, J., 1993. Case-Based Reasoning. San Mateo: Morgan Kaufmann Publishers.

K. Rustan M. Leino, Peter Müller. 2008. Using the Spec# Language, Methodology, and Tools to
Write Bug-Free Programs. LASER Summer School: 91-139

Meyer, B. From structured programming to object-oriented design: the road to Eiffel,
Structured Programming 10 (1) (1989) 19–39.

Meyer, B., 1992. Applying "Design by Contract". Institure of Electrical and Electronics Engineers
(IEEE), 25(10), pp. 40-51.

Michail, A. & Notkin, D., 1999. Assessing software libraries by browsing similar classes,
functions and
relationships. Proceedings - International Conference on Software Engineering, pp. 463-472

Microsoft. 2013. For (C# Reference). [Online] Available at: http://msdn.microsoft.com/en-
us/library/ch45axte.aspx [Accessed 2014]

Microsoft, n.d. CodePlex: Project Hosting for Open Source Software. [Online] Available at:
http://www.codeplex.com/

Mishne, G. & De Rijke, M., 2004. Source Code Retrieval using Conceptual Similarity. s.l., Conf.
Computer
Assisted Information Retrieval

M. Joy and M. Luck. Plagiarism in programming assignments. IEEE. Transactions on Education,
42(2):129–133, 1999

http://msdn.microsoft.com/en-us/library/ch45axte.aspx
http://msdn.microsoft.com/en-us/library/ch45axte.aspx

74

Monahan. R and O’Donoghue. 2012. D, Case Based Specifications – reusing specifications,
programs and proofs. AI meets Formal Software Development. Dagstuhl Report II(7), pp 20-21

Montes-y-Gomez, M., Lopez, A. & Gelbukh, A. F., 2000. Information retrieval with conceptual graph.
Database and Expert Systems Applications, p. 312–32

Novick, L. R., 1988. Analogical transfer, problem similarity, and expertise. Journal of
Experimental Psychology: Learning, Memory, and Cognition, III(14), pp. 510-520.

Park, W.-J. & Bae, D.-H., 2011. A two-stage framework for UML specification matching. s.l., Elsevier, p.
230–244.

Pitu, M., 2013. Source code retrieval using Case Base reasoning, Dublin: s.n.

Pitu, Mihai; Grijincu, Daniela; Li, Peihan; Saleem, Asif; O'Donoghue, Diarmuid; Monahan, Rosemary,
2013. Arís: Analogical Reasoning for reuse of Implementation &. Artificial Intelligence for Formal
Methods (AI4FM).

Russell, S. & Norvig, P., 2003. Artificial Intelligence: A Modern Approach. 2nd ed. s.l.:Prentice
Hall.

Salton, G. & McGill, M., 1986. Introduction to modern information retrieval. New York: McGraw-
Hill, Inc.

Sowa, J. F., 2000. Knowledge Representation: Logical, Philosophical, and Computational
Foundations. s.l.:s.n.

S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E. Merlo, Comparison and Evaluation of Clone
Detection Tools, Transactions on Software Engineering, 33(9):577-591 (2007)

S. Ducasse, M. Rieger, and S. Demeyer, “A Language Independent Approach for Detecting
Duplicated Code,” Proc. Int’l Conf. Software Maintenance (ICSM ’99), 1999.

Sowa, J. F., 1984. Conceptual structures - Information processing in mind and machine

Wilkinson, R., 1994. Effective retrieval of structured documents. New York, Springer-Verlag, pp.
311-317.

Woodcock, J., Gorm Larsen, P., Bicarregui, J. & Fitzgerald, J., 2009. Formal Methods: Practice
and Experience. ACM Computing Surveys, 41(4).

